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Abstract

A well-known fact is that the cluster variables of a cluster algebra can be expressed as Laurent
polynomials in the variables of any given cluster (The Laurent phenomenon). Sergey Fomin and
Andrei Zelevinsky conjectured in 2002 that the coefficients of these Laurent polynomials are
nonnegative integer linear combinations over the coefficient group of the cluster algebra (The
Positivity conjecture). Since then special cases of this conjecture have been proven. In this
thesis we will investigate this conjecture. We will introduce coefficient matrices, which we will
use to give a proof of a new and slightly stronger version of the Laurent phenomenon, and we
will discuss these coefficient matrices in relation with the Positivity conjecture.
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Introduction

In 2002 Sergey Fomin and Andrei Zelevinsky introduced a class of commutative rings called cluster
algebras ([1]). They did this to create an algebraic framework for dual canonical bases and total
positivity in semisimple groups. These rings can be found as coordinate rings of algebraic varieties,
for instance as homogeneous coordinate rings of Grassmannians. In the last two decades a lot more
applications were found in various fields, such as: Teichmiiller theory, Poisson geometry and Lie
theory.

Cluster algebras are constructed using a set of generators called cluster variables which are grouped
into possibly overlapping sets of fixed cardinality m, called clusters (m is called the rank of the
cluster algebra). Cluster variables in adjacent clusters are related to one and other using exchange
relations. In their paper Fomin and Zelevinsky proved the so-called Laurent phenomenon, which
states that any cluster variable, which can initially be viewed as a rational function in the vari-
ables of any given cluster, is in fact a Laurent polynomial. Moreover, they stated the positivity
conjecture, which states that the coefficients of these Laurent polynomials are positive integer linear
combinations over the chosen coefficient group. This conjecture has been proven in various special
cases:

1. Philippe Caldero and Markus Reineke proved the positivity conjecture for acyclic cluster
algebras in [2];

2. Grégoire Dupont used the result of Caldero and Reineke to prove the positivity conjecture
for (coefficient-free) cluster algebras of rank 2 in [3];

3. Kyungyong Lee and Ralf Shiffler proved that the positivity conjecture holds for all skew-
symmetric cluster algebras in [4].

In this thesis we examine the structure of cluster variables in arbitrary cluster algebras. We start
of by giving a brief introduction to the theory of cluster algebras where we follow the exposition
in [1]. In chapter 2 we use a new approach to prove the Laurent phenomenon, using what we
call coefficient matrices. After that, in chapter 3, we give an introduction to quiver representation
theory and describe the relation to the theory of cluster algebras. In this chapter we also state
some results obtained by Caldero, Reineke and others, and we give a proof of the result of Dupont.
We will use these results to deduce some interesting properties of the so-called minimal coefficient
matrices in chapter 4. In this final chapter we also state some conjectures about minimal coefficient
matrices which might lead to a proof of the positivity conjecture for arbitrary cluster algebras.




Notation
Throughout this thesis, we will use the following notation: For any integer a € Z we write
la] . = max{0,a}.
For any integers m,n € Z we write
m,n]={keZ| m<k<n},

moreover, we write
Ik:,l = [0, k] X [0, l] and Il;,l = IkJ \ {(k, l)}

For m € Z and n € Z>, we use the following definition for the binomial coefficient:
my _ M)
n) nl’
n—1

where m,) = H(m — 1) denotes the falling factorial. If 0 < n < m this means we can write

=0
(7)== ()

Moreover, for n € Z.y we use the convention that (ZZ) is equal to 0.




1 Cluster algebras

In this chapter we give a brief introduction to cluster algebras. If the reader is already familiar
with this subject, he or she may wish to skip this chapter.

This chapter is mainly derived from the paper in which Fomin and Zelevinsky introduce cluster
algebras ([1]).

Definition 1.1: Let N € Z~(, then an N-regular tree T is a tree containing at least one vertex,
whose edges are considered to be undirected, and where each vertex has degree N. For N =1 this
means we have that T consists of two vertices connected with a single undirected edge. For N > 1,
we have that T is an infinite undirected graph which can be constructed recursively as follows:
We start with a single vertex ¢y, and add N new vertices which we each connect with ty with an
undirected edge. Now the tree contains N vertices of degree 1. For each vertex of degree 1 we add
N — 1 new vertices to the tree which we each connect to this vertex with an undirected edge. This
last step can be repeated endlessly to create the N-regular tree T. We can regard the vertex ¢y as
the root of Ty, however it is important to note that any vertex of T can be regarded as the root
due to the fact that the edges are undirected.

Let N € Z~¢ and let I be a finite set of NV elements. We let T; denote the N-regular tree, whose
edges are labelled by the elements of I, such that the N edges emanating from each vertex have
distinct labels. Slightly abusing notation, we write t € Ty for a vertex t of Ty, i.e., we regard T as
the set of all vertices in T;. Given t,¢' € T; and i € I, we write ¢t —— ¢/ if the vertices ¢ and ¢’

are connected with an edge labelled i. Finally, if we have I = [1, N| we write Ty for T;. We now
take I = [1, N].

Definition 1.2 ([1, Definition 2.1, Proposition 4.3]): Let I be a finite nonempty set of cardinality
N. To each vertex t € T; we associate a cluster of N generators (called cluster variables) x(t) =
(xi(t))ier, moreover, we also associate an N x N integer matrix B(t) = (bij(t))ijer = (bi;(t)) to
the vertex ¢, which we will call the exchange matrix. Finally, let P be a torsion-free multiplicative
abelian group, then for any t € T} we let p(¢) = (p;(t))icr denote an N-tuple of so-called coefficients
in the coefficient group P.

Now let & = ((x(t))ter;, (B(t))ter,, (P(t))tet, ), then £ is called an exchange pattern on T; with
coefficients in P if the following conditions are satisfied:

For any vertex t € Ty, we have that

1. the matrix B(t) = (b;;) is sign-skew-symmetric: For any i,j € I we have b;jbj; < 0 or
bij = bj; = 0. (In particular we have b; =0 for all ¢ € I.)

k

For any edge t t' in Tj, we have that

2. the matrix B(t') = B’ = (b};) is obtained from the matrix B(t) = B = (b;;) by matrix
mutation in direction k (we write B’ = ux(B)), which means that for any i,j € I we have

/ :{—bij if i =korj=k,

iJ bik|bri+bik b .
K bij + B i +bite b | k’g ik g | otherwise;

(Note that we have p2(B) = B.)
3. zi(t) = x;(t') for all i # k;



4. xp(t)xp(t') = pr(t) My (t) + pr(t') My (t') in ZP[z;(t),2;(t) | i € I] where ZP denotes the group
ring of P with integer coefficients, where for any ¢’ € T; we have

Mk(t”) — Hwi(t”)[bki(t")H_

el

Finally, whenever t; Lotk 4ol 4, inTy (with k # 1), we have that

pu(th) _ pi(ta) 'pk(tQ)[bzk(tz)H
pi(t2)  pits)  pr(ts)lbwta)ls”
The equalities in conditions 3 and 4 are called exchange relations between the cluster variables of

adjacent clusters.
We call an exchange pattern £ coefficient-free if for all t € T; we have p(t) = (1);cs. In this case

we write £ = ((x(t))ier,, (B())eer,)-
Remark 1.3: Note that conditions 2 and 5 correspond to the condition (2.7) from Definition 2.1

5.

in [1], which comes down to the following statement: whenever ¢; L to k t3 L ty in Ty
(with k # 1), we have

pi(t)Mi(t) — pu(ta) Mi(ta) (pk(tQ)Mk(t2)>[blk(t2)]+ ' (xi>[bzk(t3)]+
pr(t3) Mg (ts) '

pi(t2) Mi(t2)  pu(ts)M,(ts)

For the remainder of this chapter we work with I = [1, N], i.e., we take T to be Ty, however,
everything also works over T; for an arbitrary set I of cardinality N.

Example 1.4 ([1, Example 2.4]): Take N = 1. Note that T; contains a single edge: t —1—#'.
Hence an exchange pattern on T; with coefficients in some coefficient group PP must satisfy the
single exchange relation

z1(t)z1(t') = pi(t) + p1(t),
and hence is completely determined by the choice of the coefficients p;(t) and p;(t').
Example 1.5 ([1, Example 2.5]): Now take N = 2. We have that Ty can be written as

2 1 2 2 1

to t1 to L t3 2}

Now note that any coefficient-free exchange pattern on Ts is completely determined by our choice
of B(tp). Of course we have the trivial example, where B(tg) is the zero-matrix, in which case all
matrices B(t) are zero, and where the cluster variables are given by

x1(tr) = 2 za(t2) = $2(2t0)»

a1(to)’
Blty) = B = (_Oa 8)

xl(tg) = wl(to) and $2(t4) = xg(t(]).

Note that for any a,b € Z~q taking



uniquely determines a coefficient-free exchange pattern on To. This follows directly from the fact
that we have

()= () 7)) =)

a

Using the exchange relations, the first few cluster variables can be written as

x@):xﬂmﬁ+1 x@):xﬂuV+1:(mawM4ﬁ+mdi
i 1 (to) 2 xo(t1) z1(to)*@2(to) ’

oa(ts) = za(t2)’ + 1 w1(to) - ((wa(to)’ + 1) + xl(to)“)b + 21 (to) P 2o (t0)?
BT ) w1 (to) s (to)? - (w2(t0)" +1)

b
(?) (2(to)? + 179 Ly (£0) O~ 4 2y (49) 2

7j=1

xl(to)ab71$2(t0)b

Next, we will give an example of a coefficient-free exchange pattern on Ty for general N, however
to do this we need some preparation:

Definition 1.6: Let B = (b;;) be an N x N integer matrix, then B is called skew-symmetric if
bij = —bj; forall i, j € [1, N]. We call the matrix B skew-symmetrizable if there exists some diagonal
N x N integer matrix D whose diagonal entries are positive, such that DB is skew-symmetric. In
this case D is called the skew-symmetrizing matrix of B.

Proposition 1.7: Let B = (b;;) be a skew-symmetrizable N x N integer matrix, and let D be the
skew-symmetrizing matrix of B whose N diagonal entries we denote with dy,...,d,, then for any
k € [1, N] we have that the N x N integer matrix i (B) = B’ = (b];) obtained from B by matrix
mutation in direction k is skew-symmetrizable with skew-symmetrizing matrix equal to D.

Proof. Let i,j € [1, N]. Then we have by definition

i bir|bri+bix [bis )
J bij + 1is[breg Fbie [brs | m iklbril  therwise.

,_{—% ifi=Fkorj=k,

Hence if i = k or j = k, we have

dibly = —dibsj = djbj; = —d;b),

ji
and otherwise we have

N |dibik|dibrj + dibix|diby;l
2dy,

dibri|d;bik + dibri|d;b;
:—djbji—‘ kkild; szjz_k kil djbjk| — _ayv,

dibi; = dib

This means B’ is indeed skew-symmetrizable with skew-symmetrizing matrix D.
O

Example 1.8: This proposition gives us directly an example of a coefficient-free exchange pattern



on Ty for general N: For any N x N skew-symmetrizable matrix B and for any tg € Ty there
exists a unique coefficient-free exchange pattern & = ((x(t))sery, (B(t))iery) on Ty, such that
B(ty) = B.

Finally, we give an example of exchange pattern on Ty with coefficients in Q(y1, ..., yar), the field
of rational functions in M variables, for some M € Z~:

Example 1.9: Let (B(t))ieT, be a family of N x N sign-skew-symmetric integer matrices with
B(t") = ur(B(t)) for any edge t —*— ' in Ty. Now let (C(t))sery be a family of N x M integer
matrices such that for any edge t —*— ¢ in Ty we have that the matrices C(t) = (c;j(t)) = (cif)
and C(t') = (¢;5(t')) = (¢};) are related by

v

C/ . —Cij if i = k‘,
ij bik(t b, (t i .
) cij + b3 ( )lckj';_ ik )lckj‘ otherwise.

Finally, for any ¢t € T, let p(t) = (pi(t))ier be an N-tuple of nonzero rational functions in
Q(y1,---,ynm), such that for any k € [1, N] we have

H ki (Ol

Note that for any edge t —~— t' in T this means we have
M M
pk(t/) _ H y£0kj(t)}+ . _[ij H ckj(t

Now suppose we have t; L tg—* to—1 ¢, in Ty (with k& # 1), then, writing B(t2) =
(bij), C(t2) = (cij) and C(t3) = (cfij), we have

U
Clj = Cl]' 5

|bwk |k + buelergl ) e+ bu [es]l . if b >0,
cj + b [—erg] i by <0,

which means we have
pi(t) _ pilta) 'pk(tQ)[blk(tQ)]Jr
pi(t2)  pi(ts)  pr(ts)lbms)ls

We conclude that & = ((x(t))tery, (B(t))tery, (P(t))teTy) is an exchange pattern on Ty with
coefficients in Q(y1, ...,y ), which is uniquely determined by the matrices B(tp) and C(tp) at a
given vertex tg € Ty. Any exchange pattern of this form is called an exchange pattern of geometric

type.

We now fix an exchange pattern & = ((x(t))ery, (B(t))iery, (P(t))tcry) on Ty with coefficients



in some coefficient group P. Now to any edge t —k ¢/ we can associate the following binomial:

N

N
P = pi(t) H xgb’“'(t”* + pr(t) H xgb’“'(t/)]* € ZP[xy,. .., zN].
i=1 i=1

We now can write

zp(t)zi(t) = P(x(t) = P(x(t')),

and we call P te exchange polynomial associated to the edge ¢ —* /. Now note that since
P is torsion-free, the ring ZP contains no zero divisors and neither does the polynomial ring
ZP[x1(t),--- ,xn(t)] for any vertex ¢ € Ty, hence to any vertex ¢ € Ty we can associate a field
F(t) which is the field of fractions of the polynomial ring ZP[zi(t), - ,xn(t)]. Now note that
for any edge t —* ¢ in Ty with associated exchange polynomial P, we have a ZP-linear field
isomorphism Ry : F(t') — F(t), which is given by

Ry (zi(t) = a4(t) fori #k and Ry (zx(t) =

and the exchange relations from Definition 1.2 give us that R;,l = Ry:. We call these maps the
transition maps, and these allow us to identify all fields F(¢) with each other, hence we can regard
them as a single field F which contains all the cluster variables z;(t) for i € [1, N] and ¢ € Ty in
such a way that they satisfy the exchange relations in /. Now we can define a cluster algebra as
follows:

Definition 1.10 ([1, Definition 2.3]): Let A be a subring (with unit) in ZP containing all the
coefficients p;(t) for i € [1, N] and ¢t € Ty, then the cluster algebra A = A4 (€) of rank N over A
associated to the exchange pattern £ is the A-subalgebra (with unit) in F generated by all cluster
variables x;(t) for i € [1, N] and t € Ty.

