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1. Background  

The Cochrane handbook for Systematic Reviews of Interventions specifies the necessity of systematic 

reviews (Higgins et al., 2019). According to them, systematic reviews prevent bias of individual 

research, create a complete understanding of a certain research topic, and could identify gaps in the 

literature. This could ensure that scarce human effort is deployed in the right area of study. Furthermore, 

they emphasize that good systematic reviews should be updated every two years to stay relevant. 

Although this is important, it takes a tremendous amount of time and money to complete a systematic 

review. Borah et al. (2017) estimated that a full systematic review takes on average 67 weeks to 

complete. Additionally, manually screening is sensitive to human errors. Wang et al. (2020) found that 

there is on average an error rate of 10% while manually screening abstracts.      

Active learning could provide a solution for these problems as it offers an approach which is 

faster and less prone to human errors than the traditional method. Active learning is defined as a subset 

of machine learning in which a researcher supervises the machine learning process (Settles, 2009; Miwa 

et al., 2014). Miwa et al. (2014) describe this process as training a machine through an iterative process 

until a certain stopping criteria is reached. In abstract screening, the phase in which active learning could 

be beneficial, this comes down to a researcher screening an abstract and then labelling it relevant or 

irrelevant. Afterwards, the machine trains with the newly acquired data and returns a record for labelling 

to the researcher (Ferdinands et al., 2020). To test the efficacy of this active learning cycle during the 

screening phase, O’Mara-Eves et al. (2015) conducted a systematic review of its benefits. They found 

that the use of active learning could decrease the average workload with 30% up to 70% and one study 

reported greater results which ranged up to a decrease in workload of 98% (Bekhuis et al., 2014). 

Additionally, this decrease in workload could decrease the error rate of systematic reviews (Wang et al., 

2020). Current errors in the screening phase occur through researchers fatigue, distraction and 

systematic human biases (Bannach-Brown, 2019). Active learning could be a solution to these problems 

as well. A decreased workload could be beneficial for decreasing the researchers fatigue and distraction 

errors while software features like author removal could prevent systematic human biases (Wallace et 

al., 2010; van de Schoot et al., 2021).   

To successfully complete the active learning cycle, machine learning models consist of: feature 

extraction techniques, classifiers, query strategies and balance strategies. First, the feature extraction 

technique extracts the most important features from a text with the goal to reduce noise and create a 

vector which is used for analysis later in the process (Guyon& Elisseeff, 2006). In abstract prioritization, 

the text which is transformed by the feature extraction technique is the title and abstract of a record. 

Secondly, classifiers are used to assign records to different classes based on the feature vectors (Colas 

& Brazdil, 2006). In the case of abstract screening these classes are ‘relevant’ or ‘irrelevant’. For each 

record, a score is generated between 1 and 0 which predicts the relevancy of the record (Ferdinands et 



al., 2020). Subsequently, the query strategy determines which records are selected by the machine to 

present to the researcher. Certainty based sampling will show the researcher the record with the highest 

relevancy scores, or query probability (Fu & Lee, 2013), while  uncertainty based sampling focusses on 

the relevancy score in the middle of the spectrum, ergo the papers of which the relevancy is the most 

uncertain (Van de Schoot et al., 2021). Finally, there are balance strategies to address class imbalance 

problems. These issues occur because the class distribution is often extremely skewed. As a result, 

classifiers tend to be biased towards the majority class and show worse performance on the minority 

class (Longadge & Dongre, 2013). The most common methods of dealing with this problem are 

oversampling and undersampling (Chawla et al., 2002). Oversampling focusses on resampling  the 

minority group by adding copies of relevant papers and undersampling focusses on resampling the 

majority group by removing random papers (Chawla, 2009). Both balance strategies, and various 

variations, tend to have positive results towards the effectiveness of machine learning in imbalanced 

datasets (Ertekin et al., 2007).  

