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Chapter 1

Introduction

The reconstruction of a signal t0 in T ⊆ Rn from possibly noise linear measurements
yi of the form

yi = 〈ai, t0〉+ ξi, for i = 1, . . . ,m,

or, equivalently,
y = At0 + ξ,

with measurement vectors ai ∈ Rn, measurement matrix A ∈ Rm×n and noise ξ ∈ Rm,
is a very common problem in applied mathematics, for example, in regression
analysis, inverse problems and signal processing. While it is common to work with
overdetermined systems, having less measurements can be useful, if not necessary,
when data is expensive to obtain. However, underdetermined systems can lead to
imprecise solutions if no additional constraints are considered, for example, when
T = Rn.

In the field of compressed sensing, the standard structural assumption is that the
original signal is (nearly-)sparse. That is, in some basis the signal t0 is in (or near) the
set of s-space vectors in Rn, i.e.,

t0 ∈ Σn
s := {t ∈ Rn : |{i : ti 6= 0}| ≤ s} .

This sparsity assumption has been shown to greatly reduce the number of
measurements required to reconstruct a signal since various works by Candes and Tao
[7, 6]. Although it can be difficult to construct explicit examples of measurements
matrices A with the desired property to require a small number of measurements,
probabilistic arguments in the form of random matrices have been very successful. For
example, if the measurement matrix A has i.i.d. sub-Gaussian elements, then there
are with high probability good reconstruction guarantees if m ≥ Cs ln(en/s) for some
universal constant C that only depends on the sub-Gaussian parameter [14].

A lot of progress has been made on the use of random matrices in compressed sensing
and its variants. This includes the use of distributions with tails heavier than
sub-Gaussian and the consideration of matrices that are more structured than having
independently sampled elements or rows [14].
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1.1 One-bit compressed sensing

An important variant is quantized compressed sensing [8], where the measurements
are discretized by a quantizer Q : R→ Q for some countable set Q, resulting in
measurements of the form

yi = Q(〈ai, t0〉+ ξi), for i = 1, . . . ,m.

Such quantization is a necessary procedure for computers to be able to process the
measurements. When the quantization is done finely, for example, conversion to a
32-bit floating point format, then this problem can still be analyzed using existing
techniques from compressed sensing by considering the effect of the quantization as
noise, i.e.,

yi = 〈ai, t0〉+ ξi + ηi,

where
ηi := Q(〈ai, t0〉+ ξi)− 〈ai, t0〉 − ξi.

This ”noise” ηi will be small for a fine quantizer, but not when we take the
quantization to the extreme. The extreme case considered in this thesis is one-bit
compressed sensing, first introduced by Boufounos et al. [4], where the quantizer is
the sign function, resulting in measurements of the form

yi = sign(〈ai, t0〉+ ξi), for i = 1, . . . ,m. (1.1)

Due to the measurements yi being reduced to values in {−1, 1}, a lot of information is
lost. Without the one-bit quantization, one would have knowledge of the
measurement vector ai and the (possible noisy) signed distance to the hyperplane
with ai as normal. The one-bit quantization changes the signed distance to only the
sign, hence only giving us knowledge of ai and information on which side of the
hyperplane the signal resides.

If we have full knowledge of the noise, then the binary measurement vector y
describes which cell of a tessellation of the signal set by various hyperplanes the signal
lies in. See Figure 1.1 for an illustration. Finding the signal can then only be done up
to the cell it is contained in, thus good measurement vectors and noise should result
in cells of the tessellation that have small diameter. This relates the problem of
one-bit compressed sensing to hyperplane tessellation. However, we generally do not
have full knowledge of the noise, yet we will see later that partially controlling the
noise can be beneficial for the reconstruction.

In the noiseless case, for every λ > 0 we have,

yi = sign(〈ai, t0〉) = sign(〈ai, λt0〉),

hence the magnitude ‖t0‖2 cannot be reconstructed from noiseless, one-bit
measurements. It is still possible to reconstruct the signal up to magnitude from the
one-bit measurements by maximizing the correlation between quantized measurements
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Figure 1.1: Three hyperplanes split a signal set T into smaller parts, which shows the
relation between one-bit compressed sensing and hyperplane tessellation. For simplicity,
+1 And −1 are abbreviated to + and − respectively.

of the true signal and unquantized measurements, instead of minimizing an error of
the form ‖Az − y‖, all possibly with regularization. More precisely, let T ⊆ Rn and
t0 ∈ T be the true signal, then we can consider the following optimization problem:

max
t∈T
〈y, At〉, (1.2)

or equivalently

max
t∈T

m∑
i=1

yi〈ai, t〉.

