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Introduction

Throughout the field of Differential Geometry (and related areas), one can find so-called normal
form theorems. One is given a submanifold N ⊆ M and some geometric structure Γ on M , that
behaves nicely around N . The theorem would then typically state that Γ has some “simple”, stan-
dard form in a neighborhood of N , with respect to a certain choice of local coordinates. Examples
are Darboux’ theorem and Weinstein’s Lagrangian neighborhood theorem in symplectic geometry,
the Morse Lemma for smooth functions and Conn’s linearization theorem in the case of Poisson
structures. A common element in proofs for all such theorems is showing the existence of a tubular
neighborhood around N that is somehow adapted to the structure Γ. In two papers [16][2], E.
Meinrenken, along with Lima and Bursztyn, showed that such tubular neighborhoods correspond
with particular vector fields around N . These are called Euler-like vector fields. As we will see, each
Euler-like vector field X determines a unique maximal tubular neighborhood, in which it looks like
the standard Euler vector field. This result allows one to prove a range of normal form theorems in
a similar way. One finds an Euler-like vector field that is adapted to the structure, and then uses
the unique tubular neighborhood it determines. Such vector fields often arise quite naturally from
the structure. We will see this technique in action for many examples of normal forms theorems.
Particularly we will prove (part of) Conn’s linearization theorem using this method, which has not
been done before.

We will start our treatment of the subject by looking at the normal bundle of a submanifold, and
the concept of the linear approximation of maps around N . This is important for the definition
of Euler-like vector fields, which we discuss afterwards. We will then look at various examples
of normal form theorems and how they are proved using this method. When necessary, we will
introduce first some basic notions of the field in question before looking at the theorem. For
example, an introduction to Poisson structures and Poisson cohomology is given in Chapter 4.

In the final chapter we will describe a generalization to a weighted version of the theory. Es-
sentially, the vector bundle structure of the normal bundle is replaced by that of a graded bundle
(as in Grabowski, [1]). This leads to the notion of the weighted normal bundle, and corresponding
weighted Euler-like vector fields. We will introduce the ideas based on the paper by Meinrenken
[16] as well as a talk by Y. Loizides, in which some initial concepts are defined/discussed. This
generalization of the theory can be used to prove a wider range of normal form theorems, notably
the Isotropic embedding theorem.
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Chapter 1

Normal bundle and linear
approximation

A normal form theorem typically consists of two parts, a geometric structure and a submanifold
around which it has a certain nice property. In this first section we will start by focusing on the
latter, and study what surroundings of the submanifold are like. In other words, how it is embedded
in the ambient manifold. This information can be obtained by considering the normal bundle of the
submanifold, and so it is not surprising that this object plays large role in the theory we will build.
In this section, we will look at its definition and the related notion of tubular neighborhoods. We
will also see that there is a natural way to approximate all kinds of objects on the normal bundle,
called the linear approximation.

Assumption. In this thesis, we will always assume that N ⊆ M is an embedded submanifold,
without boundary.

This assumption is required for the notion of a tubular neighborhood of N (see Definition 1.1.6),
since N is always embedded as the zero section in its normal bundle.

1.1 The normal bundle

We recall the following definition.

Definition 1.1.1. The normal bundle of a submanifold N in M is defined as the quotient of vector
bundles

ν(M,N) := TM |N/TN.

This is itself a vector bundle over N , with the projection given by restricting the natural projection
map π : TM →M to TM |N . We will also use the notation νN for this bundle.

Identifying N with the zero section of ν(M,N), we can view N as a submanifold of ν(M,N).

Remark. In a way, the normal bundle can be viewed as the ‘linear approximation’ of M around N
(as in [5]). For example, consider the case that ν(M,N) is trivial. Then we can find a neighborhood
U of N in M that is diffeomorphic to N × Rm−n (where dimM = m, dimN = n), therefore
‘linearizing’ M around N . In general, finding such an open set is of course not possible, consider
for example as submanifold the zero section of some non-trivial vector bundle. So the best we can
do is consider the vector bundle structure that is given precisely by the normal bundle. Within the
context of this thesis, one could say that the normal bundle is the ‘normal form’ of M around N
(which coincidentally also removes the ambiguity around the word normal here).
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What we want to do is look at this ‘operation’ of taking the normal bundle as a functor between
categories. We start in the category of manifold pairs (M,N) where N is a closed submanifold of
M . Morphisms (M,N)→ (M ′, N ′) are given by smooth maps f : M →M ′ such that f(N) ⊆ N ′.

Definition 1.1.2. The normal bundle functor ν assigns to every smooth manifold pair (M,N)
the vector bundle ν(M,N). For a morphism f : (M,N) → (M ′, N ′) we obtain a vector bundle
morphism ν(f) : ν(M,N)→ ν(M ′, N ′), as induced in the diagram below.

TM TM ′

νN = TM |N/TN TM ′|N ′/TN ′ = νN ′

df

q q′

ν(f)

Note that the ν(f) is well-defined here since df(TN) ⊂ TN ′ by assumption.

Definition 1.1.3. For a smooth map f : (M,N) → (M ′, N ′) of manifold pairs, we will call the
vector bundle morphism

ν(f) : ν(M,N)→ ν(M ′, N ′)

the linear approximation of f .

Example 1.1.4. Consider a smooth map f : R→ R such that f(0) = 0. The normal bundle of
{0} in R is of course just R itself. A simple calculation shows that v(f) : R→ R is equal to the first

term in the Taylor polynomial of f , ν(f)(x) = df
dx(0)x.

1.1.1 Normal bundle functor and tangent bundle

One can show that the normal bundle functor interacts nicely with the tangent functor (i.e. taking
the tangent bundle). Particularly, we have a canonical isomorphism

Tν(M,N) ' ν(TM, TN), (1.1)

where this is an isomorphism as vector bundles over ν(M,N), as well as TN (a so called double
vector bundle). See Appendix A.1 for details.

This fact is important in a special case of the construction above, when X ∈ X(M) is a vector
field tangent to N (i.e. Xp ∈ TpN for all p ∈ N). In this case we can view X as a morphism
X : (M,N)→ (TM, TN), and obtain the morphism

ν(X) : ν(M,N)→ ν(TM, TN).

Since we have ν(TM, TN) ' Tν(M,N), we can then view ν(X) as vector field on the normal
bundle, so ν(X) ∈ X(ν(M,N)). This example will be of particular importance in this paper.

Definition 1.1.5. Let X ∈ X(M) a vector field that is tangent to N . The linear approximation
of X is given as the induced vector field ν(X) ∈ X(ν(M,N)).

As we will see in Section 1.3, this idea can also be applied to other kinds of objects, for example
differential forms.
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1.1.2 Tubular neighborhoods

To finish this first part, we define a notion of a tubular neighborhood, that will be convenient in
our setting.

Definition 1.1.6. A tubular neighborhood embedding is a smooth embedding ϕ : O ⊆ ν(M,N)→
M , where O is an open neighborhood of N , such that the zero section is mapped to N ⊆, i.e ϕ|N =
id. Additionally, ϕ should satisfy ν(ϕ) = id, under the canonical identification ν(νN , N) ' νN .

Remark. In a lot of works Definition 1.1.6 is given without the last condition. It makes sense to
require it in our context though, as we will see in a number of instances later.

For the last part in Definition 1.1.6, we used the following lemma.

Lemma 1.1.7. Let π : E → M be a vector bundle. Then for M viewed as the zero section of E,
the normal bundle ν(E,M) is canonically isomorphic to E.

Proof. This follows from the identification TE|M ' TM ⊕E, which comes from the exact sequence

0→ E → TE|M → TM → 0

that is split since the projection map π : E →M can be split by the inclusion of the zero section.
Exactness can be checked pointwise, see [5].

While the normal bundle abstractly gives the ‘linear approximation’ of M around N , a tubular
neighborhood is a concrete realization of this. The following theorem is a well-known result.

Theorem 1.1.8 (Tubular neigborhood theorem). Let N ⊆M be an embedded submanifold. Then
there exists a tubular neighborhood embedding for N .

Proof. For a proof using Riemannian metrics, see for example [5]. Here a tubular neighborhood
is defined without the extra condition that ν(ϕ) = id. A closer inspection however reveals that the
exponential map used in the construction of this proof satisfies this property, so that the theorem
also holds using our definition.

1.2 The linear approximation

In the previous section we have defined the linear approximation ν(f) of a map f between manifold
pairs. We have also seen that we can apply this construction to vector field that are tangent to the
submanifold N . The resulting linear approximation is then a vector field on the normal bundle in
a natural way. Since this construction was given very abstractly, to gain more insight we will do
some explicit computations in this section.

1.2.1 In local coordinates

To start, let us calculate what the linear approximation of a vector field X ∈ X(M), tangent to
N , looks like in local coordinates on the normal bundle. On some small open neighborhood U ⊆M
around a point p ∈ N , choose coordinates (x1, . . . xn, y1, . . . ym−n) where the xi are in the direction
of N , and the yj in the normal direction. So N can in these coordinates be given as N = {yi = 0}.

We can then express a vector field X ∈ X(M) on this neighborhood as

X =

n∑
i=1

ai(x, y)
∂

∂xi
+

m−n∑
j=1

bj(x, y)
∂

∂yj
(1.2)
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where the ai and bj are smooth functions on the neighborhood U . The condition that X is tangent
to N then means precisely that the functions bj(x, y) vanish on N , i.e. that

bj(x, 0) = 0 for all x ∈ N.

Viewing X as a map X : M ⊇ U → TU ⊆ TM , we can write

X(x, y) = (x, y,~a(x, y),~b(x, y)), in the coordinates (xi, yj , vi, wj) on TM |U .

We can then directly calculate dX : TM → T (TM) in these coordinates. Let us do this
calculation, but to simplify notation a bit assume that N is 1-dimensional and M is 2-dimensional,
and that we have global coordinates (x, y) = (x1, y1) on M . In these coordinates, consider

X : M → TM, (x, y) 7→ (x, y, a(x, y), b(x, y)) =: (X1, X2, X3, X4)

For dX : TM → T (TM) we then see, in coordinates (x, y, v, w) on TM:

dX(x, y, v, w) = (x, y, a, b,
∂X1

∂x
v +

∂X1

∂y
w,
∂X2(x, y)

∂x
v +

∂X2

∂y
w,

∂X3

∂x
v +

∂X3

∂y
w,
∂X4

∂x
v +

∂X4

∂y
w)

= (x, y, a(x, y), b(x, y), v, w,
∂a

∂x
v +

∂a

∂y
w,

∂b

∂x
v +

∂b

∂y
w)

(1.3)

Now we want to obtain the induced map ν(X) : TM |N/TN → T (TM)|TN/T (TN). First note
that restricting to TM |N in coordinates means setting y = 0. Using that b(x, 0) = 0 by assumption,
this means that in (1.3) the 2nd and 4th coordinate become zero, so that we get indeed an element
of T (TM)|TN . Taking then the quotient by T (TN), which is spanned by the 5th and 7th coordinate
vector, means that those terms drop out. Here we can remark that b(x, 0) = 0 for all x also implies
that ∂

∂xb(x, 0) = 0, so that the resulting expression is completely independent of v. Concluding we
obtain the well-defined map

ν(X) : TM |N/TN → T (TM)|TN/T (TN), (x,w) 7→ (x, a(x, 0), w,
∂b(x, 0)

∂y
w).

The identification ν(TM, TN) ' Tν(M,N) is induced by the canonical map that ’flips’ the 2nd
and 3rd term. All in all, generalizing to dimension n we get the following result.

Proposition 1.2.1. In local coordinates (xi, yj) in a neighborhood around N ⊆ M , one has for
X =

∑n
i=1 a

i(x, y) ∂
∂xi

+
∑m−n

j=1 bj(x, y) ∂
∂yj
∈ X(M) with bj(x, 0) = 0 for all j and x:

ν(X)(x,y) =
n∑
i=1

ai(x, 0)
∂

∂xi
+
m−n∑
j=1

m−n∑
i=1

∂bj(x, 0)

∂yi
yi

∂

∂yj

Remark. Looking at the expression in Proposition 1.2.1 above, we can already find good reasons
why this could rightfully be called the linear approximation of a vector field on the normal bundle.
As you can see, in the direction of N we take the ‘constant part’ of the coordinate functions ai,
while in the fiber direction we see again this first order term of the Taylor polynomial of the bj ’s.
So really we are looking at the linear approximation in the fiber direction of ν(M,N).
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1.2.2 In terms of a Taylor expansion around N

We can look at ν(X) also in a different way. The normal bundle νN is in particular a vector bundle,
so we have a scalar multiplication map mλ : νN → νN , for λ ∈ R, at any point x ∈ N given by

(mλ)x : (νN )x → (νN )x, (x, y) 7→ (x, λy).

For λ non-zero, this map is a diffeomorphism. For now, fix a λ > 0. Consider again a vector
field X, tangent to N , given in local coordinates as in (1.2). By choosing a tubular neighborhood
embedding, we can view X as a vector field on the normal bundle, X ∈ X(ν(M,N)). For such a
vector field, we can then consider the pullback (mλ)∗(X).

Remark. Recall that in general for a diffeomorphism F : M → M ′ between two manifolds, the
pullback of a vector field X ∈ X(M ′) is given as

F ∗(X)p := (dF−1)F (p)(XF (p)).

Note that m−1
λ = mλ−1 , and that it is a linear map. So (dmλ)−1 = mλ−1 . In local coordinates

then,

(mλ)∗X(x,y) =

n∑
i=1

ai(x, λy)
∂

∂xi
+ λ−1

m−n∑
j=1

bj(x, λy)
∂

∂yj
. (1.4)

Note here the λ−1 term that appears in front of the ∂
∂yj

terms. We can Taylor expand λ 7→
bj(x, λy) in λ = 0, which gives

bj(x, λy) = bj(x, 0) + λ
∑
i

∂bj(x, 0)

∂yi
yi +O(λ2). (1.5)

We can do same for the function ai(x, λy). Then provided that bj(x, 0) = 0 for all i (which is true
if X is tangent to N), we can take the limit λ→ 0. Looking at 1.4 and 1.5, we then get the same
expression as in Proposition 1.2.1. This gives the following result.

Proposition 1.2.2. For a vector field X on ν(M,N), we can express

(mλ)∗X = λ−1X[−1] +X[0] + λX[1] +O(λ2)

If X is tangent to N then the term X[−1] vanishes, and the limit λ → 0 is well-defined. In that
case,

ν(X) = X[0] = lim
λ→0

(mλ)∗X.

Remark. Because of the previous lemma, we will also sometimes use the notation X[0] for the
linear approximation ν(X) of a vector field X. Note that the 0 in brackets signifies the degree
of homogeneity with respect to the scalar multiplication map mλ. This can be different for other
objects, for f ∈ C∞(M) one would for example have ν(f) = f[1] (provided the linear approxima-
tion exists). We will see this type of notation also in Section 1.5, when we discuss higher order
approximations.
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1.3 For other types of objects

1.3.1 Bi-vectors and general k-vectors

We can also define the linear approximation for other objects than vector fields, and give these a
natural interpretation on the normal bundle in a similar way. The first example are bi-vector fields
(or more generally k-vectors).

Given a θ ∈ X2(M), in local coordinates (xi, yj) around N we can write

θ(x, y) =
∑

aij(x, y)
∂

∂xi
∧ ∂

∂xj
+ bij(x, y)

∂

∂xi
∧ ∂

∂yj
+ cij(x, y)

∂

∂yi
∧ ∂

∂yj
.

To find ν(θ), consider θ as a map M → ∧2TM . We will assume then that θ|N = 0, so that

aij(x, 0) = bij(x, 0) = cij(x, 0) for all x ∈ N, and i, j.

We will get a well-defined induced map

ν(θ) : TM |N/TN → ∧2T (TM |N )/ ∧2 T (TN) = ∧2T (TM |N/TN),

which we can view as a bi-vector on the normal bundle. Now we could again compute ν(θ) directly
in local coordinates, but this would be rather involved. So let us instead look again at the expansion
using mλ. We get

(m∗λ)θ(x,y) =
∑
i,j

aij(x, λy)
∂

∂xi
∧ ∂

∂xj
+ λ−1

∑
i,j

bij(x, λy)
∂

∂xi
∧ ∂

∂yj
+ λ−2

∑
i,j

cij(x, λy)
∂

∂yi
∧ ∂

∂yj
.

using that

(mλ)∗(
∂

∂yi
∧ ∂

∂yj
)(p) = (m∗λ

∂

∂yi
) ∧ (m∗λ

∂

∂yj
)(p)

= (dmλ)−1
mλ(p)

∂

∂yi mλ(p)

∧ (dmλ)−1
mλ(p)

∂

∂yj mλ(p)

= λ−2(
∂

∂yi
∧ ∂

∂yj
)(mλ(p)).

