
Murphy’s Law on the Fixed Point Locus of the
Quot-Scheme, and Classifying Continuous Constraint

Satisfaction problems

Reinier F. Schmiermann

Supervisors: Martijn Kool, Tillmann Miltzow

Abstract

This thesis consists of two independent parts.
The first part is about Murphy’s law on the fixed point locus of the Quot-scheme. In

this part, we analyze the singularities of the fixed point locus of the Quot-scheme on A4
k

under some torus action. We prove that this scheme satisfies a version of Murphy’s law,
meaning that it contains every singularity which it could conceivably contain.

The second part is about continuous constraint satisfaction problems (CCSPs). In an
instance of such a problem, we are given variables x1, . . . , xn and constraints c1, . . . , cm
on these variables, and we want to know whether we can assign real numbers to these
variables such that all constraints are satisfied. We prove that a large number of these
CCSPs are ∃R-complete, which means that solving such a problem is as hard as solving
a general system of equations. Finally we apply these results on CCSPs to show that the
problem of packing convex polygons into a square container is also ∃R-complete.

Contents

1 Introduction 3
1.1 Murphy’s Law on the Fixed Point Locus of the Quot-Scheme 3
1.2 On Classifying Continuous Constraint Satisfaction Problems 4
1.3 Shared Philosophy . 5

2 Murphy’s Law on the Fixed Point Locus of the Quot-Scheme 6
2.1 Introduction . 6
2.2 Preliminaries . 7

2.2.1 Quot-scheme . 8
2.2.2 Torus action and the fixed point locus 10
2.2.3 Murphy’s law and Mnëv’s universality theorem 13

2.3 Singularities of (Q•3,d)
T . 15

2.3.1 Qχ as a closed incidence scheme . 15
2.3.2 The case d = 2 . 16
2.3.3 The case d = 3 . 19
2.3.4 The case d = 4 . 21

2.4 Extending the result to the full Quot-scheme 24
2.4.1 The Bia lynicki-Birula decomposition 25
2.4.2 Trivial negative tangents on the Quot-scheme 25

3 On Classifying Continuous Constraint Satisfaction Problems 28
3.1 Introduction . 28

3.1.1 Constraint Satisfaction Problems 30
3.1.2 Existential Theory of the Reals . 31
3.1.3 Results . 34
3.1.4 Discussion . 36
3.1.5 Proof Overview for CE and CCI . 38
3.1.6 Proof Overview to Packing . 41

3.2 Proof of CCSP-Theorems . 42
3.2.1 Approximate Solutions . 42
3.2.2 Almost Square Explicit Equality Constraints 44
3.2.3 Almost Square Explicit Inequality Constraints 50
3.2.4 Implicit Constraints . 59

1

3.3 Packing . 61
3.3.1 Overview of Previous Work . 62
3.3.2 Changes to the framework . 66
3.3.3 Gadget . 68

3.4 Appendix: Circle-Constraint . 75

2

Chapter 1

Introduction

This master thesis consists of two different parts. The first part concerns algebraic ge-
ometry, and is about the singularities of the Quot-scheme. The second part concerns
theoretical computer science, and is about the complexity of continuous constraint satis-
faction problems. Both these parts can be read independently of each other. In particular,
no knowledge of algorithmics is needed to read the first part of the thesis, and no knowl-
edge of algebraic geometry is needed for reading the second part of the thesis. In this
introduction, a short overview of the contents of both the parts will be given, together
with a short section on the shared philosophy between the two parts.

1.1 Murphy’s Law on the Fixed Point Locus of the

Quot-Scheme

Quot-schemes form an important tool within algebraic geometry. A Quot-scheme over a
space X is some kind of geometrical space, such that each point of this space corresponds
to a quotient of a kind of algebraic structure on X. Unfortunately, when trying to do
computations with such a Quot-scheme, it turns out that the entire Quot-scheme is too
complicated to easily work with. Luckily, if the space X admits a certain kind of symmetry
(a “torus action”), then this symmetry carries over to the Quot-scheme. The points of the
Quot-scheme which are fixed under this symmetry form the fixed point locus. This fixed
point locus admits a convenient combinatorial description, which makes it a lot easier to
work with than with the full Quot-scheme. Furthermore, a lot of information about the
Quot-scheme can be obtained by just studying this fixed point locus.

It would have been nice if the fixed point locus of the Quot-scheme were smooth, since
smooth spaces are easier to work with than singular spaces. Unfortunately, this turns out
not to be the case. In the first part of this thesis, we study the singularities of this fixed
point locus. The main result is that the fixed point locus of the Quot-scheme over the
space C4 satisfies a version of Murphy’s law in algebraic geometry. The term Murphy’s
law was introduced by Vakil [57], and it means that the space is as singular as possible:
every singularity which could concievably occur on the space, does actually occur.

3

The main tool in this proof is Mnëv’s universality theorem. This theorem basically
states that any set of polynomial equations with integer coefficients can be modeled by
a set of incidence relations I of points and lines in the plane. Such a set I consists of
requirements of the form “point i lies on line j”. Now Mnëv’s universality theorem says
that for every system of equations we can find such an I, such that the set of configurations
CI of points and lines satisfying the relations in I looks like the set of solutions to the
original system of equations. We can use this to prove Murphy’s law on the fixed point
locus of the Quot-scheme by showing that for any such set CI , we can find a connected
component of our fixed point locus which is essentially the same as CI .

1.2 On Classifying Continuous Constraint Satisfac-

tion Problems

In the second part of the thesis, we study continuous constraint satisfaction problems
(CCSPs). In an instance of such a problem, we are given an interval U ⊆ R, variables
x1, . . . , xn and a set of constraints c1, . . . , cm in these variables (an example of such a
constraint could be x21 ≥ x2). Now we ask whether there is some way to assign a value in
U to every variable such that all the constraints are satisfied.

By allowing different sets of constraints, we can get different continuous constraint
satisfaction problems. For example, we might allow just constraints of one of the forms
x+y = z, x ·y = z and x = 1. In this thesis, we prove ∃R-completeness for a large number
of these CCSPs. A problem is called ∃R-complete if it is as hard as solving general systems
of polynomial equations and inequalities over the real numbers. In particular, proving that
a problem is ∃R-complete involves reducing any system of equations over the reals to an
instance of this problem, such that this instance has a solution if and only if the system of
equations has a solution.

We focus on two classes of CCSPs. The curved equality problem (CE) belonging to a
function f : U2 → R and a positive δ ∈ R is the CCSP where we are only allowed to use
constraints of the forms

x+ y = z, f(x, y) = 0, x ≥ 0, x = δ.

We prove that this problem is ∃R-complete for all functions f such that f(x, y) = 0 de-
scribes a smooth curve through the origin with non-zero curvature, and which furthermore
satisfy some technical conditions.

The convex concave inequality problem (CCI) corresponding to functions f, g : U2 → R
and a real number δ > 0 is the CCSP where we only use constraints of the form

x+ y = z, f(x, y) ≥ 0, g(x, y) ≥ 0, x ≥ 0, x = δ.

We prove that this problem is ∃R-complete for all functions f, g such that the equalities
f(x, y) = 0 and g(x, y) = 0 both describe a smooth curve through the origin with non-zero

4

curvature, and such that one of the inequalities f(x, y) ≥ 0 and g(x, y) ≥ 0 describes a
convex region, and the other one describes a concave region near the origin.

Finally, we apply these results to geometric packing by answering an open question
by Abrahamsen et al. [5, FOCS 2020]. We prove that the problem of packing convex
polygonal pieces into a square container, using translations and rotations of the pieces, is
∃R-complete.

This chapter is based on the paper [41].

1.3 Shared Philosophy

Even though the two halves of this thesis are not directly related to each other, there is a
common theme in both the parts. Both topics are about encoding systems of polynomial
equations in a different setting. In the first part of the thesis, it is shown that any such
system of polynomial equations is encoded by a component of the fixed point locus of the
Quot scheme. In the second part of the thesis, any system of equations is modeled by some
other system of equations or inequalities, but this new system of equations only consists of
a very limited set of equations. Furthermore, at the end of the second part, every system
of equations is also encoded as a packing problem.

The kinds of reductions and encodings which are used in the different parts of the thesis
are different though. When proving Murphy’s law on the Quot-scheme, it is important that
singularities of the space are preserved. On the other hand, during the ∃R-reductions in
the second part, we are mostly interested in preserving the existence of a solution, and we
care less about preserving the other properties of the solution set. However, in this second
part it is important that all reductions can be executed efficiently, while there is no such
requirement when working with singularities on the Quot-scheme.

Another way of looking at the similarities between the parts, is by noting that in each
part we look for objects which seem simple, but turn out to exhibit a rich, complicated
structure. In the first part this simple object is the fixed point locus of the Quot scheme,
which satisfied Murphy’s law. In the second part we look for continuous constraint satis-
faction problems which are as simple as possible, while still being ∃R-complete.

5

Chapter 2

Murphy’s Law on the Fixed Point
Locus of the Quot-Scheme

2.1 Introduction

The Quot-scheme is an important tool in algebraic geometry. Roughly stated, the Quot-
scheme Q of rank r over a quasi-projective scheme X over a field k parameterizes 0-
dimensional quotients of OrX . What this means will be explained in more detail later. It
turns out that this full Quot-scheme is fairly complicated, and that it is quite cumbersome
to work with.

In the case that X admits a group action of the d-dimensional algebraic torus T = (k∗)d,
computations can be simplified. This is because such a torus action lifts to the Quot-scheme
Q, and it is possible to look at the fixed point locus QT under this torus action, which
admits a nice combinatorial description as we will see later. Computations on Q can be
reduced to simpler computations on QT . In this thesis, we study the singularities of this
fixed point locus QT in the case where the space X we are working over is the affine space
Ad
k. We will denote the Quot scheme in this case by Q•r,d, and its fixed point locus by

(Q•r,d)
T .

In particular, the goal is to check whether this scheme satisfies Murphy’s law in algebraic
geometry. This notion was introduced by Vakil [57]. A scheme satisfies Murphy’s law if it
contains every singularity of finite type over Z. Intuitively, this means that the scheme is
as singular as possible. Vakil himself already proved in [57] that Murphy’s law holds for a
large number of schemes. Payne has also proven that Murphy’s law holds on the moduli
scheme of toric vector bundles on a toric variety [44], and Jelisiejew proved that Murphy’s
law holds up to retraction for the Hilbert scheme of points on A16 [29].

The main result of this first part of the thesis is the following:

Theorem 2.1.1. Every singularity type of finite type over Z occurs, up to a base change
to k, on the scheme (Q•3,4)

T .

Note that in this thesis we are working over an algebraically closed field k of charac-
teristic 0, while Murphy’s law is about schemes over Z. This is the reason why we do not

6

exactly get Murphy’s law on (Q•3,4)
T , but instead need to base change the singularities to

k first. It is expected that the construction described in this thesis can also be performed
while working over Z, but verifying this is beyond the scope of this thesis.

The most important tool in proving this theorem is Mnëv’s universality theorem, as
described in [35] and [34, Section 1.8]. Mnëv’s universality theorem states that incidence
schemes satisfy Murphy’s law. Here an incidence scheme is a scheme which parametrizes
sets of points and lines which satisfy certain incidence relations of the form “point i lies
on line j”. It turns out that the fixed point locus (Q•3,4)

T is always a disjoint union of
such incidence schemes, to prove the theorem we need to show that every incidence scheme
also occurs as some connected component of (Q•3,4)

T . This construction, where we find
a connected component of this fixed point locus for every incidence scheme, is the main
contribution of this thesis.

Before we prove this theorem, we also discuss how our approach fails when working
over A2

k or A3
k. We do this by showing that not all incidence schemes occur as connected

components of (Q•3,2)
T and (Q•3,3)

T , however, this does not yet imply that Murphy’s law
does not hold in these cases. It would be interesting to see whether it is possible to give
an explicit singularity which does not occur on these schemes, or whether it is possible to
derive Murphy’s law in some other way, but this is a topic for future research.

Finally we also give a short discussion of how our result on the fixed point locus might
be extended to the entire Quot-scheme. In particular, we discuss the Bia lynicki-Birula
decomposition, which is a central tool in the proof from Jelisiejew [29] of Murphy’s law on
the Hilbert scheme of points on A16. In particular, we show that applying this decompo-
sition in a somewhat naive way cannot directly work. This does however not yet exclude
the possibility that, by using more advanced tools similar to those used by Jelisiejew, we
can prove Murphy’s law on some Q•r,d with d less than 16.

In Section 2.2, we will give an overview of the already known results which are needed
for the rest of the thesis. In particular we give a definition of the Quot-scheme, and an
explicit description of its fixed point locus. We also introduce Murphy’s law and Mnëv’s
universality theorem in more detail here. In Section 2.3, we specialize the description of
the fixed point locus to the case r = 3. After discussing the Quot-scheme on A2

k and A3
k, we

prove our main result on A4
k. Finally in Section 2.4, we discuss how this might be extended

to the whole Quot-scheme by using the Bia lynicki-Birula decomposition.

2.2 Preliminaries

Before proving the results of this thesis, first some definitions and results are needed about
the Quot-scheme and Murphy’s law in algebraic geometry. This section serves to introduce
these topics. In this section, and also in the rest of this thesis, we will work over an
algebraically closed field k with characteristic 0, unless indicated otherwise.

7

2.2.1 Quot-scheme

The main object which we will study in this thesis, is the Quot-scheme QuotX(OrX , n),
which we will define in this section. Here X is a quasi-projective scheme over k, and r
and n are nonnegative integers. The Quot-scheme is a so-called moduli space.

A moduli space is a kind of geometric space (in this case a scheme, but it might also
be for example a variety or a stack), such that each point of this space represents some
geometric object. An important and fairly simple example of a moduli space is that of the
Grasmannian Gr(m,n), which is a variety which models the set of m-dimensional subspaces
of the k-vector space kn. For example, Gr(1, 3) is the set of 1-dimensional subspaces of k3,
which is exactly P2

k. Also, Gr(2, 3) is the set of 2-dimensional subspaces of k3, which is the
set of lines in P2

k, so Gr(2, 3) ∼= P2∨
k .

The Quot-scheme QuotX(OrX , n) parametrizes the set of zero-dimensional coherent quo-
tients OrX → Q of length n as an OX-module. Here “zero-dimensional” means that Q has
a zero-dimensional support Supp(Q); this support is the set of points x ∈ X such that the
stalk Qx is nontrivial. Stated differently, Q should be supported on a finite set of points.
The usual way to formalize such a definition of a moduli space is by first giving a functor
from schemes to sets, and then showing that this functor is represented by some scheme.
In the following, we will explain this a bit more carefully using chapter 2 of the book by
Huybrechts and Lehn [28]. This book however only discusses the case where the scheme X
is projective, and a little extra care is needed to show existence of the Quot-scheme over
general quasi-projective schemes.

Quot-functor

As mentioned before, the first step in defining the Quot-scheme is to define the Quot-
functor

Q := Quot
X

(OrX , n) : (Sch/k)o → (Sets).

Informally, this functor should send a certain scheme S to the set of geometric objects
over S which we want the Quot-scheme to represent. In particular, it should send Spec(k)
to the set of zero-dimensional coherent quotients OrX → Q of length n. For some field
extension ` of k, we instead want Q(Spec(`)) to be the set of zero-dimensional coherent
quotients OrX` → Q of length n as an OX`-module (that is, we base-change the whole
definition to be over ` instead of k).

For a general k-scheme S, the definition is a bit more complicated. We denote XS :=
S×kX. Now we let Q(S) be the set of all zero-dimensional S-flat coherent quotient sheaves
OrXS → Q, where Q has length n as an OXS -module. Here we identify two quotients
q1 : OrXS → Q1 and q2 : OrXS → Q2 if they have the same kernel; this is equivalent to
requiring that there is an isomorphism Φ: Q1 → Q2 such that q2 = Φ ◦ q1. The way to
think about an element ofQ(S) is as a family of quotient sheaves parametrized by the points
of S: for every point s ∈ S, there is a sheaf Qs := Q|Xs over Xs := Spec(κ(s))×kX ⊂ XS.
The fact that all these sheaves Qs together form an S-flat sheaf over XS implies that

8

they vary in some “continuous” manner when s varies over S, we will not discuss these
conditions in more detail here.

Now that we have described what the Quot-functor does with objects, we also need to
describe how it acts on morphisms between schemes. Let g : S → T be a morphism of k-
schemes. Now we let Q(g) : Q(T)→ Q(S) be the map which sends a quotient q : OrXT → Q
to the quotient g∗Xq : OrXS = g∗XOrXT → g∗XQ. Here g∗X denotes the pullback by the map
gX : XS → XT . By right exactness of this pullback, it follows that g∗Xq is indeed a quotient.

In this definition of the Quot-functor, we used quotients OrXS → Q. It is however also
possible to identify each such quotient with its kernel, which is a subsheaf of OrXS . In this
way, it is possible to define the sets Q(S) by using these subsheaves with S-flat cokernel,
instead of quotients, and in some settings this description can be more convenient. Later
in this thesis we will mostly use this alternative definition. It should however be noted
that the maps Q(g) for g : S → T cannot easily be defined by using these subsheaves; this
is because the pullback g∗X is not left exact, so it will not necessarily send an inclusion
E → OrXT to another inclusion g∗XE → OrXS .

Representing the Quot-functor

We define the Quot-scheme to be the k-scheme which represents the Quot-functor we just
defined. What this means will be explained next.

Let C be a locally small category, and let C ′ be the category of contravariant functors
Co → (Sets). Here locally small means that for any pair of objects x, y of C, the morphisms
MorC(x, y) form a set. We can define a functor C → C ′ by mapping an object x of C to
the functor x : y 7→ MorC(y, x). The Yoneda Lemma now states that this functor C → C ′
embeds C as a subcategory into C ′. In particular it follows that if two objects x and y
define the same functors x and y, then x and y are isomorphic. This gives rise to the
following definition:

Definition 2.2.1. A functor F : Co → (Sets) is represented by an object F of C if F is
isomorphic to F in C ′.

Note that by the Yoneda Lemma it follows that, if F is represented by some F , then
this F is unique up to isomorphism.

Now we apply this definition to the case where C is the category of schemes over k,
and F is the Quot-functor Quot

X
(OrX , n). We get the following theorem, originally due to

Grothendieck:

Theorem 2.2.2. The functor Quot
X

(OrX , n) is represented by a quasi-projective k-scheme
QuotX(OrX , n).

We will not prove this theorem here, but it is proven as Theorem 2.2.4 in [28] for the
case where X is projective. The scheme QuotX(OrX , n) from this theorem is what we use
as the definition of the Quot-scheme. In particular, this means that the set of k points
of QuotX(OrX , n), which is defined as Mor(Spec(k),QuotX(OrX , n)), is exactly the set of
zero-dimensional coherent quotients OrX → Q of length n.

9

The case X = Ad
k

In the rest of the thesis, we will mostly work with the Quot-scheme over Ad
k for some d. To

shorten the notation, we will write Qn
r,d := QuotAdk(O

r, n). Furthermore, we are interested

in the disjoint union of these schemes over n, which we denote by Q•r,d :=
∐

nQ
n
r,d.

In this affine case, the set of k-points of Qn
r,d can be described slightly simpler: instead

of working with quotients of the OX-module OnX , we can also work with quotients Q of the
k[x1, . . . , xd]-module k[x1, . . . , xd]

n. The length of such a quotient is exactly its dimension
dimk(Q) as a k-vector space. Specifying such a quotient is furthermore equivalent to
specifying a submodule of k[x1, . . . , xd], which corresponds to the kernel of the quotient
map.

Now we can also observe that the Grasmannian Gr(m,n) is actually a special case of
a Quot-scheme; it is isomorphic to the scheme Qn−m

n,0 . This is because points in this Quot-
scheme correspond to (n−m)-dimensional quotients of the vector space kn. These in turn
correspond to m-dimensional subspaces of kn.

2.2.2 Torus action and the fixed point locus

This section serves to define a torus action on the Quot-scheme over Ad, and to give a
combinatorial description of the fixed point locus under this action. The main results of
this thesis all concern this fixed point locus.

Torus action

Before describing the torus action, we first give a definition of the torus itself:

Definition 2.2.3. For a nonnegative integer m, the m-dimensional algebraic torus is the
algebraic group (k∗)m.

A d-dimensional torus acts on Ad
k as follows: an element t = (t1, . . . , td) ∈ (k∗)d sends

a point (x1, . . . , xd) ∈ Ad
k to (t1x1, . . . , tdxd) ∈ Ad

k. Note that this action depends on the
choice of coordinates on Ad

k. The element t acts on the coordinate ring k[x1, . . . , xn] of Ad
k

by mapping xi 7→ t−1i xi for all i. In the rest of this thesis, we will denote the d-dimensional
torus by T .

Also the projective space Pdk admits a torus action by T , by taking (t1, . . . , td) · (x0 : x1 :
· · · : xd) = (x0 : t1x1 : · · · : tdxd) ∈ Pdk. Both affine space and projective space furthermore
admit an embedding of T as a dense open subvariety, by considering the subset of Ad

k or
Pdk where all coordinates are nonzero, and the torus acts on these subvarieties by the usual
multiplication. Varieties which allow for such a torus embedding are called toric varieties.
These toric varieties allow for a fully combinatorial description, and a lot of computations
simplify when working with toric varieties. This makes them a useful class of varieties to
study in many settings. We will however not discuss this combinatorial description in this
thesis.

10

It turns out that the action of T on a toric variety lifts to the Quot-scheme on this
variety. In particular, we have an action of the d-dimensional torus T on the Quot-scheme
Qn
r,d for all r, d and n. For a description of how this torus action lifts to the Quot-

scheme, and also of the description of the fixed point locus we will give next, we refer to
a paper by Kool [32]. It should be noted that this paper actually focuses on the moduli
space of Gieseker stable torsion-free sheaves, but similar (and even somewhat simpler)
arguments apply when working with the Quot-scheme instead. The reason for this is that,
as noted before, points on the Quot-scheme can be identified with subsheaves of OrX . These
subsheaves are furthermore always torsion-free, which makes the study of these subsheaves
very similar to the study of torsion-free sheaves.

Fixed point locus

Now that we have introduced the action of T on Qn
r,d, and therefore on Q•r,d, we can

also consider the fixed point locus (Q•r,d)
T . We will discuss this fixed point locus by first

describing its k-points. The final goal of this section is to give a decomposition (Q•r,d)
T =∐

χQχ into connected components, which turns out to allow for a fairly easy description.
Recall that every point of Q•r,d can be identified by a submodule E ⊆ k[x1, . . . , xd]

r by
taking the kernel of the quotient map corresponding to this point. Note furthermore that
k[x1, . . . , xd]

r, being a vector space in d variables, admits a Zd grading, and that it splits
as a k-vector space as k[x1, . . . , xd]

r =
⊕

a∈Zd≥0
kr ·xa, where we denote xa := xa1

1 x
a2
2 · · ·x

ad
d .

This grading also is compatible with the torus action on Ad
k, since a t ∈ T acts on the

component kr · xa of k[x1, . . . , xd]
r by multiplication by t−a := t−a1

1 · · · t−add .
It turns out that every point of the fixed point locus (Q•r,d)

T corresponds to a graded
submodule E ⊆ k[x1, . . . , xd]

r. Each such submodule splits into homogeneous components
as E =

⊕
a∈Zd≥0

Ea · xa, where every Ea is a subspace of kr. To such a graded submodule

E we assign a characteristic function χE, which is the map Zd≥0 → Z≥0 which sends
a 7→ dimk Ea for every a ∈ Zd≥0. We will see later that it is easier to describe Qn

r,d by
looking at the points belonging to one such characteristic function at a time. Also note
that 0 ≤ χE(a) ≤ r for all a ∈ Zd≥0.

We can visualize a graded submodule E =
⊕

a∈Zd≥0
Ea ·xa by putting its components Ea

in a d-dimensional grid. An example is drawn in Figure 2.1a. Similarly, we can visualize
the corresponding characteristic function by instead putting the numbers χ(a) in the grid,
as shown in Figure 2.1b.

