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Abstract

A well-known fact is that the cluster variables of a cluster algebra can be expressed as Laurent
polynomials in the variables of any given cluster (The Laurent phenomenon). Sergey Fomin and
Andrei Zelevinsky conjectured in 2002 that the coefficients of these Laurent polynomials are
nonnegative integer linear combinations over the coefficient group of the cluster algebra (The
Positivity conjecture). Since then special cases of this conjecture have been proven. In this
thesis we will investigate this conjecture. We will introduce coefficient matrices, which we will
use to give a proof of a new and slightly stronger version of the Laurent phenomenon, and we
will discuss these coefficient matrices in relation with the Positivity conjecture.
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Introduction

In 2002 Sergey Fomin and Andrei Zelevinsky introduced a class of commutative rings called cluster
algebras ([1]). They did this to create an algebraic framework for dual canonical bases and total
positivity in semisimple groups. These rings can be found as coordinate rings of algebraic varieties,
for instance as homogeneous coordinate rings of Grassmannians. In the last two decades a lot more
applications were found in various fields, such as: Teichmüller theory, Poisson geometry and Lie
theory.

Cluster algebras are constructed using a set of generators called cluster variables which are grouped
into possibly overlapping sets of fixed cardinality m, called clusters (m is called the rank of the
cluster algebra). Cluster variables in adjacent clusters are related to one and other using exchange
relations. In their paper Fomin and Zelevinsky proved the so-called Laurent phenomenon, which
states that any cluster variable, which can initially be viewed as a rational function in the vari-
ables of any given cluster, is in fact a Laurent polynomial. Moreover, they stated the positivity
conjecture, which states that the coefficients of these Laurent polynomials are positive integer linear
combinations over the chosen coefficient group. This conjecture has been proven in various special
cases:

1. Philippe Caldero and Markus Reineke proved the positivity conjecture for acyclic cluster
algebras in [2];

2. Grégoire Dupont used the result of Caldero and Reineke to prove the positivity conjecture
for (coefficient-free) cluster algebras of rank 2 in [3];

3. Kyungyong Lee and Ralf Shiffler proved that the positivity conjecture holds for all skew-
symmetric cluster algebras in [4].

In this thesis we examine the structure of cluster variables in arbitrary cluster algebras. We start
of by giving a brief introduction to the theory of cluster algebras where we follow the exposition
in [1]. In chapter 2 we use a new approach to prove the Laurent phenomenon, using what we
call coefficient matrices. After that, in chapter 3, we give an introduction to quiver representation
theory and describe the relation to the theory of cluster algebras. In this chapter we also state
some results obtained by Caldero, Reineke and others, and we give a proof of the result of Dupont.
We will use these results to deduce some interesting properties of the so-called minimal coefficient
matrices in chapter 4. In this final chapter we also state some conjectures about minimal coefficient
matrices which might lead to a proof of the positivity conjecture for arbitrary cluster algebras.
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Notation

Throughout this thesis, we will use the following notation: For any integer a ∈ Z we write

[a]+ = max{0, a}.

For any integers m,n ∈ Z we write

[m,n] = { k ∈ Z | m ≤ k ≤ n } ,

moreover, we write

Ik,l = [0, k]× [0, l] and Ik,l = Ik,l \ {(k, l)}.

For m ∈ Z and n ∈ Z≥0, we use the following definition for the binomial coefficient:(
m
n

)
=
m(n)

n!
,

where m(n) =

n−1∏
i=0

(m− i) denotes the falling factorial. If 0 ≤ n ≤ m this means we can write

(
m
n

)
=

m!

n!(m− n)!
=

(
m

m− n

)
.

Moreover, for n ∈ Z<0 we use the convention that

(
m
n

)
is equal to 0.
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1 Cluster algebras

In this chapter we give a brief introduction to cluster algebras. If the reader is already familiar
with this subject, he or she may wish to skip this chapter.
This chapter is mainly derived from the paper in which Fomin and Zelevinsky introduce cluster
algebras ([1]).

Definition 1.1: Let N ∈ Z>0, then an N -regular tree T is a tree containing at least one vertex,
whose edges are considered to be undirected, and where each vertex has degree N . For N = 1 this
means we have that T consists of two vertices connected with a single undirected edge. For N > 1,
we have that T is an infinite undirected graph which can be constructed recursively as follows:
We start with a single vertex t0, and add N new vertices which we each connect with t0 with an
undirected edge. Now the tree contains N vertices of degree 1. For each vertex of degree 1 we add
N − 1 new vertices to the tree which we each connect to this vertex with an undirected edge. This
last step can be repeated endlessly to create the N -regular tree T. We can regard the vertex t0 as
the root of TN , however it is important to note that any vertex of T can be regarded as the root
due to the fact that the edges are undirected.

Let N ∈ Z>0 and let I be a finite set of N elements. We let TI denote the N -regular tree, whose
edges are labelled by the elements of I, such that the N edges emanating from each vertex have
distinct labels. Slightly abusing notation, we write t ∈ TI for a vertex t of TI , i.e., we regard TI as

the set of all vertices in TI . Given t, t′ ∈ TI and i ∈ I, we write t i t′ if the vertices t and t′

are connected with an edge labelled i. Finally, if we have I = [1, N ] we write TN for TI . We now
take I = [1, N ].

Definition 1.2 ([1, Definition 2.1, Proposition 4.3]): Let I be a finite nonempty set of cardinality
N . To each vertex t ∈ TI we associate a cluster of N generators (called cluster variables) x(t) =
(xi(t))i∈I , moreover, we also associate an N × N integer matrix B(t) = (bij(t))i,j∈I = (bij(t)) to
the vertex t, which we will call the exchange matrix. Finally, let P be a torsion-free multiplicative
abelian group, then for any t ∈ TI we let p(t) = (pi(t))i∈I denote an N -tuple of so-called coefficients
in the coefficient group P.
Now let E =

(
(x(t))t∈TI , (B(t))t∈TI , (p(t))t∈TI

)
, then E is called an exchange pattern on TI with

coefficients in P if the following conditions are satisfied:
For any vertex t ∈ TI , we have that

1. the matrix B(t) = (bij) is sign-skew-symmetric: For any i, j ∈ I we have bijbji < 0 or
bij = bji = 0. (In particular we have bii = 0 for all i ∈ I.)

For any edge t k t′ in TI , we have that

2. the matrix B(t′) = B′ = (b′ij) is obtained from the matrix B(t) = B = (bij) by matrix
mutation in direction k (we write B′ = µk(B)), which means that for any i, j ∈ I we have

b′ij =

{
−bij if i = k or j = k,

bij +
|bik|bkj+bik|bkj |

2 otherwise;

(Note that we have µ2k(B) = B.)

3. xi(t) = xi(t
′) for all i 6= k;
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4. xk(t)xk(t
′) = pk(t)Mk(t) + pk(t

′)Mk(t
′) in ZP[xi(t), xi(t

′) | i ∈ I] where ZP denotes the group
ring of P with integer coefficients, where for any t′′ ∈ TI we have

Mk(t
′′) =

∏
i∈I

xi(t
′′)[bki(t

′′)]+ .

Finally, whenever t1
l t2

k t3
l t4 in TI (with k 6= l), we have that

5.
pl(t1)

pl(t2)
=
pl(t4)

pl(t3)
· pk(t2)

[blk(t2)]+

pk(t3)[blk(t3)]+
.

The equalities in conditions 3 and 4 are called exchange relations between the cluster variables of
adjacent clusters.
We call an exchange pattern E coefficient-free if for all t ∈ TI we have p(t) = (1)i∈I . In this case
we write E =

(
(x(t))t∈TI , (B(t))t∈TI

)
.

Remark 1.3: Note that conditions 2 and 5 correspond to the condition (2.7) from Definition 2.1

in [1], which comes down to the following statement: whenever t1
l t2

k t3
l t4 in TI

(with k 6= l), we have

pl(t1)Ml(t1)

pl(t2)Ml(t2)
=
pl(t4)Ml(t4)

pl(t3)Ml(t3)
·
(
pk(t2)Mk(t2)

x2k

)[blk(t2)]+

·
(

x2k
pk(t3)Mk(t3)

)[blk(t3)]+

.

For the remainder of this chapter we work with I = [1, N ], i.e., we take TI to be TN , however,
everything also works over TI for an arbitrary set I of cardinality N .

Example 1.4 ([1, Example 2.4]): Take N = 1. Note that T1 contains a single edge: t 1 t′ .
Hence an exchange pattern on T1 with coefficients in some coefficient group P must satisfy the
single exchange relation

x1(t)x1(t
′) = p1(t) + p1(t

′),

and hence is completely determined by the choice of the coefficients p1(t) and p1(t
′).

Example 1.5 ([1, Example 2.5]): Now take N = 2. We have that T2 can be written as

· · · 2 t0
1 t1

2 t2
1 t3

2 t4
1 · · · .

Now note that any coefficient-free exchange pattern on T2 is completely determined by our choice
of B(t0). Of course we have the trivial example, where B(t0) is the zero-matrix, in which case all
matrices B(t) are zero, and where the cluster variables are given by

x1(t1) =
2

x1(t0)
, x2(t2) =

2

x2(t0)
, x1(t3) = x1(t0) and x2(t4) = x2(t0).

Note that for any a, b ∈ Z>0 taking

B(t0) = B =

(
0 b
−a 0

)
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uniquely determines a coefficient-free exchange pattern on T2. This follows directly from the fact
that we have

µ1(B) =

(
0 −b
a 0

)
= µ2(B).

Using the exchange relations, the first few cluster variables can be written as

x1(t1) =
x2(t0)

b + 1

x1(t0)
, x2(t2) =

x1(t1)
a + 1

x2(t1)
=

(x2(t0)
b + 1)a + x1(t0)

a

x1(t0)ax2(t0)
,

x1(t3) =
x2(t2)

b + 1

x1(t2)
=
x1(t0) ·

(
(x2(t0)

b + 1)a + x1(t0)
a
)b

+ x1(t0)
ab+1x2(t0)

b

x1(t0)abx2(t0)b ·
(
x2(t0)b + 1

)

=

b∏
j=1

(
b
j

)
(x2(t0)

b + 1)ja−1x1(t0)
(b−j)a + x1(t0)

ab

x1(t0)ab−1x2(t0)b
.

Next, we will give an example of a coefficient-free exchange pattern on TN for general N , however
to do this we need some preparation:

Definition 1.6: Let B = (bij) be an N × N integer matrix, then B is called skew-symmetric if
bij = −bji for all i, j ∈ [1, N ]. We call the matrix B skew-symmetrizable if there exists some diagonal
N ×N integer matrix D whose diagonal entries are positive, such that DB is skew-symmetric. In
this case D is called the skew-symmetrizing matrix of B.

Proposition 1.7: Let B = (bij) be a skew-symmetrizable N ×N integer matrix, and let D be the
skew-symmetrizing matrix of B whose N diagonal entries we denote with d1, . . . , dn, then for any
k ∈ [1, N ] we have that the N ×N integer matrix µk(B) = B′ = (b′ij) obtained from B by matrix
mutation in direction k is skew-symmetrizable with skew-symmetrizing matrix equal to D.

Proof. Let i, j ∈ [1, N ]. Then we have by definition

b′ij =

{
−bij if i = k or j = k,

bij +
|bik|bkj+bik|bkj |

2 otherwise.

Hence if i = k or j = k, we have

dib
′
ij = −dibij = djbji = −djb′ji,

and otherwise we have

dib
′
ij = dibij +

|dibik|dkbkj + dibik|dkbkj |
2dk

= −djbji −
|dkbki|djbjk + dkbki|djbjk|

2dk
= −djb′ji.

This means B′ is indeed skew-symmetrizable with skew-symmetrizing matrix D.

Example 1.8: This proposition gives us directly an example of a coefficient-free exchange pattern
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on TN for general N : For any N × N skew-symmetrizable matrix B and for any t0 ∈ TN there
exists a unique coefficient-free exchange pattern E =

(
(x(t))t∈TN , (B(t))t∈TN

)
on TN , such that

B(t0) = B.

Finally, we give an example of exchange pattern on TN with coefficients in Q(y1, . . . , yM ), the field
of rational functions in M variables, for some M ∈ Z>0:

Example 1.9: Let (B(t))t∈TN be a family of N × N sign-skew-symmetric integer matrices with

B(t′) = µk(B(t)) for any edge t k t′ in TN . Now let (C(t))t∈TN be a family of N ×M integer

matrices such that for any edge t k t′ in TN we have that the matrices C(t) = (cij(t)) = (cij)
and C(t′) = (cij(t

′)) = (c′ij) are related by

c′ij =

{
−cij if i = k,

cij +
|bik(t)|ckj+bik(t)|ckj |

2 otherwise.

Finally, for any t ∈ TN , let p(t) = (pi(t))i∈I be an N -tuple of nonzero rational functions in
Q(y1, . . . , yM ), such that for any k ∈ [1, N ] we have

pk(t) =

M∏
j=1

y
[ckj(t)]+
j .

Note that for any edge t k t′ in TN this means we have

pk(t)

pk(t′)
=

M∏
j=1

y
[ckj(t)]+
j ·

M∏
j=1

y
−[ckj(t′)]+
j =

M∏
j=1

y
ckj(t)
j .

Now suppose we have t1
l t2

k t3
l t4 in TN (with k 6= l), then, writing B(t2) =

(bij), C(t2) = (cij) and C(t3) = (c′ij), we have

c′lj = clj +
|blk|ckj + blk|ckj |

2
=

{
clj + blk [ckj ]+ if blk ≥ 0,

clj + blk [−ckj ]+ if blk ≤ 0,

which means we have
pl(t1)

pl(t2)
=
pl(t4)

pl(t3)
· pk(t2)

[blk(t2)]+

pk(t3)[blk(t3)]+
.

We conclude that E =
(
(x(t))t∈TN , (B(t))t∈TN , (p(t))t∈TN

)
is an exchange pattern on TN with

coefficients in Q(y1, . . . , yM ), which is uniquely determined by the matrices B(t0) and C(t0) at a
given vertex t0 ∈ TN . Any exchange pattern of this form is called an exchange pattern of geometric
type.

We now fix an exchange pattern E =
(
(x(t))t∈TN , (B(t))t∈TN , (p(t))t∈TN

)
on TN with coefficients
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in some coefficient group P. Now to any edge t k t′ we can associate the following binomial:

P = pk(t)

N∏
i=1

x
[bki(t)]+
i + pk(t

′)

N∏
i=1

x
[bki(t

′)]+
i ∈ ZP[x1, . . . , xN ].

We now can write
xk(t)xk(t

′) = P (x(t)) = P (x(t′)),

and we call P te exchange polynomial associated to the edge t k t′ . Now note that since
P is torsion-free, the ring ZP contains no zero divisors and neither does the polynomial ring
ZP[x1(t), · · · , xN (t)] for any vertex t ∈ TN , hence to any vertex t ∈ TN we can associate a field
F(t) which is the field of fractions of the polynomial ring ZP[x1(t), · · · , xN (t)]. Now note that

for any edge t k t′ in TN with associated exchange polynomial P , we have a ZP-linear field
isomorphism Rtt′ : F(t′) −→ F(t), which is given by

Rtt′(xi(t
′)) = xi(t) for i 6= k and Rtt′(xk(t

′)) =
P (x(t))

xk(t)
,

and the exchange relations from Definition 1.2 give us that R−1tt′ = Rt′t. We call these maps the
transition maps, and these allow us to identify all fields F(t) with each other, hence we can regard
them as a single field F which contains all the cluster variables xi(t) for i ∈ [1, N ] and t ∈ TN in
such a way that they satisfy the exchange relations in F . Now we can define a cluster algebra as
follows:

Definition 1.10 ([1, Definition 2.3]): Let A be a subring (with unit) in ZP containing all the
coefficients pi(t) for i ∈ [1, N ] and t ∈ TN , then the cluster algebra A = AA(E) of rank N over A
associated to the exchange pattern E is the A-subalgebra (with unit) in F generated by all cluster
variables xi(t) for i ∈ [1, N ] and t ∈ TN .

For examples of cluster algebras we refer the reader to the discussion after Definition 2.3 in [1].
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2 Cluster polynomials and Coefficient matrices

For the remainder of this chapter we fix some N > 1, some coefficient group P and some exchange
pattern E =

(
(x(t))t∈TN , (B(t))t∈TN , (p(t))t∈TN

)
on TN with coefficients in P. Fixing a vertex t0 ∈

TN and for u ∈ [1, N ] writing t0
u tu with Pu denoting the associated exchange polynomial,

we will show that for any t ∈ TN and for any u ∈ [1, N ] we can find a Laurent polynomial G in
variables x1, . . . , xN with coefficients in ZP such that xu(t) = G(x(t0)). We will show that such a
Laurent polynomial G can be written as F/M with M a Laurent monomial

M =
N∏
i=1

xmii

for mi ∈ Z and F ∈ ZP[x1, . . . , xN ] a polynomial not divisible by any of the variables x1, . . . , xN .
Moreover, for all v ∈ [1, N ] with mv ≥ 0 we can find polynomials Fv,0, . . . , Fv,mv ∈ ZP[x1, . . . , xN ]
with Fv,i not containing xv for all i ∈ [1,mv], such that we have

F =

mv∑
i=0

Fv,i · xmv−iv · P iv.

