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CHAPTER 1

Introduction

The topology and geometry of a space X can be studied using only algebraic information.
For example, the Serre-Swan theorem tells us that there is a bijective correspondence be-
tween finitely generated projective Cª�X�-modules and vector bundles over X. Another
landmark result is the Gelfand-Naimark theorem, published in 1943, which states that
locally compact Hausdorff spaces can be reconstructed, up to homeomorphism, from the
commutative C*-algebra C0�X� of continuous functions vanishing at infinity and, vice
versa, every commutative C*-algebra A is isomorphic to an algebra of functions vanish-
ing at infinity on some locally compact space XA. It appears that we can phrase many
topological properties using only the algebraic structure of C0�X�, like connectedness
and dimension. If we now consider non-commutative C*-algebras instead, we can still
use these algebraic formulations of topological features despite our algebra lacking an un-
derlying topological space. We can refer to the ‘virtual’ topological space underlying our
non-commutative algebra as a non-commutative space. The mathematical discipline that
concerns itself with the study of these non-commutative spaces is called non-commutative
geometry. On a more advanced level, a closed Riemannian manifold �M,g� can be de-
scribed in terms of a spectral triple �A,H,D� where A is an algebra (typically, the algebra
of smooth functions on M), H is a Hilbert space (for example: square integrable sections
of the exterior bundle) with a representation π � A � B�H� (B�H� are bounded linear
operators on H) and D is an unbounded operator (for example, a Dirac operator) satisfy-
ing some additional properties . Interestingly, not only M , as a topological space, can be
recovered from this, but also the Riemannian metric and the differentiable structure are
contained in the triple �A,H,D�. Spectral triples and other advanced techniques in non-
commutative geometry have been studied intensely and unceasingly since the 1980s, start-
ing with the work of Alain Connes. Non-commutative geometry includes non-commutative
measure theory, cyclic (co)homology, K-theory and much more. In this thesis we will ex-
plore the possibilities of computing topological barcodes for non-commutative spaces.

Topological barcodes are the central objects in persistent homology which is, arguably,
the most prominent technique in the mathematical field of topological data analysis. Per-
sistent homology is an algorithm that takes a point cloud (a metric space with finitely
many points) and produces a barcode which is, roughly speaking, a multiset of intervals
that contains information about the ‘approximate shape’ of the point cloud. Persistent
homology has the beautiful property of producing similar barcodes for similar spaces
and, by a simple analytical argument, persistent homology can be computed for general
compact metric spaces. The measure of similarity between point clouds is given by the
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2 1. INTRODUCTION

Gromov-Hausdorff distance, whereas the similarity of barcodes is given by the bottleneck
metric (to be introduced in Chapter 3. In technical terms, we have a Gromov-Hausdorff-
to-Bottleneck Lipschitz-continuous map

β � �isometry classes of compact metric spaces�Ð� �topological barcodes�.
We reserve the term topological barcodes for barcodes arising from general compact spaces,
in contrast to barcodes that come from point clouds.

The main aim of this thesis is to find an extension of β to ‘non-commutative metric spaces’.
Multiple (successful) attempts to define ‘non-commutative metric spaces’ have been made
[Rie99],[Ker03],[Wu06b],[Lat13]. Only [Lat13] does in fact make use of multiplication
in the algebra, whereas the others only use the order structure of C*-algebras (or the
more general order-unit spaces). Therefore, we will only rarely encounter the adjective
‘non-commutative’ in the context of metrics in this thesis. In addition to the metric
structure, the mentioned articles also formulate non-commutative versions of the Gromov-
Hausdorff distance which generalize the classical Gromov-Hausdorff distance. Hence, we
can compactly formulate the main question of this thesis in technical terms: does there
exist a non-commutative-Gromov-Hausdorff-to-Bottleneck Lipschitz-continuous map

β̃ � �isometry classes of non-commutative metric spaces �Ð� �topological barcodes�?

We will propose three candidate non-commutative barcode maps all of them based on the
observation that the pure states ∂eS�A� of a C*-algebra A generalize the points of a topo-
logical space: ∂eS�C�X���X. The simplest of these candidate maps can be shown quite
easily to be inadequate, as it cannot even be continuous. The eligibility of the remaining
two are harder to refute.

This thesis is structured as follows:

Y In Chapter 2 we treat the most elementary theory of non-commutative topology
and non-commutative geometry.1

Y In Chapter 3 we introduce the basics of persistent homology (pictures are in-
cluded!) and indicate how it fits in the framework of topological data analysis.

Y In Chapter 4 we treat topological barcodes; we show that they can be countably
infinite and we give two results that can be used to infer some information about
the barcodes from the topology of a space.

Y In Chapter 5 we expose the main contribution of this thesis: we define the non-
commutative versions of metric space and Gromov-Hausdorff distance, we for-
mulate our candidate barcode maps and discuss their eligibility.

1It must be noted that Section 5 is a ‘ghost section’; I thought it could have been used to disqualify one
of the candidate barcode maps, but I was mistaken. Yet it is included, because I find the concept is very
interesting.
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Y In Chapter 6 we briefly summarize the results of Chapter 5 and theorize about
possible future directions and the very meaning of hypothetical non-commutative
topological barcodes.

1. Notation and Conventions

In this thesis the natural numbers N start at 1. We use � for homeomorphism and � for
(natural) isomorphism where the category is always clear from the context. The matrix
algebras are denoted by Mn are over R unless specified otherwise (for example, Mn�C�).
For any convex set K the set of extreme points of K, the extreme boundary, is denoted
by ∂eK. The dual space of a topological vector space V is denoted by V �.
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CHAPTER 2

Non-commutative Geometry

1. C*-algebras

The central objects of this chapter are C*-algebras, which are commonly encountered in
functional analysis and operator theory. C*-algebras were originally conceived in 1947 by
Irving Segal who defined them as closed *-subalgebras of B�H�, the algebra of operators
on a Hilbert space H. The contemporary definition is seemingly more general, but it is
well known that all C*-algebras can be characterized as these closed *-subalgebras for
some Hilbert space H (we will come back to this in Theorem 2.17).

Definition 2.1. A C*-algebra is an algebra A with a norm Y � Y and an involutive
operator � such that �A, Y � Y� is complete and for all a, b > A we have

(2.1) YabY B YaYYbY,
(2.2) Ya�aY � YaY2.

Q

Remark 2.2. If A satisfies all properties of definition 2.1 except for the completeness
condition, we speak of a pre-C*-algebra. We refer to equation 2.2 as the C*-property. If A
satisfies all properties in definition 2.1, but the C*-property fails, A is a Banach-*-algebra.

Example 2.3. Let H be some Hilbert space, then B�H� (bounded operators on H) and
K�H� (compact operators on H) are C*-algebras. Multiplication is given by composition
and involution is given by transposition. The former contains the identity operator,
which is a unit for B�H�, whereas K�H� does not. C*-algebras with a unit are referred
to as unital C*-algebras. If H is of dimension n (that is H �Kn for K > �R,C�),
we have B�H� � K�H��Mn�K�. Because `T �Tx,xe � `Tx,Txe � YT �x�Y2 we see thatYT �T Y � YT Y2 for all T > B�H�. ¤

Example 2.4. Let X be a compact Hausdorff space, then C�X� is a C*-algebra, where
multiplication and involution are pointwise and the norm is given by the supremum over
X. The constant function 1 acts as the unit and for f, g > C�X� we must have fg � gf ,
because pointwise multiplication is commutative. Hence, we speak of a commutative

C*-algebra C�X�. The C*-property is easily verified: f�x�f�x� � Sf�x�S2 for all x, so in

particular supx>X f�x�f�x� � supx>X Sf�x�S2. ¤

Example 2.5. Let X be compact Hausdorff and suppose that A is a C*-algebra, then
C�X,A� (the continuous functions X � A) is a C*-algebra. Again, multiplication and
involution are pointwise, but do now take place in A. It is true that C�X,A� is unital
and/or commutative if and only if A is unital/commutative. ¤

5



6 2. NON-COMMUTATIVE GEOMETRY

Because C*-algebras are in particular algebras, they have ideals. It turns out however,
that ideals in C*-algebras are easier to work with if they are topologically closed:

Definition 2.6. Let A be a C*-algebra. A (left, right, two-sided) ideal I b A is a closed
C*-subalgebra of A such that for all a > A we have aI b I (left ideal), Ia b I (right
ideal) or aI, Ia b I (two-sided ideal). If I is a two-sided ideal of A, we use the notation
IRA. Whenever we wish to speak of ideals that are not closed, we will refer to them as
algebraic ideals. Q

If IRA, we can define A~I �� �a � I � a > A� as usual (e.g. group theory). There is a
natural norm on A~I given by Ya � IYA~I �� inf�Ya � bY � b > I�. We call A~I the quotient
C*-algebra of A by I.

Example 2.7. The compact operators K�H� b B�H� are a two-sided ideal of B�H� and
the quotient C�H� �� B�H�~K�H� is called the Calkin algebra. The C*-algebra K�H�
does not have any ideals, we call such C*-algebras simple. ¤

Example 2.8. Commutative C*-algebras usually have many ideals. Take A � C�X�
where X is compact Hausdorff and let V b X be a closed set, then the subalgebra IV ���f > C�X� � f T

V
� 0� is a closed (two-sided) ideal. ¤

Operators on a Hilbert space have a spectrum, which is a purely algebraic concept and
hence can be translated to C*-algebras as is.

Definition 2.9. Let A be a unital C*-algebra and let a > A. The spectrum of a, denoted
by σA�a�, consists of all λ > C such that a � λ1 is not invertible in A. Q

We use the notation σA�a� to emphasise that σA�a� may depend on the ambient C*-
algebra. The spectrum is a very important concept in operator theory, as it grants the
ability to perform functional calculus and it allows us to define a notion of positivity
(which in turn gives a C*-algebra an order structure). For this, we first need a few facts
and a lemma about the intrinsicality of the spectrum.

Fact 2.10. Let A be a unital C*-algebra and let a > A. The following statements are true:

(1) We have YaY � Ya�Y.
(2) If a � a� (that is, a is self-adjoint), we have σ�a� b R.
(3) The C*-subalgebra C��a� b A which is the smallest unital C*-algebra containing

a is commutative.
(4) if B b A is a C*-subalgebra with the same unit, then σA�a� b σB�a� and ∂σB�a� b

∂σA�a�. (The latter being very much non-trivial)

Lemma 2.11. Suppose that B is a unital C*-algebra and that A b B is a C*-subalgebra
with the same unit. Let a > A b B, then σA�a� � σB�a�. Therefore, we can henceforth
write σ�a� without ambiguity.

Proof. First note that it is clear that σB�a� b σA�a�, because if a � λ is invertible
in A it must be invertible in B. We also have ∂σA�a� b ∂σB�a�. Now, assume that a
is selfadjoint, then σB�a�, σA�a� b R and so we have σA�a� � ∂σA�a� b ∂B�a� � σB�a�.
Therefore σA�a� � σB�a�.
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Now suppose that a � ã � λ > A is invertible in B, then there exists b > B such that
aa�b�b � 1, but aa�, bb� are self-adjoint and inverses are unique, so aa� is invertible in A
which implies that a��b�b� > A is an inverse for a. �

Remark 2.12. If a C*-algebra A is not unital, we can add a unit by considering A`C
with norm Y � Y1 Y�a, λ�Y1 � YaY � SλS
and multiplication �a, λ��b, µ� � �ab � λb � µa, λµ�.
This allows us to define the spectrum for elements of A using this unitization which we
will do without explicit indication. From now on A will be a general C*-algebra (unital
or not), unless specified otherwise.

Definition 2.13. An element a > A is called positive if it is self-adjoint and σ�a� ` RC0.
The positive elements of A induce an order on the self-adjoint elements Asa of A by letting
a @ b whenever b � a is positive. A linear functional τ > A� is called positive if τ�a� C 0
whenever a is positive.

Q

Note that the 0-element is also positive by convention.

Remark 2.14. It is a consequence of functional calculus that a > A is positive if and only
if a � b�b for some b > A.

Definition 2.15. Let A be a C*-algebra, the state space of A, denoted by S�A� is the
set of positive linear functionals with norm 1.

Q

The state space S�A� will play an important role in this thesis. It is important to note
that it is a normed subspace of A� that is convex and if A is unital it is also weak-*
compact. The latter property follows from the fact that S�A� b B1�A�� (where B1�A��
is the unit ball in A� and B1�A�� is weak* compact by the Theorem of Banach-Alaoglu)
and the fact that S�A� � �ψ > A� � ψ�1A� � 1� 9B1�A�� which is the intersection of the
unit ball with a hyperplane. We are now ready for the two landmark results. The first
one fully characterizes commutative C*-algebras.

Theorem 2.16 (Gelfand-Naimark). Let A be a commutative C*-algebra. The extreme
points ∂eS�A� of S�A� are the states τ for which τ�ab� � τ�a�τ�b�. Equipped with the
relative weak* topology on S�A�, the topological space X �� ∂eS�A� is locally compact
Hausdorff. The map

Ψ � A� C0�X�, a( �τ ( τ�a��
is a *-isometric isomorphism. Hence, we can view A as the space of continuous functions
vanishing at infinity on some locally compact Hausdorff space X.

Even better, we can also concretely describe non-commutative C*-algebras.

Theorem 2.17 (Gelfand-Naimark-Segal). Every C*-algebra has a faithful *-representation.
That is, there exists a Hilbert space H and an injective *-homomorphism π � A� B�H�.
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The Gelfand-Naimark-Segal (henceforth GNS) theorem thus states that every C*-algebra
can be seen as a concrete operator algebra. The mere fact that ‘there exists’ a repre-
sentation is not always sufficient, so we will give the construction of the universal GNS-
representation for an arbitrary C*-algebra A.

Let τ > S�A� and define Nτ �� �a > A � τ�a�a� � 0� which is a closed left ideal in A. The
map `a�Nτ , b�Nτ eτ � τ�b�a� defines an inner product on A~Nτ which we can use to obtain
a Hilbert space Hτ which is the completion of A~Nτ with this inner product. For each
a > A we can define an operator ϕ̃τ�a� > B�A~Nτ� by ϕ�a��b� �� ab �Nτ . It appears that
ϕ̃τ extends uniquely to a bounded operator ϕτ�a� > B�Hτ�. The map ϕτ � A � B�Hτ�
that sends a to ϕτ�a� is a *-homomorphism. Bundling these representations together for
each τ , we obtain

ϕ � A� ?
τ>S�A�

B�Hτ�, a( ?
τ>S�A�

ϕτ�a�
which is a *-representation of A. More interestingly, ϕ is also faithful. This follows from
the fact that there exists states τa for every a > A such that τa�a�a� � Ya�aY. Now if
ϕ�a� � 0 for some a > A we see that ϕτa�a� � 0 but this implies that a � 0 from functional
calculus. Note that the universal representation is most definitely not the most economical
representation. For example, if A �M2�C� then A is already a concrete operator space,
yet the universal representation would consist of an uncountable sum of factors.

2. (Non-)commutative topology

The Gelfand-Naimark theorem grants us an interesting perspective. Every locally com-
pact Hausdorff space X gives us a commutative C*-algebra and every commutative C*-
algebra gives us a locally compact Hausdorff space. It appears that we can describe a
good number of topological properties of X in terms of algebraic properties of C�X�.
This entices us to think of non-commutative C*-algebras as ‘non-commutative topolog-
ical spaces’. It turns out that this paradigm is not just a philosophical pastime, but it
gives us tools to study naturally occuring non-commutative spaces using, for instance,
K-theory. Some good examples are leaf spaces of foliated manifolds which behave errati-
cally as topological spaces, but carry meaningful information in their C*-algebras [Con94].

Let us start out with a few topological properties that can be described in algebraic terms.
From now on, X is a locally compact Hausdorff space.

Compactness 
� unital: If A � C0�X� is a commutative C*-algebra with unit
1A, it is easy to see that 1A must correspond to a constant function with value 1
in C0�X�. This can only happen if X is compact, otherwise 1A would not vanish
at infinity. On the other hand, on compact spaces all continuous functions vanish
at infinity. Hence, compactness corresponds to the presence of a unit element.
Unital C*-algebras can be viewed as corresponding to non-commutative compact
spaces.
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Connectedness 
� projectionless: If X is compact and consists of n con-
nected components X1, . . . ,Xn, the indicator functions 1Xi are continuous. Obvi-
ously, 12

Xi
� 1Xi for each i, so C�X� contains non-trivial projections corresponding

to the connected components. On the other hand, the condition that f > C�X�
satisfies f 2 � f implies that f only takes values 0 and 1, hence the only projections
in C�X� can be indicator functions. We conclude that connected spaces X have
a projectionless algebra C�X�, that is C�X� only contains trivial projections.