Although the effectiveness of abstract prioritisation has been verified multiple times over the 

years (Jin & Yen, 2015; O’Mara-Eves et al., 2015; Howard et al., 2016; Olorisade et al., 2019), there 

are still gaps in the literature. Whilst the previously mentioned studies address the problem of class 

imbalance, all datasets have an inclusion percentage between the 2-35%. This is surprising, as studies 

with a high number of inclusions which use active learning do occur in the literature (van Lissa, 2021). 

Examples of these datasets with a high number of inclusions could be systematic reviews with a narrow 

search string or the creation of subsets from a dataset. However, little to no simulation studies have been 

conducted on the performance and the improvement of active learning in datasets with high inclusion 

percentages. To make active learning a more inclusive solution to the problem of systematic reviews, it 

is important to fill this gap in the literature and better examine the possibilities of systematic reviews for 

all types of datasets. Therefore, this research aims to provide the first insights into the performance of 

active learning aided systematic reviews in highly inclusive datasets.  

To do so, this paper will try to answer three main research questions. Firstly, how does active 

learning perform in datasets with an high inclusion percentage? It is essential to measure the overall 

performance of active learning to test if highly inclusive datasets are suitable for practical research. It is 

expected that the performance of active learning in general becomes lower in datasets with a high 

percentage of relevant records. This is due to the measurements of performance. The ultimate goal of 

active learning is to decrease the workload of researchers. However the higher the percentage of 

inclusions, the lower the margin in which active learning can be beneficial. Therefore, it is expected that 

the performance of active learning is worse in datasets with a higher percentage of relevant records. 

Secondly, how do different machine learning models perform in datasets with a high inclusion 

percentage? This will be studied to examine if a certain model would outperform in highly inclusive 

datasets. Previous research into datasets with a low number of inclusions has shown that there is little 



deviation between models (Ferdinands et al., 2020). Therefore, it is expected that the performance of 

different active learning models will not differ significantly from each other. Finally, could the 

performance of active learning in systematic reviewing be increased by inverting inclusion labels? This 

inversion method could offer a solution to the benefit margin problem. By decreasing the inclusion 

percentage, the margin in which active learning can be beneficial increases. However, the excluded class 

tends to be more heterogenous as the only connection between papers is the original search query. This 

could create noise in the classifiers and result in lower relevancy scores. Since certainty based sampling 

is used, it is anticipated that the heterogeneous groups perform worse because certainty based sampling 

will suggest papers with high relevancy scores first. Therefore, it is expected that the inverted datasets 

show a small improvement in performance which is lower than performance reported in the literature.  

 

 

  



2. Methods  

2.1 Data collection  

To test the performance of active learning in highly inclusive datasets, two datasets were acquired. First, 

the Bayesian dataset which was collected for a systematic review of Bayesian psychology articles which 

were published between 1990 and 2015 (Van de Schoot et al., 2017). The search was performed through 

Scopus, which resulted in 1669 records in the dataset before pre-processing (see Appendix A, Table 1). 

Second, the PBPK dataset is data which was collected by the Radboud UMC for a study on 

Physiologically Based Pharmacokinetic (or PBPK) modelling. The data collection of this study was 

completed at the end of 2020. The results of the study or yet to be published.  Both datasets contain pre-

labelled data. This labelling was performed by the researchers of each study. For the purpose of this 

study, these labels were assumed to be correct.   

2.2 Outcome of interest  

The outcome of interest of this study was the relevance of the records which the machine presented to 

the researcher. Thus, if the paper which was presented had a relevant or irrelevant label.  

2.3 Simulation models  

Various models were created with all possible combinations of the Logistic Regression, Naïve bayes, 

Random forest, and Support Vector Machines classifiers and the Doc2Vec, Sentence BERT, and Term 

Frequency – Inverse Document Frequency feature extraction techniques. Both the Doc2Vec and the 

sBERT feature extraction technique cannot be combined with Naïve Bayes classifier because they both 

generate negative values which the Naïve Bayes classifier cannot deal with (van de Schoot et al., 2021).  

The query strategy which is used is certainty based sampling. The software refers to this as the ‘max’ 

strategy. The balance strategy which is used as a method of oversampling is called dynamic resampling. 