For examples of cluster algebras we refer the reader to the discussion after Definition 2.3 in [1].



2 Cluster polynomials and Coefficient matrices

For the remainder of this chapter we fix some N > 1, some coefficient group P and some exchange
pattern & = ((x(t))iery, (B(t))iery, (P(t))iery) on Tx with coefficients in P. Fixing a vertex to €
Ty and for w € [1, N| writing ty —— ¢, with P, denoting the associated exchange polynomial,
we will show that for any ¢t € Ty and for any u € [1, N] we can find a Laurent polynomial G in
variables x1,...,zy with coefficients in ZP such that z,(t) = G(x(tp)). We will show that such a
Laurent polynomial G' can be written as F'//M with M a Laurent monomial

N
M = H )"
i=1
for m; € Z and F € ZP[x1,...,zyN] a polynomial not divisible by any of the variables z1,...,zxn.
Moreover, for all v € [1, N] with m, > 0 we can find polynomials F,,..., Fym, € ZP[z1,...,zN]

with F),; not containing z, for all ¢ € [1,m,], such that we have

My
F = ZF gt Pl

v
1=0

A Laurent polynomial of this form we call an M-cluster polynomial associated to the vertex tg.
Note that it is enough to show that for any w € [1, N] substituting P, /x,, for =, in any M-cluster
polynomial G associated ty gives us an M’-cluster polynomial associated to t,, where

M /

m
Ty

M =

with m/, equal to the largest exponent of x, in F. To be able to prove this, we will first introduce
what we will call ‘coefficient matrices’.

2.1 Coeflicient matrices

Definition 2.1: For any commutative monoid R, written additively, we denote with Maty(R) the
set containing all indexed sets of the form M = {m;;}; j)ez2 whose elements, which we will call
entries, lie in R and of which only finitely many are nonzero, we will call M a matrix. Given a
nonzero matrix M € Mata(R), we refer to the smallest rectangle of entries of M containing all the
nonzero entries of M i.e. the set S = {mxo+i,yo+j}(i,j)elm,n with zg, yo € Z maximal and m,n € Zx>g
minimal such that all nonzero entries of M are contained in S, presented as an (m + 1) x (n + 1)
matrix, as the nonzero part of M. The quadruple (xg,yo,zo + m,yo + n) we call the dimensions
of M which we denote with dim(M), and we call the tuple (zg,yo) the origin of M. Given two
matrices M, M’ € Maty(R), we define M"” = M + M’ € Maty(R) to be the matrix, whose entries
are given by

my = My +my, ((k,1) € Z°).

Clearly M + M’ = M’ + M, and we have an obvious zero matrix: The matrix 0 € Mats(R) with
no nonzero entries. This makes Maty(R) into a commutative monoid. If we moreover have a
commutative multiplication on R which makes R into a multiplicative semigroup, and such that
the multiplication is distributive with respect to the addition on R, then we can also define scalar



multiplication on Maty(R): Given a matrix M € Maty(R) and some A € R, we define A - M to be
the matrix M’ € Maty(R) whose entries are given by

mpy = A myy ((k,1) € Z%).
We will only be interested in the case where R is equal to Z or Zx.
Definition 2.2: Let Seq denote the set of all sequences of nonnegative integers (a;)i>o satisfying:
1. ag > a1 with a9 = a7 if and only if ag = 0;
2. aiy1 = [a; — (ai—1 — a;)], for all i € Z,.

We denote the zero-sequence in Seq with 0, and we will denote a sequence (a;)i>0 € Seq with a.
We say that a € Seq has length [ € Z>¢ if a; = 0 and (in case [ # 0) a;—1 > 0, we will denote
the length of a with ¢(a). Finally, for ¢ € Z and d € Z-o we write seq(c,d) for the sequence
([e—id], )ieZ>0 (which is equal to 0 if ¢ < 0).

Definition 2.3: Let m,n € Seq and let C' € Maty(Z) be a nonzero matrix with origin in Z2,,
then we call C' an (m, n)-coefficient matrix if there exist nonzero matrices D, E € Matg(Z) with
the same origin as C, such that for all (k,l) € Z%, we have

my ngk
my ng
Crl = de—i,l ( ; ) = Zek,l—j <j ) .
i=0

J=0

We call C' moreover minimal, if we have ¢, = 1 (and therefore d,, = e;, = 1), and for all
(k1) € Z>g X Z>y \ {(x,y)} we have

k-1 -1

Z my Z Nk
C, = max di,l <k‘ . Z> 5 €k,j (l _ ]>

=T J=y

In which case we have that C, D and E are matrices in Maty(Z>o).

We will clarify this definition with some examples, but first we recall two basic results for binomial
coefficients:

Remark 2.4: For m,n, k € Z>q, we have the following equalities:

() () (rosrenen
L5001

The first equality follows from the following calculation:

<TIZ) (Tg:if) - k;!(mmi k) (n —(Zb)!zn]j)i n)l n!(mmi n)l /-c!(nni I (Z) (Z) '

The second equality can be observed by calculating the coefficient of ¥ on both sides of the following

10



polynomial equality in Z|x]:
(x+1D)"(x+1)™ = (z+ 1)

Example 2.5: For m,n,a,b € Z~o let m = seq(m,a) and n = seq(n,b). Now let C € Maty(Z)
be a matrix with origin (0,0) which for any (k,1) € ZQZO is given by

=(3) ()

then C is an (m, n)-coefficient matrix (this follows from the second part of the remark above). If
m = 6 and n = 8 then the nonzero part of C' is given by

1 8 28 56 70 56 28 8 1
6 48 168 336 420 336 168 48 6
15 120 420 840 1050 840 420 120 15
20 160 560 1120 1400 1120 560 160 20
15 120 420 840 1050 840 420 120 15
6 48 168 336 420 336 168 48

1 8 28 56 70 56 28 8 1

Example 2.6: For m,n € Z>o with m < n let m = seq(m, 1) and let n = seq(n,1). Now let
C € Maty(Z) be a matrix with origin (0,0), which for (k1) € Z%, is given by

w=(3)(5)

then we claim that C' is an (m, n)-coefficient matrix. To see this, we first consider the case where
we again have m = 6 and n = 8. In this case the nonzero part of C' is given by

1 8 28 56 70 56 28
6 42 126 210 210 126 42
15 90 225 300 225 90 15
20 100 200 200 100 20 O
15 60 90 60 15 0 O
6 18 18 6 0 0 0
1 2 1 0 0 0 0

OO OO OO
OO O OO o

and the nonzero part of the matrix D associated to C' is given by

1 8 28 56 70 56 28 8 1
0 2 14 42 70 70 42 6 O
00 1 6 15 20 15 0 O

11



Now to prove our claim, we note that for (k,l) € Z2, with k¥ <n and [ < m we can write
m\ (ng) [(m)\ (n—Fk _El: n—m\ (m\ (m—k
k 1) \k l I J k l—j
7=0
l l .
Z m—k _Z n—m m m—1+7
. m—(—j)~k) "2\ j ) \m—it; k
]:

J

io ic- OV

i 7=0

Now note that for (k1) € Z2>0 with k£ < n and [ < m we can write
: n—m m J l n—m\ (j m
(5" 1) () =2 (5 R 67)
j=0 =k
:i (n—m) (n—m—k) ( m >
= k j—k l—3j
B <n m) § <n—m—kz> < m )
= -/ L
s J l=k—j
(G
This means that we can find D € Mato(Z) with origin (0,0), and which for (k,[) € Z>0 is given by
<n—m) <n—k:> = <n—m> (n—k‘) if k<nandl<m;
k l—k k n—1
<m> (nk> otherwise,
k l

such that for all (k,l) € Z2 we have

k
m Nk my
= d; ).
() (1) - ()
=0
We encourage the reader to verify that this is enough to prove that C' is actually a minimal coeflicient
matrix. We make the argument needed to prove this claim precise in the following proposition:

> |

d, =

Proposition 2.7: Let m,n € Seq, and let C, D, E' € Maty(Z>¢) be three nonzero matrices which

12



all three have their origin 2220, such that for all (k,l) € Z>¢ we can write

k l
1= Jj=

Moreover, assume that there exists precisely one pair (z,y) € Z%, such that d,, # 0 and e, # 0.

Then dyy = €z, and C = dg, - C’, where C’ is a minimal (m,n)-coefficient matrix with origin
(2, y).
Proof. We clearly have that c;; = 0 for all (k,[) € ZQZO satisfying & < 2 and/or | < y, which

automatically means we have d, , = e;,. Moreover, for all (k,[) € Zzzo with £ > x and [ > y such
that (k,1) # (z,y) we must have

k-1 -1
e[S Ea()
1= =Y
If dyy = 1 = e,y this already means that C' is a minimal (m,n)-coefficient matrix with origin
(z,y). If dpy = a = e, for some a € Z1, then we can use the above equality to prove, using
induction, that a | ¢y for all (k,1) € Z2,,.
- O

We end with two concrete examples of coefficient matrices, one of which is zero in its origin:

Example 2.8: Let m = seq(6,1) and n = seq(8,2), then the matrix C' € Maty(Z) with origin
(0,0) whose non-zero part is given by

1 8 28 56 70 56 28 8 1

40 114 180 170 96 30 4 O

15 80 176 204 131 44 6 0 O
20 80 124 92 32 4 0 0 O],

15 40 36 12 1 0 0 0 O

8 2 0 0O 0 0 00

1 0 0 0 0O 0 0 00

is an (m, n)-coefficient matrix, where the nonzero parts of the associated matrices D, E' € Mato(Z)
are respectively given by

1 0 0 0 O
6 4 0 0 O
1 8 28 56 70 56 28 8 1 15 20 6 0 O
0 0 2 12 30 40 30 4 O and 20 40 24 4 O
00 0 0 1 4 6 00O 15 40 36 12 1
6 8 2 0 0
1 0 0 0 O

Clearly C' is minimal. Another example of an (m,n)-coefficient matrix is given by taking the

13



nonzero part of C' equal to

0 1 8§ 28 56 70 56 28 8 1
1 6 32 122 270 346 256 102 17 O
6 24 48 198 582 804 516 126 0 O
15 65 8 142 578 835 364 0 0 O
20 105 220 38 210 307 O 0 0 0
15 96 318 O 0 0 0 0 0 0
6 46 212 O 0 0 0 0 0 0
1 9 583 0 0 0 0 0 0 0

now the nonzero parts of the associated matrices D, E € Maty(Z) are respectively given by

0 1 0 0 0 0
10 17 0 0 0

01 8 28 5 70 56 28 8 1 6 0 12 126 O 0
11 0 38 158 276 256 102 17 O and 15 35 0 107 364 O
09 0 0 210 528 516 126 0 O 20 105 220 38 210 307
0 033 0 0 307 364 0 0 O 15 96 318 O 0 0

6 46 212 0 0 0
19 53 0 0 0

Note that in these examples we talk about the matrices D and F associated to C, that this
unambiguous follows from the following proposition:

Proposition 2.9: For any m,n € Seq, given an (m, n)-coefficient matrix C, there exist unique
nonzero matrices D, E € Mata(Z) with the same origin as C' such that for all (k,1) € Zng we have

my ngk
my ng
Ckl = de—i,l ( ; ) = Zek,z—j <j > .
i=0 —

We will denote these matrices with D(C') and E(C') respectively.

Proof. Let m,n € Seq, let C' € Maty(Z) be an (m, n)-coefficient matrix with origin (z,y) € Z2,,
and let D, E € Maty(Z) be nonzero matrices with origin (x,y) such that for all (k,1) € Z%, we

have
m Nng
my ng
Crl = § dr—iy < ; > = § €k,l—j <j > .
=0 j=0

Then in particular, we have dy , = €34 = ¢z 4. Now for any (k,l) € Z>, X Z>y \ {(z,y)}, we have

my Nk
my Nk
dig = cpg — E d—; ( ; > €kl = Ck,] — E €k,l—j (j )
j=1

i=1
Hence if we know that for all (k',1") € I,;l the values of dj i and ey » are uniquely determined by
C, then the values of d,; and ey are also uniquely determined by C, hence by induction on k and
I we have that D and F are uniquely determined by C.

and

O]
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Remark 2.10: From this proposition it follows that for any m,n € Seq and for any (z,y) € ZQ>0
there exists a unique minimal (m, n)-coefficient matrix with origin (z,y), which we therefore will
call the minimal (m, n)-coefficient matrix with origin (x,y), moreover, if we do not specify an
origin, we take it to be (0,0).

This remark gives rise to the following proposition:

Proposition 2.11: For m,n € Seq, let C' be an (m, n)-coefficient matrix. For any (z,y) € Z2207
let C*¥Y denote the minimal (m, n)-coefficient matrix with origin (x,y). Then there exists a unique
matrix S € Maty(Z) with same origin as C, such that for any (k,) € Z2, we have

— w?y
Ck,l = Sa,yCr. 1 -

(‘rvy)EZQZO

We will denote this matrix with S(m,n)(C).
Proof. Note that constructing such a matrix S € Maty(Z) is straightforward: For any (k,1) € ZQZO
we take
Ski=Chi— 3 SeyCht.
(z.y)€l,

We have that S lies in Mata(Z) because C' lies in Mata(Z), and myy)4; = 0 and nypyy4p = 0 for
all [,k € ZZO'

Now suppose that S is not unique, then there exists some matrix 7" € Matg(Z) with origin equal
to the origin of C', not equal to S, such that for all (k,[) € ZQZO we have

— E LY
Ckl = tl’vyck,l .

(I7y)62220

This means we can find (k,l) € Z2, such that sj; # tx; and such that for all (z,y) € I}, we have
Sgy = tzy. Now note that by definition of the minimal coefficient matrix we have ¢} = 0 for all

(z,y) € 2220 \ I, hence we must have
—_ x?y —_
thy = Crg — E teyCrl = Skl
(a:,y)elkr’l

which gives us a contradiction.

O]

Definition 2.12: Given m,n € Seq and an (m, n)-coefficient matrix C, then we say C' is positive
if S(m,n)(C) lies in Mata(Z>o).

We display the proposition above with an example:

Example 2.13: For m,n € Z>¢ with m < n let m = seq(m, 1) and let n = seq(n,1). We saw in

15



Example 2.6 that the minimal positive (m, n)-coefficient matrix C' is given by

Crt = (’g) <”l’“> ((k,1) € Z2,).