We can now Taylor expand all the functions aij , bijcij in λ = 0. This gives us an expansion

m∗λθ = λ−2θ[−2] + λ−1θ[−1] + . . .

As for vector fields, the ‘linear’ term is the second one, given by

θ[−1](x, y) =
∑
i,j

bij(x, 0)
∂

∂xi
∧ ∂

∂yj
+
∑
i,j

∑
k

∂cij

∂yk
(x, 0)yk

∂

∂yi
∧ ∂

∂yj
.

Concluding, one has for θ ∈ X2(M),

ν(θ) = θ[−1] = lim
λ→0

λ (mλ)∗θ.

In a similar way we get for general η ∈ Xk(M) that

ν(η) = η[−k+1] = lim
λ→0

λk−1 (mλ)∗η.
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1.3.2 Differential forms

The construction also works for forms ω ∈ Ωk(M). Here we have to be a little more careful, since
we are now working with the dual of the tangent space, and there is for example no (natural)
embedding TN∗ ↪→ TM∗ (on the contrary actually).

Probably the most concrete way to go about defining the linearization of a 1-form ω is to
interpret it as a map ω : TM → R. The map d(ω) (note: the differential of maps, not the
de Rham differential) then maps as d(ω) : T (TM) → TR ' R2. To get a well-defined map
ν(ω) : T (TM)|N/TN → R, we need to require that ω|TN = 0, or equivalently i∗ω = 0, where
i : N →M denotes the inclusion. Write, again in coordinates (xi, yj) around N , for ω ∈ Ω1(M)

ω(x,y) =
n∑
i=1

ai(x, y)dxi +
m−n∑
j=1

bj(x, y)dyj .

Then i∗ω = 0 is equivalent to ai(x, 0) = 0 for all i and x. Now one can do a computation similar
to the one for vector fields. Working everything out, one obtains:

ν(ω)(x,y) =
n∑
i=1

m−n∑
j=1

∂ai(x, 0)

∂yj
yjdxi +

m−n∑
j=1

bj(x, 0)dyi. (1.6)

In terms of the Taylor expansion with mλ, we see

(m∗λω)(x,y) =
n∑
i=1

ai(x, λy) dxi + λ
m−n∑
j=1

bj(x, λy) dyi.

Comparing with (1.6), we find that for ω ∈ Ω1(M)

ν(ω) = ω[1] = lim
λ→0

1

λ
(mλ)∗ω

and more generally for α ∈ Ωk(M), k ≥ 0, we get the same description;

ν(ω) = α[1] = lim
λ→0

1

λ
(mλ)∗α.

Remark. Looking at expression 1.6 for the linearization of a 1-form, the reader will note that
the roles of xi and yj are essentially swapped when compared to the case of vector fields. This can
be explained by noting that while vector fields are sections of the tangent bundle TM , forms are
sections of the cotangent bundle T ∗M . Now, looking at the normal bundle one notes that it comes
with the following exact sequence

0 TN TM |N TM |N/TN 0

Dualizing gives the exact sequence

0 (TM |N/TN)∗ (TM |N )∗ TN∗ 0

Since the kernel of the map (TM |N )∗ → TN∗ is the setAnn(TN), we have (TM |N/TN)∗ ' Ann(TN).
This set is spanned in local coordinates by the dyi’s. Contrasting this with TN , which is spanned
by the elements ∂

∂xi
, gives some intuition why the coordinates should be “swapped”.
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1.4 General facts

We will finish our discussion of the linear approximation ν by showing some useful facts about this
operation.

Proposition 1.4.1. The following properties are satisfied:

(i) If ϕ : ν(M,N) → M is a tubular neighborhood embedding, and X ∈ X(M) is tangent to N ,
then

ν(ϕ∗X) = ν(X)

(ii) For any ω ∈ Ωk(ν(M,N)),
dν(ω) = ν(dω)

(iii) If additionally X ∈ X(ν(M,N)), we have

ν(ιXω) = ιX[0]
ω[1] = ιν(X)ν(ω)

(iv) If ϕ1 : (M,N)→ (M ′, N ′) and ϕ2 : (M ′, N ′)→ (M ′′, N ′′) are maps of manifold pairs, then

ν(ϕ1 ◦ ϕ2) = ν(ϕ1) ◦ ν(ϕ2).

Proof. All of these statements can be verified in local coordinates.

Remark. Statement (i) of Proposition 1.4.1 tells us that, when determining the linear approxi-
mation of some object, we are allowed to first pull it back to the normal bundle using a tubular
neighborhood embedding. This means we can from the beginning just assume that our object is
already defined on the normal bundle. Note that this justifies our computations using (mλ)∗ in
Section 1.2.2.

1.5 Higher order approximations

Consider a l-form ω ∈ Ωl(M) such that ι∗ω = 0. By choosing a tubular neighborhood embedding,
we can view ω as a l-form on the normal bundle, ω ∈ Ωl(ν(M,N)). Then in general we have

(mλ)∗ω = λω[1] + λ2ω[2] + . . .

where as before ω[d] is the part of ω that is homogeneous of degree d (with respect to mλ). And we

have seen that for the linear approximation ν(ω) = ω[1] = limλ→0
1
λ(mλ)∗ω. Now let us consider

the situation where ω[1] = 0, so that in particular for example there are no linear terms in the
local coordinate expression of ω. It then makes sense to look at the ’quadratic approximation’ of
ω, which would be given by

ω[2] = lim
λ→0

1

λ2
(mλ)∗ω (note that this limit is now well-defined).

Definition 1.5.1. Let ω ∈ Ωl(ν(M,N)). The k-th order approximation of ω is defined, if it exists,
as the limit

ω[k] = lim
λ→0

1

λk
(mλ)∗ω

This limit is well-defined if ω[i] = 0 for all 0 ≤ i < k, and then ω[k] is a l-form on ν(M,N),
homogeneous of degree k.

11



Remark. Of course, one can give a similar definition for the k-th order approximation of an l-vector
field θ ∈ Xl(ν(M,N)) on ν(M,N).

Example 1.5.2. If f ∈ C∞(Rn) such that f(0) = 0 and also Df(0) = 0 (i.e. f has a critical point
at 0), then the quadratic approximation of f is given as

f[2](x) =
1

2

n∑
i,j=1

∂f(0)

∂xixj
xixj

which is of course the second term of its Taylor expansion around 0.

12



Chapter 2

Euler-like vector fields

In this chapter we will see that tubular neighborhoods embeddings as we have defined them, are in
one-to-one correspondence with a particular set of vector fields around N , called Euler-like. This
forms the basis of our approach to proving general normal form theorems. Before we can define
what an Euler-like vector field is, we first need to look at the Euler vector field on ν(M,N). We
will see that this vector field satisfies some useful properties, and is also important conceptually.

2.1 The Euler vector field

Definition 2.1.1. On the normal bundle ν(M,N) we will denote for λ ∈ R

mλ : ν(M,N)→ ν(M,N)

the fiberwise multiplication map, coming from the vector bundle structure.

Remark. Choose local coordinates (xi, yi) on ν(M,N), where the xi are in the direction of N
(identified as the zero section of ν(M,N), and the yi are in the fiber direction. Then mλ is given
as

mλ : (xi, yi) 7→ (xi, λyi)

Definition 2.1.2. The Euler vector field (of N) is given as the unique vector field E ∈ X(ν(M,N))
with flow ΦE given as

ΦEt (x) = mexp(t)(x)

for all t ∈ R, x ∈ ν(M,N).

In local coordinates one can work out that E is given as

E =
∑
i

yi
∂

∂y

Remark. In [2] and [16], the flow of a vector field is defined with a minus sign. This explains why
in these two papers it is stated that the flow of E is given as mexp(−t).

Since the flow of E is equal to the map mλ, we can use the Lie derivative of E to determine
facts about the homogeneity of functions around N . This will be very important later on.

Definition 2.1.3. For a smooth function f on ν(M,N), we say that f is homogeneous of degree d
(with respect to mλ) if

(mλ)∗f = λdf for all λ ∈ R.
We can define similarly the homogeneity of vector fields and forms on ν(M,N).
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Proposition 2.1.4. For f ∈ C∞(ν(M,N)),

LEf = d · f

if and only if f is homogeneous of degree d, with d ≥ 0.

Proof. By definition,

LEf = d
dt

∣∣
t=0

(ΦEt )∗f =
(
d
dt

∣∣
t=0

(mexp(t))
∗f
)

= d
dt

∣∣
t=0

(
f[0] + etf[1] + e2tf[2] + . . .

)
= f[1] + 2f[2] + . . . .

If f is homogeneous of degree d, then we have f = f[d], and the statement of the proposition clearly
holds. For the converse, we can work again in local coordinates (xi, yj). Then

d
dt

∣∣
t=0

(
(mexp(t))

∗f
)
(x, y) = d

dt

∣∣
t=0

f(x, ety) =
∑
j

yj
∂f

∂yj
(x, y).

So by assumption d·f =
∑

j yj
∂f
∂yj

. Now we apply Euler’s Homogeneous function theorem (Theorem

2.1.7 below), from which the statement follows.

Proposition 2.1.5. For X ∈ X(ν(M,N)), tangent to N , LEX = [X, E ] = 0 if and only if X is
homogeneous of degree 1, i.e. ν(X) = X.

Proof. It is instructive to look at the expression [X, E ] in local coordinates (xi) on M , and consider
the case where in these coordinates N = {0}. Let X =

∑
iX

i ∂
∂xi

.Then by the formula for the Lie
bracket of vector fields

[X, E ] =
∑
j

(
∑
i

Xi∂Ej

∂xi
−
∑
i

E i∂X
j

∂xi
)
∂

∂xj

=
∑
j

(Xj −
∑
i

xi
∂Xj

∂xi
)
∂

∂xj

So we have [X, E ] = 0 precisely if Xj =
∑

i xi
∂Xj

∂xi
for all j, i.e. if all the coordinate functions are

linear.

We used the following lemma in the proof above.

Lemma 2.1.6. A function f ∈ C∞(Rn) is linear if and only if

f(x) =

n∑
i=1

xi
∂f(x)

∂xi
.

Proof. Clearly letting f be linear implies the other statement. Fix x ∈ Rn, and let g : R → R
defined by g(t) := f(etx). Then

g′(t) =
∑
i

∂f(etx)

∂xi
· (etxi) = f(etx) = g(t).

So g(t) = C · et, where since g(0) = f(x) we see C = f(x). So f(etx) = g(t) = f(x)et, so f
commutes with scalar multiplication. By Lemma 2.1.9 below, this implies that f is linear.
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This lemma is a special case of a theorem known as Euler’s Homogeneous function theorem.
This theorem can be proved in a similar way.

Theorem 2.1.7 (Euler’s Homogeneous function theorem). A function f ∈ C∞(Rn) is homogeneous
of degree d (i.e. f(λx) = λdf(x)) if and only if

n∑
i=1

xi
∂f

∂xi
= d · f.

2.1.1 Remark on the philosophy

Besides the useful properties of the Lie derivative of E , this vector field is also conceptually of
importance. The philosophy here is that since the flow of E is the map mλ, E essentially captures
the vector bundle structure of ν(M,N). For example, this is indicated by Theorem 2.1.8 below.

Theorem 2.1.8. A map Φ : E → F between two vector bundles over M is a vector bundle
morphism if and only if it intertwines the scalar multiplication maps on E and F .

Proof. Note that on both vector bundles, m0 = π (the projection map). So such a Φ commutes
with the projection maps. The maps Φp : Ep → Fp on the fibers commute with scalar multiplication
and are smooth. By the lemma below, this implies that they are linear. So Φ is a morphism of
vector bundles.

Lemma 2.1.9. A function f ∈ C∞(Rn) is linear if and only if it commutes with scalar multipli-
cation.

Proof. For an arbitrary x ∈ Rn, define γ : R→ R by γ(t) := tf(x). Then y′(0) = f(x). Moreover,
since tf(x) = f(tx), we also have that y′(0) = (Df)0(x) by the chain rule. So f = Df0, so in
particular it is linear.

Following the work of Grabowski e.a, one can give an even stronger statement. The theorem
below makes concrete the relation between a ‘scalar multiplication map’ and a vector bundle struc-
ture. The theory behind this is somewhat involved, and not that relevant for our purposes. It
is best viewed within the context of graded bundles (a generalization of vector bundles), which
will play a role in a later part of the thesis. See Appendix A.2 for an outline of some important
definitions and theorems.

Theorem 2.1.10 (Grabowski, Rotkiewicz [10]). An action h : R×E → E from the monoid (R, ·)
comes from a vector bundle structure π : E → E0 = h0(E) if, for the curve R → E, t 7→ h(t, p),
the 1-jet vanishes if and only if p ∈ E0.

2.2 Definition of Euler-like vector fields

In the first section we saw that for a vector field X tangent to N , there is the natural ‘operation’
of taking the linear approximation on the normal bundle, given by ν(X). With the idea in mind
that the Euler vector field is characterizing for the normal bundle, it makes sense that the vector
fields in the definition below will be of special interest.

Definition 2.2.1. A vector field X ∈ X(M)is called Euler-like if it is tangent to N , and addition-
ally

ν(X) = E
.
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Remark. The condition of being tangent to N can be replaced by the (a priori) stronger condition
that X|N = 0. Note that this holds true for E (in ν(M,N)), and it follows that these definitions
are equivalent.

In local coordinates (xi, yj) around N , X is Euler-like if it can be given as

X(x,y) =
n∑
i=1

m−n∑
k=1

ykg
ik(x, y)

∂

∂xi
+
m−n∑
j=1

(
yj +

m−n∑
k,l=1

ykylh
jkl(x, y)

) ∂

∂yj
.

Here gik and hjkl should be smooth functions on the coordinate domain. A different characteriza-
tion, which can be useful in certain circumstances, is given by the proposition below.

Proposition 2.2.2. Denote by I ⊆ C∞(M) the vanishing ideal of N . Then a vector field X is
Euler-like if

LXf − kf ∈ Ik+1 for all f ∈ Ik

Proof. Easiest in local coordinates, see [7] (the proof uses Hadamard’s lemma).

In Section 2.3 below we will see the real reason why Euler-like vector fields are interesting to
us. Namely, they are in one-to one correspondence with tubular neighborhoods.

2.3 Main theorem

Theorem 2.3.1. Let N ⊆ M be an embedded submanifold. Any Euler-like vector field X for N
determines a unique maximal tubular neighborhood embedding ϕ : U ⊆ ν(M,N) → M such that
ϕ∗X = E.

The existence argument in the proof below is taken from [2], while the argument for uniqueness
is based on [16], where it was given in the case of (Rn, {0}).

Proof. Let us start by showing that such a ϕ exists. We can choose an initial tubular neighborhood
embedding

ψ : V ⊆ ν(M,N)→M.

We then have that Z := E − ψ∗X ∈ X(V ) has linearization equal to zero. The idea is now to use
the flow of this vector field to obtain the desired embedding. We start by defining

Zt :=
1

t
(mt)

∗Z for t > 0

Since m∗tZ = (Z[0] + tZ[1] +O(t2)) and as noted, Z[0] = 0, this smoothly extends to t = 0. Denote
by ϕt the flow of this (time-dependent) vector field (in particular ϕ0 = id).

We have that Zt|N = 0, therefore the set

U = {x ∈ V : ϕt(x) exists for all 0 ≤ t ≤ 1}

is an open neighborhood of N in ν(M,N). Also, since (mλ)∗Zt = λZλt for 0 < λ < 1, we get that
mtU ⊆ U for all 0 ≤ t ≤ 1 (this is of course clear for t = 0, 1).

We can therefore do the following computation at all points in U :
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d
dtϕ
∗
t (E − tZt) = d

dtϕ
∗
t (E − (mt)

∗Z)

= ϕ∗t (−[Zt, E − (mt)
∗Z]− 1

t
(mt)

∗[E , Z]) (Lemma 2.3.4)

= ϕ∗t (−[Zt, E ] + [Zt, tZt]− [E , Zt]) = 0

Here we used that d
dt(mt)

∗Y = 1
t (mt)

∗[E , Y ] for any vector field Y , which can be verified by a
computation in local coordinates (compare to Prop. 2.1.5). Also we used that (mt)

∗E = E . We
conclude that ϕ∗t (E − tZt) is independent of t, hence

(ϕ0)∗(E) = E = (ϕ1)∗(E − Z) = ϕ∗1(ψ∗X)

Thus taking ϕ := ψ ◦ ϕ1 : U → M , we obtain our tubular neighborhood embedding. What is
left to show is that ν(ϕ) = id. Since Zt vanishes up to second order around N (with respect to
coordinates on the normal bundle) for any t, we will have ν(ϕt) = id for all t, so the same follows
for ϕ.