The software refers to this as ‘double’. Both strategies are chosen because they are the default settings 

of the software. Additionally, these settings are kept as constant over all models. For additional 

information about all the models, Appendix A, Table 1 can be consulted. 

2.4 Simulation design 

The simulation makes use of four datasets. The two original datasets (see ‘data collection’) and copies 

of these datasets in which the inclusion labels have been inverted. All ten models from Appendix A, 

Table 1 were used in a simulation with three runs per model. A run was defined as a full cycle of the 

simulation in which the model was trained to find all relevant records. This simulation was executed for 

every dataset resulting in 120 runs overall. Every model was trained with one relevant record and one 

irrelevant record, this is hereafter mentioned as prior knowledge. The prior knowledge changes between 

runs of a single model, but are identical for all different models within the dataset. Only the first run of 



each model has been used for the results. The goal of the other runs was to indicate the stability and 

reliability of the models over different runs with different prior knowledge.  

2.5 Performance metrics 

To answer the research questions, this research focussed on two main performance metricises: Work 

Saved over Sampling (WSS) and Relevant References Found (RRF).   

The WSS@95% is a widely used metric for measuring the performance of screening 

prioritisation models (Cohen et al, 2006; O’Mara-Eves et al., 2015). This metric indicates how much 

time would have been saved when 95% of the relevant records have been found, while using abstract 

prioritisation compared to random sampling. The WSS is measured at 95% to resemble a more realistic 

situation than at 100%.  

The RRF is a metric which represents the amount of relevant references found compared to the 

percentage of screened papers. This gives a representation of how effective screening prioritisation is 

compared to random screening. The RRF is measured at two instances: @10 and @90 to represent the 

first and last segments of the simulation. These values were chosen because the RRF@10 is more 

commonly used in the literature and because they are more informative when poor performances are 

expected because they are further from the edge values. The RRF is complementary to the WSS because 

the WSS compares to the percentage of relevant records found while the RRF compares to the 

percentage of evaluated records.  

Across all performance metrices, the change caused by the inversion of inclusion labels is 

observed. This is hereafter mentioned as Delta (or Δ).  Additionally, the mean and the median of all 

models is calculated to give insights into the overall performance of active learning across all models in 

a dataset.   

2.6 Data treatment 

Before the inversion, both the PBPK and the Bayesian datasets were prepared for simulation. Duplicate 

records were removed to prevent that certain terms receive disproportional weights in the models. 

Additionally, non-English records were removed due to problems with term frequencies because the 

software is unable to translate and match these terms. Inaccessible records were also removed from the 

data. 

 The original Bayesian dataset was not designed for active learning purposes. Therefore, 

it did not contain titles nor abstracts of all records, only references. The abstracts were automatically 

extracted from online databases using  DOIs  and references (n = 1591). The remaining missing abstracts 

were manually inserted (n= 78) to create the raw dataset. After this, duplicates (n = 5), non-English 

records (n = 21), and inaccessible records (n = 4) were removed. The titles of  the records were extracted 



from the references column using Regular Expressions to increase the performance of ASReview. 

Additionally, inclusion labels, which were in text notation, were replaced with binary in which ‘1’ 

represents inclusion (n = 1579) and ‘0’ represents exclusion (n = 60). Afterwards, inclusion labels were 

inverted which resulted in two datasets which were ready for simulation; one dataset with an inclusion 

rate of 96.3% and an inverted dataset with an inclusion rate of 3.7%.  

 For the PBPK dataset, duplicates were removed (n = 5) and missing abstracts were 

manually inserted (n = 24). The dataset did not contain any non-English or inaccessible records. There 

were records which had no abstract because of the nature of the publication, such as responses or 

editorial notes (n = 42). These records are not removed to mimic the behaviour of the original 

researchers.  Subsequently, the dataset was split into two data frames, from which one had inverted the 

inclusion labels. This resulted in two datasets in which the original has a 48.8% inclusion rate (n= 1047) 

and the inverted has a 51.2% inclusion rate (n = 1100). Additional statistics of the data treatment for all 

datasets can be found in Appendix A, Table 2.  