We denote by Xr,d the set of all characteristic functions χ which are of the form χE for
some E which corresponds to a point of (Q•r,d)

T . That is,

Xr,d :=
{
χE
∣∣ [E ↪→ k[x1, . . . , xd]

r] ∈ (Q•r,d)
T
}
.

We can now deduce some properties of the characteristic functions χ in Xr,d. The
cokernel of the embedding E ↪→ k[x1, . . . , xd]

r should have finite length as a k[x1, . . . , xd]-
module, and therefore it should have finite dimension as a k-vector space. This implies

11

...
...

...
...

...
... . .

.

k3 k3 k3 k3 k3 k3 · · ·
W1 k3 k3 k3 k3 k3 · · ·
V1 V1 W2 k3 k3 k3 · · ·
0 V1 W2 W2 W2 k3 · · ·
0 0 V2 W2 W2 k3 · · ·
0 0 0 0 V3 k3 · · ·
(a) A submodule E of k[x1, x2]

3

...
...

...
...

...
... . .

.

3 3 3 3 3 3 · · ·
2 3 3 3 3 3 · · ·
1 1 2 3 3 3 · · ·
0 1 2 2 2 3 · · ·
0 0 1 2 2 3 · · ·
0 0 0 0 1 3 · · ·

(b) The corresponding characteristic
function χE

Figure 2.1: A visualization of a graded submodule E of k[x1, x2]
3, and its characteristic

function χE. Here V1, V2 and V3 are 1-dimensional subspaces of k3, and W1 and W2 are
2-dimensional subspaces of k3, satisfying V1 ⊆ W1 and V1, V2, V3 ⊆ W2.

that only finitely many of the spaces Ea can be different from kr, and therefore χE(a) 6= r
for only finitely many a ∈ Zd≥0.

Also for every a ∈ Zd≥0, there is an injective map E → E given by multiplication
by xa. This map sends the component Eb into Ea+b for all b ∈ Zd≥0, and therefore
χE(a + b) ≥ χE(b). This condition can also be stated by noting that for all a,b ∈ Zd≥0
with a ≤ b, we have χE(a) ≤ χE(b). Here, by a ≤ b we mean that for all i we have
ai ≤ bi.

These conditions on the characteristic functions χE actually define the whole set Xr,d.

Lemma 2.2.4. The set Xr,d contains exactly those maps χ : Zd≥0 → Z≥0 satisfying the
following properties:

• 0 ≤ χ(a) ≤ r for all a ∈ Zd≥0,

• χ(a) = r for all but finitely many a ∈ Zd≥0,

• if a ≤ b, then χ(a) ≤ χ(b), for all a,b ∈ Zd≥0.

Proof. We have already seen that every element of Xr,d satisfies the given properties. Let
χ be some arbitrary map satisfying the properties from the lemma. Let 0 = V0 ⊆ V1 ⊆
· · · ⊆ Vr = kr be a chain of inclusions of k-vector spaces, where every Vi had dimension i.
Now take

E =
⊕
a∈Zd≥0

Vχ(a) · xa.

This E can be seen to be a graded submodule of k[x1, . . . xd], and it furthermore satisfies
χE = χ. So we see that χ ∈ Xr,d.

Now that we have found the set of characteristic functions χ ∈ Xr,d, we next focus on
finding all E with a given characteristic function. To describe such an E, it is sufficient

12

to give the subspaces Ea ⊆ kr for all a ∈ Zd≥0. These subspaces should furthermore be
compatible, in the sense that a ≤ b for a,b ∈ Zd≥0 implies that Ea ⊆ Eb. This suggests
that the following scheme might describe all possible choices of E:

Definition 2.2.5. Let χ ∈ Xr,d. We define the scheme Qχ to be the closed subscheme of∏
a∈Zd≥0

Gr(χ(a), r),

which consists of those points ([Ea])a∈Zd≥0
∈
∏

a∈Zd≥0
Gr(χ(a), r) such that a ≤ b implies

Ea ⊆ Eb for all a,b ∈ Zd≥0.

Note that the product occurring in this definition is an infinite product, however, only
finitely many of the factors are not equal to Gr(r, r), which is just a single point. Further-
more, each scheme Qχ can be seen to be connected. In the remainder of this thesis, we will
denote a point ([Ea])a∈Zd≥0

∈ Qχ just by [E], where E :=
⊕

a∈Zd≥0
Eax

a is the corresponding

graded submodule of k[x1, . . . , xd]
r. The following theorem implies that the given definition

of Qχ is the correct one:

Theorem 2.2.6. There is an isomorphism

(Q•r,d)
T ∼=

∐
χ∈Xr,d

Qχ.

We will not prove this theorem here. Instead we refer to [32], where a similar result
is deduced for the moduli space of torsion free sheaves. Finally we also mention that it is
possible to give a similar description of the fixed point locus of the Quot-scheme on toric
varieties different from Ad

k, but we will not discuss this in this thesis.

2.2.3 Murphy’s law and Mnëv’s universality theorem

Murphy’s law in algebraic geometry was first introduced by Vakil [57]. Informally, we say
that a scheme satisfies Murphy’s law if it is as degenerate as possible; that is, if every
possible singularity type occurs somewhere on the scheme. For stating what Murphy’s law
means, we should work over Z instead of a field k, which is what we will do in this section.

In order to define what a singularity type is, we first need to introduce an equivalence
relation ∼ on pointed schemes (X, p). This equivalence relation is generated by taking
(X, p) ∼ (Y, q) if there is a smooth morphism X → Y which maps p to q. Saying that a
morphism is smooth means that each of its fibers is nonsingular, and that the morphism is
furthermore flat. Flatness of a morphism can intuitively be interpreted as saying that the
fibers of the morphism vary in a somewhat continuous manner. In this thesis, we will just
use that open embeddings and projections of the form X × Y → X, where Y is a smooth
scheme, are always smooth.

Singluarity types are now defined as the equivalence classes of pointed schemes (X, p)
under this equivalence relation ∼. We say that a singularity type has finite type over Z if

13

there is some representative (X, p) of this singularity type where X has finite type over Z.
Now we can define Murphy’s law in algebraic geometry:

Definition 2.2.7. We say that a scheme X satisfies Murphy’s law if every singularity type
of finite type over Z occurs somewhere on X. That is: every singularity type of finite type
over Z has some representative (X, p) with p ∈ X.

Note that this definition in particular implies the following: if f : X → Y is a smooth
morphism of schemes, and X satisfies Murphy’s law, then also Y satisfies Murphy’s law.
If instead we know that Y satisfies Murphy’s law, and that f is surjective, then also
X satisfies Murphy’s law. This is caused by the fact that smooth morphisms preserve
singularity types.

In [57], Vakil proved for a large number of important moduli spaces that they satisfy
Murphy’s law. The central tool in these proofs is Mnëv’s Universality Theorem, which we
will introduce next.

We define a set of incidence relations on m points and n lines to be a subset I ⊆
{1, . . . ,m} × {1, . . . , n}, where we consider two of those sets of incidence relations to be
the same if one can be obtained from the other by permuting the index set of points
{1, . . . ,m} and permuting the index set of lines {1, . . . , n}. More formally, we consider a
set of incidence relations to be an element of

P({1, . . . ,m} × {1, . . . , n})/ (Sm ×Sn) ,

but we will usually refer to such an element just by some set I ⊆ {1, . . . ,m} × {1, . . . , n}.
To such a set I we assign an incidence scheme CI .

Definition 2.2.8. The incidence scheme CI corresponding to a set of incidence relations I
is the subscheme of (P2

Z)m × (P2∨
Z)n which parameterize m points p1, . . . , pm and n lines

`1, . . . , `n satisfying the following conditions:

• The points p1, . . . , pm are pairwise distinct.

• The lines `1, . . . , `n are pairwise distinct.

• A points pi and a line `j are incident if and only if (i, j) ∈ I.

For us it will be slightly more convenient to work with a modification of this definition,
which concerns what we will call closed incidence schemes:

Definition 2.2.9. The closed incidence scheme CI corresponding to a set of incidence
relations I is the subscheme of (P2

Z)m × (P2∨
Z)n which parameterize m points p1, . . . , pm

and n lines `1, . . . , `n, such that (i, j) ∈ I implies that pi and `j are incident.

Stated differently, we define the closed incidence scheme CI to be like the usual incidence
scheme CI , except that we drop the conditions that the points and lines need to be pairwise
distinct, and that a point pi and line `j cannot be incident if (i, j) 6∈ I. Since these

14

conditions that we dropped are all open conditions, we see that CI is an open subscheme
of CI . Furthermore, CI is a closed subscheme of (P2

Z)m × (P2∨
Z)n. It is however not

necessarily the case that CI is the closure of CI in (P2
Z)m × (P2∨

Z)n: for example, it could
be the case that CI is the empty scheme, even though CI is always nonempty.

Now the version of Mnëv’s universality theorem which we will use, states the following:

Theorem 2.2.10 (Mnëv’s univerality theorem). Every singularity type of finite type over
Z occurs somewhere on some closed incidence scheme CI .

Proof. Lafforgue proves in Section 1.8 of [34] that for every singularity type, there is some
incidence scheme CI such that PGL3 acts freely on this incidence scheme, and such that
the quotient CI/PGL3 contains the given singularity type. A similar result is proven in a
somewhat more detailed manner by Lee and Vakil in [35]. Since both the open embedding
CI ↪→ CI and the projection CI → CI/PGL3 are smooth, we conclude that also CI contains
the given singularity type.

Since we want to work over a field k instead of over Z for the rest of this thesis, we
also introduce the notation Ck,I := CI ×Z Spec(k). Note that we could also have defined
Ck,I as some closed subscheme of (P2

k)
m ×k (P2∨

k)n instead, this would result in the same
scheme.

2.3 Singularities of (Q•3,d)
T

In this section we will prove the main result of this thesis, which is that every singularity
type of finite type over Z occurs, up to a base change to k, on the scheme (Q•3,4)

T . First
we illustrate that, for any d and for r = 3, every connected component Qχ of (Q•3,d)

T is

isomorphic to some closed incidence scheme Ck,Iχ . In particular this means that every

singularity occurring on Ck,Iχ also occurs somewhere on Qχ, and therefore on (Q•3,d)
T .

The remaining question is whether every closed incidence scheme Ck,Iχ also occurs as
some connected component Qχ. We show that for d = 2 or d = 3, the answer to this
question is negative. In these cases we can write down properties of Iχ which are not
satisfied by all sets of incidence relations.

Finally we will show that, for d = 4, every closed incidence scheme Ck,I is isomorphic
to some connected component Qχ of (Q•3,4)

T . This is done by explicitly constructing χ such
that it exactly encodes the relations in I. Combining this with the previous step implies
that every singularity which occurs on some closed incidence scheme CI , also occurs on
(Q•3,4)

T . In particular, using Mnëv’s universality theorem, this yields our main result.

2.3.1 Qχ as a closed incidence scheme

As discussed in Section 2.2.2, every connected component of (Q•r,d)
T is isomorphic to some

closed subscheme of a product of Grassmannians. In the case where r = 3, these Grass-
mannians represent linear subspaces of k3, which can be identified with points and lines

15

in P2
k. In particular, Gr(0, 3) and Gr(3, 3) are both just a point, while Gr(1, 3) ∼= P2

k and
Gr(2, 3) ∼= P2∨

k . Therefore, it is unsurprising that these connected components Qχ are
isomorphic to the closed incidence schemes defined in Section 2.2.3. In this section we will
explicitly construct the set of incidence relations Iχ such that Ck,Iχ

∼= Qχ for all χ ∈ X3,d.
Let χ ∈ X3,d be a characteristic function. Furthermore, let [E] be a point in the

corresponding connected component Qχ for some graded submodule E of k[x1, . . . , xd]
3.

Before defining the set of incidence relations Iχ, we first define the index sets of points
and lines on which we define this set. Note that our original definition of sets of incidence
relations always assumes these index sets to be of the form {1, . . . , n}. We can however
also use any other pair of finite sets, since after choosing any ordering of the elements we
get a set of incidence relations by our original definition anyway.

We index the points by the set

Pχ :=
{
a ∈ Zd

∣∣χ(a) = 1
}
/ ∼,

where the equivalence relation ∼ is generated by setting a ∼ b if a ≤ b for all a,b ∈ Zd
with χ(a) = χ(b) = 1. This means that we add one point to our incidence relations for
each 1 dimensional subspace Ea, except that we identify points corresponding to Ea and
Eb if there is some constraint Ea ⊆ Eb (which would imply Ea = Eb, since these two
subspaces of k3 have the same dimension).

The index set of the lines of Iχ is defined in the same way, except that we focus on 2
dimensional subspaces of k3 now:

Lχ :=
{
a ∈ Zd

∣∣χ(a) = 2
}
/ ∼,

where the equivalence relation ∼ is generated by setting a ∼ b if a ≤ b for all a,b ∈ Zd
with χ(a) = χ(b) = 2.

Finally we define the actual incidence relations: for a point-index i ∈ Pχ and a line-
index j ∈ Lχ we add the pair (i, j) to the set of incidence relations if and only if i has a
representative a and j has a representative b such that a ≤ b. In this way we get a subset
of Pχ × Lχ, we call the corresponding set of incidence relations Iχ.

Lemma 2.3.1. For every χ ∈ X3,d, the scheme Qχ is isomorphic to the closed incidence
scheme Ck,Iχ.

Proof. Qχ can be seen to be exactly the closed subscheme of
∏

a∈Zd≥0
Gr(χ(a), 3) which

corresponds to the points [E] with Ea = Eb if a and b are in the same class of Pχ or in
the same class of Lχ, and with Ea ⊆ Eb if a is in some class i ∈ Pχ and b is in some class
j ∈ Lχ with (i, j) ∈ Iχ.

Using this characterization of Qχ, it is fairly straightforward to write down an isomor-
phism Qχ → Ck,Iχ together with its inverse.

2.3.2 The case d = 2

Before we analyze the singularities of (Q•3,4)
T , we will first consider the schemes (Q•3,2)

T

and (Q•3,3)
T . As we will see, in these cases we are unable to prove that all singularity types

16

1

2

3
4

5
1

2

3

4 5

Figure 2.2: An example of a set of real intervals, and the corresponding interval graph.

Figure 2.3: An example of a caterpillar graph.

occur on these schemes. This is because there are sets of incidence relations I which are
not of the form Iχ for some χ in X3,2 or X3,3.

It turns out that it is useful to identify a set of incidence relations I with a bipartite
graph. This graph has as vertices the point-indices and line-indices of I, and has an edge
between a point-index i and line-index j exactly if (i, j) ∈ I. The following graph classes
play an important role when working with the case d = 2:

Definition 2.3.2. Given a set of m intervals {Si ⊆ R | 1 ≤ i ≤ m}, we define the intersec-
tion graph of these intervals as the graph with vertex set {Si ⊆ R | 1 ≤ i ≤ m}, and with
an edge between two intervals Si and Sj if and only if Si ∩ Sj 6= ∅.

A graph which is the intersection graph of a set of intervals, is called an interval graph.

Definition 2.3.3. A caterpillar graph G is a tree which contains a path P as a subgraph,
such that every vertex in G has distance at most one from a vertex in P .

An example of an interval graph is given in Figure 2.2, and an example of a caterpillar
graph is drawn in Figure 2.3. Now we have the following result:

Proposition 2.3.4. For any χ ∈ X3,2, the set of incidence relations Iχ is, as a graph, a
disjoint union of caterpillar graphs.

Proof. First we will prove that Iχ is an interval graph, then we will deduce from this that
Iχ is actually a disjoint union of caterpillar graphs.

To every point (a1, a2) ∈ Z2
≥0, we assign a real closed unit interval S(a1,a2) := [a1 − 1 +

1/(a2 + 1), a1 + 1/(a2 + 1)] ⊆ R. This assignment has the following two properties:

1. If Sa ∩ Sb 6= ∅ for a,b ∈ Z2
≥0, then a ≤ b or b ≤ a.

2. For all (a1, a2) ∈ Z2
≥0 we have that S(a1,a2) has nonempty intersection with each of

the intervals S(a1+1,a2), S(a1−1,a2), S(a1,a2+1) and S(a1,a2−1), if they are defined.

17

...
...

...
...

...
... . .

.

3 3 3 3 3 3 · · ·
2 3 3 3 3 3 · · ·
1 1 2 3 3 3 · · ·
0 1 2 2 2 3 · · ·
0 0 1 2 2 3 · · ·
0 0 0 0 1 3 · · ·

(a) A characteristic function
χ ∈ X3,2

0 1 2 3 4 5−1

(b) The corresponding intervals Si (c) The graph Iχ

Figure 2.4: A visualization of the proof of Proposition 2.3.4.

Now we define the interval corresponding to a point-index i ∈ Pχ as Si :=
⋃

a∈i Sa, and
similarly for j ∈ Lχ we define Sj :=

⋃
a∈j Sa. See Figure 2.4b for an example. The fact that

these are indeed connected intervals follows from the second property of Sa from above.
Furthermore it follows from the first property that for all i1, i2 ∈ Pχ with i1 6= i2, we have
Si1 ∩ Si2 = ∅, and similarly for j1, j2 ∈ Lχ with j1 6= j2 we have Sj1 ∩ Sj2 = ∅. Finally it
can be checked that for i ∈ Pχ and j ∈ Lχ, we have Si ∩ Sj 6= ∅ if and only if (i, j) ∈ Iχ.
This proves that Iχ is the intersection graph belonging to the intervals Si for i ∈ Pχ and
Sj for j ∈ Lχ.

We now know that Iχ is a bipartite interval graph, see Figure 2.4c. Next we will see
that this implies that Iχ is a disjoint union of caterpillar graphs. Consider one connected
component C of Iχ. First, we want to show that C is a tree. Suppose that there is some
cycle in C, consider the interval S0 in this cycle with the right-most endpoint. This interval
should intersect with two other intervals in the cycle, S−1 and S1. Because of bipartiteness,
S−1 and S1 cannot intersect, without loss of generality we may assume that S−1 is to the
left of S1. This however implies that S1 is completely contained in S0 (recall that the right-
most point in S0 lies to the right of S1), so every interval intersecting S1 also intersects S0.
There exists such an interval which intersects S1, this follows by the fact that S1 is part of
a cycle in C and therefore has degree at least 2. Let S2 be this interval. Now S2 intersects
both S0 and S1, but this contradicts the bipartiteness of the graph. We conclude that C
has to be a tree.

Next let P be the path in this tree from the interval with the smallest starting point
to the interval with the largest end point. The union of all intervals in this path has to be
connected, and it contains both the left-most point and the right-most point of any interval
in C. It follows that this union contains all intervals in the connected component C. This
implies that every interval in C intersects some interval in the path, and therefore every
vertex of C has distance at most 1 to P . This completes the proof that C is a caterpillar
graph, and therefore Iχ is the disjoint union of caterpillar graphs.

Now that we know that Iχ is always a disjoint union of caterpillar graphs for χ ∈ X3,2,
we in particular know that not all sets of incidence relations occur as some Iχ when d = 2.
It seems unlikely that every singularity type of finite type over Z occurs on some incidence

18

Figure 2.5: The graph K3,3, and a set of strings which have K3,3 as their intersection graph.

Figure 2.6: A subdivided K5, which is not a string graph

scheme of such a simple set of incidence relations, so it would be interesting to investigate
what kind of singularities do occur in this case.

2.3.3 The case d = 3

Also in the case where d = 3, it turns out that not all closed incidence schemes occur as
some connected component of (Q•3,3)

T . The argument is similar to that of the case d = 2,
although it is a bit more complicated.

Definition 2.3.5. Given a set of m continuous paths in R2 of finite length without self-
intersections {Si ⊆ R | 1 ≤ i ≤ m} (“strings”), we define the intersection graph of these
strings as the graph with vertex set {Si ⊆ R | 1 ≤ i ≤ m}, and with an edge between two
intervals Si and Sj if and only if Si ∩ Sj 6= ∅.

A graph which is the intersection graph of such a set of strings is called a string graph.

String graphs form quite a large class of graphs, for example every planar graph can be
seen to be a string graph. There are also string graphs which are not planar graphs, for
example the complete bipartite graph on two sets of 3 vertices, K3,3, see Figure 2.5. An
example of a graph which is not a string graph is the subdivision of K5 shown in Figure 2.6,
where every edge is divided into two edges by a vertex.

19

A1

A2

A3

A4

A5
A6

A1

A2

A3

A4

A5
A6

p12
p23

p34

p25 p36

p56

Figure 2.7: A visualization of the last half of the proof of Proposition 2.3.6.

Proposition 2.3.6. For any χ ∈ X3,3, the set of incidence relations Iχ is, as a graph, a
bipartite string graph.

Proof. To every (a1, a2, a3) ∈ Z3
≥0 we assign the following subset of R2:

A(a1,a2,a3) :=

[
a1 − 1 +

1

a3 + 1
, a1 +

1

a3 + 1

]
×
[
a2 − 1 +

1

a3 + 1
, a2 +

1

a3 + 1

]
\
{(

a1 +
1

a3 + 1
, a2 − 1 +

1

a3 + 1

)}
.

This is a unit-square where the bottom right corner is removed. The reason for removing
this corner is that we do not want the sets A(a1,a2,a3) and A(a1+1,a2−1,a3) to intersect. These
sets now satisfy the following two properties:

1. If Aa ∩ Ab 6= ∅ for a,b ∈ Z3
≥0, then a ≤ b or b ≤ a.

2. If the distance between a,b ∈ Z3
≥0 is at most 1, then Sa ∩ Sb is nonempty. Further-

more, this intersection is not just a point, but instead contains at least some line
segment with positive length.

For every point-index i ∈ Pχ we take Ai :=
⋃

a∈iAa ⊆ R2, and for j ∈ Lχ we take
Aj :=

⋃
a∈j Aa ⊆ R2. Both these sets are connected by the second property, and cannot

be disconnected by removing some finite number of points. Furthermore, for distinct
i1, i2 ∈ Pχ we have that Ai1 and Ai2 are disjoint by the first property, similarly for distinct
j1, j2 ∈ Lχ the sets Aj1 and Aj2 are disjoint. It also follows from the properties that for
i ∈ Pχ and j ∈ Lχ, we have (i, j) ∈ Iχ if and only if Ai ∩ Aj 6= ∅. Stated differently, Iχ is
the intersection graph belonging to the sets Ai for i ∈ Pχ and Aj for j ∈ Lχ.

It remains to be shown that we can replace each set Ai or Aj by a string Si or Sj, such
that the intersection graph does not change. This last part of the proof is visualized in
Figure 2.7. We take a point pij ∈ R2 in every nonempty intersection Ai∩Aj. Now for every
set Ai with i ∈ Pχ, we draw a curve Si without self-intersections connecting all points pij

20

within this set, such that the curve does not leave Ai. This is always possible because of
the connectivity of the set Ai. We do the same for the sets Aj for j ∈ Lχ. This way, two
strings Si and Sj intersect if and only if the corresponding sets Ai and Aj intersect. We
conclude that Iχ is indeed a string graph.

This proposition implies in particular that the subdivision of K5 from Figure 2.6, which
is not a string graph, does not occur as a set of incidence relations Iχ with χ ∈ X3,3. As
a set of incidence relations, this graph corresponds to a configuration with 5 points and
10 lines, where there is one line passing through every pair of points. We note that we
have not proven yet that every bipartite string graph does occur as some Iχ. It is also
unclear whether Murphy’s law should hold for (Q•3,3)

T , this depends on whether the class
of bipartite string graphs is general enough to encode any singularity type.