Hence we have that C' in this case is also an (m’, n)-coefficient matrix, now for m’ = seq(m —1,1).
Taking m = 6 and n = 8 this can be seen from the fact that the nonzero part of the minimal
(m’, n)-coefficient matrix with origin (0, 0) is given by

1 8 28 56 70 56 28
5 35 105 175 175 105 35
10 60 150 200 150 60 10
10 50 100 100 50 10 O
5 20 30 20 5 0 0
1 3 3 1 0 0 0

o O O O ot
(= esiies el S

and the nonzero part of the minimal (m’, n)-coefficient matrix with origin (1,0) is given by

1 7 21 35 35 21
5 30 75 100 75 30
10 50 100 100 50 10
10 40 60 40 10 O
5 15 15 5 0 0
1 2 1 0 0 O

O O O O ot
(= el e el

Adding these two matrices together indeed gives us C', whose nonzero part is equal to

18 28 56 70 56 28
6 42 126 210 210 126 42
15 90 225 300 225 90 15
20 100 200 200 100 20 O
15 60 90 60 15 0 O
6 18 18 6 0 0 0
1 2 1 0 0 0 0

OO OO OO
OO OO OO

We end this discussion of coefficient matrices with two final remarks:

Remark 2.14: For m,n € Seq, let C be an (m, n)-coefficient matrix with dim(C) = (z,y, K, L).
Now let CT € Maty(Z) be the matrix which for (k,l) € Z? is given by ¢!, = ¢, then C7T is an
(n, m)-coefficient matrix with dim(C?) = (y,, L, K). In particular, if C' is minimal, then C7 is
also minimal. In general, for matrices M, M” € Maty(Z) with m;{’l = myy, for all (k,1) € 72, we
call the matrix M7 the transpose of M, and we have (MT)T = M.

Remark 2.15: Let C' be an (m, n)-coefficient matrix, and let C’ be an (m’, n’)-coefficient matrix

with origin (z,y) € Z?\ {(0,0)}, such that my,; = m; and ), = n; for all i € Z>o, then for any
(k,1) € Z? we have

/
Ckl = Cz+k,y+l‘

16



Moreover, if C' is minimal, then C’ is also minimal.

2.2 Cluster polynomials and the Laurent phenomenon

We now return to our discussion about the structure of cluster variables in £ to get an understanding
of how these matrices will be used to get the desired result. Take some tg € Ty and let u,v € [1, N]
be distinct, then we will look at the structure of cluster variables belonging to vertices which can be
connected to tg with a sequence of edges labelled u or v. To do this we define a so-called ‘minimal
cluster polynomial’:

Definition 2.16: Given some vertex t € Ty, write B(t) = (b;;), let u,v € [1, N] distinct, and write
a = |byy| and b = |byy|. Now let

P, = pu,lMu,l + pu,2Mu,2 and P, = pv,le,l + pv,ZMv,Z

be the exchange polynomials in ZP[z1, ...,z y] associated to the edges emanating from ¢ labelled u
and v respectively, where p__ denotes an element in P and M __ denotes a monomial in the variables
{z1,...,2n}. In what follows we will use similar notation for exchange polynomials without further
explanation. If a # 0 and b # 0, we assume we have z¥ | M, 1 and 2% | M, 1. Then for m,n € Z
and some polynomial F' € ZP[x1,...,zxN] we call the Laurent polynomial

F

mpn
$u xv

G:

a minimal z7'x}-cluster polynomial associated to ¢ if there exists some p € IP such that one of the
following statements holds:

1.a=b=0and F=p. P+ pl".
2. a#0,b#0 and

K L

p _ _

= § E o (Pu1 My 1) (puaMu2)® * (pu1 My 1) (pooMy2) !
k=0 1=0

_ b (pu,QMu,2)K(pU,2MU,2)L . i i c <pu,1Mu,l>k (pv,lMUJ)l
M k=0 1=0 o pu,QMu,Q pv,QMv,Q

where M is a monomial in the variables {z1,...,2x}\ {2y, ,} such that non of these variables
divide F, and where C' € Matz(Z) is the minimal (m, n)-coefficient matrix with dim(C) =
(0,0,K, L), for m = seq(m,a) and n = seq(n,b). Writing D = D(C) and E = E(C), this

means we have

p-(p M LA poaM
p = 2 putha) > d“( - Ul) (PuaMu1)® (PuzMup)* ™0 P

=0 k=0 ’ Do, QMUQ
K K L—ny k
D (Pu2My2 Pua My 1 e
- (u—u Z k.l <pu2]\/[u2> (pv,le,l)l (pu,2Mu,2)L et Pyt
k=0 1=0 et
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We say G is a reduced x]'xl-cluster polynomial associated to t if F' satisfies one of the statements
above, but in the second case the coefficient matrix C' does not necessarily need to be a minimal.
In particular, any minimal «]"'«x!'-cluster polynomial is a reduced z!'z?-cluster polynomial.

The following example displays a simple class of minimal cluster polynomials:

Example 2.17: Assume N = 2 and P = 1 is the trivial group. Now fix some vertex tg € To and let

a,b € Z~q such that the exchange polynomials associated to the edges tg —— t; and t) —=— to

are respectively given by Py = 2§ + 1 and P, = ¢ + 1. Now take m,n € Zsq and let C' be the
minimal (seq(m,a),seq(n,b))-coefficient matrix, then the Laurent polynomial

1
la kb
T E: Ch 127 T3
1 %2
(k)ez?,

is a (actually ‘the’) minimal x7"z5-cluster polynomial associated to .

We now recall the definition of a ‘general’ cluster polynomial: Let ty € Ty, and let M be a Laurent
monomial in the variables x1,...,xy. Writing

N
M:Hac:r“ (mi € Z),
i=1

we recall that an M-cluster polynomial G associated to the vertex ty is a Laurent polynomial in
the variables x1,...,zn with coefficients in ZP which can be written as a fraction F//M, where
F € ZP[zy,...,zN]| is a polynomial not divisible by any of the variables z1,...,zy. Moreover, for
all v € [1, N] with m, > 0 we can find polynomials F o, ..., Fym, € ZP[z1,...,zN] with F,; not
containing x,, for all ¢ € [1,m,], such that we have

My

My —1 7

F = E Fv,i'l’vv 'Pv.
=0

Here, for v € [1, N], P, denotes the exchange polynomial associated to the edge t¢ ——t, .

Any cluster polynomial associated to some vertex in T can be written by definition as a fraction
of a polynomial in ZP[x1,...,zx] and a Laurent monomial in the variables z1,...,zx as above.
Hence, when we talk about a fraction F/M as being an M-cluster polynomial associated to some
vertex in T, we mean that M is a Laurent monomial in the variables x1,...,zy and that F is a
polynomial in ZP[z1, ...,z ] satisfying the properties above.

Now consider the following two remarks which relate the general cluster polynomial with mini-
mal/reduced cluster polynomials:

Remark 2.18: Let u,v € [1, N| be distinct, and let ¢ € Ty and let m,n € Z, then any reduced
(and in particular minimal) z!"a!'-cluster polynomial associated to ¢ is an a!"z”-cluster polynomial
associated to t.

18



Remark 2.19: Let t € Ty and for a given Laurent monomial
N

M = H z" (mZ € Z)
i=1

let G = F/M be an M-cluster polynomial associated to ¢t. Then for any distinct u,v € [1, N] we

can write
[mu]+ [var

e g
G = qu Z : 2 : FZ,JG'L’] )
=0 j=0

where for (7, j) € [0, [my] ] %[0, [m,] ] we have that G; ; is a minimal 2! 2 -cluster polynomial, and
F; j is a polynomial in ZP[x1, ...,z ] such that it does not contain the variable z,, if ¢ > 0 and it
does not contain the variable z, if j > 0.

In line with our discussion at the start of this chapter we have the following result:

Theorem 2.20: Let u,v € [1, N] be distinct, let P, € ZP[z1,...,xn] be the exchange polynomial
associated to a given edge t —“—t' in Ty, and, for m,n € Z (not necessarily nonnegative), let
G = F/x"z? be a reduced z)'z]-cluster polynomial associated to ¢, then substituting P,/z, for

T, in G gives us a reduced xﬂll_mxﬁ—cluster polynomial associated to t/, where m’ is the largest
exponent of x, in F.

We are not yet ready to give a full proof of this theorem, however we can give an argument which
reduces the theorem to a statement about coefficient matrices:

Let u,v € [1, N] be distinct, and consider the edges t; —— to —*— t3 ——t4 in Ty, with
associated exchange polynomials P,, P, and P, in ZP[x1, ...,z x| respectively. Write B(t2) = (b;j)
and B(t3) = (b;;), and let a = |byy| and b = |byy|. Now let G be some reduced z;;'zy-cluster
polynomial associated to t9, and let H be the Laurent polynomial obtained from G by substituting
P,/x, for x,. If we have a = b = 0, then, by definition, we have

P kel
Ty Ty
for some p € P. This means we have
p- mmP[n]+
———  ifm>0;
H= o
B P|m|P[n]+
rml ke ifm<0
Ty XV

Now note that by, = 0 implies we have b,; = b/; for all j € [1, N], hence we have M,(t1) = M,(t4)
and M,(t2) = M,(t3). Using condition five from Definition 1.2 we have

P, P
Dov (t2) Do (tS) '
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This means that H is a reduced x,, "z -cluster polynomial associated to ts.

Next, assume we have a # 0 (and hence b # 0). If n < 0 we directly have that H is a reduced
x, "z -cluster polynomial associated to 3. Now assume we have n > 0 and write

P’v = pv,le,l + pv,2Mv,2a Pu = pu,lMu,l + pu,2Mu,2 and le; = pi;,lM{;,l + p{u,QMfL,;,Qv
such that z | M, 1, x \ M, 1 and z¢ | M, 1 Using Remark 1.3 we have

/ / 2

pv,le,l o pv,2Mv,2 $ua
= T a a °
pv,ZMv,Z pv,le,l pu,QMu,Z

In particular this means we have

2% - M,
1 _ Yu v, —
M, =2 and M, =

Myeq

MUJMQCLQ
M
zd - Mgcd

where Mg.q = ged (MU,Q,M‘IZ) Now let m = seq(m,a), n = seq(n,b), then for some (m,n)-

u

coefficient matrix C' with dim(C') = (0,0, K, L), writing D = D(C'), we have

G: v,2 ’02 d M M k M K_ml_k.Pml
M Ty ; k=0 pv,2M0,2 (pu’l u,l) (pu’2 u,2) u

for some p € P and some monomial M in the variables {z1,...,xn}\{Zy, v }. Writing m’ = La—m,
let m’ = seq(m’,a). Now we have

K—my

!

D (pv 2Mv 2 Dv 1Mv 1 k K—m;—k mL 1 —1

P \Pv2Mv2) du [ Petifel M M 1=k pMii-t, gm=la
;; il <x$ T 2) (Pu 1 My1)" (Pu2My2) "

K

H =
M -zt

Mh

=0

_ P (popMyp)™
M -z zn

M=

—my l
Pu1 My 1 m) _
di, <H> (pu,lMu,l)k(pu,ZMu,Z)K mi—k . pyiet g(Eha,

I E—0 $Z : pv,QMv,Q

I
o

Let C" € Maty(Zso) which for (k,l) € Z? is given by

k !/
m
G = dir i (k: _lZ> :
i=0
then dim(C') = (0,0, K’, L) for some K’ > K —m. Now, using the fact that we have
my_; —my —la=[la—m], —[m—la, —la=—m, (2)

we can write

K' L k l
g_b (Pu2 Mo 2) ™™ (py 2 My 2) " ch;c,L—l <pU,1Mu,1> (Pv,le,l ,p372M3=2> _p(L-Da

M - ﬂi‘mZL’n =0 =0 pu,2Mu,2 pv,ZMv,Z g
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Using equality (1), we now have

_ K' L !
H— P - (pu,2Mu,2)K Tl”(pu,2Mv,2)L ' Z Z C;g,Lfl (pu 1My 1 ( pv 2 2) _ xq(f_l)a
k=0 1=0

Mﬁﬁlxg pUQMUQ

_ K' L
_p (pu,zMu,z)K m(pv,sz,Q)L ) pv 2 Z Z ! Pu 1Mu 1 2;
M - xn Pu 1 =0 1=0 L= Pu 2Mu 2 2 Mqu 2

_ K' L
_ D- (Pu,zMu,g)K m ' <pv,1Mv,1P$,2M3,2) . Z A (pu,lMu 1 pv 1
M - xm zn zl ‘ - Pu2My2 Py oM,

Now let I denote the set of indices (k,l) € Z?* such that dj; # 0, then we can write
M = ged { Mf, MG M ! ‘ (ki)el }.

Now let
K'—m/ _,—k

M = ged { M, M, (ML) ) | et

then using the identities for M, ; and M, , derived from equality (1), we have

1 K'—m', _,—k
M = Y22 gcd{ 1Mu2 B (g v,2)L l( leaz/ﬂf) ’ (k, )EI}'
ged

Note that z, is not contained in M, 1, M, > and M, 2, and since dim(C') = (0,0, K, L), we know
there exists some k € Z>q such that dj o # 0, hence we can write

1 K'—-m! —k
M= - ged { MMy, " (M) (M M) | (D €T
ged

Finally, using equality (2) and using the fact that K’ > K — m, we have

MK2’7K+m MKQ’*Ker
K—m;—k -1 l
M= gcd{ kMR (M )P (M) ‘ (k1) €T } =M.
ged ged
This means, using the identity for M; , derived from equality (1), that we have
K— K'-K /
Mu,2 m(Mv,leiQ/xZ)L — VKM L MO a Mu2 o B qu,(z(le;,z)L
M - u,2 ( v,1 u,2/xu) M- MLd - M/
gc
We conclude that we can write
l
H— p/ : (pu,QMu 2) py 2M1/) 2 Z <pu,1Mu,1>k p;;,lM{),l
M- xm T =0 =0 kil DPu2 My 2 p;;,QM{;,Q 7
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where KAl .
a—m

p/_ P Pyp "Pyia

- K’ Y
Puga- (pv,Q)

hence if we have that C’ is an (m’, n)-coefficient matrix, then H is a reduced z7" z”-cluster poly-

nomial. This means we have reduced the theorem to the following statement:

For any m,n € Z>o and a,b € Zso, let m = seq(m,a) and n = seq(n,b). Moreover, let C' be
an (m, n)-coefficient matrix with dim(C) = (0,0, K, L) and with associated matrices D = D(C)
and £ = E(C). Writing m’ = seq(La — m,a) and n’ = seq(Kb — n,b), let C',C”" € Mats(Z) be
matrices with origin (0,0) and which for (k,1) € Z2%, are given by

b m] l n
=) =S (1),
=0 §=0 J
then C’ is an (m’, n)-coefficient matrix and C” is an (m, n’)-coefficient matrix.
Using Remark 2.14, we can derive this statement from the following lemma:

Lemma 2.21: For m € Z>( and a € Z~¢ let m = seq(m,a), and take n € Seq. Now let C' be an
(m, n)-coefficient matrix with dim(C) = (z,y, K, L) and with associated matrices D = D(C') and
E = E(C). Writing m’ = seq(La — m,a), we can find a matrix E’ € Matg(Z) such that for all
(k1) € Z%, we have

k !
ko = Z Z egﬂ. <l ﬁl]> (_km_/LZ_l> .