2.7 Software 

The study was performed using the simulation mode of ASReview (version 0.17) and Python (version 

3.9.4). ASReview is active learning software specifically designed to aid researchers in their systematic 

review. The simulation mode is a method in which the performance of a labelled dataset can be tested. 

For additional information about ASReview, the article of Van de Schoot et al. (2021) can be consulted. 

Additional information about the reproducibility and set-up of ASReview can be found in the GitHub 

repository of this paper.  

 

 

  



3. Results  

First of all, the WSS@95 values are examined. The PBPK dataset saves 23.7% of time using active 

learning over random sampling (M = 23.7, Mdn = 24.8). The classifiers of the PBPK dataset show no 

difference in performances. For the feature extraction techniques, the WWS@95 of sentence BERT 

(WSS@95sBERT = [14.5 – 19.8]) is noticeably lower than for Doc2Vec (WSS@95D2V = [24.2 – 26.9]) 

and TF-IDF (WSS@95TF-IDF = [25.3 –29.6]). The LR + TF-IDF model performs best (WSS@95 = 29.6) 

while the SVM + sBERT model performs the worst (WSS@95 = 14.5). For the inverted PBPK datasets 

(M Inverted = 16.4, Mdn Inverted = 17.6),  the WSS@95 does not show an increase over the normal dataset 

(M Δ = -7.3, Mdn Δ = -7.4). The WSS@95 Δ values of all models in the inverted PBPK dataset range 

from -1.4 to -14.7. The LR + TF-IDF model has the best performance (WSS@95Inverted = 20.0,  WSS@95 

Δ = -9.6). The Naïve Bayes classifier, and therefore the NB + TF-IDF model, underperforms compared 

to the other models (WSS@95 Inverted = 10.7, WSS@95 Δ = -14.7). For the feature extraction techniques, 

the WSS@95 values of sBERT range from 12.4 up to 14.9 which is generally lower than other feature 

extraction techniques. The Bayesian dataset shows minimal change compared to random sampling (M 

= 0.7, Mdn = 0.6). There are no noteworthy differences across classifiers, feature extraction techniques 

and models. The inversion of the inclusion labels resulted in an average growth across all models of 

10.8%. (M Inverted = 11.5, Mdn Inverted = 11.5). All feature extraction techniques report performances which 

are similar to each other. The NB + TF-IDF model severely underperforms with a 3% increase over 

random sampling (WSS@95Inverted = 3.0, WSS@95Δ = 2.0). With a 19.2% increase, the RF + TF-IDF 

reported the highest increase of inverted Bayesian dataset (WSS@95Inverted = 20.1, WSS@95Δ = 19.2). 

For additional information on the WSS@95 of all models, Appendix A, Table 3 can be consulted.  

Secondly, the RRF@10 values are observed. For the PBPK dataset, active learning contributed 

to a 6.7% increase of relevant references found over random sampling when 10% of the total number of 

papers is screened (M = 16.7, Mdn = 16.9). The results show no differences in performance of classifiers 

or feature extraction techniques. However, the SVM + sBERT model (RRF@10 = 13.9) is slightly 

underperforming. The RRF@10 values of all models, excluding the SVM + sBERT model, show little 

variation across models (RRF@10 = [16.3 – 18.0]). Inversion of inclusion labels shows a similar 

performance as the PBPK dataset represented by a delta of 0.4% (RRF@10 Inverted = 17.2, Mdn Inverted = 

17.3). The NB + TF-IDF (RRF@10Δ = -2.4), RF + D2V (RRF@10Δ = -0.7), and LR + TF-IDF 

(RRF@10Δ = -0.1)  models have lower scores in the inverted dataset than before label inversion. The 

Bayesian dataset (M = 10.1, Mdn = 10.1) show minimal deviation across all classifiers, feature extraction 

techniques, and models with RRF@10 values ranging from 9.8 to 10.4. The inverted Bayesian dataset 

(M Inverted = 29.2, Mdn Inverted = 28.2) experienced positive effects of the label inversion (M Δ = 19.0, Mdn 

Δ = 18.7). Noteworthy models are the RF + TF-IDF (RRF@10Inverted = 44.1, RRF@10Δ = 33.9) and LR 

+ TF-IDF (RRF@10Inverted = 40.7, RRF@10Δ = 30.3) models which perform far above the mean. 