2.3.4 The case d = 4

The next and final case we consider is d = 4. We have seen in the preceding sections that
for d = 2, the graph corresponding to Iχ with χ ∈ X3,d is always an intersection graph of
intervals in R, and that for d = 3 this graph is always an intersection graph of strings in R2.
This suggests that for d = 4, the graph identified with Iχ must be some kind intersection
graph of objects in R3. However, every graph can be embedded in R3, so this does not
form an obstacle. As we will see in this section, it is indeed the case that every set of
incidence relations is of the form Iχ for some χ ∈ X3,4.

Let I be some set of incidence relations on m points and n lines. We will find a
characteristic function χ ∈ X3,4 such that Iχ = I. To do this, we should specify χ(a) for
all a ∈ Z4

≥0.
The construction of χ will use only two hyperplanes in Z4

≥0: the hyperplane H1 defined
by a1 + a2 + a3 + a4 = M1 + M2 and the hyperplane H2 defined by a1 + a2 + a3 + a4 =
M1 +M2 + 1, where M1 = 2m− 2 and M2 = 2n− 1. The values of M1 and M2 are chosen
in such a way to make the rest of the construction work out, there is no further significance
in these values. The rest of the construction is completed by taking χ(a1, a2, a3, a4) = 0
for (a1, a2, a3, a4) ∈ Z4

≥0 with a1 + a2 + a3 + a4 < M1 +M2 and taking χ(a1, a2, a3, a4) = 3
for (a1, a2, a3, a4) ∈ Z4

≥0 with a1 + a2 + a3 + a4 > M1 +M2 + 1.
Furthermore, we will make sure that most a ∈ H1 satisfy χ(a) = 0 and most points

a ∈ H2 satisfy χ(a) = 3. This way, the only pairs of points a,b which actively influence
the definition of Iχ are those with a ∈ H1 and b ∈ H2, and with χ(a), χ(b) ∈ {1, 2}.

Now we can start describing the part of the construction which actually encodes I. For
this construction, we assume that the points from I are indexed from 0 to m− 1, and that
the lines are indexed from 0 to n− 1, since this makes the formulas slightly easier. We will
first describe how the points are encoded, then we describe how the lines are encoded, and
finally we show how incidences between points and lines are encoded.

An example of the construction is sketched in Figure 2.8. The dots in this construction
correspond to coordinates a ∈ H1 with χ(a) 6= 0, in particular the black dots have χ(a) = 1
and the white dots have χ(a) = 2. The segments in the figure correspond to coordinates

21

Figure 2.8: A visualization of the characteristic function χ which encodes the set of inci-
dence relations I = {(0, 0), (0, 2), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}.

...
...

...
...

...
...

... . .
.

3 3 3 3 3 3 3 · · ·
1 1 3 3 3 3 3 · · ·
0 1 1 3 3 3 3 · · ·
0 0 1 1 3 3 3 · · ·
0 0 0 1 1 3 3 · · ·
0 0 0 0 1 1 3 · · ·
0 0 0 0 0 0 3 · · ·

Figure 2.9: χ restricted to the plane with a1 = 2i and a2 = M1 − 2i for some 0 ≤ i < m,
in the case that n = 3. The points drawn here with χ(a) = 1 are exactly the points in Ai.

b ∈ H2 with χ(b) 6= 3, a segment joining the points a1, a2 ∈ H1 corresponds to some
b ∈ H2 with b ≥ a1 and b ≥ a2. Each of the 4 chains of black points in the figure
corresponds to some point from the set of incidence relations, and each of the 3 chains of
white points corresponds to a line.

All the points of I are encoded in two parallel planes in Z4
≥0: the plane given by

a1 + a2 = M1 and a3 + a4 = M2 which is contained in H1, and the plane given by
a1 + a2 = M1 and a3 + a4 = M2 + 1, which is contained in H2. In particular, the point
with index i is represented by the following set of coordinates:

Ai = {(2i,M1 − 2i, a3,M2 − a3) | 0 ≤ a3 ≤ 2n− 2}
∪ {(2i,M1 − 2i, a3 + 1,M2 − a3) | 0 ≤ a3 ≤ 2n− 2} .

Note that the definitions of M1 and M2 were chosen in such a way to ensure that all points
in this set have non-negative coordinates. For each i and for each a ∈ Ai we set χ(a) = 1.
The points in Ai can be seen to form a kind of staircase in the plane with a1 = 2i and
a2 = M1 − 2i, see Figure 2.9. Note that all points in Ai will be in the same equivalence
class of Pχ. We will not add any more points a with χ(a) = 1 later in the construction,
so we see that every equivalence class of Pχ will correspond to exactly one set Ai. We will
therefore also use index i for this equivalence class.

22

Next we encode all lines of I. This happens in a very similar manner. Now we use the
plane given by a1 + a2 = M1 + 1 and a3 + a4 = M2 − 1, which is contained in H1, and the
plane a1 + a2 = M1 + 2 and a3 + a4 = M2 − 1, which is contained in H2. Note that these
planes are also parallel to the planes used for encoding the points. Now the line with index
j is represented by the following set of coordinates:

Bj = {(a1,M1 + 1− a1, 2j,M2 − 1− 2j) | 0 ≤ a1 ≤ 2m− 2}
∪ {(a1 + 1,M1 + 1− a1, 2j,M2 − 1− 2j) | 0 ≤ a1 ≤ 2m− 2} .

For each point a in such a set, we take χ(a) = 2. Just like the points in Ai, we can see
that the points in Bj also form a staircase-like pattern in the plane with a3 = 2j and
a4 = M2 − 1 − 2j. Again this adds one equivalence class to Lχ for each set Bj, we will
refer to such an equivalence class by the index j too. Note that there are no a,b ∈ Z4

with a ≤ b such that one of these two points is in some Ai, and the other is in some Bj.
Later in the construction, some more points a with χ(a) = 2 will be added, these points
will all become part of an equivalence class corresponding to some Bj.

Finally we need to encode the actual incidence relations between the points and lines.
To do this, we use the set of coordinates

F = {(2i,M1 + 1− 2i, 2j,M2 − 2j) | (i, j) ∈ I} .

For every a ∈ F we take χ(a) = 2. Note that F is completely contained in H2. To see
why we choose these points, consider one such point (2i,M1 − 2i, 2j,M2 − 1− 2j) ∈ F (so
(i, j) ∈ I). Note that we have

(2i,M1 + 1− 2i, 2j,M2 − 2j) ≥ (2i,M1 − 2i, 2j,M2 − 2j) ∈ Ai,
(2i,M1 + 1− 2i, 2j,M2 − 2j) ≥ (2i,M1 + 1− 2i, 2j,M2 − 1− 2j) ∈ Bj.

This implies that (2i,M1−2i, 2j,M2−1−2j) is in equivalence class j of Lχ, and that Iχ will
contain the incidence relation (i, j). Furthermore, the point (2i,M1 − 2i, 2j,M2 − 1− 2j)
does not dominate any other point in some Ai or Bj. So we see that, if we take χ(a) ∈ {0, 3}
for all other points not in some Ai, Bj or F , then the set Iχ is exactly the same as I (when
identifying the right indices). In particular, we get the following result:

Lemma 2.3.7. For every set of incidence relations I, there is some χ ∈ X3,4 with I = Iχ.

Proof. Let I be some set of incidence relations on m points and n lines. Let Ai, Bj and F
be as defined above for all i and j. Now consider the χ ∈ X3,4 which satisfies

χ(a) =



0 if a1 < 0 ∨ a2 < 0 ∨ a3 < 0 ∨ a4 < 0,

1 if a ∈
⋃
iAi,

2 if a ∈
⋃
j Bj,

2 if a ∈ F,
0 otherwise if a1 + a2 + a3 + a4 ≤M1 +M2,

3 otherwise if a1 + a2 + a3 + a4 ≥M1 +M2 + 1,

23

for all a ∈ Z4. To see that there is indeed such a χ in X3,4, we need to verify that for
all a,b ∈ Z4 we have that a ≤ b implies χ(a) ≤ χ(b). This can be verified from the
definition of the sets Ai, Bj and F . Furthermore, by the preceding discussion, we see that
Iχ is indeed exactly the same as I. This completes the proof of the lemma.

From this lemma, we derive our main result:

Theorem 2.1.1. Every singularity type of finite type over Z occurs, up to a base change
to k, on the scheme (Q•3,4)

T .

Proof. Mnëv’s universality theorem (Theorem 2.2.10) yields, after a base change, that
every singularity type of finite type over Z appears on some Ck,I , up to base changing to k,
for some set of incidence relations I. Furthermore, by Lemma 2.3.7, there is some χ ∈ X3,4

such that I = Iχ. Using Lemma 2.3.1 we now see that Ck,I = Ck,Iχ is isomorphic to the
connected component Qχ ⊆ (Q•3,4)

T . This implies that (Q•3,4)
T contains every singularity

which occurs on some closed incidence scheme CI . We conclude that the theorem holds.

2.4 Extending the result to the full Quot-scheme

In this section it will be discussed how it might be possible to extend the results from
the previous section to the entire Quot-scheme, instead of just the fixed point locus. The
inspiration for this section comes from a paper by Jelisiejew [29], where it is proven that
the Hilbert scheme of points on A16

Z , denoted Hilbpts(A16
Z), satisfies Murphy’s law up to

retraction. The Hilbert scheme of points is a moduli space which parametrizes sets of
points on a scheme, it is actually the special case of the Quot-scheme with r = 1. So
in our notation, this moduli space would be denoted as Q•1,16. The “up to retraction”
part of the result furthermore means that singularity types with representatives (X, x) and
(Y, y) are also identified if there is a retraction (X, x) → (Y, y). Here a retraction is a
pair of morphisms of pointed schemes f : (X, x)→ (Y, y) and s : (Y, y)→ (X, x) such that
f ◦ s = idY .

Jelisiejew derives this result by first proving Murphy’s law for the fixed point locus of
Hilbpts(A5

Z) with respect to the action of some 1-dimensional torus k∗. Then, quite some
complicated machinery is used to extend this result to Hilbpts(A16

Z). Note in particular that
Jelisiejew starts out with a result on a Hilbert space on A5

Z, and ends up with a result over
A16

Z . In this thesis, we have proven a result on the fixed point locus of a Quot-scheme over
A4

Z, one might hope that by applying similar tools, we can prove a version of Murphy’s law
on Q•3,d, where d is strictly smaller than 16.

Modifying the tools used by Jelisiejew to the case of the Quot-scheme is however beyond
the scope of this thesis. Instead, we focus on a single tool which plays an important role
in [29], namely the generalized Bia lynicki-Birula decomposition, and check whether we can
directly apply this tool to get some version of Murphy’s law on Q•3,4. This turns out not
to be the case, as we will see in this section.

24

2.4.1 The Bia lynicki-Birula decomposition

Suppose we have some scheme X with an action of the 1-dimensional torus k∗. Further-
more, suppose that its fixed point locus Xk∗ decomposes into connected components as
Xk∗ =

∐n
i=1 Yi. Now the Bia lynicki-Birula decomposition of X, if it exists, is a scheme

X+ =
∐m

i=1X
+
i , where every X+

i consists (informally) of the points x ∈ X such that the
limit limt→∞ t · x is contained in Yi. This decomposition comes with a map θ0 : X+ → X,
which is a injection on points, a retraction π : X+ → Xk∗ which sends each X+

i to Yi, and
an embedding i : Xk∗ → X+ which embeds each Yi in the corresponding X+

i . Furthermore,
we have π ◦ i = id and θ0 ◦ i : Xk∗ → X is the embedding of fixed points.

In order to apply this to the Quot-scheme Qn
r,d, we first need to choose an action of

the 1-dimensional torus k∗ on it. For this, we embed k∗ into our d-dimensional torus T
by sending t 7→ (te1 , . . . , ted) for certain e1, . . . , ed ∈ Z, and let k∗ act on Qn

r,d through
this embedding. It can be shown that, if we choose the numbers e1, . . . ed generically, then
(Qn

r,d)
k∗ = (Qn

r,d)
T . In particular, all our preceding results about singularities on (Qn

r,d)
T

carry over to (Qn
r,d)

k∗ .
Now assume that a Bia lynicki-Birula decomposition of Qn

r,d with respect to the given
torus action exists, denote it by Qn+

r,d =
∐

χQ
+
χ , where Q+

χ is the component of the de-

composition belonging to Qχ ⊆ Qn
r,d. Because the map π : Qn+

r,d → (Qn
r,d)

k∗ is a retraction,

it follows that any singularity type which occurs on (Qn
r,d)

k∗ = (Qn
r,d)

T also occurs, up to
retraction, on Qn+

r,d . It would be nice if we could use this to show that these singularities

also occur on Qn
r,d. This would in particular be the case if the map θ0 : Qn+

r,d → Qn
r,d is

an open embedding. This is the reason why we will focus next on determining for which
points the map θ0 will locally be an open embedding: we hope that for every singularity
type, we can find some point [E] with this singularity on some (Qn

r,d)
T , such that θ0 is

locally around i([E]) an open embedding.

2.4.2 Trivial negative tangents on the Quot-scheme

Let [E] be a point in (Qn
r,d)

T = (Qn
r,d)

k∗ , corresponding to a submodule E of k[x1, . . . , xd]
r.

It holds that θ0 is an open embedding around i([E]) ∈ Qn+
r,d , if and only if the tangent

space to i([E]) ∈ Qn+
r,d and the tangent space to [E] ∈ Qn

r,d coincide. It turns out that the
tangent space to [E] ∈ Qn

r,d is given by

Homk[x1,...,xd](E, k[x1, . . . , xd]
r/E).

This tangent space inherits a Zd-grading from the Zd-grading on E and k[x1, . . . , xd]. An
element f : E → k[x1, . . . , xd]

r/E of the tangent space is homogeneous of degree a ∈ Zd if,
for any b ∈ Zd, it maps Eb into the set of homogeneous elements in k[x1, . . . , xd]

r/E of
degree a + b. Stated differently, a homogeneous element of degree a of the tangent space,
is a morphism which adds a to the degree. In particular, the maps with degree 0 ∈ Zd
are exactly those maps which preserve the grading, so these are the morphisms of graded
modules.

25

Now consider the 1-dimensional torus k∗ again, which embeds into T by sending t 7→
(te1 , . . . , ted). This torus induces a Z-grading on k[x1, . . . , xd] as follows: any element of
k[x1, . . . , xd] which is homogeneous of Zd-degree a ∈ Zd, gets Z-degree equal to −e1a1 −
e2a2 − · · · − edad ∈ Z. The reason for this grading is that a t ∈ k∗ acts on the polynomial
ring by sending xa 7→ t−e1a1−···−edadxa for all a ∈ Zd. This Z-grading on E also yields a
Z-grading on the tangent space Homk[x1,...,xd](E, k[x1, . . . , xd]

r/E).
The Z-grading we just defined can be used to describe the tangent spaces to [E] of

both (Qn
r,d)

k∗ and Qn+
r,d . The tangent space of (Qn

r,d)
k∗ is exactly the degree 0 part of the

full tangent space of Qn
r,d, so it is

Homk[x1,...,xd](E, k[x1, . . . , xd]
r/E)0.

The tangent space of Qn+
r,d in i([E]) consists of those elements of non-negative degree:

Homk[x1,...,xd](E, k[x1, . . . , xd]
r/E)≥0.

As indicated before, the map θ0 : Qn+
r,d → Qn

r,d is an open embedding around i([E]) if

and only if this tangent space to Qn+
r,d in i([E]) is equal to the full tangent space to Qn

r,d.
Now we see that this is equivalent to requiring that this full tangent space has no elements
of negative degree, that is:

Homk[x1,...,xd](E, k[x1, . . . , xd]
r/E)<0 = 0.

If this property is satisfied, we say that Qn
r,d has trivial negative tangents in [E]. In this case,

the singularity type of ((Qn
r,d)

T , [E]) is, up to retraction, the same as that of (Qn
r,d, [E]).

Unfortunately, the following proposition shows that this is not a feasible approach for
finding singularities on Qn

r,d.

Proposition 2.4.1. Let χ ∈ Xr,d be a characteristic function such that there exist two
different a, a′ ∈ Zd≥0 with a ≤ a′ and 0 < χ(a) ≤ χ(a′) < r. Let [E] ∈ Qχ be a point.
Let k∗ be a 1-dimensional subtorus which embeds into T as t 7→ (te1 , . . . , ted) for certain
e1, . . . , ed ∈ Z, such that (Qn

r,d)
T = (Qr,d)

k∗.
Assume that the Bia lynicki-Birula decomposition Qn+

r,d of Qn
r,d exists. Now Qn

r,d does

not have trivial negative tangents in [E], and therefore θ0 : Qn+
r,d → Qn

r,d is not an open
embedding around i([E]).

Proof. We will construct two nontrivial elements f, g ∈ Homk[x1,...,xd](E, k[x1, . . . , xd]
r/E)

with opposite Zd-degrees, it follows from this that they also have opposite Z-degrees.
Finally we also show that their degrees cannot be 0, and therefore either f or g has a
negative degree.

Without loss of generality we may assume that a1 < a′1. Let a′′ = (a1 + 1, a2, . . . , ad),
we have a ≤ a′′ ≤ a′, so also χ(a′′) < r. Let v be a nonzero vector in the vector space Ea,
and let v′ be a nonzero vector in kr \ Ea′′ . Let h now be some linear map kr → kr which
sends v to v′.

26

We define f : E → k[x1, . . . , xd]
r/E by sending uxb 7→ h(u)xb · x1 for all b ∈ Zd≥0 and

u ∈ Eb. This map f has Zd-degree (1, 0, . . . , 0), and therefore Z-degree −e1. Furthermore,
it sends vxa to the class of v′xa

′′
in k[x1, . . . , xn]/E, which is nonzero. Therefore f is not

the trivial map.
Next we define g. We do this by sending uxb to the class of ux(b1−1,b2,...bd) if b1 ≥ 1,

and to 0 otherwise for all b ∈ Zd≥0 and u ∈ Eb. It is clear that this g respects the action of
k[x2, . . . , xd], however, it is not immediately clear why it respects the action of x1. To see
that this is the case, notice that for all e ∈ E we have g(x1 · e) = [e] = 0 ∈ k[x1, . . . , xd]/E,
and it can also be seen from the definition of g that x1 · g(e) will also always be 0. So g is
also an element of Homk[x1,...,xd](E, k[x1, . . . , xd]

r/E), and it has degree −e1.
Finally we note that e1 cannot be zero, since this would imply that the torus k∗ does

not act at all on one of the coordinates of Ad
Z. This would be in contradiction with the

assumption that (Qd
n,r)

T = (Qd
n,r)

k∗ .

Note that almost all χ ∈ Xr,d satisfy the condition from the preceding proposition. For
any χ which does not satisfy this condition, we have that Qχ is equal to the full product∏

a∈Zd≥0
Gr(χ(a), r), and in particular it is smooth. So if [E] is not a smooth point of Qχ,

then χ has to satisfy the condition of the proposition.
We conclude that θ0 cannot be directly used to show the existence of singularities on

Qd
n,r. However, this does not imply that the more complicated method applied by Jelisiejew

[29] cannot be used in this situation. Further research would be needed in this direction.

27

Chapter 3

On Classifying Continuous
Constraint Satisfaction Problems

3.1 Introduction

In geometric packing, we are given a set of two-dimensional pieces, a container and a
set of motions. The aim is to move the pieces into the container without overlap, and
while respecting the given motions. Recently, Abrahamsen, Miltzow and Seiferth showed
that many geometric packing problems are ∃R-complete (FOCS 2020) [5]. Despite the
fact that the arXiv version is roughly 100 pages long, the high-level approach follows the
same principle as many other hardness reductions. First, they showed that a technical
intermediate problem is hard and then they reduced from this technical problem. In
their case, a specific continuous constraint satisfaction problem called ETR-INV serves as
this intermediate ∃R-complete problem. Specifically, ETR-INV contains essentially only
addition constraints (x + y = z) and inversion constraints (x · y = 1). In the second
step, they showed how to encode addition and inversion using geometric objects. This
enabled them to show in a unified framework that various geometric packing problems are
∃R-complete, see Figure 3.2.

The inversion constraint is particularly handy as it was shown in various other works
that it is particularly easy to encode geometrically [36, 20, 21, 2]. Curiously, Abrahamsen,
Miltzow and Seiferth left arguably the most interesting case of packing convex polygonal
objects into a square container open. The missing puzzle piece seemed to be a gadget to
encode the inversion constraint for this case. They dedicate Section 8.4 on explaining the
difficulties to find such a gadget and give the following comment.

“Gadget wanted! Most interesting to us is whether there exists a gadget encoding x ·y ≤
1, using a polygonal container, convex polygonal pieces, and rotation. [...] Despite much
effort, we could not find such a gadget.”

We take an alternative approach and engage in a systematic study of continuous con-
straint satisfaction problems in their own respect. The aim is to fully classify all continuous
constraint satisfaction problems, by their computational complexity. Polynomial time, NP-

28

Figure 3.1: Real examples of packing a leather hide (left) and a piece of fabric (right),
kindly provided by MIRISYS and produced by their software for automatic nesting, https:
//www.mirisys.com/.

∃R

∃R

∃R

∃R

∃R

∃R

∃R

∃R

∃R

∃R ∃R ∃R ∃R

∃R

∃R

∃R

NP NP

NP NP

?

?

pieces

co
n
ta
in
er
s

motions

square

simple polygon

convex polygon

convex curved polygon

curved polygon

rigid motion

translation

∃R
*
∃R
*

Figure 3.2: Various packing variants and their complexity status established in [5]. The
results with an asterisk are new and complete the picture for packing variants that involve
rotations. Image used with permission [5].

complete, and ∃R-complete are some apparent complexities, but as we will see, they may
not be the only ones that are relevant, see Section 3.1.4. Our first theorem arises as a com-
bination of a small adaption of the framework by [5] and an application of our structural
results.

Theorem 3.1.1. Packing convex polygons into a square under rigid motions is ∃R-complete.

Interestingly, we employ our structural result only for one simple special case. Still, we
would not know how to prove that case without establishing the theorem in its full general-
ity. Before we explain our alternative approach, we give a short introduction to constraint
satisfaction problems and the complexity class ∃R. See Figure 3.2 for a comparison to
previous ∃R-completeness results for geometric packing.

29

https://www.mirisys.com/
https://www.mirisys.com/

3.1.1 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) are a wide class of computational decision prob-
lems. In order to give a formal definition, we first introduce several other terms.

Definition 3.1.2 (Signature). A signature is a finite set of symbols together with arities
` ∈ N. Note that each symbol has exactly one arity attached to it. Often the signature
distinguishes between function symbols and relational symbols. We will only use relational
symbols.

Note that a signature is also called template, constraint language, or vocabulary in the
literature.

Definition 3.1.3 (Structure). A structure consists of a set U , called the domain, a sig-
nature τ and an interpretation of each symbol. If α ∈ τ is a symbol of arity `, then the
interpretation is a set α ⊆ U `.

To make this more tangible, consider the following example. We define the domain
as U = {0, 1}, the symbol +2 of arity 3 and the symbol 1 of arity 1. We interpret +2

as {(x, y, z) ∈ U3 |x+ y ≡ z (mod 2)}, and 1 as {x ∈ U |x = 1}. This defines a structure
S1 = 〈U = {0, 1},+2,1〉. Note that it is common to use a symbol and its interpretation
interchangeably. Specifically, many symbols are used in the literature with their com-
mon interpretation, e.g., ≤ is interpreted as {(x, y) ∈ U |x ≤ y} and + is interpreted as
{(x, y, z) ∈ U3 |x+ y = z}. We refer to the symbols and interpretations of a structure
merely as constraints. We will usually denote these constraints by the equation that they
enforce. For example, we write x2 = y for the constraint c = {(x, y) ∈ U2 |x2 = y}.

Definition 3.1.4 (Constraint satisfaction problem). Given a structure S = (U, τ) we define
a constraint formula Φ := Φ(x1, . . . , xn) to be a conjunction c1 ∧ . . .∧ cm for m ≥ 0, where
each ci is of the form c(y1, . . . , y`) for some c ∈ τ and variables y1, . . . , y` ∈ {x1, . . . , xn}.
We also define V (Φ) ⊆ Un as V (Φ) := {x ∈ Un |Φ(x)}. In the constraint satisfaction
problem (CSP) with structure S, we are given a constraint formula Φ, and are asked
whether V (Φ) 6= ∅.

