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Abstract

Certain field observations indicate irregular tidal oscillations within almost enclosed
coastal basins connected to the sea through a narrow channel. Previous studies have
explained this using models of Helmholtz resonators which incorporate sloping basin
bottoms. These sloping bottoms trigger a nonlinear volume response to external tides
coming from the sea. These studies suggest that the nonlinear response of a sloping
basin bottom is more pronounced when the basin is near Helmholtz resonance, leading
to tides having multiple dynamical equilibria or even exhibit chaotic behaviour within
the basin.
However, situations where the almost enclosed basin is connected to the sea through
multiple channels has not gotten as much exposure in research. This leads, in general,
to multiple coupled oscillator equations.
This thesis aims to extend the model of the aforementioned articles to a system with two
connecting channels and where the coastal basin is, due to a natural barrier, split into
two sub-basins that are allowed to interact with each other. It is researched whether
similar or new nonlinear effects arise in the extended model.
The results imply that the nonlinearities in the extended model still causes, when near
Helmholtz resonance, multiple equilibria and chaotic behaviour. In addition, the results
suggest that multiple equilibria and chaotic effects may even occur for some basins only
if they interact which each other, and not when seperated from each other.
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1 Introduction

Many coastal embayments worldwide are connected to the sea in the form of a tidal inlet
system. This consists of a coastal basin which is almost enclosed, called the backbarrier
basin, that is connected to the sea only by way of one or multiple narrow channels, called
inlets. Notable examples of tidal inlet systems are the Dutch Wadden Sea, or the bay of Faro.
An external tide is then able to flow through these inlets into the coastal basin, causing the
interior water of the basin to experience tidal motion.
The role of external tide arriving in tidal inlet systems is played by ocean tides. Conven-
tional wisdom suggests that these tides behave very regularly. Yet, within certain tidal inlet
systems, there actually exist reports on irregular tides. An example is [1] which reported
irregularities in tide observations in Moldefjord, Norway that suggest chaotic tidal behaviour.
In fact, such reports on irregular tides have already started to appear as early as 1908 (see [2]
and references therein). Given the regularity for which tides seem to be known, the notion
of chaotic tides is remarkable.
If tides within tidal inlet systems would indeed be chaotic, it would have serious implications
on the corresponding ecosystems. For example, the net transport of sediment is determined
by tides; disruptive transport of sediment might result in a sediment imbalance in tidal inlet
systems, which can be detrimental for the health of the ecosystem ([3]). In addition, fisher-
men or sailors, for example, could be hindered if the usual timing of ebb and flood in coastal
bays would become different, or in fact, unpredictable (i.e. chaotic).
Previous research ([4] and [2], hereafter referred to as ’M97’ and ’MD’ respectively) have
used models of a Helmholtz oscillator to explain these irregular effects. In particular, these
studies included a realistic description of the hypsometry of the basin in their model, i.e.
a linearly sloping basin bottom. Linearly sloping bottoms give the Helmholtz oscillator a
nonlinear restoring mechanism, which leads to a nonlinear differential equation describing
the tides within the system (see M97 for a detailed discussion).
An important role in these studies is also played by Helmholtz resonance. This resonance
is possible because tidal inlet systems possess a certain eigenfrequency, called the Helmholtz
frequency, which is determined by their geometric dimensions. When the external tide arriv-
ing at the tidal inlet system has a frequency close to the Helmholtz frequency, the tides in
the basin will experience a resonant response, strongly boosting its amplitude ([5]).
These studies suggest that the nonlinear response of the basin due to its hypsometry is more
pronounced when in Helmholtz resonance; the nonlinear response then triggers the occur-
rence multiple steady states, when the external tide was modeled as a sinusoid, and even
chaotic behaviour, when the external tide was modeled as a quasi-periodic tide.
In this thesis, the models used in M97 and MD is extended to a situation where there are
two tidal inlet systems neighbouring each other, of which the basins are separated by a water
shed1. This is also referred to below as a ’double tidal inlet system’, and a system with one
basin and one inlet is referred to as ’a single tidal inlet system’. Through the water shed
the two basins are allowed to exchange a limited amount of volume and therefore ’interact’
with each other. Since many tidal inlet systems in the world have multiple inlets and contain
water shed structures, it is useful to consider such a model. The Dutch Wadden Sea is an

1Note that such a system can also be interpreted as one large basin with two inlets instead of one, where
the basin is divided into two parts by a water shed lying between the two inlets.
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example of such a system. The inclusion of interaction via a water shed could possibly change
the effect of Helmholtz resonance, which could amplify, modify or reduce the occurrence of
the tidal irregularities found in M97 and MD.
The research question of this thesis is as follows: What are the effects of allowing interaction
between two nonlinear, single tidal inlet systems?
Relevant sub-questions include:
(1) How do the tides in the two basins behave, for two special bottom descriptions, i.e. ver-
tical sidewalls and linearly sloping sidewalls, when they interact with each other?
(2) Does interaction between two basins change the effect of Helmholtz resonance in those
basins?
(3) Are the nonlinear effects seen in M97 and MD still possible in an interacting, double
tidal inlet system?
(4) Do new nonlinear effects appear when interaction between the basins is allowed?
This thesis is structured as follows. In chapter 2, the model used for the double tidal inlet
system is explained in detail and a derivation of the coupled differential equations describing
this model is given. These equations are analytically solved in chapter 3 for a vertical sidewall
bottom description, for which the differential equations are linear. This model is then further
refined by taking the bottom description used by M97 and MD, for which the corresponding
nonlinear differential equations are discussed; a design of the numerical simulations needed to
analyse these equations is given. In chapter 4, the analysis of aforementioned analytical solu-
tions is presented, as well as the results of the numerical simulations for the nonlinear model.
The results are discussed in chapter 5 and an outlook for further research is given. Chapter
6 concludes with a summary of the answers to the research question and the sub-questions.
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2 Theoretical setup

2.1 Physical setting and assumptions

To analyse the behaviour of a double tidal inlet system, we introduce a mathematical model
as a stylized version of such a system. This section aims to illustrate the model used in
calculations in later sections. Figure 1 sketches the situation at hand.

Figure 1: A double, interacting tidal inlet system. The channels have lengths L1 and L2

respectively. The sea provides an external tide, given by ζe,1 for basin 1 and ζe,2 for basin
2, which forces currents to move through the channels to the basin entrances. The basin
entrances are, in this picture, both located at x = 0. The water surface levels within basin 1
and 2 are denoted by ζ1 and ζ2 respectively, Ai denotes the horizontal wetted area of basin i
and Hi denotes the maximum depth of basin i, measured from mean water level downwards.
Vi denotes the excess volume contained basin i, that is: the total amount of volume present
minus the time-averaged mean volume of the basin, i.e. a net volume. The interaction area
provided by the water shed is indicated with grey coloring, and has length L12 and vertical
cross-sectional area A12.

In Figure 1, it is illustrated how the sea borders the right-hand exit of the channels and
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Figure 2: Left: schematic side view of the water shed. The water shed is indicated with a
lighter blue colour, because it is more shallow than the basins. Right: oblique view of the
same water shed, indicating its cross-secetional area A12.

mainland borders the left-hand boundary of the backbarrier basin. The two inlets are cre-
ated by narrow gaps between a coastal island (in the middle) and the mainland (top and
bottom respectively). The axis layout is also included at the top. We also note that z = 0
is chosen such that it coincides with the mean2 water level of basin 1 (this is not visible in
Figure 1). The water surface elevation profile within basin i is denoted by ζi = ζi(x, y, t) and
the external tide arriving at the inlet to basin i is denoted by ζe,i.
A convenient way of keeping track of the volumes of the basins during mass-exchange is to
use the variable excess volume instead of regular volume. The excess volume Vi(t) of basin
i is defined as the total volume present at time t minus the time-averaged mean volume. In
contrast to regular volume, the excess volume can also become negative. The convenience is
that one can immediately tell from the sign of Vi at what stage of the oscillation basin i is,
i.e. either it has obtained mass from the sea or it has given some mass to the sea.
The basins and inlets have some important geometric characteristics: basin i possesses mean
horizontal wetted basin area A0,i, where the subscript 0 denotes the mean with respect to
the z-coordinate. This area can be understood as the horizontal wetted area at mean water
level z = 0 when external tides are absent. The maximum depth of the basins is given by Hi,
which is assumed to also be the depth of inlet i. This means that basin i and the inlet leading
to it have the same characteristic vertical scale. Furthermore, the inlet of basin i has length
Li and a vertical cross-sectional wetted area Ac,i, where subscript ’c’ denotes ’cross-sectional’.
Between the two basins there is a so-called water shed, which functions as a transition area
and provides an opportunity for interaction between the two basins3. A water shed exists by
virtue of a wall-like structure between two parts of the total backbarrier basin (this creates
the two parts basin 1 and basin 2) which is a lot more shallow than the other parts of the
backbarrier basin. An illustration of a water shed is given in Figure 2. The water shed area
is indicated by the yellow part and is, as illustrated, assumed to also be submerged under
the water level. As such, the water shed possesses a vertical cross-sectional wetted area A12

and a length L12 in the y-direction, see also Figure 1. In section 2.2 below, it will be argued
that the water shed provides dynamical interaction between the water levels of basin 1 and
basin 2.
Before proceeding to the derivation of equations of motion, there are some simplifying as-
sumptions. These are the following:

2That is, mean with respect to time.
3The name ’water shed’ refers to a situation where the water level falls and the wall-like structure between

the two basins is not completely submerged anymore; the structure would then shed the water to basin 1 on
one side and to basin 2 on the other side.



2 THEORETICAL SETUP 5

1) The length dimensions in the x-direction of the basins are very small compared to the
wavelengths of the external tides. This has the effect that the external waves arriving at
a basin’s entrance will traverse the respective basin instantly. The water level of basin i
therefore rises at every point in the basin simultaneously and also falls everywhere simulta-
neously, i.e. ζi(x, y, t) = ζi(t). This implies that there are no horizontal variations of the tide
within basin i, which allows us to describe the system by the global variable excess volume Vi.