Additionally, the NB + TF-IDF (RRF@10Inverted  = 16.9, RRF@10Δ = 6.6) and RF + D2V (RRF@10Inverted  



= 11.9, RRF@10Δ = 1.9) models perform severely under the mean. For additional information on the 

RRF@10 metrics, Appendix A, Table 4 can be consulted.  

Thirdly, the RRF@90 is analysed. The PBPK dataset shows little deviation across models as all 

values are ranging from 98.9 to 100% (M = 99.6, Mdn = 99.7). It is noteworthy that the NB + TF-IDF 

model is the only model which finished simulation (RRF@90 = 100.0). The inversion of the PBPK 

dataset (M Inverted = 98.3, Mdn Inverted = 98.4) does not result in an improvement of performance (M Δ = -

1.3, Mdn Δ = -1.1). Additionally, no differences in classifier or feature extraction technique are observed. 

The NB + TF-IDF (RRF@90Inverted  = 97.2, RRF@90Δ = -2.8) is the only model which shows a minor 

deviation from the mean. The Bayesian dataset reports a 0.4% to 1.3% increase of performance over 

random sampling (M = 90.8, Mdn = 90.7). In this dataset, there appears to be no distinct differences in 

performance between classifiers, feature extraction techniques, and models. The inverted Bayesian 

dataset (M Inverted = 98.0, Mdn Inverted = 98.3) shows a small improvement of performance over the 

Bayesian dataset (M Δ = 7.2, Mdn Δ = 7.4). Two out of three models with Support Vector Machines 

classifiers finished simulation when 90% of all records were screened (RRF@90SVM+D2V = 100.0, 

RRF@90SVM+sBERT = 100.0). the use of different feature extraction techniques did not result in different 

performance across the models. Additional information about the RRF@90 can be consulted in 

Appendix A, Table 5.  

 Finally, the recall plots (see Appendix B) are examined. Figure 1 shows the recall plot of the 

PBPK dataset. This figure shows two clustered groups of lines. The models in the worst performing 

group all use the sBERT feature extraction technique. This pattern continues in the inverted PBPK 

dataset (see Figure 2). Additionally, the NB + TF-IDF shows worse performance after label inversion. 

The recall plot of the Bayesian dataset (see Figure 3) is identical to the random sampling diagonal. The 

inverted Bayesian dataset (see Figure 4) shows improvement over the random sampling diagonal. It is 

noteworthy that plot steepness of the plot peaks in the first 10% of the run. Afterwards, the lines flatten 

and show a somewhat linear trend towards completion of the simulation. The RF + D2V model shows 

an irregularity with a starting peak around 20%. Figure 5 shows the recall plots across all runs of the 

simulation. This shows that the trends are similar over all runs. The irregular gradient of the RF + D2V 

model seems to be an outlier as the other runs do not mimic the same behaviour. 

  



4. Discussion  

4.1 Main findings 

The PBPK dataset, which had 48.8% inclusions, performed moderately well. Active learning 

contributed to a 24.8% Work Saved over Sampling. The Bayesian dataset, on the other hand, performed 

poorly and showed no evidence that active learning performs better than random sampling. The 

RRF@10 and the RRF@90 showed a similar trends in which the PBPK dataset performed slightly better 

than random sampling and the Bayesian dataset showed no improvement over random sampling. This 

is in line with the predictions of the hypothesis that it is expected that the performance of active learning 

in general becomes lower in datasets with a high percentage of relevant records.  