Consider the constraint formula Φ = (x1 +x2 ≡ x4 (mod 2))∧ (x2 +x3 ≡ x4 (mod 2))∧
(x2 = 1) gives an instance of a CSP with structure S1 as above. Note that (0, 1, 0, 1) ∈
V (Φ). It can be interesting whether the CSP with structure S1 is polynomial time solvable.

In this thesis, we restrict ourselves to interval domains U ⊆ R and denote them as
continuous constraint satisfaction problems (CCSPs).

Constraint satisfaction problems (CSPs) have a long history in algorithmic studies [53,
14, 15, 59, 38, 22]. There are two application driven motivations to study them. On the
one hand, it is possible to easily encode many fundamental algorithmic problems directly
as a CSP. Then, given an efficient algorithm for those types of CSPs, we have immediately
also solved those other algorithmic problems. On the other hand, if we can encode CSPs
into algorithmic problems, then then any hardness result for the CSP immediately carries

30

over to the algorithmic problem. Next to an application driven motivation, it is fair to
say that they deserve a study in their own right as fundamental mathematical objects.
CSPs are a very versatile language and often allow for a complete classification by their
computational complexity. Specifically, the tractability conjecture states that every class
of CSP with a finite domain is either NP-complete or polynomial time solvable. Schaefer
showed the conjecture for domains of size two [53]. Recently Bulatov and Zhuk could
confirm the conjecture independently [15, 59] for any finite domain. Note that one can
also try to find a classification from the parametrized complexity perspective [38] or the
approximation counting perspective [22].

In this thesis, we focus on CSPs with a interval domain U ⊂ R and we are interested
in the class of CSPs that are ∃R-complete. We want to point out that there is also a large
body of research that deals with infinite domains [60, 58, 10, 12, 30]. Most relevant for us
is the work by Bodirsky, Jonsson and von Oertzen [11], who also studied CSPs over the
reals and showed that a host of them are NP-hard to decide. Specifically, they defined a
subset S of Rn as essentially convex if for all a, b ∈ S, the straight line segment intersects
the complement S of S in finitely many points. They show that CSPs that contain x = 1,
x > 0, x ≤ y, and at least one constraint that is not essentially convex are NP-hard.
However, their techniques do not imply ∃R-hardness. See also [13] for an overview of
results for the real domain.

3.1.2 Existential Theory of the Reals

The class of the existential theory of the reals ∃R (pronounced as ‘ER’) is a complexity
class which has gained a lot of interest, specifically within the computational geometry
community. To define this class, we first consider the problem ETR, which also stands for
Existential Theory of the Reals. In an instance of this problem we are given some sentence
of the form

∃x1, . . . , xn ∈ R : Φ(x1, . . . , xn),

where Φ is a well-formed quantifier-free formula consisting of the symbols {0, 1, x1, . . . , xn,+, ·,≥
, >,∧,∨,¬}, the goal is to check whether this sentence is true. As an example of an ETR-
instance, we could take Φ = x · y2 + x ≥ 0∧¬(y < 2x). The goal of this instance would be
to determine whether there exist real numbers x and y satisfying this formula. Now the
class ∃R is the family of all problems that admit a polynomial-time many-one reduction
to ETR. It is known that

NP ⊆ ∃R ⊆ PSPACE.

The first inclusion follows from the definition of ∃R. Showing the second inclusion was
first done by Canny in his seminal paper [16]. The CSP of the structure R = 〈R, ·,+,1〉 is
∃R-complete [39]. The reason that ∃R is an important complexity class is that a number
of common problems in computational geometry have been shown to be complete for this
class.

31

Scope. The main reason that the complexity class ∃R gained traction in recent years is
the increasing number of important algorithmic problems that are ∃R-complete. Marcus
Schaefer established the current name and pointed out first that several known NP-hardness
reductions actually implied ∃R-completeness [48]. Note that some important reductions
that establish ∃R-completeness were done before the class was named.

Problems that have a continuous solution space and non-linear relation between par-
tial solutions are natural candidates to be ∃R-complete. Early examples are related to
recognition of geometric structures: points in the plane [42, 56], geometric linkages [49, 1],
segment graphs [33, 39], unit disk graphs [40, 31], ray intersection graphs [17], and point
visibility graphs [18]. In general, the complexity class is more established in the graph
drawing community [36, 20, 50, 23]. Yet, it is also relevant for studying polytopes [47, 21].
There is a series of papers related to Nash-Equilibria [7, 52, 25, 8, 9]. Another line of re-
search studies matrix factorization problems [19, 54, 55, 51]. Other ∃R-complete problems
are the Art Gallery Problem [2] and training neural networks [3].

Practical Implications. It is maybe at first not entirely clear why we should care
about ∃R-completeness, when we know for most of those problems that they are NP-hard.
The answer has different aspects. One reason is that we are intrinsically interested in
establishing the true complexity of important algorithmic problems. Furthermore, ∃R-
completeness helps us to understand better the difficulties encountered when designing
algorithms for those types of problems. While we have a myriad of techniques for NP-
complete problems, most of these techniques are of limited use when we consider ∃R-
complete problems. The reason being that ∃R-complete problems have an infinite set of
possible solutions that are intertwined in a sophisticated way. Many researchers have hoped
to discretize the solution space, but success was limited [27, 39]. The complexity class ∃R
connects all of those different problems and tells us that we can either discretize all of them
or none of them. To illustrate our lack of sufficient worst-case methods, note that we do
not know the smallest square container to pack eleven unit squares, see Figure 3.3.

Figure 3.3: Left: Five unit squares into a minimum square container. Right: This is the
best known packing of eleven unit squares into a square container [26].

Technique. In order to show ∃R-completeness, usually two steps are involved. The first
step is a reduction to a technical variant of ETR. The second step is a reduction from that
variant to the problem at hand. Those ETR variants are typically CCSP’s with only very
limited types of constraints. It is common to have an addition constraint (x+ y = z), and
a non-linear constraint, like one of the following:

z = x · y, z = x2, 1 = x · y.

32

To find the right non-linear constraint is crucial for the second step, as it is often very
difficult to encode non-linear constraints in geometric problems. Previous proof techniques
relied on expressing multiplication indirectly using other operations. To be precise, we
say that a constraint c of arity ` has a positive primitive definition in structure S, if
there is a constraint formula Φ in S such that c(y1, . . . , y`) if and only if ∃x1, . . . , xk :
Φ(y1, . . . , y`, x1, . . . , xk). In that case, Φ is called a positive primitive formula, or just
pp-formula. For instance, we can express multiplication using squaring and addition as
follows:

x · y =

(
x+ y

2

)2

−
(
x− y

2

)2

.

This translates into a pp-formula as follows. ∃A0, A1, A2, B0, B1, B2 :

A0 = x+ y,
A0 = A1 + A1,
A2 = A2

1,

x = y +B0,
B0 = B1 +B1,
B2 = B2

1 ,
A2 = B2 + z.

Given a pp-formula, we can reduce a CSP with constraint c to a CSP with a different
signature. Here, we replaced the ternary constraint x · y = z by the binary constraint
x2 = y.

Furthermore, there are often some range constraints of the form x > 0, x ∈ [1/2, 2] or
even x ∈ [−δ, δ], for some δ = O(n−c), where n is the number of variables. The above
reduction becomes even more involved as the range constraints need to hold for every
intermediate variable as well. They are important as we may only be able to encode
variables in a certain limited range. Finally, it may be useful to know some structural
properties of the variable constraint graph, like planarity. Those structural properties can
often be imposed solely by self-reductions and repeated usage of the addition constraint.

Overall, those techniques have their limitations. As the reductions rely on an explicit
way to express one non-linear constraint by another non-linear constraint and addition, we
have to find those identities. To illustrate this, we encourage the reader to find a way to
express multiplication using x2 + y2 = 1 and linear constraints. (See Section 3.4 for the
solution.) This gets more tricky when dealing with inequality constraints. For instance, it
is not clear how to express multiplication with x · y ≥ 1 and x2 + y2 ≥ 1. We offer 10 euro
to the first person, who is able to find a pp-formula to do so. Note that our theorems
imply that those two inequalities together with linear constraints are enough to establish
∃R-completeness, but we do not describe a pp-formula. We do not know whether the
concave constraint x · y ≤ 1 is sufficient to establish ∃R-completeness. At last, translating
those identities into a reduction that respects the range constraints for every variable
becomes very tedious and lengthy. Furthermore, it only establishes ∃R-completeness for
those specific constraints. See Abrahamsen and Miltzow [4] for some of those reductions.

We overcome this limitation by developing a new technique that establishes ∃R-completeness
for virtually any one non-linear equality constraint. We extend our results and show that
any one convex and any one concave inequality constraint are also sufficient to establish
∃R-completeness. See Section 3.1.3 for a formal description of our results and Section 3.1.5

33

for an overview of our techniques.

3.1.3 Results

We focus on the special case with essentially only one addition constraint and any one
non-linear constraint. While this may seem like a strong limitation, note that addition
constraints are commonly easy to encode. In most applications, the non-linear constraint
is the crucial one.

Definition 3.1.5 (Curved equality problem (CE)). We assume that we are given δ > 0, a
domain [−δ, δ] ⊆ U and a function f : U2 → R. Then we define the signature C(f, δ) as

C(f, δ) = {x+ y = z, f(x, y) = 0, x ≥ 0, x = δ}.

The CE problem is the CCSP given by C(f, δ). Furthermore, we are promised that
V (Φ) ⊆ [−δ, δ]n.

By slight abuse of notation, we also allow that δ is given as part of the input. Note
that although the problem is called curved equality problem, we make no assumptions
on f as part of the definition. We do this explicitly, as there are various technical ways
to formulate those assumptions. Abrahamsen, Adamaszek and Miltzow [2, 4] essentially
showed that CE is ∃R-complete for f = (x − 1)(y − 1) − 1. Here, we generalize this to a
wider set of functions f defined as follows.

Definition 3.1.6 (Well-behaved). We say a function f : U2 → R is well-behaved around
the origin if the following conditions are met.

• f is a C2-function, with U ⊆ R being a neighborhood of (0, 0),

• f(0, 0) = 0, and all partial derivatives fx, fy, fxx, fxy and fyy are rational, in (0, 0).

• fx(0, 0) 6= 0 or fy(0, 0) 6= 0,

• f(x, y) can be computed on a real RAM [24].

Note that if p(x, y) is a polynomial of the form
∑

i,j ai,jx
iyj, then p is well-behaved if

and only if a0,0 = 0, a1,0, a0,1, a2,0, a1,1, a0,2 are rational, and (a1,0 6= 0 or a0,1 6= 0).

Definition 3.1.7 (Curved). Let f : U2 → R be a function that is well-behaved around
the origin. We write the curvature of f at zero by

κ = κ(f) =

(
f 2
y fxx − 2fxfyfxy + f 2

xfyy

(f 2
x + f 2

y)
3
2

)
(0, 0),

see Figure 3.4 for an illustration. We say f is

• curved if κ(f) 6= 0,

34

• convexly curved if κ(f) < 0, and

• concavely curved if κ(f) > 0.

Note that we can define the simpler expression κ′ = κ′(f)

κ′(f) =
(
f 2
y fxx − 2fxfyfxy + f 2

xfyy
)

(0, 0),

and it holds that sign(κ) = sign(κ′). For this reason, we will work with κ′ instead of κ.

f(x, y) = 0

Figure 3.4: The expression κ(f), has a geometric interpretation as the inverse of the
radius of the tangent circle at (0, 0). The sign of κ(f) tells us on which side of the curve
(f(x, y) = 0) the circle lies.

Consider a polynomial p of the form p(x, y) =
∑

i,j aijx
iyj. Then κ′(p) equals

κ′(p) = a201a20 − a10a01a11 + a210a02.

Now, we are ready to state our main theorem for equality constraints.

Theorem 3.1.8. Let f : U2 → R be well-behaved and curved around the origin. Then CE
is ∃R-complete, even when δ = O(n−c) for any constant c > 0.

Recall that we assume δ to be given as part of the input. Note that ∃R-membership
follows from the fact that f is computable on the real RAM and the structural theorem
by Erickson Hoog and Miltzow [24, Theorem 2.1]. It states that a problem is contained in
∃R, if and only if there is an algorithm on the real RAM that can verify a given solution.

Unfortunately, we are only capable of encoding inequality constraints in geometric
packing. Thus, in order to apply our techniques to geometric packing, we generalize Theo-
rem 3.1.8 to inequality constraints. In the following we define the convex concave inequality
problem (CCI), which is completely analogous to CE with one subtle difference. The con-
straint f(x, y) = 0 is replaced by f(x, y) ≥ 0 and g(x, y) ≥ 0. The curved condition is
replaced by convexly curved and concavely curved conditions.

Definition 3.1.9 (Convex concave inequality problem (CCI)). We assume that we are
given δ > 0, a domain [−δ, δ] ⊆ U and functions f, g : U2 → R. Then we define the
signature C(f, g, δ) as

C(f, g, δ) = {x+ y = z, f(x, y) ≥ 0, g(x, y) ≥ 0, x ≥ 0, x = δ}.

35

The CCI problem is the CCSP given by C(f, g, δ). Furthermore, we are promised that
V (Φ) ⊆ [−δ, δ]n.

Note that despite its name, we do not make any assumptions on f, g in the problem
definition of CCI. We do this explicitly, as there are various technical ways to formulate
those assumptions. We will use different assumptions in our proofs culminating in the
following theorem.

Theorem 3.1.10. Let f, g : U2 → R be two well-behaved functions, one being convexly curved,
and the other being concavely curved. Then the CCI problem is ∃R-complete, even when
δ = O(n−c) for any constant c > 0.

In order to compare Theorem 3.1.8 and Theorem 3.1.10, consider the following two
signatures for some given well-behaved and curved f :

C1 = {x+ y = z, x ≥ 0, x = δ, f(x, y) = 0},

and
C2 = {x+ y = z, x ≥ 0, x = δ, f(x, y) ≥ 0, −f(x, y) ≥ 0}.

Clearly, C2 is more expressive than C1. Therefore Theorem 3.1.8 implies a special case
of Theorem 3.1.10. Namely, the case that g = −f . For general f there is no further
relation between the two theorems. Yet for the special case of f = y − f̄(x) it holds that
Theorem 3.1.10 implies Theorem 3.1.8 as follows. We can encode each constraint of the
form f(x, y) = y − f̄(x) ≥ 0 as follows: f(x, z1) = z1 − f̄(x) = 0, z2 = y − z1, and z2 ≥ 0.
Similarly, constraints of the form −f(x, y) = f̄(x)− y ≥ 0 can be encoded in C1.

3.1.4 Discussion

Theorem 3.1.8 and Theorem 3.1.10 are a strong generalization of the ∃R-completeness of
ETR-INV. The problem ETR-INV played a central role both in ∃R-completeness of the
Art Gallery problem [2] and geometric packing [5]. One of the major obstacles of the
∃R-completeness proofs of the Art Gallery problem was to find a way to encode inversion.
If the authors had known Theorem 3.1.8 back then, it would have been sufficient to find
essentially any well-behaved and curved constraint on two variables, which is much easier.

Let us now discuss further implications of our results and some potential future research
directions.

• We want to point out that addition and convexly curved constraints alone seem not
to be sufficient to establish ∃R-completeness, as convex programs are believed to be
polynomial time solvable. See [43] for an in-depth discussion.

• When we allow formulas in the first order theory of the reals, it is easier to describe
arbitrary semi-algebraic sets, even when only allowing a single non-linear constraint.
For example, if we allow a single convex constraint D = {(x, y) ∈ R2 |x2 + y2 ≤ 1},

36

then the following formula described the upper half of the boundary of the disk, given
by {(x, y) ∈ R2 |x2 + y2 = 1 ∧ y ≥ 0}:

ϕ(x, y) = D(x, y) ∧ ∀z∈R(D(x, z)⇒ z ≤ y).

Using just the language of CCSPs, it is however impossible to encode such a set
using only linear constraints and the constraint D(x, y), as any CCSP instance of
this form describes a convex set. Note in particular that we may not apply quantifier
elimination to the given formula ϕ, since this is impossible without introducing non-
linear constraints different from D(x, y). For a more extensive analysis of the semi-
algebraic sets which can be described using the first order theory of the reals when
the set of constraints is restricted, we refer to [37, 45, 46].

• When we remove the convex constraint, but keep the concave constraint in Theo-
rem 3.1.10 then we do not know if the problem is ∃R-complete. It is easy though to
establish NP-hardness in this case [11]. We consider the option that there is another
complexity class Concave that characterizes such CCSPs. As with geometric pack-
ing with convex pieces, polygonal containers and translations grant the possibility to
encode only linear and concave constraints. This problem is a natural candidate to
be Concave-complete. We are curious if this intuition could be supported in some
mathematically rigorous way.

• The constraint x = δ is required in order to establish the range promise. If we are
aiming for a classification that is not interested in range promises, then we assume
that this constraint can be replaced by x = 1. Note that without such a constraint,
the origin is always a valid solution.

• If we remove the addition constraint, we are left only with constraints in at most two
variables. This seems too weak to establish ∃R-completeness, as setting x determines
y, up to finitely many options once we impose the constraint f(x, y) = 0. On the other
hand, very large and irrational solutions can be enforced, which makes it unlikely for
those CCSPs to be contained in NP. We wonder whether those CCSPs can be solved
with an oracle to arithmetic circuits and non-determinism.

• Given the discussion above, it seems plausible that at least one ternary constraint is
required to establish ∃R-completeness. Therefore, the case of CCSPs with exactly
one ternary constraint appears interesting to us. Note that the ternary multiplication
constraint x·y = z can be transformed to the linear constraint log x+log y = log z [13].
Therefore it seems unlikely that the multiplication constraint by itself leads to ∃R-
completeness. (Note that taking exp(x) is an analytic function that is generally not
supported on the real RAM [24].) It is plausible that this trick or similar tricks can
only be applied to exceptional ternary constraints. Therefore, it may be common
that one well-behaved and curved ternary equality constraint is sufficient to imply
∃R-completeness.

37

• We want to point out that we do not consider arbitrary constraints. Otherwise,
we could easily include constraints which enforce that variables are integers, thereby
allowing us to encode arbitrary Diophantine equations. This would make the problem
undecidable. As a consequence any type of classification of continuous constraints
must limit the set of allowed constraints in some way.

• We have in this thesis completely neglected the variable-constraint incidence graph.
Previous work showed that this graph can be restricted, by self-reduction and a
clever application of the addition constraint [20, 36]. We are curious if it is possible
to classify hereditary graph classes for which CCI is ∃R-complete.

• Although x ≥ 0 may not be necessary to imply ∃R-completeness, our proof heavily
relies on it.

• Previous reductions of ∃R-completeness usually also imply so-called universality re-
sults. They translate topological and algebraic phenomena from one type of CSP to
another type. Our methods seem not to imply these types of universality results.
Specifically, if f is a complicated function that is not even a polynomial, it seems
implausible that f can be used to construct, say,

√
2.

3.1.5 Proof Overview for CE and CCI

The proof goes into several steps which we explain in the following.

Ball Theorem. One of the most important tools that we employ is a lemma from real
algebraic geometry. It states that for every ETR-formula Φ there is a ball B whose radius
only depends on the description complexity L of Φ, such that the following property is
satisfied: if Φ has at least one solution x then there must be also a solution y inside the
ball B. This theorem tells us that solutions cannot get too large. To get an intuition,
consider the system of equations x0 = 2, xi+1 = x2i . Clearly, xn = 22n , which is double
exponentially large. The ball theorem essentially states that we cannot get much larger
numbers.

Range. To introduce range constraints is common practice and we inherit them from a
previous work [4, 5]. We repeat here the argument, for the benefit of the reader. In order
to restrict the range of every variable, we first note that the ball theorem already tells us
that the range of each variable is limited by some number r. We construct ε = δ/r and
replace every variable x by JεxK = ε · x and consequently we need to adopt all constraints.
For instance x · y = z becomes JεxK · JεyK = JεzK ε. In this way, we can easily ensure that if
there is a solution at all than there is at least one solution with all variables in the range
[−δ, δ].

We will make use of this re-scaling trick to place all variables in an even smaller range
close to zero. As the behavior of f and g is better understood close to the origin. Specifi-

38

almost solution → solution

explicit |f(x)− x2| ≤ |x3|/10

ETR-SQUARE

y − x2 = 12 + 2x2 + y2 − (1 + y)2

triangle-inequality

linear transformation

Taylor expansion

implicit function theorem

CCI ∃R-complete for

CCI ∃R-complete for scaling to tiny range

ball theorem

f, g ≈ x2
explicit |g(x)− x2| ≤ |x3|/10

Section 2.1

Section 2.2 & 2.3

explicit f ∈ C2 and f ′′(0) > 0

Lem 22, Lem 23, Cor 20

explicit g ∈ C2 and g′′(0) > 0

CE ∃R-complete for

explicit f ∈ C2 and f ′′(0) > 0

Lemma 25

CCI ∃R-complete for

Section 2.4

f implicit and convexly curved

g implicit and concavely curved

CE ∃R-complete for

f implicit and curved

reduction CCI to CE

Section 2.4

Figure 3.5: A formal overview of the different steps of the proof to Theorem 3.1.8 and
Theorem 3.1.10.

39

cally, the error |f(x)− x2| ≤ ε3 is small enough to pretend that f behaves like a squaring
function.

Approximate Solution. Using the ball theorem, we will establish that equality con-
straints of the form p(x) = 0 can be slightly weakened to |p(x)| ≤ ε for some sufficiently
small ε. To get an intuition consider the following highly simplified cases.

Assume we have given a polynomial equation p(x) = 0, with p ∈ Z[X1, . . . , Xn] and we
are looking for a solution x ∈ Zn. Then in particular, we know that for all x ∈ Zn that
p(x) ∈ Z. This readily implies that we can equivalently ask for some x ∈ Zn that satisfies
|p(x)| ≤ 1

2
. Now, this is trivial for integers as integers have distance at least one to each

other. But we can generalize the same principle also to rational and algebraic numbers.
Let S = {a1

b1
, . . . , a1

b1
} be n rational numbers with |ai|, |bi| ≤ L. Thus it is easy to see

that q, r ∈ S have minimum distance 1
L2 . This implies that if |q−r| ≤ 1

L2 , for some q, r ∈ S,
we can infer that q = r. Again, this may seem almost trivial, but relies on the simple fact
that rational numbers with bounded description complexity have a minimum distance to
one another.

Lemma 3.2.5 generalizes the idea to algebraic numbers. Using the ball theorem, we will
establish that algebraic numbers also have some minimum distance to one another, if we
restrict their description complexity.

ETR-SQUARE. We use a theorem by Abrahamsen and Miltzow that shows that ETR-
SQUARE is ∃R-complete [4]. In this variant, we essentially have only addition (x+ y = z)
and squaring constraints (x2 = y). Furthermore, the range of each variable is restricted to
a small range around zero.

Explicit. Given those tools, we can show that we can replace a squaring constraint by
explicit constraints (f(x) = y). We start by only considering f which satisfy

|f(x)− x2| ≤ 1

10
x3. (3.1)

The idea of the reduction from ETR-SQUARE is simple, but tedious. We can rewrite the
constraint x2 = y as a linear combination of squares as follows

12 + 2x2 + y2 − (1 + y)2 = 0.

Now, we can replace each square using the function f to f(1)+2f(x)+f(y)−f(1+y) = 0
As f is approximately squaring, this implies that we are approximately enforcing the
constraint x2 = y. In other words, we enforce |x2−y| ≤ ε. Note that this is the technically
most tedious step to make rigorous as we will later see. As we have discussed above it is
sufficient to enforce each constraint approximately. The technical difficulty is many-fold.
We need to work with scaled variables, instead of the original variables. Furthermore,
we have to take into consideration that when we construct ε that this also makes the

40

formula longer. In particular this means that definition of ε cannot depend on the newly
constructed instance, but has to depend on the original instance.