Metrizability 
� separable: If X is metrizable and locally compact, one can
find a countable dense subset �xi�i>N of X and we can define an algebra of com-
pactly supported continuous functions �fi,j�i,j>N supported on the neighbour-
hoods Ui,j �� B�xi,2�j�. If we look at the linear span of these elements we have
a dense subalgebra of C0�X� that separates points and vanishes nowhere, so we
can use Stone-Weierstrass to establish that C0�X� is separable. Conversely, if
C0�X� is separable we consider the natural embedding X � C0�X�� given by
x ( δx where δx is the corresponding pure state. The unit ball of the dual of a
separable Banach space is metrizable. If we take this metric and restrict to the
pure states, we obtain a metric on X.

Covering Dimension � real rank: Suppose that X is compact, so C�X� is uni-
tal. We define the real rank of C�X� as the smallest integer n such that for any
n � 1 self-adjoint elements f1, . . . , fn�1 > C�X� and every ε A 0 there exists an�n � 1�-tuple of elements g1, . . . , fn�1 such that

n�1

Q
i�1

g2
i � 1, and Y n�1

Q
i�1

�fi � gi�Y @ ε.
One can identify the tuple �f1, . . . , fn�1� with a continuous function f � X �

Rn�1. The Lebesgue covering dimension of X is the smallest n for which f
can be approximated arbitrarily well by a function g � X � Rn�1 that vanishes
nowhere. The fact that g vanishes nowhere implies that gi vanishes nowhere for
each component gi � X � R. A function is invertible if and only if it vanishes
nowhere, so we are back at our definition and we see that the real rank of C�X�
coincides with the Lebesgue covering dimension of X.

Remark 2.18. Sometimes it is possible to formulate multiple algebraic characterization
of topological properties such that the different notions overlap for commutative C*-
algebras. The covering dimension is a good example. There are many non-commutative
analogues for the covering dimension: real rank, stable rank, decomposition rank, nuclear
dimension[WZ09] and more. Usually, these notions coincide on commutative C*-algebras
but can differ in the non-commutative setting. For instance, irrational rotation algebras
Aθ (also known as quantum tori, see Section 4) have real rank zero, except for θ � 0,
because A0 � C�T2� whereas the nuclear dimension of Aθ is 2 whenever θ > Q and 1
whenever θ ~> Q (see [Cas20] Section 5).

2.1. Non-commutative quotients. We now describe a natural occurrence of non-
commutative spaces. Suppose that we have a locally compact Hausdorff space X and
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suppose that Γ � �̇λ>Λ Γλ is a partition of X into dense sets and denote by �Γ the cor-
responding equivalence relation (Γ is suggestive of the notation of a group action for a
reason), then X~Γ is a bland space: its topology is trivial and hence C�X~Γ� � C (we
also have the problem that X~Γ is not even Hausdorff). Moreover, any map f � Y �X~Γ
is continuous which makes X~Γ contractible and so there is nothing to study in terms
of topology. However, it is desirable that such bizarre quotients do contain meaningful
information. For this, we can introduce non-commutative quotients. We follow the expo-
sition in [Ala06].

Let X and Γ be as before and fix some Borel measure on X. We have just seen that
‘classical’ quotients can yield very dull results, so let us look instead at the following
C*-algebra:

Cnc�X~Γ� �� �f � �fαβ�α,β > C�X �X� � α,β >X,α �Γ β� b B�L2�X��.
The elements of Cnc�X~Γ� act on L2�X� by�fh��γ� � Q

β�Γγ

fγβh�β�
where f > Cnc�X~Γ� and h > L2�X�.
The multiplication on Cnc�X~Γ� is given by convolution over equivalent points:

fg�α� � Q
β,γ�Γα

fβαgαγ.

In order to get a better grasp on this construction, we give an explicit computation for
X~Γ when X is finite. The construction for (uncountable) infinite sets X with dense
orbits is similar.

Example 2.19. Suppose that X � �x1, . . . , xn� with the discrete topology and let Γ be
an equivalence relation given by the partition X �X1 8̇X2 8̇ . . . 8̇Xk, then

C�X~Γ� � �f � �fαβ�α,β > C�X �X� � α,β >X,α �Γ β�
�

k

?
i�1

�f � �fαβ�α,β > C�Xi �Xi� � α,β >Xi�
�

k

?
i�1

MSXiS�C�.
So, finite non-commutative quotients are precisely the non-commutative C*-algebras. ¤

In some cases the above approach works also for infinite topological spaces. The next
example is sometimes used in differential geometry to show that locally Euclidean spaces
can be non-Hausdorff.

Example 2.20. Let X � ��1,1� 8̇��1,1�, label the points in the first and second interval
by x1, x2 respectively and let Γ be the equivalence relation given by x � y if x � y, x � 01

and y � 02 or x � 02, y � 01. That is, we glue only the midpoints of both intervals. It
turns out that

Cnc�X~Γ� � C���1,0��`M2 `C��0,1��.
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So we obtain a non-commutative C*-algebra that is ‘almost’ commutative. ¤

As mentioned before; if we have an ordinary uncountable topological space X and we
take a quotient X~Γ where Γ is a dense subset or a dense orbit, the non-commutative
quotient contains information that the ordinary (dull) quotient does not. The ordinary
quotient gives us a trivial topological space and as such a trivial algebra of functions,
but the non-commutative quotient yields a large non-commutative C*-algebra. A prime
example is given by the Penrose tilings [MR05] which have interesting K-theories. We do
not cover K-theory in this thesis despite its importance in non-commutative geometry.
Very briefly, operator K-theory is a generalization of topological K-theory, which is in
turn a cohomology theory that ‘counts’ isomorphism classes of vector bundles over a base
space. The K-theory of Penrose tilings can be computed rather easily using the fact that
they are AF algebras : approximately finite C*-algebras or, more specifically, direct limits
of finite C*-algebras.
The non-commutative torus which we will define in Section 4 can also be seen as a non-
commutative quotient. See remark 2.39.

3. Spectral Triples

In the previous section we discussed how topological properties can be phrased in the
language of operator algebras. If we want to generalize phenomena that are not purely
topological, like a metric structure, we require more information and we enter the domain
of non-commutative geometry. Here, we introduce the notion of a spectral triple which
was developed by Alain Connes in the 1980s and 1990s.

Definition 2.21. A spectral triple is a triple �A, π,D� consisting of a *-algebra A,
a faithful representation π � A � B�H� for some Hilbert space H and a self-adjoint
(unbounded) operator D �H �H. Moreover, D must satisfy two additional properties:

(1) The resolvent operators �D � i��1 must be compact.
(2) The commutator bracket must be well-behaved with respect to the representation:�D,π�a�� > B�H� for all a > A.

Q

This definition is likely to overwhelm the unsuspecting reader, so we will give an exam-
ple and indicate to what extent spectral triples capture the differential and Riemannian
structure of manifolds. In the following we loosely follow chapter 5 and 9 of [Bon01].
Suppose that �M,g� is an orientable Riemannian manifold. The differential structure of
M is wholly contained in the exterior bundle ΛYT �M that consists of all differential forms
on M . Moreover, ΛYT �M comes with some natural operations. Most importantly, the
exterior product , and the exterior derivative d. In order to condense the Riemannian
information into our spectral triple, we will define a Hilbert space structure on the space
of differential forms and then impose a Clifford structure onto these forms to define the
adjoint of the exterior derivative. This will grant us a self-adjoint operator that can be
used to recover metric and differential information of �M,g� in terms of Hilbert spaces
and operators.
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3.1. Integrable differentiable forms. Let ΩY�M� �� Γ�ΛYT �M� be the graded
algebra of differential forms on M . The orientability of �M,g� gives us a volume form µg,
hence we can define an inner product by

(2.3) `α,βe �� S
M
�α,β�µg.

Where α,β > ΩY�M� and ��, �� � ΩY�M��ΩY�M�� C�M� is defined as the unique extension
of �α1 , . . . , αk, β1 , . . . , βl� �� δkl det �`αi, βje�i,j.
In the latter expression `�, �e is the point-wise inner product induced by the metric g, the
determinant is well-defined because k � l must hold in order for δkl to be non-zero. We
can now define:

Definition 2.22. The Hilbert space of square integrable differential forms on M
denoted by

L2,Y�M�
is defined to be the completion of ΩY�M� under the inner product defined in 2.3. Q

It is clear from the definition that we have a decomposition L2,Y�M� � >dimM
k�1 L2,k�M�,

where L2,k�M� is, similarly, the completion of Ωk�M� under 2.3.

3.2. Clifford bundles. If V is a finite-dimensional vector space, and q � V � V � R
is a quadratic form, there exists a unique unital associative algebra Cl�V, q� and a linear
map i � V � Cl�V, q� such that for each unital associative algebra A and each linear
map f � V � A satisfying f�v�2 � q�v�1A uniquely factors through Cl�V, q�. That is,

there exists a unique f̃ � Cl�V, q� � A such that f � f̃ X i. The quadratic forms and
inner products on V are in natural bijection. After all, a quadratic form can be used
to normalize any orthogonal basis of V ; to limit confusion we write `�, �eq for this inner
product.

Definition 2.23. The algebra Cl�V, q� defined above is the Clifford algebra generated
by �V, q�. We can also complexify the Clifford algebra: Cl�V, q� �� Cl�V, q�aR C. Q

From now on, we work with Cl�V, q� and define the adjoint �ab�� for a, b > Cl�V, q� by
taking the complex conjugation of the underlying vector space and by reversing products:�ab�� � ba. The map �i (where i � V � Cl�V, q� is the embedding) on Cl�V, q� preserves
the quadratic form and therefore, by the universal property described above, this map
extends to an involution α � Cl�V, q� � Cl�V, q�. Thus, we obtain a canonical algebra
decomposition Cl�V, q� � Cl�V, q�even ` Cl�V, q�odd where the even elements x > Cl�V, q�
are those satisfying α�x� � x and the odd elements satisfy α�x� � �x. Note that Cl�V, q�
is a finite-dimensional C*-algebra. The universal construction described above gives us
the following useful property:

Fact 2.24. For v,w > Cl�V, q� we have

v �w �w � v � �2`v,weq1.
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We have chosen to work over complex Clifford algebras for a reason: A Clifford algebra
Cl�V, q� is completely (up to isomorphism) determined by the dimension of V . This is
not the case for real Clifford algebras. In fact, for n � dimV we have (henceforth omitting
the quadratic form)

Cl�V � �M2m�C� if n � 2m is even,

Cl�V � �M2m�C�`M2m�C� if n � 2m � 1 is odd.
(2.4)

It turns out, that Cl�V, q� is linearly isomorphic to ΛYT �M under the identification

(2.5) e1�en ( e1 ,� , en.

Hence, the Clifford algebra Cl�V, q� equips the exterior bundle ΩY�M� with the structure
of a unital associative algebra. For a Riemannian manifold �M,g� and a point p >M we
have a natural quadratic form on TpM induced by g, namely qp�v,w� � `v,we. The same
metric structure provides us with a natural linear isomorphism TpM � T �

pM , so we obtain
a Clifford multiplication on Cl�T �

pM,qp� � ΩY�M�.
Definition 2.25. We define the Clifford bundle on a Riemannian manifold �M,g� as

Cl�M� �� �̇p>M Cl�TpM,qp�.
Q

We can let the Clifford bundle act on the differential forms by left multiplication. Denote
this action by c � Cl�M��ΩY�M�� ΩY�M�, so that for γ > Cl�M� we have c�γ� � ΩY�M��
ΩY�M�. This is a bounded operator and hence, it can be extended to c�γ� > B�L2,Y�. Next,
we have a grading on Clifford algebras which is given by the chirality element γ. At each
point p > M we can define γ�p� �� ��i�nv1v2� , vn where dimM � 2n or dimM � 2n � 1
and v1, . . . , vn form the orthonormal basis of the tangent space TpM multiplied by i. By
orientability of M we can define γ pointwise to yield a global section γ > Γ�Cl�M��. We
see that γ� � ��1�n��1�n�n�1�~2vn�v1 � γ. It follows that γ2 � γ�γ � e1�enen�e1 � 1, so γ
is self-adjoint en involutive.

Definition 2.26. The Hodge star operator � is defined as the action of the chirality
element: c�γ� � ΩY�M�� ΩY�M�. Q

More specifically, the Hodge star operator swaps k and n � k forms: � � L2,k�M� �
L2,n�k�M� where n � dimM . We can now characterize the adjoint of the exterior deriva-
tive.

Lemma 2.27 (Lemma 9.31 from [Bon01]). The adjoint d� � L2,Y�M� � L2,Y�M� of the
exterior derivative is given by

d� � ��1�n � d � .
We call d� the codifferential.

In fact, we can use the fact that d� is a formal adjoint of d to perform explicit computa-
tions.
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Proposition 2.28. Let π � Cª�M� � Ω0�M� 0 ΩY�M� be the canonical embedding and
let f > Cª�M�, ω > ΩY�M�, then

d��fω� � fd�ω � ιdf�ω�.
Proof. The equation

`η, d��fω�e � `dη, fωe � `fdη,ωe
� `d�fη�, ωe � `df , η,ωe
� `fη, d�ωe � `η, ιdfωe
� `η, fd�ω � ιdfωe

holds for every η > ΩY�M�, hence we obtain the desired equality.
�

Also important is the following:

Proposition 2.29. Let v > T �M,ϕ > Cl�T �M�, then

v � ϕ � v , ϕ � ιvϕ.

Proof. We can express v,ϕ as elements in Λ�M :

v �Q
i

αiei, ϕ �Q
j

βjek�j�1
,� , ek�j�nj ,

where e1, . . . , en is an orthonormal basis. Next, we can use equation 2.5 to compute

v � ϕ �Q
i

Q
j

αiβjei � ek�j�1
� � ek�j�nj .

If i ~> k�j� we obtain an ordinary wedge product ei , ek�j�1
�, ek�j�nj . Otherwise, we get

eiek�j�1
�ei�ek�j�nj � ��1�mek�j�1

,� , êi ,� , ek�j�nj

by equation 2.24, where k�j�m � i. This means precisely that

v � ϕ � v , ϕ � ιvϕ.

�

Following proposition 2.28, we see that d� � L2,k�M�� L2,k�1�M�. This is precisely what
one would expect from the adjoint of d. Moreover, d� is zero when acting on 0-forms. It
turns out to be the case that the inner product 2.3 on L2,Y�M� is in fact the same as

`α,βe � S
M
α , �β.
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3.3. Hodge-de Rham Spectral Triple. We now have all ingredients to define a
spectral triple. As in the preceding parts, let �M,g� be a compact orientable Riemannian
manifold, let L2,Y�M� be the square integrable differential forms on M , let d and d� be
the exterior derivative and codifferential respectively. Let π � Cª�M�Ð� B�L2,Y�M�� be
defined by sending f > Cª�M� to the multiplication operator g ( fg for g > L2,Y�M�.
Define D �� d� d�, then D is a self-adjoint linear operator on L2,Y�M�. It is important to
note that D is not a bounded operator.

Fact 2.30. The triple �Cª�M�, π,D� is a spectral triple.

This is a non-trivial result. The triple must satisfy two properties:

Y The resolvent operators �D � i��1 must be compact.
Y The commutator bracket must be well-behaved with respect to the representation:�D,π�a�� > B�H� for all a > A.

The first property implies that �1 �D2��1 is compact. Employing the theory of Sobolev
embeddings, we can assert that �1�D2��1~2 is also compact. Now, by direct computation�D�1 �D2��1~2�2

�D2�1 �D2��1
� 1 � �1 �D2��1

and so D�1 � D2��1 is essentially invertible1 (thus it is Fredholm). In fact, D is (un-
bounded) Fredholm: D � �D�1 �D2��1� � 1 � �1 �D2��1, so D�1 �D2��1 is an essential
inverse. Because of the unboundedness of D, it is not straightforward what the index
of D should be. Again, by invoking Sobolev space theory (without providing the details
here) we can define the Fredholm index of D to be the Fredholm index of D in its Sobolev
embeddings and because the index turns out to be the same under every choice of em-
bedding, this is a well-defined invariant.

Now, the fact that �d�d��i��1 are compact follows from some deep results in the theory of
elliptic (pseudo)differential operators which we will not discuss in depth. Because d � d�

is self-adjoint, its index is 0. To circumvent this problem, we use the grading of our
Hodge-de Rham spectral triple. Because d � d� swaps odd and even forms, we can write
d � d� as

� 0 �d � d����d � d��� 0
� � Ωeven�M�`Ωodd�M�� Ωeven�M�`Ωodd�M�

where �d � d��� and �d � d��� are each other’s adjoint.
It turns out that for the Hodge Laplacian ∆ �� �d � d��2, write ∆ � >n

p�1 ∆p where

∆p �� ∆T
Ωp�M�

we have

Hp
�� Ker ∆p �H

p
dR�M,R�

and

Ωp�M� �Hp
` Im�d�` Im�d��.