It was hypothesized that the performance of active learning models would not differ between 

models. It was found that all classifiers behave similar throughout the datasets. The sBERT feature 

extraction technique performed less well based on the WSS@95 for the PBPK dataset. The lowered 

performance is not observed in the RRF values. However, when observing the recall plots (see Figure 

B1,2 &4), it becomes clear that the sBERT models are always underperforming compared to the D2V 

and TF-IDF feature extraction techniques. Finally, the NB + TF-IDF model was underperforming for 

both inverted datasets across all performance metrics. When observing the inverted PBPK plot (see 

Appendix B, Figure 3), the plot showed less divergence from the random sampling diagonal, which 

suggests worse performance. The performance of the inverted Bayesian dataset (see Appendix B, Figure 

4) seemed similar in the plot. It is noteworthy that the incremental peaks of the NB + TF-IDF line are 

steeper and longer. This would suggest that the Naïve Bayes classifier is more sensitive to clusters of 

similar papers. To conclude, the findings regarding the stability of different models of this research were 

not in line with the expectations due to the questionable performance of the sBERT feature extraction 

technique and the performance of the NB + TF-IDF model in inverted datasets.  

The efficacy of inclusion label inversion was dependent on the distribution of relevant and 

irrelevant papers. It was found that the inverted Bayesian dataset, which had 3.7% inclusions, showed a 

small improvement over random sampling. When observing the plot, all models seemed to find the first 

part of relevant records quickly. Hereafter, a linear trend similar to the random sampling strategy is 

observed. Unlike random sampling, these lines displayed small stepwise increases in which multiple 

relevant records are found. A possible explanation for this could be that there are clusters of similar 

papers within the heterogenous class. This would explain both the peaks and the similarity to the random 

sampling strategy after the initial peak. All in all, the performance of inverted datasets does not match 

the results seen in previous research (O’Mara-Eves et al., 2015; Ferdinands et al., 2020) which reported 

a higher performance. This is in line with the hypothesis regarding inverting the inclusion labels. 

Therefore, these results show first evidence that there are differences in homogeneity between the 

relevance classes.  



4.2 Applicability of the research  

This research provides evidence that the use of active learning is not efficient in highly inclusive 

datasets. The inversion of inclusion labels does not yet provide an efficient solution. Therefore, it is not 

recommended to use active learning when a high number of inclusions is expected.  

4.3 Limitations and future research 

Although this study is carefully constructed, the results are based on only one run and one dataset per 

inclusion distribution. Because of this, the generalizability of the research should be questioned as there 

is no evidence of the influence of prior knowledge and the internal deviation of models over different 

runs. Therefore, future research should use more runs per model to test the deviation of the models 

between different runs and minimalize the influence of prior knowledge. Additionally, future research 

should contain more datasets with different inclusion distributions to conclusively proof the relationship 

between inclusion percentages and performance of active learning.  

One of the possible explanations for the poor performance of the inverted models could be the 

heterogeneity of the included group. This is based on two assumptions. First, the assumption that the 

group which was originally exclusions is less homogeneous than the inclusions group. This is assumed 

because the inclusions group has the query string and the topic of research in common, while the 

exclusions are only connected through the query string of the research. Secondly, the assumption that 

models perform less in heterogenous groups than in homogeneous groups. This would be suspected 

because the terms and vectors within homogeneous papers are more likely to be similar and are therefore 

receive higher weights. This is, however, only speculation as the effects of homogeneity of a dataset 

have not, to the best of my knowledge, been tested to this date. Therefore, future research should focus 

on the effects of homogeneity and heterogeneity within datasets on the performance of active learning.   

Finally, the results may be influenced by the effects of the query and balance strategies. The 

‘max’ query strategy could result in an overperformance of homogeneous groups because the strategy 

suggests papers with high relevancy scores first. Additionally, dynamic resampling could result in a 

overfitted model. Because of this and the lack of runs of this research, the reliability and validity of this 

research should be questioned.    