2) The surface elevation is assumed to drop linearly over the length of the inlet and is taken
to be very small compared the maximum depth of basin i: ζs,i � Hi, where ζs,i is the surface
elevation in inlet i. Because of this, the total vertical cross-sectional area Ac,i = Wi(Hi+ ζs,i)
can be approximated as Ac,i = WiHi.

3) The vertical cross-sectional area Ac,i of channel i is assumed to be spatially uniform
along inlet i; this corresponds to uniform depth Hi along strait i and uniform width Wi (we
model the inlets as rectangles). In a similar fashion, the vertical cross-sectional area A12 is
assumed to be constant.

4) The inlets are narrow: Wi � Li where Wi is the width and Li is the length of inlet
i. This effectively makes the flow velocity within the channels fully in the downstream (along
the x-axis).

5) The bottom of the watershed is assumed to be a horizontal plane, as depicted in the
side view in figure 4.

As mentioned in the introduction, this thesis will focus on Helmholtz oscillation in describing
the dynamics of the tidal inlet system. A Helmholtz oscillator is a system where an almost
enclosed container is connected to its environment only through a narrow gap which triggers
a periodic exchange between fluid in the container and fluid of the outside through the narrow
opening. An example of such a system is an opened, empty bottle. In particular, due to the
configuration of a narrow opening and a wider container, a natural frequency scale arises,
which is called the Helmholtz frequency. This is an eigenfrequency of the oscillation, which
is determined by the geometric dimensions of the container and the narrow opening.
In a tidal inlet system, the role of the container is played by the backbarrier basin and the
narrow opening is represented by the narrow inlet. The fluids that are periodically exchanged
are the water within the basin and the water in the sea. This exchange is brought about
by a pressure difference between the basin entrance and the sea entrance. Furthermore, the
Helmholtz frequency is now given by the geometric dimensions of the basin and the inlet.
Resonance then occurs when the external tide has a frequency close to the Helmholtz fre-
quency. As a consequence, the tide within the basin will then be significantly amplified. See
[5] for a detailed discussion.
We note, however, that the behaviour of a tidal inlet system in general is determined by
multiple modes. Aside from the mode which is described by a Helmholtz oscillator, called
the Helmholtz mode, there are also the so-called sloshing modes. These are the modes that
would already be present if the backbarrier basin were completely enclosed. When they are
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connected to the sea via a narrow inlet, the Helmholtz mode is added to the system. Despite
the presence of the other modes, we focus on the Helmholtz mode in this thesis. This is
because, in short4 basins, this mode is energetically dominant over the other modes ([6]).

2.2 Equations of motion and boundary conditions

We now seek a mathematical description of the Helmholtz mode, which is prevalent in basins
that are short in the sense of assumption 1). As mentioned in assumption 1 in section 2.1,
we can then use the excess volumes V1, V2 to describe the dynamics of the two tidal inlet
systems. In appendix A.1, the following expressions are derived for V1, V2:

dV1
dt

= −Ac,1u1 − A12u12, (1)

dV2
dt

= −Ac,2u2 + A12u12, (2)

where:

Vi is the excess volume of basin i, which is given by Vi =
∫ ζi
0
Ai(z) dz, where

Ai(z) is the horizontal wetted area at height z,

ζi is the surface elevation in basin i

Ac,i is the cross sectional area of the inlet channel leading to basin i;

A12 is the wetted vertical cross-sectional area of the water shed;

ui is the depth-averaged flow velocity of water flowing into basin i, given by ui =
∫ ζi
−Hi

ũidz∫ ζi
−Hi

dz
;

ũi is the true flow velocity of water flowing into basin i;

u12 is the depth-averaged flow velocity of water flowing through the interac-
tion area, calculated from the true flow analogously to u1.

Expressions for the variables u1, u2 and u12 are also derived in the appendix:

du1
dt

=
g

L1

(ζ1 − ζe,1)−
ĉ1
H1

u1, (3)

du2
dt

=
g

L2

(ζ2 − ζe,2)−
ĉ2
H2

u2, (4)

0 =
g

L12

(ζ1 − ζ2)−
ĉ12
H12

u12, (5)

4In assumption 1) of section 2.1 it was stipulated that we consider short basins.
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where:

ζe,i is the external tide arriving at inlet i.

g is the acceleration of gravity;

Li is the length of inlet i;

L12 is the length of the interaction area;

Hi is the depth of basin i;

H12 is the depth of the interaction area;

ĉi is a linearized bottom friction coefficient belonging to basin i;

ĉ12 is the linearized bottom friction belonging to the water shed.

Equations (1) and (2) represent conservation of mass in basin 1 and 2 respectively; the
different terms on the right in equations (1) and (2) represent sources of water that may flow
into the basin during time interval dt. The equations for u1, u2 and u12 represent a change
in flow velocity due to a pressure difference (first term on the right in equation (3), (4) and
(5)) arising from a difference in surface elevation. The second terms on the right-hand sides
of equations (3), (4) and (5) respectively are linear bottom friction terms.
Note that the bottom friction coefficients carry an inverse dependence on bottom depth.
This ensures that the friction becomes infinite when the water flow is along the bottom of
the basin5. This is particularly significant for equation (5), describing the interaction in the
water shed: if H12 = 0, we see, by rewriting u12 = H12

ĉ12

g
L12

(ζ1 − ζ2), that u12 = 0, i.e. there is
no flow from basin 1 to 2 and therefore no interaction.
In appendix B, equations (1)-(5) are nondimensionalized using characteristic scales belonging
to tidal inlet system 1: Vi = A0,1H1V

′
i , z = H1z

′, Ai(z/H1) = A0,1A
′
i(z
′), ζi = H1ζ

′
i, ζe,i =

H1ζ
′
e,i, ui = gH1

L1σH,1
u′i, u12 = gH1

L1σH,1
u′12, t = t′

σH,1
, for i = 1, 2, where σH,1 is the Helmholtz

frequency of basin 1, which is defined as

σH,1 =

√
gAc,1
A0,1L1

. (6)

The new, scaled equations read

du1
dt

= ζ1 − ζe,1 −
c1
H1

u1, (7)

du2
dt

=
L1

L2

(ζ2 − ζe,2)−
c2
H2

u2, (8)

5When the maximum depth Hi is zero, the bottom is located at mean water level z = 0, where the
depth-averaged flow ui is defined to flow.
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dV1
dt

= −u1 − A12,ru12, (9)

dV2
dt

= −Ac,2
Ac,1

u2 + A12,ru12, (10)

0 = ζ1 − ζ2 −
c12
H12

u12, (11)

where we renamed ci
Hi

= 1
σH,1

ĉi
Hi

, c12
H12

= L12

gH1

ĉ12
H12

and A12,r = A12

Ac,1
. Furthermore, note that

Ac,2
Ac,1

L1

L2
=
(
σH,2
σH,1

)2
A2,r, where A2,r ≡ A0,2

A0,1
. With these expressions in mind, equations (7)-(11)

are decoupled to arrive at the following coupled Helmholtz oscillator equations in terms of
only V1 and V2:

d2V1
dt2

+ ζ1(V1) = ζe,1(t)−
H12

c12
A12,r

(
∂ζ1
∂V1

dV1
dt
− ∂ζ2
∂V2

dV2
dt

)
− c1
H1

H12

c12
A12,r [ζ1(V1)− ζ2(V2)]−

c1
H1

dV1
dt
,

(12)

d2V2
dt2

+

(
σH,2
σH,1

)2

A2,rζ2(V2) =

(
σH,2
σH,1

)2

A2,rζe,2(t)

+
H12

c12
A12,r

(
∂ζ1
∂V1

dV1
dt
− ∂ζ2
∂V2

dV2
dt

)
+

c2
H2

H12

c12
A12,r [ζ1(V1)− ζ2(V2)]−

c2
H2

dV2
dt
,

(13)

where we note that ζi is a function of Vi through inversion of Vi =
∫ ζi
0
Ai(z) dz and that the

chain rule was used: dζi
dt

= ∂ζi
∂Vi

dVi
dt

.
Equations (12) and (13) describe Helmholtz oscillation for excess volumes V1, V2 in an in-
teracting, double tidal inlet system. Note that the precise form of equations (12) and (13)
for V1 and V2 depends on the expression for the terms ζ1(V1), ζ2(V2) respectively. It will be
discussed in section 3 that the form of ζi(Vi) wholly depends on the shape of the bottom
of the basin. Moreover, as explained in Appendix A, the terms ζ1(V1) and ζ2(V2) represent
restoring terms. Therefore, the restoring process in equations (12) and (13) will be different
for different basin shapes. This will be further discussed in the next section.
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3 Methods

In this section, two kinds of sidewall configurations for the basins are explored, as well as the
methods used to analyse these systems.
Firstly, the scenario where the sidewalls are vertical is studied. Although vertical sidewalls
approximate coastlines rather crudely, this simpler case will be useful throughout this thesis.
Vertical sidewalls gives rise to linear differential equations for the excess volumes of the basins.
For this system, analytical methods are shown that produce explicit solutions V1(t), V2(t) to
equations (12) and (13).
Secondly, the scenario where the sidewalls are linearly sloping is considered. This yields
nonlinear differential equations for the volumes; the numerical methods to study these are
explained, including a design of performed numerical experiments.

3.1 Vertical sidewalls: linear Helmholtz oscillator

The goal of this subsection is to analyse the double tidal inlet system with vertical sidewalls.
It will become clear below that such a sidewall configuration results in a linear differential
equation for excess volumes V1 and V2.
When the basins have vertical sidewalls, the basins have a rectangular shape, as on the left
in Figure 3. Therefore, the wetted horizontal cross-sectional area for basin i is constant in
z and must be everywhere equal to the horizontal wetted area at mean surface level z = 0:
Ai(z) = A0,i. Scaled with A0,1, we have for i = 1, 2:

A1(z) = 1, (14)

A2(z) =
A0,2

A0,1

= A2,r, (15)

where A2,r denotes the horizontal wetted area of basin 2 relative to its counterpart in basin

1. By inverting Vi =
∫ ζi
0
Ai(z) dz, expressions for ζ1 and ζ2 are obtained:

V1 =

∫ ζ1

0

A1(z) dz =

∫ ζ1

0

dz ⇒ V1 = ζ1 (16)

V2 =

∫ ζ2

0

A2(z) dz = A2,r

∫ ζ2

0

dz ⇒ V2 = A2,rζ2 ⇒ ζ2 =
V2
A2,r

. (17)

Furthermore, the external tides are assumed to be pure sinusoids in time:

ζe,1 = Z1 cos(σt− ϕ1), (18)

ζe,2 = Z2 cos(σt− ϕ2), (19)

where σ is the frequency of the external tide, not to be confused with the Helmholtz frequency
of basins 1 and 2: σH,1 and

σH,2
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Figure 3: Source: MD. Left: a container with vertical sidewalls. Equal amounts of volume
produce an equal increase of surface elevation when poured into the container, i.e. a the
elevation exhibits a linear response. Right: a container with linearly sloping sidewalls. Here,
equal amounts of volume produce a different increase of surface elevation when poured into
the container. In particular, the increase of surface elevation depends upon how much volume
is already present in the container. This points to a nonlinear response of the elevation.