For such an optimization problem we have the following recovery guarantee.

Theorem 1.1.1 (Corollary 1.2 from [29]). Let T ⊆ Bn
2 and fix t0 ∈ T ∩ Sn−1

2 . Let ai
be i.i.d standard normal random vectors in Rn. Denote by t̂ the optimizer of
optimization problem (1.2) with the yi as defined in equation (1.1). If

m ≥ Cε−2w(T )2,

for some ε > 0, then with probability at least 1− 8 exp(−cε2m),

‖t0 − t̂‖2
2 ≤

ε

λ
,

where C > 0 is a universal constant, λ depends on the noise and w(T ) is called the
Gaussian width which is defined by

w(T ) := E sup
t∈T
〈g, t〉,

where g is a standard Gaussian random vector in Rn.
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In the case where T = Σn
s , the lower bound on the number of measurements is

satisfied when
m ≥ Cε−2s log(en/s),

which is similar to the sub-Gaussian result for unquantized compressed sensing
mentioned earlier. Various similar results, including both pre-and post-quantization
noise, that are similar to the theorem above can be found in a work by Plan and
Vershynin [29] and a version of Lemma 1.1.1 which will be discussed in Chapter 3.

The restriction of recovering only normalized signals is not a problem in certain
applications, but, maybe surprisingly, ”noise” can actually help reconstruct the
magnitude. A signal that lies close to the origin needs little noise for the measurement
yi to flip sign, while a signal that lies far from the origin needs lots of noise to cause a
sign flip. Therefore, it can be practical to add noise before quantization in order to
recover the magnitude of the signal. For this setting, consider measurements of the
form

yi = sign(〈ai, t0〉+ ξi + τi), for i = 1, . . . ,m, (1.3)

where ξi is natural noise and τi is artificial noise, specially chosen to help with
reconstructing the norm of t0. A naive way of using this artificial noise is to take
multiple measurements with the same ai and varying τi to deduce the distance from
the origin, therefore attempting to recover the distance lost by one-bit quantization.
This method is quite unpractical and we will see later in this thesis that we do not
even need to know the values τi if we can choose the distribution.

Adding artificial pre-quantization noise like above is referred to as dithering and has
been successfully used in various works [20, 12, 30] to get guarantees on the
reconstruction of both the direction and the magnitude of the signal.

1.2 Compressed sensing with generative models

Besides the use of quantization, other structural assumptions on the signal set T have
received a lot of attention recently. Instead of assuming that the signal (in some
basis) lies in Σn

s , we can also assume that the signal lies in the range of a function
whose domain is low-dimensional. Specifically, let k � n and G : X ⊆ Rk → Rn. We
will refer to this function G as a generative model and assume that the signal lies in
its range G(X). In later chapters we will show that the number of measurement
required for good reconstruction depends on how large k is and the complexity of G in
the form of the Lipschitz constant of G and/or the radius of the range. Such a
structural assumption was first proposed for unquantized compressed sensing by Bora
et al. [2] where a recovery guarantee similar to the following was shown.

Theorem 1.2.1 (Slight generalization of the main theorem in [2]). Let
G : X ⊆ Rk → Rn be Lipschitz continuous with Lipschitz constant γ, ε > 0 and A be a
random Rm×n matrix with i.i.d. normal entries with mean zero and variance 1/m.
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Take x0 ∈ X fixed and consider measurements of the form y = AG(x0) + η with fixed
noise η. Let x̂ be the minimizer of the optimization problem

min
x∈X
‖AG(x)− y‖2

2.

If

m ≥ C

(
logN

(
X,

ε

γ

)
+ k

)
,

then, with probability at least 1− 2e−cm,

‖G(x̂)−G(x0)‖2 ≤ 8‖η‖2 + 4ε,

where c, C > 0 are universal constants and N (T, δ) is the covering number of T ,
defined as the smallest number of balls with radius δ required to cover T .