1The adjective ‘essential’ means ‘when projected onto the Calkin algebra’.



16 2. NON-COMMUTATIVE GEOMETRY

This is known as the Hodge Decomposition Theorem[War83]. From this we can derive the
following.

Theorem 2.31. The Fredholm index of �d � d��� is

Index�d � d��� � n

Q
k�0

��1�k dimHk
dR�M,R� � χ�M�.

Therefore, we obtain another topological invariant from analytic data only!

Remark 2.32 (Spectral Geometry). At this point it is interesting to point out that the
(Hodge) Laplacian ∆ is a very interesting operator. Its zero-eigenvectors are precisely the
harmonic forms on M and these represent the cohomology classes. Naturally, one wonders
what the other eigenvalues and vectors may be. This question is fundamentally the basis
of Spectral Geometry which is concerned with deriving geometric properties of manifolds
by studying the spectra of elliptic differential operators defined on them. Whenever two
manifolds M,N have Laplacians with the same spectrum (counted with multiplicity), we
call M and N isospectral. It turns out that isometric manifolds are isospectral, but not
vice-verse. Nevertheless, the spectrum of the Laplacian remains an interesting invariant.

For the second part, we have a small corollary.

Corollary 2.33. Let f > Cª�M� and ω > L2,Y�M�, then�D,f�ω � c�df�ω.
Proof. We have�D,f�a � �d � d��fω � f�d � d��ω

� d�fω� � d��fω� � fdω � fd�ω
� df , ω � fdω � fd�ω � ιdf�ω� � fdω � fd�ω
� df , ω � ιdf�ω�
� c�df�ω.

Here we used Proposition 2.28 in the third step and proposition 2.29 in the last step. �

It follows that �D,f� is a bounded operator on B�L2,Y�M��. In fact, this corollary holds
in more generality: we can use the Leibniz rule repeatedly to make �D,�� work on general
forms:

�D,a�ω � c�©a�ω
where a,ω > L2,Y�M�. Operators satisfying this relation are called generalized Dirac op-
erators associated to ©. Here, © is the Levi-Civita connection. In fact, we can choose ©
to be any connection satisfying some Clifford action compatibility relation (these are the
Clifford connections), but we will not concern ourselves with this theory.

The following proposition makes our journey through the realms of abstraction worth-
while:
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Proposition 2.34. Let �Cª�M�, L2,Y�M�,D� be a spectral triple, where D is a general-
ized Dirac operator associated to the Clifford connection © and let p, q >M , then

d�p, q� � sup�Sf�p� � f�q�S � f > Cª�M�, Y�D,f�Y B 1�
where d is the geodesic distance on M .

Proof. We know that �D,f� � c�df� (recall that c is the Clifford action). Hence

Y�D,f�Y2
� Yc�df�Y2 !

� ess sup
x>M

Y�dfx, dfx�Y � sup
x>M

Y�dfx, dfx�Y
� sup
x>M

Yg�1
x �dfx, dfx�Y � sup

x>M
Ygx�gradx f,gradx f�Y � Ygrad fY2

ª

Here ’
!
�’ makes use of 2.3, where the inner product �a, b� � g�1

x �a, b� for a, b > T �

xM and
g�1
x the inner product induced by the Riemannian metric on TxM . We have also made

use of the fact that Cl�T �

xM� is a C*-algebra with this norm and Clifford action as mul-
tiplication. Hence, �dfx � α, dfx � α� � Ydf � αY2 for all α.

Now, consider the function dp �M � R defined by q ( d�p, q�. This function is continuous
and has Lipschitz-constant 1, so YgraddpYª � 1. Approximating dp by smooth functions
gives us Y�D,dp�Y � 1. Suppose now that there exists an f > C�M� such that Sf�p��f�q�S A
d�p, q�, then Ygrad fxY A 1 for some x on the minimal geodesic segment between p and q.
Therefore, Y�D,f�Y A 1. The desired equality follows. �

The map a ( Y�D,a�Y is a semi-norm that satisfies a certain set of properties that make
it a Lip-norm. Most importantly, it induces a metric on the state space that extends the
geodesic distance on the manifold. We will introduce this concept in Chapter 5 where it
will be crucial.

4. The Quantum Torus

The non-commutative torus is an example of a family of C*-algebras that represent a
‘non-commutative deformation’ of the ordinary torus (in our case: the 2-torus). There
are multiple equivalent definitions, but in this thesis we will define it using the the-
ory of spectral triples. We refer to the quantum torus as the non-commutative torus
equipped with a (non-commutative) metric structure. The adjective ‘quantum’ replaces
‘non-commutative’ in Chapter 5, because we will not make use of the multiplicative struc-
ture.

The most economic description of the non-commutative torus is the following:

Definition 2.35. The non-commutative torus Aθ is the univeral C*-algebra generated
by unitaries u, v satisfying

uv � e2πiθvu

where θ > �0,1�. Q
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We will not give the definition of a universal C*-algebra, because it is very involved.
It is enough for now to think of universal C*-algebras generated by some elements and
constrained by some given relations as the ‘smallest’ such C*-algebra. Of course, in the
case θ � 0 the unitaries correspond to the functions e2πix, e2πiy where �x, y� > T2

�� R2 ~Z2

. In order to obtain a spectral triple from Aθ, we need to obtain a dense *-subalgebra
that corresponds to the smooth functions for θ � 0. This can be done, by taking the
‘non-commutative Schwarz space’. More precisely:

Definition 2.36. We define the Schwartz-Bruhat space on Aª

θ to be the *-algebra

A
ª

θ �� � Q
n,m>Z

cn,mu
nvm � Scn,mS�SnS � SmS�qis bounded for all q > N�

where u, v are unitaries corresponding to the functions e2πix, e2πiy respectively, and uv �
e2πiθvu. Q

The functions in the Schwartz-Bruhat space are smooth and, if we were to define them
on Euclidean space, rapidly decreasing (in which case we would just call them Schwartz
functions). The Fourier transform is an isomorphism of the Schwartz-Bruhat spaces on
T2 and Z2 (its dual). In particular, Aª

θ is a dense *-subalgebra of Aθ.

We will now construct a spectral triple that represents the quantum torus. First, we need
a Hilbert space on which we can represent Aθ. For this, we assert that

τ � Aθ � C, τ�Q
n,m

cn,mu
nvm� � c0,0

is a faithful tracial state, meaning that τ�ab� � τ�ba� and τ�a�a� � 0 if and only if a � 0.
This means that we can produce an inner product `�, �eτ on Aθ defined by `a, beτ �� τ�b�a�,
just as we did in the GNS-representation. Denote by Hτ

θ the completion of Aθ under this
inner product. Define H ��Hτ

θ `H
τ
θ and let Aθ act on both summands by multiplication,

then this representation is faithful. Finally, we must specify a self-adjoint operator that
has bounded commutator and compact resolvents. We assert (consult [CPR11] for proof)
that

D �� � 0 δ1 � κδ2
��δ2 � κδ1� 0

�
is such an operator. Where κ > C and δ1, δ2 derivations (linear maps satisfying the Leibniz
rule) such that

δ1�u� � 2πiu,δ1�v� � 0,

δ2�u� � 0,δ2�v� � 2πiv.

Note that for θ � 0, δ1 and δ2 correspond to the vector fields gradu,grad v respectively.
We now have our spectral triple �Aθ,H,D�.
Definition 2.37. The quantum torus is the tuple �Aθ, Lθ�, where

Aθ �� A
ª

θ b B�H�
and

Lθ�a� �� Y�D,a�Y.
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Q

Remark 2.38. We have just defined a spectral triple using a Dirac operator. Dirac
operators appear on manifolds that allow a spin structure and therefore they are less
general than the Hodge-de Rham spectral triple that we defined in Section 3.3. However,
later in this thesis we will require the geodesic structure on A0 (the commutative case)
and these coincide for both triples in the case θ � 0, because both the Dirac and Hodge-de
Rham operators are of Dirac-type.

Remark 2.39. The quantum torus for irrational θ can also be seen as a non-commutative
quotient,albeit with some consideration. Consider the flat torus T2

�� R2 ~Z2 and consider
the vector field �dx, θdy� where θ > �0,1��Q. Then this vector field gives us the Kronecker
foliation which is the collection of maximal connected submanifolds Vα which we call leaves
such that T�x,y�Vα � �dx, θdy�. It appears that every leaf is non-compact and lies dense in

T2, as each leaf corresponds to an orbit of the irrational rotation.

5. Fuzzy spheres

Fuzzy spheres are families of matrix algebras that in some way ‘converge’ to ordinary
spheres. We will only cover the fuzzy 2-sphere: there is no general recipe for defining
fuzzy spheres. The motivation behind approximating ordinary spheres using matrix al-
gebras is rooted in physics, where ‘quantization’ of the algebra of observables for some
manifold M , that is C�M�, is an important theoretical tool in studying quantum me-
chanics.

Let us start with the definition right away. Denote by x1, x2, x3 the coordinate maps of
S2 b R3 so that x2

1 � x
2
2 � x

2
3 � r2. Let us consider the algebra A b C�S2� consisting of

functions f that can be written as polynomial expansions:

f�x� � ª

Q
k�0

Q
SαS�k

fαxα

where α is a multiset, so xα � x
α1
1 x

α2
2 x

α3
3 and fα is a constant in C for each α. Because A

separates points, contains the identity and is �-closed we must have that A lies dense in
C�S2�.
Now, we denote by Ak the vector subspaces of A that consist of truncated power series
up to power k. So dimA0 � 1,dimA1 � 4,dimA2 � 9, . . .. It is not possible to multiply
two elements of Ak as we would in A, because we might get powers higher than k. We
would still like the Ak to be C*-algebras, so we define a new multiplication on each Ak.
We could go ahead and multiply pointwise for each basis function, but then we would
obtain a (boring) commutative C*-algebra corresponding to k2 points, which breaks the
symmetry of the SO�3�-action on S2. Instead, we opt for a ‘maximally’ non-commutative
multiplication; turning Ak into the full matrix algebra Mk�C�.
For k � 1 we can only define f � g �� fg � f0g0.
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For k � 2 we replace the coordinates xi by the Pauli sigma matrices

σ1 � �0 1
1 0

� , σ2 � �0 �i
i 0

� , σ3 � �1 0
0 �1

�
times some constant κ. So, if x̃i � κσi, then we choose κ such that x̃2

1 � x̃
2
2 � x̃

2
3 � r

2 which

means that κ2 �
r2

3 .
These matrices together generate M2�C� and we can write

f �
κ

2
�f0 � f3�σ0 �

κ

2
�f1 � f2�σ1 �

iκ

2
�f1 � f2�σ2 �

κ

2
�f0 � f3�σ3

where σ0 is the identity matrix. We can multiply two truncated functions f, g by multi-
plying the Pauli-matrices. It is obvious that this turns A2 into M2.

For k C 3 we must first note that the Pauli matrices span the Lie algebra su�2� linearly:�iσi�3
i�1 is an R-basis for su�2�. Observe that the identity is not contained in su�2�, this

follows from the definition in terms of one-parameter families:

su�2� �� �X >M2�C� � �e�tX��� � �etX��1
� e�tX ,det�etX� � 1, for all t > R�.

We will now generalize to dimension k � 3 and higher by taking not the Pauli matrices,
but the generators of an irreducible k-dimensional representation of su�2�. After all, the
Pauli matrices span the irreducible representation on C2. In the following we will make
use of sections 4.3 and 4.4 of [Hal15].

Let us construct irreducible representations for the lie algebra sl�2,C� � su�2� a C and
use the fact that the real Lie algebra su�2� has the same representations as its complex-
ification sl�2,C�. Because any two irreducible representations sl�2,C� � GL�V � are in
fact isomorphic, we will be content with a single specific representation. Denote by Vm
the linear space of homogeneous polynomials in 2 complex variables of degree m, then
dimVm �m � 1. Let us define a representation Πm � SU�2�� GL�Vm� by�Πm�U�f��z� � f�U�1z�.
It is clear that Πm is a representation. As it turns out, we have the following...

Fact 2.40 (Propositions 5.1 and 5.3 in [BD85]). The representation Πm is irreducible and
any Vm-representation of SU�2� is isomorphic to Πm.

We define the Lie algebra representation πm � sl�2,C�� GL�Vm� by

πm�X� �� d

dx
etX T

t�0

where etX � αtX�e�, αXt the flow at time t of the left-invariant vector field X and e > SU�2�
the identity. Let us make this representation slightly more concrete. The space sl�2,C�
has C-basis

H � �1 0
0 �1

� , X � �0 1
0 0

� , Y � �0 0
1 0

� ,
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satisfying commutation relations�H,X� � 2X, �H,Y � � �2Y, �X,Y � �H.
Now, πm acts on monomials zk1z

m�k
2 as follows:

πm�H�zk1zm�k2 � �m � 2k�zk1zm�k2 ,

πm�X�zk1zm�k2 � �kzk�1
1 zm�k�1

2 ,

πm�Y �zk1zm�k2 � �k �m�zk�1
1 zm�k�1

2 .

These relations fully describe πm, as the commutation relations are preserved by Lie al-
gebra homomorphisms.

If we let k � m � 1, and let x̃1 � κπm�H�, x̃2 � κπm�X�, x̃3 � κπm�Y � we find that

normalization constraint gives us κ2 �
r2

k2
�1 �

r2

m2
�2m . We can now allow m-fold products

of the x̃i to describe our functions f > Am:

f � f0 �

3

Q
i>I1

fix̃i � Q
i1,i2>I2

fi1i2x̃i1x̃i2 � . . . � Q
i1,i2...,im>Im

fi1...imx̃i1�x̃im

where Ik is the set of ordered symmetric tuples satisfying the normalization constraint.
This implies that SIkS � SSymk�Symk�2S where Symk are ordered symmetric tuples of num-
bers 1, . . . , k. So SIkS � 2k � 1 and we are left with an algebra that has linear dimension
1 � 3 � �2 � 3 � 1� � . . . � �2 �m � 1� � k2. Because our x̃i live in Mk�C� we have a natural
product on Ak that ensures that Ak �Mk�C�.
Finally, note that for k � ª we have κ � 0. This tempts us to say that Ak ‘becomes
commutative at infinity’. Combined with the fact that the (normalized) eigenvectors of
the x̃i > Ak eventually exhaust all spherical harmonics2, we allow ourselves to claim (with
some necessary chutzpah) that

lim
k�ª

Ak “ � ” C�S2�.
Where C�S2� must be interpreted as the multiplication algebra inside B�L2�S2���. This
limit is made precise using the quantum Gromov-Haudorff distance for which the matrix
algebras converge to the sphere[Rie02].

6. Operator Spaces

When studying operator algebras, sooner or later one will encounter operator-valued ma-
trices. For instance, this happens very prominently when studying operator K-theory;
an extraordinary cohomology theory for C*-algebras that extends topological K-theory,
which is the study of isomorphism classes of vector bundles on manifolds. Operator-
valued matrices are themselves operators working on direct sums of Hilbert spaces. As
such, spaces of matrices of operators are C*-algebras and they inherit the norm, ordering
on self-adjoint elements and multiplication. For a given C*-algebra A, one can consider

2The spherical harmonics are an orthonormal basis for L2�S2�, they consist of harmonic, homogeneous

polynomials in R3 restricted to the 2-sphere.
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all matrix algebras Mn�A� � AaMn with their inherited structure (as we do in K-theory),
but one can also generalize this and take a linear subspace V of A to study Mn�V �. These
Mn�V � will not admit multiplications (rather unsatisfactory for a set of matrices), but
they will have induced norms and order-structures. The family Mn�V � with these norm
and order structures are what we call an operator space. By definition, operator spaces
lie inbetween normed spaces and C*-algebras. During this section we will follow [EG 00].

Let’s start right away with the main definition of this section.

Definition 2.41. An operator space is a linear subspace V of some concrete C*-algebra
B�H� where H is a Hilbert space. Q

Given an operator space V , we can consider the V -valued matrices Mn�V � b B�Hn�
which inherit norm and order from B�Hn� where n > N. These ‘explicit’ subspaces of
operator algebras are also referred to as concrete operator spaces. Operator spaces can be
characterized abstractly as follows:

Definition 2.42. An abstract operator space is a linear space V with distance matrix
norms Y � Yn defined on Mn�V �, such that

Y Yv `wYn�m � max�YvYm, YwYn�.
Y YαvβYn B YαYYvYmYβY.

where v >Mm�V �,w >Mn�W �, α >Mm,n, β >Mn,m. Q

We also want to study maps between operator spaces.

Definition 2.43. Let V,W be (abstract or concrete) operator spaces. A linear map
f � V �W induces maps fn �Mn�V ��Mn�W � by�vij�1Bi,jBn ( �f�vij��1Bi,jBn.