That this lemma indeed implies the result we need to prove Theorem 2.20, follows from the following
result for binomial coeflicients:

Remark 2.22: We recall that (1 4 z) is an invertible element in Z[[z]], the ring of formal power
series in the variable x over Z, and we have

(1+a)" =Y (—a)
More generally, for m € Z we can write

CEEILEDY (T) 2t

>0

Now let {a;}i>0 and be a sequence of integers, let m € Z>¢ and for k € Z> let
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then for any [ € Z>p we have
l
m
w=>b (H).
1=0
This follows directly from calculating the coefficient of z* in the following formal power series in

Z[]]:
(1+2x)” Zaz

>0

To prove Lemma 2.21 however, we first need the following result:
Proposition 2.23: For p,q € Z>o, v € Z~0, s € Z>p and t € Z> there exists a function
Y(p,q,r,8,t) : Z — Z,

such that for any u € Z we have ¥(p,q,7,s,t)(u) = 0 if u & [0,¢], and such that for any v € Z>¢

we have (5)( UT) Z‘I’ p,q;7, 5, t)(u )<5—2>

For any u € Z, we will let U(p,q,r,s,t,u) denote the value of the function ¥(p,q,r, s, t) evaluated
at u.

Proof. Let p,q € Z>p and r € Zg. If we have s € Z>( such that the function ¥(p, q,, s, s) exists,
then we have for any ¢ € Z~ that the function ¥(p, q,r, s,t) exists. This follows from the fact that
for any v € Z>( we can write

(1;) <q_w) Z\If Dy 4,7, 8, 5,10) (5:2)

:UZO\P(p,q,r,s,s,u) (iu (t;s) (Uf;t_z»

i=0
v u’
t—s . p—t
:Z Z( ,7 )‘Ij(p,q,’l”,S,S,U,—]) (’U—Ul>'
u'=0 \ j=0
Which means that for any v € Z we can write

t—s

t—s .
Q(p,q,r,s,t,u):Z( ] >\Il(p7Q7ras787u_j)' (3)
7=0

Hence it is enough to show that ¥(p, q,r,s,s) exists for any s € Z>o.

Now note that for s = 0, we directly have that ¥(p,q,r, s, s) exists and for any u € Z we have

1 ifu=0;

U(p,q,7,0,0,u) =
(P g ) {O otherwise.
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Hence without loss of generality we may assume we have p > 0 and s > 0. Now assume that the
function ¥(p,q,r,s —1,s — 1) exists. Let v € Z>¢, then we can write

q—vr _(Q—W)(s)_q—vr—s%—l‘ q—vr
S o s! - S s—1)’
and hence we have

()= () )

g—or—s+1g p—s+1
:—Z\I/(p,q,r,s—l,s—l,u)
u=0

S v—1Uu

1 — B X
=2 v s - L)t (P00
Su:O V—U

_T@_Hn(vf;fl))

)fornGZandk:EZ>0

where we use the identity k(%) =n (

~1
-1
Now using the identity (p SH) (5 ) (U s 1) we can write

<1;> <Q—vr> Z\If (p,q,m, 8 — 1,8 1,U)<(q_m_8+1) (5:18‘)
t(g—ur—s+1—r(p—s+1)) <vf;i1>>

Using the fact that for any u € Z \ [0, s — 1] we have ¥(p,q,r,s — 1,5 — 1,u) = 0, we now have

u/=0

+(q ur S+ ) (p,q,l,s , S ,U) v u,
v

:*Z ((Q—u’r—s—i-1—7’(p—3))\lf(p,q,r,s—1,5—1,u'—1)

u/=0

+(q—u/r—s—i—l)\I/(p,q,r,s—1,s—l,u’)) <p—s,>.

Finally, using equality (3), we have

\I](p7Q7T78_1787u) :\I/(p,q,r,s—1,8—1,u—1)+\If(p,q,7“,s—1,s—1,u),
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for all w € Z, which means that we have

v

(];) (q_sw> - é > <(q—“'7"—8+1)\11(p,q,r,s—1,s,u')

u'=0

—T(p—S)\Ij(p,q,T,S—l,S—17U,—1)) <p_sl> .

v—Uu

Hence for all v € Z we must have
1

\I’(p,q,r,s,s,u) = 7(((]_”7‘ — s+ 1)\Ij(p,q,7‘,8 - 1,S,U) _T(p_ S)\Il(p7q>ras - 175 - 1&“ - 1))
S

That ¥(p,q,r,s,s,u) lies in Z for all u € [0, s] follows by induction on u and using the fact that we

can write )
u—
p q—ur n{P—Ss
U = — N .
(p7 q,T',S,S,’U,) (U) < s > Z <p7Q7T78787u> (u—u/)

u'=0

We now are ready to prove Lemma 2.21:

Proof. Take m € Z>g and a € Zso, let m = seq(m,a) and take n € Seq. Moreover, let C' be
an (m, n)-coefficient matrix with dim(C) = (x,y, K, L) and with associated matrices D = D(C)
and F = E(C), and let m’ = seq(La — m,a). Using Remark 2.15 we may assume C has origin
(0,0). To prove the lemma we show how E’ can be constructed from C. Clearly we must have that
E' has origin (0,0), and for all | € Z>¢ we must have ef,; = ep;. Moreover, if E exists we must
have e;s,L—nkH = 0 for all k,1 € Z>( (otherwise it contradicts C having dimensions (0,0, K, L)).
Now we construct £’ using induction with respect to k. We fix k € [1, K| and assume that for all
k' € [0,k — 1] we have

K l ,
_ / U —mr
doi=>" (X () ) ()

i=0 \ j=0

for all | € Z>q. If n, = 0, then for | € Z>¢ we can just take

k !/
I (L
ek’l = Zdz’l (k; —’L) .
1=0
Now assume ny > 0 and fix some [ € Z>(. Note that we have

my if la < m;
m—la = , ]
-my_; if la >m,
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hence we can write
gy m —la
d; if la < m;
" S (1) e
Z Ze/" n; m —la _ 1=0
BINL— 4 k—1 k

1
i=0 \ j=0 la —
’ - di,l<a 77) if la > m.
0 k—1

i=

The case where we have la > m follows from applying Remark 2.22: For k' € [0,k — 1] write
by = djyy and ay = Zé‘:o ez,’j (ln_’“;), moreover, write ay = 0. Now for any k¥’ € [0,k — 1] we can
write

k' 74
la—m m —la
ak/szZ(k‘”L) and bk/:ZCLZ<k,Z>
=0 )

Now let by, € Z, such that

then we have

and we also have

i m—la = m —la
bk:Zal(k‘—i): “’(k—z>
=0 =0

By definition, we have that n; — ny > k — 4, hence, using Proposition 2.23, we can now write the
sum

k=1 [ 1

Z7.] — ) — )

= \= l—3j k—1

as

k-1 [ 1 I—j
5, (S wtnm—guk—an ) ()

i=0 \ j=0 §'=0

Rearranging the summation we get:

I (k=1 5 "
DAY e, Y (ni,m = Gaa,ak — i n; — g, 1 — ja) <l _ j1> :

J1=0 \i=0 j2=0

Now, since we have

! k-1
n m
di, = § €k, j (l _kj) - E diy (k _lz> ;
=0 =0

26



we can take
k-1 1

e;c,l =€kl — Zzeg,]\p(nlvm —Ja, a,k —1i,n; —ng,l _j) (4)
i=0 j=0

By the properties of the ¥-function, we indeed have that e} Long+t =0 for all | € Z>p, and by
construction we have for | € Z>¢ with la <m

l
n
§=0 J

Now note that for | € Z>¢ with la > m, we have by definition

I
n
ey = er, (l o > ;
i=0 J

substituting equality (4) and reverting the steps above, we obtain

! k=1 [ 1 ;
=N e v T ML
d_z<l—ﬂ>+ s (25) ) (7))

which is what we needed.
O

Remark 2.24: Note that the matrix E’ constructed in the proof above is uniquely determined by
C, and hence we will denote this matrix with E’(C'). Moreover, we denote with D’(C) the matrix
(E'(CT)T. Writing D’ = D'(C) and n = seq(n,b) and n’ = seq(Kb — n,b) for n € Z>o and
b € Z~o, we now, for all (k,l) € Z2,, have

l k ‘ .
€kl = Z ( d;,j <km_] l)) ( l”fjk) .
=0 \i=0

We now can prove a slightly stronger version of the Laurent phenomenon:

Theorem 2.25: Given a vertex top € Ty and u € [1, N], then for any ¢t € Ty we can find a cluster
polynomial G associated to to such that x,(t) = G(x(to))-

u

Proof. Fix any vertex t € Ty, and for any u € [1, N] let tg t, be an edge in Ty with
associated exchange polynomial P,. Now assume we know that for v € [1, N] (not necessarily
different from w) we have that z,(t) = G(x(to)) for some cluster polynomial G associated to to,
then using Theorem 2.20 and Remark 2.19 we have that substituting P, /x, for x, in G gives us
some cluster polynomial H associated to t1, and we have z,(t) = H(x(t,)). If t # to then for all
but one choice of v we have that the length of the shortest path between ¢, and ¢ is the length of
the shortest path between tg and ¢ plus 1. Hence using induction on the length of the shortest path
between vertices the theorem now follows by the argument above.

O
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Now the Positivity conjecture can be stated as follows:

Conjecture 2.26: The cluster polynomials occurring in Theorem 2.25 have subtraction free nu-
merators.

2.3 Coefficient matrices and the Positivity conjecture

The remainder of this thesis will be focused on establishing a relation between Conjecture 2.26
and some properties and conjectures for cluster polynomials and (minimal) coefficient matrices.
Before we end this chapter we discuss some useful results following from Lemma 2.21 which will be
essential for the discussion in the following chapters.

We have the following useful corollary from Lemma 2.21 concerning the dimensions of minimal
coefficient matrices:

Corollary 2.27: Let m,n € Seq, then the minimal (m, n)-coefficient matrix C' has dimensions
(07 07 mo, nO)'

Proof.  Write m = seq(m,a) for m € Z>¢ and a € Zso and write n = ng. Moreover, write
dim(C) = (0,0, K, L), then, using Remark 2.14, it is enough to show that L = n (note that by
definition of C' we have L > n). Now let D = D(C), E = E(C) and E' = E'(C), then it is enough
to show that for any k € [0, K] we have e; =0 = ¢}, for all { € Z>¢ \ [0,n — ng]. For k = 0 this
follows directly from the definition of C. Now fix k € [1, K] and assume that for all ¥’ € [0,k — 1]
we have that ey ; = 0 for all I € Z>g \ [0,n — ny]. If we have ny = 0, we have nothing to show,
hence we assume we have ny > 0. For | € Z>q write

k—1 1
:ZZ U(n;, m — ja,a,k —i,n; —ng,l — j),

=0 j=0

then, applying equality (4), we have ef,c’l =g — 62,1' Now fix some [ € Z>¢. Then, using the fact
that for all ¢ € [0,k — 1] and for all j € [0,] we have

Y(n;,m—ja,a,k —i,n; —ng,l—7)=0 it 1—j>mn;—ng,

and e;j =0if j > n —n;, we have ez’l =0 if [ > n — ng. This means that for [ > n — n; we have
ekl = ezl. Since dj; and ey, are not both nonzero (we have k > 0), we have that e;; = 0 = e;”
iflein - ng, £(m)], and if I € [((m), n] we always have e;; = 0. We conclude that e;; =0 = egl
if [ > n — ng, which is precisely what we needed to prove. Hence by induction on k& we have that
L=n.

O

This corollary gives rise to the following lemma:

Lemma 2.28: Let m = seq(m,a) and n = seq(n,b) for m,n € Z>o and a,b € Z~o. Let C be
the minimal (m, n)-coefficient matrix and write D = D(C), E = E(C) and E' = E'(C). Writing
m’ = seq(na—m,a), let C' € Maty(Zxo) be the matrix with origin (0,0), which for all (k,1) € Z%,
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is given by
n—mng
ng
Zdznl< > Zeknnkj(_j>'
Then C” is the minimal (m’, n)-coefficient matrix if and only if E’ lies in Mata(Z>0).

Proof. That for all (k1) € Z%, we have

S () B ()

follows from Lemma 2.21. Clearly if C’ is the minimal (m’, n)-coefficient matrix this implies we
have E' in Mata(Z>), hence we just have to prove that E’ lying in Mata(Z>() implies that C” is
the minimal (m’, n)-coefficient matrix. Now assume E’ lies in Mata(Z>0).

Using Proposition 2.7 it is enough to prove that dy n—-€j ,,_,, ;= 0forall (k1) € Z%,\{(0,0)}. By
definition, we know that do ;- € _; # 0 if and only if [ = 0. Moreover, since dim(C) = (0,0, m,n),
it is enough to show that for any k € [1, m] we have that d ,,—; - ek,n—nk—l =0 for alll € [0,n —ng].
Now fix some k € [1,m]. If ng = 0, then we saw in the proof of Lemma 2.21 that for all [ € [0, n]

we have
eknl—zdznl< Z)

and by definition of the minimal coefficient matrix we have dj ,—; = 0 in this case, hence we can
assume ny > 0. Now fix some [ € [0,n — ng] such that e;an—nk—l # 0. Note that dj,,,—; > 0 implies
that ey, > 0 for some I’ € [n —ny — I,n — 1 — 1]. Now suppose such an !’ exists and assume it
to be minimal. We must have I'a < m by definition of the minimal coefficient matrix (otherwise
er,r = 0). However, since e;w > 0 for all j € [0,n — ng], this means we have

l/
n
diy = ek, (l, " ) >0

=0

which means we have dj;» > 0 and ey > 0 which gives us as contradiction (by Proposition 2.7).
O

Using Remark 2.14 we have automatically the following result:

Corollary 2.29: Writing n’ = seq(mb —n, b), then the matrix C” € Maty(Z>(), with origin (0, 0),
which for all (k,1) € 2220 is given by

! m—my
/ my
o= Yoemns () = 3 oo (7).
Jj=0

is the minimal (m, n’)-coefficient matrix if and only if D'(C) lies in Maty(Z>o).

This lemma is useful when dealing with minimal cluster polynomials in the setting of Theorem
2.20:
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Corollary 2.30: Let u,v € [1, ] N] be distinct, let P, € ZP[z1,...,xn] be the exchange polynomial
associated to a given edge t —“—t' in Ty, and, for m,n € Z (not necessarily nonnegative), let
G = F/x}}'xy be a minimal zjx}-cluster polynomial associated to t. Write B(t) = (b;;) and let
a = |byy| and b = |byy|. Assume we have a - b # 0 and write m = seq(m,a) and n = seq(n,b).
Let C denote the minimal (m, n)-coefficient matrix, then substituting P, /z,, for x, in G gives us
a minimal z]}* " z!-cluster polynomial associated to ¢’ if and only if E'(C) lies in Mata(Z>o).
Assuming E’ (@) ¢ Mata(Z>0) (which in particular means that m and n must both be positive),
let G’ denote the reduced z!* ™ z"-cluster polynomial associated to ¢’ obtained from substituting

P,/z, for z, in G, and let P, be the exchange polynomial associated to the edge t —*—t".
Then, writing m’ for the largest exponent of z, in the numerator of G’ and writing n’ = m’b — n,
substituting P,/x, for z, in G’ results in a reduced z]*~™ ” -cluster polynomial associated to t”
whose numerator is not subtraction free.