Using linear transformations and Taylor expansion on f , we can replace Condition 3.1
relatively easily by Condition 3.2

f twice differentiable and, f ′′(0) > 0 (3.2)

f(x, y) = 0

y = fexpl(x)

Figure 3.6: The implicit function theorem tells us that there is an function fexpl such that
the curve y = fexpl(x) is locally identical to the curve f(x, y) = 0.

Implicit. We are now ready to handle the more general case of constraints in implicit
form (f(x, y) = 0). The implicit function theorem tells us that there is a function fexpl such
that the curve y = fexpl(x) is locally identical to the curve f(x, y) = 0, see Figure 3.6. The
properties of the partial derivatives of f translate to properties of the partial derivatives
of fexpl. In this way, we can infer hardness of the CSP with constraint f(x, y) = 0 from
the problem with constraint y = fexpl(x).

Computability of fexpl. Interestingly, the fact that f is computable does not readily
imply that fexpl is computable as well. Yet, we only require that we can test fexpl(x) = y,
which is equivalent to f(x, y) = 0. And by definition we can compute f(x, y).

Inequalities. The case of inequalities goes analogous to the equality case. We need one
convexly curved and one concavely curved inequality. Whenever we want to upper bound
an expression, we use one inequality and whenever we need to lower bound something,
we use the other one. While on the surface this is not so difficult, it makes the reduction
considerably more tedious. Specifically, it makes it harder to have an intuition on several
technical steps and the meaning of several intermediate variables.

3.1.6 Proof Overview to Packing

We are following the framework by Abrahamsen et al. [5], with a few modifications. Instead
of solely using the inversion constraint, we use, up to linear transformations, the following
two constraints

x · y ≥ 1, x2 + y2 ≥ 1

Theorem 3.1.10 tells us that those two constraints are sufficient to establish ∃R-completeness
of geometric packing. While there is already a gadget for the first one, we needed to con-
struct a new gadget for the second constraint.

41

y

y

x x

k

k

c

p

p

a b c

c

Figure 3.7: The idea of the gramophone construction. (For black and white printouts, see
Figure 3.14 for color-codes.)

Consider Figure 3.7 for the following description. The core idea is to have a rectangle
rotate around a pivot point p. Thus the tip c of a second piece is constrained to lie on
a circle around p, see Figure 3.7 a. To be precise c has distance at least 1 from p. As a
second step, we refine the construction such that we can read of the x and y-coordinate
of c with the help of other pieces (yellow and blue), see Figure 3.7 b. In a third step, we
need to modify this construction such that the slack is extremely low and every piece is
fingerprinted. This also involves some modifications at other parts of the construction so
that the fingerprinting is not interfering with the vertical edge-edge contact between the
pink and yellow piece, see Figure 3.7 c.

3.2 Proof of CCSP-Theorems

In this section, we will prove Theorem 3.1.8 and Theorem 3.1.10.

3.2.1 Approximate Solutions

In this section, we show that if all constraints are “almost satisfied”, then all constraints
are also “exactly satisfied”. We start by considering the following problem, which is a
special case of the problem ETR-SMALL from [5, Definition 36]:

Definition 3.2.1 (ETR-AMI-1
2
). We define the set of constraints CAMI as

CAMI =
{
x+ y = z, x · y = z, x ≥ 0, x = 1

2

}
Now we define the ETR-AMI-1

2
problem as the CCSP given by CAMI. Furthermore, we are

promised that V (Φ) ⊆
[
−1

2
, 1
2

]
.

We will not repeat the hardness proof of this problem here. Instead we refer to [5,
Lemma D], where a full proof is given.

42

Lemma 3.2.2 ([5]). The problem ETR-AMI-1
2

is ∃R-hard.

From here, we can prove hardness of the following problem:

Definition 3.2.3 (ETR-SQUARE-1). We define the set of constraints CSQUARE as

CSQUARE =
{
x+ y = z, y = x2, x ≥ 0, x = 1

}
.

Now we define the ETR-SQUARE-1 problem as the CCSP given by CSQUARE. Further-
more, we are promised that V (Φ) ⊆ [−1, 1].

Before we start the proof of ∃R-hardness of ETR-SQUARE-1, we make some remarks
about the notation used in this and future proofs. In those proofs, newly introduced
variables will often be denoted by using double square brackets, like this: Jx2K. In this
notation, formally the whole expression including the brackets and the symbols within
it should be understood as the name of the variable, without any special meaning. The
symbols within the brackets will usually denote the value which is intuitively represented
by the variable.

Lemma 3.2.4. The problem ETR-SQUARE-1 is ∃R-hard.

Proof. We start with an ETR-AMI-1
2

instance Φ. To this instance we add a variable J1K and
a constraint J1K = 1. Next we replace every constraint of the form x = 1

2
by a constraint

x+ x = J1K. Finally, for every constraint of the form x · y = z, we introduce the following
new variables:

q
x2

y
,
q
y2

y
, Jx+ yK ,

q
(x+ y)2

y
,
q
x2 + 2xy

y
, J2xyK , JxyK

and we add the following constraints:
q
x2

y
= x2

q
y2

y
= y2

Jx+ yK = x+ y
q
(x+ y)2

y
= Jx+ yK2

q
(x+ y)2

y
=

q
x2 + 2xy

y
+

q
y2

y
q
x2 + 2xy

y
=

q
x2

y
+ J2xyK

J2xyK = JxyK + JxyK
JxyK = z.

Every constraint of the form x + y = z or x ≥ 0 is not changed. After performing
all these changes, which only needs linear time, we have an ETR-SQUARE-1 formula
Ψ. Furthermore, it can be checked that every solution of this ETR-SQUARE-1 formula
corresponds uniquely to a solution of the original ETR-AMI-1

2
formula. Also the fact that

V (Φ) ⊆ [−1/2, 1/2]n can be seen to imply that V (Ψ) ⊆ [1, 1]m, where m is the number
of variables in Ψ. This proves that Ψ is an ETR-SQUARE-1 instance which is equivalent
to the original ETR-AMI-1

2
instance. Therefore the reduction is valid, and the problem

ETR-SQUARE-1 is ∃R-hard.

43

Next we will state the main lemma of this section. This lemma intuitively states the
following: if an ETR-SQUARE-1 formula Φ has something which is “almost a solution”,
with an error of at most 2−2

O(|Φ|)
, then Φ also admits an actual solution.

Lemma 3.2.5. Let Φ = Φ(x1, . . . , xn) be a ETR-SQUARE-1 formula such that V (Φ) ⊆
[−1, 1]n. Define Φε as the formula where every constraint of the form y = x2 is replaced
by a constraint of the form |y − x2| ≤ ε, and where constraints −1 ≤ x ≤ 1 are added for
every x ∈ {x1, . . . , xn}.

Now there exists a constant M ∈ Z with M = O(|Φ|), such that if we take ε = 2−2
M

,
then V (Φε) 6= ∅ if and only if V (Φ) 6= ∅.

The proof of this lemma requires a result from real algebraic geometry. The formulation
here is taken from [5, Corollary 37], which is in turn based on a statement from [6].

Corollary 3.2.6. If a bounded semi-algebraic set in Rn has complexity at most L ≥ 5n,
then all its points have distance at most 22L+5

from the origin.

Proof (of Lemma 3.2.5). Consider the formula Ψ which is obtained from Φ by adding
constraints −δ ≤ x ≤ δ for each x ∈ {x1, . . . , xn}, replacing every constraint y = x2 in Φ
by a constraint y + ηi = x2, where ηi is a new variable (we add one such variable for each
original squaring constraint), adding a new variable u, and finally adding a constraint

u(η21 + η22 + · · ·+ η2r) = 1.

In this way, after choosing values for all original variables from Φ, the new variable u
encodes the inverse of the total squared error in all squaring constraints. Now it can be
seen that V (Ψ) is bounded if and only if V (Φ) = ∅. In the case where V (Ψ) is bounded,
we have by Corollary 3.2.6 the upper bound u ≤ 22L+5

where L is the complexity of Ψ,
which is linear in the complexity of Φ.

We take M to be an integer such that r ·2−2M+1
< 2−2

L+5
, note that this can be achieved

while keeping M bounded by a linear polynomial in the size of Φ. Also let ε = 2−2
M

, so
rε2 < 2−2

L+5
.

Suppose that V (Φε) 6= ∅, let P ∈ V (Φε). Now we can obtain a point in P ′ ∈ V (Ψ)
which has the same values of each of the xi’s as P , and which has the unique values of ηi
and u that make all constraints hold. Using P ∈ V (Φε), it can be seen that all values of the
ηi of P ′ are at most ε. This implies that the value of η21 + · · ·+ η2r is at most rε2 < 2−2

L+5
,

and therefore the value of u corresponding to P ′ is larger than 22L+5
. So V (Ψ) contains

a point with distance from the origin larger than 22L+5
. This implies that V (Ψ) is not

bounded, and therefore V (Φ) 6= ∅.
So V (Φε) 6= ∅ implies V (Φ) 6= ∅. We also know that V (Φ) 6= ∅ implies that V (Φε) 6= ∅,

since V (Φ) ⊆ V (Φε). This completes the proof of the lemma.

3.2.2 Almost Square Explicit Equality Constraints

Using Lemma 3.2.5, we are able to prove that an explicit version CE is also ∃R-complete,
with some additional assumptions. Note that this subsection is technically not needed for

44

the proof of Theorem 3.1.8 and Theorem 3.1.10. We will prove a similar lemma also for
the inequality case. And the inequality case can be used to also prove the equality case.
Yet, we believe that seeing the proof first for the equality case makes it much easier to
read Section 3.2.4.

Definition 3.2.7 (CE-EXPL). Let f : U → R be a function. Now we define the CE-
EXPL problem to be the CE problem corresponding to the function f ∗ : U2 → R defined
by f ∗(x, y) = y − f(x).

The goal of this section is to prove the following result:

Lemma 3.2.8. Let U ⊆ R be a neighborhood of 0, and let f : U → R be a function such
that |f(x) − x2| ≤ 1

10
|x|3 for all x ∈ U ⊆ R. Now the problem CE-EXPL is ∃R-complete,

even if δ = O(n−c) for any constant c > 0.

The reason that we impose these specific constraints on f , which enforce f to be very
similar to squaring, is that the proof will use ∃R-hardness of a problem involving a squaring
constraint. Furthermore, this specific case can be generalized to more general functions f .

Proof. Before giving the details of the construction, we will first give an overview of the
used approach. The idea of this proof is to start with an instance of ETR-SQUARE-1,
and convert this into a CE-EXPL instance by using f to approximate squaring. In order
to ensure that f approximates squaring close enough, the whole instance is scaled by some
small factor ε, so every variable x is replaced by a variable representing εx instead.

The linear constraints and inequalities are easy to rewrite in terms of εx, for example
a constraint of the form x+ y = z can be rewritten to εx+ εy = εz.

Handling a squaring constraint y = x2 is a bit more complicated. The first step is to
rewrite this to a constraint involving εx and εy, we get ε · εy = (εx)2. However, in the
CE-EXPL problem there is no easy way to simulate the multiplication on the left-hand side
of this equation. To solve this, we rewrite this equation to only use sums and differences
of squares:

ε2 + 2(εx)2 + (εy)2 − (ε+ εy)2 = 0.

To simplify notation a bit, we will denote t1 = ε, t2 = εx, t3 = εy and t4 = ε + εy. Using
this notation the equation becomes t21 + 2t22 + t23 − t24 = 0. This is still not something
we can directly enforce in a CE formula. However, by applying the function f , squaring
can be approximated. Furthermore, Lemma 3.2.5 on a high level implies that such an
approximation is enough to guarantee existence of a solution to the original equations.
This is why in the CE formulation we enforce

f(t1) + 2f(t2) + f(t3)− f(t4) = O(ε3). (3.3)

Enforcing the = O(ε3) presents another problem: we cannot easily compute ε3. To counter
this, we instead bound the left-hand side of the equation in absolute value by 2(f(ε +
f(ε))−f(ε)), which is approximately equal to 4ε3 (note that in the case that f(x) = x2 for
all x, this expression would actually be equal to 4ε3 + 2ε4). The details of this reduction
and a proof of its correctness will be worked out in the remainder of this proof.

45

Reduction. Let Φ be an ETR-SQUARE-1 formula. We pick some δ > 0 such that δ < 1
4
,

and which furthermore satisfies the additional constraint δ = O(n−c) if required (how we
choose δ does not matter, as long as is satisfies these constraints). We will now construct
a CE formula Ψ such that V (Φ) 6= ∅ if and only if V (Ψ) 6= ∅.

Let M be the constant obtained by applying Lemma 3.2.5 to Φ, and let L be the smallest
positive integer such that 2−2

L ≤ 1
100
· 2−2M and 2−2

L ≤ 1
100

. We start by introducing
variables JδiK for 0 ≤ i ≤ L. The variable Jδ0K satisfies the constraint Jδ0K = δ, and for
each 1 ≤ i ≤ L we add a constraint

JδiK = f(Jδi−1K).

Denote JεK = JδLK. The idea behind these definitions is to simulate repeated squaring, as

we will see later they force the value of JεK to be in the interval
(

0, 2−2
L
]
.

Next, we introduce a new variable J≈ 2ε3K together with a (constant) number of con-
straints and auxiliary variables that enforce

q
≈ 2ε3

y
= f(JεK + f(JεK))− f(JεK).

This can be done explicitly by introducing auxiliary variables Jf(ε)K, Jε+ f(ε)K and Jf(ε+ f(ε))K
and adding the following constraints:

Jf(ε)K = f(JεK)
Jε+ f(ε)K = JεK + Jf(ε)K

Jf(ε+ f(ε))K = f(Jε+ f(ε)K)
Jf(ε+ f(ε))K =

q
≈ 2ε3

y
+ Jf(ε)K .

In the rest of this proof, and in future proofs of this thesis, we will not give such explicit
constraints anymore. The variable J≈ 2ε3K will be used to bound the error on the con-
straints replacing squaring constraints, as mentioned in the overview of this proof. Stated
differently, it replaces the “= O(ε3)” part of Equation (3.3).

Now, for each variable x of Φ, we add a variable JεxK to Ψ, together with some con-
straints which enforce that − JεK ≤ JεxK ≤ JεK. Furthermore each constraint x + y = z is
replaced by JεxK + JεyK = JεzK, each constraint x ≥ 0 is replaced by JεxK ≥ 0 and each
constraint x = 1 is replaced by JεxK = JεK.

For each constraint y = x2, we build Equation (3.3) as in the overview. To do this, we
first introduce variables Jt1K, Jt2K, Jt3K and Jt4K satisfying

Jt1K = JεK
Jt2K = JεxK
Jt3K = JεyK
Jt4K = JεK + JεyK .

46

(Note that, even though x and y are suppressed in the notation here, the variables Jt1K,
Jt2K, Jt3K and Jt4K should actually be distinct variables for each constraint y = x2.) Next
we introduce a new variable Jηx,yK representing the left-hand side of Equation (3.3):

Jηx,yK = f(JεK) + 2f(JεxK) + f(JεyK)− f(JεK + JεyK).

The next step is to bound this variable, for this we add constraints which enforce

Jηx,yK ≥ −2
q
≈ 2ε3

y
and

Jηx,yK ≤ 2
q
≈ 2ε3

y
.

This completes the construction of Ψ. Note that in this construction, every constraint of Φ
is replaced by a constant number of constraints in Ψ, and therefore we have |Ψ| = O(|Φ|).
In particular this reduction can be executed in linear time.

Calculations. To show validity of the reduction, we first perform some side calculations.
We define δ0 = δ, for 1 ≤ i ≤ L we take δi = f(δi−1), and we take ε = δL. We use the
following facts:

|f(x)− x2| ≤ 1

10
|x|3 for x ∈ [−δ, δ] \ {0} (3.4)

0 < f(x) ≤ 2x2 for x ∈ [−δ, δ] \ {0} (3.5)

ε ≤ 1

100
min

(
2−2

M

, δ
)

(3.6)

f(ε) < ε (3.7)

f(ε+ f(ε))− f(ε) ∈ [ε3, 3ε3] (3.8)

Inequality 3.4 is one of the assumptions, and is repeated here just for clarity. Combining
this with δ ≤ 1

4
, Inequality 3.5 follows.

Using induction with the fact that 0 < f(x) ≤ 2x2 for x ∈ [−δ, δ] \ {0}, it follows that
0 < δi ≤ 2−2

i−1 for all i, so 0 < ε ≤ 1
2
2−2

L
. Using the definition of L, we get Inequality 3.6.

The fact f(ε) < ε now follows from Inequalities 3.5 and 3.6.
For deriving Inequality 3.8, we first rewrite by adding and subtracting some terms, and

applying the triangle inequality:

|f(ε+ f(ε))− f(ε)− 2ε3| = |f(ε+ f(ε))− (ε+ f(ε))2 + ε2 − f(ε)

+ (f(ε) + ε2)(f(ε)− ε2) + ε4 + 2ε(f(ε)− ε2)|
≤ |f(ε+ f(ε))− (ε+ f(ε))2|+ |ε2 − f(ε)|

+ (f(ε) + ε2)|f(ε)− ε2|+ ε4 + 2ε|f(ε)− ε2|.

47

To this we apply Inequalities 3.4, 3.6 and 3.7 to obtain the desired bound:

|f(ε+ f(ε))− f(ε)− 2ε3| ≤ |f(ε+ f(ε))− (ε+ f(ε))2|+ |ε2 − f(ε)|
+ (f(ε) + ε2)|f(ε)− ε2|+ ε4 + 2ε|f(ε)− ε2|

≤ 1

10
(ε+ f(ε))3 +

1

10
ε3 + (f(ε) + ε2)ε3 + ε4 +

1

5
ε4

≤ 8

10
ε3 +

1

10
ε3 +

1

10
ε3

≤ ε3,

so f(ε+ f(ε))− f(ε) ∈ [ε3, 3ε3].

V (Φ) nonempty implies V (Ψ) nonempty. Now we can start to prove the validity of
the reduction. First suppose that V (Φ) 6= ∅, so there is some P ∈ V (Φ). It needs to be
shown that also V (Ψ) 6= ∅, to do this we construct a point Q ∈ V (Ψ). For a variable x
of Φ, we will use the notation x(P) for the value of this variable for the point P . Similar
notation is used for Q. To define Q, we take JεxK (Q) = εx(P) for all variables x of Φ, and
we enforce that Q satisfies all equality constraints of Ψ. This uniquely defines the value
of Q in all other variables of Ψ. In particular, we get that

JεK (Q) = ε
q
≈ 2ε3

y
(Q) = f(ε+ f(ε))− f(ε)

Jηx,yK (Q) = f(ε) + 2f(εx(P)) + f(εy(P))− f(ε+ εy(P)),

where the last equality holds for all constraints y = x2 in Φ.
It is left to show that Q also satisfies all inequalities of Ψ. There are three types of

these inequalities. Firstly, we have inequalities which enforce | JεxK (Q)| ≤ JεK (Q). That
these are satisfied for Q follows from the fact that |x(P)| ≤ 1 since Φ is a 1-ETR-SMALL-
SQUARE formula. Secondly, for every inequality x ≥ 0 in Φ, we get a corresponding
inequality JεxK ≥ 0, that this is satisfied follows by combining JεxK (Q) = εx(P) and
x(P) ≥ 0.

Finally, for every constraint y = x2 in Φ we get constraints enforcing | Jηx,yK | ≤
2 J≈ 2ε3K. To see that these are satisfied, first we shorten the notation a bit by writ-
ing t1 = Jt1K (Q) = ε, t2 = Jt2K (Q) = εx(P), t3 = Jt3K (Q) = εy(P) and t4 = Jt4K (Q) =
ε+ εy(P). Now Jηx,yK (Q) can be bounded, for this we first use the triangle inequality:

| Jηx,yK (Q)| = |f(t1) + 2f(t2) + f(t3)− f(t4)|
= |f(t1)− t21 + 2(f(t2)− t22) + f(t3)− t23 − (f(t4)− t24)

+ t21 + 2t22 + t23 − t24|
≤ |f(t1)− t21|+ 2|f(t2)− t22|+ |f(t3)− t23|+ |f(t4)− t24|

+ |t21 + 2t22 + t23 − t24|

48

Note that t1, t2, t3 and t4 were chosen in such a way to ensure that, given y(P) = x(P)2,
we have t21 + 2t22 + t23 − t24 = 0. Using this together with Inequality 3.4 and the facts that
t1, t2 and t3 are bounded in absolute value by ε, and t4 is bounded in absolute value by
2ε, we find

| Jηx,yK (Q)| ≤ |f(t1)− t21|+ 2|f(t2)− t22|+ |f(t3)− t23|+ |f(t4)− t24|
+ |t21 + 2t22 + t23 − t24|

≤ 1

10
t31 +

1

5
t32 +

1

10
t33 +

1

10
t34 + 0

≤ 6

5
ε3.

Finally using Inequality 3.8 we derive

| Jηx,yK (Q)| ≤ 6

5
ε3

≤ 2(f(ε+ f(ε))− f(ε)).

This completes the proof that Q ∈ V (Ψ), so V (Ψ) 6= ∅.

V (Ψ) nonempty implies V (Φ) nonempty. Next, suppose that there is someQ ∈ V (Ψ),
now we want to show that |x(Q)| ≤ δ for all variables x in Ψ, and we want to prove that
V (Φ) 6= ∅. We start by bounding the coordinates. Note that JεK (Q) = ε, now for every
variable x of Φ it follows that | JεxK (Q)| ≤ | JεK (Q)| ≤ ε. Using this, it can be shown
that also all values of the auxiliary variables except for the JδiK are bounded by 100ε ≤ δ.
The values JδiK (Q) = δi are furthermore also all smaller than δ, so this shows that Q is
contained in [−δ, δ]m, where m is the number of variables of Ψ.

Now we need to show that V (Φ) 6= ∅. For this we use Lemma 3.2.5, we construct a
point P in V (Φ100ε), which implies V (Φ) 6= ∅ since 100ε ≤ 2−2

M
. We define the point P

by taking x(P) = JεxK(Q)
ε

for all variables x of Φ. It immediately follows that P satisfies all
linear constraints and inequality constraints of Φ, it is only left to check that it satisfies the
constraints |y− x2| ≤ 100ε of Φ100ε. To do this, first we observe that, using Inequality 3.8,

| Jηx,yK (Q)| ≤ 2
q
≈ 2ε3

y
(Q)

= 2(f(ε+ f(ε))− f(ε))

≤ 6ε3.

Now we will try to bound |y(P) − x(P)2|. First we again write t1 = Jt1K (Q) = ε, t2 =
Jt2K (Q) = εx(P), t3 = Jt3K (Q) = εy(P) and t4 = Jt4K (Q) = ε+ εy(P). These choices were
made such that

t21 + 2t22 + t23 − t24 = 2ε2(x(P)2 − y(P)),

so we see
2ε2|y(P)− x(P)2| =

∣∣t21 + 2t22 + t23 − t24
∣∣ .