A Laurent polynomial of this form we call an M -cluster polynomial associated to the vertex t0.
Note that it is enough to show that for any u ∈ [1, N ] substituting Pu/xu for xu in any M -cluster
polynomial G associated t0 gives us an M ′-cluster polynomial associated to tu, where

M ′ =
M

xmuu
· xm′u−muu ,

with m′u equal to the largest exponent of xu in F . To be able to prove this, we will first introduce
what we will call ‘coefficient matrices’.

2.1 Coefficient matrices

Definition 2.1: For any commutative monoid R, written additively, we denote with Mat2(R) the
set containing all indexed sets of the form M = {mi,j}(i,j)∈Z2 whose elements, which we will call
entries, lie in R and of which only finitely many are nonzero, we will call M a matrix. Given a
nonzero matrix M ∈ Mat2(R), we refer to the smallest rectangle of entries of M containing all the
nonzero entries of M i.e. the set S = {mx0+i,y0+j}(i,j)∈Im,n with x0, y0 ∈ Z maximal and m,n ∈ Z≥0
minimal such that all nonzero entries of M are contained in S, presented as an (m+ 1)× (n+ 1)
matrix, as the nonzero part of M . The quadruple (x0, y0, x0 + m, y0 + n) we call the dimensions
of M which we denote with dim(M), and we call the tuple (x0, y0) the origin of M . Given two
matrices M,M ′ ∈ Mat2(R), we define M ′′ = M + M ′ ∈ Mat2(R) to be the matrix, whose entries
are given by

m′′k,l = mk,l +m′k,l
(
(k, l) ∈ Z2

)
.

Clearly M + M ′ = M ′ + M , and we have an obvious zero matrix: The matrix 0 ∈ Mat2(R) with
no nonzero entries. This makes Mat2(R) into a commutative monoid. If we moreover have a
commutative multiplication on R which makes R into a multiplicative semigroup, and such that
the multiplication is distributive with respect to the addition on R, then we can also define scalar
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multiplication on Mat2(R): Given a matrix M ∈ Mat2(R) and some λ ∈ R, we define λ ·M to be
the matrix M ′ ∈ Mat2(R) whose entries are given by

m′k,l = λ ·mk,l

(
(k, l) ∈ Z2

)
.

We will only be interested in the case where R is equal to Z or Z≥0.

Definition 2.2: Let Seq denote the set of all sequences of nonnegative integers (ai)i≥0 satisfying:

1. a0 ≥ a1 with a0 = a1 if and only if a0 = 0;

2. ai+1 = [ai − (ai−1 − ai)]+ for all i ∈ Z>0.

We denote the zero-sequence in Seq with 0, and we will denote a sequence (ai)i≥0 ∈ Seq with a.
We say that a ∈ Seq has length l ∈ Z≥0 if al = 0 and (in case l 6= 0) al−1 > 0, we will denote
the length of a with `(a). Finally, for c ∈ Z and d ∈ Z>0 we write seq(c, d) for the sequence(

[c− id]+
)
i∈Z≥0

(which is equal to 0 if c ≤ 0).

Definition 2.3: Let m,n ∈ Seq and let C ∈ Mat2(Z) be a nonzero matrix with origin in Z2
≥0,

then we call C an (m,n)-coefficient matrix if there exist nonzero matrices D,E ∈ Mat2(Z) with
the same origin as C, such that for all (k, l) ∈ Z2

≥0 we have

ck,l =

ml∑
i=0

dk−i,l

(
ml

i

)
=

nk∑
j=0

ek,l−j

(
nk
j

)
.

We call C moreover minimal, if we have cx,y = 1 (and therefore dx,y = ex,y = 1), and for all
(k, l) ∈ Z≥x × Z≥y \ {(x, y)} we have

ck,l = max


k−1∑
i=x

di,l

(
ml

k − i

)
,

l−1∑
j=y

ek,j

(
nk
l − j

) .

In which case we have that C,D and E are matrices in Mat2(Z≥0).

We will clarify this definition with some examples, but first we recall two basic results for binomial
coefficients:

Remark 2.4: For m,n, k ∈ Z≥0, we have the following equalities:

1.

(
m
k

)(
m− k
n− k

)
=

(
m
n

)(
n
k

)
if 0 ≤ k ≤ n ≤ m;

2.
k∑
i=0

(
n
i

)(
m
k − i

)
=

(
m+ n
k

)
.

The first equality follows from the following calculation:(
m
k

)(
m− k
n− k

)
=

m!

k!(m− k)!
· (m− k)!

(n− k)!(m− n)!
=

m!

n!(m− n)!
· n!

k!(n− k)!
=

(
m
n

)(
n
k

)
.

The second equality can be observed by calculating the coefficient of xk on both sides of the following
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polynomial equality in Z[x]:
(x+ 1)n(x+ 1)m = (x+ 1)m+n.

Example 2.5: For m,n, a, b ∈ Z>0 let m = seq(m, a) and n = seq(n, b). Now let C ∈ Mat2(Z)
be a matrix with origin (0, 0) which for any (k, l) ∈ Z2

≥0 is given by

ck,l =

(
m
k

)(
n
l

)
,

then C is an (m,n)-coefficient matrix (this follows from the second part of the remark above). If
m = 6 and n = 8 then the nonzero part of C is given by

1 8 28 56 70 56 28 8 1
6 48 168 336 420 336 168 48 6
15 120 420 840 1050 840 420 120 15
20 160 560 1120 1400 1120 560 160 20
15 120 420 840 1050 840 420 120 15
6 48 168 336 420 336 168 48 6
1 8 28 56 70 56 28 8 1


.

Example 2.6: For m,n ∈ Z≥0 with m ≤ n let m = seq(m, 1) and let n = seq(n, 1). Now let
C ∈ Mat2(Z) be a matrix with origin (0, 0), which for (k, l) ∈ Z2

≥0 is given by

ck,l =

(
m
k

)(
nk
l

)
,

then we claim that C is an (m,n)-coefficient matrix. To see this, we first consider the case where
we again have m = 6 and n = 8. In this case the nonzero part of C is given by

1 8 28 56 70 56 28 8 1
6 42 126 210 210 126 42 6 0
15 90 225 300 225 90 15 0 0
20 100 200 200 100 20 0 0 0
15 60 90 60 15 0 0 0 0
6 18 18 6 0 0 0 0 0
1 2 1 0 0 0 0 0 0


,

and the nonzero part of the matrix D associated to C is given by1 8 28 56 70 56 28 8 1
0 2 14 42 70 70 42 6 0
0 0 1 6 15 20 15 0 0

 .
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Now to prove our claim, we note that for (k, l) ∈ Z2
>0 with k ≤ n and l ≤ m we can write(

m
k

)(
nk
l

)
=

(
m
k

)(
n− k
l

)
=

l∑
j=0

(
n−m
j

)(
m
k

)(
m− k
l − j

)

=
l∑

j=0

(
n−m
j

)(
m
k

)(
m− k

m− (l − j)− k

)
=

l∑
j=0

(
n−m
j

)(
m

m− l + j

)(
m− l + j

k

)

=

k∑
i=0

 l∑
j=0

(
n−m
j

)(
m

m− l + j

)(
j
i

)(m− l
k − i

)
.

Now note that for (k, l) ∈ Z2
>0 with k ≤ n and l ≤ m we can write

l∑
j=0

(
n−m
j

)(
m

m− l + j

)(
j
k

)
=

l∑
j=k

(
n−m
j

)(
j
k

)(
m
l − j

)

=

l∑
j=k

(
n−m
k

)(
n−m− k
j − k

)(
m
l − j

)

=

(
n−m
k

) l−k∑
j′=0

(
n−m− k

j′

)(
m

l − k − j′
)

=

(
n−m
k

)(
n− k
l − k

)
.

This means that we can find D ∈ Mat2(Z) with origin (0, 0), and which for (k, l) ∈ Z2
≥0 is given by

dk,l =



(
n−m
k

)(
n− k
l − k

)
=

(
n−m
k

)(
n− k
n− l

)
if k ≤ n and l ≤ m;

(
m

k

)(
nk

l

)
otherwise,

such that for all (k, l) ∈ Z2
≥0 we have

(
m
k

)(
nk
l

)
=

k∑
i=0

di,l

(
ml

k − i

)
.

We encourage the reader to verify that this is enough to prove that C is actually a minimal coefficient
matrix. We make the argument needed to prove this claim precise in the following proposition:

Proposition 2.7: Let m,n ∈ Seq, and let C,D,E ∈ Mat2(Z≥0) be three nonzero matrices which

12



all three have their origin Z2
≥0, such that for all (k, l) ∈ Z≥0 we can write

ck,l =

k∑
i=0

di,l

(
ml

k − i

)
=

l∑
j=0

ek,j

(
nk
l − j

)
.

Moreover, assume that there exists precisely one pair (x, y) ∈ Z2
≥0 such that dx,y 6= 0 and ex,y 6= 0.

Then dx,y = ex,y and C = dx,y · C ′, where C ′ is a minimal (m,n)-coefficient matrix with origin
(x, y).

Proof. We clearly have that ck,l = 0 for all (k, l) ∈ Z2
≥0 satisfying k < x and/or l < y, which

automatically means we have dx,y = ex,y. Moreover, for all (k, l) ∈ Z2
≥0 with k ≥ x and l ≥ y such

that (k, l) 6= (x, y) we must have

ck,l = max


k−1∑
i=x

di,l

(
ml

k − i

)
,

l−1∑
j=y

ek,j

(
nk
l − j

) .

If dx,y = 1 = ex,y this already means that C is a minimal (m,n)-coefficient matrix with origin
(x, y). If dx,y = a = ex,y for some a ∈ Z>1, then we can use the above equality to prove, using
induction, that a | ck,l for all (k, l) ∈ Z2

≥0.

We end with two concrete examples of coefficient matrices, one of which is zero in its origin:

Example 2.8: Let m = seq(6, 1) and n = seq(8, 2), then the matrix C ∈ Mat2(Z) with origin
(0, 0) whose non-zero part is given by

1 8 28 56 70 56 28 8 1
6 40 114 180 170 96 30 4 0
15 80 176 204 131 44 6 0 0
20 80 124 92 32 4 0 0 0
15 40 36 12 1 0 0 0 0
6 8 2 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


,

is an (m,n)-coefficient matrix, where the nonzero parts of the associated matrices D,E ∈ Mat2(Z)
are respectively given by

1 8 28 56 70 56 28 8 1
0 0 2 12 30 40 30 4 0
0 0 0 0 1 4 6 0 0

 and



1 0 0 0 0
6 4 0 0 0
15 20 6 0 0
20 40 24 4 0
15 40 36 12 1
6 8 2 0 0
1 0 0 0 0


.

Clearly C is minimal. Another example of an (m,n)-coefficient matrix is given by taking the

13



nonzero part of C equal to

0 1 8 28 56 70 56 28 8 1
1 6 32 122 270 346 256 102 17 0
6 24 48 198 582 804 516 126 0 0
15 65 85 142 578 835 364 0 0 0
20 105 220 38 210 307 0 0 0 0
15 96 318 0 0 0 0 0 0 0
6 46 212 0 0 0 0 0 0 0
1 9 53 0 0 0 0 0 0 0


,

now the nonzero parts of the associated matrices D,E ∈ Mat2(Z) are respectively given by


0 1 8 28 56 70 56 28 8 1
1 1 0 38 158 276 256 102 17 0
0 9 0 0 210 528 516 126 0 0
0 0 53 0 0 307 364 0 0 0

 and



0 1 0 0 0 0
1 0 17 0 0 0
6 0 12 126 0 0
15 35 0 107 364 0
20 105 220 38 210 307
15 96 318 0 0 0
6 46 212 0 0 0
1 9 53 0 0 0


.

Note that in these examples we talk about the matrices D and E associated to C, that this
unambiguous follows from the following proposition:

Proposition 2.9: For any m,n ∈ Seq, given an (m,n)-coefficient matrix C, there exist unique
nonzero matrices D,E ∈ Mat2(Z) with the same origin as C such that for all (k, l) ∈ Z2

≥0 we have

ck,l =

ml∑
i=0

dk−i,l

(
ml

i

)
=

nk∑
j=0

ek,l−j

(
nk
j

)
.

We will denote these matrices with D(C) and E(C) respectively.

Proof. Let m,n ∈ Seq, let C ∈ Mat2(Z) be an (m,n)-coefficient matrix with origin (x, y) ∈ Z2
≥0,

and let D,E ∈ Mat2(Z) be nonzero matrices with origin (x, y) such that for all (k, l) ∈ Z2
≥0 we

have

ck,l =

ml∑
i=0

dk−i,l

(
ml

i

)
=

nk∑
j=0

ek,l−j

(
nk
j

)
.

Then in particular, we have dx,y = ex,y = cx,y. Now for any (k, l) ∈ Z≥x × Z≥y \ {(x, y)}, we have

dk,l = ck,l −
ml∑
i=1

dk−i,l

(
ml

i

)
and ek,l = ck,l −

nk∑
j=1

ek,l−j

(
nk
j

)
.

Hence if we know that for all (k′, l′) ∈ Ik,l the values of dk′,l′ and ek′,l′ are uniquely determined by
C, then the values of dk,l and ek,l are also uniquely determined by C, hence by induction on k and
l we have that D and E are uniquely determined by C.
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Remark 2.10: From this proposition it follows that for any m,n ∈ Seq and for any (x, y) ∈ Z2
≥0

there exists a unique minimal (m,n)-coefficient matrix with origin (x, y), which we therefore will
call the minimal (m,n)-coefficient matrix with origin (x, y), moreover, if we do not specify an
origin, we take it to be (0, 0).

This remark gives rise to the following proposition:

Proposition 2.11: For m,n ∈ Seq, let C be an (m,n)-coefficient matrix. For any (x, y) ∈ Z2
≥0,

let Cx,y denote the minimal (m,n)-coefficient matrix with origin (x, y). Then there exists a unique
matrix S ∈ Mat2(Z) with same origin as C, such that for any (k, l) ∈ Z2

≥0 we have

ck,l =
∑

(x,y)∈Z2
≥0

sx,yc
x,y
k,l .

We will denote this matrix with S(m,n)(C).

Proof. Note that constructing such a matrix S ∈ Mat2(Z) is straightforward: For any (k, l) ∈ Z2
≥0

we take
sk,l = ck,l −

∑
(x,y)∈Ik,l

sx,yc
x,y
k,l .

We have that S lies in Mat2(Z) because C lies in Mat2(Z), and m`(m)+l = 0 and n`(n)+k = 0 for
all l, k ∈ Z≥0.

Now suppose that S is not unique, then there exists some matrix T ∈ Mat2(Z) with origin equal
to the origin of C, not equal to S, such that for all (k, l) ∈ Z2

≥0 we have

ck,l =
∑

(x,y)∈Z2
≥0

tx,yc
x,y
k,l .

This means we can find (k, l) ∈ Z2
≥0 such that sk,l 6= tk,l and such that for all (x, y) ∈ Ik,l we have

sx,y = tx,y. Now note that by definition of the minimal coefficient matrix we have cx,yk,l = 0 for all

(x, y) ∈ Z2
≥0 \ Ik,l, hence we must have

tk,l = ck,l −
∑

(x,y)∈Ik,l

tx,yc
x,y
k,l = sk,l,

which gives us a contradiction.

Definition 2.12: Given m,n ∈ Seq and an (m,n)-coefficient matrix C, then we say C is positive
if S(m,n)(C) lies in Mat2(Z≥0).

We display the proposition above with an example:

Example 2.13: For m,n ∈ Z≥0 with m ≤ n let m = seq(m, 1) and let n = seq(n, 1). We saw in
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Example 2.6 that the minimal positive (m,n)-coefficient matrix C is given by

ck,l =

(
m
k

)(
nk
l

) (
(k, l) ∈ Z2

≥0
)
.

Hence we have that C in this case is also an (m′,n)-coefficient matrix, now for m′ = seq(m−1, 1).
Taking m = 6 and n = 8 this can be seen from the fact that the nonzero part of the minimal
(m′,n)-coefficient matrix with origin (0, 0) is given by

1 8 28 56 70 56 28 8 1
5 35 105 175 175 105 35 5 0
10 60 150 200 150 60 10 0 0
10 50 100 100 50 10 0 0 0
5 20 30 20 5 0 0 0 0
1 3 3 1 0 0 0 0 0


and the nonzero part of the minimal (m′,n)-coefficient matrix with origin (1, 0) is given by

1 7 21 35 35 21 7 1
5 30 75 100 75 30 5 0
10 50 100 100 50 10 0 0
10 40 60 40 10 0 0 0
5 15 15 5 0 0 0 0
1 2 1 0 0 0 0 0

 .