 

  



5. Conclusion 

The main goal of this research was to explore the performance of active learning within highly inclusive 

datasets. The overall performance of active learning becomes worse if the inclusion percentage of a 

dataset increases. Inversion of the dataset only slightly increased the performance. However, this subject 

needs more study into the optimisation of models to become viable in practice. Finally, evidence is 

found to support that the NB + TF-IDF model underperforms in inverted datasets.  
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8. Abbreviations 

D2V – Doc2Vec  

LR  – Logistic Regression  

NB  – Naïve Bayes  

RF  – Random Forest  

RRF  – Relevant References Found  

sBERT – Sentence BERT  

SVM  – Support Vector Machines  

TF-IDF –Term Frequency – Inverse Document Frequency  

WSS  – Work Saved over Sampling 
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Appendix A – Tables 

Table 1  

The descriptive statistics of all pre-processed datasets used for simulation.  

 Number of 

records before 

pre-processing 

 

Number of 

records after pre-

processing 

Number of 

relevant labelled 

records 

Inclusion rate  

(in %) 

PBPK  2152 2147 1047 48.8 

PBPK (inverted) 2152 2147 1100 51.2 

Bayesian  1669 1639 1579 96.3 

Bayesian (inverted) 1669 1639 60 3.7 

Note. Inverted datasets contain the same records as the original dataset. However, inclusion labels are 

inverted.  

 

  



Table 2 

All used model combinations with their respective classifiers, feature extraction techniques, query 

strategies, and balance strategies.   

Name model Classifier Feature extraction 

technique 

Query 

Strategy 

Balance 

strategy 

LR + D2V Logistic Regression Doc2Vec Max Double 

LR + sBERT Logistic Regression Sentence BERT Max Double 

LR + TF-IDF Logistic Regression 
Term Frequency – Inverse 

Document Frequency 
Max Double 

NB + TF-IDF Naïve Bayes 
Term Frequency – Inverse 

Document Frequency 
Max Double 

RF + D2V Random Forest Doc2Vec Max Double 

RF + sBERT Random Forest Sentence BERT Max Double 

RF + TF-IDF Random Forest 
Term Frequency – Inverse 

Document Frequency 
Max Double 

SVM + D2V Support Vector Machines Doc2Vec Max Double 

SVM + sBERT Support Vector Machines Sentence BERT Max Double 

SVM + TFIDF Support Vector Machines 
Term Frequency – Inverse 

Document Frequency 
Max Double 

Note. The ‘Max’ query strategy and the ‘Double’ balance strategy are both default settings in ASReview.  

 

  



Table 3 

The Worked Saved over Sampling when 95% of the relevant records are found (in percentages).   

 PBPK PBPK 

(inverted) 

Δ PBPK Bayesian Bayesian 

(inverted) 

Δ 

Bayesian 

LR + D2V  24.3 19.1 -5.2 0.6 9.0 8.5 

LR + sBERT 19.8 14.9 -4.9 0.5 7.5 7.0 

LR + TF-IDF 29.6 20.0 -9.6 1.2 12.4 11.2 

NB + TF-IDF  25.3 10.7 -14.7 1.0 3.0 2.0 

RF + D2V  26.9 19.7 -7.2 0.7 11.8 11.0 

RF + sBERT  18.7 12.4 -6.2 0.3 14.6 14.3 

RF + TF-IDF  27.5 19.0 -8.4 0.9 20.1 19.2 

SVM + D2V 24.2 16.6 -7.6 0.5 11.3 10.8 

SVM + sBERT  14.5 13.1 -1.4 0.3 14.3 14.0 

SVM + TFIDF  26.1 18.5 -7.6 1.0 10.8 9.7 

Mean  23.7 16.4 -7.3 0.7 11.5 10.8 

Median  24.8 17.6 -7.4 0.6 11.5 10.9 

Note. Delta (Δ) represents the difference in WSS@95 caused by inverting the inclusion labels of the 

dataset.  

 

  



Table 4 

The percentage of Relevant References Found after screening 10% of all records.     