49

Next we apply the triangle inequality to get an expression to which we can apply Inequal-
ity 3.4 and the bound on | Jηx,yK (Q)|:

2ε2|y(P)− x(P)2| =
∣∣t21 + 2t22 + t23 − t24

∣∣
= |t21 − f(t1) + 2(t22 − f(t2)) + t23 − f(t3)− (t24 − f(t4))

+ f(t1) + 2f(t2) + f(t3)− f(t4)|
≤ |t21 − f(t1)|+ 2|t22 − f(t2)|+ |t23 − f(t3)|+ |t24 − f(t4)|

+ |f(t1) + 2f(t2) + f(t3)− f(t4)|
= |t21 − f(t1)|+ 2|t22 − f(t2)|+ |t23 − f(t3)|+ |t24 − f(t4)|

+ | Jηx,yK (Q)|

Applying Inequality 3.4 and the bound on | Jηx,yK (Q)| yields

2ε2|y(P)− x(P)2| ≤ |t21 − f(t1)|+ 2|t22 − f(t2)|+ |t23 − f(t3)|+ |t24 − f(t4)|
+ | Jηx,yK (Q)|

≤ 1

10
t31 +

1

5
t32 +

1

10
t33 +

1

10
t34 + 6ε3

Finally we use that t1, t2 and t3 are bounded in absolute value by ε, and that t4 is bounded
by 2ε:

2ε2|y(P)− x(P)2| ≤ 1

10
t31 +

1

5
t32 +

1

10
t33 +

1

10
t34 + 6ε3

≤ 1

10
ε3 +

1

5
ε3 +

1

10
ε3 +

8

10
ε3 + 6ε3

< 200ε3.

So |y(P)− x(P)2| ≤ 100ε. This proves that P ∈ V (Φ100ε), and therefore V (Φ) 6= ∅.
This finishes the proof of the validity of the reduction of ETR-SQUARE-1 to CE-EXPL.

We conclude that for the given f , the problem CE-EXPL is ∃R-hard.

3.2.3 Almost Square Explicit Inequality Constraints

In this section, we will prove a number of hardness results about the explicit version of
CCI. Before we can describe these results, we first need the following definition:

Definition 3.2.9 (CCI-EXPL). Let f, g : U → R be two functions. Now we define the
CCI-EXPL problem to be the CCI problem corresponding to the functions f ∗, g∗ : U2 → R
defined by f ∗(x, y) = y − f(x) and g∗(x, y) = g(x)− y.

We will prove that CCI-EXPL is ∃R-hard in a large number cases. In particular, we
prove the following:

50

Corollary 3.2.10. Let U ⊆ R be a neighborhood of 0, and let f, g : U → R be functions
which are 2 times differentiable such that f(0) = g(0) = 0 and f ′(0), f ′′(0), g′(0), g′′(0) ∈ Q
with f ′′(0), g′′(0) > 0. Now the problem CCI-EXPL is ∃R-hard, even when δ = O(n−c) for
any constant c > 0.

This corollary will be an important step towards proving Theorem 3.1.8. Before we can
prove this corollary, we first prove another result which is similar to Lemma 3.2.8.

Lemma 3.2.11. Let U ⊆ R be a neighborhood of 0, and let f, g : U → R be functions such
that |f(x)−x2| ≤ 1

10
|x|3 and |g(x)−x2| ≤ 1

10
|x|3 for all x ∈ U . In this setting, the problem

CCI-EXPL is ∃R-hard, even when δ = O(n−c) for any constant c > 0.

Proof. The idea is to use almost the same construction as in Lemma 3.2.8, so we recommend
the reader to first read the proof to this lemma. The the first main difference is that some
extra care needs to be taken when making the constraints for the JδiK variables. Also the
squaring constraints need to be handled in a slightly different way. In order to do this, we
replace the variables Jηx,yK by two new variables

q
ηlowx,y

y
and

q
ηhighx,y

y
, which impose a lower

bound, respectively upper bound, on the value of t21 + 2t22 + t23 − t24. Here t1 = ε, t2 = εx,
t3 = εy and t4 = ε+ εy, as before.

Reduction. Let Φ be an ETR-SQUARE-1 formula. We again pick any δ such that δ < 1
4

and which satisfies any imposed requirement of the form δ = O(n−c). We will construct a
CCI-EXPL formula Ψ such that V (Φ) 6= ∅ if and only if V (Ψ) 6= ∅. Let M be the constant
obtained by applying Lemma 3.2.5 to Φ, and let L be a constant such that 2−2

L ≤ 1
100
·2−2M

and 2−2
L ≤ 1

100
, just like in the proof of Lemma 3.2.8.

We again introduce JδiK for 0 ≤ i ≤ L, where the variable Jδ0K should satisfy the
constraint Jδ0K = δ. For each 1 ≤ i ≤ L we now add constraints enforcing

1

2
f(Jδi−1K) ≤ JδiK ≤ g(Jδi−1K).

Denote JεK = JδLK. The constraints JδiK ≤ g(Jδi−1K) are there to enforce that JεK ≤ 2−2
L
,

and the constraints 1
2
f(Jδi−1K) ≤ JδiK are there to enforce that ε > 0.

We continue by defining variables J≤ g(ε)K and J. 2ε3K using constraints

J≤ g(ε)K ≤ g(JεK),
J≤ g(ε)K ≥ 0,
q
. 2ε3

y
≤ g(JεK + J≤ g(ε)K)− f(JεK),

q
. 2ε3

y
≥ 0.

This new variable J. 2ε3K is a replacement for the variable J≈ 2ε3K which occurred in
the proof of Lemma 3.2.8. Later, we will show that J. 2ε3K is upper bounded by 3ε3.

Next for each variable x of Φ, we add a variable JεxK to Ψ, with constraints enforcing
− JεK ≤ JεxK ≤ JεK. Constraints of type x + y = z, type x ≥ 0 or type x = 1 are handled
by replacing them by constraints JεxK+ JεyK = JεzK, JεxK ≥ 0 and JεxK = JεK, respectively.

51

For each constraint y = x2, we introduce variables Jt1K, Jt2K, Jt3K and Jt4K with con-
straints

Jt1K = JεK ,
Jt2K = JεxK ,
Jt3K = JεyK ,
Jt4K = JεK + JεyK .

Next we introduce two new variables:
q
ηlowx,y

y
and

q
ηhighx,y

y
, together with constraints enforc-

ing

q
ηlowx,y

y
≤ g(Jt1K) + 2g(Jt2K) + g(Jt3K)− f(Jt4K),q

ηhighx,y

y
≥ f(Jt1K) + 2f(Jt2K) + f(Jt3K)− g(Jt4K),q

ηlowx,y
y
≥ −2

q
. 2ε3

y
,

q
ηhighx,y

y
≤ 2

q
. 2ε3

y
.

Note that the variables
q
ηlowx,y

y
and

q
ηhighx,y

y
are not completely necessary, and that it is also

possible to use direct constraints

−2
q
. 2ε3

y
≤ g(Jt1K) + 2g(Jt2K) + g(Jt3K)− f(Jt4K),

2
q
. 2ε3

y
≥ f(Jt1K) + 2f(Jt2K) + f(Jt3K)− g(Jt4K)

instead. The two variables
q
ηlowx,y

y
and

q
ηhighx,y

y
are included since these slightly simplify

the notation when proving correctness of this construction later on. This completes the
construction of Ψ, which can be performed in linear time.

Calculations. Let ε be any real number such that there exist reals δi for 0 ≤ i ≤ L
satisfying δ0 = δ, δL = ε and 1

2
f(δi−1) ≤ δi ≤ g(δi−1) for all 1 ≤ i ≤ L. Now we have the

following facts (these facts hold in particular if ε = JεK (Q) for some Q ∈ V (Ψ)):

|f(x)− x2| ≤ 1

10
|x|3 for x ∈ [−δ, δ], (3.9)

|g(x)− x2| ≤ 1

10
|x|3 for x ∈ [−δ, δ], (3.10)

1

2
f(x) ≤ g(x) for x ∈ [−δ, δ], (3.11)

ε ≤ 1

100
min

(
2−2

M

, δ
)
, (3.12)

f(ε) < ε, g(ε) < ε, (3.13)
q
. 2ε3

y
(Q) ≤ 3 JεK (Q)3 for Q ∈ V (Ψ), (3.14)

g(ε+ g(ε))− f(ε) ≥ ε3. (3.15)

52

Inequalities 3.9 and 3.10 are assumptions from the statement of the lemma. Inequality 3.11
follows from this, together with the fact that |x| is bounded by 1

4
:

1

2
f(x) ≤ 1

2
x2 +

1

20
|x|3 ≤ x2 − 1

10
|x|3 ≤ g(x).

Inequality 3.12 can be derived in the same way as Inequality 3.6 from Lemma 3.2.8, and
now Inequality 3.13 follows from this with Inequalities 3.9 and 3.10.

In order to derive Inequality 3.14, we use the definition of the variable J. 2ε3K and
apply Inequalities 3.9 and 3.10 to this (here we take ε = JεK (Q) to simplify the notation a
bit):

q
. 2ε3

y
(Q) ≤ g(ε+ J≤ g(ε)K (Q))− f(ε)

≤ (ε+ J≤ g(ε)K (Q))2 +
1

10
(ε+ J≤ g(ε)K (Q))3 − ε2 +

1

10
ε3.

Combining this with the constraint J≤ g(ε)K ≤ g(JεK) and Inequalities 3.10 and 3.13, we
get

q
. 2ε3

y
(Q) ≤ (ε+ J≤ g(ε)K (Q))2 +

1

10
(ε+ J≤ g(ε)K (Q))3 − ε2 +

1

10
ε3

≤ (ε+ g(ε))2 +
1

10
(ε+ g(ε))3 − ε2 +

1

10
ε3

≤
(
ε+ ε2 +

1

10
ε3
)2

+
1

10
(ε+ ε)3 − ε2 +

1

10
ε3

=
29

10
ε3 +

6

5
ε4 +

1

5
ε5 +

1

100
ε6.

Combining this with ε ≤ 1
100

(which follows from Inequality 3.12) yields that J. 2ε3K (Q) ≤
3ε3, as we wanted.

Finally Inequality 3.15 follows from Inequalities 3.9, 3.10 and 3.13 in the following
manner:

g(ε+ g(ε))− f(ε) ≥ (ε+ g(ε))2 − 1

10
(ε+ g(ε))3 − ε2 − 1

10
ε3

≥
(
ε+ ε2 − 1

10
ε3
)2

− 1

10
(ε+ ε)3 − ε2 − 1

10
ε3

=
11

10
ε3 +

4

5
ε4 − 1

5
ε5 +

1

100
ε6

≥ ε3.

V (Φ) nonempty implies V (Ψ) nonempty. Suppose that V (Φ) 6= ∅, so there exists
some P ∈ V (Φ). We want to show that also V (Ψ) 6= ∅, to do this we construct a point
Q ∈ V (Ψ). We start by taking Jδ0K (Q) = δ and JδiK (Q) = g(Jδi−1K) for all 1 ≤ i ≤ L. By
Inequality 3.11, this definition satisfies all constraints on the JδiK. Denote ε = JεK (Q) =

53

JδLK (Q). Next we take J≤ g(ε)K (Q) = g(ε) and J. 2ε3K (Q) = g(ε + g(ε)) − f(ε), so by
Inequality 3.15 we know that J. 2ε3K (Q) ≥ ε3.

For all variables x of Φ, we take JεxK (Q) = εx(P). Since V (P) ⊆ [−1, 1]n, it follows
that all inequalities of the form − JεK (Q) ≤ JεxK (Q) ≤ JεK (Q) are satisfied in this way.
Also for every constraint from Φ of one of the forms x + y = z, x ≥ 0 or x = 1, the
corresponding constraint in Ψ is clearly satisfied.

Next we consider a squaring constraint y = x2 from Φ, for each such constraint we take

Jt1K (Q) = ε,

Jt2K (Q) = JεxK (Q),

Jt3K (Q) = JεyK (Q),

Jt4K (Q) = ε+ JεyK (Q),
q
ηlowx,y

y
(Q) = g(Jt1K (Q)) + 2g(Jt2K (Q)) + g(Jt3K (Q))− f(Jt4K (Q)),

q
ηhighx,y

y
(Q) = f(Jt1K (Q)) + 2f(Jt2K (Q)) + f(Jt3K (Q))− g(Jt4K (Q)).

Using these definitions, the only constraints for which we still need to check whether Q
satisfies them, are the constraints of the form

q
ηlowx,y

y
≥ −2 J. 2ε3K and

q
ηhighx,y

y
≤ 2 J. 2ε3K.

We start by checking the first of these constraints. Denote t1 = Jt1K (Q), t2 = Jt2K (Q),
t3 = Jt3K (Q) and t4 = Jt4K (Q). Now we can apply Inequalities 3.9 and 3.10 to the definition
of

q
ηlowx,y

y
:

q
ηlowx,y

y
(Q) = g(t1) + 2g(t2) + g(t3)− f(t4)

≥ t21 −
1

10
|t1|3 + 2t22 −

1

5
|t2|3 + t23 −

1

10
|t3|3 − t24 −

1

10
|t4|3

= t21 + 2t22 + t23 − t24 −
(

1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3

)
.

Since t1, . . . t4 were chosen such that t21 + 2t22 + t23− t24 = ε2x(P)2− ε2y(P), and by the fact
that y(P) = x(P)2, it follows that t21 + 2t22 + t23 − t24 = 0. Furthermore, t1, t2 and t3 are all
bounded by ε in absolute value, while |t4| is bounded by 2ε. This yields

q
ηlowx,y

y
(Q) ≥ t21 + 2t22 + t23 − t24 −

(
1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3

)
≥ 0−

(
1

10
ε3 +

1

5
ε3 +

1

10
ε3 +

8

10
ε3
)

≥ −2ε3.

Combining this with J. 2ε3K (Q) ≥ ε3, we find
q
ηlowx,y

y
(Q) ≥ −2 J. 2ε3K (Q).

Next we consider the constraint
q
ηhighx,y

y
≤ 2 J. 2ε3K. We apply Inequalities 3.9 and 3.10

54

to the definition of
q
ηhighx,y

y
:

q
ηhighx,y

y
(Q) = f(t1) + 2f(t2) + f(t3)− g(t4)

≤ t21 +
1

10
|t1|3 + 2t22 +

1

5
|t2|3 + t23 +

1

10
|t3|3 − t24 +

1

10
|t4|3

= t21 + 2t22 + t23 − t24 +
1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3.

Here we can apply that t21 + 2t22 + t23 − t24 = 0, and that |t1|, |t2| and |t3| are bounded by ε
and |t4| is bounded by 2ε to get

q
ηhighx,y

y
(Q) ≤ t21 + 2t22 + t23 − t24 +

1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3

≤ 0 +
1

10
ε3 +

1

5
ε3 +

1

10
ε3 +

8

10
ε3

≤ 2ε3.

So we get that
q
ηhighx,y

y
(Q) ≤ 2 J. 2ε3K (Q).

We conclude that Q satisfies all constraints from Ψ, and therefore Q ∈ V (Ψ). This
proves that V (Ψ) 6= ∅.

V (Ψ) nonempty implies V (Φ) nonempty. Next, let Q ∈ V (Ψ). Just as in the proof
of Lemma 3.2.8, we want to show that |x(Q)| ≤ δ for all variables x of Ψ, and we want
to prove that V (Φ) 6= ∅. Bounding the coordinates goes in exactly the same way as in
Lemma 3.2.8.

To show that V (Φ) 6= ∅, we again use Lemma 3.2.5, we construct a point P in V (Φ100ε),
where we again denote ε = JεK (Q). This would imply V (Φ) 6= ∅ since 100ε ≤ 2−2

M
. We

take x(P) = JεxK(Q)
ε

for all variables x of Φ. Now P satisfies all linear constraints and
inequality constraints of Φ, it only remains to be checked that it satisfies the constraints
|y − x2| ≤ 100ε of Φ100ε.

We start by proving that x(P)2 − y(P) ≤ 100ε. Denote t1 = Jt1K (Q) = ε, t2 =
Jt2K (Q) = εx(P), t3 = Jt3K (Q) = εy(P) and t4 = Jt4K (Q) = ε+ εy(P). We have that

t21 + 2t22 + t23 − t24 = 2ε2(x(P)2 − y(P)).

Note that from Inequalities 3.9 and 3.10 it also follows that x2 ≤ f(x) + 1
10
|x|3 and x2 ≥

g(x)− 1
10
|x|3 for all x ∈ [−δ, δ]. Using this, we find

2ε2(x(P)2 − y(P)) = t21 + 2t22 + t23 − t24

≤ f(t1) +
1

10
|t1|3 + 2f(t2) +

1

5
|t2|3

+ f(t3) +
1

10
|t3|3 − g(t4) +

1

10
|t4|3

= f(t1) + 2f(t2) + f(t3)− g(t4)

+
1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3.

55

To bound this, we use the variable
q
ηhighx,y

y
, and the observation that t1, t2 and t3 are

bounded in absolute value by ε, and |t4| is bounded by 2ε:

2ε2(x(P)2 − y(P)) ≤ f(t1) + 2f(t2) + f(t3)− g(t4)

+
1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3

≤
q
ηhighx,y

y
(Q) +

1

10
ε3 +

1

5
ε3 +

1

10
ε3 +

8

10
ε3

≤ 2
q
. 2ε3

y
(Q) + 2ε3.

Here we can apply Inequality 3.14 to find

2ε2(x(P)2 − y(P)) ≤ 8ε3 < 200ε3.

This implies x(P)2 − y(P) ≤ 100ε, as we wanted.
The proof that x(P)2 − y(P) ≥ −100ε works in a similar manner. Leaving out some

intermediate steps, it looks as follows:

2ε2(x(P)2 − y(P)) = t21 + 2t22 + t23 − t24
≥ g(t1) + 2g(t2) + g(t3)− f(t4)

−
(

1

10
|t1|3 +

1

5
|t2|3 +

1

10
|t3|3 +

1

10
|t4|3

)
≥

q
ηlowx,y

y
(Q)− 2ε3

≥ −8ε3 > −200ε3,

and therefore x(P)2 − y(P) ≥ −100ε. This implies that P ∈ V (Φ100ε), and therefore
V (Φ) 6= ∅.

This completes the proof of the validity of the reduction of ETR-SQUARE-1 to CCI-
EXPL. So for f and g satisfying the conditions from the lemma, the problem CCI-EXPL
is ∃R-hard.

Now that hardness of this restricted version of CCI-EXPL is proven, this result can be
generalized in small steps until finally Theorem 3.1.10 is proven.

Before we do this, we first note that in any CCI-EXPL formula, constraints of the
form x = q · y, where x, y are variables and q is a rational constant, can be enforced using
a constant number of addition constraints and new variables. To illustrate this, we will
discuss the case where q ∈ [0, 1] here. Other cases can be handled in a similar manner.
Assume that q = a/b for a positive integer b and an integer 0 ≤ a ≤ b. Now we can

56

introduce variables
q
i
b
y
y

for all 0 ≤ i ≤ b, which satisfy constraints
s

0

b
y

{
=

s
0

b
y

{
+

s
0

b
y

{
,

s
i+ 1

b
y

{
=

s
i

b
y

{
+

s
1

b
y

{
for 0 ≤ i < b,

s
b

b
y

{
=

s
0

b
y

{
+ y,

ra
b
y
z

=

s
0

b
y

{
+ x.

This exactly enforces that x = a
b
· y.

Now the next step when working towards Theorem 3.1.10, is to slightly relax the con-
straints on f and g, by allowing the difference with squaring to be any O(x3) function,
instead of just functions bounded by 1

10
|x|3 in absolute value.

Lemma 3.2.12. Let U ⊆ R be a neighborhood of 0, and let f, g : U → R be functions such
that f(x) = x2 + O(x3) and g(x) = x2 + O(x3) as x→ 0. Now the problem CCI-EXPL is
∃R-hard, even when δ = O(n−c) for any constant c > 0.

Proof. Let c be a constant such that |f(x) − x2| ≤ c|x|3 and |g(x) − x2| ≤ c|x|3 for all
x ∈ U ′ where U ′ ⊆ U is a neighborhood of 0. Now let N be a positive integer larger than
10c. This implies that for all x ∈ U ′

|N2f(x/N)− x2| ≤ 1

10
|x|3 and

|N2g(x/N)− x2| ≤ 1

10
|x|3.

If we define f ∗ and g∗ by f ∗(x) = N2f(x/N) and g∗(x) = N2g(x/N), then using Lemma 3.2.11,
we get that the problem CCI-EXPL is ∃R-hard for f ∗ and g∗. For the rest of the proof of
this lemma, we will denote this specific CCI-EXPL version by CCI-EXPL∗.

We give a reduction from CCI-EXPL∗ to the CCI-EXPL version with f and g. Let
(δ,Φ) be a CCI-EXPL∗ instance. Now for every variable x in this instance, we add extra
variables Jx/NK, Jx/N2K and we add constraints enforcing

r x
N

z
=

JxK
N
,

r x

N2

z
=

JxK
N2

.

Next we replace every constraint of the form y ≥ f ∗(x) by a constraint Jy/N2K ≥ f(Jx/NK),
and we replace every constraint of the form y ≤ g∗(x) by a constraint Jy/N2K ≤ g(Jx/NK).
This results in a CCI formula which has a solution exactly when Φ has one, and furthermore
for all possible solutions all variables can be seen to be bounded in absolute value by δ.
This whole reduction only takes linear time.

57

In the next lemma, we allow even more possible f and g.

Lemma 3.2.13. Let U ⊆ R be a neighborhood of 0, and let f, g : U → R be functions such
that f(x) = ax + bx2 + O(x3) and g(x) = cx + dx2 + O(x3) as x→ 0, where a, b, c, d ∈ Q
and b, d > 0. Now the problem CCI-EXPL is ∃R-hard, even when δ = O(n−c) for any
constant c > 0.

Proof. We define f ∗ and g∗ as f ∗ (x) = (f(x)− ax)/b and g ∗ (x) = (g(x)− cx)/d. From
the constraints on f and g it follows that f ∗(x) = x2 + O(x3) and g∗(x) = x2 + O(x3).
Therefore we can apply the previous lemma to these functions to find that the CCI-EXPL
problem with f ∗ and g∗ is ∃R-hard. We will denote this problem by CCI-EXPL∗, and give
a reduction from CCI-EXPL∗ to the CCI-EXPL problem with f and g as defined in the
lemma statement.

Let (δ,Φ) be any instance of CCI-EXPL∗. We denote

δ′ = (1 + |a|+ |b|+ |c|+ |d|)δ.

Now we build an instance (δ′,Ψ) of CCI-EXPL in the following manner: We start by
adding a variable JδK which is meant as a replacement for the δ in conditions of the form
x = δ in Φ. To introduce this variable, we introduce an auxiliary variable Jδ′K and enforce
the following constraints:

Jδ′K = δ′,

Jδ′K = (1 + |a|+ |b|+ |c|+ |d|) JδK .

We also add every variable of Φ and all constraints of the form x+ y = z or x ≥ 0 from Φ
to Ψ, and for every constraint x = δ in Φ we add a constraint x = JδK to Ψ.

For every constraint y ≥ f ∗(x) of Φ we introduce a new variable Jax+ byK to Ψ which
we force to equal ax+ by using some linear constraints. Furthermore we add a constraint
Jax+ byK ≥ f(x). For constraints of the form y ≤ g∗(x) we do something similar.

In this way, (δ′,Ψ) is a valid CCI-EXPL instance since all values of the variables in any
solutions can be seen to be bounded by δ′ using the triangle inequality. Furthermore, the
new instance Ψ differs from Φ only by new auxiliary variables, and otherwise has exactly
the same constraints on the original variables. Thus V (Ψ) is non-empty if and only if V (Φ)
is nonempty.

The next step is to notice that any function which is 2 times differentiable with nonzero
second derivative satisfies the constraints from the previous lemma. This leads to the
following result:

Corollary 3.2.10. Let U ⊆ R be a neighborhood of 0, and let f, g : U → R be functions
which are 2 times differentiable such that f(0) = g(0) = 0 and f ′(0), f ′′(0), g′(0), g′′(0) ∈ Q
with f ′′(0), g′′(0) > 0. Now the problem CCI-EXPL is ∃R-hard, even when δ = O(n−c) for
any constant c > 0.

58

Proof. Using Taylor’s theorem, we find that

f(x) = f ′(0)x+
f ′′(0)

2
x2 +O(x3) and

g(x) = g′(0)x+
g′′(0)

2
x2 +O(x3).

To this we can apply the previous lemma to find that CCI-EXPL is ∃R-hard, even when
δ = O(n−c) for any constant c > 0.