. In addition, Zi is the dimensionless amplitude of the external tide arriving at inlet i and
ϕi is its phase shift. Note that σ is taken the same for i = 1, 2 and is scaled with Helmholtz
frequency of basin 1. Taking the same σ for both inlets corresponds physically to the same
tide arriving at both inlets. There can still be a phase difference (ϕ1 6= ϕ2), because the
tide needs time to propagate along the coast. We can, without loss of generality, choose the
moment t = 0 such, that ϕ1 = 0, so that only ζe,2 carries a phase shift.
Using the obtained expressions for ζ1, ζ2, ζe,1 and ζe,2 and setting ϕ1 = 0, equations (12) and
(13) become

d2V1
dt2

+ V1+
H12

c12
A12,r

(
dV1
dt
− 1

A2,r

dV2
dt

)
+

c1
H1

H12

c12
A12,r

(
V1 −

V2
A2,r

)
+

c1
H1

dV1
dt

= Z1 cos(σt),

(20)

d2V2
dt2

+ σ2
H,rV2 −

H12

c12
A12,r

(
dV1
dt
− 1

A2,r

dV2
dt

)
− c2
H2

H12

c12
A12,r

(
V1 −

1

A2,r

V2

)
+

c2
H2

dV2
dt

= σ2
H,rA2,rZ2 cos(σt− ϕ2).

(21)

Note that parameters Z1 , Z2, σ and ϕ2 are characteristics of the sea/reservoir to which the
basins are connected and are assumed to be external parameters that are given.
Equations (20) and (21) are, coupled, second-order linear differential equations in V1, V2
respectively. The linearity of these equations enables analytical solution. The equations are
most easily solved by switching to matrix-vector notations.

V =

 V1

V2

 , ζe =

 ζe,1

ζe,2

 (22)

and

A ≡


c1
H1

+ H12

c12
A12,r −H12

c12

A12,r

A2,r

−H12

c12
A12,r

c2
H2

+ H12

c12

A12,r

A2,r

 (23)
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B ≡

 1 + c1
H1

H12

c12
A12,r − c1

H1

H12

c12

A12,r

A2,r

− c2
H2

H12

c12
A12,r σ2

H,r + c2
H2

H12

c12

A12,r

A2,r

 . (24)

For brevity, in the discussion below, we will write the elements of A and B as amn and bmn
respectively, where m,n = 1, 2. Using equations (22)-(24) we recast equations (20) and (21)
into matrix-vector form:

V̈ + AV̇ +BV = ζe. (25)

This is a linear inhomogeneous vector differential equation. The general solution will consist
of a solution to the homogeneous equation (transient solution) and a particular solution
(nontransient solution) which solves the inhomogeneous equation. For a good discussion, see
[7], hereafter referred to as ’TCM’.
We will focus on the nontransient solution because of the fact that the homogeneous solutions
die out in a characteristic time of 1

ci
due to the damping term ci

dVi
dt

present in the equations
for each Vi (see TCM). After that, the motion will converge to the particular solution. Since
we are interested in the long term behaviour of these basins, transient solutions are not
interesting.
Equation (25) is solved by writing the variables V(t) and ζe(t) as the real parts of complex
quantities Φ(t) and S(t). Then Φ(t) satisfies

Φ̈(t) + AΦ̇(t) +BΦ(t) = S(t) (26)

Because the external tides are sinusoidal, we have

Sn(t) = sne
iσt , n = 1, 2 (27)

where we absorbed the phases ϕn into the complex constants sn.6 We now make the following
ansatz: Φn(t) = φne

iσt. Substituting equation (27) and Φ(t) = (φ1, φ2)
T eiσt into equation

(26) yields, upon dividing out eiσt left and right: −σ2φ1

−σ2φ2

+ A

 iσφ1

iσφ2

+B

 φ1

φ2

 =

 s1

s2

 . (28)

We see that Φ satisfies the differential equation when

φ1 =
s1 − (iσa12 + b12)φ2

−σ2 + iσa11 + b11
, (29)

φ2 =
s2 − (iσa21 + b21)φ1

−σ2 + iσa22 + b22
. (30)

Note that φ1 and φ2 are coupled, implying a coupling of V1(t) and V2(t). Decoupling equations
(29) and (30), we obtain explicit relations for φ1, φ2:

φ1 =
(−σ2 + iσa22 + b22)s1 − (iσa12 + b12)s2

(−σ2 + iσa11 + b11)(−σ2 + iσa22 + b22) + (iσa12 + b12)(iσa21 + b21)
, (31)

6Index n is used here instead of i to avoid confusion with the imaginary unit i, which is present in the
complex exponentials.



3 METHODS 12

φ2 =
(−σ2 + iσa11 + b11)s2 − (iσa21 + b21)s1

(−σ2 + iσa22 + b22)(−σ2 + iσa11 + b11) + (iσa21 + b21)(iσa12 + b12)
. (32)

Writing φn = V̂ne
−iδn , the solutions are

V(t) =

 V̂1 cos(σt− δ1)

V̂2 cos(σt− δ2)

 , (33)

where
V1 = |φ1| (34)

V2 = |φ2| (35)

δ1 = arg (φ1) (36)

δ2 = arg (φ2) (37)

The implications of these results are discussed in section 4.1. In particular, numerical plots
are made to observe the how the amplitude near Helmholtz resonance (σ ≈ σH,1) is af-
fected by interaction strength (A12), for which non-interacting tidal inlet systems are known
to strongly resonate ([5]). The reason for switching to numerical calculation is due to the
cumbersomeness of calculating V̂1, V̂2 from equations (31) and (32). The design of these
experiments is also discussed in section 3.3.2.
We also note that a more realistic model for the external tide contains more than one fre-
quency constituent. In fact, some tide observations have pointed out 390 different frequency
constituents ([8]). Due to linearity of the vertical sidewall model, the generalization to the
case of multiple frequency external tides is straightforward: the total nontransient solution
will be a sum of nontransient solutions to equation (25), where, each time, ζe is taken equal
to a different individual frequency component.

3.2 Linearly sloping sidewalls: nonlinear Helmholtz oscillator

Although the model with a rectangular-shape basin already provides a lot of information, as
will be discussed in section 4.1, it still lacks a proper description of the geometry of a tidal
inlet system. Coastal backbarrier basins oftentimes have a shoaling coastline as boundary
instead of a vertical boundary, see again Figure 3 (right). Such shoaling coastline may be
approximated mathematically as a linearly sloping basin bottom, where the horizontal wetted
area for basin i at height z can be given dimensionally by the linear relation

Ai(z) = A0,i(1 +
z

Hi

). (38)

The offset and the slope in this expression are such that the time-mean horizontal wetted
area at mean water level, A0,i, occurs at7 z = 0 and that the deepest point of basin i is

7As was stipulated in section 2.1, z = 0 is chosen to coincide with time-mean water level.
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given by the maximum depth Hi: Ai(z = −Hi) = 0. Using the nondimensionalization
z′ = z/H1, A

′
i(z
′) = Ai(z/H1)/A0,1 (see Appendix B), we obtain

A′1(z
′) = 1 + z′, (39)

A′2(z
′) =

A0,2

A0,1

(1 +
H1

H2

z′) ≡ A2,r(1 +
z′

H2,r

), (40)

where A2,r is defined as in equation (15) and H2,r is defined as the maximum depth of basin
2 relative to that of basin 1. Dropping the primes on dimensionless variables, we determine
the expressions of ζ1, ζ2 for these A1, A2:

V1 =

∫ ζ1

0

dz (1 + z) = ζ1 +
ζ21
2
, (41)

so that
ζ1(V1) =

√
1 + 2V1 − 1 (42)

where the positive square root is taken by virtue of the requirement that zero excess volume
correspond to zero elevation, i.e. V1 = 0⇒ ζ1 = 0. Analogously for basin 2, we have

ζ2(V2) =

√
H2

2,r + 2
H2,r

A2,r

V2 −H2,r (43)

Now, we see from equations (42) and (43) that the restoring terms are square root in V1, V2
respectively, whereas in the previous section in the case of rectangular bottom, they were
linear in V1 and V2. Also note that for small excess volumes, i.e. V1, V2 � 1, we have√

1 + 2V1 − 1 ' V1 (44)√
H2

2,r + 2
H2,r

A2,r

V2 −H2,r '
V2
A2,r

, (45)

which are precisely the restoring terms of the flat bottoms in equations (16) and (17). Phys-
ically, this corresponds to the notion that small deviations of the water surface are not deep
enough to ’feel’ the bottom shape. This implies that the case of linearly sloping sidewalls is
essentially a perturbation of the case of vertical sidewalls. This re-establishes the relevance
of the previous section, where an analytical solution was produced for the vertical sidewall
case. Since the evolution equation for the case of linearly sloping sidewalls reduces to that of
the vertical sidewall case for small excess volumes, the solution to the former equation must
reduce to the solution of the latter for small excess volumes. This means that, at moderate
values of the excess volumes, one can already expect the solution for linearly sloping sidewalls
to somewhat resemble the solution for vertical sidewalls.
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Substituting the new equations (42) and (43) into (12) and (13) yields:

d2V1
dt2

= ζe,1(t) + 1−
√

1 + 2V1 −
c1
H1

dV1
dt

− H12

c12
A12,r

 1√
1 + 2V1

dV1
dt
− 1√

A2
2,r + 2A2,r

H2,r
V2

dV2
dt


− c1
H1

H12

c12
A12,r

(√
1 + 2V1 −

√
H2

2,r + 2
H2,r

A2,r

V2 +H2,r − 1

) (46)

d2V2
dt2

=

(
σH,2
σH,1

)2

A2,rζe,2(t)−
c2
H2

dV2
dt

−
(
σH,2
σH,1

)2

A2,r

[√
H2

2,r + 2
H2,r

A2,r

V2 −H2,r

]

+
H12

c12
A12,r

 1√
1 + 2V1

dV1
dt
− 1√

A2
2,r + 2A2,r

H2,r
V2

dV2
dt


+

c2
H2

H12

c12
A12,r

(√
1 + 2V1 −

√
H2

2,r + 2
H2,r

A2,r

V2 +H2,r − 1

)
.