We define the complete norm by YfYcb �� supn>N YfnYn where Y�Yn is the norm on Mn�W �.
We call f ...

Y completely bounded if YfYcb @ª.
Y completely contractive (or a complete contraction) if YfYcb B 1.
Y completely isometric if every fn is isometric.
Y completely positive if for all a >Mn�V �� we have fn�a� >Mn�W ��.

We denote by CB�V,W � the set of completely bounded maps from V to W . Q

It is a consequence of the representation theorem for operator spaces that concrete and
abstract operator spaces are the same up to complete isomorphism. That is, if V is an
abstract operator space, then there is a completely bounded bijection ϕ � V � V � where
V � is a concrete operator space and ϕ�1 is also completely bounded. We will therefore
dispense with the distinction between abstract and concrete operator spaces.

Definition 2.44. An operator system is a closed, unital, self-adjoint linear subspace
S b B�H�. Q
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Again, there is an abstract formulation for operator systems as well, but we will not bother
exploring it as we will only get to work with concrete operator systems. An important
feature of operator systems is that they carry a natural ordering. One considers the
cone Mn�S�� ��Mn�S�9B�Hn�� for each n and this induces an ordering on Mn�S�sa. In
ordinary operator spaces, the natural maps are the completely bounded maps. In operator
systems, however, we impose a stricter condition.

Definition 2.45. Let S,S� be operator systems, then f � S � S� is called a completely
positive, unital map or simply a morphism if f is completely bounded, positive and
f�1S� � 1S� . Q

It appears that the f is automatically bounded if f is unital and completely positive. We
therefore refer to the collection of morphisms from S to S� as unital completely positive
maps, denoted by UCP�S,S��. Due to the additional structure on operator systems, we
are given an extension of the classical Hahn-Banach theorem:

Theorem 2.46 (Arveson-Hahn-Banach). Given Hilbert spaces H,K and operator sys-
tems V b W b B�H�. If ϕ � V � B�K� is completely positive, then there exists a
completely positive extension ϕ̃ �W � B�K�.
There is also a generalization of the Gelfand-Naimark-Segal theorem for completely pos-
itive contractions instead of homomorphisms:

Theorem 2.47 (Stinespring’s Decomposition). Let A be a unital C*-algebra, let H be
a Hilbert space and suppose that ϕ � A � B�H� is completely positive and completely
contractive. Then, there exists a Hilbert space K, a contraction T � H � K and a unital
*-representation π � A� B�K� such that

ϕ�a� � T �π�a�T.
Moreover, if ϕ is a morphism, T is isometric.

A famous corollary of this result is:

Corollary 2.48. Let A,B be unital C*-algebras and suppose that ϕ � A � B is a mor-
phism with ϕ�1 also a morphism. Then ϕ � A� B is a *-isomorphism.

6.1. Operator Space Topologies. We start by defining two important operations
on operator-valued matrices

Definition 2.49. Let V be an operator space and suppose that �mij� >Mk,l�V �, �m�

ij� >
Mk,l�V ��, we define the scalar pairing of `m,me > C to be`m,m�e �Q

i,j

m�

ij�mij�.
Now assume, more generally, that we have �mij� > Mp,q�V ��, then the matrix pairingtm,ny >Mkp,lq is defined astm,m� y � �tm,m� yik,jl� � �m�

ij�mkl��.
Q
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If we let V � C, then the scalar pairing corresponds to the trace operator tr�αβ��.
Definition 2.50. Let V � be the dual operator space (embedded in some B�H�) of V ,
suppose that �v�λ�λ>Λ bMn�V �� is a net and let v� >Mn�V ��, then

Y We say that v�λ converges to v� in the point-norm topology, if for all x >Hn we
have limλ Yv�λ�x� � v��x�Y � 0.

Y We say that v�λ converges to v� in the point-weak* topology, if for all v >Mv�V �
we have limλ Yt v�λ � v�, v yY � 0.

Q

Clearly, if n � 1 and V is any normed space the point-norm topology coincides with the
classical weak* topology.

Remark 2.51 (Equivalent criterion for point-weak* convergence). The name point-weak*
might be a bit confusing: it seems more reminiscent of a weak* topology. Indeed, v�λ
converges to v� if and only if each matrix entry ��v�ij�λ� > V � converges to �v�ij� in the weak*
topology. However, because all the Mn (including Mª) are von Neumann algebras, they
are dual spaces of spaces nM of trace class operators. The weak* topology on Mn � nM�

is given by the ultraweak topology. It turns out that v�λ converges to v� in CB�X,Mn�
if and only if for all x > X we have v�λ�x� � v��x� in the ultraweak topology on Mn. In
the literature the point-weak* topology is often referred to as the BW-topology (bounded
weak topology).

We now state a lemma that will be of importance in Chapter 5.

Lemma 2.52 (Compactness lemma). Let X be an operator space that is separable as a
normed space, then:

(1) For every n > N the unit ball of CB�X,Mn� endowed with the point-norm topology
is compact.

(2) For every n > N the space UCPn�X� endowed with the point-norm topology is
compact.

(3) For every n > N the space UCPn�X� endowed with the point-weak* topology is
compact.

Proof. (1) Fix n > N and define Φ � CB�X,MN�� B�Mn�X�,Mn�Mn��� by

ϕ( �ϕ�ni,j�1 �� ϕn

This map is point-norm to weak* continuous and injective. If we restrict Φ to
the unit ball, its image must be in the unit ball of B�Mn�X�,Mn�Mn���. This
follows from the fact that YϕY � YϕnYn (proposition 2.2.2 in [EG 00]). Hence, Φ
is a homeomorphism onto its image and so the unit ball of CB�X,Mn� must be
compact.

(2) Because UCPn�X� b CB�X,Mn� is a closed subset in the point-norm topology,
it follows by the previous point that UCPn�X� is point-norm closed for n > N.

(3) This is essentially Lemma 7.1 in [Arv69]: the space Mn�X�� b B�X,Mn� is
isometrically isomorphic to the dual space of some normed space, where the
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latter is endowed with the usual weak* topology. Hence the result follows by
Banach-Alaoglu.

�

7. Non-commutative Convexity

In 1984 Gerd Wittstock introduced the concept of matrix convexity which generalized con-
vex combinations, which classically have scalar coordinates, to matrix combinations[Wit84].
Matrix convex sets do not live in a single vector space, but rather in a countable collec-
tion of vector spaces; namely, an operator space. In this section we will expose the theory
of non-commutative convexity which is a slight but highly impactful extension of matrix
convexity. It was developed in [DK19] and [KS19] and we will use these articles as our
primary references. Despite both articles focusing heavily on Choquet simplices, we will
only concern ourselves with the theory of non-commutative extreme points.

Definition 2.53. An nc convex set over an operator space E is a graded subset K �

8̇n>NKn where Kn bMn�E� satisfying:

Y Pαixiα�i > Kn for every collection �xi > Kni� and every family of isometries�αi >Mn,ni�.
Y β�xβ >Km for every x >Kn and every isometry β >Mn,m.

The first condition saying that nc convex sets are closed under direct sums, the second
saying that nc convex sets are closed under compressions. We call K compact if E is a
dual operator space and each Kn is compact in the point-weak* topology on Mn�E�. Q

We have to point out that we range over all n > N �� N8�ª� and in order to allow
for n � ª (which is relevant for Section 3 in Chapter 5) we set the convention that
Mn�S�� �� Mn amin S� where amin is the so-called spatial tensor product. The condition
that E be a dual operator space in order for K to be compact is derived from the central
idea of how we actually define convex sets in the classical sense. A compact convex set
F in a vector space V is precisely the convex hull of its extreme boundary ∂eF . Because
∂eF is also compact, we can view F as the state space of the C*-algebra C�∂eF � by
Gelfand-Naimark, hence F b C�∂eF ��. In fact, the state space consists of only positive
functionals, so C�∂eF � lies in the operator space of non-negative linear functionals, which
is a dual operator space. One can proceed to define the nc-convex analogue KC of C to
consists of the smallest nc convex set containing K0 � F .

Definition 2.54. Let X be an operator system. The nc state space of X is defined to
be the set Snc�X� �� 8̇n>NKn where

Kn � UCPn�X�.
Q

Remark 2.55. The term generalized state space is reserved for the collection �̇n>N UCPn�X�,
so only taking n @ª.

As discussed in Section 6 we have a family of point-weak* compact sets UCPn�S� b

CB�S,Mn� � Mn�S��, so �̇n>N UCPn�X� is an nc compact convex set. Next, we define
what nc convex combinations and nc extreme points are.
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Definition 2.56. If K is an nc convex set, an nc convex combination of elements in
K is an expression of the form Pα�i xiαi for a bounded collection of points �xi >Kni� and

a collection of operators �αi >Mni,n� satisfying Pα�i αi � 1n for some n > N. Q

Definition 2.57. Let K be an nc convex set, an element x > K is called nc extreme
if whenever we write x as a convex combination: x � Pαixiα�i as in definition 2.56, we
must have that...

(1) each αi is a scalar multiple of an isometry βi satisfying βixβ�i � x, and
(2) each xi decomposes as xi � yi ` zi where yi, zi > K and yi unitarily equivalent to

x.

The set of all nc extreme points of K is denoted by ∂enc�K�
Q

If K is nc convex, each Kn is compact convex in the classical sense. However, if we have
a classical extreme point x > Kn it need not be an nc extreme point. Rather, it is a pure
point.

Definition 2.58. Let K be an nc convex set, then a point x > Kn is called pure if
whenever we write x as a convex combination: x � Pαixiα�i , then each αi is a scalar
multiple of an isometry βi satisfying βixβ�i � x. Q

We also need the notion of maximality.

Definition 2.59. Let K be an nc convex set, we say that y >Kn is a dilation of x >Km

if there is an isometry α > Mn,m such that x � α�yα. We call y a trivial dilation if
y � x` z for some z >K. We call x maximal if all its dilations are trivial. Q

Purity and maximality are equivalent to nc extremity:

Proposition 2.60 (Pure and maximal points are nc extreme (Proposition 6.1.4 in [DK19]).
Let K be an nc convex set. Then x > K is nc extreme if and only if it is both pure and
maximal.

Example 2.61. Let X be an operator space. The nc extreme points of the nc state space
of X are called the nc pure states of X and they are denoted by

Senc�X� �� ∂enc�Snc�X��.
¤

For this thesis, the most important fact concerning nc pure states is the following result,
which is a combination of Theorem 3.2.3 and Example 6.1.8 in [DK19]:

Theorem 2.62. Let A be a unital and separable C*-algebra, then Senc�A� consists pre-
cisely of the irreducible representations.

Note that UCPn�X� � UCPn�Xsa�, so we are allowed to restrict ourselves to the operator
system of self-adjoint elements. At this point it is important to note that this implies in
particular that for commutative unital C*-algebras C�X� the irreducible representations
coincide with the pure states and hence with X. This means that the nc pure states can
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be considered a full generalization of the points of a topological space, which is precisely
what we are after.

We have skipped the lion’s share of the theory presented in [DK19] and [KS19], but we
must emphasize an important message that these articles convey: the nc extreme points
can rightfully be called extreme points, because they form a minimal subset ∂encKof points
of an nc convex set K that generates K by taking its (closed) nc convex hull. This was
phrased in the non-commutative Krein-Milman theorem (Theorem 6.4.2 in [DK19]). This
is in stark contrast to prior notions of matrix convexity, where the existence of matrix
convex sets without extreme points could be demonstrated [Eve18]. Another elegant fea-
ture of the theory described in [KS19] is that irreducible representations can be seen as
‘nc point evaluations’, just like classical point evaluations correspond to pure states of
commutative C*-algebras.

We finish this section by showing that for an operator system X the union �̇n>N UCPn�X�
lies point-weak* dense in UCPª�X�. This is a result we will need in Chapter 5.

Lemma 2.63 (Point-weak* density). Let X be an operator system, then

�̇n>N UCPn�X�w� � UCPª�X�.
Proof. Fix ϕ > UCPª�X� � UCP�X,B�`2��, let pn > B�`2� denote the projection

onto an n-dimensional subspace `2
n b `

2 such that limn�ª pn�x� � x for all x > `2. Define
ϕn �� pnϕpn��1�pn�, then clearly ϕn is a sequence of bounded operators in UCPn�X�. Let
x > `2 and write x � xn ` yn where xn �� pn�x� and pn�yn� � 0, then ϕn�x� � pnϕ�xn� � yn.

However, YynY � 0 so ϕn�x� � ϕ�x�. We conclude that ϕn
wk
Ð� ϕ so by Remark 2.51 ϕ is

a limit point of �̇n>N UCPn�X�.
Conversely, if ϕn is a point-weak* convergent sequence its limit must be unital, because
ϕn�1n� � 1n for all n > N. And if x >X is positive, each ϕn�x� must be positive. �





CHAPTER 3

Topological persistence

Algebraic topology is the mathematical field concerned with studying algebraic invariants
of topological spaces. One can compute homology, cohomology and homotopy groups of
manifolds and infer geometric properties from these structures. Notably, these structures
do not naturally admit an analytic structure: one can not speak unambiguously about a
Cauchy-sequence of cohomology rings for example. This is hardly a suprise, as by defi-
nition topological invariants are unperturbed by homotopy equivalences, and homotopy
equivalences in turn allow spaces to be stretched, scaled and deformed in many other
ways. As such, it is impossible to speak of a space possessing ‘almost’ a homology group.
However, in computational mathematics it does make sense to speak of a point cloud
that resembles a circle or a torus. This stems from the fact that we instinctively perceive
a point cloud as representing an underlying topological shape of which we can compute
topological invariants. The technique that allows for explicitly computing the generating
cycles for homology groups of discrete spaces is called persistent homology. The broader
mathematical field that deals with ‘topological resemblance’ of finite data is called topo-
logical data analysis. This field encompasses techniques such as clustering (ToMATo),
creating graphs from point clouds (Mapper) and many other tools.
In section 1 we introduce the ingredients and inner workings of persistent homology. Here
we consider point clouds (which are by definition finite) and Vietoris-Rips complexes. In
section 2 we treat the more general setting of topological persistence. Here we no longer
confine ourselves to point clouds and simplicial complexes.

1. Persistent Homology on finite vertex sets

Persistent Homology is a tool in computational topology that grants the ability to ‘ap-
proximate’ the homology of a topological space X given a finite subset of X. It works by
computing the generators for the homology group over a finite field for growing simplicical
complexes.

(1) Start with a point cloud X, a finite metric space.
(2) Choose in which degree q we want to compute the Betti numbers: let q > N0.
(3) Additionally, we have to choose a finite field of coefficients Zp with p prime.

(Finite for computational reasons)
(4) Starting at r � 0 we let r increase and do the following for each r (an example is

given in figure 1):
(a) Construct an abstract simplicial complex ṼRr�X� that contains the k-simplex

∆k containing elements x1, . . . , xk > X whenever diam ∆k B r. This is a so-
called Vietoris-Rips complex.

29
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(b) Our abstract simplicial complex ṼRr�X� is finite and hence can be embedded
in RN for some N . Thus, we obtain a geometric realization VRr�X� of our
simplicial complex.

(c) For VRr�X� we can compute homology classes using a boundary matrix and
elementary matrix operations. We denote the generators of these homology
classes by Hr.

(d) For each r� @ r, we have a natural embedding VRr�X� ↪Ð�VRr��X�. This,
in turn, induces a map Hr� �Hr.

(e) Using the latter map, we can keep track of the ‘birth’ and ‘death’ of homology
classes. Each homology is encoded by an interval �a, b�1, where a is the value
of r at which the homology class is born, b is the point at which the class is
extinguished.

(f) When r� � diamX the algorithm terminates.
(5) We are left with a collection of intervals (possibly with duplicates). We refer to

this as the (finite) barcode of X.

Figure 1. A visualisation of a growing Vietoris-Rips complex (top), together with the birth
and death of its 0- and 1-cycles (bottom). The radii of the circles in the top image are equal
to r

2 . If a number circles have non-empty intersection a new simplex is added (only 0-, 1-
and 2-simplicies are shown).

Definition 3.1. A multiset is a set that allows for multiplicity. For example �1,1,1,2�
is distinct from �1,2� when considered as multisets.

1Strictly speaking, these intervals should be half-open, as homology classes have vanished at b. But closed
intervals allow us to include single points �a, a� which makes formalities in the theory easier.
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Q

Definition 3.2. A (finite) barcode is a multiset consisting of finitely many intervals
with endpoints ai, bi > Rª with i > I a finite index set and where bi C ai C 0. The set of
finite barcodes is denoted by Barfin. Note that the endpoint of an interval can be infinite;�0, ª� is a legitimate interval.