Now for uniqueness, assume that both ϕ1 and ϕ2 are tubular neighborhood embeddings such
that ϕ∗1X = ϕ∗2X = E . Consider then the composition ϕ−1

2 ◦ ϕ1 : ν(M,N)→ ν(M,N) (defined on
neighborhoods of N). Then we have

(ϕ−1
2 ◦ ϕ1)∗E = E .

So, by Lemma 2.3.3, (ϕ−1
2 ◦ϕ1)◦mλ = mλ◦(ϕ−1

2 ◦ϕ1), in other words (ϕ−1
2 ◦ϕ1) commutes with the

scalar multiplication. This means that the map is ‘linear’, that is we have ν(ϕ−1
2 ◦ ϕ1) = ϕ−1

2 ◦ ϕ.
But since ϕ1 and ϕ2 are both tubular neighborhoods, we should have ν(ϕ−1

2 ◦ ϕ1) = id. It follows
that ϕ−1

2 ◦ ϕ1 = id, and similarly ϕ−1
1 ◦ ϕ2 = id, so that we must have ϕ2 = ϕ1.

Remark. A lot of normal form theorems (especially in symplectic geometry) can be proved with a
‘Moser type’ argument. This then involves an argument based on the Moser trick, see for example
Section 7.2 in [3]. Here one finds a time-dependent vector field Xt and uses its flow to find a suitable
diffeomorphism, very similar to what we do in Theorem 2.3.1. The argument is roughly speaking
as follows.

Moser trick : Assume we are given a smooth family (ωt)t∈[0,1] of symplectic forms, such that

d
dtωt = dαt for some αt ∈ Ω1(M)

We would then like to find a smooth isotopy ϕt such that for all t, ϕ∗tωt = ω0 (typically, what one
is really interested in is that ϕ∗1ω1 = ω0). The trick is now to try to obtain ϕt as the flow of a
time-dependent vector field Xt, i.e. d

dtϕt = Xt ◦ ϕt, and ϕ0 = id. Say such a ϕt is given, then if
d
dtϕ
∗
tωt = 0, the condition is certainly satisfied. With Lemma 2.3.4 and Cartan’s formula, we have

d
dtϕ
∗
tωt = ϕ∗t (

d
dtωt + dιXtωt).

Therefore defining Xt by αt + ιXtωt = 0 will do the trick.

Remark. If we assume that N is a compact submanifold, then given an Euler-like vector field X,
we can always multiply X by some bump function around N to make sure that X is complete. In
Theorem 2.3.1 above, we can then always take U as the whole ν(M,N). This makes the notation a
bit more convenient, which is why this assumption is used in [16] (here N is, somewhat ambiguously,
assumed to be closed, which one can assume to mean compact without boundary).
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If one is given some tubular neighborhood embedding, the push-forward of E under this map
will determine an Euler-like vector field around N . Conversely, in the proof above we saw that
the flow of an Euler-like vector field can be used to construct a tubular neighborhood embedding.
Following [2], we can make this more precise.

The idea is to obtain ϕ−1 completely in terms of the flow of X. Since ϕ∗E = X, it holds that
ΦX
t = ϕ ◦ ΦEt ◦ ϕ−1 Let us first look at the image of ϕ, which will be the domain of ϕ−1. By

definition, the flow of E is given by mexp(t) : νN → νN . Put differently, we have mt = ΦElog t. Let us

define for convenience λt := ΦX
log t.

Note now that since νN is invariant under mt, it follows that its image under ϕ is invariant
under λt, by using that ΦX

t ◦ϕ = ϕ ◦ΦEt . Note that limt→0mt gives the projection map of νN onto
its zero section, i.e. the projection to N . It follows that

ϕ(νN ) = {p ∈M : lim
t→0

λt(p) exist and lies in N} =: U

Clearly ϕ(νN ) is contained in U , the reverse inclusion follows by uniqueness of integral curves. So
we see that the image of ϕ is indeed determined fully by the flow of X. Now for the map ϕ−1. We
have seen that the equality

λt ◦ ϕ(v) = ϕ ◦mt(v) ∈M
hold for all v ∈ νN . We can differentiate with respect to t on both sides to get

d
dt

∣∣
t=0

(
λt ◦ ϕ(v)

)
= (dϕ)m0(v)

(
d
dt

∣∣
t=0

mt(v)
)
∈ TpM

where p = ϕ(m0(v)) ∈ N . We can then pass to the quotient TpM/TpN (i.e. go again to the normal
bundle of N), and using that ν(ϕ) = id we see

d
dt

∣∣
t=0

(
λt ◦ ϕ(v)

)
mod TpN =

(
d
dt

∣∣
t=0

mt(v)
)

mod TpN

Looking at this last term, we see that this is just the element v again. Therefore, we must have

ϕ−1(x) = ( ddt
∣∣
t=0

λt(x)) mod TpN for all x ∈ ϕ(νN ).

Concluding, we have proved the following Proposition.

Proposition 2.3.2. Suppose that X ∈ X(M) is Euler-like. Then the inverse of the associated
tubular neighborhood ϕ : U ⊆ ν(M,N)→M can be given explicitly as

ϕ−1(x) =
(
d
dt

∣∣
t=0

λt(x)
)

mod TpN for all x ∈ ϕ(νN ). (2.1)

where λt := ΦX
log t

In the proofs above we used two technical lemmas, both of which are generally well-known
results.

Lemma 2.3.3. If F : M → N is a smooth map between two manifold, and X ∈ X(M) and
Y ∈ X(N) are such that F∗X = Y , then ΦY

t ◦ F = F ◦ ΦX
t .

Proof. See for example [13], Proposition 9.13

Lemma 2.3.4. Given a time-dependent vector field with flow ϕt, then for any vector field Yt,

d
dtϕ
∗
t (Yt) = ϕ∗t

(
LXtYt + d

dtYt
)
.

And similar for forms ωt.

Proof. See for example [3].
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Chapter 3

Examples of normal form theorems

In this section we will outline various examples of normal form theorems throughout differential
geometry. We will show how to prove them using the theory of Euler-like vector fields that we have
built in the previous sections.. We will see that all these proofs proceed along similar lines. We
will assume the reader is familiar with the basics of symplectic geometry.

3.1 Basic theorems

We start with a proposition that follows almost directly from the definitions.

Definition 3.1.1. A vector field Y tangent to N is called linearizable if there exists some tubular
neighborhood embedding ϕ : ν(M,N)→ ν(M,N) such that ϕ∗(Y ) = ν(Y ). Such a map ϕ is then
called a linearization of X.

Proposition 3.1.2. A vector field Y tangent to N is linearizable if and only if there exists an
Euler-like vector field X in some neighborhood around N such that [Y,X] = LYX = 0.

Proof. Assume we are given such a X. Let ϕ be the unique maximal tubular neighborhood as
determined by 2.3.1, so ϕ∗(X) = E . Then we have

LE(ϕ∗Y ) = ϕ∗(LXY ) = 0.

So ϕ∗Y is linear (i.e. ν(ϕ∗Y ) = ϕ∗(Y )). Since ν(ϕ) = id, so ν(ϕ∗(Y )) = ν(Y ), it must be equal to
the linear approximation of Y .

For the other direction, assume there exists a tubular neighborhood embedding such that ϕ∗Y =
ν(Y ). Let X = ϕ∗E , then X is Euler-like. Now ϕ∗([X,Y ]) = [ϕ∗X,ϕ∗Y ] = [E , ν(Y )] = 0, by
Proposition 2.1.5. The map ϕ is a diffeomorphism on a neighborhood of N , so it follows that
[X,Y ] = 0.

The next theorem is a famous theorem in symplectic geometry, giving the local standard form
for a symplectic form.

Theorem 3.1.3 (Darboux). Let (M,ω) be a symplectic manifold of dimension 2n. Around any
point x0 ∈M , there exists a tubular neighborhood ϕ : R2n →M such that

ϕ∗ω = ωstd =
∑
k

dx2k ∧ dx2k+1.

19



Proof. By working locally, we can assume that M = R2n, x0 = 0. We then want to find a
tubular neighborhood ϕ (i.e. a diffeomorphism R2n → R2n around 0) such that ϕ∗ω has constant
coefficients. From (symplectic) linear algebra we then know that there exists a linear coordinate
change that puts ω into the standard form (consider ωx0 as a bilinear form on Tx0M ). Using
similar reasoning as in Proposition 2.1.4, ϕ∗ω is constant if

LE(ϕ∗ω) = 2ϕ∗ω (note that ω is a 2-form)

So, what we want to find is an Euler-like vector field X such that LXω = 2ω, since then for the
associated tubular neighborhood ϕ,

LE(ϕ∗ω) = ϕ∗(LXω) = ϕ∗(2ω) = 2ϕ∗ω.

Let now X ∈ X(M) be determined by ιXω = 2α, where we choose α such that dα = ω. The
existence of such an α follows by the Poincare Lemma, using that dω = 0. The non-degeneracy of
ω means that X is uniquely determined.

Using Cartan’s formula, we have

LXω = d(ιXω) = 2dα = 2ω,

which means that we are done if we can show that this X is Euler-like. To do this, let us look at
ω and α in local coordinates. Writing

ωx =
∑
i,j

cij dxi ∧ dxj +
∑
i,j,k

dijk xk dxi ∧ dxj + . . . , where cij , dijk ∈ R

the condition dα = ω implies that (if without loss of generality we assume that α has no constant
terms)

α =
∑
i,j

cijxidxj + higher order terms .

Now consider

ιE(
∑
i,j

cijdxi ∧ dxj) =
∑
i,j

cijxi(dxi
∂

∂xi
) ∧ dxj +

∑
i,j

cijxjdxi ∧ (dxj
∂

∂xj
)

= 2
∑
i,j

cijxidxj = 2α

We chose X such that ιXω = 2α. Since ω is non-degenerate, X is determined by this uniquely.
By the computation above, we then conclude that the first order term of X must be equal to the
Euler vector field. In other words, that X must be Euler-like.

The next theorem (which is usually referred to as a lemma) forms the basis of Morse theory.

Theorem 3.1.4 (Morse Lemma for Rn). Let f ∈ C∞(Rn) such that 0 is a non-degenerate critical
point of f , and assume f(0) = 0. Then there exists a diffeomorphism ϕ around 0 such that ϕ∗f is
quadratic on this neighborhood.

Proof. Since f(0) = 0 = Df , we have that (by Taylor’s theorem)

f(x) =
∑
i,j

1

2
Aij(x)xixj ,
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where A(·) is a smooth matrix valued function, with Aij(x) = Aji(x). The partial derivatives of f
are then given as

∂f

∂xi
=
∑
k

(
Aikxk +

1

2

∑
l

∂Aik
∂xl

xlxk
)

:=
∑
k

Bik(x)xk

Since A(x) at any x is symmetric (by how we defined it), the same holds for B(x) (i.e.
Bik = Bki). The non-degeneracy condition means exactly that the matrix valued function A(x) is
invertible near 0. Since B(0) = A(0), the same is true for x 7→ B(x) in some neighborhood of 0.
On this neighborhood, consider the vector field

X =
∑
i,j

(A(x)B(x)−1)ijxi
∂

∂xj

Clearly, AB−1 is the identity matrix in its linear part, so X is Euler-like. Now,

(LXf)x = (df)xXx =
∑
k

Bjk(x)xk
(∑
i,j

(A(x)B(x)−1)ijxi
)

=
(∑
i,j,k

Bjk(AB
−1)ij xixk

)
(x)

=
(∑
i,j,k

Bjk(
∑
m

AimB
−1
mj)xixk

)
(x)

=
( ∑
i,j,k,m

(BkjB
−1
jm)Aimxixk

)
(x)

=
( ∑
i,k,m

(BB−1)kmAimxixk
)
(x)

=
∑
ik

Aik(x)xixk = 2f(x)

So LXf = 2f . By Proposition 2.1.4, this shows that ϕ∗f is homogeneous of degree 2, so is
quadratic.
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3.2 Group actions and equivariant versions

For our next normal form theorem, we consider a compact Lie group G acting on M . For g ∈ G,
we denote the action by ag : M →M .

Definition 3.2.1. Assume x0 ∈ M is a fixed point of the action of a Lie group G on M , i.e.
ag(x0) = x0 for all g ∈ G. Then the linearization of this action is given by the differentials
(dag)x0 : Tx0M → Tx0M for every g ∈ G.

Definition 3.2.2. A smooth action of a Lie group G on a manifold M with a fixed point x0 ∈M
is called linearizable if around {x0} there exist a tubular neighborhood embedding ϕ : Tx0M →M
that is G-equivariant, i.e. intertwines the action ag : M → M of each element g ∈ G with its
linearization ν(ag) = (dag)x0 .

(M,x0) (M,x0)

Tx0M Tx0M

ag

ϕ

(dag)x0

ϕ

Theorem 3.2.3 (Bochner’s Linearization theorem). Let G be a compact Lie group acting on M ,
with fixed point x0. Then the action is linearizable around x0.

Proof. We claim that the theorem is proven if we can find a G-invariant Euler-like vector field X.
By Lemma 2.3.3, the flow of such a vector field commutes with the group action. Equation 2.1
then gives for the induced tubular neighborhood ϕ

ϕ−1(ag(x)) = d
dt

∣∣
t=0

ΦX
log(t)(ag(x))

= d
dt

∣∣
t=0

ag ◦ ΦX
log(t)(x)

= (dag)x0 ◦ d
dt

∣∣
t=0

ΦX
log(t)(x)

= (dag)x0ϕ
−1(x).

So it satisfies the requirements.
To find such a vector field, the idea is to start with any Euler-like vector field X (for N = {x0})

and then average it over the group action. So let X ∈ X(M) be an Euler-like vector field. Define
then

XG :=

∫
G

(ag)∗Xdg

where dg is the normalized Haar measure, which exists because G is compact. For any h ∈ G,

(ah)∗X
G = (ah)∗

∫
G

(ag)∗Xdg =

∫
G

(ah)∗(ag)∗Xdg =

∫
G

(agh)∗Xdg =

∫
G

(ag)∗Xdg

using the left-invariance of the Haar measure (see Lemma 3.2.8 below). So XG is G-invariant. Now
the integration over G commutes with the linear approximation (we can locally differentiate under
the integral sign), so consider the integrand

(ag)∗X = (ag)∗(E +X[1] + higher order terms).
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If we want the find the linearization of this expression, only the first order term will be of importance.
So let us calculate

((ag)∗E)p := (dag(p))a−1
g (p)Ea−1

g (p) = (dag(p))a−1
g (p)

∑
i

(a−1
g (p))i

∂

∂yi
.

The linearization of this is, using the description in local coordinates, where x0 = 0,

ν((ag)∗E)y = 0 +
n∑
i=1

n∑
j=1

∂(dag)a−1
g (x0)(a

−1
g (x0))j

∂yi
yi

∂

∂yj

= (dag)a−1
g (x0) ◦ (da−1

g )x0
(∑

i

yi
∂

∂yi

)
=
∑
i

yi
∂

∂yi
= Ey

So we get that ν(XG) =
∫
G Edg = E , so XG is Euler-like.

Looking closely at the proof of Theorem 3.2.3, we have actually proved the following.

Proposition 3.2.4. Assume G is a compact Lie group acting on M , with a fixed point x0. Denote
the action of g ∈ G by ag : M →M . If X is any Euler-like vector field for {x0}, then

XG :=

∫
G

(ag)∗Xdg

is a G-invariant, Euler-like vector field.

This ‘trick’ allows us to easily prove G-equivariant versions of the previous normal form theo-
rems. We first give the following definition.

Definition 3.2.5. Let G be a compact Lie group acting on M , such that a submanifold N ⊆ M
is invariant under the group action. A G-equivariant tubular neighborhood embedding is a tubular
neighborhood embedding ϕ : O ⊆ ν(M,N)→M such that the following diagram commutes for all
g ∈ G:

M M

ν(M,N) ν(M,N)

ag

ϕ

ν(ag)

ϕ

The proof of the next theorem can be given by a rather straightforward generalization of the
proof Theorem 3.2.3.

Theorem 3.2.6 (Equivariant tubular neighborhood theorem). Let G be a compact Lie group acting
on M , such that a submanifold N ⊆ M is invariant under the group action. Then there exists a
G-equivariant tubular neighborhood embedding for N .

Proof. The theorem is as before proven if we can find a G-invariant Euler-like vector field. This
follows as in Theorem 3.2.3 by considering the description of Equation 2.1. Given a such a vector
field X, one obtains that for all g ∈ G,

ϕ−1(ag(x)) = (dag)x0 ◦ d
dt

∣∣
t=0

ΦX
log(t)(x) modTpN.

from which it follows that ϕ ◦ ν(ag) = ag ◦ϕ. Now we pick any Euler-like vector field X on M , and
let XG =

∫
G(ag)∗Xdg. Then XG is G-invariant, and we claim that it is still Euler-like. This can be

verified by the same computation in local coordinates as in Theorem 3.2.3, except that derivatives
are now only taken in the fiber direction. Since X|N = 0, the argument still works.
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To give one other example, consider the G-equivariant version of the Morse Lemma.