3.2.4 Implicit Constraints

Using, Corollary 3.2.10 we will show Theorem 3.1.10 and Theorem 3.1.8 in this order.
The next lemma is almost equivalent to Theorem 3.1.10. The only difference is that the
conditions fy(0, 0) > 0 and gy(0, 0) < 0 are added.

Lemma 3.2.14. Let f, g : U2 → R be two functions, with f well-behaved and convexly curved,
and g well-behaved and concavely curved. Furthermore assume that their partial deriva-
tives satisfy fy(0, 0) > 0 and gy(0, 0) < 0. Then the CCI problem is ∃R-hard, even when
δ = O(n−c) for any constant c > 0.

Proof. Using the implicit function theorem, we find that in a neighborhood (U ′)2 ⊆ U2

of (0, 0), the curve f(x, y) = 0 can also be given in an explicit form y = fexpl(x), where
fexpl is some C2-function U ′ → R. So for (x, y) ∈ (U ′)2 we have f(x, y) = 0 if and only if
y = fexpl(x). Since fy(0, 0) > 0, it also follows that f(x, y) ≥ 0 if and only if y ≥ fexpl(x).
Furthermore, the implicit function theorem also states that the derivative of fexpl is given
by

f ′expl(x) =
fx(x, f

′
expl(x))

fy(x, f ′expl(x))
.

From this it can be computed that the second derivative in 0 is

f ′′expl(0) = −
(
f 2
y fxx − 2fxfyfxy + f 2

xfyy

f 3
y

)
(0, 0).

Note that the fact that f is convexly curved exactly implies that the numerator of this
expression is a positive number. Using the assumptions from the lemma statement, we
conclude that f ′′expl(0) is a positive rational number.

In a analogous way, we can write the condition g(x, y) ≥ 0 in the form y ≤ gexpl(x)
in some neighborhood of (0, 0), where gexpl is a C2-function with rational first and second
derivative in 0, and with positive second derivative.

We conclude that the problem CCI is equivalent to the problem CCI-EXPL for fexpl
and gexpl, and by the Corollary 3.2.10 this problem is ∃R-hard.

From here it is a small step to prove the main result:

59

Theorem 3.1.10. Let f, g : U2 → R be two well-behaved functions, one being convexly curved,
and the other being concavely curved. Then the CCI problem is ∃R-complete, even when
δ = O(n−c) for any constant c > 0.

Proof. Without loss of generality, we may assume that fy(0, 0) 6= 0 and gy(0, 0) 6= 0. In
any other case, we can just interchange the variables in one of the functions.

In the case where fy(0, 0) > 0 and gy(0, 0) < 0, we can apply the previous lemma and
we are done. For the case fy(0, 0) < 0 and gy(0, 0) < 0, we can provide a reduction from
CCI with functions f ∗(x, y) = f(−x,−y) and g∗(x, y) = g(x, y). For the case fy(0, 0) > 0
and gy(0, 0) > 0 we can make a reduction from CCI with functions f ∗(x, y) = f(x, y) and
g∗(x, y) = g(−x,−y). and for the case fy(0, 0) < 0 and gy(0, 0) > 0, we can provide a
reduction from CCI with functions f ∗(x, y) = f(−x,−y) and g∗(x, y) = g(−x,−y). Note
that flipping the signs of the inputs of f or g does not influence any second partial derivative,
while it does negate the first partial derivatives; therefore the mentioned starting points
for the reductions can all be seen to satisfy the conditions from Lemma 3.2.14.

As an example we discuss the case fy(0, 0) > 0 and gy(0, 0) > 0. We want to give
reduction from the problem CCI with functions f ∗(x, y) = f(−x,−y) and g∗(x, y) =
g(x, y); we denote this CCI variation by CCI∗. So suppose that (δ,Φ) is a CCI∗ instance.
Now we will construct a CCI instance (δ,Ψ) (with the f and g from the theorem statement).
We add every variable of Φ to Ψ, and for every such variable x we also add an extra variable
J−xK, together with a constraint enforcing x + J−xK = 0. Furthermore, we copy every
constraint from Φ to Ψ, except for constraints of the form f ∗(x, y) ≥ 0, these are replaced
by f(J−xK , J−yK) ≥ 0. This finishes the construction.

As a final result in this section, we prove Theorem 3.1.8 as well. To do this, we start
from Corollary 3.2.10 and convert this to a result about CE-EXPL.

Lemma 3.2.15. Let U ⊆ R be a neighborhood of 0, and let f : U → R be a function which
is 2 times differentiable such that f(0) = 0 and f ′(0), f ′′(0) ∈ Q with f ′′(0) 6= 0. Now the
problem CE-EXPL is ∃R-hard.

Proof. We apply Corollary 3.2.10 to the case where g = f to find that in this case CCI-
EXPL is ∃R-hard. We can reduce this problem to CE-EXPL. Let (δ,Φ) be a CCI-EXPL
instance. Now we construct an CE-EXPL formula Ψ. We copy all constraints of the form
x + y = z, x ≥ 0 and x = δ from Φ. For every constraint y ≥ f(x) we introduce two new
variables Jf(x)K and Jy − f(x)K, which we restrict by constraints

Jf(x)K = f(x),

y = Jy − f(x)K + Jf(x)K , and

Jy − f(x)K ≥ 0.

In a similar manner we replace every constraint y ≤ f(x) by introducing new variables

60

Jf(x)K and Jf(x)− yK and imposing the constraints

Jf(x)K = f(x),

Jf(x)K = Jf(x)− yK + y, and

Jf(x)− yK ≥ 0.

This completes the construction. It can easily be checked that every solution of Φ corre-
sponds to a solution of Ψ, and vice versa.

Theorem 3.1.8. Let f : U2 → R be well-behaved and curved around the origin. Then CE
is ∃R-complete, even when δ = O(n−c) for any constant c > 0.

Proof. This proof is very similar to that of Lemma 3.2.14. Without loss of generality, we
may assume that fy(0, 0) 6= 0, otherwise we can swap the variables. Using the implicit
function theorem, we can write the condition f(x, y) = 0 in some neighborhood (U ′)2 ⊆ U2

of (0, 0) as y = fexpl(x), where fexpl is some C2-function U ′ → R. Using the fact that the
curvature of f is nonzero, the implicit function theorem also tells us that f ′′expl(0) 6= 0.

Since f(x, y) = 0 if and only if y = fexpl(x), we find that the problem CE is equivalent
to the problem CE-EXPL, which we know to be ∃R-hard by the previous lemma. We
conclude that also CE is ∃R-hard.

3.3 Packing

In this section we will apply the result from the previous section to prove ∃R-completeness
of packing convex polygons into a square container under rotations and translations.

Theorem 3.1.1. Packing convex polygons into a square under rigid motions is ∃R-complete.

∃R-membership has been proven in Section 1 of [5]; this follows fairly easily by applying
a result from Erickson, Hoog and Miltzow [24].

To prove ∃R-hardness, we will use the framework by Abrahamsen, Miltzow and Seiferth [5].
They used this framework to prove hardness of a broad number of packing problems, how-
ever, the case of packing convex polygons in a square container was left open. This is
because of the difficulties of encoding the constraint x ·y ≤ 1 in this specific setting. Using
Theorem 3.1.10 on the classification of constraint satisfaction problems, it is not necessary
anymore to find a gadget encoding exactly x · y ≤ 1. It becomes sufficient to find a gadget
which encodes any concave constraint on two variables, allowing a much greater freedom
in gadget-construction.

In Section 3.3.1, an overview of the framework from [5] is given. Some small changes
to this framework are necessary to allow a reduction from CCI for suitable f and g, in-
stead of the problem ETR-INV which was used in [5]. These changes will be discussed in
Section 3.3.2. The new gadget used in the construction will be discussed in Section 3.3.3.

61

−→x1

←−x1

−→x2

←−x2

−→x3

←−x3

x2 + x3

≤ x1

x2 + x3

≥ x1

x1 · x2

≤ 1
x1 · x2

≥ 1

`1

`2

`3

`4

`5

`6

Figure 3.8: A wiring diagram corresponding to the formula x2 +x3 = x1∧x1 ·x2 = 1. This
figure is taken with permission from [5].

3.3.1 Overview of Previous Work

RANGE-ETR-INV. The paper [5] gives a reduction from the ∃R-complete problem
RANGE-ETR-INV to the various packing problems; the hardness of RANGE-ETR-INV
is proven in Section 5 in [5]. We repeat the definition of RANGE-ETR-INV here:

Definition 3.3.1 (Definition 1 from [5]). An ETR-INV formula Φ = Φ(x1, . . . , xn) is a
conjunction (

n∧
i=1

1/2 ≤ xi ≤ 2

)
∧

(
m∧
i=1

Ci

)
,

where m ≥ 0 and each Ci is of one of the forms

x+ y = z, x · y = 1

for x, y, z ∈ {x1, . . . , xn}.

Definition 3.3.2 (Definition 2 from [5]). An instance I = [Φ, δ, (I(x1), . . . , I(xn))] of the
RANGE-ETR-INV problem consists of an ETR-INV formula Φ, a number δ := 2−l for a
positive integer l, and, for each variable x ∈ {x1, . . . , xn}, an interval I(x) ⊆ [1/2, 2] such
that |I(x)| ≤ 2δ. For every inversion constraint x · y = 1, we have either I(x) = I(y) =
[1 − δ, 1 + δ] or I(x) = [2/3 − δ, 2/3 + δ] and I(y) = [3/2 − δ, 3/2 + δ]. We are promised
that V (Φ) ⊂ I(x1)× · · · × I(xn). The goal is to decide whether V (Φ) 6= ∅.

WIRED-INV. In Section 5.8 of [5] an auxiliary problem WIRED-INV is introduced. An
instance of this problem consists of a RANGE-ETR-INV instance together with a wiring
diagram. Such a diagram is a geometric representation of the ETR-INV formula, where
every variable x is represented by two wires −→x and←−x , and every constraint is represented
by two constraint boxes intersecting some of these wires. See Figure 3.8 for a drawing of
such a wiring diagram.

62

Main idea construction. Next, this wiring diagram needs to be converted into a pack-
ing instance. For this, we use an instance with δ = O(n−300). In the conversion, every wire
is converted to a lane of variable pieces, which can move horizontally, but not vertically.
The horizontal position of each of these pieces encodes the value of the corresponding vari-
able. Every constraint box of the wiring diagram is replaced by a gadget. The idea behind
the construction is described in more detail at the start of Section 2 of [5]. After this
part of the construction, the container is a 4-monotone polygon. A 4-monotone polygon
is a polygon that consists of two x-monotone and two y-monotone polygonal curves. See
Figure 3.9 for a sketch of an instance which might result from this construction.

Fingerprinting. For the construction as mentioned in the previous paragraph, it is
important that in every valid placement, all the pieces are placed almost as intended; it
should not be allowed to place the pieces in a completely different configuration. To ensure
this, a technique called fingerprinting is used, which is described in Section 6 of [5]. To
apply this technique, it is important that every pieces has some corner where its angle is in
[5π/180, π/3], such that this angle is sufficiently different from all other angles of all other
pieces. Furthermore, it is important to keep the slack µ low. The slack is the area of the
container minus the total area of all the pieces. See Figure 3.10 for an illustration of this
technique and its underlying idea.

Correctness of the reduction. The proof of correctness of the reduction happens in
a number of steps, which are described in Section 2 of [5]. Most of these steps happen
separately for every gadget in Sections 7 and 8. Here we will give a brief overview of the
steps.

The first step is to show that every solution to the original RANGED-ETR-INV instance
gives rise to a solution of the packing instance. The remaining steps are concerned with
proving that any solution to the packing instance also gives a solution to the RANGED-
ETR-INV instance.

First, for every gadget, a set of canonical placements are defined. These are the “in-
tended” placements, where all pieces are in the right positions and have the intended
edge-edge contacts. Furthermore, a valid placement is any placement that respects the
condition that no pieces should overlap and all the pieces are inside the container. The
next step is to prove using fingerprinting that any valid placement of all the pieces is
almost-canonical. This means that each piece is moved by a distance of at most n−1

from a canonical placement. Now it is proven that any almost-canonical placement is
also an aligned Nµ-placement. In such a placement, every variable piece should be cor-
rectly aligned, and should furthermore encode a variable in the range [m−Nµ,m+Nµ],
where N = O(n4) is the total number of gadgets in the packing instance. The variable
µ = O(n−296) is the total amount of slack in the instance, and m is the midpoint of the
interval I(x) corresponding to the variable piece.

After this, it needs to be shown that all the variable pieces corresponding to a single
variable actually encode the same value. For this purpose, a dependency graph Gx is

63

Write
us!

Get ou
t!

Write
us!

Get ou
t!

Write
us!

Get ou
t!

Write
us!

Get ou
t!

Write
us!

Get ou
t!

Write
us!

Get ou
t!

Figure 3.9: A sketch of the instance of , broken over six lines, we get from the wiring
diagram in Figure 3.8 (except that the order of the inverters has been swapped to decrease
the number of crossings). The adders and inverters are marked with gray boxes. This
figure is taken from [5].

64

(a) (b) (d) (e)

p1

c
d

p1

(c)

Figure 3.10: (a): A pocket and an augmentation that fit perfectly together as in a jigsaw
puzzle. If non-convex pieces are allowed, this mechanism can be easily used to enforce
a canonical placement of all the pieces. The idea for convex polygonal pieces is similar,
but technically more intricate. (b): A wedge of the empty space and a piece which fit
together. (c): The corner of the piece we are fingerprinting is marked with a dot. (d) and
(e): Two examples where space is wasted because a wedge is not occupied by a piece with
a matching angle. This figure is taken from [5].

Kx1
Kx2

Kx3

x2 + x3 ≤ x1

x2 + x3 ≥ x1

x1 · x2 ≤ 1

x1 · x2 ≥ 1

Figure 3.11: An abstract drawing of the dependency graphs of the instance we get from
the wiring diagram in Figure 3.8 and how the graphs connect to the gadgets for addition
and inversion constraints. The number of vertices on the cycles and paths are neither
important nor correct. This figure is taken from [5].

introduced for every variable x. The vertices of this graph are all the variable pieces which
encode this variable. Two of those vertices are connected by a directed edge if one of the
corresponding pieces enters some gadget, and the other leaves the same gadget. It needs to
be proven that for any such edge (p1, p2) of Gx, we have 〈p1〉 ≤ 〈p2〉 where 〈p〉 indicates the
value encoded by piece p. The packing instance was constructed in such a way to ensure
that this graph Gx contains a large cycle Kx. This implies that every piece in this cycle
encodes exactly the same value 〈Kx〉. See Figure 3.11 for a visualization of the graph Gx.

The last step of the correctness proof consists of showing that for any addition constraint
x+ y = z of Φ, we actually have 〈Kx〉+ 〈Ky〉 = 〈z〉, and similarly that for every inversion
constraint x · y = 1 we have 〈Kx〉 · 〈Ky〉 = 1. From this it follows that any valid packing
indeed encodes a solution to Φ.

Square container. Finally in Section 9 of [5], it is described how the packing instance
with a 4-monotone container can be converted to a packing instance with a square con-
tainer.

65

3.3.2 Changes to the framework

CCI and WIRED-CCI. As mentioned in the previous section, the proof from [5] works
by reducing from RANGED-ETR-INV via the problem WIRED-INV. In the reduction in
this thesis, we will instead reduce from CCI via a new problem WIRED-CCI. The specific
version of CCI which is used, uses the following polynomials f and g:

f(x, y) = (x− 1)(y − 1)− 1, and

g(x, y) = (x− 1)2 +

(
1

4
y − 1

)2

− 2.

Note that those are just linear transformations of the polynomials xy− 1 and x2 + y2 − 1.
After expanding the brackets in this definition, it is straightforward to check that these
do indeed satisfy the necessary properties applying Theorem 3.1.10. For the rest of this
section on packing, any reference to CCI or the polynomials f and g will refer to this
specific definition.

An instance of WIRED-CCI consists of a CCI instance together with a wiring diagram.
Let Φ be a CCI formula, now we define a wiring diagram of this formula Φ in almost the
same way as is done in Section 5.8 from [5], see also Figure 3.8. The only difference in
the definition concerns the constraint boxes which are needed in the diagram. Addition
constraints are still modeled in the same way: for a constraint xi + xj = xk, we have two
constraint boxes for enforcing respectively xi + xj ≤ xk and xi + xj ≥ xk. The first box
should intersect the right-oriented wires −→xi , −→xj and −→xk in positions `1, `2 and `3 respectively.
The second box should intersect the left-oriented wires ←−xi , ←−xj and ←−xk in positions `1, `2
and `3 respectively.

For each constraint of the form f(xi, xj) ≥ 0, we have a single constraint box which
intersects the left-oriented wires ←−xi and ←−xj in positions `1 and `2. Similarly for each
constraint of the form g(xi, xj) ≥ 0 we should have a single constraint box intersecting the
right-oriented wires −→xi and −→xj in positions `1 and `2.

Lastly, constraints of the form xi ≥ 0 or x1 = δ do not need to be encoded in the wiring
diagram in any way. The reason for this is that we will directly encode these constraints
in the anchor-gadgets, so no separate constraint boxes are needed.

Definition 3.3.3 (WIRED-CCI, modified from [5, Definition 42]). An instance I = [I ′, D]
of the WIRED-CCI problem consists of an instance I ′ of CCI together with a wiring
diagram D of the CCI formula Φ(I ′).

Lemma 3.3.4 (Modified from [5, Lemma 43]). Given an CCI formula Φ with variables
x1, . . . , xn, we can in O(n4) time construct a wiring diagram of Φ. Therefore, the problem
WIRED-CCI is ∃R-hard, even when δ = O(n−c) for any constant c > 0.

Proof. The proof is completely analogous to that of Lemma 43 of [5]. The idea is that
we can construct the wiring diagram from left to right. For every constraint we first swap
some pairs of wires to make sure that the correct wires are on top, and then we insert

66

a constraint box into the diagram. This reduction requires O(n4) time, where n is the
number of variables in Φ, since there are at most O(n3) distinct constraints, and for each
of those constraints at most O(n) swaps need to be inserted.

Using Lemma 3.3.4, it follows that the problem WIRED-CCI is ∃R-hard. Using the
framework from Abrahamsen, Miltzow and Seiferth [5] with the modifications below, we
get a reduction from WIRED-CCI to the desired packing problem. In this reduction the
teeter-totter is used for encoding constraints of the form f(x, y) ≥ 0 and the wobbly
gramophone is used for encoding constraints of the form g(x, y) ≥ 0.

Variable pieces. In the framework from [5], every variable x of an ETR-INV formula
comes with an interval I(x) ⊂ [1/2, 2]. Following this example, we also define I(x) for any
variable of a CCI formula Φ. We take:

I(x) =


{δ} if Φ has a constraint x = δ,

[0, δ] else, if Φ has a constraint x ≥ 0,

[−δ, δ] otherwise.

Note that the construction from [5] only uses the fact that I(x) ⊂ [1/2, 2] when translating
between positions of pieces and the corresponding variable values. This can still be done
in our construction, where we know that all intervals I(x) are instead contained in [−δ, δ].
For the reduction to work, it is merely necessary that every interval I(x) has size at most
2δ, which is still the case.

Gadgets. We can directly reuse most of the gadgets from [5]. In particular we keep using
the anchor, swap, split, adder and teeter-totter. The seesaw and gramophone are not used
anymore, those are replaced by the new wobbly gramophone, which will be introduced in
more detail later. The anchor is placed at both ends of every variable lane, and ensures that
the left-oriented and right-oriented lanes corresponding to the same variable also encode
the same value. The swap is used when two lanes need to cross. The split duplicates
one of the lanes; this is necessary for embedding the adders and teeter-totters in the
construction. The adder can be used for encoding both constraints of the form x + y ≤ z
and x + y ≥ z. Finally, the teeter-totter encodes constraints of the form xy ≥ 1, and the
wobbly gramophone will encode constraints of the form g(x, y) ≥ 0. An overview of the
gadgets is given in Figure 3.12.

The anchor, swap, split and adder gadgets can be directly used without any modifica-
tion. It should be noted that the anchor always ensures that for any valid packing, the
value of some variable x encoded by this packing is always in the interval I(x). There-
fore, because of our definition of the intervals I(x), the anchor automatically enforces the
constraints of the form x = δ and x ≥ 0.

Some more care is needed for using the teeter-totter. The original teeter-totter is used
to encode xy ≥ 1 in some neighborhood of either (1, 1) or (2/3, 3/2). For our result, we

67

(a) (b) (c) (d) (e)

Figure 3.12: (a): anchor, (b): swap, (c): adder, (d): teeter-totter, (e): wobbly gramophone

however need a constraint in a neighborhood of (0, 0). To obtain this, we use the teeter-
totter for encoding xy ≥ 1 around (1, 1), but consider both the variables to be translated
by −1. In this way we can use exactly the same gadget to enforce (x+ 1)(y + 1) ≥ 1 in a
neighborhood of (0, 0). This new constraint is equivalent to f(x, y) ≥ 0 with the f defined
earlier.

x2 + y2 ≥ 1

y

y

x x

k

k

c

p

k

yk

y

x · y ≤ 1

x x

c

(a) (b)

Figure 3.13: (a) The original gramophone from [5]. (b) The concept behind the new gadget.
Just like in the original gramophone, the gray pieces marked k cannot move and can be
thought of representing a constant. Now the green piece prevents the tip c of the pink
piece from coming too close to the point p on the container boundary, thereby enforcing a
constraint of the form x2 + y2 ≥ 1.

3.3.3 Gadget

The next step in proving ∃R-hardness of the packing problem of convex polygons is to
find a suitable gadget which encodes some concave constraint on two variables, while using
only convex pieces. Here we introduce this new gadget, the wobbly gramophone, which
is a modification of the gramophone gadget from [5]. The idea behind the gadget is to
change the original gramophone by replacing the curved boundary by a rotating piece. See
Figure 3.13. The exact concave constraint enforced by the actual form of this gadget will

be (x− 1)2 +
(
1
4
y − 1

)2 ≥ 2.

68

For the rest of this section, we will write Φ for the CCI formula which we are reducing
to a packing instance, and we let pi be the set of all pieces which are part of the first i
gadgets of the constructed packing instance.

We will start by explaining the principle behind the simplified version of the gadget.
Then the actual wobbly gramophone will be described, and it will be shown that it satisfies
all the properties which are necessary for embedding it in the framework from [5].

Principle. Just like in the original gramophone from [5], the new wobbly gramophone
contains a pink piece with a tip c, which encodes both the variables x and y. Instead of
having a fixed curve which bounds the corner c, we use a rotating rectangular piece of
width 1 (the green piece) which enforces that the distance between c and some corner p
on the outside boundary is at least 1. Therefore this exactly encodes a constraint of the
form x2 + y2 ≥ 1 in a neighborhood of the point (0,−1). In the actual gadget, we will use
a scaled and translated version of this constraint, as will be described next.

Actual gadget. A more accurate drawing of the actual wobbly gramophone can be seen
in Figure 3.14. Here all the side-lengths of the pieces should be chosen in such a way to
make sure the total amount of empty space (slack) is only O(δ). This gadget differs on
quite some aspects from the simplified drawing in Figure 3.13. First we observe that the
only pieces which are involved in enforcing the correct constraint, are pieces with numbers
1, 2, 3, 5, 6, 7, 10, 21 and 24; the rest of the pieces are necessary just for fingerprinting
purposes.