(47)

Equations (46) and (47) describe the coupled Helmholtz oscillator of equations (12) and (13)
when the basin bottoms slope linearly. Clearly, they contain many terms nonlinear in the
excess volumes. In particular, the restoring terms ζ1(V1), ζ2(V2) are now square root in V1
and V2, respectively. Unfortunately, these equations are not analytically solvable, so that we
must resort numerical solution. In this thesis, a Python script utilizing Runge-Kutta 4 was
employed to obtain numerical solutions.

3.3 Numerical methods

To analyse the nonlinear behaviour of two interacting tidal inlet systems with sloping bot-
toms, equations (46) and (47) were numerically solved for various parameter settings. In this
subsection, the methodology of the plotting techniques used is first explained; after that, a
design of performed experiments is given.

3.3.1 Numerical integration, Poincaré maps

An insightful way to visualize the long-term behaviour of the solutions V1(t), V2(t) is through
the use of a stroboscopic variant of phase plane plots, called the Poincaré map. The Poincaré

map takes a phase space orbit but only shows points (Vi, V̇i) evaluated at specific, regular
time intervals t = T, 2T, ... , nT , where n is a positive integer and T is a chosen sampling
period. Figure 4 gives an example of this. See TCM for a detailed discussion on Poincaré
maps.
If the motion of a solution is strictly periodic with period T , it is easy to see that a plot
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Figure 4: Two plots adapted from TCM. Left: a segment of the phase space orbit of a
solution (φ, φ̇) to a certain DDO equation. Right: a Poincaré map of this segment.

(a) (b)

Figure 5: (a) Two different Poincaré maps (black and green respectively) of some (V ,V̇ ) that
are, at late times, periodic with the sampling period. (b) An orbit which is, at late times,
periodic with twice the sampling period, thus spiraling towards two fixed points.

Poincaré map will look like a single point. Indeed, in case of T -periodicity, (Vi(t = nT ), V̇i(t =
nT )) must be the same number for every integer n.
Returning to the context of the tidal inlet system, we have from equation (33) that the
nontransient solution to the (single-frequency forced) linear model is periodic with the tidal
period T = 2π/σ. Therefore, if we choose the sampling period equal to this tidal period,
the Poincaré map orbits of linearly-behaving solutions will converge toward a fixed point as
transient parts of the solution fade, as in Figure 5a. It will then be easy to spot if solutions
to the nonlinear equations (46) and (47) exhibit period-doubling or chaos. Any pattern in
the Poincaré map that is not a spiral towards a single fixed point indicates the occurrence of
some kind of nonlinear effect.
If period doubling has taken place, then it will take two tidal periods before the motion has
returned to the same point (Vi, V̇i). Therefore, when a Poincaré map of a period-doubled
solution is sampled with the tidal period, two successive points in the Poincaré map will not
be the same. Instead, every other point will be the same: (Vi(t = nT ), V̇i(t = nT )) = (Vi(t =
(n + 2)T ), V̇i(t = (n + 2)T )). In this way the pattern in the Poincaré map will show up as
two orbits each converging to their own fixed point, illustrated in Figure 5b.
For the case of quasi-periodic double frequency forcing in the linear model, the last paragraph
in section 3.1 implies that the nontransient solution is also quasi-periodic. This means that
at late times, the solution looks like a periodic function but is, in fact, not truly periodic.
Therefore, there does not exist a sampling period T for which the Poincaré map looks like a
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(a) (b)

Figure 6: (a) An example of some Poincaré map representing quasi-periodic motion, ap-
pearing as a closed cycle at late times (dark part of the pattern). (b) An example of some
Poincaré map representing chaotic behaviour, appearing as an irregular pattern.

fixed point. Instead, because the motion never truly repeats itself, it will show up as a closed
cycle of points, see Figure 6a.
In MD, it is seen that quasi-periodic double frequency forcing in the nonlinear model can
lead to chaotic behaviour in some instances. Chaotic behaviour is also aperiodic behaviour,
but in contrast to quasi-periodic motion, chaotic behaviour is far from periodic behaviour.
Therefore, chaotic behaviour will not show up in the Poincaré map as a closed cycle but as
an irregular pattern of points, see Figure 6b.
Since Poincaré maps provide an elegant way of characterizing nonlinear effects, they will be
extensively used in this thesis, instead of regular phase plane orbits. In the remainder of this
thesis, these four patterns in Poincaré maps are important:

1) If the Poincaré orbit tends towards one focus, no special nonlinear behaviour is present.
2) If the Poincaré orbit tends towards two foci, period doubling has taken place.
3) If the Poincaré orbit follows a closed cyclic pattern, the motion is quasi-periodic.
4) If the Poincaré orbit follows some irregular pattern at late times, the solution is chaotic.

3.4 Design of simulations

Simulations were performed in order to observe how the effect of interaction between the
two basins changes earlier results for single tidal inlet systems. It is convenient to model the
interaction area as a rectangular hole through a wall that separates basins 1 and 2. This
wall is illustrated in Figure 7. This hole runs from basin 1 to basin 2 and its vertical cross-
sectional size equals A12,r, We can then gradually increase the strength of the interaction by
increasing A12,rel. This is visualized in Figure 8. We note that A12,r = 0 corresponds to a
hole of size zero, i.e. a solid wall fully separating both basins. Thus, when A12,r = 0, both
basins act as single tidal inlet systems. This situation will hereafter be referred to as ’no
interaction’.
The friction through the rectangular hole is modeled proportional 1/

√
A12,r. Note that this

prevents large volumes to be exchanged between the basins when the hole is still small, as
friction proportional to 1/

√
A12,r is large for small A12,r.
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In order to observe the effect of interaction between the basins, the experiments are performed
as follows: The starting point for the simulations is A12,r = 0, i.e. no interaction. For this
the characteristic behaviour in the linear ([5]) and nonlinear models is already known from
M97 and MD. Then, A12,r is slowly increased, corresponding to the interaction hole slowly
getting bigger (see Figure 8) and we observe the effect of this on V1 and V2.

3.4.1 Simulations of the linear model

In order to research how the response to forcing near Helmholtz resonance (σ ≈ σH,1) in the

linear model changes when interaction is increased, numerical plots of V̂1 and V̂2 as functions
of A12,r are made. The modeling of the interaction area is described as above (the hole). The
parameters used are the following:

Table 1: Linear model

Parameter Value

σH,2/σH,1 1.049
A2,r 1
σ varies

A12,r varies

c12/H12 0.01/
√
A12,r

Z1 -0.001
Z2 -0.001

c1/H1 0.01
c2/H2 0.01
ϕ1 0
ϕ2 0

Figure 7: Schematic side view of the total backbarrier basin in the situation ’no interaction’.
A wall completely separates basin 1 and 2 from each other.

Figure 8: Schematic front view of the ’wall’ from Figure 7 with the hole in it, as seen face on
from one of the basins. The hole is increased as A12,r = A12

Ac,1
increases.
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The choice for these values is to preserve similarity to the choice made for parameters in the
nonlinear model, which are explained below.

3.4.2 Experiments on the nonlinear model

As the interaction hole is increased, we use Poincaré maps for the nonlinear model to observe
whether the effects seen in M97 and MD change and whether new nonlinear effects appear.
This process is performed for two situations:
(i) The external tide arriving in basin i forces with one frequency, that is, ζe,i = Zi cos(σt−ϕi)
(ii) The external tide arriving in basin i forces quasi-periodically, that is, ζe,i = Z1,i cos(σ1t−
ϕ1,i) + Z2,i cos(σ2t− ϕ2,i), where the quotient σ1/σ2 is irrational.
The parameters used in the experiments are, unless otherwise indicated, as follows.
For case (i):

Table 2: Nonlinear case (i)

Parameter Value

σH,2/σH,1 varies
A2,r varies
A12,r varies

c12/H12 0.01/
√
A12,r

σ 2.04
Z1 -0.1
Z2 -0.1

c1/H1 0.01
c2/H2 0.01
ϕ1 0
ϕ2 0

The values of these parameters are chosen as closely as possible to figure 10b of M97, where
they produce period-2 equilibria for certain initial conditions. Three comments are made
regarding the parameters that are taken as variables:

- The Helmholtz resonance frequency of basin 1 is unity due to scaling; the
quantity

σH,2
σH,1

then allows to choose how close the Helmholtz frequency of

basin 2 is to unity. Since it is argued in M97 that forcing near-resonance
is a significant factor in the occurrence of period-2 steady states, we vary
the variable

σH,2
σH,1

across different simulations to see if forcing near-resonance

plays a similar role when interaction is allowed.

- It is also indicated that A12,r is variable; this was already discussed in the
part of section 3.4 preceding section 3.4.1.

- A2,r is additionally indicated as ’variable’. It should be noted that
σH,2
σH,1

=
√

L1

L2

A1

A2

Ac,2
Ac,1

,

meaning that the varying of
σH,2
σH,1

and of A2,r are related. We make special
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mention of A2,r because it also appears in equations (46) and (47) by itself.

We remark that for these parameters, the interaction term which is the rightmost term
in equations (46) and (47) is very small compared to the other interaction term (second
rightmost term). Indeed, when comparing prefactors, we see that c1

A12,r

c12
= 1

100
· A12,r

c12
� A12,r

c12
.