Theorem 3.2.7 (Equivariant Morse Lemma on Rn). Assume G is a compact Lie group acting on
Rn, with fixed point x0. Let f ∈ C∞(Rn) such that x0 is a non-degenerate critical point of f with
f(x0) = 0, and assume furthermore that f is G-invariant, i.e. f ◦ ag = f for all g ∈ G. Then we
can find a G-equivariant tubular neighborhood in which f can put into quadratic form.

Proof. As in the usual Morse Lemma, we can find an Euler-like X ∈ X(M) such that LXf = 2f .
Now let XG be defined as in Proposition 3.2.4, then we still see LXGf = 2f (apply d to both sides
of f ◦ag = f). So the tubular neighborhood determined by XG pulls back f to quadratic form, and
since by construction it is G-invariant this tubular neighborhood will be G-equivariant (compare
to the proof of Theorem 3.2.6).

We used the following lemma when working with the Haar measure. Recall that on a compact
group G, the Haar measure is defined as the unique left-invariant density dg such that

∫
G dg = 1.

See for example [19].

Lemma 3.2.8. Let G be Lie group, denote by lg : G → G the left multiplication with an element
g ∈ G. For a left-invariant density λ on G, and f ∈ Cc(G), we then have for all g in G:∫

G

(
(lg)
∗f
)
λ =

∫
G
fλ. (3.1)

Here (lg)
∗f := f ◦ lg

Proof. Since λ is left-invariant, we can write (lg)
∗(f)λ = (lg)

∗(f)(lg)
∗(λ) = (lg)

∗(fλ). Since lg is a
diffeomorphism of G,

∫
G fdλ =

∫
(lg)
∗(fdλ) and the result follows.

3.3 Weinstein’s Lagrangian neighborhood theorem

We will end this first exposition of normal form theorems by showing another famous theorem in
symplectic geometry, the Weinstein’s Lagrangian neighborhood theorem.

Theorem 3.3.1 (Weinstein’s Lagrangian neighborhood theorem). Let (M,ω) be a symplectic man-
ifold, and L ⊆M a Lagrangian neighborhood. Then there exists a neighborhood U of L and a sym-
plectomorphism ϕ : U → V ⊆ T ∗L that maps L to the zero section of T ∗L. Here T ∗L is equipped
with the canonical symplectic form of the cotangent bundle.

Let (M,ω) be a symplectic manifold, and assume that N ⊆ M is a Lagrangian submanifold,
so that dimN = 1

2m and the pullback of ω to N is zero, i.e. ι∗ω = 0. Choosing local coordinates
(xi, yj), we know that ω must have the following form around N .

ω(x,y) =
∑
i,j

aijdxi ∧ dxj +
∑
i,j

bijdxi ∧ dyj +
∑
i,j

cijdyi ∧ dyj

The assumption ι∗ω = implies then that aij(x, 0) = 0 for all i, j. As we have done a number of
times in Section 2, we can look at the linearization ν(ω) = ω[1] in these coordinates. We see

ω[1] =
∂aij(x, 0)

∂yk
yk(dxi ∧ dxj) + bij(x, 0)dxi ∧ dyj

We have ω[1] ∈ Ω2(ν(M,N)), but a priori it is not clear that this is again a symplectic form. First
we note that d(ω[1]) = (dω)[1] = 0, so it is a closed form. For ω[1] to be symplectic, what is left to
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check is if ω[1] is non-degenerate. Non-degeneracy is an open condition, so it suffices to check this
only for points p ∈ N , where ω[1] is given as

(ω[1])p =
∑
i,j

bij(x, 0)dxi ∧ dyj for p = (x, y) ∈ N.

Compare this to

ωp =
∑
i,j

bij(x, 0)dxi ∧ dyj +
∑
i,j

cij(x, 0)dyi ∧ dyj for p ∈ N.

Let now X be a vector field tangent to N , so in local coordinates X =
∑

i a
i ∂
∂xi

. Then, looking
at the two expressions above, we have that at all p ∈ N , and for all Y ∈ X(M),

(ω[1])p(Xp, Yp) = ωp(Xp, Yp).

Since ω is non-degenerate, there thus exist some Y such that (ω[1])p(Xp, Yp) 6= 0.

Now let Y ′ be a vector field normal to N , so in local coordinates Y ′ =
∑

j b
j ∂
∂yj

. Since N

is Lagrangian, we have that TNω = TN . In particular Y ′|N 6∈ TNω, so for p ∈ N there must
exist some X ′, tangent to N , with ωp(X

′
p, Y

′
p) 6= 0. Since then we have again (ω[1])p(X

′
p, Y

′
p) =

ω′p(X
′
p, Y

′
p) 6= 0, this combined with the above shows non-degeneracy of ω[1] at all p ∈ N .

It follows that ω[1] is also non-degenerate at points in an open neighborhood of N . Then we
can use the fact that ω[1] is homogeneous with respect to the scalar multiplication to get that it is
non-degenerate on the entire normal bundle (we have (ω[1])(x,λy) = λ(ω[1])(x,y)).

Following a remark in [16], we also have the following. As we have seen above ω[1] is a linear
symplectic form on ν(M,N). Restricting this form to a bilinear form on Tν(M,N)|N ' TN ⊕
ν(M,N) gives a non-degenerate pairing between ν(M,N) and TN . This induces a canonical
isomorphism ν(M,N)→ T ∗N , and one can check that this map is a symplectomorphism between
(ν(M,N), ω[1]) and (T ∗N,ωcan).

By the discussion above, we have that Weinstein’s Lagrangian neighborhood theorem is equiv-
alent to the theorem below.

Theorem 3.3.2. Let (M,ω) be a symplectic manifold, and N ⊆ M a Lagrangian neighborhood.
Then there exist a tubular neighborhood embedding ϕ such that

ϕ∗ω = ω[1]

Proof. Choose as usual an initial tubular neighborhood around N so that ω can be consider as a
2-form on the normal bundle. We claim that we can find a primitive α (i.e. a 1-form such that
dα = ω) by defining (the reader might notice that the construction below is similar as that in the
proof of the Poincare Lemma):

α =

∫ 1

0

1

t
(mt)

∗ιEω dt.

We can consider here the integral at t = 0 since both ω and E vanish on N , and m0 is equal to the
projection to N . To see that dα = ω, note that

dα = d

∫ 1

0

1

t
(mt)

∗ιEω dt

=

∫ 1

0

1

t
m∗td(ιEω) dt

=

∫ 1

0

1

t
m∗tLEω dt
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using that we can (locally) differentiate under the integral sign, and the fact that dω = 0 (when
applying Cartan’s formula). Recall that the flow of E is given by mexp(t). By applying a change of
coordinates t = exp(s), dt = exp(s)ds, we get∫ 0

−∞

es

es
m∗exp(s)(LEω) · ds =

∫ 0

−∞
m∗exp(s)(

d
dt

∣∣
t=0

m∗exp(t))ωds

=

∫ 0

−∞

d
dt

∣∣
t=0

(mexp(s) exp(t))
∗ωds

=

∫ 0

−∞

d
ds(mexp(s))

∗ωds

= m∗1ω −m∗0ω = ω

So α is indeed a primitive of ω . Now clearly α pulls back to zero on N (since this is true for ω),
so its linear approximation is well-defined. Using that m∗tω[1] = tω[1] and Prop. 1.4.1, we have

α[1] = ν(

∫ 1

0

1

t
(mt)

∗ιEω dt) =

∫ 1

0

1

t
(mt)

∗ιν(E)ν(ω) dt =

∫ 1

0
ιm∗t E

(1

t
(mt)

∗ω[1]

)
dt =

∫ 1

0
ιEω[1] dt,

so that α[1] = ιEω[1] (note that taking the linear approximation “commutes” with the integration).
Now define X ∈ X(M) by requiring

α = ιXω.

Since ω is symplectic, X exists and is determined uniquely. Taking the linear approximation in the
equation above we see that α[1] = ιX[0]

ω[1]. Since ω[1] is also symplectic, and we already saw that
α[1] = ιEω[1], we must have X[0] = ν(X) = E , so X is Euler-like.

So X defines a tubular neighborhood embedding ϕ : U ⊆ ν(M,N)→M . For this ϕ, we can do
the by now familiar computation:

LE(ϕ∗ω) = ϕ∗(LXω) = ϕ∗(dιXω) = ϕ∗(dα) = ϕ∗ω.

This means ϕ∗ω is linear, so must it must be equal to ω[1].
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Chapter 4

Normal forms in Poisson geometry:
Conn’s linearization theorem

In this section we will give a proof of an important normal form theorem in Poisson geometry. We
will first introduce some basic notions in this field, after that we will talk about the theorem itself.
Our goal is to prove part of the theorem using Euler-like vector fields, in the same way we did in
the previous section.

4.1 Basic notions in Poisson geometry

We will start by giving a short introduction to Poisson Geometry. This is based in large part on
[9].

Definition 4.1.1. Let M a manifold. A Poisson bracket on M is a binary operation {., .} :
C∞(M)× C∞(M)→ C∞(M) satisfying for all f, g, h ∈ C∞(M):

1. {f, g} = −{g, f} (skew-symmetry)

2. {f, ag + bh} = a{f, g}+ b{f, h} for all a, b ∈ R (linearity)

3. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

4. {f, gh} = g{f, h}+ {f, g}h. (Leibniz identity)

Because of the Leibniz identity, the bracket {·, ·} is determined in local coordinates entirely by
how it acts on the coordinate functions, i.e. by expressions of the form

πij := {xi, xj}.

One then has locally that

{f, g}|U =
∑
i,j

πij
∂f

∂xi

∂g

∂xj
.

The Leibniz identity moreover means that for any f ∈ C∞(M) the operation {f, ·} is a derivation,
so it corresponds to a unique vector field Xf for which {f, g} = LXf (g) (recall that there is
a 1-1 correspondence between derivations on C∞(M) and vector fields). This Xf is called the
Hamiltonian vector field for f .
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4.1.1 Poisson bivector

We can alternatively characterize a Poisson bracket in terms of a bi-vector field, i.e. a smooth
section of Λ2TM . For this, let us first look a little closer at the spaces Xk(M) of k-vector fields.
Recall first that a differential k-form ω ∈ Ωk(M) can be viewed as a k-linear, alternating map

ω : X1(M)× . . .× X1(M)→ C∞(M).

A differential form is a section of ∧kT ∗M , while a k-vector is a section of ∧kTM . Noting this
duality, a k-vector θ ∈ Xk(M) can be viewed as a map (k-linear, alternating)

θ : Ω1(M)× . . .× Ω1(M)→ C∞(M).

Since 1-forms are determined by expressions of the type df for f ∈ C∞(M), given a Poisson
bracket {·, ·} we can define a bi-vector π ∈ X2(M) by

π(df, dg) = {f, g}
In local coordinates, we then have

πx =
∑
i<j

πij(x)
∂

∂xi
∧ ∂

∂xj
.

Conversely, given a bi-vector field π one could define a bracket by setting {f, g} := π(df, dg).
This bracket however will in general not satisfy the Jacobi identity, so we need an additional
condition for it to be a Poisson bracket. With some work, one could find such a condition on the
local structure functions πij , but it turns out there is a more convenient description available.

4.1.2 Schouten-Nijhuis bracket

To do this, we will generalize the Lie bracket to multi-vectors. What would we want for such an
operation? After some deliberation, the theorem below gives the natural conditions to ask for, and
these uniquely determine the operation.

Theorem 4.1.2. There exists a unique bilinear operation [·, ·] : Xk×Xl(M)→ Xk+l−1(M) satisfying

1. For k = l = 1, it is the usual Lie bracket.

2. For k = 1, l = 0, one has [X, f ] = LX(f) (just as for the Lie bracket in the case l = 1).

3. [θ, η] = −(−1)(k−1)(l−1)[η, θ] for θ ∈ Xk(M), η ∈ X l(M) (graded skew-symmetry)

4. [θ, η ∧ ξ] = [θ, η]∧ ξ + (−1)(k−1)lθ ∧ [η, ξ] for θ ∈ Xk(M), η ∈ X l(M) and ξ ∈ Xm(M) (graded
Leibniz)

Proof. We can give an explicit formula (as in [9], (1.11)) by setting for θ ∈ Xl(M), η ∈ Xm(M)

[θ, η] = θ • η + (−1)(k−1)(l−1)η • θ, (4.1)

where

θ • η(df1, . . . , dfk+l−1) =
∑
σ

(−1)σθ(d(η(dfσ(1), . . . , dfσ(k))), dfσ(k+1), . . . , dfσ(k+l−1))

and we sum over all (k, l − 1) shuffles (note the resemblance with how one might define the wedge
product of forms). Then [θ, η] ∈ Xk+l−1(M), and one can check that this satisfies the requirements.
Bi-linearity and the graded Leibniz together with the first condition then give uniqueness (the
operation is determined by what it does on 1-vectors).
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Definition 4.1.3. The operation [·, ·] : Xk × Xl(M) → Xk+l−1(M) is called the Schouten-Nijhuis
bracket.

Proposition 4.1.4. For θ ∈ Xk(M), η ∈ Xl(M), ξ ∈ Xm(M), the Schouten-Nijhuis bracket satisfies
the graded Jacobi identity

(−1)(k−1)(m−1)[[θ, η], ξ] + (−1)(l−1)(k−1)[[η, ξ], θ] + (−1)(l−1)(m−1)[[ξ, θ], η] = 0.

Theorem 4.1.5 (Prop. 1.2.4 in [9]). Let π ∈ X2(M) be a bivector associated to some Poisson
bracket {·, ·}. For f, g, h ∈ C∞(M), one has

1

2
[π, π](df, dg, dh) = {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}.

In particular, we have that {·, ·} satisfies the Jacobi identity if and only if [π, π] = 0.

4.1.3 Different viewpoint: the map π]

There is another way to look at Poisson structures, that will put what we are doing in a more
general context. Given a bivector π ∈ X2(M), one gets a induced map of vector bundles

π] : T ∗M → TM

which is determined by requiring for αx ∈ T ∗xM ,

βx(π](αx)) = πx(αx, βx) for all βx ∈ T ∗xM.

This also induces a map on sections, also denoted π]:

π] : Ω1(M)→ X1(M).

Under this map, one can show that
π](df) = Xf .

What does the ‘Poisson condition’ [π, π] = 0 mean for the map π]? For a useful characterization,
we introduce another new bracket operation; [·, ·]π : Ω1(M)× Ω1(M)→ Ω1(M), given by

Definition 4.1.6.
[α, β]π := Lπ]α(β)− Lπ](β)(α)− d(π(α, β)).

Note that in the definition above we use the map π] to ‘take Lie derivatives’ along the 1-forms
α and β.

Proposition 4.1.7. For a bi-vector π ∈ X2(M), the following are equivalent:

(i) [π, π] = 0 (where [·, ·] is the Schouten bracket)

(ii) [·, ·]π satisfies the Jacobi identity
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The triple (T ∗M, π], [·, ·]π) is an example of what is called a Lie algebroid. These are defined
as follows.

Definition 4.1.8. A Lie algebroid over M is a triple (A, ρ, [·, ·]A) with

• A a vector bundle over M

• [·, ·]A : Γ(A)× Γ(A)→ Γ(A) a Lie bracket on the space of sections of A

• ρ : A→ TM a vector bundle morphism, called the anchor.

satisfying (another ‘Leibniz rule’):

[X, fY ]A = Lρ(X)fY + f [X,Y ]A

for X,Y ∈ Γ(A), f ∈ C∞(M).

One of the ideas of a Lie algebroid is that it replaces the tangent bundle TM of a manifold with
the vector bundle A. The Lie bracket for vector fields is replaced by the bracket on Γ(A), while
the anchor map allows one to still ‘take Lie derivatives’ along these sections. In the special case of
Poisson structures, this gives rise to the idea of Poisson Geometry as contravariant geometry. That
is, geometry where the tangent bundle is replaced by the cotangent bundle. Note that here there
is always the choice of a Poisson bi-vector π, there is no canonical option. For more background
on Lie algebroids the interested reader could look at [4], which is also what most of our treatment
to come is based on.

Example 4.1.9. Some easy examples of Lie algebroids are

• (TM, [·, ·], id), the usual tangent bundle with the Lie bracket for vector fields.

• (g, [·, ·], 0), M = {pt}, where (g, [·, ·]) is a Lie algebra.

• (T ∗M, [·, ·]π, π]), the Poisson Lie algebroid as we discussed above.