Q

A finite barcode B can be represented by its non-trivial intervals (that is the intervals�ai, bi� for which bi A ai and �ci, ª�). We denote these intervals as points in R2 and RC0:

B � ��a1, b1�, . . . , �am, bm�, �c1,ª�, . . . �cn,ª��.
We call two barcodes B1,B2 equivalent if they consist of the same intervals. We will also
make use of the following notation for barcodes: we denote by �a, b�i the interval �a, b� in
the i-th homology diagram.

Definition 3.3. If B1 � ��a1, b1�, �a2, b2�, . . . , �an, bn�� and B2 � ��c1, d1�, . . . , �ck, dk��
are two barcodes. A matching between B1 and B2 is a subset χ b B1 � B2 such that�a, b�, �a�, b�� > χ implies a x a� and b x b�.
The matching cost of χ is defined by

c�χ� � max� sup
��a,b�,�c,d��>χ

Y�a, b� � �c, d�Y, sup
�a,b�>χc

Sb � aS
2

¡ .
In the above we let Y�a,ª� � �b,ª�Y � Sa � bS and Y�a, b� � �c,ª�Y �ª if b @ª. Q

Remark 3.4. Alternatively, one can define barcodes as consisting of a finite number of
non-trivial intervals together with all points on the diagonal (that is, all point intervals)
counted with infinite multiplicity. One can then proceed to define a matching as a bijection
between barcodes. The cost of a matching then simply reduces to taking the supremum
of differences between intervals, because the intervals that would be unmatched in our
definition would be matched to the closest diagonal point. We will mostly refer to barcodes
as the multisets, because the finiteness can make proofs easier.

Definition 3.5. Let B1,B2 be two barcodes. Then

dB�B1, B2� �� sup�c�χ� � χ matching between B1 and B2�
defines a metric, which we will call the bottleneck distance.

Q

Remark 3.6. It follows that two barcodes B1,B2 are finitely close to each other if and
only if they have a matching number of infinite intervals.

Example 3.7 (A dense sampling of the square). In Figure 2 the persistence diagrams
of two samplings of the unit square are shown. It makes clear that persistent homology
does not just compute Betti numbers, but that it also encodes metric information, like
the size of homological features.

¤
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Figure 2. The plot and barcode of a random dense sampling of the circle (top) and of a
uniform sampling (bottom) of the unit square. The barcode of the uniform sampling seems
to have only 2 0-cycles and a single 1-cycle, but this is not true: because of the uniform
distance between points, all connected components (except the last one dying at infinity)
vanish at once. The same holds for the 1-cycle: every block of four points gives birth to a
1-cycle at the same time and these 1-cycles all die at the same time. Lastly, it is important
to pay attention to they y-axis. The 1-cycle in the uniform sampling dies at r � 0.048,
whereas the last 1-cycle in the random sampling dies at r � 0.105.

Example 3.8 (Torsion). As mentioned before, one has to pick a finite field Zp of coef-
ficients in order to compute persistent homology. In general, a different choice of p can
yield a different barcode. In ‘ordinary’ homology, this happens whenever a topological
space exhibits torsion. Whenever all homology groups are free, one can pick p without
changing the Betti numbers. However, the naive assumption that freeness of Hd�Cr� for
each r C 0 implies that the persistence diagrams are the same for each choice of p is wrong!
[OY20] In Figure 3 an example is given.

¤

Arguably, the most important property of persistent homology is given by the following
result. This result depends on the more general theory developed in the next section.

Theorem 3.9 (Stability of Persistent Homology[CSO12]). Let d > N. Let P, Q be two
point clouds and let B�P �,B�Q� be the corresponding barcodes for homology of degree d,
then

dB�B�P ��, B�Q�� B dGH�P, Q�
where dGH is the Gromov-Hausdorff distance.
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Figure 3. The persistence diagrams of the boundary of a Möbius strip, uniformly sampled
with coefficients in Z2 (left) and coefficients in Z3 (right). In the Z2-diagram, a 1-cycle dies
around r � 2 and another 1-cycle is born at the same time. Whereas, in Z3, we obtain a
single persistent 1-cycle. Arguably, the field Z3 is superior in this case, as the boundary of
a Möbius strip is a circle and one would expect a single persistent 1-cycle.

2. General Persistent Homology

Topological persistence generalizes persistent homology by considering not just point
clouds, but more general topological spaces. Although a general definition for topological
persistence does not exist, the field of Morse theory (founded by Marston Morse in the late
20s [Mor29]) can be seen as an early example. The torus and its height function provide
a platitudinous (but no less illuminating) example; instead of starting with a point cloud,
one starts with a single point (the bottom of the torus) and at each critical point a n-cell
is added, effectively changing the homology as we climb through the torus. Therefore, we
also obtain a barcode in which the intervals have end points given by the height of the
torus.

To make this more precise, let us start with an alternative way to describe topological
barcodes.

Definition 3.10. A persistence module V is a functor V � �P,B� Ð� VectK. Here�P,B� is a poset. Q

A key observation here is that �P,B� can be considered as a category where the points in
P are the objects and there is precisely one arrow p � q whenever p B q. This arrow is
denoted by ιqp.
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Example 3.11 (Point clouds). The barcodes of finite point clouds from the previous
section can now be described in terms of persistence modules. Let the point cloud be P ,
let our poset be R and consider vector spaces over Zp (where p is the field of coefficients
for our algorithm) and fix a homology degree d. At each value for r C 0 we have Hr-
dimensional vector space Vr, corresponding to the number of generators for the homology
group of VRr�P �. If r B r�, we have the inclusion map ιr

�

r � VRr�P � ↪Ð�VRr��P � which
induces a map in homology: ιr

�
�

r � Vr Ð� Vr� . ¤

Example 3.12. Let M be a manifold and f �M � R be a Morse function, fix a homology
degree d and fix a field K. For each r > R, we let Vr �� Hd�f�1�� � ª, r��, K� and the
maps between Vr, Vr� are again induced by the inclusions Vr ↪Ð�Vr� . ¤

Example 3.13. Let �a, b� b R be an interval, let K be a field, the persistence module
I�a, b� is defined by the family of vector spaces

Vt � �K if t > �a, b�,�0� elsewhere

together with maps

ιt
�

t � �id if t, t� > �a, b�,�KÐ� 0� elsewhere.

We call this persistence module an interval module. ¤

Later, we will need to decompose persistence modules into interval modules. This requires
the notion of a direct sum.

Definition 3.14. Let V � �R,B� Ð� VectK, U � �R,B� Ð� VectK be persistence mod-
ules given by the family of vector spaces Vt, Us and maps ιt

�

t , κ
s�
s . The direct sum of

persistence modules U ` V is given by the family of vector spaces Vt ` Ut and maps� ιt�t
κt

�

t

� � Ut ` Vt Ð� Ut� ` Vt� . Q

Just as barcodes are alternatively described by persistence modules, we need an alternative
way to describe the bottleneck metric. This is achieved by using ε�interleavings which
we will define for vector spaces indexed by the real numbers.

Definition 3.15. Let V � �R,B�Ð�VectK be a persistence module. The e-shift of V is
the persistence module Vε given by vector spaces V ε

t � Vt�ε. Likewise, for s C r the maps
ηεr � V

ε
r Ð� V ε

s are given by Vr�ε Ð� Vs�ε. Q

Definition 3.16. Let V � �R,B�Ð�VectK, U � �R,B�Ð�VectK be persistence modules.
An e-interleaving between V and U consists of two natural transformations ϕ � VÐ� Uε,
ψ � UÐ� Vε given by a collection of maps ϕr � Vr Ð� U ε

ϕ�r�
, ψs � Us Ð� V ε

ψ�s�
such that

ψϕ�r� X ϕr � η
2ε
r , ϕψ�s� X ψs � η

2ε
s .

Q

This seemingly abstract notion gives rise to a metric between persistence modules.
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Definition 3.17. If V,U � �R,B�Ð�VectK are two persistence modules. Their interleaving-
distance is defined as

dI�V, U� �� inf�ε S there exists an e-interleaving between V and U�.
Q

Because we only consider persistence modules and barcodes that arise from topological
spaces, we will suggestively denote persistence modules by Xf whenever they belong to a
topological space X and a function f � X � R (the codomain of f needs not be R, but a
more general setting is not required at this moment). That is, Xf consists of the family
of vector spaces Xt

f �� Hd�Xt� where Xt �� f�1�� �ª, t�� with the straightforward maps
induced by inclusion. In order to exclude pathological or unwieldy persistence modules,
we will restrict ourselves to ‘decent’ persistent modules Xf .

Definition 3.18. Let X be a topological space and f �X � R. The function f is referred
to as the filter function on X. The persistence module Xf is of finite type if Xt is
finite dimensional for all t > R. We call f tame if Xf is of finite type and f is called
q-tame whenever ιr

�

r � Xr � Xr� is of finite rank for each r, r� > R. Q

The latter notion of q-tameness will not be mentioned further in this section, but we
will require it in 4 where we consider persistent homology of general (possibly infinite)
compact metric spaces. Now, we are ready to draw an equivalence between barcodes and
persistence modules.

Theorem 3.19 ([BC19]). Let X be a topological space, let Xf be the corresponding per-
sistence module where f �X � R is tame2. Then, there exists a decomposition into finitely
many interval modules

X � ?
�a, b�>B�X�

I�a,b�

where B�X� is a multiset of intervals.

In fact, the bottleneck distance on barcodes and the interleaving distance on persistence
modules are in a sense the same:

Theorem 3.20 ([CEH05]). Let X,Y be persistence modules of finite type and let B�X�,B�Y �
be the corresponding multisets of intervals as in theorem 3.19, then we have

dI�X, Y� � dB�B�X�, B�Y ��.
This results allows us to prove Theorem 3.9.

Proof of theorem 3.9. Suppose P , Q are point clouds. Because P and Q are
finite, they can be isometrically embedded in a common Rn for some n. Let δ � dGH�P,Q�
and define ε-neighbourhoods of P and Q:

Pε �� �x > Rn S d�x,P � B ε�, Qε �� �x > Rn S d�x,Q� B ε�.
2Once again, this result holds in more generality: R can be replaced with any totally ordered set.
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Then, we must have P b Qδ and Q b Pδ. This implies that for the Vietoris-Rips complexes
we have

VRr�P � b VRr�ε�Q� b VRr�2ε�P �,
VRr�Q� b VRr�ε�P � b VRr�2ε�Q�

for all r. The corresponding inclusion maps form an ε-interleaving. Hence, by Theorem
3.20 we must have dI�P, Q� � dB�B�P �,B�Q�� B δ. �

Now, we can state the most important theorem of this section, which is the analogue of
Theorem 3.9 for filter functions.

Theorem 3.21 (Combination of [Les15] and [Bje16]). Let Xf ,Xg be persistence modules
with f, g tame functions. Then

dI�Xf ,Xg� B Yf � gYª.
Remark 3.22. This extension of the theory beyond mere Vietoris-Rips complexes allows
us to apply persistent homology to more general settings. A few examples are listed below.

(1) To recapitulate: the persistent homology of a growing Vietoris-Rips complex fits
in the framework of general topological persistence as follows: let X be the convex
hull of a point cloud P and let f �X Ð� R be defined as

f�x� � inf�r > R S x > VRr�P ��.
This function is tame (but it is most definitely not continuous) and yields a

persistence module with a decomposition that corresponds to the finite barcode
from the previous section. We denote the this filtered complex by Rips�P � and
its persistence barcode in i-th homology by Hi�Rips�P ��, we will later see that
P can be replaced by a general compact metric space.

(2) One can also compute Čech complexes of point clouds: instead of adding a simplex
∆r at r whenever the diameter of ∆r � r, we can consider balls of radius r

2 around
each vertex and add a simplex between points x1, . . . , xn, whenever the r�balls
around the xi have non-empty intersection. In terms of topological persistence,
the only difference with a Vietoris-Rips complex is the choice of filter function
f �X Ð� R.

(3) Another example of topological persistence is the lower star filtration. This is a
technique that is employed in image classifaction and analysis of graphs. Given
a finite graph Γ b Rn with vertices V �� �vi�ni�1 and a function g � V � R. We
define a filter function f � Γ� R by

f�x� � �g�x� if x > V

max�g�y�, g�z�� if x ~> V and x lies on the edge between y and z.

An example is given by a square grayscale image of n � n pixels that is given
by a function g � V � �0, 1� that represents the brightness where V � �0, . . . , n���0, . . . , n�. The resulting complex contains information about the size of dark
and bright areas in the picture.
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(4) As mentioned before, Morse functions fit seamlessly in the theory of topologi-
cal persistence. Given a compact manifold X and a Morse function f � X � R
we immediately obtain a barcode. Classical Morse theory is non-discrete and
hence cannot be used directly for computational purposes. Discrete Morse the-
ory however can be used to compute persistent homology in a very efficient
manner[MN13].





CHAPTER 4

Topological Barcodes

1. The Barcode Space

In Chapter 3 we introduced the notion of a barcode produced by a finite metric space
X. Throughout this section X denotes a compact metric space, Pfin�X� denotes the
set of finite subsets of X endowed with the Hausdorff distance and more generally Pfin

denotes the space of finite metric spaces endowed with the Gromov-Hausdorff distance,
Pc�X� denotes the closed subsets of X and by Barfin we will denote the space of finite
barcodes. Because barcodes can be produced for each homology functor, we denote by
βk � Pfin � Barfin the function that maps a finite point cloud to the barcode that represents
its k-th homology (so k > N0). Because the barcode maps βk are 1-Lipschitz continuous we
they can be uniquely extended to a Lipschitz map with domain Pfin. It is well established

that Pfin�X� � Pc�X� and that Pc�X� is compact precisely when X is, but in order to do
analysis on the space of barcodes we need to obtain a completion of Barfin that allows us
to take limits. The following proposition characterizes this completion.

Proposition 4.1. The completion Barª �� Barfin of Barfin consists of countable multisets��ai, bi��i>N of intervals in R2 with bi C ai such that for all ε A 0 there are only finitely
many intervals �aj1 , bj1�, �aj2 , bj2�, . . . , �ajn , bjn� with Sbji � aji S A ε for all i � 0, . . . , n.

Proof. Let �An�n>N b Barfin be a Cauchy sequence and let �Bk�k>N b �An�n>N be a
Cauchy subsequence such that d�Bk,Bj� @ 2�k for all j C k C 1. Note that the barcodes Bi

consist of intervals, say Bi � ��ai1, bi1�, �ai2, bi2�, . . . , �ain�i�, bin�i���. We will embed �Bn�n>N
in c0�R2� by induction:
Firstly, define

B̃1 � ��a1
1, b

1
1�, �a1

2, b
1
2�, . . . , �a1

n�1�, b
1
n�1��, �0,0�, �0,0�, . . .� > c00�R2�.

Now, suppose that B̃k is given by the sequence��ãk1, b̃k1�, �ãk2, b̃k2�, . . . , �ãkñ�k�, b̃kñ�1��, �0,0�, �0,0�, . . .� > c00�R2�
(where the tildes indicate that the multiset of intervals do not necessarily come from Bk).
By definition of the bottleneck metric, there exists an optimal matching χk between Bk

and Bk�1. As we will see, this induces a matching of B̃k with Bk�1. Therefore, we define
for 1 B i B ñ�k� the intervals

�ãk�1
i , b̃k�1

i � � ��ak�1
χ �i�, bk�1

χ �i�� if χ matches the i-th interval,�0,0� otherwise.

39
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For i A n�k�, the pairs �ãk�1
i , b̃k�1

i � are defined to be the unmatched intervals in Bk�1

followed by �0,0� after all intervals have been exhausted. It turns out that B̃k�1 consists
of intervals from Bk�1 together with copies of the trivial interval at the origin.

We claim that �B̃k�k>N is a Cauchy sequence in c00�R2� and hence, it has a limit B̃ in
c0�R2�.
For j A i, let us compute

YB̃i � B̃jYª B

j�1

Q
k�i

YBi �Bi�1Yª �

j�1

Q
i�i

sup
m>N

¼Sãkm � ak�1
m S2 � S̃bkm � bk�1

m S2
B

j�1

Q
k�i

dB�Bk,Bk�1� ���
�

j�1

Q
k�i

2�k.

The equality after (�) follows precisely from how B̃k�1 is constructed from B̃k: matched
intervals differ at most 2�k in R2 and unmatched intervals have length at most 2�k. Hence,
we have a Cauchy sequence.