Therefore, the smaller term is omitted in the performed simulations for simplicity.
For case (ii):

Table 3: Nonlinear case (ii)

Parameter Value

σH,2/σH,1 variable
A2,r variable
A12,r variable

c12/H12 0.01/
√
A12,r

σ1 1.00
σ2 1.01
Z1,1 -0.001
Z1,2 -0.001
Z2,1 -0.001
Z2,2 -0.001
c1/H1 0.001
c2/H2 0.001
ϕ1,1 0
ϕ1,2 0
ϕ2,1 0
ϕ2,2 0

The parameters are chosen as closely as possible to figure 11b in MD, which produce chaotic
solutions for the single tidal inlet system. The same parameters are varied as in case (i).
Again, the same interaction term was omitted as in case (i), for the same reason as.
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4 Results

4.1 Linear model

Equation (33) suggests that pure sinusoidal forcing leads to pure sinusoidal volume oscillation.
In particular, the volumes oscillate with the same frequency σ with which they are forced.
However, the forcing tides and the tides within the basins are, in general, not in-phase: V1 has
phase difference |δ1| with ζe,1 and V2 has phase difference |ϕ2−δ2| with ζe,2. In addition, similar

to regular (uncoupled) driven oscillators, the amplitudes V̂1, V̂2 can experience a resonant
response for a certain driving frequency. Indeed, through equations (31), (32), (34) and (35)
we see that the amplitudes V̂1, V̂2 depend on σ. We note that the amplitudes also depend
on A12. Since A12 is an indicator for the amount of interaction, the (resonant) amplitude
response of both basins is seen to depend on the amount of interaction. The goal in research
sub-question 2 is to investigate the effect of this dependence on interaction. For the case of
vertical basin sidewalls discussed in section 3.1, several plots were made of V̂1, V̂2 as functions
of interaction strengths A12, for two different values of forcing frequency σ: (I) σ = 1, i.e.
close to resonance for basin 1 and (II) σ = 1.025, in between resonance for basin 1 and
resonance for basin 2.8 The results are explained below.

Figure 9: Response curves of V̂1 (blue) and V̂2 (red) for different values of A12,r (interaction
strength), with parameters as in table 1 and forcing close to the Helmholtz frequency of basin
1: σ = 1.00. Note how the resonant response of basin 1 strongly diminishes as interaction
increases.

Case (I): close to resonance for basin 1, σ = 1: results are visualized in Figure 9. For
A12,r = 0 the basins are not interacting, and we see the strong resonance for basin 1 which

8This means that forcing frequency σ lies between the resonance frequency of basin 1 and the resonance
frequency of basin 2: 1 < 1.025 < 1.049 =

σH,2

σH,1
.
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(a) (b)

Figure 10: (a) Top view of a tidal inlet system with one basin and two inlets, which the double,
interacting tidal inlet system can be approximated to at large interaction, when ζ1 = ζ2 ≡ ζ
and V ≡ V1 + V2. (b) Schematic side view the interaction area at large interaction values.
The interaction area is now of comparable dimensions to the basins and therefore does not
effectively separate the two volumes.

was already known for single tidal inlet systems. In the same manner, basin 2 is forced
relatively far from resonance and its response is therefore choked at A12,r = 0.
However, when A12,r increases and therefore the amount of interaction increases, it is obvious
that the resonant response of basin 1 strongly diminishes. Thus, the resonant response of
an interacting basin forced at its Helmholtz frequency appears to diminish as interaction
increases. Note that, simultaneously, the response of basin 2 seems to become somewhat
larger than before. This is speculated to be due to the notion that, when interaction increases,
basin 2 absorbs some of the high water-level volume of basin 1, therefore obtaining a net
increase of its own water level.
When interaction is further increased, i.e. roughly A12,r > 0.01 in Figure 9, the interaction
is large enough to facilitate that the two basins approximately behave as one large basin.
This is caused by the restoring mechanism of the interaction term ζ1 − ζ2, which forces the
free surfaces of the basins to behave identically. In Figure 9 it shows up as the blue an red
graph starting to overlap for A12,r > 0.01, indicating that the amplitudes of basin 1 and 2
are (roughly) equal.
Thus, the large interaction regime can be approximated as a tidal inlet system with a single
basin and two inlets, see Figure 10a. For such a tidal inlet system, the natural frequency is a
weighted root mean square of the two Helmholtz frequencies associated with the two inlets.
This is shown in Appendix C. Hence, in the large interaction regime, the double tidal inlet
system will effectively have a new, resultant Helmholtz frequency σH,eff , which is derived in

Appendix C as σH,eff =

√
1+A2,r

(
σH,2
σH,1

)2

1+A2,r
. This effective frequency, in fact, appears to explain

results for case (II), discussed now.
Case (II): in between resonance for basin 1 and resonance for basin 2, σ = 1.025, see Figure
11. We see that that for large interaction, say A12,r > 0.0075, the amplitude response of
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Figure 11: Response curves of of V̂1 (blue) and V̂2 (red) for different values of A12,r (interaction
strength), with parameters as in table 1 and forcing in between resonance for basin 1 and
basin 2: σ = 1.025. Note that the response of the basin increases as interaction becomes
larger.

both basins actually increases for increasing interaction. This is due to the forcing frequency
being close to the effective Helmholtz frequency at large interaction, as explained above. This
creates a new kind of Helmholtz resonance that can only appear when the interaction is large
enough such that the two basins can be approximated as one large basin.

4.2 Nonlinear model

4.2.1 Single frequency forcing

In the case of single frequency forcing near resonance, numerical integration of single tidal
inlet systems with linearly sloping bottoms shows that a basin’s excess volume period doubles
into a period-two long-term equilibrium9.Therefore when there is no interaction, both basins
in the double tidal inlet system which is considered here will have a period two equilibrium,
provided that both basins are forced near resonance. This is shown in Figure 12. The fol-
lowing observations are made from simulations of mono-frequency forcing:
Upon switching on interaction (A12,r > 0), simulations indicate a distinction in response be-
tween three ranges in A12,r-parameter space: (A) little interaction, (B) intermediate inter-
action and (C) strong interaction. For the parameter values of Table 2, little interaction cor-
responds to roughly A12,r < 0.001, intermediate interaction to roughly 0.001 < A12,r < 0.01
and strong interaction to roughly 0.01 < A12,r.
Case (A): in the little interaction region of A12,r-parameter space, the interaction term is
small enough so that its perturbation of the no interaction behaviour is barely visible in

9For a detailed discussion, see M97.
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Figure 12: Poincaré map of solutions V1 (blue) and V2 (red) having period twice the driving
period 2π/σ. Integration started at t = 0, sampled period equal to the driving period 2π/σ.
Parameter values are as in table 2, where the variable parameters are A12,r = 0, A2,r =
1.02,

σH,2
σH,1

= 1.016. Initial conditions are (V1(0), V̇1(0), V2(0), V̇2(0)) = (−0.4, 0,−0.4, 0). These

parameter settings reproduce period-2 orbits similar to figure 10b of M97.

Poincaré maps and its effect is thus negligible. In general, in this region of A12,r-parameter
space, the nonlinear effects of the single tidal inlet system at no interaction are seen to re-
tain their stability and the behaviour is qualitatively the same as for the basins when fully
separated (’no interaction’).
Case (B): In the intermediate interaction region of parameter space, the interaction term
now seems to constitute a significant perturbation of the no interaction behaviour. In general,
simulations performed show that there may exist a threshold value of A12,r within the inter-
mediate interaction region for which the period two equilibria seen at no interaction lose their
stability, and break down into a regular period one equilibrium. An example of this is given
in Figure 13. In (a) of this figure, we see that these basins have period-2 steady states when
not interacting, but in (b), the interaction is in the intermediate range and these period-2
steady states lose their stability, decaying towards a single steady state. Such a breakdown
has significant implications: apparently there exist systems which exhibit nonlinear effects
by themselves, but not when interacting at a certain rate. However, it seems, on the basis of
performed simulations, that the window of values of A12,r for which this breakdown happens
will be small if both basins are close to resonance. In fact, this is supported by the linear
setting discussed in section 3.1. From equations (29) and (30), it follows that the amplitude
of one basin is coupled to the amplitude of the other. Thus, when both basins resonate
strongly, amplitudes would remain higher upon increasing interaction, and thus the effect of
resonance is not strongly diminished upon increasing interaction. This could explain why the
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(a) (b)

(c)

Figure 13: Poincaré maps of solutions V1 (blue) and V2 (red) of equations (46) and
(47). Parameters are as in table 2. The value of A12,r is different for (a),(b),(c). The
other variable parameters are each time: A2,r = 1.0,

σH,2
σH,1

= 1.026. Initial conditions are

(V1(0), V̇1(0), V2(0), V̇2(0)) = (−0.4, 0,−0.4, 0). (a): integration started at t = 0, sampling pe-
riod equal to the driving period 2π/σ; A12,r = 0 (no interaction). Both basins have period-2
equilibria, albeit at differing amplitudes. (b): integration started at t = 0, sampling period
equal also to the driving period. A12,r = 0.0025 (intermediate interaction). (c) same orbit as
(b) but integration started after 5000 driving periods.This makes it clear that the orbits in
(b) represent a period-one steady state at late times, as only one point is visible (the blue
and red points have overlapped so that only one is visible).
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period-2 equilibria retain their stability for more values of A12,r when both basins are close
to resonance.
Case (C): At large interaction, the same observation as for the linear model is made: the
two basins approximately behave as one large basin. The behaviour of this one large volume
can still be read off from the Poincaré maps and time series of V1 and V2. Now, V1 and V2
behave almost uniformly and both volumes give an accurate depiction of the behaviour of
the total volume V1 + V2.
Also, the new effective Helmholtz frequency that arises in this approximation may serve as
an an explanation for the following observation in simulations: systems which experience the
aforementioned breakdown of period-two equilibria at intermediate interaction may regain
period-two equilibria at large interaction. This is shown in Figure 14.
Within the approximation of considering one big basin at large interaction, the reason for
the reappearance of dual equilibria in Figure 14 would be that the forcing was such that it
is close to the effective Helmholtz frequency σH,eff that is now at hand, i.e. the big basin
is forced near resonance leading to two double equilibria. Actually, this reasoning further
implies an important fact: the original two basins do not have to exhibit period-two equi-
libria at no interaction for them to do so when interacting strongly. The only requirement
would be that σH,eff is such that the forcing frequency σ is near resonance. Therefore, σH,1
and σH,2 might differ significantly from the forcing frequency, leading to no resonance and no
period-two steady states at no interaction, but still produce a σH,eff which enables resonant
forcing at large interaction. This is corroborated by performed simulations. An example of
this is given in Figure 15.
This is in general the only scenario from performed simulations where solutions V1, V2, which
both show a period-one equilibrium at no interaction, can begin to show period-2 equilibria
at some value of A12,r. This is also seen for situations when only one of V1 and V2 shows a
double period equilibrium at no interaction and the other volume tends to a period-1 equi-
librium: in all simulations, at some A12,r the period-2 equilibrium breaks down in favour of
a single equilibrium. However, as mentioned above, at large interaction period-2 equilibria
might return if forcing is near the new effective Helmholtz frequency.