Adding these two matrices together indeed gives us C, whose nonzero part is equal to

1 8 28 56 70 56 28 8 1
6 42 126 210 210 126 42 6 0
15 90 225 300 225 90 15 0 0
20 100 200 200 100 20 0 0 0
15 60 90 60 15 0 0 0 0
6 18 18 6 0 0 0 0 0
1 2 1 0 0 0 0 0 0


.

We end this discussion of coefficient matrices with two final remarks:

Remark 2.14: For m,n ∈ Seq, let C be an (m,n)-coefficient matrix with dim(C) = (x, y,K,L).
Now let CT ∈ Mat2(Z) be the matrix which for (k, l) ∈ Z2 is given by cTk,l = cl,k, then CT is an

(n,m)-coefficient matrix with dim(CT ) = (y, x, L,K). In particular, if C is minimal, then CT is
also minimal. In general, for matrices M,MT ∈ Mat2(Z) with mT

k,l = ml,k for all (k, l) ∈ Z2, we

call the matrix MT the transpose of M , and we have (MT )T = M .

Remark 2.15: Let C be an (m,n)-coefficient matrix, and let C ′ be an (m′,n′)-coefficient matrix
with origin (x, y) ∈ Z2 \ {(0, 0)}, such that m′y+i = mi and n′x+i = ni for all i ∈ Z≥0, then for any

(k, l) ∈ Z2 we have
ck,l = c′x+k,y+l.
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Moreover, if C is minimal, then C ′ is also minimal.

2.2 Cluster polynomials and the Laurent phenomenon

We now return to our discussion about the structure of cluster variables in E to get an understanding
of how these matrices will be used to get the desired result. Take some t0 ∈ TN and let u, v ∈ [1, N ]
be distinct, then we will look at the structure of cluster variables belonging to vertices which can be
connected to t0 with a sequence of edges labelled u or v. To do this we define a so-called ‘minimal
cluster polynomial’:

Definition 2.16: Given some vertex t ∈ TN , write B(t) = (bij), let u, v ∈ [1, N ] distinct, and write
a = |bvu| and b = |buv|. Now let

Pu = pu,1Mu,1 + pu,2Mu,2 and Pv = pv,1Mv,1 + pv,2Mv,2

be the exchange polynomials in ZP[x1, . . . , xN ] associated to the edges emanating from t labelled u
and v respectively, where p , denotes an element in P and M , denotes a monomial in the variables
{x1, . . . , xN}. In what follows we will use similar notation for exchange polynomials without further
explanation. If a 6= 0 and b 6= 0, we assume we have xbv | Mu,1 and xau | Mv,1. Then for m,n ∈ Z
and some polynomial F ∈ ZP[x1, . . . , xN ] we call the Laurent polynomial

G =
F

xmu x
n
v

a minimal xmu x
n
v -cluster polynomial associated to t if there exists some p ∈ P such that one of the

following statements holds:

1. a = b = 0 and F = p · P [m]+
u P

[n]+
v ;

2. a 6= 0, b 6= 0 and

F =
p

M
·
K∑
k=0

L∑
l=0

ck,l(pu,1Mu,1)
k(pu,2Mu,2)

K−k(pv,1Mv,1)
l(pv,2Mv,2)

L−l

=
p · (pu,2Mu,2)

K(pv,2Mv,2)
L

M
·
K∑
k=0

L∑
l=0

ck,l

(
pu,1Mu,1

pu,2Mu,2

)k (pv,1Mv,1

pv,2Mv,2

)l
where M is a monomial in the variables {x1, . . . , xN}\{xu, xv} such that non of these variables
divide F , and where C ∈ Mat2(Z) is the minimal (m,n)-coefficient matrix with dim(C) =
(0, 0,K, L), for m = seq(m, a) and n = seq(n, b). Writing D = D(C) and E = E(C), this
means we have

F =
p · (pv,2Mv,2)

L

M
·
L∑
l=0

K−ml∑
k=0

dk,l

(
pv,1Mv,1

pv,2Mv,2

)l
(pu,1Mu,1)

k (pu,2Mu,2)
K−ml−k · Pmlu

=
p · (pu,2Mu,2)

K

M
·
K∑
k=0

L−nk∑
l=0

ek,l

(
pu,1Mu,1

pu,2Mu,2

)k
(pv,1Mv,1)

l (pv,2Mv,2)
L−nk−l · Pnkv .
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We say G is a reduced xmu x
n
v -cluster polynomial associated to t if F satisfies one of the statements

above, but in the second case the coefficient matrix C does not necessarily need to be a minimal.
In particular, any minimal xmu x

n
v -cluster polynomial is a reduced xmu x

n
v -cluster polynomial.

The following example displays a simple class of minimal cluster polynomials:

Example 2.17: Assume N = 2 and P = 1 is the trivial group. Now fix some vertex t0 ∈ T2 and let

a, b ∈ Z>0 such that the exchange polynomials associated to the edges t0
1 t1 and t0

2 t2
are respectively given by P1 = xb2 + 1 and P2 = xa1 + 1. Now take m,n ∈ Z≥0 and let C be the
minimal (seq(m, a), seq(n, b))-coefficient matrix, then the Laurent polynomial

1

xm1 x
n
2

·
∑

(k,l)∈Z2
≥0

ck,lx
la
1 x

kb
2

is a (actually ‘the’) minimal xm1 x
n
2 -cluster polynomial associated to t0.

We now recall the definition of a ‘general’ cluster polynomial: Let t0 ∈ TN , and let M be a Laurent
monomial in the variables x1, . . . , xN . Writing

M =

N∏
i=1

xmii
(
mi ∈ Z

)
,

we recall that an M -cluster polynomial G associated to the vertex t0 is a Laurent polynomial in
the variables x1, . . . , xN with coefficients in ZP which can be written as a fraction F/M , where
F ∈ ZP[x1, . . . , xN ] is a polynomial not divisible by any of the variables x1, . . . , xN . Moreover, for
all v ∈ [1, N ] with mv ≥ 0 we can find polynomials Fv,0, . . . , Fv,mv ∈ ZP[x1, . . . , xN ] with Fv,i not
containing xv for all i ∈ [1,mv], such that we have

F =

mv∑
i=0

Fv,i · xmv−iv · P iv.

Here, for v ∈ [1, N ], Pv denotes the exchange polynomial associated to the edge t0
v tv .

Any cluster polynomial associated to some vertex in TN can be written by definition as a fraction
of a polynomial in ZP[x1, . . . , xN ] and a Laurent monomial in the variables x1, . . . , xN as above.
Hence, when we talk about a fraction F/M as being an M -cluster polynomial associated to some
vertex in TN , we mean that M is a Laurent monomial in the variables x1, . . . , xN and that F is a
polynomial in ZP[x1, . . . , xN ] satisfying the properties above.

Now consider the following two remarks which relate the general cluster polynomial with mini-
mal/reduced cluster polynomials:

Remark 2.18: Let u, v ∈ [1, N ] be distinct, and let t ∈ TN and let m,n ∈ Z, then any reduced
(and in particular minimal) xmu x

n
v -cluster polynomial associated to t is an xmu x

n
v -cluster polynomial

associated to t.
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Remark 2.19: Let t ∈ TN and for a given Laurent monomial

M =

N∏
i=1

xmii
(
mi ∈ Z

)
let G = F/M be an M -cluster polynomial associated to t. Then for any distinct u, v ∈ [1, N ] we
can write

G =
xmuu xmvv
M

[mu]+∑
i=0

[mv ]+∑
j=0

Fi,jGi,j

 ,

where for (i, j) ∈ [0, [mu]+]× [0, [mv]+] we have that Gi,j is a minimal xiux
j
v-cluster polynomial, and

Fi,j is a polynomial in ZP[x1, . . . , xN ] such that it does not contain the variable xu if i > 0 and it
does not contain the variable xv if j > 0.

In line with our discussion at the start of this chapter we have the following result:

Theorem 2.20: Let u, v ∈ [1, N ] be distinct, let Pu ∈ ZP[x1, . . . , xN ] be the exchange polynomial

associated to a given edge t u t′ in TN , and, for m,n ∈ Z (not necessarily nonnegative), let
G = F/xmu x

n
v be a reduced xmu x

n
v -cluster polynomial associated to t, then substituting Pu/xu for

xu in G gives us a reduced xm
′−m

u xnv -cluster polynomial associated to t′, where m′ is the largest
exponent of xu in F .

We are not yet ready to give a full proof of this theorem, however we can give an argument which
reduces the theorem to a statement about coefficient matrices:

Let u, v ∈ [1, N ] be distinct, and consider the edges t1
v t2

u t3
v t4 in TN , with

associated exchange polynomials Pv, Pu and P ′v in ZP[x1, . . . , xN ] respectively. Write B(t2) = (bij)
and B(t3) = (b′ij), and let a = |bvu| and b = |buv|. Now let G be some reduced xmu x

n
v -cluster

polynomial associated to t2, and let H be the Laurent polynomial obtained from G by substituting
Pu/xu for xu. If we have a = b = 0, then, by definition, we have

G =
p · P [m]+

u P
[n]+
v

xmu x
n
v

for some p ∈ P. This means we have

H =


p · xmu P

[n]+
v

xnv
if m ≥ 0;

p · P |m|u P
[n]+
v

x
|m|
u xnv

if m < 0.

Now note that bvu = 0 implies we have bvj = b′vj for all j ∈ [1, N ], hence we have Mv(t1) = Mv(t4)
and Mv(t2) = Mv(t3). Using condition five from Definition 1.2 we have

Pv
pv(t2)

=
P ′v

pv(t3)
.
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This means that H is a reduced x−mu xnv -cluster polynomial associated to t3.

Next, assume we have a 6= 0 (and hence b 6= 0). If n ≤ 0 we directly have that H is a reduced
x−mu xnv -cluster polynomial associated to t3. Now assume we have n > 0 and write

Pv = pv,1Mv,1 + pv,2Mv,2, Pu = pu,1Mu,1 + pu,2Mu,2 and P ′v = p′v,1M
′
v,1 + p′v,2M

′
v,2,

such that xau |Mv,1, x
b
v |Mu,1 and xau |M ′v,1. Using Remark 1.3 we have

pv,1Mv,1

pv,2Mv,2
=
p′v,2M

′
v,2

p′v,1M
′
v,1

· x2au
pau,2M

a
u,2

. (1)

In particular this means we have

M ′v,1 =
xau ·Mv,2

Mgcd
and M ′v,2 =

Mv,1M
a
u,2

xau ·Mgcd
,

where Mgcd = gcd
(
Mv,2,M

a
u,2

)
. Now let m = seq(m, a), n = seq(n, b), then for some (m,n)-

coefficient matrix C with dim(C) = (0, 0,K, L), writing D = D(C), we have

G =
p · (pv,2Mv,2)

L

M · xmu xnv
·
L∑
l=0

K−ml∑
k=0

dk,l

(
pv,1Mv,1

pv,2Mv,2

)l
(pu,1Mu,1)

k (pu,2Mu,2)
K−ml−k · Pmlu ,

for some p ∈ P and some monomial M in the variables {x1, . . . , xN}\{xu, xv}. Writing m′ = La−m,
let m′ = seq(m′, a). Now we have

H =
p · (pv,2Mv,2)

L

M · xnv
·
L∑
l=0

K−ml∑
k=0

dk,l

(
pv,1Mv,1

xau · pv,2Mv,2

)l
(pu,1Mu,1)

k (pu,2Mu,2)
K−ml−k · Pm

′
L−l

u · xm−lau

=
p · (pv,2Mv,2)

L

M · xm′u xnv
·
L∑
l=0

K−ml∑
k=0

dk,l

(
pv,1Mv,1

xau · pv,2Mv,2

)l
(pu,1Mu,1)

k (pu,2Mu,2)
K−ml−k · Pm

′
L−l

u · x(L−l)au .

Let C ′ ∈ Mat2(Z≥0) which for (k, l) ∈ Z2 is given by

c′k,l =
k∑
i=0

di,L−l

(
m′l
k − i

)
,

then dim(C) = (0, 0,K ′, L) for some K ′ ≥ K −m. Now, using the fact that we have

m′L−l −ml − la = [la−m]+ − [m− la]+ − la = −m, (2)

we can write

H =
p · (pu,2Mu,2)

K−m(pv,2Mv,2)
L

M · xm′u xnv
·
K′∑
k=0

L∑
l=0

c′k,L−l

(
pu,1Mu,1

pu,2Mu,2

)k (pv,1Mv,1

pv,2Mv,2
·
pau,2M

a
u,2

xau

)l
· x(L−l)au .
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Using equality (1), we now have

H =
p · (pu,2Mu,2)

K−m(pv,2Mv,2)
L

M · xm′u xnv
·
K′∑
k=0

L∑
l=0

c′k,L−l

(
pu,1Mu,1

pu,2Mu,2

)k(xau · p′v,2M ′v,2
p′v,1M

′
v,1

)l
· x(L−l)au

=
p · (pu,2Mu,2)

K−m(pv,2Mv,2)
L

M · xm′u xnv
·

(
xau · p′v,2M ′v,2
p′v,1M

′
v,1

)L
·
K′∑
k=0

L∑
l=0

c′k,L−l

(
pu,1Mu,1

pu,2Mu,2

)k(p′v,1M ′v,1
p′v,2M

′
v,2

)L−l

=
p · (pu,2Mu,2)

K−m

M · xm′u xnv
·
(
pv,1Mv,1p

a
u,2M

a
u,2

xau

)L
·
K′∑
k=0

L∑
l=0

c′k,l

(
pu,1Mu,1

pu,2Mu,2

)k(p′v,1M ′v,1
p′v,2M

′
v,2

)l
.

Now let I denote the set of indices (k, l) ∈ Z2 such that dk,l 6= 0, then we can write

M = gcd
{
Mk
u,1M

K−ml−k
u,2 M l

v,1M
L−l
v,2

∣∣∣ (k, l) ∈ I
}
.

Now let
M ′ = gcd

{
Mk
u,1M

K′−m′L−l−k
u,2 (M ′v,1)

L−l(M ′v,2)
l
∣∣∣ (k, l) ∈ I

}
,

then using the identities for M ′v,1 and M ′v,2 derived from equality (1), we have

M ′ =
1

ML
gcd

· gcd
{
Mk
u,1M

K′−m′L−l−k
u,2 (xauMv,2)

L−l(Mv,1M
a
u,2/x

a
u)l
∣∣∣ (k, l) ∈ I

}
.

Note that xu is not contained in Mu,1,Mu,2 and Mv,2, and since dim(C) = (0, 0,K, L), we know
there exists some k ∈ Z≥0 such that dk,0 6= 0, hence we can write

M ′ =
1

ML
gcd

· gcd
{
Mk
u,1M

K′−m′L−l−k
u,2 (Mv,2)

L−l(Mv,1M
a
u,2)

l
∣∣∣ (k, l) ∈ I

}
.

Finally, using equality (2) and using the fact that K ′ ≥ K −m, we have

M ′ =
MK′−K+m
u,2

ML
gcd

· gcd
{
Mk
u,1M

K−ml−k
u,2 (Mv,2)

L−l(Mv,1)
l
∣∣∣ (k, l) ∈ I

}
=
MK′−K+m
u,2

ML
gcd

·M.

This means, using the identity for M ′v,2 derived from equality (1), that we have

MK−m
u,2 (Mv,1M

a
u,2/x

a
u)L

M
= MK−m

u,2 (Mv,1M
a
u,2/x

a
u)L ·

MK′−K+m
u,2

M ′ ·ML
gcd

=
MK′
u,2(M ′v,2)

L

M ′
.

We conclude that we can write

H =
p′ · (pu,2Mu,2)

K′(p′v,2M
′
v,2)

L

M ′ · xm′u xnv
·
K′∑
k=0

L∑
l=0

c′k,l

(
pu,1Mu,1

pu,2Mu,2

)k(p′v,1M ′v,1
p′v,2M

′
v,2

)l
,
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where

p′ =
p · pK+La−m

u,2 · pLv,1
pK
′

u,2 · (p′v,2)L
,

hence if we have that C ′ is an (m′,n)-coefficient matrix, then H is a reduced xm
′

u xnv -cluster poly-
nomial. This means we have reduced the theorem to the following statement:

For any m,n ∈ Z≥0 and a, b ∈ Z>0, let m = seq(m, a) and n = seq(n, b). Moreover, let C be
an (m,n)-coefficient matrix with dim(C) = (0, 0,K, L) and with associated matrices D = D(C)
and E = E(C). Writing m′ = seq(La −m, a) and n′ = seq(Kb − n, b), let C ′, C ′′ ∈ Mat2(Z) be
matrices with origin (0, 0) and which for (k, l) ∈ Z2

≥0 are given by

c′k,l =

k∑
i=0

di,L−l

(
m′l
k − i

)
and c′′k,l =

l∑
j=0

eK−k,j

(
n′k
l − j

)
,

then C ′ is an (m′,n)-coefficient matrix and C ′′ is an (m,n′)-coefficient matrix.