4.2 Poisson cohomology

With the idea of contravariant geometry in mind, we could wonder if there is a way find a ‘con-
travariant version’ of the de Rham cohomology. Recall that for a manifold M with tangent space
TM the de Rham cohomology is given as the cohomology of the cochain complex (Ωk(M), d), where
the differential d can be given as the following formula:

dω(X1, . . . Xk+1) =

k∑
i=0

(−1)iLXi(ω(X1, . . . , X̂i, . . . Xk+1))

+

k∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xk+1),

(4.2)

for ω ∈ Ωk(M), Xi ∈ X1(M). For a contravariant version of this, we would like to replace the
spaces Ωk(M) with the spaces Xk(M) (instead of section of ∧kT ∗M , we should consider sections
of ∧kTM). To define then a differential using a similar formula as (4.2), we would need to have
a notion of ‘taking the Lie derivate along a 1-form’, as well as a Lie bracket on the space Ω1(M).
But this is exactly what the Lie algebroid (T ∗M, [·, ·]π, π]) gives us.
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Definition 4.2.1. Let (M,π) a Poisson manifold. The Poisson differential dπ : Xk(M)→ Xk+1(M)
is given by:

dπθ(α1, . . . αk+1) =

k∑
i=0

(−1)iLπ](αi)(θ(α1, . . . , α̂i, . . . αk+1))

+

k∑
i<j

(−1)i+jθ([αi, αj ]π, α1, . . . , α̂i, . . . , α̂j , . . . αk+1).

(4.3)

Proposition 4.2.2. The Poisson differential dπ can be given in terms of the Schouten bracket as

dπ(θ) = [π, θ].

Because of this Proposition, we have in particular that d2
π(θ) = [π, [π, θ]] = 2[[π, π], θ] = 0 (here

we used the graded Jacobi identity for the second equality). So dπ is indeed a differential, and we
can define a cohomology.

Definition 4.2.3. For (M,π) we define its Poisson cohomology H•π(M) as the homology of the
complex (Xk(M), dπ). Specifically,

Hk
π(M) = ker(dkπ)/Im(dk−1

π ).

Example 4.2.4. For k = 0, the differential dπ : X0(M) = C∞(M)→ X(M) is given as

f 7→ π](df) = Xf

So we find that H0
π(M) = {C ∈ C∞(M) | {C, f} = 0, ∀f ∈ C∞(M)}. This is known as the space

of Casimirs of (M,π).

4.2.1 Lie algebroid cohomology

It should by now not come as a surprise that the Poisson cohomology fits in as a special case of a
more general construction with Lie algebroids.

Definition 4.2.5. For a Lie algebroid (A, [·, ·]A, ρ) we define the set of k-chains Ck(A) as

Ck(A) = {ω : Γ(A)× . . .× Γ(A)→ C∞(M) | ω is k- linear, alternating}

The Lie algebroid cohomology H•(A) of (A, [·, ·]A, ρ) is then given as the homology of the chain
complex (Ck(A), dA), where the differential dA : Ck(A)→ Ck+1(A) is defined by

dAω(a1, . . . ak+1) =

k∑
i=0

(−1)iLρ(ai)(ω(a1, . . . , âi, . . . ak+1))

+
k∑
i<j

(−1)i+jω([ai, aj ]A, a1, . . . , âi, . . . , âj , . . . ak+1),

(4.4)

Example 4.2.6. Consider the Lie algebroid (g, [·, ·], 0) over M = {pt}, where g is some Lie algebra.
Then because Γ(g) = g,

Ck(g) = {ω : g× . . .× g→ R : ω is k-linear, alternating, }
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while d : Ck(g)→ Ck+1(g) is given by

dω(a1, . . . , ak+1) =
k∑
i<j

ω([ai, aj ], a1, . . . , âi, . . . , âj , . . . ak+1)

This complex is known as the Chevallier-Eilenberg complex, and its cohomology is the Lie algebra
cohomology.

4.2.2 Cohomology with coefficients in a vector bundle

Given a vector bundle E → M , one can consider cohomologies with coefficients in the section of
E. This requires the choice of a connection, i.e. a bilinear map

∇ : X(M)× Γ(E)→ Γ(E), ∇(X, s) := ∇X(s)

that satisfies
∇fX(s) = f∇X(s), ∇X(f · s) = ∇X(s) + (LXf)s.

Moreover, this connection should be flat, meaning that

∇X ◦ ∇Y −∇X ◦ ∇Y −∇[X,Y ] = 0.

This allows us to define a differential on the complex

Ωk(M,E) = Γ(∧kT ∗M ⊗ E)

= {ω : X1(M)× . . .× X1(M)→ Γ(E) | C∞(M) k-linear, skew-symmetric}

using a by now familiar looking formula:

d∇ω(X1, . . . Xk+1) =
k∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xk+1)

+
k∑
i=0

(−1)i∇Xi(ω(X1, . . . , X̂i, . . . Xk+1))

(4.5)

Note here that for d∇ ◦ d∇ = 0 to hold, we need the condition that ∇ is flat (see for example
Prop. 1.30 in [5]).

In a completely similar way, we can also define the Lie algebroid cohomology with coefficients
in a representation. Given a Lie algebroid (A, ρ, [·, ·]A) over M , and a vector bundle E → M , we
require the choice of a flat A-connection. That is, a map

∇ : Γ(A)× Γ(E)→ Γ(E)

satisfying the same conditions as a normal connection, but with the Lie bracket on vector fields
replaced by [·, ·]A, and using the anchor map when necessary.

Example 4.2.7. Consider again the situation as in Example 4.2.6, where the Lie algebroid is just
given as a Lie algebra g→ {pt}. A vector bundle E over {pt} is of course then just a vector space,
while a g-connection should be a bilinear map
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∇ : g× E → E.

The condition that ∇ is flat then means we should have

∇[X,Y ](e) = ∇X ◦ ∇Y (e)−∇Y ◦ ∇X(e)

for all e ∈ E, X,Y ∈ g. If we view ∇ as a map ∇ : g → gl(E), X 7→ ∇X(·) this is exactly saying
that ∇ is a Lie algebra representation.

Example 4.2.8. In the example above we can take E = g, and for our flat connection we could
then take the adjoint representation, ad : g→ gl(g), adX = [X, ·]. The k-chains are then given as

Ck(g, g) = {ρ : g× . . .× g→ g | ρ k- linear, alternating}

The differential d then also has a very concrete description, we have

dρ(X1, . . . Xk+1) =

k∑
i<j

(−1)i+jρ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xk+1)

+

k∑
i=0

(−1)i[Xi, ρ(X1, . . . , X̂i, . . . Xk+1)].

(4.6)

4.3 Linear Poisson structures and the Isotropy Lie algebra

In this final section about Poisson structures we will look at the important concept of the lineariza-
tion of a Poisson structures, which relates this subject to the rest of the thesis. We are given a
Poisson manifold (M,π) and a point x0 ∈ M that is a zero of π. The idea is now that on the
space T ∗x0M there exists a natural Lie algebra structure. Below, we give three different ways of
defining a Lie bracket on this space. These however are all equivalent, which can be verified by
some straightforward computations.

Let us consider the situation locally, so we can assume M = Rn and x0 = 0. As note before, π
can then be given as

π(x) =
∑
i,j

πij(x)
∂

∂xi
∧ ∂

∂xj
.

By assumption, we have π(0) = 0, so we can expand as

π(x) =
∑
i,j,k

∂πij
∂xk

(0) xk
∂

∂xi
∧ ∂

∂xj
+ higher order terms

Note that in the language of the previous section we have here

ν(π) =
∑
i,j,k

∂πij
∂xk

(0) xk
∂

∂xi
∧ ∂

∂xj
.

Denote

ckij =
∂πij
∂xk

(0). (4.7)

Let g = T ∗x0M . We claim that the ckij form structure constants for a Lie algebra structure on g,
defined on the basis {dx1|0, . . . , dxn|0} =: {e1, . . . en} by
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[ei, ej ] =
∑
k

ckijek.

For this to be a Lie algebra, this bracket has to satisfy the Jacobi identity, which in terms of the
structure constants can be formulated as∑

l

cmil c
l
jk + cmjl c

l
ki + cmklc

l
ij = 0 for all i, j, k,m.

We know that the bracket {·, ·} defined by π satisfies the Jacobi identity, and a rather tedious
computation in local coordinates shows that this is equivalent to

n∑
l=1

πil
∂πjk
∂xl

+ cyclic terms = 0 for all i,j,k.

Applying then the partial derivative ∂
∂xm

on the equation above, a straightforward (but again
tedious) computation shows that Jacobi identity for the structure constants is indeed satisfied.

Alternatively, the Lie bracket on g = T ∗x0M can be given as

[(df)x0 , (dg)x0 ] := d{f, g}x0 = ν(π)(df, dg) (4.8)

where we note that the last equality is true since the normal bundle to {x0} is just the whole
of TM |x0 . We of course should check if this expression is independent of the choice of f and g.
However, this will also follow by consider one final other way to obtain this Lie algebra structure.
It turns out that this construction works more generally for any Lie algebroid. We will need the
following observation:

Lemma 4.3.1. Let (A, ρ, [·, ·]A) be some Lie algebroid over M , and let x0 ∈ M . Then for α, β ∈
C1(A) (i.e. α, β : Γ(A) → C∞(M)) such that αx0 , βx0 ∈ ker(ρx0) (where ρx0 : Ax0 → Tx0M), the
expression

[α, β]A(x0) ∈ ker(ρx0

only depends on αx0 , βx0. In particular, it induces a Lie bracket on ker(ρx0) ⊆ Ax0.

Proof. Consider β + fγ, where γ ∈ C1(A) and f ∈ C∞(M) such that f(x0) = 0. Then

[α, β + fγ]A(x0) = [α, β]A(x0) + f(x0)[α, γ]A(x0) +
(
Lρ(α)(f)β

)
(x0) = [α, β]A(x0).

Where we used that αx0 ∈ ker(ρx0), so that
(
Lρ(α)(f)β

)
(x0) = 0.

If x0 is a zero of π, then for the map π] associated to the Lie algebroid (TM∗, π], [·, ·]π) we have

that ker(π]x0) = Tx0M
∗, so [·, ·]π induces a Lie algebra structure on T ∗x0M = g.

As we mentioned before, these three ways of endowing g with a Lie brackets are all equivalent.
We can then give the following definition.

Definition 4.3.2. Given a Poisson manifold (M,π) and x0 ∈M such that π(x0) = 0, the isotropy
Lie algebra is the space g := T ∗x0M endowed with the Lie bracket given by

[dfx0 , dgx0 ] = [df, dg]π(x0) = d{f, g}x0
So we know that the linearization of π induces a Lie algebra structure on T ∗x0M . One could

wonder of the opposite also holds: does a Lie bracket on T ∗x0M induce a Poisson bracket on Tx0M?
It turns out that this is indeed the case.

Theorem 4.3.3 (Proposition 7.3 in [12]). Let V be a vector space. The construction above gives
a one-to-one correspondence

{Linear Poisson brackets on V } {Lie algebra structure on V ∗}
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4.4 Conn’s linearization theorem

If x0 is a zero of a Poisson bracket, then we have the canonical structure of the isotropy Lie algebra
on the space g = T ∗x0M . Moreover (and equivalently), there is a canonical linear Poisson bracket
on g∗ = Tx0M , defined by the linear approximation πlin = ν(π). An interesting question one could
ask is how much this linear Poisson structure resembles the Poisson bracket around x0.

Definition 4.4.1. A Poisson structure (M,π) is called linearizable around a point x0 ∈ M with
πx0 = 0 if there exists some tubular neighborhood ϕ around x0 such that ϕ∗π = ν(π).

The theorem that we will present below shows that a Poisson structure is linearizable at a point
x0 if its isotropy Lie algebra gx0 at that point satisfies a certain condition.

Definition 4.4.2. A Lie algebra g is called semi-simple of compact type if there exist a simply
connected compact Lie group G that has g as its Lie algebra

Remark. As the name suggests, there are also separate notions of a semi-simple Lie algebra and
a compact Lie algebra . However, it is not important for the story here to go deeper into this. But
we leave the reader with the assurance that a Lie algebra that is both semi-simple and compact,
is also semi-simple of compact type as defined above. The interested reader could look at [8], in
particular Corollary 3.6.3. Recall also Lie’s third fundamental theorem, which states that every
finite-dimensional Lie algebra can be given as the Lie algebra of some unique simply connected Lie
group (see for example [13], Theorem 20.21).

Theorem 4.4.3 (Conn’s linearization theorem). Let (M,π) be a Poisson structure, and x0 ∈ M
a zero of π. If the isotropy Lie algebra gx0 is semi-simple of compact type, then π is linearizable at
x0.

Following the paper [6] by Crainic and Fernandes, the proof can be split into four distinct
parts. The first part, which is the one relevant to us, shows that π is linearizable under certain
cohomological conditions. The rest of the proof then consist of showing that these conditions are
indeed satisfied if g is semi-simple of compact type. We refer the interested reader to the paper
mentioned above for these parts. We will restrict ourselves to the following theorem, which is where
the theory of Euler-like vector fields can be used.

In the formulation of the theorem, the local Poisson cohomology H•π(M,x0) is used. The idea
is that this is basically H•π(M), except that instead of the whole M we can look at an arbitrarily
small neighborhood of x0. To be precise, we can give the following definition.

Definition 4.4.4. The local Poisson cohomology H•π(M,x0) is defined as the Poisson cohomology
of the germ of (M,π). That is, it is the categorical limit lim

−→
Hk
π(U) over a decreasing filter of

neighborhoods U .

Remark. In principle, we could just formulate the theorem by requiring the vanishing of the whole
H•π(M), but that would be a far too strong condition. Note that requiring H2

π(M,x0) = 0 means
that for any cochain θ ∈ H2

π(V ), where V ⊆M is a neighborhood of x0, there is some neighborhood
U of x0 so that this θ is a boundary in H2

π(U), as well as for all neighborhoods U ′ ⊆ U .

Theorem 4.4.5. Let (M,π) a Poisson manifold, and let x0 be a zero of π. Assume that both
H1(gx0) and H1(gx0 , gx0) vanish. If H2

π(M,x0) = 0, then {·, ·} is linearizable at x0.
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Proof. In the same fashion as the previous normal form theorems, we will look for a suitable
Euler-like vector field X and then use its uniquely determined tubular neighborhood ϕ as the
desired diffeomorphism. We can work locally by choosing coordinates, and view π as an bivector
on the normal bundle (which is now just Tx0M). For any bivector π on the normal bundle,
(mλ)∗(ν(π)) = λ−1ν(π). From a similar computation as in Proposition 2.1.4 we conclude that π is
linear if and only if LEπ = −π. So we will need the vector field X to satisfies LXπ = −π. If so,
then we calculate

LE(ϕ∗π) = ϕ∗(LXπ) = −ϕ∗(π).

It follows that ϕ∗(X) is linear, and therefore as we have seen before it must be equal to the linear
approximation of X.

Our task is now to find this Euler-like vector field X. Since always dππ = 0, the assumption
that that H2

π(M,x0) = 0 already gives us that there must be some Z ∈ X(M) (in a neighborhood
of x0) such that

dπZ = −LZπ = π.

Claim. We must have Zx0 = 0.
Let us work out what the equation [π, Z] = −π looks like in local coordinates. Writing Z =∑
i zi

∂
∂xi

, π =
∑

i,j πij
∂
∂xi
∧ ∂
∂xj

, we see

[π, Z](df, dg) = π(Z(df), dg)− π(dg, Z(dg))− LZ(π(df, dg))

=
∑
k,j

πkj
(∂(
∑

i zi
∂f
∂xi

)

∂xk

∂g

∂xj

)
−
∑
i,k

πik
( ∂f
∂xi

∂(
∑

j zj
∂g
∂xj

)

∂xk

)
− LZ(

∑
i,j

πij
∂f

∂xi

∂g

∂xj
)

=
∑
i,j,k

πkj
∂zi
∂xk

∂f

∂xi

∂g

∂xj
−
∑
i,j,k

πik
∂zj
∂xk

∂f

∂xi

∂g

∂xj
+
∑
i,j,k

zk
∂πij
∂xk

∂f

∂xi

∂g

∂xj

where we note for the third equality that all second order derivatives cancel each other out. Now
given that πx0 = 0, the first two summands in the expression above will vanish at x0, so that

[π, Z]x0 =
∑
i,j,k

zk(x0)
∂πij
∂xk

(x0)(
∂

∂xi
∧ ∂

∂xj
)x0 = 0 = −πx0 (4.9)

(since by assumption [π, Z] = −π). Using again the notation ckij =
∂πij
∂xk

(x0), as in Section 4.3, we

have that for Zx0 ∈ Tx0M , viewed as a map T ∗x0M → R (i.e. in C1(g)):

dg(Zx0)(ei, ej) = Zx0([ei, ej ]) =
∑
k

zk(x0)ckij = 0

This holds for all i, j, because of (4.9). So Zx0 is a boundary in C1(g). The assumption H1(g) = 0
then implies Zx0 = 0 (note that C0(g) = {0}).