(a) (b)

Figure 14: Poincaré maps of V1, V2 corresponding to the same parameter settings as Figure
12, except A12,r, which has larger values than in figure 12. Again, blue represents V1 and red
V2. (a): A12,r = 0.01. Evidently, period-2 equilibria have appeared again. (b) A12,r = 0.05.
In particular, the uniform behaviour of V1 and V2 for large interaction is clearly present in
this example (the orbits almost wholly overlap).
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(a) (b)

(c)

Figure 15: Poincaré maps of V1 and V2. Integration started at t = 0, sampling period equal
to the driving period. The forcing frequency σ now has a different value than in Table 2:
σ = 2.27. Variable parameters are

σH,2
σH,1

= 1.24 and A2,r; A12,r is different for (a),(b) and

(c). Note how σ nearly equals twice the weighted10 root mean square of σH,1 and σH,2, being

2 ·
√

1+1.242

2
≈ 2.253, indicating resonant response with respect to σH,eff . (a): V1 for A12,r = 0

(b): V2 for A12,r = 0 (c): V1 (blue) and V2 (red) for A12,r = 0.25.

4.2.2 Quasi-periodic forcing

In the case of quasi-periodic forcing near resonance, numerical integration of single tidal inlet
systems with linearly sloping bottoms shows that a basin’s excess volume can experience a
chaotic response11. Thus, when there is no interaction, both basins in the double tidal inlet
system can have such chaotic solutions, if the two forcing frequencies are near resonance
for both basins. An important observation is that the window for occurrence of chaotic
solutions in single tidal inlet systems seems to be very small compared to the window for
period-doubling in the mono-frequency forcing case. In other words: occurrence of chaos is
more sensitive to how close the forcing frequencies are to resonance. Note that, since the
tides arriving in both basins have the same pair of frequencies, this effectively means that
the Helmholtz frequencies of both basins have to be extremely close to each other: otherwise
the forcing frequencies can impossibly be near both Helmholtz frequencies simultaneously.
Because the Helmholtz frequency of a tidal inlet system depends on the geometry of the
basin and inlet, this means that both basins and their inlets need to be geometrically almost
identical in order to both exhibit chaos. An example is shown in Figure 16.
Performed simulations are different from the single frequency forcing case in two ways. Firstly,
in parameter schemes where both systems are chaotic at no interaction, simulations are con-
sistent with the statement that the basins will in fact remain chaotic for all values of interac-

11For a detailed discussion, see MD.
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(a) (b)

(c)

Figure 16: (a) Chaotic time evolution of V1 at no interaction: A12,r=0. Parameters are as
in table 3; variable parameters are A12,r = 0,

σH,2
σH,1

= 0.995 and A2,r = 1. (b) Same as (a)

but the plot represents V2. (c) Poincaré map of V1 (blue) and V2 (red) which shows chaotic
behaviour, i.e. an irregular pattern. Integration started at t = 0, sampling period equals the
period associated with the mean of the two forcing frequencies: σ1+σ2

2
.

tion. This contrasts to situations mentioned in the single-frequency forcing case where both
basins exhibited nonlinear effects at no interaction and still lose these effects at certain inter-
action strengths. Secondly, when one of the volume behaves chaotically at no interaction but
the other does not, the chaos of the former seems to invariably fall apart as the interaction
increases. See Figure 17 for an example. In fact, this often already happens at values of
A12,r belonging to what was described in section 4.2.1 as the ’little interaction’ domain. This
further attests to the more volatile nature of the chaotic solutions found in comparison to
the period-2 solutions at single frequency forcing.
Interestingly, concerning large interaction, i.e. roughly A12,r > 0.01 in the parameter settings
of Table 3, results analogous to the mono-frequency case are found: basins which are un-
chaotic when not interacting can become chaotic at large interaction. More generally, every
quasi-periodically forced double tidal inlet system with linearly sloping bottoms can become
chaotic at large interaction strengths if the forcing is near resonance with respect to the new
approximate effective Helmholtz frequency σH,eff . An example of unchaotic basins when not
interacting that become chaotic at large interaction is given in Figure 18.
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(a) (b)

(c)

Figure 17: Poincaré maps of V1 (blue) and V2 (red). Parameters are as in table 3; variable
parameters are:

σH,2
σH,1

= 1.054, A2,r = 1, and A12,r different in (a),(b),(c). Integration started

at t = 0, sampling period equals the period associated with the mean of the driving frequen-
cies σ1+σ2

2
. (a) No interaction: A12,r=0. V1 is chaotic, but V2 shows a very small closed cycle,

due to the quasi-period forcing, and thus does not exhibit chaos. (b) Now A12,r = 0.001.
Already, the chaotic behaviour of V1 has lost its domain of attraction and has broken down
into a closed cycle. (c) Now A12,r = 0.01. Now V1 is just represented by a very small closed
cycle (note the V -axis length).
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(a) (b)

(c) (d)

Figure 18: Poincaré maps of V1 (blue) and V2 (red). The parameter values of σ1 and σ2
are different than in table 3: σ1 = 1.13 and σ2 = 1.14. The parameters variable in table 3
are:

σH,2
σH,1

= 1.24, A2,r = 1 and A12,r different for (a)+(b) and (c)+(d). Note that the σH,eff

constituted by these σH,1, σH,2 equals
√

1+1.242

2
≈ 1.1264, very close to forcing. Integration

started at t = 0, sampling period equals the period associated with the mean of the driving
frequencies σ1+σ2

2
. (a) No interaction: A12,r=0. V1 is not chaotic and thus looks like a closed

cycle, albeit with a very small radius making it appear as a point. (b) same but for V2 (c)
Now A12,r = 0.5: V1 has now become chaotic. (d) same but for V2.
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5 Discussion

The articles M97 and MD established the intriguing prediction of period-doubling and chaotic
phenomena in single tidal inlet systems, as first steps in theoretically explaining empirical
reports on irregular tides. This thesis extends such results to two tidal inlet systems that
interact with each other through a water shed. The most important results of this are
summarized and further discussed below.

5.1 Linear model

From the results for the linear model (vertical sidewalls), it was found that when one of the
basins was forced near-resonance, and the other was out of resonance, increasing interaction
decreases the resonant response amplitude of the former basin. Thus, in general, it is found
that resonance becomes less pronounced when interaction increases. A qualitative explana-
tion for this may be that the interaction terms perturb the behaviour the individual basin
would have when not interacting, thereby detuning its response.
It was also found that configurations are possible where the two basins are not near resonance
when not interacting, but can experience a resonant response when interaction is sufficiently
large. This is because the system now seems to behave approximately as a single basin with
two inlets, for which the Helmholtz resonance frequency is a linear combination of the two
Helmholtz frequencies of the individual basins. When the forcing is then close to this effective
Helmholtz frequency, an amplified response is observed.

5.2 Nonlinear model

5.2.1 Single frequency forcing

As for the period-2 steady states found in M97 when the forcing is with one frequency, it
is found that for all levels of interaction, double period equilibria are possible in the double
tidal inlet system equivalent, though the requirements for the occurrence of double period
equilibria are different for (I) small to intermediate interaction and (II) large interaction
schemes.
For (I): a necessary condition for this seems to be that the forcing frequency is near reso-
nance with respect to the Helmholtz frequencies that both tidal inlet systems have individ-
ually, so that both basins already exhibit period-2 equilibria at no interaction. If one of the
basins does exhibit period-2 steady states at no interaction and the other basin has a period-1
steady state, then when interaction is switched on, the latter basin seems to always perturb
the former basin out of its dual equilibrium state in the intermediate interaction range.
However, even in some scenarios where both basins exhibit period-2 equilibria at no interac-
tion, there exists a range of interaction strengths for which the period-2 steady states lose
their stability. A possible qualitative explanation of this breakdown is that the interaction
is then large enough so that the volume of one basin forms a significant perturbation of the
other, but that the interaction is also not large enough to force V1 and V2 to oscillate well in
unison. This could facilitate that a smaller amplitude steady state of basin 2 perturbs the
dual equilibrium of basin 1 out of its stability domain and therefore collapsing to a central
equilibrium. This is consistent with the observation that the breakdown of period-2 steady
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states only seems to occur when there is a significant difference in early times behaviour in
no interaction and small interaction ranges. Figure 13 is an example of this: at no interac-
tion, the evolution time derivatives of the motions of V1, V2 are showing opposite trends in
Figure 13a. On the left, V̇1 is negative and decreasing and V̇2 is positive and increasing, on
the right vice versa. When interaction is switched on to a large enough degree (such as in
Figure 13b), these effects will start to counteract each other resulting in the destruction of
higher amplitude, double period steady states in favour of a small amplitude central steady
state. This may also be indicated by the fact that the beginning of the orbits of V1 and V2 in
Figure 13b are similar to the the ones in Figure 13a when there is still no interaction. After
a certain number of cycles (i.e. a certain amount of dots in the orbits in the figure) the orbits
of V1 and V2 seem to suddenly change behaviour with respect to no interaction situation of
Figure 13a. In further research one might verify this by employing a perturbation expansion
of the differential equations for volumes V1 and V2. This could indicate what happens to
the volumes and their time derivatives during the waning of the transient effects, at the
range of interaction where the aforementioned breakdown occurs. This could be compared
with perturbation expansions performed in M97 for single tidal inlet systems with linearly
sloping bottoms, which can be used for the no interaction scenario, where the basins behave
individually as one basin.
For (II): simulations imply that a necessary condition for the occurrence of period-2 steady
states of V1 and V2 is that the forcing is near resonance with respect to the effective Helmholtz
frequency of the combined volume of V1 and V2. This answers the part of the research ques-
tion which asks whether new nonlinear effects turn up in the double tidal inlet system model.
In section 4.2.1, situations were explained where both basins’ Helmholtz frequencies are not
close to the forcing frequency, and therefore do not admit period-2 steady states, but their
σH,eff is near the forcing frequency, and therefore does admit period-2 steady sates. This
special case of the large interaction regime can be considered as new nonlinear effects, as
the period-2 equilibria were not there at no interaction, when both basins still behaved as a
single tidal inlet system.