If B̃ > c0�R2� is its limit, and if we write

B̃ � ��a1, b1�, �a2, b2�, . . .� > c0�R2�
then bi C ai for each i > N, because �aki , bki �k>N is also a Cauchy sequence for each i. If we

consider B̃ as a barcode which we call B, we claim that limk�ª d�Bk,B� � 0.
To prove this, we fix k > N and construct a matching χ between Bk and B as follows:
for each bar �aki , bki � > Bk track the matched bars �ak�1

χk�i�
, bk�1
χk�i�

�, �ak�2
χk�1�χk�i��

, bk�2
χk�1�χk�i��

�, . . .
using optimal matchings χk, χk�1, . . .. If at some point χk�j leaves our bar unmatched, let

χ leave �aki , bki � unmatched either; the cost of this bar is at most Pjl�1 2�k�l. On the other

hand, if χk�j matches the bar for all j > N, the bar has a limit which is represented in B̃
as an element of R2 and so χ can match it as such. The cost of the latter matching is
Pª

j�1 2�2�k�j. We conclude that the cost of χ is smaller than 2�k�2 and so limk�ªBk � B.
�

Corollary 4.2. The barcode maps βk extend naturally to 1-Lipschitz continuous maps

βk � Pc � Barª

Proof. Each βk is Lipschitz continuous and in particular uniformly continuous, so
βk can be extended to the closure of Pfin which is Pc. As such βk�Pc� b Barª. �

There is an attractive description of topological barcodes from general compact metric
spaces, which follows directly from the stability of persistent homology beyond point
clouds.
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Proposition 4.3. Let X be a compact metric space, the topological barcodes βn�X� cor-
respond to the filtered complex Hn�Rips�X�,Zp�

Proof. Because X is in particular totally bounded, Proposition 5.1 from [CSO12]
affirms that Hn�Rips�X�,Zp� is a q-tame persistence module. Theorem 3.9 holds in more
generality for q-tame persistence modules (Theorem 5.2 from [CSO12]) and the result
follows. �

Remark 4.4. The results used in the previous proposition make it clear that we do
not need compactness, but that we can compute topological barcodes of totally bounded
metric spaces instead by simply taking the closure. Henceforth we let the domain of β
consist of all totally bounded metric spaces instead.

Remark 4.5. When we pass from point clouds to infinite compact metric spaces, a tech-
nical complication arises. Suppose X is an infinite compact metric space, the simplicial
complex X0 is precisely X as a vertex set, hence it is a totally disconnected simplex (al-
though its geometric realisation is homeomorphic to X) and so it only contains infinitely
many 0-(co)cycles. However, for each t A 0 the simplicial complex Xt contains X in a
natural way. This means that for infinite compact metric spaces, we may have to deal
with intervals that are open on the left. For example, if X is the unit circle, we would
have a single representing 1-cocyle which is represented by the bar �0,1�1. For the sake of
simplicity, however, we rudely violate these rigorous considerations and, once again, we
take the closure of these bars to make our lives easier. After all, the bottleneck metric
does not discriminate between closed, open and half-open intervals.

Definition 4.6. We call Barª the barcode space, for each k > N0 we label Bark �� Barª
and call this the k-th barcode space. We call

Bar �� M
k>N0

Bark

the full barcode space and the map

β � Pc�X�� Bar, P ( �β0�P �, β1�P �, . . .�
is called the barcode map (or full barcode map). Q

To get a clearer understanding of the kind of barcodes that different compact metric
spaces can yield, we present a few examples.

Example 4.7. Let X �� �0� 8 �2�n � n > N� b R be endowed with the metric induced by
R. The only possible barcodes of X are supported in Bar0, that is the βk � Pc�X� � Bar
map to the trivial barcode. More interestingly, if P,Q > Pc�X� are distinct sets, we must
have β�P � x β�Q�:the barcode map is injective. First note that β0�X� consists of all bars�0, 1

2n �0 with n > N. If we have a closed subset P of X we remove all the intervals that
correspond to the points in X � P and this is precisely the barcode of P . To see this,
observe that the distances between any two points in X correspond precisely to a partial
sum of the geometric series. Hence, any combination of points that is removed from X
yields a different barcode

¤
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Example 4.8 (The Baboushka space). For each n > N embed Sn in `2 �� ��an�n>N �

Pn>N SanS2 @ª� by Sn 0 Rn�1
0 `2 where Sn embeds as the unit sphere, Rn�1 embeds into

the first n � 1 coordinates. and scale each embedded Sn with a factor 1~n. Consider the
disjoint union of these embedded spheres:

X � �̇n>N S
n
b `2.

Then X is compact with the metric induced by Y..Y2. The barcode of this space consists
of the bars �0, 1~n�0 for all n > N in Bar0 and a single bar �0, 1~n�n in Barn for each
n > N. Therefore, this is in example of a space that has a barcode with infinite support.

¤

2. Estimating Barcodes from Topology

It is clear that the persistent homology of a compact space X cannot exists without metric
information on X. However, in some cases we can infer a bit of information about the
topological barcodes from its topology only.

Theorem 4.9 (Vietoris-Rips approximation of closed Riemannian manifolds [Lat01]).
Suppose that �X,d� is a closed Riemannian manifold, then there exists an ε A 0 such
that for a ε-dense sampling Xε of X, the geometric Vietoris-Rips complex VRε�Xε� is
homotopy equivalent to X.

Lemma 4.10 (Barcode approximation lemma). Suppose that X is a is a compact CW-
complex with metric. Fix a field K (for example: Zp). Then there exists a constant r A 0
such that for every generator �α� >HY�X,K� of the vector space1 HY�X,K� there exists a
bar �0, lα�kα > β�X� with lα C r.

Proof. We employ the theory of metric cohomology introduced by [Hau95]. It states
that for a compact metric space X and a ring R the functor

H
Y�X,R� �� lim

ε�0
HY�VRε�X�,R�,

where limε�0HY�VRε�X�,R� is a direct limit, is naturally isomorphic to ȞY�X,R� (Čech
cohomology). Because X is a finite CW-complex, it must now hold that HY�X,R� �

HY�X,R�, where the latter indicates simplicial cohomology. If we now take R � K and
ignore the cup product, we obtain a direct limit of vector spaces.

Let V �� limε�0HY�VRε�X�,K� as a vector space. Of course, V � HY�X,K� as vector
spaces. By definition, every generator �v� > V corresponds to some �αv� which is repre-
sented in some Hk�V Rεv�X�,K� and hence in every Hk�V Rε��X�,K� for 0 @ ε� B εv. Let
r� �� min�v�>V εv.

Now, for each cohomology class �ω� >HY�X,K� there exists a barcode �aω, bω�kω of length
at least r�.

�
1we are only interested in the vector space structure. If we were to say ’generator’ instead, we could end
up with less elements
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The following lemma is in fact a corollary of Lemma 4.10 and Theorem 17 in [ALS19].

Lemma 4.11 (Convex spaces give trivial barcodes). If X is a compact, convex metric
space. Its barcode β�X� contains precisely one bar �0,ª�0 that represents the connected
component. Hence it is contained in Bar0.

Proof. Let ε A 0, let Xε be a finite ε-dense sampling of X. Embed Xε isometrically
into Rk for some k. By Theorem 17 in [ALS19] it follows that the VR complex VRε��Xε�
is contractible for all ε� C ε�2 � º

3�. Hence, except for the barcode in H0�Rips�Xε��
corresponding to the main connected component, all barcodes must have died before
ε�2 �º3�. By Gromov-Hausdorff-bottleneck continuity of the barcode map, we see that
β�Xε�� β�X� in the bottleneck-distance, hence β�X� only contains the barcode �0,ª�0

in homology degree 0.
�





CHAPTER 5

Barcodes of quantum compact topological spaces

In this chapter we will formulate the theory needed to answer the question: can non-
commutative persistent homology exist? To this end, we will propose a candidate barcode
map for quantum compact metric spaces in Section 1. This approach is based on the
principle that points of a topological space X coincide with the pure states on C�X�:
∂eS�C�X��. Instead of letting our barcode map β use X as a vertex set, we will plug
∂eS�A� into β for a C*-algebra (or, more generally: an order-unit space) A. We will
show that this cannot work due to the erratic behaviour of the pure state space under the
quantum Gromov-Hausdorff distance.
Next, in Section 3 we propose three further (similar) candidate barcode maps. This time,
they are defined on matricial and quantized compact metric spaces and instead of looking
at the pure states, we consider nc pure states (defined in Chapter 2, Section 7) which
hold much more information than the pure states; the nc pure states Senc�A� correspond
to all concrete irreducible representations of a unital C*-algebra A. We show that for the
matricial version our candidates cannot work, due to ill-definedness. Unfortunately, we
are not able to disprove (nor, more optimistically, prove) the eligibility of the candidate
barcode maps for the quantized version.

1. Quantum Compact Metric Spaces

During this section we follow [Rie99] and [Rie03]. Suppose that �X,d� is a compact metric
space. We can define a seminorm1 Ld � C�X�� �0,ª� by

Ld�f� �� sup�Sf�x� � f�y�S
d�x, y� � x x y¡ .

This is the Lipschitz-seminorm: it assigns to a Lipschitz continuous function its Lipschitz
constant. Non-Lipschitz functions are understood to have Lipschitz-constant ª. From
Ld we can now recover our metric d by taking

d̃�x, y� � sup�Sf�x� � f�y�S � Ld�f� B 1� .
Note that this principle is very reminiscent of what we did in Section 3.3 of Chapter
2. Indeed, the seminorm Ld is a generalization of the seminorm Y�D,f�Y where D is a
generalized Dirac operator. However, whereas earlier we made use of algebraic properties,
it turns out that we can robustly generalize the concept of a metric to normed spaces that
only have a specified order structure without endowing them with a multiplication.

1We admit seminorms that take values at infinity.

45
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Definition 5.1. An order-unit space is a partially ordered vector space A with a
distinguished element e (the unit) that satisfies:

(1) If a > A and a B re for all r > R, then a B 0.
(2) For every a > A, there exists an r > R such that a B re. Moreover, on A we have

a norm defined by YaY �� inf�r > R � �re B a B re�.
Q

The above definition encompasses all real unital C*-algebras or the self-adjoint elements
of unital C*-algebras.

Definition 5.2. Let A be an order-unit space and let L � A � R 8 �ª� be a seminorm.
Then the state space S�A� has a natural induced metric ρL defined by

ρL�µ, ν� � sup�Sµ�f� � ν�f�S � L�f� B 1�
which we refer to as the Monge-Kantorovich metric.

Q

Definition 5.3. Let A be an order unit-space. A Lip-norm on A is a seminorm L � A��0,ª� satisfying the following properties:

(1) The set L�1��0,ª�� is dense in A.
(2) We have L�a� � 0 if and only if a > R e.
(3) The topology on S�A� induced by ρL coincides with the weak* topology.

Q

Proposition 5.4. Let �X,d� be a compact metric space and let Ld be the Lipschitz semi-
norm, then �C�X�, Ld� is a quantum compact metric space.

Proof. The seminorm Ld, is a Lip-norm if we set Ld�f� � ª whenever f is not
Lipschitz-continuous. As Lipschitz functions on X, denoted by Lip�X� lie dense in C�X�
this fixes the density property. Clearly, the only functions with Lipschitz-constant 0 are
the constant functions. For the last point, we define the quotient space C�X�~ � by letting
f � g with f, g > C�X� whenever g � f � λ for some λ > R. The corresponding quotient
supremum norm is denoted Y � Y� and the quotient Lip-norm by L̃. By Theorem 1.8 in
[Rie98] we must have that ρLd induced the weak-* topology, precisely if �f > C�X�~ ��
L̃�f� B 1� is totally bounded. But this follows from Arzelá-Ascoli, where dividing out the
constant functions is of fundamental importance. We see that �C�X�, Ld� is a quantum
compact metric space. �

Definition 5.5. A quantum compact metric space is a pair �A,L� where A is an
order-unit space and L is a Lip-norm. Q

Definition 5.6. A morphism π � A � B is a unital positive linear map between order-
unit spaces A and B. Q
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If we have a surjective morphism π � A� B, we have an induced dual morphism π� � B�
�

A�. This map is surjective: take µ, ν > S�B� and assume π��µ� � π��ν�, then π��µ��a� �
µ�π�a�� � ν�π�a�� � π��ν��a�. But π is surjective, so for each b � π�a� we must have
π��µ��b� � π��ν��b� and hence π��µ� � π��ν�. Moreover, because π�eA� � eB we see that
π�T

S�B�
maps to S�A�. Henceforth, we denote by S�π� the map π�T

S�B�
� S�B�� S�A�.

Example 5.7. Let X,Y be operator systems, then X and Y are order-unit spaces, be-
cause they can be realized as closed self-adjoint linear subspaces in a C*-algebra. Let
LX , LY be their respective Lip-norms. So, unital positive maps are examples of mor-
phisms of Lip-normed operator systems. Of particular interest are the unital completely
positive maps UCPn�X� (the generalized state space) which will become very important
in Section 3. ¤

We now need to generalize the notion of a closed subset of X. Suppose �X,d� is compact
metric and Z bX is a closed subset. Consider the restriction morphism π � C�X�� C�Z�.
Let LZ be the Lip-norm induced by the restricted metric dT

Z
, then LZ�π�f�� B L�f� sim-

ply because the supremum in LZ is taken over a subset. On the other hand, if g > C�Z� we
can extend g to a function g̃ > C�X� with the same Lipschitz-constant such that g � g̃T

Z
by

McShane’s extension theorem[McS34]. The fact that g is real-valued is paramount, as the

complex-valued analogue of this extension theorem introduces a factor
º

2 [Wea18] which
we cannot afford. Therefore, there exists a function g > C�X� such that LZ�π�g�� � L�g�
and we see that LZ is the quotient seminorm of on C�Z�.
This tells us that an appropriate generalization of a closed subset is given by a surjective
morphism π � A� B. We have:

Proposition 5.8 (Proposition 3.1 in [Rie03]). Let A,B be order-unit spaces and let π �
A � B be a surjective morphism, such that S�π� is injective. If L is a Lip-norm on A,
we define the quotient seminorm

LB�b� �� inf�L�a� � π�a� � b�.
Then S�π� � S�A�� S�B� is an isometry for ρL and ρLB .

Convention 1. If A is a complex unital C*-algebra, it cannot be an order-unit space,
because non-self-adjoint elements are not comparable. As such, we will implicitly assume
that for a C*-algebra A and Lip-norm L � Asa � �0,ª�, the quantum compact metric
space �A,L� is in fact �Asa, L�. So, if A � C�X� we implicitly take A � C�X,R� for
example.

Remark 5.9. In fact, throughout this chapter we will assume that all order-unit spaces
and operator systems consist of self-adjoint elements. This is clearly less general than
assuming only that our spaces are closed under taking the adjoint, but it doesn’t matter
as the (generalized) pure states are fully determined by the values they take on self-
adjoint elements. We may assume without peril that our Lip-norms satisfy L�a� � L�a��
([Rie03],[Ker03],[Wu06b]) if we want to define them on complex C*-algebras.

Let us also introduce some notation that we will use throughout this chapter.
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Notation 1. Denote by D�L� the domain of the Lip-norm L. Denote by Dr�L� the set�a > A � L�a� B r� such that D�L� � 8r>RDr�L�. Denote by Br the set �a > A � L�a� B
r, YaY B r�.

Definition 5.10. The quantum Gromov-Hausdorff metric between order-unit spaces�A,LA�, �B,LB� is defined by

distq�A,B� �� sup�distρLH �S�A�, S�B�� � L > L�A,B��
where L�A,B� is the set of Lip-norms L such that L restricted to A and B gives LA and
LB respectively.

Q

The next result is very important.

Proposition 5.11. For compact metric spaces �X,dX�, �Y, dY � we have

distq�C�X�,C�Y �� B distGH�X,Y �.
Proof. Let �X,dX�, �Y, dY � be compact metric spaces. Then �C�X�, LX�, �C�Y �, LY �

are the corresponding order-unit spaces (where LX �� LdX , LY �� LdY ). By definition

distGH�X,Y � � sup�dρH�∂eS�C�X��, ∂eS�C�Y ��� � ρ >M�X,Y ��
where M�X,Y � is the set of metrics ρ on XNY such that ρT

X
� dX , ρTY � dY . Fix

a metric ρ and let dρ � dρH�S�C�X��, S�C�Y ���. We use the natural identifications
X �∂eS�C�X��, Y �∂eS�C�Y �� and note that for each x > X there exists a y > Y such
that ρ�x, y� B dρ. Any x� > S�C�X�� can be written as a convex combination x� � P tixi
where xi > X (denote the corresponding distance minimizers in Y by yi). Convexity of ρ
now gives us that there exists a y > Y such that

ρ�x�, y� B sup
i
ρ�xi, yi� B dρ.