So we can conclude that the linear approximation ν(Z) = Z[0] is well-defined. Now, in general
we will not have Z[0] = E . However, we will show that Z differs from being Euler-like by at most a
boundary in the Poisson cohomology.

To see this, let Y be any Euler-like vector field on M , so we can write Y = E + Y[1] + . . . . Let
R = Z − Y , and consider

dπ(R) = dπ(Z − Y ) = π − dπ(Y ) = π − [π, Y ]
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A direct calculation shows that [π, E ] = −LEπ = π[−1] + π[1] + . . ., so the right hand side of the
equation vanishes up to second order. Therefore, it follows that

ν(dπ(R)) = 0.

Let us again compute this in local coordinates. Write Rx =
∑n

i=1 r
i(x) ∂

∂xi
. Note that the linear

approximation ν in the current situation is just the sum of all partial derivatives at x0. Fixing a
coordinate xm, we have

∂

∂xm
([π,R])(x0) =

∂

∂xm

(∑
i,j,k

(πkj
∂ri
∂xk
− πik

∂rj
∂xk

+ rk
∂πij
∂xk

)
(
∂

∂xi
∧ ∂

∂xj
)(x0)

=
∑
i,j,k

(∂πkj
∂xm

∂ri
∂xk
− ∂πik
∂xm

∂rj
∂xk

+
∂rk
∂xm

∂πij
∂xk

)
(x0)

∂

∂xi
∧ ∂

∂xj x0
= 0

where we note that all terms involving second derivatives vanish since we have πx0 = 0, Rx0 = 0.
Define ρ : g → g by (ρ)ij = ∂ri

∂xj
(x0), then ρ ∈ C1(g, g) (as in Example 4.2.6). Note that

ν(R)x =
∑

i
∂ri
∂xj

(x0)xj
∂
∂xi

. We can calculate:

dgρ(ei, ej) = [ρ(ei), ej ]− [ei, ρ(ej)] + ρ([ei, ej ])

=
∑
k

[ρikek, ej ]−
∑
k

[ei, ρjkek] + ρ(
∑
k

ckijek)

=
∑
k

ρik[ek, ej ]−
∑
k

ρjk[ei, ek] + ρ(
∑
k

ckijek)

=
∑
k

ρik
∑
m

cmkjem −
∑
k

ρjk
∑
m

cmikem +
∑
m

∑
k

ρkmc
k
ijem

=
∑
k,m

(
cmkjρik − cmikρjk + ρkmc

k
ij

)
em

Carefully comparing the two equations above we conclude that dgρ = 0, so that ρ is a boundary in
C(g, g). From the assumption H1(g, g) = 0 it follows then that there exists an element v ∈ g such
that dgv = ρ. Here recall that dgv is given by dgv((df)x0) = [v, (df)x0] = ν(π)(dh, df).

Since v ∈ g = T ∗x0M , we can write v = (dh)x0 for some h ∈ C∞(M). Let now X = Z − dπ(h).
Then we have dπX = π, and ν(X) = ν(Z)−dν(π)ν(h). Now looking at the expressions for ρ and R,
and the definition of the isotropy Lie algebra, we see that dν(π)ν(h) = ν(R) = ν(Z−Y ) = ν(Z)−E .
We conclude that ν(X) = E , so that X has the required properties, and we are done.
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Chapter 5

Weighted Euler-like vector fields

In this final part of the thesis, we will take a look at a generalization of the theory of Euler-like
vector fields. This is based on the last section in Meinrenken’s paper [16].

Remark. The main goal of this section will be to give an exposition of the work done in [16]. We
will attempt to work out the underlying ideas, and to provide some more details. At the end, we
will indicate a possible extension to the theory, not found in the paper, but here work remains to
be done.

5.1 Motivating example: isotropic embedding theorem

Let us begin by looking again at the Lagrangian neighborhood theorem, this time formulated more
explicitly in coordinates.

Theorem 5.1.1 (Lagrangian neighborhood, local version). Let (M,ω) a symplectic manifold of
dimension 2n, with N a Lagrangian submanifold. Then around any point p ∈ N we can find local
coordinates (x1, . . . , xn, y1, . . . , yn), such that in these coordinates: N = {y1 = . . . = yn = 0} and

ω =
n∑
i=1

dxi ∧ dyi.

Consider mλ : ν(M,N)→ ν(M,N), we see that ω then satisfies

(mλ)∗ω = λω,

i.e. it is homogeneous of degree 1. This is of course what allowed us to prove this theorem using
Euler-like vector fields. There is a similar theorem in symplectic geometry (the Isotropic Embedding
theorem), that gives a standard form for ω around general isotropic submanifolds. The local version
is as follows.

Theorem 5.1.2 (Isotropic embedding theorem, local version). Let (M,ω) a symplectic manifold of
dimension 2n, with N a isotropic submanifold of dimension k < n. Then around any point p ∈ N
we can find local coordinates (x1, . . . , xn, y1, . . . , yn), such that in these coordinates: N = {xk+1 =
. . . = xn = y1 = . . . = yn = 0} and

ω =

n∑
i=1

dxi ∧ dyi =

k∑
i=1

dxi ∧ dyi +

n∑
i=k+1

dxi ∧ dyi.
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In this last equality we are just splitting the summation into two parts. There is an important
difference when comparing this theorem to Theorem 5.1.1, which stems from the fact that a fiber of
the normal bundle is now spanned at each point by the tangent vectors { ∂

∂xk+1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn
}.

Because of this, we have

(mλ)∗ω = λ
k∑
i=1

dxi ∧ dyi + λ2
n∑

i=k+1

dxi ∧ dyi.

So the ‘normal form’ here is not homogeneous (of any degree). However, we do have clearly one
linear part and one quadratic one, both in a disjoint set of coordinates. Note that the coordinates
yi in the quadratic part are exactly those belonging to the symplectic normal bundle, defined as
TNω/TN ⊆ ν(M,N). Now what if instead of the usual scalar multiplication mλ, we considered in
local coordinates the map given by

kλ : (x1, . . . , xn, y1, . . . yk, yk+1, . . . , yn) 7→ (x1, . . . xn, λ
2y1, . . . λ

2yk, λyk+1, . . . , λyn)

Essentially, what we are doing then is giving these coordinates different weights. Then the normal
form could be expressed by saying it is homogeneous of degree 2 under this new multiplication
map, i.e. (kλ)∗ω = λ2ω.

In this chapter, we are going to use this idea of replacing the scalar multiplication with a
weighted version. This leads to a more general version of the theory. An important concept in this
will be the weighted normal bundle.

5.2 The situation in Rn

To start, let us look at what happens in Rn if we replace our standard scalar multiplication with
a weighted version. Inspiration for this section is taken from a talk given by Y. Loizides at the
Friday Fish Seminar.

5.2.1 Weighted Euler-like

Definition 5.2.1. Let w = (w1, . . . wn) ∈ Nn, called a ‘weight vector’. The weighted multiplication
map kλ : Rn → Rn is given as

kλ(x1, . . . xn) = (λw1x1, . . . , λ
wnxn)

We will denote Rn equipped with this weighted multiplication as (Rn,w).

We could then also consider the notion of the weighted Euler vector field

Definition 5.2.2. On (Rn,w), the weighted Euler vector field is defined as the unique vector field
Ew with flow given by

ΦEwt = kexp(t).

In coordinates, this means that Ew can be given as

Ew(x) =
n∑
i=1

wixi
∂

∂xi

In analogy with the non-weighted case, we could then define the following.

39



Definition 5.2.3. A vector field X ∈ X(Rn) is called weighted Euler-like (for w) if its weighted
linear approximation is equal to Ew. By this we mean that

lim
λ→0

(kλ)∗X = Ew

A weighted Euler-like vector field determines a tubular neighborhood (on Rn), in much the
same way as a ‘regular’ one. This is shown in the next lemma.

Lemma 5.2.4. Let X ∈ X(Rn) be weighted Euler-like for w. Then there exists a diffeomorphism
ϕ around 0 such that ϕ(0) = 0, Dϕ(0) = id, and ϕ∗X = Ew.

Proof. The proof is very similar to the proof of Lemma ??, the one for the non-weighted case. We
can define, for t 6= 0, a time-dependent vector field

Zt =
1

t
k∗t (Ew −X)

which then smoothly extends to t = 0. Let ϕt be the flow of this vector field.
Then the same computation as in Theorem 2.3.1 shows that d

dtϕ
∗
t (Ew − tZt) = 0. This means

that we can again take ϕ = ϕ1 as the diffeomorphism with the required properties.

Note that the argument above also works when some of the weights wi are 0. The flow ϕt will
then be constant in the corresponding directions.

Remark. The diffeomorphism ϕ is determined uniquely (up to choice of domain) if one requires
that limλ→0(kλ)−1 ◦ ϕ ◦ (kλ) = id. This could be called the weighted linear approximation of ϕ.
See [16].

Using the Lemma, we can give a proof of the Submersion theorem for functions f ∈ C∞(Rn).

Proposition 5.2.5. Let f : Rn → R be smooth function such that f(0) = 0, and assume that
Df(0) 6= 0 (i.e. f is a submersion). Then there exists a diffeomorphism ϕ around neighborhoods
of 0 in Rn, such that f ◦ ϕ : (x1, . . . xn) 7→ x1.

Proof. Assume without loss of generality that ∂f
∂x1

(0) 6= 0. Then on some neighborhood around 0,

( ∂f∂x1 (x))−1 := 1/ ∂f∂x1 (x) is well-defined. Let w = (1, 0, . . . , 0). Then the vector field X given as

X(x) = f(x)(
∂f

∂x1
(x))−1 ∂

∂x1

is weighted Euler-like for w. Note also that LXf = f . So it determines a diffeomorphism ϕ around
0 ∈ Rn such that ϕ∗X = Ew. Then

LEw(ϕ∗f) = ϕ∗(LXf) = ϕ∗f

By Lemma 5.2.6 below, from this we can conclude that ϕ∗f = f ◦ ϕ = x1 · g(x2, . . . x2), where
g : Rn → R is a smooth function depending only on the coordinates x2, . . . , xn. Since ϕ is a
diffeomorphism, we still have D(f ◦ ϕ) 6= 0, from which we conclude that g(0) 6= 0. So let
ψ(x1, . . . , xn) = ( x1

g(x2,...,xn) , x2, . . . , xn) defined in a possibly smaller neighborhood of 0. Then we

see f ◦ ψ ◦ ϕ(x1, . . . , xn) = x1.
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5.2.2 Filtration of the ring of function

We now want to investigate which functions are homogeneous with respect to this new, weighted
multiplication kλ. Denote

J(i) = {f ∈ C∞(Rn) : k∗λf = λif} ⊆ C∞(Rn).

Lemma 5.2.6. Let f ∈ C∞(Rn). If

k∗λf(x1, . . . xn) = f(λw1x1, . . . λ
wnxn) = λdf(x1, . . . xn)

holds for some d ∈ N, then f is polynomial function in the coordinates xi with wi > 0.

Proof. We calculate

∂

∂xi
f(λw1x1, . . . , λ

wnxn) = λwi(
∂f

∂xi
)(λw1x1, . . . λ

wnxn) =
∂

∂xi
(λdf(x1, . . . , xn)) = λd(

∂f

∂xi
(x1, . . . , xn))

So therefore

(
∂f

∂xi
)(λw1x1, . . . , λ

wnxn) = λ(d−wi)(
∂f

∂xi
)(x1, . . . , xn)

In other words, ∂f
∂xi

is homogeneous (with respect to kλ) of degree d − wi. We can do this
calculation for all partial derivatives, and iterating this will give that for some order of partial
derivatives the degree of homogeneity becomes negative. But then these derivatives should vanish,
otherwise taking the limit λ → 0 is not possible. We conclude that there exist an N ∈ N such
that all N -th order partial derivatives of f vanish. This implies that f is polynomial, by Taylor’s
theorem.

Remark. A polynomial f such as in Lemma 5.2.6 is sometimes called a quasi homogeneous poly-
nomial.

Definition 5.2.7. We define a filtration C∞(Rn) = C∞(Rn)(0) ⊇ . . . ⊇ C∞(Rn)(i) ⊇ . . ., associ-
ated to a weighting w by

C(i) = C∞(Rn)(i) := 〈xs11 . . . xsnn : s ·w ≥ i〉 = 〈f : f ∈ Jk, k ≥ i〉

for i ∈ N ( here 〈· · ·〉 denotes the ideal generated in C∞(Rn)). The last equality follows by Lemma
5.2.6.

Note that regardless of the weighting w, the first filtration subset C(1) will be equal to the
vanishing ideal around zero, I0. Using the ‘standard’ weighting w = (1, . . . , 1), the higher order
filtration degrees will exactly be powers of this ideal, C(k) = Ik0 . With a different weighting this
idea still holds true in a sense, except that certain coordinate functions xi are counted with a higher
multiplicity.

Example 5.2.8. Consider R2, with coordinates {x, y} and weight w = (1, 2). Then J1 = 〈x〉, J2 =
〈x2, y〉, J3 = 〈x3, xy〉, . . .. We get:

C(0) = C∞(R2)

C(1) = 〈x, y〉
C(2) = 〈y, x2〉
C(3) = 〈xy, x3, y2〉
C(4) = 〈y2, x4, x2y〉
C(5) = . . .
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Remark. The ‘greater or equal to’-sign used in in Definition 5.2.7 is necessary mostly because
we want C(1) to be this vanishing ideal around 0. If we would use an equal-sign instead, then
coordinate functions with weight higher than 1 would not appear here.

The idea of giving a weighting w was that some directions are given a higher weight than
others. We can actually recover this information from the associated filtration C(i). For this, what
we would have to do is look at how long a coordinate function xi ‘survives’ in the filtration. In
other words, find the highest k such that xi ∈ C(k). Going the other way around, for each k ∈ N
we could try to find all coordinate functions that are in C(k). So for i ≥ 1, consider

Fi := C∞(Rn)(i)/(C
∞(Rn)(i) ∩ I2

0 )

Example 5.2.9. In the previous example, we would have

F2 = C(2)/(C(2) ∩ I2
0 )

= 〈y, x2〉/(〈y, x2〉 ∩ 〈x2, xy, y2〉)
= 〈y〉.

In general, the Fi will precisely be generated by representatives of those coordinate functions
of weighting degree greater or equal to i. The intersection with I0 is used to quotient out all other
coordinate functions, since these will appear as a square or higher in C(i).

Note that by construction we have Fi ⊆ I0/I2
0 = (Rn)∗, the dual space of Rn. Being a linear

subspace of (Rn)∗, there must exist a (unique) subspace F−i+1 of Rn such that Fi is the annihilator
of this subspace.

Definition 5.2.10. For i ∈ N, let F−i+1 ⊆ Rn be the subspace determined by

Fi = Ann(F−i+1) = {f ∈ (Rn)∗ | f(x) = 0 ∀x ∈ F−i+1}.

Proposition 5.2.11. The subspace F−k+1 is spanned by exactly those basis vectors ei such that
wi ≤ k − 1.

Proof. This follows from how the subspace F−(k−1) is defined. By definition, Fk = C(k)/(C(k)∩I2
0 ),

which will consist of those xi’s that appear in C(k) not as a square of higher, i.e. that have weight
greater or equal to k. The annihilator of this is of course spanned by the remaining ones (under
the identification of the dual), so those with weight less then k.

Let r = max{wi}. We then get a filtration of Rn, given as

Rn = F−r ⊇ F−r+1 ⊇ . . . ⊇ F0 = {0}.

Now let us return to the filtration C(i). Any filtration of an algebra defines an associated graded
algebra.

Definition 5.2.12. Given a filtration {A(i)} of a real algebra A, the associated graded algebra
gr(A) is defined as

gr(A) =
⊕
i

gr(A)i =
⊕
i

A(i−1)/A(i).

The multiplication is given by [f ]i · [g]j = [f · g]i+j .

Remark. As a caution to the reader, in Definition 5.2.12 the filtration does not appear as part of
the notation. Of course, the resulting graded algebra will depend on it.
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For C∞(Rn), we get the graded algebra gr(C∞Rn), where one sees by Lemma 5.2.6 that each
gr(C∞Rn)k consists precisely of all functions that are homogeneous of degree k with respect to the
weighted multiplication map kλ.

gr(C∞Rn)k = {f ∈ C∞Rn | k∗t f = tkf}.

As a general fact, the graded algebra gr(A) is canonically isomorphic to A as an R- module (i.e.
as vector spaces). However, it is in general not isomorphic as an algebra. It is isomorphic if A was
a graded vector space to begin with, and the filtration agrees with this grading.