5.2.2 Quasi-periodic forcing

As for the chaotic states found in MD for a single tidal inlet system with linearly sloping side-
walls forced quasi-periodically, it is likewise found that, for all levels of interaction, chaotic
states are possible in the double tidal inlet system equivalent. Again, the circumstances that
allow for this to happen are different for (I) little to intermediate interaction and (II) large
interaction ranges.
For (I): simulations indicate a necessary condition that parameters need to be such that the
two basins already exhibit chaos when the interaction is still turned off. This implies for the
forcing frequencies σ1, σ2 that they have to both be close to resonance. If one of the basins
is not chaotic at no interaction, the chaos of the other basin is seen to readily break down
when interaction is turned on, even at ranges of interaction strength which were referred to
as ’small interaction’ in the results section. In short, the conditions for the chaos to survive
small to intermediate interaction are analogous to the conditions for period-2 steady states
at single frequency, with the difference being that the chaos is more unstable and is seen to
break down at, in general lower interaction strengths than the period-2 steady states.
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It is also noted that no chaotic analogy was found to the situation where both basins ex-
hibited period-2 steady states at no interaction and these dual equilibria still broke down at
intermediate interaction. Simulations suggest that, if both basins are chaotic when there is
no interaction, this chaos remains for all level of interactions.
For (II): the results were also similar to large interaction scheme in the single frequency
forcing case. The necessary condition suggested by simulations is that the two forcing fre-
quencies should be near resonance with respect to the effective Helmholtz frequency of the
total volume of V1 and V2. Likewise do new nonlinear effects appear in situations where
individual basins 1 and 2 are not chaotic when not interacting, but in fact become chaotic
when interaction is added. This is possible when the Helmholtz frequencies of both basins
are such that they are individually disparate from the two forcing frequencies, i.e. the forcing
is not near-resonance at no interaction, but the σH,eff they constitute at large interaction is
very close to the forcing frequencies, i.e. forcing is near-resonance.

5.3 Further discussion and outlook

Still, several simplifications present in the models used in this thesis that may cast doubt on
the rigorousness of the results obtained here. For example, one of the assumptions in section
2.1 was that surface elevations ζi, ζe,i of tidal inlet system i were small compared to its depth
scale Hi. This assumption is, however, violated in the predicted behaviour of that model:
in many plots shown in the results section, excess volumes Vi regularly reach magnitudes
in the range of ±0.5, which in the scaled regime of the nonlinear model corresponds to
roughly the total volume contained within basin 1. Strictly speaking, in all terms where Ac,i
appears, i = 1, 2, an extra term proportional to +ζi should be added. This leads to more
complex differential equations for V1, V2 where some terms of the original equations now have
oscillating coefficients (since ζi = ζi(Vi)), which leads to additional terms nonlinear in Vi.
Therefore, one might carefully predict that chaos may still occur in this nuanced model.
It should also be noted though, that the Helmholtz frequencies are also dependent on Ac,i
and the Helmholtz frequencies will therefore also evolve in an oscillatory fashion. A future
study analyzing this model might also observe whether this seriously hinders the process of
resonance, which is what the occurrence of nonlinear effects hinges on in this thesis.
Furthermore, the numerical analysis of the nonlinear model omitted an extra interaction
term ∝ ζ1(V1) − ζ2(V2) in equations (46) and (47), aside from to the interaction term still
present, which goes as dζ1

dt
− dζ2

dt
. It is expected that the addition of this extra term does not

change the qualitative behaviour of the model much; not only because of the smallness of
its prefactor compared to the prefactor of the other interaction term (already discussed in
section 3.4.2, see Table 2), but it might also be argued that such a term enforces the same
mechanism as the dζ1

dt
− dζ2

dt
-term, i.e. endeavouring to achieve that the surface elevation

functions ζ1(t), ζ2(t) become identically equal to each other. This would imply that the
physics contained in equations (46) and (47) does not significantly change when the omitted
term would be included.
Moreover, further care with omission of interaction terms should be taken when including
quadratic bottom friction, which was not considered here. Both interaction terms (including
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the omitted one) in equations (12) and (13) would then even be nonlinear in (ζ1 − ζ2).
12

An interesting aim of a future study could be to investigate whether such a more nonlinear
description of the interaction effect leads to more irregular tidal oscillations by the basins.
More generally, an obvious idea for further research is to investigate whether a triple tidal
inlet system with interaction between neighbours can still yield period-2 steady states and
chaos. Or, more generally, whether these results remain valid for an N -tuple tidal inlet
system with interaction between neighbours, where N > 3. This is relevant because there
are systems for which reports on irregular tides were made that were multiple tidal inlet
systems with water sheds, an example being the Dutch Wadden Sea, see MD.

12This term is itself already nonlinear in V1, V2 for the sloping bottom.
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6 Conclusions

In this thesis, it was found that the tides generated by a coupled linear double Helmholtz
oscillator, in general, oscillate with the same frequency as the forcing tide, but with a phase
shift and notably a different amplitude, which depends not only on frequency, similar to a
single linear driven damped oscillator, but now also on interaction strength. The tides within
the two basins may still experience the Helmholtz resonance seen in single tidal inlet systems,
but the when interaction is allowed, the resonant amplitude response diminishes significantly
in most cases.
Results further imply that the nonlinear effects observed in M97 and MD when the basin
bottoms slope linearly are also possible when the two basins are interacting through water
sheds, at virtually all ranges of interaction strength. Interestingly, it was also found that
some double tidal inlet systems show period-2 steady states or chaotic behaviour only if they
interact, and not when separated. A condition for this is that the interaction zone is large
enough so that the tides in the basin nearly oscillate in union.
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A Appendix A: Derivations of equations of motion

A.1 Derivation of equations for V1, V2

Note that the only avenues for basins to exchange water are the basin entrance and through
the interaction area (water shed). Therefore one has here

dV1 = dV1,entr + dV1,shed, (48)

dV2 = dV2,entr + dV2,shed. (49)

Note that, at the basin entrance of basin 1, the water arrives with depth-averaged velocity u1,
which is assumed to be spatially uniform. The rate of water inflow at the basin entrance is
then −u1Ac,1, the minus sign comes from the choice that the positive x-direction is seaward.
Then, in an infinitesimal time interval dt, conservation of mass implies:

dV1,entr = −Ac,1u1dt. (50)

Similarly, for basin 2:
dV2,entr = −Ac,2u2dt. (51)

For the water shed entrances, we also use conservation of mass: in time interval dt where
the water is flowing in/out of basin 1 and basin 2 respectively at velocity u12 (positive in the
direction from basin 1 to basin 2), the corresponding changes in volume are

dV1,shed = −A12u12dt, (52)

dV2,shed = A12u12dt. (53)

Substitution of the obtained expressions and division by dt yields

dV1
dt

= −Ac,1u1 − A12u12, (54)

dV2
dt

= −Ac,2u2 + A12u12, (55)

which determine V1 and V2 in terms of the depth-averaged flow velocities u1, u2 and u12 for
which expressions are obtained in A.2.

A.2 Derivation of expressions for u1, u2, u12

We start with the derivation of u1; u2 and u12 will follow analogously. Point of departure are
the Navier-Stokes equations, which read for basin 113:

∂ũ1

∂t
+ (ũ1 · ∇)ũ1 = ν∇2ũ1 −

1

ρ
∇p+ f1,body (56)

13Coriolis terms are omitted, see assumption 5) below.
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where

ũ1 = (ũ1, ṽ1, w̃1) is the flow velocity field in inlet 1, where the tilde indicates that the flow
is not yet depth averaged;

f1,body = g + f1,fric is the body force exerted on a volume element;

g = (0, 0,−g) is gravity, where g is the acceleration of gravity;

ρ is the density of the water flowing in the system, which is assumed to be constant;

f1,fric are frictional forces, given by f1,fric = 1
ρ
∇ · τ1;

τ1 is the turbulent shear stress tensor, with components τ1,ij = −ρ
〈
ũ
′
1,iũ

′
1,j

〉
;

ũ
′
1 is the fluctuation of ũ1, defined as ũ

′
1 = ũ1 − ũ1,0, where ũ1,0 is a reference value;

p is the pressure on a volume element;

ν is the kinematic viscosity.

We employ the following assumptions and boundary conditions:

1) Continuity of the pressure on the air-water boundary: pressure at free water surfaces
ζ(x, y) must be equal to the athmospheric pressure and therefore (roughly) spatially con-
stant. This means that the extra height due to variations of ζ(x, y) is negligble for the

expression of the atmospheric pressure (i.e., ∂p(ζ(x,y))
∂x

= 0 = ∂p(ζ(x,y))
∂y

)

2) Continuity of the water surface at basin entrance x = L1 requires that ζs,1(L
−
1 ) =

ζs,1(L
+
1 ) = ζe,1, where x = L−1 is just inside the inlet at the seaward entrance and x = L+

1 is
just inside the sea at the seaward entrance, subscript ’s,1’ denotes strait 1 (= inlet 1) and
ζe,1 is the surface elevation in the sea adjacent to inlet 1.

3) Continuity of water surface requires that ζs,1(0
+) = ζs,1(0

−) = ζ1, where x = 0+ is
just inside the inlet at the basin entrance and x = 0− is just inside the basin at the basin
entrance and is ζ1 is the surface elevation within basin 1.