The pieces numbered 1 and 10 should have edge-edge contacts with the pink piece.
Together these pieces enforce that the pink piece has the intended orientation, and they
fix the x-coordinate of the pink piece. The pieces 2, 3, 4, 5, 21 and 24 together form a
swap gadget, as described in [5]. Furthermore, the gray pieces all have a fixed position,
so they encode some constant k. However, instead of freely choosing the corners of pieces
2, 3, 21 and 24 for fingerprinting (as is done for the original gramophone), we always take
these angles to be arctan(1/2). In this way the slope of the slanted sides of these pieces
is exactly 1/2. Now if the value encoded by pieces 3 and 21 is increased by ∆y, then the
orange piece 5 will move up by 1

4
∆y. Stated differently, if piece 3 and 21 encode some

variable y, then the y-coordinate of the orange piece encodes 1
4
y, and the y-coordinate of

the pink piece encodes some variable y′ which satisfies y′ ≥ 1
4
y.

The green piece (6) should have distance exactly
√

2 between its long sides. (Note that
this can be done while still ensuring all corners of this piece have rational coordinates. To
see this, note that the two parallel lines y = −x and y = −x+2 have exactly distance

√
2.)

In this way, the green piece enforces that the distance between corner c of the pink piece
and corner p of the outside boundary is at least

√
2. Since the x- and y-coordinates of the

pink piece encode the variables x and y in some sense, we find that the gadget enforces

the constraint (x − 1)2 +
(
1
4
y − 1

)2 ≥ 2 around the point (x, y) = (0, 0). Note that that
(x, y) = (0, 0) corresponds exactly to the case where the x- and y-coordinates of corner p
are both 1 larger than the x- and y-coordinates of corner c.

69

1

2

3

5

6

7

8 9

10
11

12 13 14

15 16

17
18192021

22 23

24
25 26

4

c

p

x

k

y

x

y

k

`1 `2 `3

Figure 3.14: The actual wobbly gramophone. Color codes: 1 yellow, 2 gray, 3 blue, 4
turquoise, 5 orange, 6 green, 7 pink, 8, 9 red, 10, 11, 12, 13, 14 yellow, 15, 16 red, 17, 18,
19, 20, 21 blue, 22, 23 red, 24, 25, 26 gray.

3

1
2

4

5

Figure 3.15: The fingerprinting subgadget. Color codes: 1 red, 2 orange, 3 blue, 4 pink, 5
turquoise.

gramophone

Figure 3.16: The installation manual of the wobbly gramophone, taken from [5].

70

The rest of the pieces, which form the right half of the gadget, have as a purpose
to fingerprint the pieces 10, 21 and 24. This is necessary since these three pieces are
not fingerprinted at their corners next to the orange and pink pieces, as is done in the
gramophone described in [5]. The right half consists of three subgadgets, as drawn in
Figure 3.15. Such a subgadget allows us to fingerprint a variable piece from the right
instead of from the left.

It is important that the fingerprinting corner of piece 13 (in Figure 3.14) is strictly
smaller than that of piece 14; this ensures that piece 13 attains its maximum width at the
top, and therefore cannot be translated or rotated without pushing piece 14 to the right.
Similarly, the fingerprinting corner of piece 20 should be smaller than the fingerprinting
corner of piece 21.

Embedding this gadget into the total construction is done in exactly the same way
as the embedding of the gramophone from [5]. See Figure 3.16. In particular there is a
separate lane introduced for the constant k, which ends immediately before and after the
gadget. This lane is ended in such a way to ensure that the first variable piece of this lane
encodes at least 0, and the last piece encodes at most 0.

Canonical placements and solution preservation. The variable pieces in the wobbly
gramophone are pieces 1, 3, 10, 12, 14, 17, 19 and 21. Furthermore we will also treat pieces
2, 24 and 26 as variable pieces, even though they do not encode actual variables, but they
do encode a constant k.

We take the canonical placements to be those where the boundary and the yellow, gray,
blue and orange pieces have all the edge-edge contacts between them which are drawn in
Figure 3.14. The gray pieces should furthermore have exactly the same position in all
canonical placements, and this should be the position as drawn in Figure 3.14. The pink
piece should have edge-edge contacts with pieces 1 and 10 (but not necessarily with piece
5 below it). The turquoise and red pieces should all be enclosed by the pieces which
are enclosing them in Figure 3.14, but here no edge-edge contacts are required. Finally
we impose that the segment between the corner c of the pink piece and corner p of the
boundary intersects both long sides of the green piece.

Lemma 3.3.5 (Solution Preservation, Lemma 6 from [5]). Suppose that this gadget is used
as the i’th gadget in the construction of the packing instance, and that for every solution to
Φ, there is a canonical placement of the pieces pi−1 of the preceding gadgets which encodes
this solution. Then the same holds for pi.

Proof. The pieces 1 and 3 are already fixed, since these belong to the set pi−1. Now
we can place all the remaining pieces except for the green piece in such a manner as to
have all edge-edge contacts as drawn in Figure 3.14. Since the given placements of all
the pieces encode a valid solution to Φ, it follows that the distance between c and p is√

(x− 1)2 +
(
1
4
y − 1

)2
. Since Φ contains some constraint g(x, y) ≥ 0, we find that this

distance is at least
√

2. This shows that we can place the green piece between these two
corners, we do this in such a way that its long sides are perpendicular to the segment

71

between c and p. There should be enough slack in the construction to make sure that the
green piece can be placed in this manner without intersecting the boundary.

Fingerprinting and almost-canonical placement.

Lemma 3.3.6 (Almost-canonical Placement, Lemma 10 from [5]). Suppose that the wobbly
gramophone is used as the i’th gadget in the construction of the packing instance. Consider
a valid placement P (of all the pieces) for which the pieces pi−1 have an aligned (i− 1)µ-
placement. It then holds for P that the pieces pi have an almost-canonical placement.

Proof. This proof goes analogous to the proof of Lemma 10 for the anchor in [5], where
we fingerprint the pieces in the order indicated by the numbers in Figure 3.14. Because of
how technical the proof is, we will not repeat the details here.

Aligned placement. The next step is to show that the variable pieces in the gadget are
correctly aligned, and encode variables in the correct ranges. Here the term iµ-placement
means that every variable piece is correctly aligned, and encodes a value in the interval
[−iµ, iµ].

Lemma 3.3.7 (Aligned Placement, Lemma 11 from [5]). Suppose that this gadget is used
as the i’th gadget in the construction of the packing instance. Consider a valid placement
P (of all the pieces) for which the pieces pi−1 have an aligned (i− 1)µ-placement and the
pieces pi have an almost-canonical placement. It then holds for P that the pieces 10, 12,
14, 17, 19, 21, 24 and 26 have an aligned iµ-placement.

Proof. From the alignment lines `1, `2 and `3 in Figure 3.14 we conclude that all the
mentioned pieces are indeed aligned.

By using arguments similar to the arguments used for proving Lemma 11 for the swap
in [5], it can be shown that also all encoded variables are in the right ranges. We will briefly
discuss the main ideas here. By the inequalities which will be proven in Lemma 3.3.8, and
the fact that the values encoded by pieces 1, 2 and 3 are in [−(i− 1)µ, (i− 1)µ], it follows
that all variable pieces encode a value which is at least −(i − 1)µ. What remains to be
shown, is that no variable piece can encode a value which is more than µ larger than the
value encoded by piece 1, 2 or 3. For example, consider piece 19, the other pieces can be
handled in a similar way. If piece 19 would encode a value which is more than µ larger
than the value of piece 3, then the total area enclosed by the pieces 1, 2, 3, 12, 19 and 25
would be at least µ more than the total area of all the pieces which would be placed inside
this region in a canonical placement. This implies that an area of more than µ is empty
withing this region, but this is impossible (recall that µ is the amount of empty space in
the whole construction). We conclude that the value encoded by piece 19 is indeed at most
µ larger than the value encoded by piece 3.

72

Edge inequalities. Next we prove the edge inequalities for this gadget. In the following
lemma we denote by 〈pi〉 the value encoded by the piece with number i in Figure 3.14.

Lemma 3.3.8 (Edge inequality, Lemma 13 from [5]). Let an aligned iµ-placement of the
pieces in the wobbly gramophone be given. Now the values encoded by pieces 1, 2, 3, 14,
17 and 26 satisfy the following inequalities:

〈p1〉 ≤ 〈p10〉 ≤ 〈p12〉 ≤ 〈p14〉
〈p2〉 ≤ 〈p21〉 ≤ 〈p19〉 ≤ 〈p17〉
〈p3〉 ≤ 〈p24〉 ≤ 〈p26〉.

Proof. First consider pieces 1 and 10. In a canonical placement where both piece 1 and 10
have edge-edge contacts with piece 7, we would have 〈p1〉 = 〈p10〉. Note that piece 1 and 10
can never get closer to each other than this: piece 7 will in any almost-canonical placement
be between them. This implies that we always have 〈p1〉 ≤ 〈p10〉. Similarly, we can look at
piece 2 and 24. These pieces are always separated by piece 5, and the horizontal distance
between them is minimized exactly when both of these pieces have edge-edge contacts with
piece 5, like in a canonical placement. It follows that also 〈p2〉 ≤ 〈p21〉. Similarly we get
〈p3〉 ≤ 〈p24〉.

Next consider piece 18 in the gadget. In a canonical placement, this piece has edge-edge
contacts with the pieces 17, 19 and 26. In the current aligned placement, we know that
these three pieces are all aligned. This implies that piece 18 cannot move downward. Also
rotating piece 18 will always increase the horizontal distance between pieces 17 and 19.
Furthermore the width of piece 18 is largest at its bottom, meaning that translating this
piece upwards would also increase the distance between piece 17 and 19. We conclude that
in any case we get 〈p19〉 ≤ 〈p17〉. By a similar argument applied to pieces 11 and 25, we
find that also 〈p10〉 ≤ 〈p12〉 and 〈p24〉 ≤ 〈p26〉.

Similar arguments also apply to pieces 13 and 20; for example 20 is bounded by pieces
12, 19 and 21, and its width is maximal at its top. In this way we find the additional
inequalities 〈p12〉 ≤ 〈p14〉 and 〈p21〉 ≤ 〈p19〉. This completes the proof of the lemma.

Note that the statement about pieces 3 and 26 in this lemma implies that the gray
pieces actually model a constant. This works as follows: from the way the gray pieces are
embedded, it follows that 〈p2〉 ≥ 0 and 〈p26〉 ≤ 0. Combining this with the inequalities
which we just proved, it indeed follows that all gray pieces encode 0.

The gadget works. Since all the edge-inequalities for all the gadgets used in the con-
struction together form a cycle for every variable, it follows that for any valid placement
of all the pieces and any variable x, all the vairable pieces in this placement corresponding
to s encode the same value, denoted 〈Kx〉. This is Lemma 14 from [5]. Now we get the
following result:

73

Lemma 3.3.9. For every constraint of the form (x − 1)2 +
(
1
4
y − 1

)2 ≥ 2 of Φ, we have
f(〈Kx〉, 〈Ky〉) ≥ 0.

Proof. Since all the values of the variables are consistently encoded, we find in particular
that piece 1 and 10 encode the same variable, and piece 3 and 21 encode the same variable.
We also know that piece 2 and 24 encode the same constant. This implies that the orange
piece has edge-edge contacts with pieces 2, 3, 21 and 24, and that the pink piece has edge-
edge contacts with pieces 1 and 10. We can now slide the pink piece downwards until it
touches the orange piece; note that this leaves the packing valid.

Consider a translated version of the standard coordinate system, in which corner p of
the outside boundary has coordinates (1, 1). If all the pieces in this gadget would have the
canonical position encoding x = y = 0, then the corner c of the pink piece gets position
(0, 0) by construction of the gadget. Furthermore, if the value of x would be increased
by some value ∆x, then the pink piece will shift ∆x to the right. If the value of y were
increased by some value ∆y, then the pink piece will shift 1

4
∆y upwards.

This has as a consequence that, in the current situation, the corner c of the pink
piece has coordinates exactly

(
〈Kx〉, 14〈Ky〉

)
with respect to this new coordinate system.

Furthermore, since the placement is almost canonical, we can see that the green piece has
to separate the corners c and p; there is not enough space for the green piece to go anywhere
else. We conclude that the distance between c and p is at least

√
2; this exactly implies

the condition (〈Kx〉−1)2 +
(
1
4
〈Ky〉 − 1

)2 ≥ 2. This is equivalent to f(〈Kx〉, 〈Ky〉) ≥ 0.

Valid placements are canonical.

Lemma 3.3.10 (Lemma 20 from [5]). Suppose that the wobbly gramophone is used as the
i’th gadget in the construction of the packing instance. Consider a valid placement P of all
the pieces, such that the pieces pi−1 have a canonical placement. It then holds for P that
the pieces pi have a canonical placement.

Proof. Using that the placement of all the variable pieces is consistent, it follows by the
arguments given in the proof of Lemma 3.3.8 that the pieces 11, 13, 18, 20 and 25 have all
the edge-edge contacts with other pieces which are desired in a canonical placement. Also
by the proof of Lemma 3.3.9 it follows that there are edge-edge contacts between the pink
piece and pieces 1 and 10, and between the orange piece and pieces 2, 3, 21 and 24. In
this proof it was also observed that the green piece always separates the corners c and p in
the desired manner. Since we know the placement to be almost-canonical, we furthermore
know that the turquoise and red pieces all have the correct positions. This completes the
proof that the placement is canonical.

74

3.4 Appendix: Circle-Constraint

Here, we discuss the question of expressing multiplication via equations which are all of
the form x+ y = z and the circle constraint x2 + y2 = 1. We note that for real numbers x
and y the following equivalence holds:

There exists a real z such that z2 + (x + y)2 = 1 and (z + x − y)2 + (z − x + y)2 = 1
if and only if 8xy = 1 and |x + y| <= 1 This can be used in turn to express the inversion
constraint (x ·y = 1) after some scaling and imposing range constraints. Note that x ·y = 1
can be used to express squaring as follows

1
1
x
− 1

x+1

− x = x2.

And we saw already in the Section 3.1 how squaring can be used to express multiplication.

75

Bibliography

[1] Zachary Abel, Erik Demaine, Martin Demaine, Sarah Eisenstat, Jayson Lynch, and
Tao Schardl. Who needs crossings? Hardness of plane graph rigidity. In 32nd In-
ternational Symposium on Computational Geometry (SoCG 2016), pages 3:1–3:15,
2016.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery prob-
lem is ∃R-complete. In STOC, pages 65–73, 2018.

[3] Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training neural networks
is er-complete. arXiv preprint arXiv:2102.09798, 2021.

[4] Mikkel Abrahamsen and Tillmann Miltzow. Dynamic Toolbox for ETRINV. arXiv
e-prints, page arXiv:1912.08674, December 2019.

[5] Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for
∃R-Completeness of Two-Dimensional Packing Problems. arXiv e-prints, page
arXiv:2004.07558, April 2020.

[6] Saugata Basu and Marie-Françoise Roy. Bounding the radii of balls meeting ev-
ery connected component of semi-algebraic sets. Journal of Symbolic Computation,
45(12):1270 – 1279, 2010. MEGA’2009.

[7] Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational
complexity of decision problems about multi-player nash equilibria. In International
Symposium on Algorithmic Game Theory, pages 153–167. Springer, 2019.

[8] Vittorio Bilò and Marios Mavronicolas. A catalog of exists-r-complete decision prob-
lems about nash equilibria in multi-player games. In 33rd Symposium on Theoretical
Aspects of Computer Science (STACS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[9] Vittorio Bilò and Marios Mavronicolas. Existential-r-complete decision problems
about symmetric nash equilibria in symmetric multi-player games. In 34th Symposium
on Theoretical Aspects of Computer Science (STACS 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

76

[10] Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction com-
plexity. In International Colloquium on Automata, Languages, and Programming,
pages 184–196. Springer, 2008.

[11] Manuel Bodirsky, Peter Jonsson, and Timo Von Oertzen. Essential convexity and
complexity of semi-algebraic constraints. arXiv preprint arXiv:1210.0420, 2012.

[12] Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction
problems. Journal of the ACM (JACM), 57(2):1–41, 2010.

[13] Manuel Bodirsky and Marcello Mamino. Constraint satisfaction problems over nu-
meric domains. In Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[14] Andrei A Bulatov. A dichotomy theorem for constraint satisfaction problems on a
3-element set. Journal of the ACM (JACM), 53(1):66–120, 2006.

[15] Andrei A Bulatov. A dichotomy theorem for nonuniform csps. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330.
IEEE, 2017.

[16] John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings
of the twentieth annual ACM symposium on Theory of computing (STOC 1988), pages
460–467. ACM, 1988.

[17] Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogten-
huber. Intersection graphs of rays and grounded segments. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages 153–166. Springer, 2017.

[18] Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility
graphs. Discrete & Computational Geometry, 57(1):164–178, 2017.

[19] Dmitry Chistikov, Stefan Kiefer, Ines Marusic, Mahsa Shirmohammadi, and James
Worrell. On Restricted Nonnegative Matrix Factorization. In ICALP, volume 55 of
LIPIcs, pages 103:1–103:14, 2016. ArXiv 1605.06848.

[20] Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Pawe l Rza̧żewski. ∀∃R-
completeness and area-universality. ArXiv 1712.05142, 2017.

[21] Michael Gene Dobbins, Andreas Holmsen, and Tillmann Miltzow. A universality
theorem for nested polytopes. arXiv, 1908.02213, 2019.

[22] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy
for boolean# csp. Journal of Computer and System Sciences, 76(3-4):267–277, 2010.

[23] Jeff Erickson. Optimal curve straightening is ∃R-complete. arXiv:1908.09400, 2019.

77

[24] Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. Smoothing the gap between
NP and ER. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1022–1033. IEEE,
2020.

[25] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ETR-completeness
for decision versions of multi-player (symmetric) Nash equilibria. In Proceedings of the
42nd International Colloquium on Automata, Languages, and Programming (ICALP
2015), part 1, Lecture Notes in Computer Science (LNCS), pages 554–566, 2015.

[26] Thierry Gensane and Philippe Ryckelynck. Improved dense packings of congruent
squares in a square. Discrete & Computational Geometry, 34(1):97–109, 2005.

[27] Simon Hengeveld and Tillmann Miltzow. A practical algorithm with performance
guarantees for the art˜gallery problem. Arxivv, 2007.06920, 2020. accepted to SoCG
2021.

[28] Daniel Huybrechts and Manfred Lehn. The Geometry of Moduli Spaces of Sheaves.
Cambridge Mathematical Library. Cambridge University Press, 2 edition, 2010.

[29] Joachim Jelisiejew. Pathologies on the Hilbert scheme of points. arXiv e-prints, page
arXiv:1812.08531, December 2018.

[30] Peter Jonsson and Johan Thapper. Constraint satisfaction and semilinear expansions
of addition over the rationals and the reals. Journal of Computer and System Sciences,
82(5):912–928, 2016.

[31] Ross Kang and Tobias Müller. Sphere and dot product representations of graphs. In
27th Annual Symposium on Computational Geometry (SoCG), pages 308–314. ACM,
2011.

[32] Martijn Kool. Fixed point loci of moduli spaces of sheaves on toric varieties. arXiv
e-prints, page arXiv:0810.0418, October 2008.

[33] Jan Kratochv́ıl and Jǐŕı Matoušek. Intersection graphs of segments. Journal of Com-
binatorial Theory, Series B, 62(2):289–315, 1994.

[34] Laurent Lafforgue. Chirurgie des grassmanniennes, volume 19 of CRM Monograph
Series. American Mathematical Society, 2003.

[35] Seok Hyeong Lee and Ravi Vakil. Mnev-Sturmfels universality for schemes. arXiv
e-prints, page arXiv:1202.3934, February 2012.

[36] Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The complexity of drawing
a graph in a polygonal region. In International Symposium on Graph Drawing and
Network Visualization, 2018.

78

[37] David Marker, Ya’acov Peterzil, and Anand Pillay. Additive reducts of real closed
fields. The Journal of symbolic logic, 57(1):109–117, 1992.

[38] Dániel Marx. Parameterized complexity of constraint satisfaction problems. compu-
tational complexity, 14(2):153–183, 2005.

[39] Jǐŕı Matoušek. Intersection graphs of segments and ∃R. ArXiv 1406.2636, 2014.

[40] Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, 2013.

[41] Tillmann Miltzow and Reinier F. Schmiermann. On Classifying Continuous Constraint
Satisfaction problems. arXiv e-prints, page arXiv:2106.02397, June 2021.

[42] Nicolai Mnëv. The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In Oleg Y. Viro, editor, Topology and
geometry – Rohlin seminar, pages 527–543. Springer-Verlag Berlin Heidelberg, 1988.

[43] Gábor Pataki and Aleksandr Touzov. How do exponential size solutions arise in
semidefinite programming? arXiv preprint arXiv:2103.00041, 2021.

[44] Sam Payne. Moduli of toric vector bundles. arXiv e-prints, page arXiv:0705.0410,
May 2007.

[45] Ya’acov Peterzil. A structure theorem for semibounded sets in the reals. The Journal
of Symbolic Logic, 57(3):779–794, 1992.

[46] Ya’acov Peterzil. Reducts of some structures over the reals. The Journal of Symbolic
Logic, 58(3):955–966, 1993.

[47] Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-polytopes are
universal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995.

[48] Marcus Schaefer. Complexity of some geometric and topological problems. In Pro-
ceedings of the 17th International Symposium on Graph Drawing (GD 2009), Lecture
Notes in Computer Science (LNCS), pages 334–344. Springer, 2009.

[49] Marcus Schaefer. Realizability of graphs and linkages. In János Pach, editor, Thirty
Essays on Geometric Graph Theory, chapter 23, pages 461–482. Springer-Verlag New
York, 2013.

[50] Marcus Schaefer. Complexity of geometric k-planarity for fixed k. J. Graph Algorithms
Appl, 25(1):29–41, 2021.

[51] Marcus Schaefer and Daniel Stefankovic. The complexity of tensor rank. Theory
Comput. Syst., 62(5):1161–1174, 2018.

79

[52] Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and the exis-
tential theory of the reals. Theory of Computing Systems, 60(2):172–193, 2017.

[53] Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 216–226, 1978.

[54] Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. ArXiv
1606.09068, 2016.

[55] Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM
Journal on Optimization, 27(3):1898–1909, 2017.

[56] Peter Shor. Stretchability of pseudolines is NP-hard. In Peter Gritzmann and Bernd
Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee
Festschrift, DIMACS – Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 531–554. American Mathematical Society and Association for Computing
Machinery, 1991.

[57] Ravi Vakil. Murphy’s Law in algebraic geometry: Badly-behaved deformation spaces.
arXiv Mathematics e-prints, page math/0411469, November 2004.

[58] Caterina Viola and Stanislav Zivny. The combined basic lp and affine ip relaxation
for promise vcsps on infinite domains. arXiv preprint arXiv:2007.01779, 2020.

[59] Dmitriy Zhuk. A proof of the csp dichotomy conjecture. Journal of the ACM (JACM),
67(5):1–78, 2020.

[60] Dmitriy Zhuk and Barnaby Martin. The complete classification for quantified equality
constraints. arXiv preprint arXiv:2104.00406, 2021.

80

	Introduction
	Murphy's Law on the Fixed Point Locus of the Quot-Scheme
	On Classifying Continuous Constraint Satisfaction Problems
	Shared Philosophy

	Murphy's Law on the Fixed Point Locus of the Quot-Scheme
	Introduction
	Preliminaries
	Quot-scheme
	Torus action and the fixed point locus
	Murphy's law and Mnëv's universality theorem

	Singularities of (Q3, d)T
	Q as a closed incidence scheme
	The case d = 2
	The case d = 3
	The case d = 4

	Extending the result to the full Quot-scheme
	The Białynicki-Birula decomposition
	Trivial negative tangents on the Quot-scheme

	On Classifying Continuous Constraint Satisfaction Problems
	Introduction
	Constraint Satisfaction Problems
	Existential Theory of the Reals
	Results
	Discussion
	Proof Overview for CE and CCI
	Proof Overview to Packing

	Proof of CCSP-Theorems
	Approximate Solutions
	Almost Square Explicit Equality Constraints
	Almost Square Explicit Inequality Constraints
	Implicit Constraints

	Packing
	Overview of Previous Work
	Changes to the framework
	Gadget

	Appendix: Circle-Constraint