Two popular choices for generative models are generative adversarial networks and
the decoder part of an autoencoder. In this thesis we will only consider the latter for
the numerical experiments at the end. An autoencoder is an artificial neural network
consisting of an encoder followed by a decoder [15]. By letting the intermediate
encoding be relatively low dimensional, the information goes through a bottleneck,
hence when the network is trained to approximate the identity function, the signal
gets compressed. An autoencoder is illustrated in Figure 1.2. If successfully trained
on a data set, then the range of the decoder can be used as a low-dimensional
approximation for that data set.

encoder decoder
Rn Rn

Rk

Figure 1.2: Illustration of an autoencoder. The encoder compresses the signal and the
decoder decompresses the signal.

Often a data set can be considered as a low dimensional manifold, therefore we can
consider the range of a generative model to be an approximation of this manifold.
Training a neural network on a data set would then correspond to learning this
manifold. One can also work directly with this manifold, for which various recovery
guarantees combined with one-bit measurements exist [17, 9].
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1.3 This work

As the name of the thesis suggests, this thesis will focus on the combination of one-bit
measurements with the structural assumption of a generative model. Thus, we have
measurements of the form

yi = sign(〈ai, G(x0))〉+ ξi + τi), for i = 1, . . . ,m,

for some generative model G : X ⊆ Rk → Rn, natural noise ξ and artificial noise τ .

A basic understanding of high-dimensional probability theory is indispensable for
understanding this work and the book High-Dimensional Probability: An
Introduction with Applications in Data-Science by Roman Vershynin [32] is used as a
basis for this thesis. A small summary of important definitions and theorems from
high-dimensional probability can be found in Appendix B. Furthermore, some
machine learning theory will be used in Chapter 4.

In the two theorems mentioned in this introduction, Theorem 1.2.1 and 1.1.1, various
quantities measuring the size and complexity of the signal set are used. In Chapter 2
we will look into these quantities in more detail, specifically when the signal set is the
range of a generative model that is Lipschitz continuous. Understanding these
quantities will allow us to derive recovery guarantees when the measurements and
noise are (sub-)Gaussian from results on general signal sets. This is part of Chapter 3
together with a discussion on the (near-)optimality of these guarantees.

In Chapter 4 we will discuss another quantity describing the complexity of a signal
set. We will require this quantity for the discussion of a generalization of a result and
corresponding proof by Qiu et al. [30] in Chapter 5, which allows the measurement
vectors and noise to be sub-exponential. Chapter 6 consists of generalizing the
allowed noise to distributions with tails far heavier than sub-exponential and discusses
an attempt to further generalize the measurement vectors to certain heavy tailed
distributions.

Finally, Chapter 7 consists of various numerical experiments on several aspects of the
recovery of a signal from one-bit quantized measurements, both with and without
dithering, and comparing the use of a generative model to the sparsity assumption.
Most of these experiments will make use of the MNIST data set [25] of handwritten
digits, because its simplicity allows us to easily work with various generative models.
We will finish with showing that the methods discussed will also work for slightly
more complex data sets like CIFAR-10 [22], which consists of small colour images.
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Chapter 2

Size and complexity of signal sets

In the introduction we have seen that the required number of measurements, also
known as the sampling complexity, depends on various quantities that measure the
size and complexity of the signal set T . In Theorem 1.2.1 this is the covering number
N (T, ε) and in Theorem 1.1.1 this is the Gaussian width w(T ). Other related
quantities will be introduced later in this chapter and Chapter 4. For the derivation of
various results on one-bit compressed sensing with generative models in the next
chapter we would like to understand these quantities when the signal set is the range
of a generative model, i.e., T = G(X). This is the goal of this chapter.

The class of generative models generally considered in the literature is the set of
Lipschitz continuous functions, i.e., functions G : X ⊆ Rk → Rn such that, for any
x, y ∈ X,

‖G(x)−G(y)‖2 ≤ γ‖x− y‖2,

for some γ ∈ (0,∞), or equivalently

diam(G(Z)) ≤ γdiam(Z),

for any Z ⊆ X. A Lipschitz continuous function with constant γ will also be called a
γ-Lipschitz generative model in this thesis. This is the same class of functions as
considered by Bora et al. [2] and in Theorem 1.2.1. However, for the results by Qiu et
al. [30], which will be discussed in more detail in Chapter 4 and 5, a different class of
generative models will be considered.