Using Remark 2.14, we can derive this statement from the following lemma:

Lemma 2.21: For m ∈ Z≥0 and a ∈ Z>0 let m = seq(m, a), and take n ∈ Seq. Now let C be an
(m,n)-coefficient matrix with dim(C) = (x, y,K,L) and with associated matrices D = D(C) and
E = E(C). Writing m′ = seq(La −m, a), we can find a matrix E′ ∈ Mat2(Z) such that for all
(k, l) ∈ Z2

≥0 we have

dk,l =

k∑
i=0

 l∑
j=0

e′i,j

(
ni
l − j

)(−m′L−l
k − i

)
.

That this lemma indeed implies the result we need to prove Theorem 2.20, follows from the following
result for binomial coefficients:

Remark 2.22: We recall that (1 + x) is an invertible element in Z[[x]], the ring of formal power
series in the variable x over Z, and we have

(1 + x)−1 =
∑
i≥0

(−x)i.

More generally, for m ∈ Z we can write

(1 + x)m =
∑
i≥0

(
m
i

)
xi.

Now let {ai}i≥0 and be a sequence of integers, let m ∈ Z≥0 and for k ∈ Z≥0 let

bk =
k∑
i=0

ai

(
−m
k − i

)
,
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then for any l ∈ Z≥0 we have

al =
l∑

i=0

bi

(
m
l − i

)
.

This follows directly from calculating the coefficient of xk in the following formal power series in
Z[[x]]:

(1 + x)−m
∑
i≥0

aix
i.

To prove Lemma 2.21 however, we first need the following result:

Proposition 2.23: For p, q ∈ Z≥0, r ∈ Z>0, s ∈ Z≥0 and t ∈ Z≥s there exists a function

Ψ(p, q, r, s, t) : Z −→ Z,

such that for any u ∈ Z we have Ψ(p, q, r, s, t)(u) = 0 if u 6∈ [0, t], and such that for any v ∈ Z≥0
we have (

p
v

)(
q − vr
s

)
=

v∑
u=0

Ψ(p, q, r, s, t)(u)

(
p− t
v − u

)
.

For any u ∈ Z, we will let Ψ(p, q, r, s, t, u) denote the value of the function Ψ(p, q, r, s, t) evaluated
at u.

Proof. Let p, q ∈ Z≥0 and r ∈ Z>0. If we have s ∈ Z≥0 such that the function Ψ(p, q, r, s, s) exists,
then we have for any t ∈ Z>s that the function Ψ(p, q, r, s, t) exists. This follows from the fact that
for any v ∈ Z≥0 we can write(

p
v

)(
q − vr
s

)
=

v∑
u=0

Ψ(p, q, r, s, s, u)

(
p− s
v − u

)

=
v∑

u=0

Ψ(p, q, r, s, s, u)

(
v−u∑
i=0

(
t− s
i

)(
p− t

v − u− i

))

=
v∑

u′=0

 u′∑
j=0

(
t− s
j

)
Ψ(p, q, r, s, s, u′ − j)

( p− t
v − u′

)
.

Which means that for any u ∈ Z we can write

Ψ(p, q, r, s, t, u) =

t−s∑
j=0

(
t− s
j

)
Ψ(p, q, r, s, s, u− j). (3)

Hence it is enough to show that Ψ(p, q, r, s, s) exists for any s ∈ Z≥0.

Now note that for s = 0, we directly have that Ψ(p, q, r, s, s) exists and for any u ∈ Z we have

Ψ(p, q, r, 0, 0, u) =

{
1 if u = 0;

0 otherwise.
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Hence without loss of generality we may assume we have p > 0 and s > 0. Now assume that the
function Ψ(p, q, r, s− 1, s− 1) exists. Let v ∈ Z≥0, then we can write(

q − vr
s

)
=

(q − vr)(s)
s!

=
q − vr − s+ 1

s
·
(
q − vr
s− 1

)
,

and hence we have(
p
v

)(
q − vr
s

)
=
q − vr − s+ 1

s
·
(
p
v

)(
q − vr
s− 1

)
=
q − vr − s+ 1

s

v∑
u=0

Ψ(p, q, r, s− 1, s− 1, u)

(
p− s+ 1
v − u

)

=
1

s

v∑
u=0

Ψ(p, q, r, s− 1, s− 1, u)

(
(q − ur − s+ 1)

(
p− s+ 1
v − u

)
− r(p− s+ 1)

(
p− s

v − u− 1

))
where we use the identity k ( nk ) = n

(
n−1
k−1

)
for n ∈ Z and k ∈ Z≥0.

Now using the identity
(
p−s+1
v−u

)
=
(
p−s
v−u

)
+
( p−s
v−u−1

)
, we can write(

p
v

)(
q − vr
s

)
=

1

s

v∑
u=0

Ψ(p, q, r, s− 1, s− 1, u)

(
(q − ur − s+ 1)

(
p− s
v − u

)
+
(
q − ur − s+ 1− r(p− s+ 1)

)( p− s
v − u− 1

))
.

Using the fact that for any u ∈ Z \ [0, s− 1] we have Ψ(p, q, r, s− 1, s− 1, u) = 0, we now have(
p
v

)(
q − vr
s

)
=

1

s

v∑
u′=0

((
q − (u′ − 1)r − s+ 1− r(p− s+ 1)

)
Ψ(p, q, r, s− 1, s− 1, u′ − 1)

+
(
q − u′r − s+ 1

)
Ψ(p, q, r, s− 1, s− 1, u′)

)( p− s
v − u′

)
=

1

s

v∑
u′=0

((
q − u′r − s+ 1− r(p− s)

)
Ψ(p, q, r, s− 1, s− 1, u′ − 1)

+
(
q − u′r − s+ 1

)
Ψ(p, q, r, s− 1, s− 1, u′)

)( p− s
v − u′

)
.

Finally, using equality (3), we have

Ψ(p, q, r, s− 1, s, u) = Ψ(p, q, r, s− 1, s− 1, u− 1) + Ψ(p, q, r, s− 1, s− 1, u),
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for all u ∈ Z, which means that we have(
p
v

)(
q − vr
s

)
=

1

s

v∑
u′=0

((
q − u′r − s+ 1

)
Ψ(p, q, r, s− 1, s, u′)

− r(p− s)Ψ(p, q, r, s− 1, s− 1, u′ − 1)
)( p− s

v − u′
)
.

Hence for all u ∈ Z we must have

Ψ(p, q, r, s, s, u) =
1

s

((
q − ur − s+ 1

)
Ψ(p, q, r, s− 1, s, u)− r(p− s)Ψ(p, q, r, s− 1, s− 1, u− 1)

)
.

That Ψ(p, q, r, s, s, u) lies in Z for all u ∈ [0, s] follows by induction on u and using the fact that we
can write

Ψ(p, q, r, s, s, u) =

(
p
u

)(
q − ur
s

)
−

u−1∑
u′=0

Ψ(p, q, r, s, s, u′)

(
p− s
u− u′

)
.

We now are ready to prove Lemma 2.21:

Proof. Take m ∈ Z≥0 and a ∈ Z>0, let m = seq(m, a) and take n ∈ Seq. Moreover, let C be
an (m,n)-coefficient matrix with dim(C) = (x, y,K,L) and with associated matrices D = D(C)
and E = E(C), and let m′ = seq(La −m, a). Using Remark 2.15 we may assume C has origin
(0, 0). To prove the lemma we show how E′ can be constructed from C. Clearly we must have that
E′ has origin (0, 0), and for all l ∈ Z≥0 we must have e′0,l = e0,l. Moreover, if E′ exists we must
have e′k,L−nk+l = 0 for all k, l ∈ Z≥0 (otherwise it contradicts C having dimensions (0, 0,K, L)).
Now we construct E′ using induction with respect to k. We fix k ∈ [1,K] and assume that for all
k′ ∈ [0, k − 1] we have

dk′,l =

k′∑
i=0

 l∑
j=0

e′i,j

(
ni
l − j

)(−m′L−l
k′ − i

)
for all l ∈ Z≥0. If nk = 0, then for l ∈ Z≥0 we can just take

e′k,l =
k∑
i=0

di,l

(
m′L−l
k − i

)
.

Now assume nk > 0 and fix some l ∈ Z≥0. Note that we have

m− la =

{
ml if la ≤ m;

−m′L−l if la ≥ m,
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hence we can write

k−1∑
i=0

 l∑
j=0

e′i,j

(
ni
l − j

)(m− la
k − i

)
=



k−1∑
i=0

di,l

(
m− la
k − i

)
if la ≤ m;

−
k−1∑
i=0

di,l

(
la−m
k − i

)
if la ≥ m.

The case where we have la ≥ m follows from applying Remark 2.22: For k′ ∈ [0, k − 1] write
bk′ = dk′,l and ak′ =

∑l
j=0 e

′
k′,j

( nk′
l−j
)
, moreover, write ak = 0. Now for any k′ ∈ [0, k − 1] we can

write

ak′ =
k′∑
i=0

bi

(
la−m
k′ − i

)
and bk′ =

k′∑
i=0

ai

(
m− la
k′ − i

)
.

Now let bk ∈ Z, such that

ak =
k∑
i=0

bi

(
la−m
k − i

)
,

then we have

bk = ak −
k−1∑
i=0

bi

(
la−m
k − i

)
= −

k−1∑
i=0

bi

(
la−m
k − i

)
,

and we also have

bk =

k∑
i=0

ai

(
m− la
k − i

)
=

k−1∑
i=0

ai

(
m− la
k − i

)
.

By definition, we have that ni − nk ≥ k − i, hence, using Proposition 2.23, we can now write the
sum

k−1∑
i=0

 l∑
j=0

e′i,j

(
ni
l − j

)(
m− la
k − i

)
as

k−1∑
i=0

 l∑
j=0

e′i,j

 l−j∑
j′=0

Ψ(ni,m− ja, a, k − i, ni − nk, j′)
(

nk
l − j − j′

) .

Rearranging the summation we get:

l∑
j1=0

k−1∑
i=0

j1∑
j2=0

e′i,j2Ψ(ni,m− j2a, a, k − i, ni − nk, j1 − j2)

( nk
l − j1

)
.

Now, since we have

dk,l =

l∑
j=0

ek,j

(
nk
l − j

)
−
k−1∑
i=0

di,l

(
ml

k − i

)
,
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we can take

e′k,l = ek,l −
k−1∑
i=0

l∑
j=0

e′i,jΨ(ni,m− ja, a, k − i, ni − nk, l − j) (4)

By the properties of the Ψ-function, we indeed have that e′k,L−nk+l = 0 for all l ∈ Z≥0, and by
construction we have for l ∈ Z≥0 with la ≤ m

dk,l =
l∑

j=0

e′k,j

(
nk
l − j

)
.

Now note that for l ∈ Z≥0 with la > m, we have by definition

dk,l =

l∑
j=0

ek,j

(
nk
l − j

)
,

substituting equality (4) and reverting the steps above, we obtain

dk,l =

l∑
j=0

e′k,j

(
nk
l − j

)
+

k−1∑
i=0

 l∑
j=0

e′i,j

(
ni
l − j

)(−m′L−l
k − i

)
,

which is what we needed.

Remark 2.24: Note that the matrix E′ constructed in the proof above is uniquely determined by
C, and hence we will denote this matrix with E′(C). Moreover, we denote with D′(C) the matrix
(E′(CT ))T . Writing D′ = D′(C) and n = seq(n, b) and n′ = seq(Kb − n, b) for n ∈ Z≥0 and
b ∈ Z>0, we now, for all (k, l) ∈ Z2

≥0, have

ek,l =
l∑

j=0

(
k∑
i=0

d′i,j

(
mj

k − i

))(
−n′K−k
l − j

)
.

We now can prove a slightly stronger version of the Laurent phenomenon:

Theorem 2.25: Given a vertex t0 ∈ TN and u ∈ [1, N ], then for any t ∈ TN we can find a cluster
polynomial G associated to t0 such that xu(t) = G(x(t0)).

Proof. Fix any vertex t ∈ TN , and for any u ∈ [1, N ] let t0
u tu be an edge in TN with

associated exchange polynomial Pu. Now assume we know that for v ∈ [1, N ] (not necessarily
different from u) we have that xv(t) = G(x(t0)) for some cluster polynomial G associated to t0,
then using Theorem 2.20 and Remark 2.19 we have that substituting Pu/xu for xu in G gives us
some cluster polynomial H associated to t1, and we have xv(t) = H(x(tu)). If t 6= t0 then for all
but one choice of v we have that the length of the shortest path between tu and t is the length of
the shortest path between t0 and t plus 1. Hence using induction on the length of the shortest path
between vertices the theorem now follows by the argument above.
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Now the Positivity conjecture can be stated as follows:

Conjecture 2.26: The cluster polynomials occurring in Theorem 2.25 have subtraction free nu-
merators.

2.3 Coefficient matrices and the Positivity conjecture

The remainder of this thesis will be focused on establishing a relation between Conjecture 2.26
and some properties and conjectures for cluster polynomials and (minimal) coefficient matrices.
Before we end this chapter we discuss some useful results following from Lemma 2.21 which will be
essential for the discussion in the following chapters.

We have the following useful corollary from Lemma 2.21 concerning the dimensions of minimal
coefficient matrices:

Corollary 2.27: Let m,n ∈ Seq, then the minimal (m,n)-coefficient matrix C has dimensions
(0, 0,m0, n0).

Proof. Write m = seq(m, a) for m ∈ Z≥0 and a ∈ Z>0 and write n = n0. Moreover, write
dim(C) = (0, 0,K, L), then, using Remark 2.14, it is enough to show that L = n (note that by
definition of C we have L ≥ n). Now let D = D(C), E = E(C) and E′ = E′(C), then it is enough
to show that for any k ∈ [0,K] we have ek,l = 0 = e′k,l for all l ∈ Z≥0 \ [0, n − nk]. For k = 0 this
follows directly from the definition of C. Now fix k ∈ [1,K] and assume that for all k′ ∈ [0, k − 1]
we have that ek′,l = 0 for all l ∈ Z≥0 \ [0, n − nk′ ]. If we have nk = 0, we have nothing to show,
hence we assume we have nk > 0. For l ∈ Z≥0 write

e?k,l =
k−1∑
i=0

l∑
j=0

e′i,jΨ(ni,m− ja, a, k − i, ni − nk, l − j),

then, applying equality (4), we have e′k,l = ek,l − e?k,l. Now fix some l ∈ Z≥0. Then, using the fact
that for all i ∈ [0, k − 1] and for all j ∈ [0, l] we have

Ψ(ni,m− ja, a, k − i, ni − nk, l − j) = 0 if l − j > ni − nk,

and e′i,j = 0 if j > n− ni, we have e?k,l = 0 if l > n− nk. This means that for l > n− nk we have
ek,l = e′k,l. Since dk,l and ek,l are not both nonzero (we have k > 0), we have that ek,l = 0 = e′k,l
if l ∈ [n− nk, `(m)], and if l ∈ [`(m), n] we always have ek,l = 0. We conclude that ek,l = 0 = e′k,l
if l > n − nk, which is precisely what we needed to prove. Hence by induction on k we have that
L = n.

This corollary gives rise to the following lemma:

Lemma 2.28: Let m = seq(m, a) and n = seq(n, b) for m,n ∈ Z≥0 and a, b ∈ Z>0. Let C be
the minimal (m,n)-coefficient matrix and write D = D(C), E = E(C) and E′ = E′(C). Writing
m′ = seq(na−m, a), let C ′ ∈ Mat2(Z≥0) be the matrix with origin (0, 0), which for all (k, l) ∈ Z2

≥0
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is given by

c′k,l =
k∑
i=0

di,n−l

(
m′l
k − i

)
=

n−nk∑
j=0

e′k,n−nk−j

(
nk
l − j

)
.

Then C ′ is the minimal (m′,n)-coefficient matrix if and only if E′ lies in Mat2(Z≥0).

Proof. That for all (k, l) ∈ Z2
≥0 we have

k∑
i=0

di,n−l

(
m′l
k − i

)
=

n−nk∑
j=0

e′k,n−nk−j

(
nk
l − j

)

follows from Lemma 2.21. Clearly if C ′ is the minimal (m′,n)-coefficient matrix this implies we
have E′ in Mat2(Z≥0), hence we just have to prove that E′ lying in Mat2(Z≥0) implies that C ′ is
the minimal (m′,n)-coefficient matrix. Now assume E′ lies in Mat2(Z≥0).
Using Proposition 2.7 it is enough to prove that dk,n−l ·e′k,n−nk−l = 0 for all (k, l) ∈ Z2

≥0\{(0, 0)}. By
definition, we know that d0,n−l ·e′0,−l 6= 0 if and only if l = 0. Moreover, since dim(C) = (0, 0,m, n),
it is enough to show that for any k ∈ [1,m] we have that dk,n−l · e′k,n−nk−l = 0 for all l ∈ [0, n−nk].
Now fix some k ∈ [1,m]. If nk = 0, then we saw in the proof of Lemma 2.21 that for all l ∈ [0, n]
we have

e′k,n−l =

k∑
i=0

di,n−l

(
m′l
k − i

)
,

and by definition of the minimal coefficient matrix we have dk,n−l = 0 in this case, hence we can
assume nk > 0. Now fix some l ∈ [0, n− nk] such that e′k,n−nk−l 6= 0. Note that dk,n−l > 0 implies
that ek,l′ > 0 for some l′ ∈ [n − nk − l, n − l − 1]. Now suppose such an l′ exists and assume it
to be minimal. We must have l′a < m by definition of the minimal coefficient matrix (otherwise
ek,l′ = 0). However, since e′k,j ≥ 0 for all j ∈ [0, n− nk], this means we have

dk,l′ =

l′∑
j=0

e′k,j

(
nk
l′ − j

)
> 0

which means we have dk,l′ > 0 and ek,l′ > 0 which gives us as contradiction (by Proposition 2.7).