The same argument holds for the roles of X and Y reversed. We obtain:

dρH�S�C�X��, S�C�Y ��� B dρH�∂eS�C�X��, ∂eS�C�Y ���
for any convex metric ρ. Taking suprema gives us

distq�C�X�,C�Y �� B dGH�X,Y �.
�

Proposition 5.11 essentially tells us that the quantum Gromov-Hausdorff distance need
not be a full generalization of the classical Gromov-Hausdorff distance. Indeed, Hanfeng
Li has described a set of examples in [Li01] where we have a strict inequality. To my
knowledge it is still unknown whether the classical and quantum Gromov-Hausdorff dis-
tances are Lipschitz-equivalent when restricted to classical compact metric spaces.

A major result in [Rie03] is that the collection of isometry classes of quantum compact
metric spaces under the quantum Gromov-Hausdorff distance is itself a complete metric
space.
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Theorem 5.12 (Completeness Theorem (Theorem 13.15 in [Rie03])). The set of isometry
classes of quantum compact metric spaces, denoted by �QCM,distq�, is a complete metric
space.

Lastly, we cite Theorem 4.5 from [Rie03], because it is important and interesting in its
own right.

Theorem 5.13. Let L be a seminorm on an order unit space A such that L�a� � 0 if and
only if a > R e. Then ρL induces the weak* topology on S�A� if and only if

Y S�A� has finite radius, and
Y B1 is totally bounded for Y � YA.

2. Persistent Homology on Pure States

As we can naturally identify a compact Hausdorff space X with the pure states in
S�C�X�� (which is precisely the extreme boundary ∂eS�C�X��) and quantum compact
metric spaces �A,L� come with a norm ρL on their state space S�A�, it is natural to ask
whether we can obtain a reasonable metric space by restricting ρL to the pure states on
S�A�. Naively, we propose a candidate barcode map

βq � �QCM,distq�Ð� Bar

defined by βq�A� � β�∂eS�A��. Note that ∂eS�A� may not be compact, but because S�A�
is compact, ∂eS�A� must be totally bounded, which is enough by Remark 4.4. Next, we
require that βq is Lipschitz-continuous with respect to the quantum Gromov-Hausdorff
distance. This, however, is impossible as we will demonstrate with a counterexample.
In Section 9 of [Rie03] Rieffel shows that the quantum tori �Aθ, Lθ�, indexed by skew-
symmetric matrices θ constitute a continuous family with respect to the quantum Gromov-
Hausdorff distance. We only need the quantum 2-tori from Section 4 indexed by θ > �0,1�:
Lemma 5.14. For θ > �0,1� let �A,H,D� � �Aθ,Hθ`Hθ,D� be the spectral triple for the

non-commutative torus from Section 4. Denote A �� A
sa

and let L �� Y�D,a�Y for a > A,
then �A,L� is a quantum compact metric space.

Proof. Because A is unital, A is an order-unit space. We have to verify that L
defines a Lip-norm.

(1) By definition of a spectral triple, �D,a� is bounded for all a > A, hence Y�D,a�Y @
ª for the dense *-subalgebra Asa of A.

(2) Suppose that a � Pn,m>Z cn,mu
nvm > A

sa, then direct computation shows that

Da � aD � � 0 2πiPn,m>Z cn,mu
nvm�n �mκ�

�2πiPn,m>Z cn,mu
nvm�n �mκ� 0

� .
Because im�κ� x 0, we see that �D,a� � 0 implies that cn,m � 0 whenever n x 0

and m x 0. However, it is clear that �D,1� � 0. Hence L�a� � 0 if and only if
a > R.

(3) This is the hardest part, it is proven (specifically for Dirac operators) in [Rie98]
in Theorem 4.2.
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�

If θ � 0, then �A0, L0� � �C�T2�, Ldarc� where darc is the arc-length metric induced by the
Riemannian metric on T2, which is a flat metric determined by the constant κ.

If θ is any irrational number, Aθ is a simple, unital and separable C*-algebra. These
irrational non-commutative tori therefore satisfy the conditions for the following lemma:

Lemma 5.15 (Glimm’s lemma [BO08]). Let A b B�H� be a separable C*-algebra and
H infinite-dimensional. If A contains no non-zero compact operators, then for each state
τ > S�A� there exists an orthonormal sequence of unit vectors �ξn�n>N such that τξn � τ
in the weak* topology. Where τξ�a� �� `a�ξ�, ξe.
Because the states τξn are pure (they correspond to rank-1 projections in B�H�), it follows

that Se�Aθ� � S�Aθ�.
Now, we can use Proposition 4.11 to conclude that βq�Aθ� contains only a single barcode
in homology degree 0 whenever θ is irrational. However, theorem 4.9 implies that A0

must have at least two non-trivial barcodes in homology degree 1 and at least one non-
trivial barcode in degree 2. It follows that θ ( Aθ does not map to a continuous family
of barcodes under βq, so our proposed barcode map cannot even be continuous. We
conclude:

Theorem 5.16. The candidate barcode map βq is discontinuous.

In fact, any non-commutative Gromov-Hausdorff analogue for which the quantum tori
form a continuous family makes our proposed barcode map βq discontinuous. Therefore,
also the matricial quantum Gromov-Hausdorff distance[Ker03] and the Gromov-Hausdorff
propinquity [Lat13] fail to make βq a suitable candidate.

3. Persistent Homology on non-commutative pure states

The ‘naive’ approach of identifying topological spaces with pure states and using the lat-
ter as a vertex set for persistent homology does not work. In this section we develop
two similar alternative barcode maps. The central idea is that we must not look at pure
states, but rather at the nc pure states defined in Section 7, Chapter 2. The nc pure
states contain more information than pure states, because they correspond to concrete
irreducible representations. First we will briefly introduce the matricial and quantized
Gromov-Hausdorff distances in parallel and combine them into the framework of non-
commutative convexity. After we have formulated two new candidates for the barcode
map we will show that both maps are ill-defined for the matricial Gromov-Hausdorff dis-
tance. At most one2 of the barcode maps might theoretically be eligible for the quantized
Gromov-Hausdorff distance, but this is an open problem.

Recall from Chapter 2, Section 7 the definitions of the nc state space and the nc pure
states. Theorem 2.62 tells us that the nc pure states of a unital, separable C*-algebra A

2the eligibility of the one forces ill-definedness on the other and vice versa.



3. PERSISTENT HOMOLOGY ON NON-COMMUTATIVE PURE STATES 51

are precisely the irreducible representations A �Mn where n B ª. Let us start with an
example.

Lemma 5.17 (Nc pure states of matrix algebras are projective unitaries). We have a
homeomorphism

Senc�Bn��PU�n�
where PU�n� is the projective unitary group in n dimensions.

Proof. By Theorem 2.62 the nc pure states are precisely the irreducible representa-
tions Bn � Mk. Because Bn � Mn as an algebra, Bn is simple, hence we can only have
non-trivial representations Bn � Mn. Any irreducible representation must be unitarily
equivalent to the identity representation. Hence, we have a surjective map

Φ � U�n�� Senc�Bn�, U ( ϕU

where ϕU � Bn � Mn defined by A ( UAU�. Clearly, Φ�U� � Φ�V � exactly when
UAU� � V AV � for all A. This can only happen when V � λU for some λ > R. Hence,

Φ factors uniquely through PU�n�: Φ � U�n� π
Ð� PU�n� Φ̃

Ð� Senc�Bn�. It follows that Φ̃
is bijective. Because the space UCPn�Mn� is finite-dimensional, any two vector space
topologies are equivalent. The map Φ̃ can easily be shown to be continuous with respect
to the point-norm topology: fix A >Mn and let �Uλ�λ>Λ be a net in U�n� converging to
U > U�n�, thenYUλAU�

λ �UAU
�Y � YUλAU�

λ �UλAU
�
�UλAU

�
�UAU�Y

B YUnAU�

λ �UλAU
�Y � YUλAU�

�UAU�Y
� YUλAYYU�

λ �U
�Y � YUλ �UYYAU�Y.

Because Uλ � U in the Lie group topology is equivalent with convergence in operator
norm, we see that limλ Φ̃�Uλ� � Φ̃�U� and hence, Φ̃ is a homeomorphism. �

We can now formulate an imprecise version of the candidate barcode map:

Question 5.18. Is the map β̃ � �C ,dist�� Bar that assigns�X,L�( β�Senc�X��
a well-defined, Lipschitz continuous map for some metric space C of isometry classes of
operator systems endowed with a Lip-norm and appropriate non-commutative Gromov-
Hausdorff distance dist between these isometry classes?

Clearly, the map β̃ doesn’t really make sense yet. We will give sound formulations in Ques-
tion 5.27 and Question 5.37. The remainder of this section is devoted to the formulation
of these questions and to finding examples that answer these questions negatively.

3.1. The Matricial Gromov-Hausdorff distance. Let �X,L� be a Lip-normed
operator system throughout. The Lip-norm L defines a metric on each UCPn�X� for
n > N. We will, however, also require a metric on UCPª�X� (recall that these are the
unital completely positive maps X � B�`2�). Luckily, it turns out that this is not a
problem (Proposition 5.23).
First, we require a ‘niceness’ condition for Lip-norms.
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Definition 5.19. A Lip-norm L is called a closed Lip-norm, whenever D1�L� is closed
in X. Q

From now on, we impose upon our Lip-normed operator systems �X,L� that L be closed.
We also need a definition for morphisms between operator systems that respect the Lip-
norm:

Definition 5.20. If ϕ � �X,LX� � �Y,LY � is a unital positive map. We call ϕ Lip-
isometric whenever ϕ�D�LX�� b D�LY � and LY �ϕ�x�� � LX�x�. Likewise, if ϕ is an
isomorphism (a unital completely order isomorphic map) and both ϕ and ϕ�1 are Lip-
isometric, we call ϕ bi-Lip-isometric. For brevity we refer to bi-Lip-isometric unital
complete order isomorphisms as isometries.

Q

Next, we introduce the Lip-norm induced metrics on the generalized state space.

Definition 5.21. For each n > N, we define

µL,n�ϕ,ψ� �� sup
x>D1�L�

�Yϕ�x� � ψ�x�Y�
for ϕ,ψ > UCPn�X� and D1�L� �� �x >X � L�x� B 1�. We refer to the family �µL,n�n>N as
the matricial metrics for L Q

We include the proofs of the next two results (Proposition 2.9 and 2.12 in [Ker03] for the
case n > N) because they are important and are also valid for n �ª.

Proposition 5.22 (Matricial diameters coincide). The diameters Dn �� diam�UCPn�X��
under µL,n is finite for each n > N and Dn �Dm for every n,m > N.

Proof. The restriction map S�X�� S�D�L�� is a weak-* homeomorphism, because
D�L� is dense in X. If ρL is the Monge-Kantorovich metric (definition 5.2) on S�X�,
then this restriction map is ρL �µL,1-isometric. And, the diameter of �S�X�, ρL� is finite,

so UCP1�X� has a finite diameter. Now, fix n > N, let x > X and let ϕ,ψ > UCPn�X�.
There exists a (pure) state τ > S�Mn�X�� such thatYϕ�x� � ψ�x�Y � Sτ X �ϕ � ψ��x�S.
Hence, the diameter of UCPn�X� is bounded above by the diameter of UCP1�X�. Con-
versely, we can isometrically embed S�X� 0 UCPn�X� by letting σ ( σ1n. This implies
that UCPn�X� has diameter bounded below by S�X� � UCP1�X�. We conclude that all
diameters diam�UCPn�X�� are finite and they coincide. �

Proposition 5.23 (Matricial metrics give point-norm topologies). The matricial metrics�µL,n�n>N induce the point-norm topology on UCPn�X� for every n > N.

Proof. Fix n > N. Let

Uϕ,Ω,ε �� �ψ > UCPn�X� � Yϕ�x� � ψ�x�Y @ ε for all x > Ω�,
where ϕ > UCPn�X�, ε A 0 and Ω a finite subset of D1�L�. If we choose for each x > Ω an
element yx > D�L� such that Yx � yxY @ ε

2 and let M A maxx>ΩL�yx�, then the ε
2M -ball of



3. PERSISTENT HOMOLOGY ON NON-COMMUTATIVE PURE STATES 53

µL,n is contained in Uϕ,Ω,ε. Hence, the µL,n-topology is finer than the norm topology.
Let now B�ϕ, ε� be an ε-ball in the point-norm topology. Because we forced D1�L� to be
closed and Barr�X� is totally bounded with r is the diameter of S�X�, D1�L�9Barr�X�
is totally bounded as well. Hence, we can find a finite ε-dense set Ω in D1�L�9Barr�X�.
Therefore, the open set�ψ > UCPn�X� � Yϕ�x� � ψ�x�Y @ ε for all x > Ω�
is contained in B�ϕ, ε�. We conclude that the metric and point-norm topologies on
UCPn�X� are the same. �

Recall from Lemma 2.52 that for n > N the space UCPn�X� is compact when endowed
with the point-norm topology. This cannot be said of UCPª�X�, which can be a problem.
In particular, we do not know whether UCPª�X� is even totally bounded. As we are
going to feed a subset of UCPª�X� into the classical barcode map, this may put a spanner
in the works. For now, however, we introduce the matricial Gromov-Hausdorff distance:

Definition 5.24. Let �X,LX�, �Y,LY � be Lip-normed operator systems. For n > N we
define the matricial n-distance between X and Y to be

distµn�X,Y � �� inf
L>M�LX ,LY �

dist
µL,n
H �UCPn�X�,UCPn�Y ��

where M�LX , LY � is the set of closed Lip-norms on X ` Y that restrict to LX and LY
on the respective subspaces and dist

µL,n
H is the Hausdorff distance with respect to the

matricial n-metric on UCPn�X ` Y �.
We define the complete matricial distance between X and Y to be

distµ�X,Y � �� inf
L>M�LX ,LY �

sup
n>N

dist
µL,n
H �UCPn�X�,UCPn�Y ��.

Q

This definition has the nice feature that distance zero implies that the Lip-normed op-
erator systems are isomorphic and bi-Lip-isometric, that is: the isomorphism is a metric
isometry:

Theorem 5.25 (Matricial distance zero (theorem 4.11 in [Ker03])). Let �X,LX�, �Y,LY �
be Lip-normed operator systems.
We have distµ�X,Y � � 0 if and only if there exists an isometry between X and Y .

Note that this raises another issue: we do not make use of UCPª�X`Y � in the definition
of the matricial Gromov-Hausdorff distance, so whatever happens in UCPª�Xk� for a
matricial Gromov-Hausdorff convergent sequence ��Xk, Lk��n>N is at mercy of UCPn�Xk�
for n > N. On the other hand, if there is a bi-Lip-isometric unital complete order isomor-
phism between X and Y , we must have UCPª�X� � UCPª�Y �.
Just like in the case of quantum compact metric spaces, the collection of isometry classes
is itself a metric space:
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Theorem 5.26 (Combination of Theorems 3.7 and 4.1 in [KL04]). The collection of isom-
etry classes of Lip-normed operator spaces with the matricial Gromov-Hausdorff metric�OM,distµ� is a complete metric space.

Finally, we are able to propose a candidate barcode map on �OM,distµ�:
Question 5.27. Is the map βµ � �OM,distµ�� Bar defined by

βµ � �X,L�( β�Senc�X��
Lipschitz continuous with respect to the matricial Gromov-Hausdorff distance?

We will examine this question in Section 4.

3.2. The Quantized Gromov-Hausdorff distance. There is an inadequacy in en-
dowing the nc state space with the matricial Gromov-Hausdorff metrics, namely: they
induce point-norm topologies. For finite n this need not be a problem, because the UCPn

are still compact, but this is not the case for UCPª. If our metrics on UCPn were to yield
the weak* topology instead (take UCPn�X� b Mn�X��), this problem disappears. And
we are in luck, because this is precisely what the quantized Gromov-Hausdorff distance
relies on. However, the quantized Gromov-Hausdorff requires a rescaling of the metric on
each UCPn with a factor n�2 which is likely to cause trouble.

Firstly, the quantized distance does not use a single Lip-norm on an operator space X,
but rather a family of Lip-norms defined on each Mn aX.

Definition 5.28. Let X be an operator system, a matrix Lipschitz-seminorm L is a
family of seminorms Ln �Mn�X�� �0,ª� such that

(1) L�1
n ��0,ª�� lies dense in Mn�X�,

(2) Ln�a� � 0 if and only if a >Mn �Mn�C1X�,
(3) Lm�n�v `w� � max�Lm�v�, Ln�w��,
(4) Ln�αvβ� B YaYβYYLn�v� and
(5) Lm�v�� � Lm�v�

where v >Mm�V �,w >Mn�V �, α >Mn,m, β >Mm,n. Q

In Definition 5.28 we can replace C with R in condition 2 and remove the last condition
that the Lm be adjoint-invariant if we consider operator systems consisting purely of
self-adjoint elements.

Remark 5.29. We will not follow the exposition of Wu in [Wu06b] very strictly. This
is mostly for the reason of brevity, but also to emphasise the similarity between the
quantized Gromov-Hausdorff and its quantum and matricial counterparts. Moreover, we
will not adopt the exact same names and notation in order to avoid confusion with the
matricial Gromov-Hausdorff distance.