Proof. The first part of the corollary is a direct result from Theorem 2.20 and Lemma 2.28.

The second part follows from Theorem 2.20 and Lemma 2.21: let G” denote the reduced %~ m:z:” -

cluster polynomial associated to t”, and write m’ = seq(na — m,a) and n’ = seq(n’,b). Write
D = D(C) and E' = E'(C), and let C! € Mats(Z>o) be the (m’, n)-coefficient matrix which for
(k1) € ZQZO is given by

k m! n—ng n
A . l — / k
C,i — Zdz,n—l </€ _ z> - Z Ckn—nj—j <l _ ]) .
i=0 J=0

Now write E” = E(C"), and let C” € Maty(Z) be the (m,n’)-coefficient matrix which for (k,l) €
72 S is given by

/!
Ck,l —Z Cm’—k,j < _J>
From the definition of a reduced cluster polynomlal we can deduce that it is enough to prove that

c” ¢ MatQ (Zzo).

Note that We have E” ¢ Maty(Z>¢) since E' ¢ Matg(Z>0). If m'b < n, then for all (k,1) € >0 we
have ¢fl; = e, ;, which means C" & Maty(Z>0). This means we may assume m'b > n.

Now fix some k € Z>o. From the proof of Lemma 2.21 we know that if n; = 0 we have

ekl—zdzl< )>0 (I € Zo),

which means that having e, 1 <0 for some [ € [0,n — ng] implies we have ng > 0. Assume ny > 0,
then we have kb < n and hence (m' — k)b > m'b — n which implies n/ , , = 0. Now assume for
some [ € [0,n — ng] we have ew < 0, then ekm_nk_l < 0, and hence ¢,y n—n,—1 = ek,n—nk—l We
conclude that C” ¢ Matg(Z>o).

O

This corollary in particular illustrates why minimal coefficient matrices are very interesting objects
to consider when studying the Positivity conjecture.
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3 Quivers and Cluster algebras

In this chapter we introduce the necessary definitions to discuss the result regarding the Positivity
conjecture obtained by Philippe Caldero and Markus Reineke in [2], and we illustrate how Grégoire
Dupont in [3] deduces from this result the Positivity conjecture for coefficient-free cluster algebras
of rank 2. We end this chapter with the discussion of a potential generalization of the result of
Dupont.

3.1 Introduction to the representation theory of quivers

Our exposition in this section is based on the lecture notes of the course ‘Introduction to the
representation theory of quivers’ given by Claus M. Ringel ([5], [6]) and on the lecture notes of
Michel Brion on this subject ([7]).

Definition 3.1: A quiver @ is a directed graph which can contain loops, and which can have
multiple arrows between vertices. We write Q = (Qo, Q1), where Q) is the set of vertices of @) and
()1 is the set of arrows of Q. We additionally have two maps s: @1 — Qo and t : Q1 — Qp, where
for an arrow «: i — j € Q1 we have that s(a) = ¢ is the source and ¢(«) = j is the target of a. We
say that @ is finite if #Qo < 0o and #@Q1 < oo, and we say that @) is acyclic if () does not contain
any oriented cycles.

We consider three simple examples of quivers:
Example 3.2: The loop quiver @ = ({1}, {a}) is given by the graph

«

The Kronecker quiver @ = ({1,2}, {a}) is given by the graph
O——®

Finally we consider the quiver @ = ({1,2,3}, {a1, a2, a3, a4 }) given by the graph

Oy (05}
(€3
/ag\@

The following remark indicates there is a relation between quivers and cluster algebras:

Remark 3.3: To a finite quiver @ = (Qo, Q1) which does not contain loops or 2-cycles we can
associate a skew-symmetric matrix Bg = (bs)i jeq, wWhere for any i, j € Qo we have

bij =#{a € Q]| s(a) =17 and t(a) =j} —#{a € Q1| s(a) = j and t(a) = i}.
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This gives a one-to-one correspondence between skew-symmetric matrices and quivers without loops
or 2-cycles.

To expand on the relation between quivers and cluster algebras we first introduce path algebras
associated to quivers.

Definition 3.4: Let Q = (Qo, Q1) be a quiver, then a path w = a3 -y, in @ of length n > 1
is a sequence of arrows aq,...,q, € @1 such that t(a;) = s(a;41) for all 1 < i < n—1. We let
s(w) = s(ay) denote the source and t(w) = t(ay) denote the target of w. Additionally, for vertex
1 € Qo we define e; to be a path of length 0 with source and target equal to i. Given two paths
w and v’ in Q with s(w) = t(w’), we write ww’ for the concatenation of w and w’, and we write

et(w)w =w = wes(w).

Example 3.5: In the loop quiver the set of all paths is given by the set {e;} U{a™ | n > 1} which
is in particular an infinite set. In the Kronecker quiver the set of all paths is {e1, ea, a}.

Now let @ = ({1,2,3},{a1, a2,a3,a4}) be the quiver as given in Example 3.2, write v1 = agasa;
and v = agasa;. Now let 'y = {71,792}, and for any n > 1 we define

Lp={nmw|weTl, 1} U{ypw|wel, 1},

and let

I = U T,.

(ISR
Moreover, we define the sets S = {e1, ay, gz, aqas} and T = {e1, a1, asa, g }. Now the set
of all paths in @ is

{e1,e2,e3} UQ1USUT U{tys |teT,veT,se€ S}

This example shows that simple quivers can already have infinitely many paths. The quivers which
have a finite number of paths are precisely the finite acyclic quivers ([6, Corollary 4.1]).

We now fix an algebraically closed field k.

Definition 3.6: Let Q = (Qo, Q1) be a quiver, then the path algebra over k of the quiver @,
denoted with kQ), is the k-vector space with basis the set of all paths in ). On k@ we can define
a multiplication as follows: for any two paths w,w’ in @ we define the product ww’ in kQ to be 0
if s(w) # t(w') and otherwise the path obtained by the concatenation of w and w’. This induces
indeed a multiplication on k@) with identity given by

1= Z €;.
1€Qo
This makes k(@ into an associative k-algebra.

Example 3.7: The path algebra over k of the loop quiver is naturally isomorphic to the polynomial
ring k[a].

Next we consider quiver representations:

Definition 3.8: A representation of a quiver @ = (Qo, Q1) is of the form M = (M;, M4 )icQo,ac
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where for each ¢ € @y we have that M; is a k-vector space and for each a € ()1 we have that
My + Myq) — My(q) is a k-linear map. We say that M is finite dimensional if each M; is a finite
dimensional k-vector space.

Given Q-representations M, N we say that IV is a subrepresentation of M, if for any i € @)y we
have that N; is a linear subspace of M; and if for any a € Q; we have that N, is the restriction of
M, to N s(a)-

A morphism of representations f : M — N, for given Q)-representations M, N, is a family of k-linear
maps (fi : M; — N;)icq, such that for all o € ()1 we have the following commutative diagram:

M,
Moy —— My
Fs(a) Tt(a)

Na
Nya) — Ny

This means we have a well-defined category Rep(Q, k) of representations of @), and a well-defined
category rep(Q, k) of finite dimensional representations of @). If there is no confusion we will write

Rep(Q) and rep(Q).

We now fix a finite quiver @ = (Qp,Q1). The following theorem shows that there is a strong
resemblance between quiver representations and left kQ-modules:

Theorem 3.9 ([6, p. 5]): We have an equivalence of categories Rep(Q) ~ kQ-Mod, where kQ-
Mod denotes the category of left kQ-modules.

Since we are just concerned with left k@Q-modules, we will omit the prefix ‘left’ from here on.
The equivalence in the theorem above is given by the following correspondences:

o Let (M;, My)icQy,acq, be arepresentation of ), then let M = @ier M; be the corresponding
kQ-module, where the left multiplication by a path w = ay - - - oy, is given by the mapping

M — M, (ai)iEQo — (Moq 0---0 Man)(as(an))'
Moreover, let f: M — N be a morphism of representations of (), then f corresponds to the
morphism of kQ-modules B¢, fi : Dicg, Mi = Dicg, Ni-

e Let M be a k@Q-module, then the corresponding representation of @ is (M;, Ma)icQy,acQ:s
where for i € Qg we have M; = e; M, and where for a € ()1 we have

M, : Ms(a) — Mt(a)7 T — ax.

Moreover, let f: M — N be a morphism of kQ-modules, then f(e;M) C e;N for all i € Qo
(since f is a kQ-linear map). Hence for any i € Qq let f; denote the restriction of f to M;,
then the morphism of Q-representations corresponding to f is (fi)ieqo-

We have the following corollary:

Corollary 3.10 ([6, p. 6]): We have an equivalence of categories rep(Q) ~ kQ-mod, where
kQ@Q-mod denotes the category of finitely generated kQ-modules.
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Since the equivalence in Theorem 3.9 is natural in the sense that the correspondences given above are
natural, we will think of a Q-representation as a k@Q-module and vice versa. Moreover, by Theorem
3.9, we can study k@-modules to get a better understanding of Q)-representations. We will only
be interested in finite dimensional Q-representations, hence when talking of a )-representation, we
assume it to be finite dimensional (and similarly, when talking of a kQ-module, we assume it to be
finitely generated). Finally, (as the fact that Caldero and Reineke proved the Positivity conjecture
for acyclic cluster algebras suggests) we are only interested in the case where @) is an acyclic quiver,
hence we assume our quiver () from here on to be acyclic.

We end this section with a discussion of two important classes of kQ-modules.
Definition 3.11: Let M be a nonzero kQ-module, recall that:
e M is called simple if the only kQ-submodules of M are 0 and M.

e M is called indecomposable if M cannot be written as the direct sum of two nonzero kQ-
modules.

e M is called free if M = kQ™ for some n € Zx>q.

e M is called projective if there exists another kQ-module N such that M @ N is a free kQ-
module.

Definition 3.12: For any i € Qg we define the following kQ-modules:
e P, = kQe;, which is the k-vector space generated by all paths in @) with source equal to 1.
e S; = P;/kQ>1P;, where kQ>1 is the kQ-ideal generated by Q1.
For these k@Q-modules we have the following results:
e Any simple k@Q-module is isomorphic to S; for some i € Qp ([7, Proposition 1.3.1}).
e Any indecomposable projective k@Q-module is isomorphic to P; for some i € @)y, and for
i,j € Qo we have that P; and P; are not isomorphic if ¢ # j ([7, Proposition 1.3.7]).
3.2 Cluster categories

For the entirety of this section we let & = C and we fix a finite acyclic quiver @ = (Qo, @1). In this
section we will introduce the cluster category of @) (introduced by Aslak Bakke Buan et al. in [8]).

We first recall some definitions of category theory, where we follow Franco Rota’s lecture notes [9].

Definition 3.13: Let A be an abelian category (for instance the category of modules over a ring).
A cochain complex (A®,d®) of objects in A is a sequence of objects ..., A~ A% Al A% . . in A
connected by morphisms d" : A" — A™*! (called boundary operators or differentials) such that
d"t1 o d® = 0. We also write a cochain complex of A as

d—2 A_l d-1 AO d° Al dt A2 d3

A morphism of cochain complexes f*® : (A®,d%) — (B®,d}) is a family of morphisms (f" : A™ —
B™)pez such that f"™od? = d o f* for all n € Z.
This means we have a category of cochain complexes of objects in A, which we denote with Kom(.A4).
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We also have a category of bounded cochain complexes of objects in A whose objects are those
cochain complexes (A®, d*) in Kom(.A) for which there exists an integer N € Z~( such that 4, =0
for all n € Z with |n| > N. This category is denoted with Kom®(A) and is a full subcategory of
Kom(A).

To a cochain complex (A®, d*®) in Kom(A) we associate the n-th cohomology group H"(A®) which
is equal to Ker(d™)/Im(d"~1) (which is an object of A). Note that a morphism f* : (A®,d%) —
(B*®,d%) induces a morphism on the n-th cohomology groups H"(f®) : H"(A®*) — H"(B*®). We
call f* a quasi-isomorphism if H™(f*) is an isomorphism in A4 for all n € Z.

Finally, the bounded derived category D’(A), is a category whose objects are bounded cochain com-
plexes of objects in A, i.e., ob(D?(A)) = ob(Kom®(A)), together with a functor F : Kom®(A) —
DY(A) satisfying the following universal property: For any category C and functor G : Kom®(A) —
C such that any quasi-isomorphism f* in Kom®(.A) maps to an isomorphism in C under the functor
G, we have that G factors through F.

Since kQ-mod is an abelian category, the bounded derived category of k@-mod, which we denote
as D°(kQ), is well-defined, and we have a projection ob(kQ-mod) — ob(D’(kQ)) which maps a
k@Q-module M to the cochain complex

A2 g _dTt gy A g d

We will think of a kQ-module as being an object in D?(kQ) under this projection. Moreover, we
have that D°(kQ) is a triangulated category:

Definition 3.14: Let D be an additive category (for instance the category of modules over a ring or
the category of cochain complexes over such a category). The structure of a triangulated category
on D is given by an additive auto-equivalence 7' : D — D called the shift functor, and a set of
distinguished triangles or exact triangles, where a triangle is a sequence in D of the form

A B C T(A),

such that axioms TR1-TR4 below are respected. In stating of these axioms we use the following
notation: For any n € Z and for any object A in D, we write A[n] = T™(A), and for any morphism
f+A— B we write f[n] for the morphism T"(f) : A[n] — B[n]. A morphism of triangles is given
by morphisms f, g and h in D such that the following diagram commutes:

A B C A1)
T
A’ B c’ A'l1]

Moreover, it is called an isomorphism if f, g and h all three are isomorphisms.
We now state the axioms:
TRI1.

e Any triangle of the form

A 44 0 A[1)
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TR2.

TR3.

TRA4.

is distinguished;
Any triangle isomorphic to a distinguished triangle is distinguished;

Any morphism f: A — B fits in a distinguished triangle

A—7 B C AlL).

A triangle

A—L B2 oI An

is distinguished if and only if the triangle

B—Y o —— aAn) — B[
is distinguished.
Suppose we have a diagram
A B C A[l]
Jf lﬂ lf[l]
A B’ C’ A'[1]

where the rows are distinguished triangles and the leftmost square is commutative, then
there exists a (not necessarily unique) morphism h : C' — C’, which, if added to the
diagram above, makes the diagram into a morphism of distinguished triangles.