Using Remark 2.14 we have automatically the following result:

Corollary 2.29: Writing n′ = seq(mb−n, b), then the matrix C ′′ ∈ Mat2(Z≥0), with origin (0, 0),
which for all (k, l) ∈ Z2

≥0 is given by

c′k,l =
l∑

j=0

em−k,j

(
n′k
l − j

)
=

m−ml∑
i=0

d′m−ml−i,l

(
ml

k − i

)
,

is the minimal (m,n′)-coefficient matrix if and only if D′(C) lies in Mat2(Z≥0).

This lemma is useful when dealing with minimal cluster polynomials in the setting of Theorem
2.20:
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Corollary 2.30: Let u, v ∈ [1, N ] be distinct, let Pu ∈ ZP[x1, . . . , xN ] be the exchange polynomial

associated to a given edge t u t′ in TN , and, for m,n ∈ Z (not necessarily nonnegative), let
G = F/xmu x

n
v be a minimal xmu x

n
v -cluster polynomial associated to t. Write B(t) = (bij) and let

a = |bvu| and b = |buv|. Assume we have a · b 6= 0 and write m = seq(m, a) and n = seq(n, b).
Let C denote the minimal (m,n)-coefficient matrix, then substituting Pu/xu for xu in G gives us
a minimal xna−mu xnv -cluster polynomial associated to t′ if and only if E′(C) lies in Mat2(Z≥0).
Assuming E′(C) 6∈ Mat2(Z≥0) (which in particular means that m and n must both be positive),
let G′ denote the reduced xna−mu xnv -cluster polynomial associated to t′ obtained from substituting

Pu/xu for xu in G, and let Pv be the exchange polynomial associated to the edge t′ v t′′ .
Then, writing m′ for the largest exponent of xv in the numerator of G′ and writing n′ = m′b− n,
substituting Pv/xv for xv in G′ results in a reduced xna−mu xn

′
v -cluster polynomial associated to t′′

whose numerator is not subtraction free.

Proof. The first part of the corollary is a direct result from Theorem 2.20 and Lemma 2.28.
The second part follows from Theorem 2.20 and Lemma 2.21: let G′′ denote the reduced xna−mu xn

′
v -

cluster polynomial associated to t′′, and write m′ = seq(na − m, a) and n′ = seq(n′, b). Write
D = D(C) and E′ = E′(C), and let C ′ ∈ Mat2(Z≥0) be the (m′,n)-coefficient matrix which for
(k, l) ∈ Z2

≥0 is given by

c′k,l =
k∑
i=0

di,n−l

(
m′l
k − i

)
=

n−nk∑
j=0

e′k,n−nk−j

(
nk
l − j

)
.

Now write E′′ = E(C ′), and let C ′′ ∈ Mat2(Z) be the (m,n′)-coefficient matrix which for (k, l) ∈
Z2
≥0 is given by

c′′k,l =

l∑
j=0

e′′m′−k,j

(
n′k
l − j

)
.

From the definition of a reduced cluster polynomial we can deduce that it is enough to prove that
C ′′ 6∈ Mat2(Z≥0).

Note that we have E′′ 6∈ Mat2(Z≥0) since E′ 6∈ Mat2(Z≥0). If m′b ≤ n, then for all (k, l) ∈ Z2
≥0 we

have c′′k,l = e′′m′−k,l, which means C ′′ 6∈ Mat2(Z≥0). This means we may assume m′b > n.

Now fix some k ∈ Z≥0. From the proof of Lemma 2.21 we know that if nk = 0 we have

e′k,l =
k∑
i=0

di,l

(
m′n−l
k − i

)
> 0

(
l ∈ Z≥0

)
,

which means that having e′k,l < 0 for some l ∈ [0, n− nk] implies we have nk > 0. Assume nk > 0,
then we have kb < n and hence (m′ − k)b > m′b − n which implies n′m′−k = 0. Now assume for
some l ∈ [0, n− nk] we have e′k,l < 0, then e′′k,n−nk−l < 0, and hence cm′−k,n−nk−l = e′′k,n−nk−l. We
conclude that C ′′ 6∈ Mat2(Z≥0).

This corollary in particular illustrates why minimal coefficient matrices are very interesting objects
to consider when studying the Positivity conjecture.
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3 Quivers and Cluster algebras

In this chapter we introduce the necessary definitions to discuss the result regarding the Positivity
conjecture obtained by Philippe Caldero and Markus Reineke in [2], and we illustrate how Grégoire
Dupont in [3] deduces from this result the Positivity conjecture for coefficient-free cluster algebras
of rank 2. We end this chapter with the discussion of a potential generalization of the result of
Dupont.

3.1 Introduction to the representation theory of quivers

Our exposition in this section is based on the lecture notes of the course ‘Introduction to the
representation theory of quivers’ given by Claus M. Ringel ([5], [6]) and on the lecture notes of
Michel Brion on this subject ([7]).

Definition 3.1: A quiver Q is a directed graph which can contain loops, and which can have
multiple arrows between vertices. We write Q = (Q0, Q1), where Q0 is the set of vertices of Q and
Q1 is the set of arrows of Q. We additionally have two maps s : Q1 → Q0 and t : Q1 → Q0, where
for an arrow α : i→ j ∈ Q1 we have that s(α) = i is the source and t(α) = j is the target of α. We
say that Q is finite if #Q0 <∞ and #Q1 <∞, and we say that Q is acyclic if Q does not contain
any oriented cycles.

We consider three simple examples of quivers:

Example 3.2: The loop quiver Q = ({1}, {α}) is given by the graph

1

α

The Kronecker quiver Q = ({1, 2}, {α}) is given by the graph

1 2
α

Finally we consider the quiver Q = ({1, 2, 3}, {α1, α2, α3, α4}) given by the graph

1

23

α1α4
α2

α3

The following remark indicates there is a relation between quivers and cluster algebras:

Remark 3.3: To a finite quiver Q = (Q0, Q1) which does not contain loops or 2-cycles we can
associate a skew-symmetric matrix BQ = (bij)i,j∈Q0 where for any i, j ∈ Q0 we have

bij = #{α ∈ Q1 | s(α) = i and t(α) = j} −#{α ∈ Q1 | s(α) = j and t(α) = i}.
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This gives a one-to-one correspondence between skew-symmetric matrices and quivers without loops
or 2-cycles.

To expand on the relation between quivers and cluster algebras we first introduce path algebras
associated to quivers.

Definition 3.4: Let Q = (Q0, Q1) be a quiver, then a path w = α1 · · ·αn in Q of length n ≥ 1
is a sequence of arrows α1, . . . , αn ∈ Q1 such that t(αi) = s(αi+1) for all 1 ≤ i ≤ n − 1. We let
s(w) = s(αn) denote the source and t(w) = t(α1) denote the target of w. Additionally, for vertex
i ∈ Q0 we define ei to be a path of length 0 with source and target equal to i. Given two paths
w and w′ in Q with s(w) = t(w′), we write ww′ for the concatenation of w and w′, and we write
et(w)w = w = wes(w).

Example 3.5: In the loop quiver the set of all paths is given by the set {e1} ∪ {αn | n ≥ 1} which
is in particular an infinite set. In the Kronecker quiver the set of all paths is {e1, e2, α}.
Now let Q = ({1, 2, 3}, {α1, α2, α3, α4}) be the quiver as given in Example 3.2, write γ1 = α4α2α1

and γ2 = α4α3α1. Now let Γ1 = {γ1, γ2}, and for any n > 1 we define

Γn = {γ1w | w ∈ Γn−1} ∪ {γ2w | w ∈ Γn−1},

and let
Γ =

⋃
n∈Z>0

Γn.

Moreover, we define the sets S = {e1, α4, α4α2, α4α3} and T = {e1, α1, α2α1, α3α1}. Now the set
of all paths in Q is

{e1, e2, e3} ∪Q1 ∪ S ∪ T ∪ {tγs | t ∈ T, γ ∈ Γ, s ∈ S}.

This example shows that simple quivers can already have infinitely many paths. The quivers which
have a finite number of paths are precisely the finite acyclic quivers ([6, Corollary 4.1]).

We now fix an algebraically closed field k.

Definition 3.6: Let Q = (Q0, Q1) be a quiver, then the path algebra over k of the quiver Q,
denoted with kQ, is the k-vector space with basis the set of all paths in Q. On kQ we can define
a multiplication as follows: for any two paths w,w′ in Q we define the product ww′ in kQ to be 0
if s(w) 6= t(w′) and otherwise the path obtained by the concatenation of w and w′. This induces
indeed a multiplication on kQ with identity given by

1 =
∑
i∈Q0

ei.

This makes kQ into an associative k-algebra.

Example 3.7: The path algebra over k of the loop quiver is naturally isomorphic to the polynomial
ring k[α].

Next we consider quiver representations:

Definition 3.8: A representation of a quiver Q = (Q0, Q1) is of the form M = (Mi,Mα)i∈Q0,α∈Q1 ,
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where for each i ∈ Q0 we have that Mi is a k-vector space and for each α ∈ Q1 we have that
Mα : Ms(α) → Mt(α) is a k-linear map. We say that M is finite dimensional if each Mi is a finite
dimensional k-vector space.
Given Q-representations M,N we say that N is a subrepresentation of M , if for any i ∈ Q0 we
have that Ni is a linear subspace of Mi and if for any α ∈ Q1 we have that Nα is the restriction of
Mα to Ns(α).
A morphism of representations f : M → N , for given Q-representations M,N , is a family of k-linear
maps (fi : Mi → Ni)i∈Q0 such that for all α ∈ Q1 we have the following commutative diagram:

Ms(α) Mt(α)

Ns(α) Nt(α)

Mα

fs(α) ft(α)

Nα

This means we have a well-defined category Rep(Q, k) of representations of Q, and a well-defined
category rep(Q, k) of finite dimensional representations of Q. If there is no confusion we will write
Rep(Q) and rep(Q).

We now fix a finite quiver Q = (Q0, Q1). The following theorem shows that there is a strong
resemblance between quiver representations and left kQ-modules:

Theorem 3.9 ([6, p. 5]): We have an equivalence of categories Rep(Q) ' kQ-Mod, where kQ-
Mod denotes the category of left kQ-modules.

Since we are just concerned with left kQ-modules, we will omit the prefix ‘left’ from here on.

The equivalence in the theorem above is given by the following correspondences:

� Let (Mi,Mα)i∈Q0,α∈Q1 be a representation of Q, then let M =
⊕

i∈Q0
Mi be the corresponding

kQ-module, where the left multiplication by a path w = α1 · · ·αn is given by the mapping

M −→M, (ai)i∈Q0 7−→ (Mα1 ◦ · · · ◦Mαn)(as(αn)).

Moreover, let f : M → N be a morphism of representations of Q, then f corresponds to the
morphism of kQ-modules

⊕
i∈Q0

fi :
⊕

i∈Q0
Mi →

⊕
i∈Q0

Ni.

� Let M be a kQ-module, then the corresponding representation of Q is (Mi,Mα)i∈Q0,α∈Q1 ,
where for i ∈ Q0 we have Mi = eiM , and where for α ∈ Q1 we have

Mα : Ms(α) −→Mt(α), x 7→ αx.

Moreover, let f : M → N be a morphism of kQ-modules, then f(eiM) ⊆ eiN for all i ∈ Q0

(since f is a kQ-linear map). Hence for any i ∈ Q0 let fi denote the restriction of f to Mi,
then the morphism of Q-representations corresponding to f is (fi)i∈Q0 .

We have the following corollary:

Corollary 3.10 ([6, p. 6]): We have an equivalence of categories rep(Q) ' kQ-mod, where
kQ-mod denotes the category of finitely generated kQ-modules.
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Since the equivalence in Theorem 3.9 is natural in the sense that the correspondences given above are
natural, we will think of a Q-representation as a kQ-module and vice versa. Moreover, by Theorem
3.9, we can study kQ-modules to get a better understanding of Q-representations. We will only
be interested in finite dimensional Q-representations, hence when talking of a Q-representation, we
assume it to be finite dimensional (and similarly, when talking of a kQ-module, we assume it to be
finitely generated). Finally, (as the fact that Caldero and Reineke proved the Positivity conjecture
for acyclic cluster algebras suggests) we are only interested in the case where Q is an acyclic quiver,
hence we assume our quiver Q from here on to be acyclic.

We end this section with a discussion of two important classes of kQ-modules.

Definition 3.11: Let M be a nonzero kQ-module, recall that:

� M is called simple if the only kQ-submodules of M are 0 and M .

� M is called indecomposable if M cannot be written as the direct sum of two nonzero kQ-
modules.

� M is called free if M ∼= kQn for some n ∈ Z≥0.

� M is called projective if there exists another kQ-module N such that M ⊕ N is a free kQ-
module.

Definition 3.12: For any i ∈ Q0 we define the following kQ-modules:

� Pi = kQei, which is the k-vector space generated by all paths in Q with source equal to i.

� Si = Pi/kQ≥1Pi, where kQ≥1 is the kQ-ideal generated by Q1.

For these kQ-modules we have the following results:

� Any simple kQ-module is isomorphic to Si for some i ∈ Q0 ([7, Proposition 1.3.1]).

� Any indecomposable projective kQ-module is isomorphic to Pi for some i ∈ Q0, and for
i, j ∈ Q0 we have that Pi and Pj are not isomorphic if i 6= j ([7, Proposition 1.3.7]).

3.2 Cluster categories

For the entirety of this section we let k = C and we fix a finite acyclic quiver Q = (Q0, Q1). In this
section we will introduce the cluster category of Q (introduced by Aslak Bakke Buan et al. in [8]).

We first recall some definitions of category theory, where we follow Franco Rota’s lecture notes [9].

Definition 3.13: Let A be an abelian category (for instance the category of modules over a ring).
A cochain complex (A•, d•) of objects in A is a sequence of objects . . . , A−1, A0, A1, A2, . . . in A
connected by morphisms dn : An → An+1 (called boundary operators or differentials) such that
dn+1 ◦ dn = 0. We also write a cochain complex of A as

· · · A−1 A0 A1 A2 · · ·d−2 d−1 d0 d1 d3

A morphism of cochain complexes f• : (A•, d•A) → (B•, d•B) is a family of morphisms (fn : An →
Bn)n∈Z such that fn+1 ◦ dnA = dnB ◦ fn for all n ∈ Z.
This means we have a category of cochain complexes of objects inA, which we denote with Kom(A).
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We also have a category of bounded cochain complexes of objects in A whose objects are those
cochain complexes (A•, d•) in Kom(A) for which there exists an integer N ∈ Z>0 such that An = 0
for all n ∈ Z with |n| ≥ N . This category is denoted with Komb(A) and is a full subcategory of
Kom(A).
To a cochain complex (A•, d•) in Kom(A) we associate the n-th cohomology group Hn(A•) which
is equal to Ker(dn)/Im(dn−1) (which is an object of A). Note that a morphism f• : (A•, d•A) →
(B•, d•B) induces a morphism on the n-th cohomology groups Hn(f•) : Hn(A•) → Hn(B•). We
call f• a quasi-isomorphism if Hn(f•) is an isomorphism in A for all n ∈ Z.
Finally, the bounded derived category Db(A), is a category whose objects are bounded cochain com-
plexes of objects in A, i.e., ob(Db(A)) = ob(Komb(A)), together with a functor F : Komb(A) →
Db(A) satisfying the following universal property: For any category C and functor G : Komb(A)→
C such that any quasi-isomorphism f• in Komb(A) maps to an isomorphism in C under the functor
G, we have that G factors through F .