Example 5.2.13. Rn with trivial weighting, gives the usual graded polynomial algebra.

5.2.3 The sheaf C∞Rn

For what is to come, it will be necessary to consider the sheaf C∞Rn = C∞(Rn)(·) instead of just the
algebra C∞(Rn). A reader unfamiliar with this language of sheaves could for example look at [18],
Section III. For now though, it is enough to know that for any open set U ⊆ Rn, C∞Rn(U) consists
of all smooth functions defined on U , i.e. is equal to C∞(U). In the same way as above, we can
also define a filtration of sheaves of C∞Rn by setting C∞Rn = C∞Rn,(0) ⊇ C

∞
Rn,(1) ⊇ . . ., where then

C∞Rn,(i)(U) = 〈xs11 . . . xsnn : s ·w = i〉,

where this is now the ideal generated in C∞Rn(U). For any open U , we now can then consider again
the associated graded algebra,

gr(C∞Rn(U)) =
⊕
k

gr(C∞Rn(U))k

If the filtration comes from a weight vector w, we will denote this sheaf of graded algebras by

grw(Rn) = grw(Rn)(·).

43



5.3 Filtrations and Gelfand duality for manifolds

In the previous section we saw that a weighted multiplication map on Rn naturally gives rise to a
filtration of C∞(Rn). We also obtained a graded algebra gr(C∞(Rn)), isomorphic (as an algebra)
to the algebra of polynomial functions. Now the question is how to proceed in the general situation
of a submanifold N ⊆ M . First, we could look at the case of a trivial weighting, w = (1, . . . , 1).
Somehow, we should then obtain a structure that is just the usual normal bundle with its scalar
multiplication mλ.

We will see how this works exactly later, but first we should introduce two theorems. These,
in some sense, give a different way of looking at manifolds and vector bundles. Denote by
Homalg(C∞(M),R) the set of all algebra morphisms from C∞(M) to R. If p ∈ M , then the
evaluation map ev(p) : C∞(M) → R, f 7→ f(p) is such a morphism. It turns out that this is
actually all of them.

Theorem 5.3.1. If M is a smooth manifold, then the map

ev : M → Homalg(C
∞(M),R)

is a bijection. Moreover, if Homalg(C
∞(M),R) is equipped with the Gelfand topology it is a home-

omorphism.

More details and a proof are provided in the Appendix. A basic fact about manifolds is that
two smooth atlases are equivalent if and only if they induce the same smooth functions. This
means that we can recover the smooth structure of M on Homalg(C∞(M),R). For f ∈ C∞(M),
let Evf : Homalg(C∞(M),R) → R be given by Evf (Φ) := Φ(f). Since all maps Φ are of the form
evp for p ∈ M , under the bijection M → Homalg(C∞(M),R) requiring that all Evf are smooth is
just saying that all f should be smooth. So the smooth structure can be recovered in this way.

Now consider a vector bundle E → M . By the above theorem, E = Homalg(C∞(E),R), but
we can actually make this description simpler. Let us denote by C∞pol(E) all functions that are
polynomial on the fibers Ep.

Theorem 5.3.2. If π : E →M is a vector bundle over a smooth manifold M , then the map

ev : E → Homalg(C
∞
pol(E),R)

is a homeomorphism.

We can then recover the multiplication map mλ : E → E by noting that there exist a natural
scalar multiplication on C∞pol(E), given by multiplying a degree k polynomial by λk. This commutes
with the evaluation maps evp, so we also get a scalar multiplication on Homalg(C∞pol(E),R), which is
just the usual multiplication on E under the identification. The projection onto M can be recovered
by identifying the degree 0 polynomials with C∞(M).

Remark. The identification of Theorem 5.3.2 probably seems somewhat mysterious. One can keep
in mind that statement of the Serre-Swan theorem, that provides a one-one correspondence between
E and its space of global section Γ(E). Again, more details are provided in the Appendix.

Now let us look at the normal bundle ν(M,N) → N . What are the fiberwise polynomial
functions here?

Definition 5.3.3. Let N ⊆ M be a submanifold. By IN we will denote the vanishing ideal of N
in C∞(M)

IN := {f ∈ C∞(M) | f(x) = 0 ∀x ∈ N}.
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Then we define a filtration C∞(M) = A0 ⊇ A1 ⊇ . . . of C∞(M) by letting

Ak = IkN

.

Proposition 5.3.4. The graded algebra gr(A) associated to the filtration C∞(M) ⊇ IN ⊇ I2
N ⊇ . . .

is isomorphic (as a graded algebra) to the algebra of fiberwise polynomial functions on ν(M,N), so

gr(A) ' C∞pol(ν(M,N))

Proof. In local coordinates (xi, yj) around N , we have that IN = 〈y1, . . . yn〉, as an ideal in C∞(M).
Writing gr(A) = C∞(M)/In ⊕ IN/I2

N ⊕ . . ., we see that this first term corresponds to functions
that are fiberwise constant on ν(M,N), the second term are the fiberwise linear ones, etc.

Corollary 5.3.5. If gr(A) is as above, then ν(M,N) can be realized as

ν(M,N) = Homalg(gr(A),R)

Now look back at Example 5.2.13, where we showed that on Rn with the trivial weight vector
w = (1, . . . , 1) we obtain as associated graded algebra the polynomial algebra C∞pol(Rn). In the
proof of the Proposition above we see something very similar happening, if we think of the yj ’s
as having weight 1. Intuitively, if we now want to introduce a weighted structure around N we
would want to give some yj ’s a different weight wj . This would corresponds to some other filtration
of C∞(M), but ideally the graded algebra should (at least as an algebra) still be the polynomial
algebra. This is what inspires Definition 5.4.2 in the next section.
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5.4 The (1,2) -weighting

We will now focus on the case where wi = 1, 2 for all i. In this situation a (relatively) simple
definition can be given. Note that for the example of the isotropic embedding theorem, this kind
of weighting suffices.

Let us start with a definition.

Definition 5.4.1. A (1,2)- weighting of N ⊆M is the choice of a vector subbundle

F ⊆ ν(M,N).

Having chosen such a subbundle, we can determine a filtration of the sheaf C∞(M) in the
following way. Consider the vanishing ideal sheaf I := IN of N , and additionally the ideal sheaf
J , where

J (U) = {f ∈ C∞(U) | f |U∩N = 0, df |TU∩F̃ = 0}

Here by F̃ ⊆ TM |N we denote the pre-image of F in TM |N . Then the filtration C∞(M) = Ã0 ⊇
Ã1 ⊇ . . . is given as

Ã2l+1 = IJ l, Ã2l = J l.

So Ãk(U) is spanned by products f1 · · · fag1 · · · gb with fi ∈ I, gj ∈ J with a + 2b ≥ k (note that
I2 ⊆ J ). We can look at this in local coordinates. For this, choose coordinates (xi, yj , zl) such that
N is given by the vanishing of all yj and zl, while F̃ ∩ TU is additionally given by the vanishing
of the differentials dzl. This can be done for example by choosing a submanifold N ⊆ Σ ⊆ M
such that ν(M,Σ) = F . Then the zl can be chosen such that Σ is given by the vanishing of these.
Within such coordinates, one sees

Ãk(U) = 〈yi1 · · · yiazl1 · · · zlb | a+ 2b ≥ k〉.

Comparing this to the situation in Rn, specifically Definition 5.2.7, what we are doing here is
giving the yj ’s weight 1, the zl’s weight 2 and the xi’s weight 0.

The filtration {Ã(k)} defines an associated graded sheaf of algebras gr(Ã) (as we have seen
before), given by

gr(Ã) =
⊕
k

Ã(k)/Ã(k+1).

By looking at this gr(Ã) in local coordinates as above, we see that as an algebra it is still
isomorphic to C∞pol(ν(M,N)). However, importantly, the grading is now different.

Following [16], we can now define the weighted normal bundle.

Definition 5.4.2. Given a (1, 2) -weighting on N ⊆ M , determining a graded algebra gr(Ã) as
above, we define the weighted normal bundle νW(M,N) as

νW(M,N) := Homalg(gr(Ã),R)

On this, we have the projection map π : νW(M,N) → N which is induced by the inclusion
C∞(N)→ gr(Ã).

In the definition above, note that always gr(Ã)0 = C∞(M)/IN ' C∞(N). Since, as we
remarked before, the algebra gr(Ã) is isomorphic to C∞pol(ν(M,N)) ' gr(A), we see that as the
underlying set we have just νW(M,N) = ν(M,N). However, there is a difference beyond that. We
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can consider the scalar multiplication on gr(Ã) given by multiplication with λk on gr(Ã)k, which
induces a scalar multiplication

kλ : νW(M,N)→ νW(M,N).

This kλ will (in general) be a different map compared to the usual mλ on ν(M,N). It makes
νW(M,N) into a graded bundle (and in general not a vector bundle).

Definition 5.4.3. A graded bundle with weight vector w and degree d is a smooth fiber bundle
p : F →M with typical fiber Rn, that admits an atlas of local trivializations ψ : p−1(U)→ U ×Rn
such that the transition functions U ∩ U ′ → Diff(Rn,Rn) are automorphisms of the standard
graded space (Rn,w). In other words, given two trivializations ψ,ψ′ the composition ψ′ ◦ ψ−1 :
U ∩ U ′ × Rn → U ∩ U ′ × Rn should be given as

ψ′ ◦ ψ−1(x, v) = (x, τ(x)v),

where τ(x) : Rn → Rn is an automorphism of (Rn,w) for all x.

See Appendix A.2 for some more details. The fact that νW(M,N) is a graded bundle can be
concluded from Theorem A.2.6.

To better understand the map kλ, we have the following result.

Proposition 5.4.4. Let (M,N,F ) be a (1, 2)-weighting. The choice of a submanifold N ⊆ Σ ⊆M ,
such that ν(M,Σ) = F , determines a isomorphism of graded bundles

RΣ : νW(M,N)→ F ⊕ ν(M,N)/F =: gr(ν(M,N)).

Here the scalar multiplication on gr(ν(M,N)) is given as multiplication by λ on F , and λ2 on
ν(M,N)/F .

Proof. See [16]. This can also be seen in local coordinates (xi, yj , zl) as we used earlier.

Remark. Note that isomorphism in Proposition 5.4.4 above is not canonical, it depends on the
choice of Σ. Also, concretely realizing the quotient ν(M,N)/F requires the choice of a metric.
Therefore, simply defining the weighted normal bundle as gr(ν(M,N)) is not desirable.

5.4.1 Further constructions

Having defined the weighted normal bundle, one can now proceed along the same lines as the
unweighted case, and consider constructions like the weighted linear approximation. We will give
a brief outline of this here, based on the work in [16]. For details, we also refer to that paper.

First, one has to show that the construction of the weighted normal bundle is again functorial.
In this case, that means that if f : (M,N,F ) → (M ′, N ′, F ′) is a map of manifold pairs, with the
additional condition that ν(f)(F ) ⊆ F ′, then there should be a induced isomorphism of graded
bundles

νW(f) : νW(M,N)→ νW(M ′, N ′).

Then also we would like the property, similar to the usual normal bundle, that

νW(νW(M,N), N) ' νW(M,N)

where this is a canonical isomorphism of graded bundles (note that for this we have to view F
as also a subbundle of νW(M,N)). We can then define a notion of weighted tubular neighborhood
embedding.
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Definition 5.4.5. A weighted tubular neighborhood embedding is an embedding ϕ : U ⊆ νW(M,N)→
M of an open neighborhood of N in νW(M,N), such that ϕ|N = id, ν(ϕ)(F ) ⊆ F and

νW(ϕ) = id.

In analogy with the situation in Rn, we can define the weighted Euler vector field Ew ∈
X(νW(M,N)) as the vector field with flow kexp(t). A vector field X ∈ X(M) that is tangent to N ,
and additionally ‘preserves F ’, is called weighted Euler-like if νW(X) = X[0] = Ew ∈ X(νW(M,N)).
And then we have the following theorem.

Theorem 5.4.6. A weighted Euler-like vector field X for a (1, 2)-weighting (M,N,F ) determines
a unique maximal weighted tubular neighborhood embedding ϕ, such that ϕ∗X = Ew.

With Theorem 5.4.6, one can give a proof of the Isotropic Embedding theorem. This proof is
very similar to the Lagrangian case, if one translates everything into the weighted situation. As
we discussed in Section 5.1, we want to choose weight 1 on the symplectic normal TNω/TN , and
weight 2 in the remaining normal directions. This means we should choose the (1, 2)- weighting
with F = TNω/TN . We will use the following claim without proof, and refer to the paper instead.

Claim. Let (M,ω) a symplectic manifold, and N ⊆ M an isotropic submanifold. Then the
weighted approximation ω[2], for weighting F = TM/TNω ⊆ ν(M,N), is a well-defined, symplectic
form on νW(M,N).

The theorem can then be formulated as follows.

Theorem 5.4.7. Let (M,ω) a symplectic manifold, and N ⊆ M an isotropic submanifold. Con-
sider the (1, 2)-weighting defined by F = TNω/TN ⊆ ν(M,N). Then there exists a weighted
tubular neighborhood embedding ϕ around N with

ϕ∗ω = ω[2].

Proof. We will give an outline of the proof. Working locally, we can (similar as to the proof of
Theorem 3.3.2) define

α =

∫ 1

0

1

t
(kt)

∗ιEwω dt.

Then dα = ω. Also, one checks that the second order (weighted) approximation α[2] is well-defined.
Define a vector field X by setting

ιXω = 2α.

Then it holds that
ιX[0]

ω[2] = ιEwω[2],

so that X[0] = Ew, i.e. X is weighted Euler-like. The weighted tubular neighborhood ϕ determined
by X then satisfies

LEwϕ∗ω = ϕ∗(LXω) = 2ϕ∗(dα) = 2ϕ∗ω.

And we conclude ϕ∗ω = ω[2].
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5.5 Possible alternative definition

With the definition of the weighted normal bundle as we have just given, one could see two problems.
First of all, the construction using the Homalg(·,R)-functor is not very geometric, and it takes quite
some work to see what is really going on. Secondly, it is not immediately clear how one would
generalize it to weightings other than (1, 2). To solve these two issues, we propose an alternative
definition that more directly incorporates the fact that we should obtain a graded bundle in the
end. As of now, this is purely a suggestion, the theory that would use this definition has not been
fully developed (yet). Some inspiration is again taken from the talk by Y. Loizides.

Definition 5.5.1. Given a manifold M , a general weighting with respect to w ∈ Rn+m is a filtration
C∞(M) = A0 ⊇ A1 ⊇ . . . of the sheaf of smooth sections, and an atlas U = {(U,ΦU )} with the
property that ΦU : U → V ⊆ Rn induces an isomorphism of graded algebras

gr(A)(U)→ grw(Rn+m)(V ), [f ] 7→ [f ◦ ΦU ],

for all U where the filtration is not trivial.

Lemma 5.5.2. Given a weighting of M , we have that the first filtration degree A1 ⊆ C∞(M) is
equal to the vanishing ideal sheaf of some submanifold N .

Proof. This is true locally, for if {Ai(U)} is the trivial filtration then N is the empty set, while if the
filtration is non-trivial then the submanifold can be recovered in local coordinates using the algebra
isomorphism. Specifically, in these local coordinates it is given by the vanishing of all coordinates
that do not have weight 0.

Example 5.5.3. In (Rn, ω), with all weights wi > 0, and as atlas just the identity map, the
submanifold of Lemma 5.5.2 would be {0}.

The idea is that with this definition we can obtain the structure of a graded bundle on N . This
is based on the proposition below, which says that a graded bundle is essentially determined by its
transition functions. Note that the construction given in this proposition is similar to a method
that is often used to create a vector bundle structure.

Proposition 5.5.4. Let M a smooth manifold, and suppose we are given an open cover U = {Ua},
and for each a, b a smooth map τab : Ua ∩ Ub → Autw(Rn) (where Autw(Rn) denotes the space of
graded automorphisms for (Rn,w)). If moreover these functions satisfy

τab ◦ τbc = τac on Ua ∩ Ub ∩ Uc,

then there exists a graded bundle structure F →M with transition functions given by the τab.

Proof. The argument is virtually the same as for vector bundles, F can be realized as(⊔
a

Ua × Rn
)
/ ∼,

with for p ∈ Ua, q ∈ Ub, (p, v) ∼ (q, w) if and only if p = q, w = τab(p)v.

Consider a general weighting on M , and pick two opens U, V with non-empty intersection.
Let N be the submanifold that is given by the vanishing of the first filtration degree. Under
ΦU : U → Rn+m = Rn × Rm, N is then mapped to Rn × {0}, the ‘part with weight 0’. The idea

49



is now to obtain a graded bundle structure over N , with fibers Rm. For this, we want to find a
transition function on (U ∩N) ∩ (V ∩N).