(Octahedral axiom) Let u: A — B and v : B — C be morphisms, then by TR1 we have
distinguished triangles

A oI Lo P ap,

B—Y s —2 A4 2 5 B[],

h1

ha

Ao B A1),

The axiom then states that there exists a distinguished triangle

o —Lr 1 a0 T 5,
such that
g1 = qohi, fa = hoop, r = fi[l]oga, g20q = u[lJohy, and pof; = hjov.

The name of this axiom comes from the fact that these morphisms fit in a ‘commutative’
diagram which gives the skeleton of an octahedron:
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B/

P q

c' _ A
P 7
fi 92
N

vou C

u v

B

Where the arrows of the form X — Y mean the morphism is from X to Y[1].

Given objects A, B in D, we end this definition of triangulated categories with introducing a
special notation for the set of morphisms from A to B[n| for n € Z: we will write Homp(A, B[n]) =
Ext’,(A, B), and the set Ext}, (A, A) are called the self-extensions of A.

For more information on the definitions above, we refer to [9].

The shift functor on DY(kQ) is defined as follows: Let (A®,d%) be an object in D°(kQ), then
for n € Z we have that (A®,d%)[n] = (B®,d%) where for any m € Z we have B™ = A"*™ and
dm = (=1)"d’;*™. We let 7 = D Tr denote the Auslander-Reiten translation on D?(kQ) which is an
auto-equivalence of D’(kQ). The exact definition of this functor is not important for our discussion
in this chapter, for more information on this translation we refer to the article of Henning Krause
and Jue Le on this subject ([10]).

Definition 3.15: The cluster category of @ is the orbit category Cq = DY(kQ)/F, where F is the
auto-equivalence 77 1[1].

We state some properties for Cg which can be found in [8, Section 1]. The objects of the category
Cg are the F-orbits of objects in DP(kQ). Tt can be shown that Cg is a triangulated category, and
that the natural functor 7 : D*(kQ) — Cg is a triangle functor, i.e. 7 commutes with the shift
functor on both categories and preserves distinguished triangles ([11]). The shift functor on Cg is

induced by the shift in D®(kQ). For objects X,Y € D*(kQ), let X and Y denote the corresponding

objects in Cg, then we have

Home, (X,Y) = | | Homps (4 (F'X,Y),
1EZ

and we have Hom pp 1, (F'X,Y) # 0 for only finitely many i € Z.

For any category A we write ind(.A) for the set of isomorphism classes of indecomposable objects
in A. We end this section with following important result:
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Proposition 3.16 ([8, Proposition 1.6]): We have that any set of representatives for ind(k(Q)-mod)
(seen as objects in Cg) together with the objects w(FP;[1]) for all i € Qq, forms a set of representatives
for ind(Cq).

3.3 The Caldero-Chapoton map

In this section we introduce the Caldero-Chapoton map (introduced by Philippe Caldero and
Frédéric Chapoton in [12]), and discuss the relation it induces between the objects of the clus-
ter category associated to a finite acyclic quiver and the cluster variables of the cluster algebra
associated to this quiver.

As before, we let k = C and we fix a finite acyclic quiver @ = (Qo, Q1).

Let V be a finite dimensional k-vector space, then for d € Z>( the Grassmannian Grg(V, k) is the set
of all linear subspaces of M of dimension d. It is a well-known fact that Gry(V, k) smooth projective
variety. Now let M be a kQ-module then we can also consider the Grassmannian Gry(M, kQ) of
kQ-submodules of M with dimension d, then Gry(M, kQ) is a closed subvariety of Grg(M, k) and
hence it is a projective variety. Since every k@)-module naturally corresponds to a @-representation,
we now consider the following definition:

Definition 3.17: Let M be a (Q-representation, then the dimension vector of M is the vector
dim(M) = (dimy(M;))ieq, € N%.

Let M be a Q-representation, then regarding M as a kQ-module, we have
dim(M) = (dimy(e;M))ieq,

in particular, we have
dimg (M) = )~ dimy(e;M).
1€Qo
Now let d = (d;)icq, € N?° and let d = > ic, di- We define the quiver Grassmannian Grq(M)

to be the closed subvariety of Grq(M, kQ) of all kQ-submodules N of M with dim(/N) = d (which
again is a projective variety).

Definition 3.18: The homological Euler form on kQ-mod is defined as the bilinear form

<—, —> : ZQO X ZQO — Z, (a, b) — Z aibi — Z as(a)bt(a).
1€Qo acQ1

Now let x = {z; | i € Qo} be a set of indeterminates over Q, and let Z[x*!] denote the ring of all
Laurent polynomials in the variables {z; | i € Qo} with coefficients in Z.

Definition 3.19: The Caldero-Chapoton map is a map X7 : ob(Cg) — Z[x*!] which assigns a
Laurent polynomial X, € Z[x*!] to any object M in the category Cg. Let M be an object in Cg,
then X, is defined as follows:

1. If M is an indecomposable kQ-module (recall that we can regard k@Q-modules as objects in
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Db(kQ) and objects of D(kQ) can be projected onto Cg), then

Xy = Z X(Grd(M)) H xf(d,dim(Si))f(dim(Si),dim(M)fd)7 (5)

A
deN@o 1€Qo

where x(Grq(M)) denotes the Euler-Poincaré characteristic of the projective variety Grq(M).

2. If M = P;[1] for some i € Qp, then
XM = Tj.

3. If M = N; © Ny for objects N1, No in Cg, then

Xyp=Xn, - XN,

By Proposition 3.16 the Caldero-Chapoton map is well-defined. Moreover, since for any two kQ-
modules M and N, and for any dimension vector d € N?° we have (by [2, Proposition 1]) that

X(Gra(M @ N)) = > x(Gre(M)) - x(Gre(N)),
e+f=d

we have that the formula (5) for Xj; also holds when M is not indecomposable.

Remark 3.20: Let M be a kQ-module, write dim(M) = m = (m;);cq,, and let d € N0, then for
any i € Qo we have that —(d, dim(S;)) — (dim(S;), dim(M) — d) is equal to

—di+ Y dye) — (mi—di) + (M) = di(a));
a€Q:t(a)=i a€Qq:s(a)=t

which can be written as

—m; + Z ds(a) + Z (M) — di(a))-

a€Qr:t(a)=1 a€Qr:s(a)=t

This implies we have

—m Mi(a)—Ai(a) ds(a
Xy = H x; ™ Z X(Grq(M)) H a:s(;()) B )mt(;))
1€Qo deNQo a€Q1

As we mentioned at the beginning of this section, we will discuss the relation X- induces between
objects in Cg and the cluster variables of the ‘the cluster algebra associated to @’. What this last
part means we now make precise:

Definition 3.21: Write Tg = Tg,, and let By be the skew-symmetric matrix associated to @ as
in Remark 3.3. Now take some vertex tg € Tg and let £ = ((u(t))tery, (B(t))ier,) denote the
unique coefficient-free exchange pattern on Tq with B(tg) = Bg (as in Example 1.8). Then we
let A(Q) denote the cluster algebra of rank #Q over Z associated to the exchange pattern £g.
We call tg the initial vertex of A(Q), and we call A(Q) the cluster algebra associated to @ (this is
unambiguous since the choice of initial vertex does not change the structure of the resulting cluster
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algebra). We call a coefficient-free cluster algebra acyclic if it can be obtained in this way from a
finite acyclic quiver.

The relation induced by X» between objects of Cq and cluster variables of A(Q) is given by the
following theorem proved by Philippe Caldero and Bernhard Keller:

Theorem 3.22 ([13, Theorem 4]): The map X» induces a one-to-one correspondence between the
indecomposable objects without self-extensions of Cg and the cluster variables of A(Q).

Which they deduced from the following theorem:

Theorem 3.23 ([13, Theorem 2]): Let M and N be indecomposable objects in Cg such that
Ext!(M, N) is one-dimensional. Then we have

XuXy=Xp+ Xp,
where B and B’ are the unique objects (up to isomorphism) such that there exist non-split triangles

N B M N1, M B’ N MI1].

After this, Philippe Caldero and Markus Reineke proved the following theorem:

Theorem 3.24 (]2, Theorem 1]): For any kQ-module M without self-extensions then for any
d € N% we have that the Euler-Poincaré characteristic y(Grq(M)) is nonnegative.

They used this theorem to deduce the Positivity conjecture for acyclic cluster algebras:

Theorem 3.25 (]2, Theorem 2]): The cluster variables of A(Q) expressed in the variables of any
cluster x lie in Z>o[x*!].

3.4 Positivity for coefficient-free cluster algebras of rank 2

In this section we give an overview of how Grégoire Dupont proves the Positivity conjecture for
coefficient-free cluster algebras of rank 2, after which we prove this result using just the definitions
of Chapter 1, the results of Chapter 2 and the fact that the Positivity conjecture holds for acyclic
cluster algebras.

As we saw in Example 1.5, we can write To as

2 to 1 t 2 to 1 ts 2 ty 1

This means that the set of vertices of Tq is of the form {¢,},ez such that for any n € Z we have
that Ty contains the edges t¢,-1 —— t, and t, —— t,41 (in particular, we have that these
edges cannot have the same label). We therefore can assume that for any n € Z we have that

To contains the edges to,_1 —2z ton, and top, - ton+1 - We also saw in Example 1.5 that any
coefficient-free exchange pattern £ on Ty is completely determined by the sign-skew-symmetric 2 x 2

matrix B(tg) = B = (b;j). Moreover, since for any n € Z, we have that the exchange polynomials

2 ton, and to, S ton+1 are respectively given by :c‘lb21| +1 and

associated to the edges to,—1

3:|2b12| + 1, any coefficient-free exchange pattern €& on Ty is completely determined by the values of

|b12| and |bo1|. This means that any nontrivial coefficient-free cluster algebra of rank 2 is uniquely
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determined by a pair of positive integers a, b such that

B(ty) = <_Oa 8) ;

s = () ).

induces the same cluster algebra. We denote a cluster algebra of this form with A(a,b).

since taking

To prove the Positivity conjecture for a cluster algebra A(a,b), Dupont first defines a finite acyclic
quiver K, as follows: Let v = {v1,...,v,} and w = {w1,...,w,} be two sets, then we take

(Kap)o=vUw
(where v LU'w denotes the disjoint union of v and w), and
(Kop)1={vi—=w;|i€(lal, je[l,]}.

To ease notation, we write QQ = K, ;. Now let A(Q) be the cluster algebra associated to the quiver
() with initial vertex tg € Tg, and let u = {u;}icq, be a cluster in A(Q) associated to tgy. To
relate the cluster algebras A(Q) and A(a,b), Dupont defines a Z-algebra homomorphism 7 called
a folding:

x1(tg) ifi € v;

cZut — Zlaq (to) T, ()T, i
" [u ] [1'1( O) -%'2( 1) ] “ fEQ(tl) ifiEW.

Given n € Z, Dupont shows that for any v,v" € v we have m(Xp,,)) = m(Xp,[n) and w,w € w
we have 7(Xp,n)) = m(Xp,,[n) This allows for the following description of cluster variables in

A(a, b):

Proposition 3.26 ([3, Proposition 7]): For any n € Z, for any v € v and for any w € w we have
21 (ton) = m(Xp, 1)) and T2 (tont1) = T(Xp, [nt1))-

For completion, we include the proof given by Dupont:

Proof.  The proof goes by induction on n. We have z1(to) = 7(uy) = 7(Xp,1)) and x2(t1) =

() = 7(Xp,np)-
Now fix some n € Z and assume we have 7(Xp,[,]) = 21(t2n—2) and 7(Xp, n]) = ¥2(t2n-1). It can
be shown that Endc,, (Py[n + 1]) = k (see [8]), this means we have

k = Ende, (Pu[n +1])
= Home, (Py[n + 1], Py[n + 1))
= Home,, (Py[n + 1], (Py[n])[1])
=~ Exte, (Py[n + 1], Py[n]).
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Since Cq is 2-Calabi-Yau (see [11]), we have an isomorphism of k-vector spaces
k = Exte, (Py[n + 1], P,[n]) = Extg,, (Py[n], Py[n + 1)),
The associated triangles as in Theorem 3.23 are

Pyn] — 0 — Pyn+ 1] — P,[n+ 1],

b
Py[n+1] — P Pu,[n] — Py[n] — Pyfn + 2],
j=1

Hence we have ,
Xp, ) Xpynt1] = H Xpy, ) +1-
j=1
Using our induction hypothesis we get
_@a(tan1)?+1

W(XPU[nH}) = m = z1(t2n).

The other cases are proved in a similar way.
O

From this proposition the Positivity conjecture for coefficient-free cluster algebras of rank 2 can be
easily deduced:

Theorem 3.27 ([3, Theorem 8|): Any cluster variable of A(a,b) expressed in the variables of any
cluster x lies in Zso[x™1].

Proposition 3.26 is the crucial ingredient for proving the Positivity conjecture for coefficient-free
cluster algebras of rank 2. Our goal for the remainder of this section is to describe the relation
between the cluster variables of A(a, b) and the cluster variables of A((Q) as in this proposition but
without use of the Caldero-Chapoton map. To do this, we consider the following definition:

Definition 3.28: Let tg € T be the initial vertex of A(Q), then an A(Q)-embedding of A(a,b)
is a map ¢ : Ty — T satisfying:

1. ¢(to) = tg;

2. For any edge t —— ' in Ty we have that there exists a path between ¢(t) and ¢(t') of

length a, with the occurring edges having distinct labels, all of which are in v;
/

3. For any edge t —2—t' in Ty we have that there exists a path between o(t) and o(t') of
length b, with the occurring edges having distinct labels, all of which are in w,

together with a family of maps (¢¢)ier, where for t € Ty we have:

a:l(t) if 1 € v;

oo Zhu(p() ™) — 2l (1 22(0)), uiw(t))H{m(t) s

We call ¢, the folding centered at t.
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Note that we have the following result:

Proposition 3.29: Let B = (b;;) be a matrix for which there exists a sequence (k;)_; of elements
in v such that

B = (:ukl S Oﬂkn)(BQ)7

then for any v € v we have by, = by, # 0 (and hence by, = by, # 0) for any w, w’ € w. Moreover,
for any v, v’ € v we have by, = 0, and we have by, = 0 for any w,w’ € w.

Proof.  We proof this by induction on n. For n = 0, we have B = By in which case we have
nothing to prove. Now assume that n > 0 and let (ki)?z_ll be a sequence of elements in v. Now let

B'= (bj;) = (g, 0+ 0 iy, ) (Bg),

then, writing v = k1, we have B = u,(B’). Hence, for any i,j € Qo, we have by definition:

; —bi; ifi=wvorj=uv,
ij = bbb (b ,
b;j + il otherwise.