Since kQ-mod is an abelian category, the bounded derived category of kQ-mod, which we denote
as Db(kQ), is well-defined, and we have a projection ob(kQ-mod) → ob(Db(kQ)) which maps a
kQ-module M to the cochain complex

· · · 0 M 0 · · ·d−2 d−1 d0 d1

We will think of a kQ-module as being an object in Db(kQ) under this projection. Moreover, we
have that Db(kQ) is a triangulated category:

Definition 3.14: Let D be an additive category (for instance the category of modules over a ring or
the category of cochain complexes over such a category). The structure of a triangulated category
on D is given by an additive auto-equivalence T : D → D called the shift functor, and a set of
distinguished triangles or exact triangles, where a triangle is a sequence in D of the form

A B C T (A),

such that axioms TR1-TR4 below are respected. In stating of these axioms we use the following
notation: For any n ∈ Z and for any object A in D, we write A[n] = Tn(A), and for any morphism
f : A→ B we write f [n] for the morphism Tn(f) : A[n]→ B[n]. A morphism of triangles is given
by morphisms f, g and h in D such that the following diagram commutes:

A B C A[1]

A′ B′ C ′ A′[1]

f g h f [1]

Moreover, it is called an isomorphism if f, g and h all three are isomorphisms.

We now state the axioms:

TR1.

• Any triangle of the form

A A 0 A[1]id
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is distinguished;

• Any triangle isomorphic to a distinguished triangle is distinguished;

• Any morphism f : A→ B fits in a distinguished triangle

A B C A[1].
f

TR2. A triangle

A B C A[1]
f g h

is distinguished if and only if the triangle

B C A[1] B[1]
g h −f [1]

is distinguished.

TR3. Suppose we have a diagram

A B C A[1]

A′ B′ C ′ A′[1]

f g f [1]

where the rows are distinguished triangles and the leftmost square is commutative, then
there exists a (not necessarily unique) morphism h : C → C ′, which, if added to the
diagram above, makes the diagram into a morphism of distinguished triangles.

TR4. (Octahedral axiom) Let u : A→ B and v : B → C be morphisms, then by TR1 we have
distinguished triangles

A B C ′ A[1],

B C A′ B[1],

A C B′ A[1].

u f1 f2

v g1 g2

v◦u h1 h2

The axiom then states that there exists a distinguished triangle

C ′ B′ A′ C ′[1],
p q r

such that

g1 = q◦h1, f2 = h2◦p, r = f1[1]◦g2, g2◦q = u[1]◦h2, and p◦f1 = h1◦v.

The name of this axiom comes from the fact that these morphisms fit in a ‘commutative’
diagram which gives the skeleton of an octahedron:
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B′

C ′ A′

A C

B

q

f1

p

f2

r

g2

h2

v◦u

u

h1

g1

v

Where the arrows of the form X � Y mean the morphism is from X to Y [1].

Given objects A,B in D, we end this definition of triangulated categories with introducing a
special notation for the set of morphisms from A to B[n] for n ∈ Z: we will write HomD(A,B[n]) =
ExtnD(A,B), and the set Ext1D(A,A) are called the self-extensions of A.

For more information on the definitions above, we refer to [9].

The shift functor on Db(kQ) is defined as follows: Let (A•, d•A) be an object in Db(kQ), then
for n ∈ Z we have that (A•, d•A)[n] = (B•, d•B) where for any m ∈ Z we have Bm = An+m and
dmB = (−1)ndn+mA . We let τ = D Tr denote the Auslander-Reiten translation on Db(kQ) which is an
auto-equivalence of Db(kQ). The exact definition of this functor is not important for our discussion
in this chapter, for more information on this translation we refer to the article of Henning Krause
and Jue Le on this subject ([10]).

Definition 3.15: The cluster category of Q is the orbit category CQ = Db(kQ)/F , where F is the
auto-equivalence τ−1[1].

We state some properties for CQ which can be found in [8, Section 1]. The objects of the category
CQ are the F -orbits of objects in Db(kQ). It can be shown that CQ is a triangulated category, and
that the natural functor π : Db(kQ) → CQ is a triangle functor, i.e. π commutes with the shift
functor on both categories and preserves distinguished triangles ([11]). The shift functor on CQ is

induced by the shift in Db(kQ). For objects X,Y ∈ Db(kQ), let X̃ and Ỹ denote the corresponding
objects in CQ, then we have

HomCQ(X̃, Ỹ ) =
⊔
i∈Z

HomDb(kQ)(F
iX,Y ),

and we have HomDb(kQ)(F
iX,Y ) 6= 0 for only finitely many i ∈ Z.

For any category A we write ind(A) for the set of isomorphism classes of indecomposable objects
in A. We end this section with following important result:
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Proposition 3.16 ([8, Proposition 1.6]): We have that any set of representatives for ind(kQ-mod)
(seen as objects in CQ) together with the objects π(Pi[1]) for all i ∈ Q0, forms a set of representatives
for ind(CQ).

3.3 The Caldero-Chapoton map

In this section we introduce the Caldero-Chapoton map (introduced by Philippe Caldero and
Frédéric Chapoton in [12]), and discuss the relation it induces between the objects of the clus-
ter category associated to a finite acyclic quiver and the cluster variables of the cluster algebra
associated to this quiver.

As before, we let k = C and we fix a finite acyclic quiver Q = (Q0, Q1).

Let V be a finite dimensional k-vector space, then for d ∈ Z≥0 the Grassmannian Grd(V, k) is the set
of all linear subspaces of M of dimension d. It is a well-known fact that Grd(V, k) smooth projective
variety. Now let M be a kQ-module then we can also consider the Grassmannian Grd(M,kQ) of
kQ-submodules of M with dimension d, then Grd(M,kQ) is a closed subvariety of Grd(M,k) and
hence it is a projective variety. Since every kQ-module naturally corresponds to a Q-representation,
we now consider the following definition:

Definition 3.17: Let M be a Q-representation, then the dimension vector of M is the vector
dim(M) = (dimk(Mi))i∈Q0 ∈ NQ0 .

Let M be a Q-representation, then regarding M as a kQ-module, we have

dim(M) = (dimk(eiM))i∈Q0 ,

in particular, we have

dimk(M) =
∑
i∈Q0

dimk(eiM).

Now let d = (di)i∈Q0 ∈ NQ0 and let d =
∑

i∈Q0
di. We define the quiver Grassmannian Grd(M)

to be the closed subvariety of Grd(M,kQ) of all kQ-submodules N of M with dim(N) = d (which
again is a projective variety).

Definition 3.18: The homological Euler form on kQ-mod is defined as the bilinear form

〈−,−〉 : ZQ0 × ZQ0 −→ Z, (a,b) 7−→
∑
i∈Q0

aibi −
∑
α∈Q1

as(α)bt(α).

Now let x = {xi | i ∈ Q0} be a set of indeterminates over Q, and let Z[x±1] denote the ring of all
Laurent polynomials in the variables {xi | i ∈ Q0} with coefficients in Z.

Definition 3.19: The Caldero-Chapoton map is a map X? : ob(CQ) → Z[x±1] which assigns a
Laurent polynomial XM ∈ Z[x±1] to any object M in the category CQ. Let M be an object in CQ,
then XM is defined as follows:

1. If M is an indecomposable kQ-module (recall that we can regard kQ-modules as objects in
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Db(kQ) and objects of Db(kQ) can be projected onto CQ), then

XM =
∑

d∈NQ0

χ(Grd(M))
∏
i∈Q0

x
−〈d,dim(Si)〉−〈dim(Si),dim(M)−d〉
i , (5)

where χ(Grd(M)) denotes the Euler-Poincaré characteristic of the projective variety Grd(M).

2. If M = Pi[1] for some i ∈ Q0, then
XM = xi.

3. If M = N1 ⊕N2 for objects N1, N2 in CQ, then

XM = XN1 ·XN2 .

By Proposition 3.16 the Caldero-Chapoton map is well-defined. Moreover, since for any two kQ-
modules M and N , and for any dimension vector d ∈ NQ0 we have (by [2, Proposition 1]) that

χ(Grd(M ⊕N)) =
∑

e+f=d

χ(Gre(M)) · χ(Grf (N)),

we have that the formula (5) for XM also holds when M is not indecomposable.

Remark 3.20: Let M be a kQ-module, write dim(M) = m = (mi)i∈Qi , and let d ∈ NQ0 , then for
any i ∈ Q0 we have that −〈d,dim(Si)〉 − 〈dim(Si),dim(M)− d〉 is equal to

−di +
∑

α∈Q1:t(α)=i

ds(α) − (mi − di) +
∑

α∈Q1:s(α)=i

(mt(α) − dt(α)),

which can be written as

−mi +
∑

α∈Q1:t(α)=i

ds(α) +
∑

α∈Q1:s(α)=i

(mt(α) − dt(α)).

This implies we have

XM =
∏
i∈Q0

x−mii

 ∑
d∈NQ0

χ(Grd(M))
∏
α∈Q1

x
mt(α)−dt(α)
s(α) x

ds(α)
t(α)

 .

As we mentioned at the beginning of this section, we will discuss the relation X? induces between
objects in CQ and the cluster variables of the ‘the cluster algebra associated to Q’. What this last
part means we now make precise:

Definition 3.21: Write TQ = TQ0 , and let BQ be the skew-symmetric matrix associated to Q as
in Remark 3.3. Now take some vertex tQ ∈ TQ and let EQ =

(
(u(t))t∈TQ , (B(t))t∈TQ

)
denote the

unique coefficient-free exchange pattern on TQ with B(tQ) = BQ (as in Example 1.8). Then we
let A(Q) denote the cluster algebra of rank #Q0 over Z associated to the exchange pattern EQ.
We call tQ the initial vertex of A(Q), and we call A(Q) the cluster algebra associated to Q (this is
unambiguous since the choice of initial vertex does not change the structure of the resulting cluster
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algebra). We call a coefficient-free cluster algebra acyclic if it can be obtained in this way from a
finite acyclic quiver.

The relation induced by X? between objects of CQ and cluster variables of A(Q) is given by the
following theorem proved by Philippe Caldero and Bernhard Keller:

Theorem 3.22 ([13, Theorem 4]): The map X? induces a one-to-one correspondence between the
indecomposable objects without self-extensions of CQ and the cluster variables of A(Q).

Which they deduced from the following theorem:

Theorem 3.23 ([13, Theorem 2]): Let M and N be indecomposable objects in CQ such that
Ext1(M,N) is one-dimensional. Then we have

XMXN = XB +XB′ ,

where B and B′ are the unique objects (up to isomorphism) such that there exist non-split triangles

N B M N [1], M B′ N M [1].

After this, Philippe Caldero and Markus Reineke proved the following theorem:

Theorem 3.24 ([2, Theorem 1]): For any kQ-module M without self-extensions then for any
d ∈ NQ0 we have that the Euler-Poincaré characteristic χ(Grd(M)) is nonnegative.

They used this theorem to deduce the Positivity conjecture for acyclic cluster algebras:

Theorem 3.25 ([2, Theorem 2]): The cluster variables of A(Q) expressed in the variables of any
cluster x lie in Z≥0[x±1].

3.4 Positivity for coefficient-free cluster algebras of rank 2

In this section we give an overview of how Grégoire Dupont proves the Positivity conjecture for
coefficient-free cluster algebras of rank 2, after which we prove this result using just the definitions
of Chapter 1, the results of Chapter 2 and the fact that the Positivity conjecture holds for acyclic
cluster algebras.

As we saw in Example 1.5, we can write T2 as

· · · 2 t0
1 t1

2 t2
1 t3

2 t4
1 · · · .

This means that the set of vertices of T2 is of the form {tn}n∈Z such that for any n ∈ Z we have
that T2 contains the edges tn−1 tn and tn tn+1 (in particular, we have that these

edges cannot have the same label). We therefore can assume that for any n ∈ Z we have that

T2 contains the edges t2n−1
2 t2n and t2n

1 t2n+1 . We also saw in Example 1.5 that any
coefficient-free exchange pattern E on T2 is completely determined by the sign-skew-symmetric 2×2
matrix B(t0) = B = (bij). Moreover, since for any n ∈ Z, we have that the exchange polynomials

associated to the edges t2n−1
2 t2n and t2n

1 t2n+1 are respectively given by x
|b21|
1 +1 and

x
|b12|
2 + 1, any coefficient-free exchange pattern E on T2 is completely determined by the values of
|b12| and |b21|. This means that any nontrivial coefficient-free cluster algebra of rank 2 is uniquely
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determined by a pair of positive integers a, b such that

B(t0) =

(
0 b
−a 0

)
,

since taking

B(t0) =

(
0 −b
a 0

)
,

induces the same cluster algebra. We denote a cluster algebra of this form with A(a, b).

To prove the Positivity conjecture for a cluster algebra A(a, b), Dupont first defines a finite acyclic
quiver Ka,b as follows: Let v = {v1, . . . , va} and w = {w1, . . . , wb} be two sets, then we take

(Ka,b)0 = v tw

(where v tw denotes the disjoint union of v and w), and

(Ka,b)1 = { vi → wj | i ∈ [1, a], j ∈ [1, b] } .

To ease notation, we write Q = Ka,b. Now let A(Q) be the cluster algebra associated to the quiver
Q with initial vertex tQ ∈ TQ, and let u = {ui}i∈Q0 be a cluster in A(Q) associated to tQ. To
relate the cluster algebras A(Q) and A(a, b), Dupont defines a Z-algebra homomorphism π called
a folding:

π : Z[u±1] −→ Z[x1(t0)
±1, x2(t1)

±1], ui 7−→

{
x1(t0) if i ∈ v;

x2(t1) if i ∈ w.

Given n ∈ Z, Dupont shows that for any v, v′ ∈ v we have π(XPv [n]) = π(XPv′ [n]
) and w,w′ ∈ w

we have π(XPw[n]) = π(XPw′ [n]
). This allows for the following description of cluster variables in

A(a, b):

Proposition 3.26 ([3, Proposition 7]): For any n ∈ Z, for any v ∈ v and for any w ∈ w we have

x1(t2n) = π(XPv [n+1]) and x2(t2n+1) = π(XPw[n+1]).

For completion, we include the proof given by Dupont:

Proof. The proof goes by induction on n. We have x1(t0) = π(uv) = π(XPv [1]) and x2(t1) =
π(uw) = π(XPw[1]).
Now fix some n ∈ Z and assume we have π(XPv [n]) = x1(t2n−2) and π(XPw[n]) = x2(t2n−1). It can
be shown that EndCQ(Pv[n+ 1]) ∼= k (see [8]), this means we have

k ∼= EndCQ(Pv[n+ 1])

∼= HomCQ(Pv[n+ 1], Pv[n+ 1])

∼= HomCQ(Pv[n+ 1], (Pv[n])[1])

∼= Ext1CQ(Pv[n+ 1], Pv[n]).
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Since CQ is 2-Calabi-Yau (see [11]), we have an isomorphism of k-vector spaces

k ∼= Ext1CQ(Pv[n+ 1], Pv[n]) ∼= Ext1CQ(Pv[n], Pv[n+ 1]),

The associated triangles as in Theorem 3.23 are

Pv[n] −→ 0 −→ Pv[n+ 1] −→ Pv[n+ 1],

Pv[n+ 1] −→
b⊕

j=1

Pwj [n] −→ Pv[n] −→ Pv[n+ 2],

Hence we have

XPv [n]XPv [n+1] =
b∏

j=1

XPwj [n]
+ 1.

Using our induction hypothesis we get

π(XPv [n+1]) =
x2(t2n−1)

b + 1

x1(t2n−2)
= x1(t2n).

The other cases are proved in a similar way.

From this proposition the Positivity conjecture for coefficient-free cluster algebras of rank 2 can be
easily deduced:

Theorem 3.27 ([3, Theorem 8]): Any cluster variable of A(a, b) expressed in the variables of any
cluster x lies in Z≥0[x±1].

Proposition 3.26 is the crucial ingredient for proving the Positivity conjecture for coefficient-free
cluster algebras of rank 2. Our goal for the remainder of this section is to describe the relation
between the cluster variables of A(a, b) and the cluster variables of A(Q) as in this proposition but
without use of the Caldero-Chapoton map. To do this, we consider the following definition:

Definition 3.28: Let tQ ∈ TQ be the initial vertex of A(Q), then an A(Q)-embedding of A(a, b)
is a map ϕ : T2 → TQ satisfying:

1. ϕ(t0) = tQ;

2. For any edge t 1 t′ in T2 we have that there exists a path between ϕ(t) and ϕ(t′) of
length a, with the occurring edges having distinct labels, all of which are in v;

3. For any edge t 2 t′ in T2 we have that there exists a path between ϕ(t) and ϕ(t′) of
length b, with the occurring edges having distinct labels, all of which are in w,

together with a family of maps (ϕt)t∈T2 where for t ∈ T2 we have:

ϕt : Z[u(ϕ(t))±1] −→ Z[x1(t)
±1, x2(t)

±1], ui(ϕ(t)) 7−→

{
x1(t) if i ∈ v;

x2(t) if i ∈ w.

We call ϕt the folding centered at t.
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Note that we have the following result:

Proposition 3.29: Let B = (bij) be a matrix for which there exists a sequence (ki)
n
i=1 of elements

in v such that
B = (µk1 ◦ · · · ◦ µkn)(BQ),

then for any v ∈ v we have bvw = bvw′ 6= 0 (and hence bwv = bw′v 6= 0) for any w,w′ ∈ w. Moreover,
for any v, v′ ∈ v we have bvv′ = 0, and we have bww′ = 0 for any w,w′ ∈ w.