 PBPK PBPK 

(inverted) 

Δ PBPK Bayesian Bayesian 

(inverted) 

Δ 

Bayesian 

LR + D2V  16.9 18.3 1.4 9.8 37.3 27.5 

LR + sBERT 16.3 17.8 1.5 10.0 30.5 20.5 

LR + TF-IDF 17.3 17.2 -0.1 10.3 40.7 30.3 

NB + TF-IDF  16.7 14.3 -2.4 10.3 16.9 6.6 

RF + D2V  17.8 17.1 -0.7 10.0 11.9 1.9 

RF + sBERT  16.6 16.7 0.0 10.4 27.1 16.7 

RF + TF-IDF  18.0 17.9 0.0 10.1 44.1 33.9 

SVM + D2V 16.9 17.8 0.9 10.0 27.1 17.1 

SVM + sBERT  13.9 17.5 3.6 10.0 25.4 15.4 

SVM + TFIDF  17.0 17.2 0.2 10.2 30.5 20.3 

Mean  16.7 17.2 0.4 10.1 29.2 19.0 

Median  16.9 17.3 0.1 10.1 28.8 18.7 

Note. Delta (Δ) represents the difference in RRF@10 caused by inverting the inclusion labels of the 

dataset. 

 

  



Table 5 

The percentage of Relevant References Found after screening 90% of all records.     

 PBPK PBPK 

(inverted) 

Δ PBPK Bayesian Bayesian 

(inverted) 

Δ 

Bayesian 

LR + D2V  99.7 98.6 -1.1 90.6 96.6 6.0 

LR + sBERT 99.5 98.4 -1.2 90.5 98.3 7.8 

LR + TF-IDF 99.9 98.4 -1.5 91.3 96.6 5.4 

NB + TF-IDF  100.0 97.2 -2.8 91.1 94.9 3.8 

RF + D2V  99.8 98.5 -1.4 90.7 98.3 7.6 

RF + sBERT  99.1 97.7 -1.4 90.4 98.3 7.9 

RF + TF-IDF  99.9 98.8 -1.1 91.2 98.3 7.1 

SVM + D2V 99.4 98.7 -0.7 90.4 100.0 9.6 

SVM + sBERT  98.9 97.9 -0.9 90.4 100.0 9.6 

SVM + TFIDF  99.7 98.7 -1.0 91.1 98.3 7.2 

Mean  99.6 98.3 -1.3 90.8 98.0 7.2 

Median  99.7 98.4 -1.1 90.7 98.3 7.4 

Note. Delta (Δ) represents the difference in RRF@90 caused by inverting the inclusion labels of the 

dataset. 

 

  



Appendix B – Figures 

 

Figure 1  

Graph representing the percentage of Relevant Records Found against the total percentage of papers 

screened for the PBPK dataset.  

 

Note. The horizontally dotted lines represent the RRF@10 for each line. The vertically dotted lines 

represent the WSS@95 for each line.   

  



Figure 2  

Graph representing the percentage of Relevant Records found against the total percentage of papers 

screened for the inverted PBPK dataset.  

 

Note. The horizontally dotted lines represent the RRF@10 for each line. The vertically dotted lines 

represent the WSS@95 for each line.   

  



Figure 3  

Graph representing the percentage of Relevant Records found against the total percentage of papers 

screened for the Bayesian dataset.  

 

Note. The horizontally dotted lines represent the RRF@10 for each line. The vertically dotted lines 

represent the WSS@95 for each line.    



Figure 4  

Graph representing the percentage of Relevant Records found against the total percentage of papers 

screened for the inverted Bayesian dataset.  

 

Note. The horizontally dotted lines represent the RRF@10 for each line. The vertically dotted lines 

represent the WSS@95 for each line.   

  



Figure 5  

Recall plots collected over three runs representing the percentage of Relevant Records found against 

the total percentage of papers screened for the inverted Bayesian dataset.  

  

Note. The order of datasets, from top to bottom, is: PBPK, inverted PBPK, Bayesian, and inverted 

Bayesian. 

 

 

 