Now let i, j € Qo, then we can consider the following cases:
e i =vorj=wv: We have b;; = —b;j. In particular, we therefore have by, = by, # 0 for all

w,w’ € w;

/.

e i € vorj€ v: This means we have b}, = 0 or b;,; = 0, either way we have b;; = b ;

* i,j € w: Now we have b;, and b ; are both nonzero and have opposite sign, which implies we
have b,‘j = b;]

From the case distinction above it is directly clear that B satisfies the necessary properties.

By a symmetric argument we also have:

n

Corollary 3.30: Let B = (b;;) be a matrix for which there exists a sequence (I;)7_; of elements

in w such that
B = (:ull ©---0 Hln)(BQ)v

then for any w € w we have by, = by, # 0 (and hence by, = by, # 0) for any v, v" € v. Moreover,
for any v, v’ € v we have b,,» = 0, and we have by, = 0 for any w,w’ € w.

From these results we can deduce the following result:
Corollary 3.31: Let ¢ be an A(Q)-embedding of A(a, b), then the following statements hold:
1. For any t € Ty we have B(p(t)) = £Bg;

2. Let t —— ¢ be an edge in Ts. Let {ti}?_, denote the vertices in Tg occurring in the path
from Definition 3.28.2, then for any 4, j € [0,a] and for any v € v the exchange polynomials
associated the edges t; —— _ and t; —— _ are the same.

3. Let t —2— ¢’ be an edge in Ty. Let {t; }3’»:0 denote the vertices in T occurring in the path
from Definition 3.28.3, then for any i, j € [0, b] and for any w € w the exchange polynomials
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associated the edges t; —— _ and t; —— _ are the same.

From this corollary we can deduce the desired result:

Lemma 3.32: Let ¢ be an A(Q)-embedding of A(a,b), then for any t,t' € Ty, for any v € v and
for any w € w we have

z1(t') = ei(un((t))) and 22 (') = i (uw(p(t'))).

Proof. We prove this lemma with induction on the length of the shortest path between ¢t and ¢'.
By definition, we have ¢ (uy,(©(t))) = x1(t) for any v € v and @i (uy(@(t))) = x2(t) for any w € w.
Now let ¢ € Ty such that t # ¢’ and

z1(t') = @i(uy(p(t'))) and z2(t') = @i (uw(p(t))).

For any v € v and for any w € w let G, and H, denote the cluster polynomials in Z[u*] associated
to the vertex ¢(t), such that

Go(u(p(t))) = ei(uu(e(t))) and Hy(a(e(t)) = er(uw(e(t))).

Moreover, let G and H denote the cluster polynomials in Z[xlﬂ,xgd] associated to the vertex t,

such that

Go(u(p())) = @i(us(e(t))) and Huy(a(e(t)) = @r(uw(e(t))).

Now we define the Z-algebra homomorphism r : Z[u*!] — Z[2E!, 25

r1 if i € vy
U ? o
zo ifi€ew.

given by the mapping

Then we have G = 7(G,) for all v € v and H = w(H,,) for all w € w. Now let ¢’ —— " be
an edge in Ty with associated exchange polynomial P = J:g + 1, then for any v € v we have that

exchange polynomial associated to the edge ¢(t') —*— _ in Tg is given by
P, = H Uy + 1,
wewW

which follows from the first part of Corollary 3.31. This means that for any v € v we have
P, = n(P,). This means we have the following commutative diagram:

Z[u*) P,z

1P /z
Zlatt 2y ——— Zlei" 23,

where ¢y : Z[u™!] — Z[u*!] denotes the Z-algebra homomorphism given by the mapping

Pz/uz ifiEV;
U; if i € w.
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In particular we have
z1(t") = i (uv(p(t"))) and 2a(t") = @e(uw(e(t"))).

A similar argument can be given for the edge ¢ —2— _, which then proves the lemma.

O]

In the next chapter we will generalize this procedure of creating an embedding of a coefficient free
cluster algebra into a acyclic cluster algebra to deduce some properties of coefficient matrices.

3.5 Generalization of A(Q)-embedding

In the previous section we saw that by embedding a coefficient-free cluster algebra of rank 2 in a
particular acyclic cluster algebra, the Positivity conjecture for the embedded cluster algebra could
be deduced from the fact that the Positivity conjecture holds for acyclic cluster algebras (Theorem
3.27). In this section we will show a potential way to generalize this procedure for a certain class
of cluster algebras of rank > 3.

Definition 3.33: We say that a sign-skew-symmetric N x N matrix B = (b;;) is acyclic if there
exists a finite acyclic quiver @, with

N
QO = |_| VZ?
i=1

where v¢ denotes a finite set for each i € [1, N], and, writing Bg = (b,,) for the skew-symmetric
matrix associated to Q (see Remark 3.3), we have for any 4, € [1, N] and for any v* € v! that

bij = Z b,/vivj and Z b;ivj = Z |b;1y3|

vievi vievi vievi

For any i € [1, N] we will denote a representative of the set v¢ with v?, and when using this notation
in an equation, we take every occurrence of v* in that equation to be the same representative. Using
this notation we can write the above equalities as

sz = Z b/Vin and Z b:/illj = Z ‘b/leJ’
vievi vievi vievi
for any i,j € [1, N].

Example 3.34: Let a,b € Z~, then we consider the matrix

0 b 1
B=|—-a 0 0
-1 0 0
To the matrix B we associate a finite acyclic quiver Kp as follows: Let v = {v1,...,v,}, w =

{wy,...,wp} and y = {y1,...,ya} be three sets, then we take

(Kp)o=vUwUy,
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and
(KB)l :{Ui_>wj ‘ (&S [LCL],]' € [17b] }U{vi%yi ’ (S [1,&] }
Then it is clear that matrix associated to Kpg satisfies the equalities above and we have that B is

acyclic.

We now fix an acyclic sign-skew symmetric N x N matrix B = (b;;), and we let @) be an associated
quiver as in the definition above.

Remark 3.35: Let i € [1, N] and v} € vi, and write i (BQ) = Bg = (V). Then for any v € vi
not equal to vi, we have for any w € Qo that b, =1V, and b’ , =V . This follows from the
'1)2'll) ’U2'UJ 'UJ’UQ wv2
fact that b; i = 0= b; i (otherwise the equalities in the definition fail). In particular, for any
1%2 2%1

j € [1, N], we have
bl = > byl = >l
vlevt vl evy
Since this implies that b;’% o, = 0= bgé ol for any v} € v', we see that consecutively mutating B¢ in
any sequence of directions in v* does not depend on the ordering of this sequence. This allows us

to write u(v?, Bg) for the matrix obtained by mutating the matrix B consecutively, once in each
direction in v*, in any order.

Lemma 3.36: For any n € [1,N], let C = (¢;jj) = pn(B) and let Cg = p(v", Bg) = (c,,,), then
for any 4, j € [1, N] we have

_ / / _ /
Cij = E : Cyivi and § : Cyivi | = 2 : |Cvivj|
vievi vievi vievi
Proof. For j € [1, N] we have
/ E : /
Cnj = _bnj == E : bv"vj - Cynyis
vievi vievi

and similarly for ¢ € [1, N] we have

/ ’
Cin = —bin = — g bviv" = E Cpiypn -

vnevn vnhevn
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That the right equality holds in these two cases is clear. Now let 7,5 € [1, N] \ {n}, then we have

R o R e

vievi vievi YrEVvT
1 1
o / / / /
- § : bvivj +§ § : ’bviv"’ ’ § : bv”'zﬂ +§ § : bviv" ’ § : ‘bv”vj’
'UjGVj prevn ’L}JEV] vrevn ngvj
= b b b + ! b, b
- vipd | viv"| ’ vl 5 vign | v"vj|
vievi U”EV” vievi vrevn vievi
Z |bn | 3
=nji
- b’lj + |b ,Un| + bvzfun
vrevn vrevn
b |bm|bnj + bin|bnj|
= U4y + 9 = Cij-

Now we just have to show that for any i € [1, N] not equal to n we have

D G| = D el

vievi vievi
NOW let 7,5 € [1, N]\ {n} be distinct, and let v; € v' and v/ € v/ such that b, ; # 0, b/, ; # 0 and
izn # 0. Moreover, assume that 0/, ; and V/, . have the same sign s (where s = +1). Without
v v vyl vl
loss of generality, we assume s = —1. This means there exist arrows
vl — " and " — v

in Q. This implies we must have bU ipi < 0, otherwise we would have that there exists an arrow
v® — 17 in Q which would mean that Q contains an oriented cycle and that cannot happen since
Q is acyclic. This means that every nonzero term in the sum

Z |b, ”"|bU”UJ + b;iun|b;nvj|
2

ynEVn

has the same sign as b; ipi- We conclude that for any i € [1, N] not equal to n we have
S | = X K
vievi vievi

O

Now note that the quiver associated to the matrix Cg in the lemmma above is not necessarily
acyclic, which can be seen in the following example:
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Example 3.37: Consider the sign-skew-symmetric matrix

0 2 -1
B=|-10 o],
1 0 0

then B is acyclic, and we can associate a quiver @) to B as follows: Let v = {v1}, w = {wi,ws}
and y = {y1}, then we set
Qo=vuUwlUy,

and let
Q1 = {v1 = w1, v1 = w2, y1 — v1}.

This means that the matrix By can be written as

0 1 1 —1
100 0
Bo=|_1 00 o0
1 00 0

where the rows and columns are indexed over the set {vi, w1, w2, y1}. Now we have

0o -2 1
:u’l(B>: 1 0 -1 )
-1 2 0
and
0o -1 -1 1
1 0 0o -1
-1 1 1 0

The quiver associated to p,, (Bg) is the quiver Q" with
Qo=vUwly,
and with
Q1 = {v1 = y1, w1 — v, w2 = V1, Y1 = Wi, Y1 — wal.

Clearly we have the path v; — y1 — w; — v in @), which is an oriented cycle. We conclude that
Q' is not acyclic.

This gives rise to the following definition:

Definition 3.38: Fix some vertex tg € Ty. Let (B(t))teTN be a family of matrices such that
B(tp) = B and such that for any vertex ¢t —*— ' in Ty we have B(t') = u,(B(t)). Moreover, let

n t/

(Bg(t)) ter,, Pe afamily of matrices such that Bg(to) = Bg and such that for any vertex ¢
in Ty we have Bg(t') is a matrix obtained by mutating the matrix Bg(t) consecutively, once in
each direction in v" (order of applying the mutations does not matter). We call the matrix B
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quiver representable (with respect to the quiver Q) if for any vertex ¢t € Ty, writing B(t) = (b;;)

and Bg(t) = (b)), we have

bij = Z blvivj and Z biﬂ'vj = Z ‘b/vlzﬂ’

vievi vievi vievi

for any 4,j € [1, N].

If B is quiver representable with respect to the quiver (), then we have the following results:

1.
2.

For any t € Ty, the matrix B(t) is sign-skew-symmetric;

To the matrix B we can associate a unique coefficient-free exchange pattern on Ty with
B(tp) = B, as in Example 1.8.

. Writing A(B) for the cluster algebra of rank N over Z associated to this unique coefficient-free

exchange pattern on Ty associated to B, then we can define an A(Q)-emmbedding of A(B)
in a similar fashion as in the previous section and we have that an analogue of Lemma 3.32
holds for such an embedding. (In particular, the Positivity conjecture holds for the cluster
algebra A(B).)

A case when an acyclic matrix is quiver representable is given by the lemma:

Lemma 3.39: For any a,b € Z~(, then the acyclic matrix

0 b 1
B=|-a 0 0],
~1 0 0

is quiver representable with respect to the associated quiver @) equal to the quiver K g as constructed
in Example 3.34.

Proof. We claim that for any t € T3 we can write

Boo  Boi  Bop
Bg(t) = _B§1 Bl,% Bio |,
—Byy —Biy Bap

where:

ho® N

Bo,0, B1,1 and B s are respectively the a x a, the b x b and the a X a zero matrix;
By,1 is an a x b matrix, all of whose entries are the same;
B2 is an b x a matrix, all of whose entries are the same;

By is an a x a matrix, with all of its diagonal entries the same and all of its non-diagonal
entries the same, such that the absolute value of the difference of a diagonal entry and a
non-diagonal entry is equal to 1.

We know that Bg(to) is of this form. Now we can prove our claim using induction on the length
of the shortest path between t and to: Let ¢t € T3 such that Bg(t) satisfies our claim, and for
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n € {1,2,3} let t —"—t, be an edge in T3. Write

Coo Co1  Copz
Bo(ty) = | -Cg1 Ci1 Cip

For all values of n we have Cy g = By, C1,1 = B1,1 and Ca2 = Ba 3. Let p denote the unique value
of all the entries in By 1, let ¢ denote the unique value of all the entries in By 2, and let 7,5 € Z
such that |r — s| = 1 and such that the diagonal entries of By are equal to r and the non-diagonal
entries of By are equal to s. Now we distinguish three cases:

e n = 1: Now we have Cp1 = —By1 and Cpo = —Bp2. If p # 0 and the sign of p is equal to
the sign of 7 + s, then each entry of C 2 is equal to ¢+ [p| - (r + (a —1)s). Otherwise, we have
Co2 = Bo2.

e n = 2: In this case we have Cy1 = —Bp1 and C12 = —B1 2. If p and ¢ are both nonzero with
equal sign, we have that Cpo = Bp2 + C where C' is the a X a integer matrix whose entries
are equal to b - [p| - g. Otherwise, we have Cp2 = By 2.

e n = 3: We now have Cpo = —Bp2 and C12 = —Bj 2. If ¢ # 0 and the sign of ¢ is equal to
the sign of 7+ s, then each entry of Cy is equal to p+ |q| - (r + (a —1)s). Otherwise, we have
Co,1 = Bo,1-

In all three cases the matrix Bg(t,) satisfies the necessary properties, hence our claim holds.

Now let t € T3 and write B(t) = (b;;) and Bg(t) = (¥,,). From our claim we directly have

vievi vievi

Now applying the same argument as in the first part of the proof of Lemma 3.36, we have by
induction on the length of the shortest path between ¢t and tg in T3 that

bij = Z b/vivj (Vi,j € [173])'

vI VI

As mentioned before, we can deduce the following theorem from this lemma:

Theorem 3.40: Let a,b € Z~o and let

0 b 1
B=|-a 0 0],
-1 0 0
then any cluster variable of A(B) expressed in the variables of any cluster x lies in Zsq[x™1].