Proof. We proof this by induction on n. For n = 0, we have B = BQ in which case we have
nothing to prove. Now assume that n > 0 and let (ki)

n−1
i=1 be a sequence of elements in v. Now let

B′ = (b′ij) = (µk2 ◦ · · · ◦ µkn)(BQ),

then, writing v = k1, we have B = µv(B
′). Hence, for any i, j ∈ Q0, we have by definition:

bij =

{
−b′ij if i = v or j = v,

b′ij +
|b′iv |b′vj+b′iv |b′vj |

2 otherwise.

Now let i, j ∈ Q0, then we can consider the following cases:

� i = v or j = v: We have bij = −b′ij . In particular, we therefore have bvw = bvw′ 6= 0 for all
w,w′ ∈ w;

� i ∈ v or j ∈ v: This means we have b′iv = 0 or b′vj = 0, either way we have bij = b′ij ;

� i, j ∈ w: Now we have b′iv and b′vj are both nonzero and have opposite sign, which implies we
have bij = b′ij .

From the case distinction above it is directly clear that B satisfies the necessary properties.

By a symmetric argument we also have:

Corollary 3.30: Let B = (bij) be a matrix for which there exists a sequence (lj)
n
j=1 of elements

in w such that
B = (µl1 ◦ · · · ◦ µln)(BQ),

then for any w ∈ w we have bvw = bv′w 6= 0 (and hence bwv = bwv′ 6= 0) for any v, v′ ∈ v. Moreover,
for any v, v′ ∈ v we have bvv′ = 0, and we have bww′ = 0 for any w,w′ ∈ w.

From these results we can deduce the following result:

Corollary 3.31: Let ϕ be an A(Q)-embedding of A(a, b), then the following statements hold:

1. For any t ∈ T2 we have B(ϕ(t)) = ±BQ;

2. Let t 1 t′ be an edge in T2. Let {ti}ai=0 denote the vertices in TQ occurring in the path
from Definition 3.28.2, then for any i, j ∈ [0, a] and for any v ∈ v the exchange polynomials
associated the edges ti

v and tj
v are the same.

3. Let t 2 t′ be an edge in T2. Let {tj}bj=0 denote the vertices in TQ occurring in the path
from Definition 3.28.3, then for any i, j ∈ [0, b] and for any w ∈ w the exchange polynomials
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associated the edges ti
w and tj

w are the same.

From this corollary we can deduce the desired result:

Lemma 3.32: Let ϕ be an A(Q)-embedding of A(a, b), then for any t, t′ ∈ T2, for any v ∈ v and
for any w ∈ w we have

x1(t
′) = ϕt(uv(ϕ(t′))) and x2(t

′) = ϕt(uw(ϕ(t′))).

Proof. We prove this lemma with induction on the length of the shortest path between t and t′.
By definition, we have ϕt(uv(ϕ(t))) = x1(t) for any v ∈ v and ϕt(uw(ϕ(t))) = x2(t) for any w ∈ w.
Now let t′ ∈ T2 such that t 6= t′ and

x1(t
′) = ϕt(uv(ϕ(t′))) and x2(t

′) = ϕt(uw(ϕ(t′))).

For any v ∈ v and for any w ∈ w let Gv and Hv denote the cluster polynomials in Z[u±] associated
to the vertex ϕ(t), such that

Gv(u(ϕ(t′))) = ϕt(uv(ϕ(t′))) and Hw(u(ϕ(t′))) = ϕt(uw(ϕ(t′))).

Moreover, let G and H denote the cluster polynomials in Z[x±11 , x±12 ] associated to the vertex t,
such that

Gv(u(ϕ(t′))) = ϕt(uv(ϕ(t′))) and Hw(u(ϕ(t′))) = ϕt(uw(ϕ(t′))).

Now we define the Z-algebra homomorphism π : Z[u±1]→ Z[x±11 , x±12 ] given by the mapping

ui 7−→

{
x1 if i ∈ v;

x2 if i ∈ w.

Then we have G = π(Gv) for all v ∈ v and H = π(Hw) for all w ∈ w. Now let t′ 1 t′′ be
an edge in T2 with associated exchange polynomial P1 = xb2 + 1, then for any v ∈ v we have that

exchange polynomial associated to the edge ϕ(t′) v in TQ is given by

Pv =
∏
w∈w

uw + 1,

which follows from the first part of Corollary 3.31. This means that for any v ∈ v we have
P1 = π(Pv). This means we have the following commutative diagram:

Z[u±1] Z[u±1]

Z[x±11 , x±12 ] Z[x±11 , x±12 ],

φv

π π

x1 7→P1/x1

where φv : Z[u±1]→ Z[u±1] denotes the Z-algebra homomorphism given by the mapping

ui 7−→

{
Pi/ui if i ∈ v;

ui if i ∈ w.
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In particular we have

x1(t
′′) = ϕt(uv(ϕ(t′′))) and x2(t

′′) = ϕt(uw(ϕ(t′′))).

A similar argument can be given for the edge t′ 2 , which then proves the lemma.

In the next chapter we will generalize this procedure of creating an embedding of a coefficient free
cluster algebra into a acyclic cluster algebra to deduce some properties of coefficient matrices.

3.5 Generalization of A(Q)-embedding

In the previous section we saw that by embedding a coefficient-free cluster algebra of rank 2 in a
particular acyclic cluster algebra, the Positivity conjecture for the embedded cluster algebra could
be deduced from the fact that the Positivity conjecture holds for acyclic cluster algebras (Theorem
3.27). In this section we will show a potential way to generalize this procedure for a certain class
of cluster algebras of rank ≥ 3.

Definition 3.33: We say that a sign-skew-symmetric N × N matrix B = (bij) is acyclic if there
exists a finite acyclic quiver Q, with

Q0 =
N⊔
i=1

vi,

where vi denotes a finite set for each i ∈ [1, N ], and, writing BQ = (b′vw) for the skew-symmetric
matrix associated to Q (see Remark 3.3), we have for any i, j ∈ [1, N ] and for any vi ∈ vi that

bij =
∑
vj∈vj

b′vivj and

∣∣∣∣∣∣
∑
vj∈vj

b′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|b′vivj |.

For any i ∈ [1, N ] we will denote a representative of the set vi with vi, and when using this notation
in an equation, we take every occurrence of vi in that equation to be the same representative. Using
this notation we can write the above equalities as

bij =
∑
vj∈vj

b′vivj and

∣∣∣∣∣∣
∑
vj∈vj

b′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|b′vivj |

for any i, j ∈ [1, N ].

Example 3.34: Let a, b ∈ Z>0, then we consider the matrix

B =

 0 b 1
−a 0 0
−1 0 0

 .

To the matrix B we associate a finite acyclic quiver KB as follows: Let v = {v1, . . . , va}, w =
{w1, . . . , wb} and y = {y1, . . . , ya} be three sets, then we take

(KB)0 = v tw t y,
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and
(KB)1 = { vi → wj | i ∈ [1, a], j ∈ [1, b] } ∪ { vi → yi | i ∈ [1, a] } .

Then it is clear that matrix associated to KB satisfies the equalities above and we have that B is
acyclic.

We now fix an acyclic sign-skew symmetric N ×N matrix B = (bij), and we let Q be an associated
quiver as in the definition above.

Remark 3.35: Let i ∈ [1, N ] and vi1 ∈ vi, and write µvi1
(BQ) = B′Q = (b′′vw). Then for any vi2 ∈ vi

not equal to vi1, we have for any w ∈ Q0 that b′′
vi2w

= b′
vi2w

and b′′
wvi2

= b′
wvi2

. This follows from the

fact that b′
vi1v

i
2

= 0 = b′
vi2v

i
1

(otherwise the equalities in the definition fail). In particular, for any

j ∈ [1, N ], we have

|bij | =
∑
vj∈vj

|b′′vi1vj | =
∑
vj∈vj

|b′′vivj |.

Since this implies that b′′
vi1v

i
2

= 0 = b′′
vi2v

i
1

for any vi2 ∈ vi, we see that consecutively mutating BQ in

any sequence of directions in vi does not depend on the ordering of this sequence. This allows us
to write µ(vi, BQ) for the matrix obtained by mutating the matrix BQ consecutively, once in each
direction in vi, in any order.

Lemma 3.36: For any n ∈ [1, N ], let C = (cij) = µn(B) and let CQ = µ(vn, BQ) = (c′vw), then
for any i, j ∈ [1, N ] we have

cij =
∑
vj∈vj

c′vivj and

∣∣∣∣∣∣
∑
vj∈vj

c′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|c′vivj |

Proof. For j ∈ [1, N ] we have

cnj = −bnj = −
∑
vj∈vj

b′vnvj =
∑
vj∈vj

c′vnvj ,

and similarly for i ∈ [1, N ] we have

cin = −bin = −
∑
vn∈vn

b′vivn =
∑
vn∈vn

c′vivn .
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That the right equality holds in these two cases is clear. Now let i, j ∈ [1, N ] \ {n}, then we have

∑
vj∈vj

c′vivj =
∑
vj∈vj

(
b′vivj +

∑
vn∈vn

|b′
vivn
|b′
vnvj

+ b′
vivn
|b′
vnvj
|

2

)

=
∑
vj∈vj

b′vivj +
1

2

∑
vn∈vn

|b′vivn | ·
∑
vj∈vj

b′vnvj

+
1

2

∑
vn∈vn

b′vivn ·
∑
vj∈vj

|b′vnvj |


=
∑
vj∈vj

b′vivj +
1

2

∑
vn∈vn

|b′vivn | ·
∑
vj∈vj

b′vnvj

+
1

2

∑
vn∈vn

b′vivn ·
∑
vj∈vj

|b′vnvj |


= bij +

bnj
2

∑
vn∈vn

|b′vivn |+
|bnj |

2

∑
vn∈vn

b′vivn

= bij +
|bin|bnj + bin|bnj |

2
= cij .

Now we just have to show that for any i ∈ [1, N ] not equal to n we have∣∣∣∣∣∣
∑
vj∈vj

c′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|c′vivj |.

Now let i, j ∈ [1, N ]\{n} be distinct, and let vi ∈ vi and vj ∈ vj such that b′
vivj
6= 0, b′

vnvj
6= 0 and

bvivn 6= 0. Moreover, assume that b′
vnvj

and b′
vnvj

have the same sign s (where s = ±1). Without
loss of generality, we assume s = −1. This means there exist arrows

vj −→ vn and vn −→ vi

in Q. This implies we must have b′
vivj

< 0, otherwise we would have that there exists an arrow
vi → vj in Q which would mean that Q contains an oriented cycle and that cannot happen since
Q is acyclic. This means that every nonzero term in the sum

∑
vn∈vn

|b′
vivn
|b′
vnvj

+ b′
vivn
|b′
vnvj
|

2

has the same sign as b′
vivj

. We conclude that for any i ∈ [1, N ] not equal to n we have∣∣∣∣∣∣
∑
vj∈vj

c′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|c′vivj |.

Now note that the quiver associated to the matrix CQ in the lemmma above is not necessarily
acyclic, which can be seen in the following example:
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Example 3.37: Consider the sign-skew-symmetric matrix

B =

 0 2 −1
−1 0 0
1 0 0

 ,

then B is acyclic, and we can associate a quiver Q to B as follows: Let v = {v1}, w = {w1, w2}
and y = {y1}, then we set

Q0 = v tw t y,

and let

Q1 = {v1 → w1, v1 → w2, y1 → v1}.

This means that the matrix BQ can be written as

BQ =


0 1 1 −1
−1 0 0 0
−1 0 0 0
1 0 0 0


where the rows and columns are indexed over the set {v1, w1, w2, y1}. Now we have

µ1(B) =

 0 −2 1
1 0 −1
−1 2 0

 ,

and

µv1(BQ) = µ(v, BQ) =


0 −1 −1 1
1 0 0 −1
1 0 0 −1
−1 1 1 0

 .

The quiver associated to µv1(BQ) is the quiver Q′ with

Q′0 = v tw t y,

and with
Q′1 = {v1 → y1, w1 → v1, w2 → v1, y1 → w1, y1 → w2}.

Clearly we have the path v1 → y1 → w1 → v1 in Q, which is an oriented cycle. We conclude that
Q′ is not acyclic.

This gives rise to the following definition:

Definition 3.38: Fix some vertex t0 ∈ TN . Let
(
B(t)

)
t∈TN

be a family of matrices such that

B(t0) = B and such that for any vertex t n t′ in TN we have B(t′) = µn(B(t)). Moreover, let(
BQ(t)

)
t∈TN

be a family of matrices such that BQ(t0) = BQ and such that for any vertex t n t′

in TN we have BQ(t′) is a matrix obtained by mutating the matrix BQ(t) consecutively, once in
each direction in vn (order of applying the mutations does not matter). We call the matrix B
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quiver representable (with respect to the quiver Q) if for any vertex t ∈ TN , writing B(t) = (bij)
and BQ(t) = (b′vw), we have

bij =
∑
vj∈vj

b′vivj and

∣∣∣∣∣∣
∑
vj∈vj

b′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|b′vivj |

for any i, j ∈ [1, N ].

If B is quiver representable with respect to the quiver Q, then we have the following results:

1. For any t ∈ TN , the matrix B(t) is sign-skew-symmetric;

2. To the matrix B we can associate a unique coefficient-free exchange pattern on TN with
B(t0) = B, as in Example 1.8.

3. Writing A(B) for the cluster algebra of rank N over Z associated to this unique coefficient-free
exchange pattern on TN associated to B, then we can define an A(Q)-emmbedding of A(B)
in a similar fashion as in the previous section and we have that an analogue of Lemma 3.32
holds for such an embedding. (In particular, the Positivity conjecture holds for the cluster
algebra A(B).)

A case when an acyclic matrix is quiver representable is given by the lemma:

Lemma 3.39: For any a, b ∈ Z>0, then the acyclic matrix

B =

 0 b 1
−a 0 0
−1 0 0

 ,

is quiver representable with respect to the associated quiver Q equal to the quiver KB as constructed
in Example 3.34.

Proof. We claim that for any t ∈ T3 we can write

BQ(t) =

 B0,0 B0,1 B0,2

−BT
0,1 B1,1 B1,2

−BT
0,2 −BT

1,2 B2,2

 ,

where:

1. B0,0, B1,1 and B2,2 are respectively the a× a, the b× b and the a× a zero matrix;

2. B0,1 is an a× b matrix, all of whose entries are the same;

3. B1,2 is an b× a matrix, all of whose entries are the same;

4. B0,2 is an a × a matrix, with all of its diagonal entries the same and all of its non-diagonal
entries the same, such that the absolute value of the difference of a diagonal entry and a
non-diagonal entry is equal to 1.

We know that BQ(t0) is of this form. Now we can prove our claim using induction on the length
of the shortest path between t and t0: Let t ∈ T3 such that BQ(t) satisfies our claim, and for
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n ∈ {1, 2, 3} let t n tn be an edge in T3. Write

BQ(tn) =

 C0,0 C0,1 C0,2

−CT0,1 C1,1 C1,2

−CT0,2 −CT1,2 C2,2

 .

For all values of n we have C0,0 = B0,0, C1,1 = B1,1 and C2,2 = B2,2. Let p denote the unique value
of all the entries in B0,1, let q denote the unique value of all the entries in B1,2, and let r, s ∈ Z
such that |r− s| = 1 and such that the diagonal entries of B0,2 are equal to r and the non-diagonal
entries of B0,2 are equal to s. Now we distinguish three cases:

� n = 1: Now we have C0,1 = −B0,1 and C0,2 = −B0,2. If p 6= 0 and the sign of p is equal to
the sign of r+ s, then each entry of C1,2 is equal to q+ |p| · (r+ (a− 1)s). Otherwise, we have
C0,2 = B0,2.

� n = 2: In this case we have C0,1 = −B0,1 and C1,2 = −B1,2. If p and q are both nonzero with
equal sign, we have that C0,2 = B0,2 + C where C is the a × a integer matrix whose entries
are equal to b · |p| · q. Otherwise, we have C0,2 = B0,2.

� n = 3: We now have C0,2 = −B0,2 and C1,2 = −B1,2. If q 6= 0 and the sign of q is equal to
the sign of r+ s, then each entry of C0,1 is equal to p+ |q| · (r+ (a− 1)s). Otherwise, we have
C0,1 = B0,1.

In all three cases the matrix BQ(tn) satisfies the necessary properties, hence our claim holds.

Now let t ∈ T3 and write B(t) = (bij) and BQ(t) = (b′vw). From our claim we directly have∣∣∣∣∣∣
∑
vj∈vj

b′vivj

∣∣∣∣∣∣ =
∑
vj∈vj

|b′vivj |
(
∀i, j ∈ [1, 3]

)
.

Now applying the same argument as in the first part of the proof of Lemma 3.36, we have by
induction on the length of the shortest path between t and t0 in T3 that

bij =
∑
vj∈vj

b′vivj
(
∀i, j ∈ [1, 3]

)
.