The composition ΦV ◦ Φ−1
U induces a morphism of graded algebras

grw(Rn+m)(U ′)→ grw(Rn+m)(U ′′),

where U ′, U ′′ are two opens in U . Both these algebras are generated (as algebras over C∞(U ′), C∞(U ′′)
respectively) by the coordinate functions {x1, . . . xn, y1, . . . ym−n}, where the xi have weight 0. The
isomorphism should map generators to generators, and since it preserves weight it should have the
following form on generators:

xi 7→ f(x1, . . . xn) : Rn → R

yi 7→
∑
j

fj(x1, . . . xn)yj1 . . . yjk

From this, we obtain transition functions τUV : (U ∩N) ∩ (V ∩N)→ Autw(Rm) by setting,

(τUV (p)v)i =
∑
j

fj(ΦU (p)1, . . .ΦU (p)n)vj1 . . . vjk . (5.1)

We can then use these transition functions to build a graded bundle, leading to the next definition.

Definition 5.5.5. Given a general weighting of M with respect to w, where A1 is the vanishing
ideal sheaf of a submanifold N , the general weighted normal bundle

νw(M,N)→ N

is the graded bundle induced by the transition functions as in Equation 5.1.

Example 5.5.6. Ak = IkN , with atlas a trivializing atlas for ν(M,N). Then the transition functions
are linear (they are exactly the vector bundle transition functions ), and we simply get back the
normal bundle.

Assume we are given (1, 2)-weighting (M,N,F ), with the associated filtration Ã(k) of C∞(M).
Let k := dimF . Choose as an atlas a covering of trivializing open sets for the normal bundle, such
that the charts ϕ : π−1(U) → U × Rm consistently map F to the first k coordinates. Then one
finds that the graded bundle constructed as in Definition 5.5.5 agrees with the definition for the
weighted normal bundle we gave earlier.
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5.6 Final remarks

5.6.1 Frobenius theorem

One well-known normal form theorem that we have not yet looked at is the Frobenius theorem,
which is an important theorem when studying foliations.

Definition 5.6.1. A distribution D ⊆ TM is called involutive if for all X,Y ∈ D, also [X,Y ] ∈ D.

Definition 5.6.2. A distribution D of dimension k is said to be completely integrable if around
any point p ∈M we can find coordinates (x1, . . . , xn) on an open U such that D is spanned by the
first k coordinate vector fields ∂

∂x1
, . . . , ∂

∂xk
.

Theorem 5.6.3 (Frobenius). Let D ⊆ TM be a smooth distribution. If D is involutive, then it is
completely integrable.

Our hope is that this theorem is also provable using the theory of Euler-like vector fields. We
expect that this would involve using the weighted version of theory. Looking at Definition 5.6.2, a
natural choice might be to, in local coordinates, assign weight 1 to the coordinates x1, . . . , xk and
weight 0 to the rest. But this remains to be worked out.

A starting point could be to consider a special type of codimension-one distribution, given as
the kernel of a nowhere-vanishing 1-form. Then involutivity has a simple characterization, given
by the proposition below.

Proposition 5.6.4. Let D be a defined as D = kerα, where α ∈ Ω1(M) is nowhere vanishing.
Then D is involutive if and only if α ∧ dα = 0.

5.6.2 Co-isotropic embedding

Let (M,ω) a symplectic manifold, and assume that N is a co-isotropic submanifold. In particular
dimN ≥ 1

2 dimM . We could then formulate a local version for the Co-isotropic embedding theorem,
similar to the isotropic case.

Theorem 5.6.5 (Co-isotropic embedding theorem, local version). Let (M,ω) a symplectic manifold
of dimension 2n, with N a co-isotropic submanifold of dimension k > n. Then around any point
p ∈ N we can find local coordinates (x1, . . . xn, y1, . . . yn), such that in these coordinates N =
{yk−n = . . . = yn = 0} and

ω =
n−k∑
i=1

dxi ∧ dyi +
n∑

i=n−k+1

dxi ∧ dyi.

If ω is given in this way, then

(mλ)∗ω =
n−k∑
i=1

dxi ∧ dyi + λ
n∑

i=n−k+1

dxi ∧ dyi.

so we see a linear part and a constant one. Now there is a problem, because if we want to choose
weights such that the equation above becomes homogeneous, the only choice we have is to assign
weight 0 to all yn−k+1, . . . , yn (note that these are the coordinates normal to N). But then the
Euler vector field Ew = 0, so that in particular the zero vector field is Euler-like. Therefore, the
theory seems to break down in this particular case. Inherently, the problem is here that for this
method to work we would want to manipulate coordinates also in the direction tangent to N ( the
coordinates y1, . . . , yn−k). But with our method of using Euler-like vector fields we can only change
things in the direction normal to N .
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Appendix A

A.1 Tangent and normal bundle functor

Lemma A.1.1. Given a manifold pair (M,N), we have the following isomorphism of double vector
bundles over N and TN

ν(TM, TN) ' Tν(M,N).

Where the double vector bundle structures are given as

ν(TM, TN) TN

ν(M,N) N

ν(qN ) qN

and

Tν(M,N) TN

ν(M,N) N

dp

p

Proof. We consider the double tangent bundle TTM = T (TM). There are two ways to view this as
a vector bundle over TM . There is the usual projection of a tangent bundle prTM : T (TM)→ TM ,
but we can also consider the differential d(prM ) : T (TM) → TM of prM : TM → M . These two
fit in the following commuting diagram, giving TTM a double vector bundle structure

TTM, TM

TM M

d(prM )

prTM

We claim that there is a map J : TTM → TTM (called the canonical involution) such that
d(prM )◦J = prTM , and which interchanges the two vector bundle structures. Choose a trivializing
neighborhood U of M , then we can choose local coordinates (x, v, (y, w)) on TTM . We have prTM :
(x, v, (y, w)) 7→ (x, v) ∈ TM , while since prM : (x, v) 7→ x ∈ M , we see d(prM ) : (x, v, y, w) 7→
(x, y). So locally we should have

J : (x, v, y, w) 7→ (x, y, v, w).

See [15], Section 9, for a proof that this map is globally well-defined, and that it has the required
properties.
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This J restricts to an isomorphism T (TM |N ) → (TTM)|TN (both viewed as submanifolds
of TTM). Moreover, when viewing also TTN as a submanifold of TTM , the restriction of J
becomes the canonical involution of TTN . Since TTN is also a submanifold of both T (TM |N )
and (TTM)|TN , J induces a vector bundle morphism when passing to the quotient for the normal
bundle

A.2 Graded bundles

We first give the main definitions. This is taken from [1].

Definition A.2.1. The standard graded space (Rn,w) of degree d is Rn together with a weight
vector w = (w1, . . . wn), with d = max{wi}, equipped with an action h : R × Rn → Rn, h(t, x) =
ht(x) of the monoid (R, ·) given as

ht(x1, . . . xn) = (tw1x1, . . . , t
wnxn)

Definition A.2.2. A graded space (M,w) (of degree d = max{wi}, where w = (w1, . . . wn) is a
manifold M of dimension n equipped with an action h : R ×M → M of (R, ·), such that there
exists a diffeomorphism Φ : M → Rn to the standard graded space (Rn,w), that intertwines the
two actions.

Definition A.2.3. A graded bundle with weight vector w and degree d is a smooth fiber bundle
p : F →M with typical fiber Rn, that admits an atlas of local trivializations ψ : p−1(U)→ U ×Rn
such that the transition functions U ∩U ′ → Diff(Rn,Rn) are automorphisms of the standard graded
space (Rn,w).

In other words, given two trivializations ψ,ψ′ the composition ψ′◦ψ−1 : U∩U ′×Rn → U∩U ′×Rn
should be given as

ψ′ ◦ ψ−1(x, v) = (x, τ(x)v),

where τ(x) : Rn → Rn is an automorphism of (Rn,w) for all x.

Given a graded bundle F → M as above, clearly every fiber Fx is a graded space with weight
vector w, and F comes with a monoid action h : R × F → F that in local coordinates is given as
the standard graded action h : R× Rn → Rn for (Rn,w). Under this action, M = h0(F ).

And these are the theorems relating graded bundles to a ‘scalar multiplication’ , i.e. an action
of the monoid (R, ·). See [11] and [10] for the proofs. Let E be some manifold.

Theorem A.2.4. An action h : R×E → E from the monoid (R, ·) such that there exist an 0E ∈ E
with h0(v) = 0E for all v ∈ E, comes from a vector space structure on E if and only if

∂h(0, v)

∂t
= 0⇐⇒ v = 0E

Theorem A.2.5. An action h : R × E → E from the monoid (R, ·) comes from a vector bundle
structure π : E → E0 = h0(E) if, for the curve R → E, t 7→ h(t, p), the 1-jet vanishes if and only
if p ∈ E0.

Theorem A.2.6. Any action h : R× E → E from the monoid (R, ·) comes from a graded bundle
structure

π : E → E0 = h0(E)

of degree d, where d ∈ N is the lowest integer N such that for the curve R → E, t 7→ h(t, p), the
N -jet vanishes if and only if p ∈ E0.
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Proposition A.2.7. Any action h : R×M →M from the monoid (R, ·) such that there is a fixed
h0(M) = 0M ∈M comes from the structure of a graded space on M .

A.3 Gelfand duality for manifolds

The following is based on the book “C∞ Differentiable Spaces” by Navarro Gonzalez and Sancho
de Salas, [17].

Definition A.3.1. Given a real algebra A, we define

Homalg(A,R) = Specr(A)

as the set of all R -algebra morphisms from A to R.

Given an element Φ ∈ Homalg(A,R), its kernel will be an ideal of A, denoted by m with
A/m ' R. In particular, it is a maximal ideal of A.

Let f ∈ A, then we can define a map f̂ : Homalg(A,R)→ R by f̂(x) = x(f). The Gelfand topol-

ogy on Homalg(A,R) is defined as the smallest topology in which all maps f̂ are continuous. If A =
C∞(M) for M a smooth manifold, then any p ∈ M defines an element evp ∈ Homalg(C∞(M),R)
by letting

evp(f) = f(p) for f ∈ C∞(M).

The map ev : M → Homalg(C∞(M),R) is then given by p 7→ evp.

Theorem A.3.2. If M is a smooth manifold then the map ev : M → Homalg(C
∞(M),R) is a

bijection. Moreover, if Homalg(C
∞(M),R) is equipped with the Gelfand topology it is a homeomor-

phism.

Proof. First we show injectivity. Let p, q ∈ M with p 6= q. Let K be a compact neighborhood of
p that does not contain q. Then we know there exist an f ∈ C∞(M) with f(p) = 1, and f ≡ 0
outside K (argue with partitions of unity). So we conclude that evp 6= evq.

For surjectivity, assume Φ ∈ Homalg(C∞(M),R), and let m = ker Φ. We want to show that
m = mx := {f ∈ C∞(M) : f(x) = 0} for some x ∈ M . Since M is a manifold, we can choose a
compact exhaustion of M , i.e. a sequence {Kn} of compact sets such that Kn ⊆ int(Kn+1) and
M =

⋃
Kn. Again using partitions of unity we can find fn ∈ C∞(M) such that 0 ≤ fn ≤ 1,

fn ≡ 0 on Kn and fn ≡ 1 outside int(Kn+1). Let f =
∑

n fn, then f ≥ n on M\Kn+1 for any
n ∈ N, and it follows that the level sets f−1(a) ⊆M are compact for any a ∈ R, since they will be
contained within some Kn. Now let b = Φ(f) ∈ R, so that f − b ∈ m. Now assume for the sake of
contradiction that ⋂

g∈m
g−1(0) = ∅

(so that in particular m 6= mx). Then since f−1(b) is compact, there must exist some g1, . . . gm ∈
C∞(M) (finitely many) such that g−1

1 (0) ∩ . . . ∩ g−1
m (0) ∩ (f − b)−1(0) = ∅. Consider then

h := g2
1 + . . .+ g2

m + (f − b)2 ∈ m.

By construction, h is nowhere zero, and so gives an invertible element in the ideal m. But that
would mean m = Homalg(C∞(M),R), which is impossible. So we conclude that there exist some
x ∈

⋂
g∈m g

−1(0), and we see then m ⊆ mx. By maximality, we conclude m = mx. For the proof
that ev is a homeomorphism we refer to the book.
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Remark. Theorem A.3.2 can be compared to the Gelfand-Naimark theorem, that relates a (com-
pact) topological space X to its set C(X) of continuous functions. The correspondence between
M and Homalg(C∞(M),R) could thus be referred to as ‘Gelfand duality for manifolds’.

Now let E →M be some vector bundle over M . The theorem above gives us the correspondence
E = Homalg(C∞(E),R), but we will see that we can do better than that. This is based on the
paper [14].

Definition A.3.3. Given a vector bundle E → M , by C∞pol(E) we will denote the fiberwise poly-
nomial functions on E.

Theorem A.3.4. If π : E →M is a vector bundle over a smooth manifold M , then the map

ev : E → Homalg(C
∞
pol(E),R)

is a homeomorphism.

Proof. For injectivity let p, q ∈ E with p 6= q. If also π(p) 6= π(q), then evp 6= evq by the same
argument as in Theorem A.3.2 (note that we can identify C∞(M) with the constant functions in
C∞pol(E)”).

If we do have p, q ∈ Ex (where x = π(p) = π(q)), then let U 3 x be some trivializing neighbor-
hood of x, with ϕ : E|U → U × Rk its vector bundle chart. Write

ϕ(p) = (x, v) ϕ(q) = (x,w).

Let Ψ : Rk → Rk be an affine linear map such that Ψ(v)) = e1, Ψ(ϕ−1(w)) = e2 (clearly Ψ
exists). Now let f := pr1 ◦ Ψ ◦ ϕ : E|U → R, then we can extend f to f̃ : E → R by multiplying
it with a function that is zero outside a compact neighborhood in U , and 1 around x. One checks
that f̃ ∈ C∞pol(E) (note that the bump function only depends on the base coordinates), and we see
f(p) = 1, f(q) = 0. So again evp 6= evq.

For surjectivity, let again Φ ∈ Homalg(C∞pol(E),R) and let m be its kernel. By a similar argument
as in Theorem A.3.2, we have that for finite g1, . . . gm ∈ m,⋂

i

g−1
i (0) 6= ∅.

Fact: We can find an embedding iE : E → R2n × R2n over iM : M → R2n with coordinate
functions ((χ1, . . . χ2n), (ξ1, . . . ξ2n)) such that the χi are smooth functions on M , and the ξi’s are
fiberwise affine linear. This follows by using the Whitney embedding theorem, combined with the
fact that for each vector bundle E there exists another vector bundle F such that E⊕F 'M×RN
for some N .

Let now
fi := χi − Φ(χi), Fj = ξj − Φ(ξj),

so fi, Fj ∈ m for all 1 ≤ i, j ≤ 2n. We know that there is an element b ∈
(⋂

f−1
i (0)

)
∩
(⋂

F−1
j (0)

)
.

For any such b, χi(b) = Φ(χi), so we see

iE(b) = ((Φ(χ1), . . . ,Φ(χ2n)), (Φ(ξ1), . . . ,Φ(ξ2n))).

Since iE is injective, we conclude therefore that
(⋂

f−1
i (0)

)
∩
(⋂

F−1
j (0)

)
= {b}. For any other

f ∈ m we then also get f(b) = 0 by considering f−1(0)∩{b} = f−1(0)∩
(⋂

f−1
i (0)

)
∩
(⋂

F−1
j (0)

)
6=

∅, therefore b ∈ f−1(0). So m ⊆ mb, so by maximality m = mb, and we conclude Φ = evb.
For the proof of that the map is actually a homeomorphism we refer to the paper.
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Remark. We can understand the theorem above in the following context. All the arrows in the
diagram below indicate 1-1 correspondences.

{vector bundles over M} {fin. gen. projective C∞(M) - modules}

{total spaces of algebraic vector bundles} {locally free sheaves of C∞(M)-modules}

Serre-Swan theorem

Serre’s theorem

The horizontal arrow on the bottom is a construction that is used in Algebraic Geometry. If we
start with a vector bundle E →M , one gets the following sequence of objects in the corresponding
diagram.

E Γ(E)

Specr(Sym(E∗)) E(·) = Γ(E)(·)

Homalg(C
∞
pol(E),R)

For the equality Specr(Sym(E∗)) = Homalg(C
∞
pol(E), note in particular that for any vector space

V , the symmetric algebra Sym(V ) is isomorphic to the polynomial algebra of V in a chosen basis.
The condition in the Serre-Swan theorem that Γ(E) is a finitely generated projective module,
corresponds to the property that for every vector bundle E, there exists another vector bundle F
such that E ⊕ F is trivial. This fact was used in the theorem above, and now this provides an
explanation of why this was really necessary.
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