Remark 3.41: We expect that there exist many more acyclic matrices which are quiver repre-
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sentable. For instance, for a,b € Z~g the matrix

0 o 1 0
—-a 0 0 O

B= -1 0 0 1]’
0 0 -1 0

can be proven to be quiver representable using a similar argument as in Lemma 3.39. Moreover,
one can extend this process of embedding a cluster algebra into an acyclic cluster algebra to an
embedding of a cluster algebra into a skew-symmeteric cluster algebra. Then using the fact that
the Positivity conjecture holds for these skew-symmeteric cluster algebras ([4]), one can deduce
the Positivity conjecture for the cluster algebras which can be embedded into a skew-symmeteric
cluster algebra.
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4 Results and Conjectures

Now that we have seen some cases where the Positivity conjecture holds, does this allow us to say
more about (minimal) coefficient matrices and cluster polynomials? We already saw in Section 2.3
how there is a strong relation between the Positivity conjecture and minimal coefficient matrices
(see Corollary 2.30). In this chapter we will discuss the results we can deduce from the previous
chapter, and we end with a discussion of some conjectures about properties of minimal coefficient
matrices.

4.1 Totally positive coefficient matrices

To study the relation of coefficient matrices with the Positivity conjecture, we introduce the notion
of totally positive coefficient matrices.

Definition 4.1: For a,b € Z~, let Cf(a, b) denote the set of all triples (m,n,C) € Z x Z x Maty(Z)
such that C is an (seq(m,a),seq(n,b))-coefficient matrix. We identify an element (m,n,C) of
Cf(a,b) with its matrix C' and we write m(C') = m and n(C) = n. In other words, we think of
Cf(a,b) as the set of all (m, n)-coefficient matrices C' with m = seq(m(C), a) and n = seq(n(C), b).

On Cf(a,b) we define two maps
(@9 Cf(a,b) — Cf(a,b) and (@b Cf(a,b) — Cf(a,b),

which we also will denote with ¢p and ¢ respectively if there is no confusion about the domains.
These maps are defined as follows: Let C' € Cf(a, b) be an (m, n)-coefficient matrix with m = m(C)
and n = n(C), and write D = D(C), E = E(C) and dim(C) = (x,y, K, L). Let m' = seq(La —
m,a), then ¢p(C) = (La —m,n,C"), where C’ is the (m’, n)-coefficient matrix with origin (z,0),
which for (k,1) € Z2, is given by

k /

’ m

Ck,l = E di7L—l (k —l’L> .
1=0

For n’ = seq(Kb — n,b), we have ¢g(C) = (m, Kb — n,C"), where C” is the (m,n’)-coefficient
matrix with origin (0, y), which for (k,l) € Z220 is given by

l !
"o Ny,
Crl = E :eK*k,j (l —j> :
Jj=0

Note that the maps ¢p and ¢g are well-defined by Lemma 2.21. The orbit of a coefficient matrix
C € Cf(a,b) (denoted with O (C) or just O(C)) is a family {C"} ez of coefficient matrices in
Cf(a,b) such that C° = C, and for all n € Z we have

C2n+1 — ¢D(C2n) and CQTL — ¢E(02n—1)‘

We say that C is reducible if there exists some N € Z such that m(C™) < 0 and n(C™) < 0,
moreover, we call CV a reduced element of O(C). We say that C is totally positive if every
coefficient matrix in O(C') lies in Matg(Z>o).

We give a simple example of totally positive coefficient matrices:

52



Example 4.2: Every minimal coefficient matrix in Cf(1,1) is totally positive. This follows from
the fact for any m,n € Z>¢ with m < n we have that for the minimal (seq(m,1),seq(n,1))-
coefficient matrix C' the matrices D'(C') and E’(C) lie in Matg(Z>¢): We saw in Example 2.6 that
the matrix D = D(C) is for all (k,l) € Z2,, given by

<nm>(nk> ifk<nandl<m;
k n—1

<m> (nk> otherwise.
k l

From this we can deduce that E'(C) lies in Maty(Z>o). Moreover, we have that the matrix E =
E(C) is for all (k,1) € Z%, given by
<m> if 1 =0;
ek,l = k

0 otherwise.

dig =

This means that the matrix D’(C') also lies in Mata(Z>o).

We conclude, using Lemma 2.28 and Corollary 2.29, that every minimal coefficient matrix in
Cf(1,1) is totally positive.

Remark 4.3: Let C € Cf(a,b), then 0 € O(C) if and only if C =0

Remark 4.4: To any coefficient matrix C' € Cf(a,b) with m = m(C) and n = n(C) we can
associate a Laurent polynomial

1
Ge = C Y cpaaital?, (6)

xmxn
142
(kDEZd,

By definition, we now have that substituting (2% + 1)/x1 for 7 in G¢ results in the Laurent
polynomial Gy, (), and substituting (z{ + 1)/x2 for 22 in G¢ results in the Laurent polynomial

Gow(0)-
Lemma 4.5: Let C € Cf(a,b) be a reducible coefficient matrix such that O(C') contains a reduced
element which lies in Matg(Z>0), then C' is totally positive.

Proof. Write m = m(C) and n = n(C). Without loss of generality assume we have C' # 0 is a
reduced element of O(C') such that C' € Maty(Z>p). Now consider the polynomial

Im|, la, kb
F=ux"2y" - g CrTy Ty ,

(k1eZ2,

let \A(a, b) be as in the previous chapter, and let tg € Ty. Then for any coefficient matrix C’ € O(C)
there exists t € Ty, and G and H, cluster polynomials associated to to satisfying x1(t) = G(x(to))
and z2(t) = H(x(to)), such that the Laurent polynomial G¢r associated to C’, as defined in the
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remark above, is equal to F'(G, H). By Theorem 3.27 we have that G and H both have positive
coefficients, and by assumption F' also has positive coefficients, hence C' € Mata(Z>().
O

Corollary 4.6: Let C be the matrix which has a single nonzero entry given by co¢ = 1, then for
any n,m € Z>o we have that the coefficient matrix (—m, —n, C) € Cf(a,b) is totally positive.

This means that the Positivity conjecture holds for all cluster algebras of rank 2 (also the non-
coefficient-free cluster algebras):

Theorem 4.7: Let £ be an exchange pattern on Ty with coefficients in some coefficient group P,
then any cluster algebra A associated to £ satisfies the Positivity conjecture.

Proof. Follows directly from Corollary 2.30 and Corollary 4.6.

We end this section with discussing some other classes of totally positive coefficient matrices.

Proposition 4.8: Let (m,n,C) € Cf(a,b) be a totally positive coefficient matrix, then for any
m’,n’ € Z>o we have that (m —m’,n—n',C) € Cf(a,b) is also a totally positive coefficient matrix.

Proof. Let G,y denote the Laurent polynomial associated to (m,n, C) as in Remark 4.4. Then
we have G,/ n—n/,c) = x{”/mglG(mm,C) is the Laurent polynomial associated to (m—m’,n—n’, C).
Now we apply the same reasoning as in the proof of Lemma 4.5. Let A(a,b) be as in the previous
chapter, and let ¢ty € To. Now for any C’ € O((m — m/,n —n’,C)) there exists ¢t € Ty, and G and
H, cluster polynomials associated to ¢ satisfying z1(t) = G(x(to)) and z2(t) = H(x(to)), such that
the Laurent polynomial G associated to C’, as defined in the remark above, is equal to

Gimmtmn o) (G H) = G™ H" Gy o) (G, H).

By Theorem 3.27, G and H have both positive coefficients, and by the assumption that C' is totally
positive, we have that G, ,, ¢)(G, H) has positive coefficients. We conclude that G'¢r has positive

coefficients, which means that (m —m/,n —n/, C) is totally positive.
L]

Proposition 4.9: Let (m,n,C), (m/,n’,C") € Cf(a,b) be two totally positive coefficient matrices.
Let C” € Maty(Z>o) be the matrix which for all (k,[) € Z? is given by

"o /
Cki = E Ca,yCh—zl—y>
(z,y)€2?

then we have that (m 4+ m/,n + n/, C”) is totally positive in Cf(a,b).
Proof. This follows directly from the fact that

G(m+m/7n+n/701/) == G(m7n7c) * G(m/7n/,C/)'

O
Corollary 4.10: For any m,n € Z>¢, let C € Mata(Z>() be a matrix with origin (0,0) and which
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for (k,1) € Z%, is given by

= (2)6)

then (m,n,C) is totally positive in Cf(a,b).

4.2 Conjectures

In the previous section we saw that any minimal coefficient matrix in Cf(a,b) which is reducible
is totally positive. Since every minimal coefficient matrix is defined and constructed in the same
way, one would expect that total positivity would be a property of every minimal coefficient matrix
in Cf(a,b). This would be in line with the Positivity conjecture in general, since one would not
expect the coefficient matrices occurring in the cluster polynomials in Theorem 2.25 to have negative
summands (regarded as a sum of minimal coefficient matrices see Proposition 2.11). This gives rise
to the following conjecture:

Conjecture 4.11: For any a,b € Z~(, any minimal coefficient matrix in Cf(a, b) is totally positive.

We note that, as most of the classes of totally positive minimal coefficient matrices arise from the
fact that the Positivity conjecture holds for acyclic cluster algebras. As we mentioned in Remark
3.41, there are more results to obtain in this direction. We expect that obtaining these results it
might result in a proof of the conjecture above.

For the remainder of this section we fix some N > 1, some coefficient group P and some exchange
pattern & = ((x(t))iery, (B(t))iery, (P(t))teTy) on Ty with coefficients in P. That Conjecture
4.11 represents an important step in the direction of proving the Positivity conjecture in for an
arbitrary cluster algebra, follows from the following discussion:

Definition 4.12: Let M be a Laurent monomial in the variables z1,...,zy, write
N
M =] (mi € Z).
i=1

Let G = F/M be an M-cluster polynomial associated to some vertex ¢t € Ty. Then G is called
positive if for any distinct u,v € [1, N] we have that

[maly [mo] 4

M g
G = v v E E:EGl
M 5] 5J )
i=0 j=0

My —1

My —j
MuTtxy U7 -cluster

where for any i € [0,[m.],], j € [0,[my] ], we have that G;; is a minimal x
polynomial, and F; ; € ZP[x,..., 2] is a subtraction free polynomial.

Now let G be some positive M-cluster polynomial associated to some vertex ¢t € T. Now fix distinct
u,v € [1, N], and let T{u,) denote the 2-regular subtree of Ty, containing the vertex t. Now for
any t' € Ty} let Gyp and G,y denote the cluster polynomials such that z,(t') = Gy (x(t))
and z,(t') = Gy (x(t)). Then, assuming Conjecture 4.11 holds, we have for any ¢’ € Ty, ,} that
substituting G, ¢ for x, and G,y for z, in G gives us a cluster polynomial G’ associated to the
vertex ¢ whose numerator is a subtraction free polynomial. In line with the Positivity conjecture,
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one would expect that G’ is again a positive cluster polynomial. A result which brings us close to
proving this can be stated as the following conjecture:

Conjecture 4.13: Let m,n € Z>o and a,b € Z~o, write m = seq(m,a) and n = seq(n,b), and
let C' be the minimal (m,n)-coefficient matrix. Then the matrices S(m,seq(n — 1,b))(C) and
S(seq(m — 1,a),n)(C) lie in Mata(Z>o).

This conjecture would give us that for any v € [1, N] and for any positive M-cluster polynomial
G associated to some vertex ¢t € Ty, we have that z,G is a positive M /x,-cluster polynomial
associated to ¢.

A case where Conjecture 4.13 holds is given by the following proposition:

Proposition 4.14: Let m,n € Z>q such that m < n. Write m = seq(m, 1) and n = seq(n, 1). Let
C be the minimal (m, n)-coefficient matrix, then S(m, seq(n—1,1))(C) and S(seq(m—1,1),n)(C)
lie in MatQ(ZZ()).

Proof. ~ We use the results obtained in Example 2.6. Since the matrix E = E(C) is for all

(k1) € Zng given by
(m> if 1 =0;
ekyl = k

0 otherwise,

we directly have that S = S(seq(m—1,1),n)(C) is a matrix in Mat2(Z) whose only nonzero entries
are given by spo = 1 and s19 = 1 (this follows from the fact that m —1 < n — 1). This also proves
that S(m,seq(n—1,1))(C) lies in Mata(Z>0) if m = n, hence we now assume m < n. Now we have
that m <n—1and m —1 <n — 1, from this we can conclude that S’ = S(m,seq(n —1,1))(C) is
a matrix in Mats(Z) whose only nonzero entries are given by sp o =1, 55, = 1 and s7; = 1.

O

We end with a final conjecture which induces the Positivity conjecture:

Conjecture 4.15: Let G = F/M be a positive M-cluster polynomial associated to some vertex

t € Ty. Let w € [1, N] and let ¢t —*— ¢’ in Ty with associated exchange polynomial P,. Then
substituting P, /x, for x, in G results in a positive M’-cluster polynomial G’ associated to t',

where )

m.
, Tw” M
M = e

T

with m/, the largest exponent of z,, in F.

It is clear from Theorem 2.25 that this conjecture indeed induces the Positivity conjecture. We
have not much ground to state this conjecture, however, assuming Conjecture 4.11 and Conjecture
4.13 hold, one might be able to prove Conjecture 4.15 in the following way:

First proving the following statement:
Let u,v € [1, N]\ {w} distinct, let m,n € Z>o and let M = 'z}, then substituting P, /z,, for x,,

in G results in a positive 27z 2y, -cluster polynomial associated to the vertex t'.
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Next, let M be any Laurent monomial in the variables x1,...,xy, write

N
M:Hac:r“ (mi € Z),
i=1
and let )
- T M

Mw M
T Ty

as in the conjecture. Using Conjecture 4.11 we know that for any u € [1, N] we can write

b [Tl Il —ma]

T g
A S ST
i=0  j=0
where for any i € [0, [m.] ], j € [0, [m], — my],], we have that G ; is a minimal xum“*ixgzi“_m“’_j—
cluster polynomial, and F; ; € ZP[z1,...,xN] is a subtraction free polynomial. Hence we just need

to show that for any distinct u,v € [1, N]\ {w} we can write

il [mal,

o T o
S (Y S e,

i=0 j=0
where for any i € [0, [my],], j € [0,[m,],], we have that G} ; is a minimal e~ cluster
polynomial, and FZ’ ; € ZP[z1,...,xN] is a subtraction free polynomial.

If m,, < 0, then the result follows directly from the statement above. Now assume m,, > 0, and
assume that for any positive cluster polynomial associated to ¢ with denominator having exponent
of z,, less than m,, we know that the substitution of P, /xz,, for z,, results in a positive cluster
polynomial associated to t'. Note that z,G is a positive M /xz,-cluster polynomial associated to ¢
by Conjecture 4.13. Hence by our assumption we have that

Pu o

Lw
is a positive x,, M'-cluster polynomial. From this, one might be able to deduce that G’ is a positive
M’-cluster polynomial, which then makes it possible to prove Conjecture 4.15 with use of induction.

We conclude that although there is still much work to be done, the coefficient matrices introduced
in this thesis are very important objects in studying the structure of cluster variables and possibly
also (as displayed by the discussion above) in proving the Positivity conjecture.
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