Again, we need metrics on the matrix state spaces:

Definition 5.30. Let X be an operator system with matrix Lipschitz-seminorm L, we
define the quantized n-metric on UCPn�X� to be

κL,n�ϕ,ψ� �� sup�Ytϕ, ay�tψ, ayY � a >Mr�V �, Lr�a� B 1, r > N� .
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Recall that t �, �y is the matrix pairing introduced in Definition 2.49. Q

Definition 5.31. A matrix Lipschitz-seminorm L on an operator system X is called a
matrix Lip-norm whenever κL,n induces the point-weak* topology. In this case �X,L�
is called a quantized metric space. Q

In a similar vein to the quantum and matricial setting, we need our quantized metrics
to induce the point-weak* topology on each UCPn�X�. The point-weak* topology on
UCP1�X� � S�X� coicides with the classical weak* topology, so we have a generalization
of the quantum Gromov-Hausdorff distance. A nice property of the point-weak* topology,
is that �n>N UCPn�X� lies dense in UCPª�X� with respect to the point-weak* topology,
so we do not need to worry about metrizing UCPª�X�; the natural inclusions UCPn�X�0
UCPn�1�X� are isometric by property 3 in Definition 5.28 and the fact thatYtϕ` 1, ay�tψ ` 1, ayY � Ytϕ,ay�tψ,ayY
for any ϕ,ψ > Mn�X�� and a > Mn�X�k for all k > N, so we can take the completion to
obtain a metric on UCPª�X� that induces the point-weak* topology.

Without further ado we introduce the distance of interest:

Definition 5.32. Let �X,LX�, �Y,LY � be two quantized metric spaces. The quantized
Gromov-Hausdorff distance between X,Y is defined to be

distκ�X,Y � �� inf �sup
n>N

�dist
κL,n
H �UCPn�X�,UCPn�Y ��

n2
¡ � L >M�LX , LY �¡

where M�LX , LY �� is the set of matrix Lip-norms on X ` Y that restrict to LX , LY
respectively. Q

This definition has a glaring characteristic: for each quantized n-metric we require multi-
plication by a factor n�2 for the Gromov-Hausdorff distance to work. This can turn out
to be a disadvantage when we will feed UCP�X� into the barcode map.

Remark 5.33. Given a quantum compact metric space �A,L� one can look at the
Lipschitz-continuous functions on S�A� which is an operator space Ã. Let K be the

set of Lipschitz functions on S�A� with norm bounded by 1 and let K̂ be the graded set

that is the minimal matrix convex set such that K̂1 �K. Then the Minkowski functionals
L̂n for each K̂n defined on each Mn�A�� give us a matrix Lipschitz seminorm L̂ � �L̂n�
and these satisfy all the properties that makes �A, L̂� into a quantized metric space. It

turns out that for �A,LA�, �B,LB� quantum compact metric spaces and �Â, L̂A�, �B̂, L̂B�
the corresponding quantized metric spaces we have

distq�A,B� B distκ�Â, B̂�
by Proposition 4.9 in [Wu06b].
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Remark 5.34. There is another important source of quantized metric spaces; just like
quantum compact metric spaces, spectral triples �A,H,D� give rise to quantized metric
spaces. To see this, define a matrix Lipschitz seminorm L on A by letting

Ln��aij�� � Y��D,aij��ijY
where �aij� >Mn�A�. The details are in [Wu06a]. In order to make this work for operator

systems, take A and let Ln��aij�� � ª whenever aij ~> A for some i, j. In particular,
the quantum torus is a family of quantized metric spaces, but it does not readily follow
that the quantum tori are continuous with respect to the quantized Gromov-Hausdorff
distance.

And, again, distance zero between quantized metric spaces implies a complete isometry.

Theorem 5.35 (Distance zero if and only if isometric). Let �X,LX�, �Y,LY � be quantized
metric spaces, then

distκ�X,Y � � 0

implies that there exists a complete isometry Φ � X � Y , that is: a unital complete order
isomorphism such that �LX�n � �LY �n XΦn for all n > N.

Lastly, like in the previous settings, we have a completeness result:

Theorem 5.36 (Completeness of the quantized metric spaces (Theorem 6.5 in [Wu06b])).
The collection of isometry classes of quantized metric spaces with the quantized Gromov-
Hausdorff distance �QM,distκ� is a complete metric space.

Now, we can propose candidate barcode maps. Firstly, we remark that the map βµ in
Question 5.27 is a candidate, because the quantized distance provides us with metrics on
UCPn�X� for n > N, but we have to fix the domain. So, let us define

βϑ � �QM,distκ�Ð� Bar

by �X,L�( β�Senc�X��. However, given the factor n�2 in Definition 5.32, we are tempted
to present another candidate barcode map. For this, we first need to specify the metric
space that we would like to ‘extract’ from our quantized metric space �X,L�.
Let �X,L� be a quantized metric space, for µ > UCPn�X� �UCPn�1�X�, ν > UCPk�X� �
UCPk�1�X� – where k C n without loss of generality – we can define

dq�µ, ν� �� k�2 κL,k�µ, ν�
by κ-isometrically embedding UCPn�X�0 UCPk�X�. This gives us a metric on�n>N UCPn�X�.
Now, suppose that µ, ν > UCPª�X� and either µ or ν is not contained in any UCPn�X�
for n > N, then we can take sequences µk � µ, νk � ν in the point-weak* topology and let

dq�µ, ν� �� lim
k�ª

n�2
k κL,nk�µk, νk�

where nk is the smallest n > N such that µk, νk > UCPnk�X�. Now, we restrict dq to the
nc pure states: Senc�X� b UCPª�X�.
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Question. Is dq � Senc�X� � Senc�X�� �0,ª� a metric?

If this question can be answered affirmatively, we may propose another candidate barcode
map.

Question 5.37. Is the map βκ � �QM,distκ�� Bar defined by�X,L�( β�Senc�X���,
where UCPª�X� is metrized by dq, a Lipschitz-continuous map?

Note that βκ cannot be redefined to have domain �OM,distµ� in a straightforward manner,
because �̇n>N UCPn�X� is not point-norm dense in UCPª�X�.

4. Are βµ, βϑ and βκ eligible?

Now that we have developed the theory for both the matricial and quantized Gromov-
Hausdorff distance, it is time to check whether the proposed barcode maps can in fact be
Lipschitz-continuous with their respective distances.

4.1. The Matricial barcode map. We start with βµ. We have already mentioned
the fact that the difficulty with this approach lies in the fact that for a Lip-normed operator
system �X,L� the induced metrics on UCPn�X� give rise to the point-norm topologies.
The point-norm topologies are decent for UCPn�X� with n > N, but for UCPª�X� this
appears not to be the case. In fact, UCPª�X� endowed with µL,ª need not even be totally
bounded as we will demonstrate in the following proposition:

Proposition 5.38. Let θ > �0,1��Q, let �Aθ, Lθ� be the corresponding non-commutative
torus. The nc state space for Aθ given by �UCPª�Aθ�, µLθ,ª� is not totally bounded.

Proof. We will construct a sequence of irreducible representations in Senc�X� without
accumulation point. It will follow that UCPª�Aθ� cannot be totally bounded.

Denote by π � Aθ � B�L2�S1�� the irreducible representation determined by

u( �f�x�( f�x�e2πix�,
v ( �f�x�( f�x � θ��.

Let �e2πinx�n>Z be the orthonormal basis for L2�S1� and denote by u the unitary operator
that sends e2πinx

( e2πi�n�1�x. We can conjugate π with powers of u to obtain new
irreducible representations πk �� ukπu�k. Because v > Aθ satisfies Y�D,v�Y @ ª we can
define ṽ �� λv for some λ > R such that Y�D, ṽ�Y � 1. If we let �πl � πk��v� > B�L2�S1��
act on 1 > L2�S1� we getY�πl�v� � πk�v���1�Y2 � Yul�e�2πil�x�θ�� � uk�e�2πik�x�θ��Y2

� Ye�2πilθ
� e�2πikθY2 �

¾
S

�0,1�
Se2πilθ � e2πikθS2dµ.
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If we now fix ε A 0, then we can find infinitely many distinct natural numbers k1, k2, . . .
such that kiθ is ε-close to a whole number, but for whole numbers m x m� we know thatYe2πim�

� e2πimY2 �
º

2. Hence, there is a constant K dependent only on ε such thatYπkj�v� � πki�v�Y CKº
2

for every distinct pair i, j > N. We conclude that the irreducible representations πki form
a sequence in UCPª�X� without accumulation point for the point-norm topology. �

Because the barcode map β is only defined for totally bounded metric spaces, the map
β̃µ is not well-defined.

4.2. The Quantized Barcode Map. This is not an easy question. To my knowl-
edge there is only one example in the literature of a convergent sequence of quantized
metric spaces, namely: the matrix algebras converge to the sphere when endowed with
suitable metrics [Wu06b]. It is not unlikely that the quantum tori and other common
quantum Gromov-Hausdorff-continuous families of quantum compact metric spaces will
also converge for suitable quantized adaptations, but this needs to be proven first. We also
know that only one of the distances βϑ and βκ can be valid; if βϑ makes UCPª�X� totally
bounded, βκ can at most be a pseudo-metric and if βκ is a metric, βϑ makes UCPª�X�
unbounded.
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Discussion

We have reviewed four candidate barcode maps for non-commutative metric spaces with-
out success. The results have been summarized in Figure 1 below.

Barcode map Gromov-Hausdorff variant Does it work?
βq quantum No, discontinuous
βµ matricial No, ill-defined
βϑ quantzied Unknown
βκ quantized Unknown

Figure 1. The different candidate barcode maps proposed in this thesis.

The latter barcode maps βϑ and βκ are unlikely to be suitable candidates (βκ might
even be ill-defined). But, providing a refutation for either of these maps is non-trivial.
Examples of convergent sequences for the quantized Gromov-Hausdorff distance are scarce
in the literature, so this has to be established from scratch.

1. Future Directions

In the last part of this thesis we discuss possible future leads for developing non-commutative
persistent homology. We also entertain the possibility that for the non-commutative
Gromov-Hausdorff distances that have been invented thus far there cannot exist a Lipschitz-
continuous persistent homology map for non-commutative metric spaces.

1.1. Issues.
1.1.1. Existence is not guaranteed. The existence of a Lipschitz-continuous barcode

map defined on non-commutative metric spaces is endangered by the fact that the classi-
cal Gromov-Hausdorff distance dominates both the quantum Gromov-Hausdorff distance
distq and the Gromov-Hausdorff propinquity distΛ(introduced in [Lat13]) when we restrict
ourselves to classical compact metric spaces. In particular, distq,distΛ may not even be
Lipschitz-equivalent to distGH and so there might exist a sequence of compact metric
spaces ��Xn, dn��n>N that converge to �X,d� for distq or distΛ, but for which β�Xn� does
not converge to β�X� in a Lipschitz-continuous way. If we waive Lipschitz-continuity and
aim for normal continuity instead, this is not a problem: see Theorem 13.16 in [Rie03].

1.1.2. Persistent homology is flat. Persistent homology has been developed for point
clouds, which are to be seen as finite subsets of Euclidean space. And, while we can
compute topological barcodes for non-flat Riemannian manifolds, persistent homology
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assumes implicitly that our spaces can be embedded in a flat vector space (most notably:
Theorem 3.9). This means that for a non-flat Riemannian manifold, the persistent topo-
logical barcodes are not intrinsic as the filtration of simplicial complexes live outside the
manifold itself. Many non-commutative spaces are obtained as deformations of manifolds
(most prominently: the quantum torus) and their non-commutative metrics are hence de-
rived from an ‘intrinsic’ distance. Defining persistent-homology for Riemannian manifolds
in an instrinsic manner is not very straightforward, however (if at all possible).

1.1.3. Are topological barcodes enough? Thus far, we have assumed that our candidate
barcodes map into the space of full barcodes Bar, but maybe this is too inflexible a
restriction. Perhaps non-commutativity calls for an extension of the definition of barcodes.

1.2. Actual non-commutative persistent homology. On a very fundamental
level, the approach taken in this thesis violates the principle of non-commutative geome-
try. After all, we consider order-unit spaces, operator systems or C*-algebras and then we
extract from these algebraic structures a topological space in the form of (nc) pure states
that serves as a vertex set which we feed directly into the classical barcode map. That
is, we never really left point-set topology. Instead, a purely non-commutative geometric
approach would involve generalizing the whole process of persistent homology: producing
a filtration of simplicial complexes from a ‘non-commutative point cloud’ and computing
persistent homology classes. Let us examine each step in this method.

1.2.1. Non-commutative point clouds. The very first question is obviously: what is a
non-commutative point cloud? Since ordinary point clouds are finite metric spaces, it
does not seem far fetched to define non-commutative point clouds as finite dimensional
C*-algebras (or finite dimensional operator systems) that have a Lip-norm (or a related
seminorm). This definition is further motivated by the theory of truncated spectral triples
developed in [Sui20] which are finite-dimensional truncations �Xn, Ln� of a Lip-normed
operator system �X,L� such that the corresponding state spaces converge in the classical
Gromov-Hausdorff distance.

1.2.2. Non-commutative filtrations. To formulate a non-commutative version for the
filtrations of simplicial complexes, we need to ask ourselves two questions:

(1) What are non-commutative simplicial complexes?
(2) How does a non-commutative point cloud determine a filtration of non-commutative

simplicial complexes?

For the first question it seems tempting to implement the non-commutative simplicial
complexes as defined by Cuntz in [Cun02]. Despite the elegance of this theory there are
two problems:

(1) For each abstract simplicial complex there is exactly one commutative (classical)
simplicial complex and one non-commutative simplicial complex.

(2) Vertex sets (0-skeletons) are the same for commutative and non-commutative sim-
plicial complexes, making it impossible to have strictly non-commutative point
clouds as vertex sets.
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The second question heavily depends on the first one and as such it is ill-posed. In the
(likely) case that the maps in our filtration are �-homomorphisms we require our simplicial
complex to have a sufficiently rich ideal structure.

1.2.3. Non-commutative homology. In the classical setting, for each simplicial complex
in a filtration we can compute homology classes and between two simplicial complexes we
have nicely behaved inclusions that induce maps in homology. How we would compute
non-commutative simplicial (co)homology depends heavily on what our definition of non-
commutative simplicial complexes. If each non-commutative simplicial complex is a C*-
algebra, we may employ cyclic (co)homology [Con94] which is a cohomology theory for
*-algebras that corresponds to the de Rham cohomology for commutative algebras of
smooth functions on manifolds. In addition, we may compute K-theory which has the
nice property of generalizing topological K-theory relatively intuitively. Moreoever, in
some cases (such as graph C*-algebras) K-theory can be computed in terms of finite
algebraic data.

1.3. Spectral Geometry. A completely different approach to non-commutative per-
sistent homology forks off from this thesis in Chapter 2 Section 3 where we mentioned
that the kernel of the (Hodge) Laplacian ∆ corresponds to the cohomology vector space.
In fact, this observation is used in a theoretical implementation of persistent homology
on quantum computers[LGZ16]. This is a very convenient setting, because for (non-
commutative) spectral triples we already have Laplacians at our disposal. Moreover,
persistent geometry, the study of point clouds using a filtration of simplicial complexes
and computing the eigenvalues of the combinatorial Laplacian [MWW20], is a very recent
subject of study that seeks to employ spectral geometry in the study of point clouds.

1.4. What does non-commutative persistent homology mean? Classical per-
sistent homology is widely applicable in data analysis, because we have a very clear
understanding of what these barcodes mean: they signify the existence of holes and cavi-
ties (possibly including torsion) in point clouds. If we want to define a suitable persistent
homology theory for non-commutative point clouds, it is essential to formulate ‘what non-
commutative holes and cavities should be’. If we only have the algebra of observables at
our disposal how can we determine the ‘non-commutative shape’ of our underlying non-
commutative space? An interesting toy model is the fuzzy sphere (Chapter 2, Section 5)
which can reasonably be seen as a family of non-commutative point clouds (matrix alge-
bras) converging to a sphere (a commutative C*-algebra). In what way do these matrix
algebras have a hole, like the sphere does?
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[BD85] Theodor Bröcker and Tammo tom Dieck. Representations of Compact Lie
Groups. Springer Berlin Heidelberg, 1985. doi: 10.1007/978-3-662-12918-
0.

[Bje16] H̊avard Bakke Bjerkevik. Stability of higher-dimensional interval decompos-
able persistence modules. 2016. arXiv: 1609.02086 [math.AT].

[BO08] Nathanial P. Brown and Narutaka Ozawa. In: C*-algebras and finite-dimensional
approximations. American Mathematical Society, 2008, pp. 8–9.
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