4) The flow velocity in the inlet is assumed to be horizontally uniform and in the down-
stream direction, i.e. ũ1 = (ũ1, 0, 0)T and ∂ũ1

∂x
= 0 = ∂ũ1

∂y
in the inlet. Similarly to the surface

elevation, we assume continuity of the flow velocity ũ1(0
−) = ũ1(0

+) and ũ1(L
−
1 ) = ũ1(L

+
1 ).

Change in flow velocity of water upon entering basin or sea thus occurs away from the bound-
aries of the inlet.

5) Coriolis force is neglected.
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6) In the water shed, the flow velocity is assumed to vary on a slow timescale such that
its time derivative is very small compared to frictional effects and pressure differences.

7) The kinematic viscosity of water is neglected: we set ν = 0.

By assumption 4) the second term on the left in equation (56) is zero and by assumption 7)
the first term on the right in equation (56) can be ignored. Thus, we are left with

∂ũ1

∂t
= −1

ρ
∇p+ g + f1,fric. (57)

Proceeding to the equation for the z-direction:

0 = −g − 1

ρ

∂p

∂z
(58)

Now integrating along the vertical axis from z′ = z to z′ = ζs,1 gives:

p(ζs,1(x))− p(z) = −ρg(ζs,1(x)− z) (59)

⇒ p(x, z) = p(ζs,1(x)) + ρg(ζs,1(x)− z). (60)

Using assumption 1):
∂p

∂x
= 0 + ρg

∂ζs,1
∂x

. (61)

This expression for ∂p
∂x

can be used in the x-direction equation:

dũ1
dt

= −g∂ζs,1
∂x

+ fx1,fric. (62)

We use the following parameterization for fx1,fric (see [9], chapter 4):

fx1,fric =
∂

∂x

(
A∂ũ1
∂x

)
+

∂

∂y

(
A∂ũ1
∂y

)
+

∂

∂z

(
ντ
∂ũ1
∂z

)
=

∂

∂z

(
ντ
∂ũ1
∂z

)
, (63)

where A is a horizontal eddy viscosity and ντ is a vertical eddy viscosity. In particular, the
two terms involving A vanish due to assumption 4). Substituting equation (63) into equation
(62) and depth-averaging gives:

du1
dt

=− g(ζs,1 +H1)

(ζs,1 +H1)

∂ζs,1
∂x

+
ντ∂ũ1/∂z

∣∣∣z=ζs,1
z=−H1

ζs,1 +H1

(ζs,1�H1)' −g∂ζs,1
∂x

+
τ1,ζs,1 − τ1,b

ρH1

(64)

where the flow velocity u1 without the tilde denotes the depth-averaged flow velocity, and
τ1,ζs,1 , τ1,b are friction coefficients, assumed to be given by

τ1,ζs,1 = τwind ≡ 0, (65)
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τ1,b = ρĉ1u1, (66)

where subscript ’b’ denotes bottom friction.
Now integrating from x = 0 to x = L1 and using spatial uniformity of u1, as well as assump-
tions 2) and 3), yields:

L1
du1
dt

= g(ζ1 − ζe,1)− L1
ĉ1
H1

u1. (67)

This equation determines u1 in terms of a pressure difference between the surface elevations
of the basin and of the sea respectively. The equation for u2 can be obtained simply by
permutation of index 1 to index 2:

L2
du2
dt

= g(ζ2 − ζe,2)− L2
ĉ2
H2

u2, (68)

where all parameters are defined equivalently to basin 1. The expression for u12 is determined
by a similar derivation, where the pressure difference is now provided by the difference in
surface elevation on the respective sides of the water shed. By virtue of assumption 6) we
additionally set du12/dt = 0 and we obtain

0 =
g

L12

(ζ1 − ζ2)−
ĉ12
H12

u12, (69)

which determines u12. For a more detailed explanation of the dynamics in the water shed
that lead to equation (69), the reader is referred to [10].
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B Appendix B: Scaling

We scale as follows: Vi = A0,1H1V
′
i , z = H1z

′, Ai(z/H1) = A0,1A
′
i(z
′), ζi = H1ζ

′
i, ζe,i =

H1ζ
′
e,i, ui = Uu′i, u12 = Uu′12, t = Tt′, for i = 1, 2.

Substituting these new variables in equations (1)-(5), we get

U

T

du′1
dt′

=
gH1

L1

(ζ ′1 − ζ ′e,1)−
gH1

L1

(
L1U

gH1

ĉ1
H1

)
u
′

1 (70)

U

T

du′2
dt′

=
gH1

L1

L1

L2

(ζ ′2 − ζ ′e,2)−
gH1

L1

(
L1U

gH1

ĉ2
H2

)
u
′

2 (71)

A0,1H1

T

dV ′1
dt′

=− Ac,1Uu′1

− Ac,1U
A12

Ac,1
u′12

(72)

A0,1H1

T

dV ′2
dt′

=− Ac,1U
Ac,2
Ac,1

u′2

+ Ac,1U
A12

Ac,1
u′12

(73)

0 =
gH1

L12

(ζ ′1 − ζ ′2)−
gH1

L12

(
L12

gH1

ĉ12
H12

)
u′12 (74)

We then have two equations for the two unspecified velocity and time scales, respectively U
and T :

U

T
=
gH1

L1

(75)

A0,1H1

T
= Ac,1U (76)

so that

T =

√
A0,1

Ac,1

L1

g
≡ 1

σH,1
(77)

U =
gH1

L1

T =
gH1

L1σH,1
= H1

A0,1

Ac,1
σH,1 (78)

where the inverse time scale σH,1 is called the Helmholtz frequency of basin 1. We thus see
that the Helmholtz frequency indeed corresponds to a characteristic frequency scale.
Also, it follows from equations (77) and (78) that the following relations hold for the quantities
within the parentheses in equations (70), (71):

L1U

gH1

ĉ1
H1

=
1

σH,1

ĉ1
H1

(79)

L1U

gH1

ĉ2
H2

=
1

σH,1

ĉ2
H2

(80)
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Recognizing this, we rename ci
Hi

= 1
σH,1

ĉi
Hi

and additionally c12
H12

= L12

gH1

ĉ12
H12

. Removing the

primes from the nondimensional variables we arrive at the desired scaled equations:

du1
dt

= ζ1 − ζe,1 −
c1
H1

u1, (81)

du2
dt

=
L1

L2

(ζ2 − ζe,2)−
c2
H2

u2, (82)

dV1
dt

= −u1 −
A12

Ac,1
u12, (83)

dV2
dt

= −Ac,2
Ac,1

u2 +
A12

Ac,1
u12, (84)

0 = ζ1 − ζ2 −
c12
H12

u12. (85)
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C Appendix C: Derivation of σH,eff

Here we provide some clarification to the given expression of the effective Helmholtz frequency
at large interaction σH,eff . In the large interaction case, the double interacting tidal inlet
system can be argued to behave as a single tidal inlet system with two inlets. This type of
system constitutes its own Helmholtz frequency, which will be derived below.
Although in Appendix B the Helmholtz frequency for basin 1 was derived through scaling, we
note that this frequency is alternatively found by calculating the prefactor of the restoring
term in the (unscaled) Helmholtz oscillator equation. In a driven damped oscillator, this
prefactor of the restoring term represents the square of a natural frequency (see TCM).
Therefore, an (unscaled) oscillator equation for a single tidal inlet system with two inlets is
required, through which the Helmholtz frequency can be read off.
The derivation is analogous to that in Appendix A, except now we consider a volume V =
V1 + V2. Additionally, in the large interaction scheme, the free surfaces ζ1, ζ2 behave almost
identically. We approximate this with ζ1 = ζ2 ≡ ζ. This implies that we now have u12 = 0,
which eliminates all interaction terms. Altogether, equations (54), (55), (67) and (68) are
now modified to

dV

dt
=
dV1
dt

+
dV2
dt

= −Ac,1u1 − Ac,2u2, (86)

du1
dt

=
g

L1

(ζ − ζe,1)−
ĉ

H
u1, (87)

du2
dt

=
g

L2

(ζ − ζe,2)−
ĉ

H
u2. (88)

Friction parameters are taken to be the same in both inlets, which simplifies calculations.
This is reasonable in light of performed experiments, where each time the friction parameters
c1/H1, c2/H2 were taken equal to each other.
Decoupling differential equations (86)-(88) yields:

d2V

dt2
= −

[
gAc,1
L1

+
gAc,2
L2

]
ζ +

gAc,1
L1

ζe,1(t) +
gAc,2
L2

ζe,2(t)−
ĉ

H

dV

dt
. (89)

We further note that [
gAc,1
L1

+
gAc,2
L2

]
=
[
A0,1σ

2
H,1 + A0,2σ

2
H,2

]
; (90)

This allows equation (89) to be written as

d2V

dt2
= −

[
A0,1σ

2
H,1 + A0,2σ

2
H,2

]
ζ + ... . (91)

The prefactor between the brackets does not have the dimensions of a squared frequency, so
we clearly still have to modify the restoring term to obtain a natural frequency. Therefore,
we use the sum A0,1 +A0,2 as a characteristic horizontal wetted area scale for the total basin
and use it in equation (91):

d2V

dt2
= −

[
A0,1σ

2
H,1 + A0,2σ

2
H,2

A0,1 + A0,2

]
[(A0,1 + A0,2) ζ] + ... , (92)
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where the the prefactor between the large brackets has the dimensions of a frequency squared
and the restoring term between the small brackets has the dimensions of a volume. In light
of this, we define

σ̃H,eff =

√
A0,1σ2

H,1 + A0,2σ2
H,2

A0,1 + A0,2

, (93)

where σ̃H,eff denotes the unscaled version of the effective Helmholtz frequency. Upon rewrit-
ing equation (93) in terms of the scaled quantities of Appendix B, we have

σH,eff ≡
σ̃H,eff
σH,1

=
1

σH,1

√
1/A0,1

1/A0,1

√
A0,1σ2

H,1 + A0,2σ2
H,2

A0,1 + A0,2

(A2,r=A0,2/A0,1)⇒ σH,eff =

√√√√1 + A2,r

(
σH,2
σH,1

)2
1 + A2,r

.

(94)

We thus see that σH,eff is given by a ’weighted quadratic mean’ of the Helmholtz frequencies
of the individual basins.
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