As mentioned before, we can deduce the following theorem from this lemma:

Theorem 3.40: Let a, b ∈ Z>0 and let

B =

 0 b 1
−a 0 0
−1 0 0

 ,

then any cluster variable of A(B) expressed in the variables of any cluster x lies in Z≥0[x±1].

Remark 3.41: We expect that there exist many more acyclic matrices which are quiver repre-
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sentable. For instance, for a, b ∈ Z>0 the matrix

B =


0 b 1 0
−a 0 0 0
−1 0 0 1
0 0 −1 0

 ,

can be proven to be quiver representable using a similar argument as in Lemma 3.39. Moreover,
one can extend this process of embedding a cluster algebra into an acyclic cluster algebra to an
embedding of a cluster algebra into a skew-symmeteric cluster algebra. Then using the fact that
the Positivity conjecture holds for these skew-symmeteric cluster algebras ([4]), one can deduce
the Positivity conjecture for the cluster algebras which can be embedded into a skew-symmeteric
cluster algebra.
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4 Results and Conjectures

Now that we have seen some cases where the Positivity conjecture holds, does this allow us to say
more about (minimal) coefficient matrices and cluster polynomials? We already saw in Section 2.3
how there is a strong relation between the Positivity conjecture and minimal coefficient matrices
(see Corollary 2.30). In this chapter we will discuss the results we can deduce from the previous
chapter, and we end with a discussion of some conjectures about properties of minimal coefficient
matrices.

4.1 Totally positive coefficient matrices

To study the relation of coefficient matrices with the Positivity conjecture, we introduce the notion
of totally positive coefficient matrices.

Definition 4.1: For a, b ∈ Z>0, let Cf(a, b) denote the set of all triples (m,n,C) ∈ Z×Z×Mat2(Z)
such that C is an (seq(m, a), seq(n, b))-coefficient matrix. We identify an element (m,n,C) of
Cf(a, b) with its matrix C and we write m(C) = m and n(C) = n. In other words, we think of
Cf(a, b) as the set of all (m,n)-coefficient matrices C with m = seq(m(C), a) and n = seq(n(C), b).

On Cf(a, b) we define two maps

φ
(a,b)
D : Cf(a, b) −→ Cf(a, b) and φ

(a,b)
E : Cf(a, b) −→ Cf(a, b),

which we also will denote with φD and φE respectively if there is no confusion about the domains.
These maps are defined as follows: Let C ∈ Cf(a, b) be an (m,n)-coefficient matrix with m = m(C)
and n = n(C), and write D = D(C), E = E(C) and dim(C) = (x, y,K,L). Let m′ = seq(La −
m, a), then φD(C) = (La −m,n,C ′), where C ′ is the (m′,n)-coefficient matrix with origin (x, 0),
which for (k, l) ∈ Z2

≥0 is given by

c′k,l =
k∑
i=0

di,L−l

(
m′l
k − i

)
.

For n′ = seq(Kb − n, b), we have φE(C) = (m,Kb − n,C ′′), where C ′′ is the (m,n′)-coefficient
matrix with origin (0, y), which for (k, l) ∈ Z2

≥0 is given by

c′′k,l =

l∑
j=0

eK−k,j

(
n′k
l − j

)
.

Note that the maps φD and φE are well-defined by Lemma 2.21. The orbit of a coefficient matrix
C ∈ Cf(a, b) (denoted with O(a,b)(C) or just O(C)) is a family {Cn}n∈Z of coefficient matrices in
Cf(a, b) such that C0 = C, and for all n ∈ Z we have

C2n+1 = φD(C2n) and C2n = φE(C2n−1).

We say that C is reducible if there exists some N ∈ Z such that m(CN ) ≤ 0 and n(CM ) ≤ 0,
moreover, we call CN a reduced element of O(C). We say that C is totally positive if every
coefficient matrix in O(C) lies in Mat2(Z≥0).

We give a simple example of totally positive coefficient matrices:
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Example 4.2: Every minimal coefficient matrix in Cf(1, 1) is totally positive. This follows from
the fact for any m,n ∈ Z≥0 with m ≤ n we have that for the minimal (seq(m, 1), seq(n, 1))-
coefficient matrix C the matrices D′(C) and E′(C) lie in Mat2(Z≥0): We saw in Example 2.6 that
the matrix D = D(C) is for all (k, l) ∈ Z2

≥0 given by

dk,l =



(
n−m
k

)(
n− k
n− l

)
if k ≤ n and l ≤ m;

(
m

k

)(
nk

l

)
otherwise.

From this we can deduce that E′(C) lies in Mat2(Z≥0). Moreover, we have that the matrix E =
E(C) is for all (k, l) ∈ Z2

≥0 given by

ek,l =


(
m

k

)
if l = 0;

0 otherwise.

This means that the matrix D′(C) also lies in Mat2(Z≥0).

We conclude, using Lemma 2.28 and Corollary 2.29, that every minimal coefficient matrix in
Cf(1, 1) is totally positive.

Remark 4.3: Let C ∈ Cf(a, b), then 0 ∈ O(C) if and only if C = 0

Remark 4.4: To any coefficient matrix C ∈ Cf(a, b) with m = m(C) and n = n(C) we can
associate a Laurent polynomial

GC =
1

xm1 x
n
2

·
∑

(k,l)∈Z2
≥0

ck,lx
la
1 x

kb
2 . (6)

By definition, we now have that substituting (xb2 + 1)/x1 for x1 in GC results in the Laurent
polynomial GφD(C), and substituting (xa1 + 1)/x2 for x2 in GC results in the Laurent polynomial
GφE(C).

Lemma 4.5: Let C ∈ Cf(a, b) be a reducible coefficient matrix such that O(C) contains a reduced
element which lies in Mat2(Z≥0), then C is totally positive.

Proof. Write m = m(C) and n = n(C). Without loss of generality assume we have C 6= 0 is a
reduced element of O(C) such that C ∈ Mat2(Z≥0). Now consider the polynomial

F = x
|m|
1 x

|n|
2 ·

∑
(k,l)∈Z2

≥0

ck,lx
la
1 x

kb
2 ,

let A(a, b) be as in the previous chapter, and let t0 ∈ T2. Then for any coefficient matrix C ′ ∈ O(C)
there exists t ∈ T2, and G and H, cluster polynomials associated to t0 satisfying x1(t) = G(x(t0))
and x2(t) = H(x(t0)), such that the Laurent polynomial GC′ associated to C ′, as defined in the
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remark above, is equal to F (G,H). By Theorem 3.27 we have that G and H both have positive
coefficients, and by assumption F also has positive coefficients, hence C ′ ∈ Mat2(Z≥0).

Corollary 4.6: Let C be the matrix which has a single nonzero entry given by c0,0 = 1, then for
any n,m ∈ Z≥0 we have that the coefficient matrix (−m,−n,C) ∈ Cf(a, b) is totally positive.

This means that the Positivity conjecture holds for all cluster algebras of rank 2 (also the non-
coefficient-free cluster algebras):

Theorem 4.7: Let E be an exchange pattern on T2 with coefficients in some coefficient group P,
then any cluster algebra A associated to E satisfies the Positivity conjecture.

Proof. Follows directly from Corollary 2.30 and Corollary 4.6.

We end this section with discussing some other classes of totally positive coefficient matrices.

Proposition 4.8: Let (m,n,C) ∈ Cf(a, b) be a totally positive coefficient matrix, then for any
m′, n′ ∈ Z≥0 we have that (m−m′, n−n′, C) ∈ Cf(a, b) is also a totally positive coefficient matrix.

Proof. Let G(m,n,C) denote the Laurent polynomial associated to (m,n,C) as in Remark 4.4. Then

we haveG(m−m′,n−n′,C) = xm
′

1 xn
′

2 G(m,n,C) is the Laurent polynomial associated to (m−m′, n−n′, C).
Now we apply the same reasoning as in the proof of Lemma 4.5. Let A(a, b) be as in the previous
chapter, and let t0 ∈ T2. Now for any C ′ ∈ O((m−m′, n− n′, C)) there exists t ∈ T2, and G and
H, cluster polynomials associated to t0 satisfying x1(t) = G(x(t0)) and x2(t) = H(x(t0)), such that
the Laurent polynomial GC′ associated to C ′, as defined in the remark above, is equal to

G(m−m′,n−n′,C)(G,H) = Gm
′
Hn′G(m,n,C)(G,H).

By Theorem 3.27, G and H have both positive coefficients, and by the assumption that C is totally
positive, we have that G(m,n,C)(G,H) has positive coefficients. We conclude that GC′ has positive
coefficients, which means that (m−m′, n− n′, C) is totally positive.

Proposition 4.9: Let (m,n,C), (m′, n′, C ′) ∈ Cf(a, b) be two totally positive coefficient matrices.
Let C ′′ ∈ Mat2(Z≥0) be the matrix which for all (k, l) ∈ Z2 is given by

c′′k,l =
∑

(x,y)∈Z2

cx,yc
′
k−x,l−y,

then we have that (m+m′, n+ n′, C ′′) is totally positive in Cf(a, b).

Proof. This follows directly from the fact that

G(m+m′,n+n′,C′′) = G(m,n,C) ·G(m′,n′,C′).

Corollary 4.10: For any m,n ∈ Z≥0, let C ∈ Mat2(Z≥0) be a matrix with origin (0, 0) and which
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for (k, l) ∈ Z2
≥0 is given by

ck,l =

(
m
k

)(
n
l

)
,

then (m,n,C) is totally positive in Cf(a, b).

4.2 Conjectures

In the previous section we saw that any minimal coefficient matrix in Cf(a, b) which is reducible
is totally positive. Since every minimal coefficient matrix is defined and constructed in the same
way, one would expect that total positivity would be a property of every minimal coefficient matrix
in Cf(a, b). This would be in line with the Positivity conjecture in general, since one would not
expect the coefficient matrices occurring in the cluster polynomials in Theorem 2.25 to have negative
summands (regarded as a sum of minimal coefficient matrices see Proposition 2.11). This gives rise
to the following conjecture:

Conjecture 4.11: For any a, b ∈ Z>0, any minimal coefficient matrix in Cf(a, b) is totally positive.

We note that, as most of the classes of totally positive minimal coefficient matrices arise from the
fact that the Positivity conjecture holds for acyclic cluster algebras. As we mentioned in Remark
3.41, there are more results to obtain in this direction. We expect that obtaining these results it
might result in a proof of the conjecture above.

For the remainder of this section we fix some N > 1, some coefficient group P and some exchange
pattern E =

(
(x(t))t∈TN , (B(t))t∈TN , (p(t))t∈TN

)
on TN with coefficients in P. That Conjecture

4.11 represents an important step in the direction of proving the Positivity conjecture in for an
arbitrary cluster algebra, follows from the following discussion:

Definition 4.12: Let M be a Laurent monomial in the variables x1, . . . , xN , write

M =
N∏
i=1

xmii
(
mi ∈ Z

)
.

Let G = F/M be an M -cluster polynomial associated to some vertex t ∈ TN . Then G is called
positive if for any distinct u, v ∈ [1, N ] we have that

G =
xmuu xmvv
M

·

[mu]+∑
i=0

[mv ]+∑
j=0

Fi,j ·Gi,j

 ,

where for any i ∈ [0, [mu]+], j ∈ [0, [mv]+], we have that Gi,j is a minimal xmu−iu xmv−jv -cluster
polynomial, and Fi,j ∈ ZP[x1, . . . , xN ] is a subtraction free polynomial.

Now letG be some positiveM -cluster polynomial associated to some vertex t ∈ TN . Now fix distinct
u, v ∈ [1, N ], and let T{u,v} denote the 2-regular subtree of TN , containing the vertex t. Now for
any t′ ∈ T{u,v} let Gu,t′ and Gv,t′ denote the cluster polynomials such that xu(t′) = Gu,t′(x(t))
and xv(t

′) = Gv,t′(x(t)). Then, assuming Conjecture 4.11 holds, we have for any t′ ∈ T{u,v} that
substituting Gu,t′ for xu and Gv,t′ for xv in G gives us a cluster polynomial G′ associated to the
vertex t′ whose numerator is a subtraction free polynomial. In line with the Positivity conjecture,
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one would expect that G′ is again a positive cluster polynomial. A result which brings us close to
proving this can be stated as the following conjecture:

Conjecture 4.13: Let m,n ∈ Z≥0 and a, b ∈ Z>0, write m = seq(m, a) and n = seq(n, b), and
let C be the minimal (m,n)-coefficient matrix. Then the matrices S(m, seq(n − 1, b))(C) and
S(seq(m− 1, a),n)(C) lie in Mat2(Z≥0).

This conjecture would give us that for any u ∈ [1, N ] and for any positive M -cluster polynomial
G associated to some vertex t ∈ TN , we have that xuG is a positive M/xu-cluster polynomial
associated to t.

A case where Conjecture 4.13 holds is given by the following proposition:

Proposition 4.14: Let m,n ∈ Z≥0 such that m ≤ n. Write m = seq(m, 1) and n = seq(n, 1). Let
C be the minimal (m,n)-coefficient matrix, then S(m, seq(n−1, 1))(C) and S(seq(m−1, 1),n)(C)
lie in Mat2(Z≥0).

Proof. We use the results obtained in Example 2.6. Since the matrix E = E(C) is for all
(k, l) ∈ Z2

≥0 given by

ek,l =


(
m

k

)
if l = 0;

0 otherwise,

we directly have that S = S(seq(m−1, 1),n)(C) is a matrix in Mat2(Z) whose only nonzero entries
are given by s0,0 = 1 and s1,0 = 1 (this follows from the fact that m− 1 ≤ n− 1). This also proves
that S(m, seq(n−1, 1))(C) lies in Mat2(Z≥0) if m = n, hence we now assume m < n. Now we have
that m ≤ n− 1 and m− 1 < n− 1, from this we can conclude that S′ = S(m, seq(n− 1, 1))(C) is
a matrix in Mat2(Z) whose only nonzero entries are given by s′0,0 = 1, s′0,1 = 1 and s′1,1 = 1.

We end with a final conjecture which induces the Positivity conjecture:

Conjecture 4.15: Let G = F/M be a positive M -cluster polynomial associated to some vertex

t ∈ TN . Let w ∈ [1, N ] and let t w t′ in TN with associated exchange polynomial Pw. Then
substituting Pw/xw for xw in G results in a positive M ′-cluster polynomial G′ associated to t′,
where

M ′ =
x
m′w
w

xmww
· M
xmww

with m′w the largest exponent of xw in F .

It is clear from Theorem 2.25 that this conjecture indeed induces the Positivity conjecture. We
have not much ground to state this conjecture, however, assuming Conjecture 4.11 and Conjecture
4.13 hold, one might be able to prove Conjecture 4.15 in the following way:

First proving the following statement:
Let u, v ∈ [1, N ] \ {w} distinct, let m,n ∈ Z≥0 and let M = xmu x

n
v , then substituting Pw/xw for xw

in G results in a positive xmu x
n
vx

m′w
w -cluster polynomial associated to the vertex t′.
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Next, let M be any Laurent monomial in the variables x1, . . . , xN , write

M =

N∏
i=1

xmii
(
mi ∈ Z

)
,

and let

M ′ =
x
m′w
w

xmww
· M
xmww

as in the conjecture. Using Conjecture 4.11 we know that for any u ∈ [1, N ] we can write

G′ =
xmuu x

m′w−mw
w

M
·

[mu]+∑
i=0

[m′w−mw]+∑
j=0

Fi,j ·Gi,j

 ,

where for any i ∈ [0, [mu]+], j ∈ [0, [m′w −mw]+], we have that Gi,j is a minimal xmu−iu x
m′w−mw−j
v -

cluster polynomial, and Fi,j ∈ ZP[x1, . . . , xN ] is a subtraction free polynomial. Hence we just need
to show that for any distinct u, v ∈ [1, N ] \ {w} we can write

G′ =
xmuu xmvv
M

·

[mu]+∑
i=0

[mv ]+∑
j=0

F ′i,j ·G′i,j

 ,

where for any i ∈ [0, [mu]+], j ∈ [0, [mv]+], we have that G′i,j is a minimal xmu−iu xmv−jv -cluster
polynomial, and F ′i,j ∈ ZP[x1, . . . , xN ] is a subtraction free polynomial.

If mw ≤ 0, then the result follows directly from the statement above. Now assume mw > 0, and
assume that for any positive cluster polynomial associated to t with denominator having exponent
of xw less than mw we know that the substitution of Pw/xw for xw results in a positive cluster
polynomial associated to t′. Note that xwG is a positive M/xw-cluster polynomial associated to t
by Conjecture 4.13. Hence by our assumption we have that

Pw
xw
·G′

is a positive xwM
′-cluster polynomial. From this, one might be able to deduce that G′ is a positive

M ′-cluster polynomial, which then makes it possible to prove Conjecture 4.15 with use of induction.

We conclude that although there is still much work to be done, the coefficient matrices introduced
in this thesis are very important objects in studying the structure of cluster variables and possibly
also (as displayed by the discussion above) in proving the Positivity conjecture.
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