In the next few sections we will see that the Lipschitz continuous functions are a
natural choice for generative models, as they behave well with respect to the covering
number and Gaussian width. Furthermore, most generative models of interest are
Lipschitz continuous, for example, neural networks with Lipschitz continuous
activation functions.

Lemma 2.0.1 (Lemma 8.5 in [2]). Let G : Rk → Rn be an l-layer feedforward neural
network with M-Lipschitz activation functions and at most n nodes per layer, i.e.,

G(x) = σl(bl + Alσl−1(. . . σ1(b1 + A1x))),

where the σi are all M-Lipschitz and the matrices Ai are of size at most n× n. For
such a generative model, the Lipschitz constant is at most (Mnamax)l, where amax is
the largest absolute coefficient in the matrices Ai.
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2.1 Covering Number and Metric Entropy

A set N ⊆ T such that any point in T is at most distance ε > 0 from N is called an
ε-net of T . The smallest cardinality of such an ε-net is called the covering number
N (T, ε) and an ε-net with such cardinality is called a minimal ε-net. The covering
number and ε-net are essential concepts within the study of high-dimensional
probability, see for example the book by Vershynin [32], and will be used throughout
this thesis.

The covering number often arises in arguments in which concentration inequalities are
combined with union bounds to obtain bounds for all the points in a net and then
approximately extended to the whole set. In such an argument it is not uncommon to
find the logarithm of the covering number, i.e., log2N (T, ε). This quantity is called
the metric entropy because it represents the number of bits needed to encode all the
points in a minimal ε-net. We will see that it more often arises in cases where it is
preferred to work with exponentials or from maximum inequalities like

Emax
i∈[N ]
|Xi| ≤ C max

i∈[N ]
‖Xi‖ψ2

√
logN, (2.1)

where C > 0 is a universal constant.

Now consider the range of a γ-Lipschitz generative model G : X ⊆ Rk → Rn. Due to
G being γ-Lipschitz, any ε-net N of X can be transformed to a γε-net G(N ) of G(X).
From this observation we directly get the following lemma.

Lemma 2.1.1. If G : X ⊆ Rk → Rn is γ-Lipschitz, then, for any ε > 0,

N (G(X), ε) ≤ N
(
X,

ε

γ

)
.

A common choice for the latent space X is the unit ball Bk
2 for which the following

volumetric bound holds.

Lemma 2.1.2 (Section 4.2 of [32]). For any R > 0 and ε > 0,(
R

ε

)k
≤ N (RBk

2 , ε) ≤
(

2R

ε
+ 1

)k
.

Furthermore, for any subset T ⊆ RBk
2 ,

N (T, ε) ≤ N (RBk
2 , ε/2) ≤

(
4R

ε
+ 1

)k
.

Combining Lemmas 2.1.1 and 2.1.2 above results in the following standard bound for
the covering number of the range of a Lipschitz continuous generative model.

Corollary 2.1.3. Let G : Bk
2 → Rn be γ-Lipschitz. Then, for any ε > 0,

N (G(Bk
2 ), ε) ≤

(
2γ

ε
+ 1

)k
.
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2.2 Gaussian Width

Recall that we define the Gaussian width of a set T ⊆ Rn as

w(T ) := E sup
t∈T
〈g, t〉,

where g is a standard n-dimensional Gaussian random vector. From this definition it
might not be directly clear why it is called the Gaussian width as it might look more
like a ”Gaussian radius”. However, due to g being origin symmetric, we can relate this
definition to another frequently used definition for the Gaussian width, namely

w(T ) =
1

2
w(T − T ) =

1

2
E sup
t,s∈T
〈g, t− s〉.

The right most term more clearly represents Gaussian width as illustrated in Figure
2.1.

g

s

t

supt,s∈T 〈 g
‖g‖2 , t− s〉

Figure 2.1: Visualization of Gaussian width.

In this thesis, the Gaussian width will appear either as a result of generic chaining or
concentration arguments, see for example Lemma 2.2.1 below or Lemma 3.1.2.

Lemma 2.2.1 (Generic chaining, Corollary 8.6.3 from [32]). Let T ⊆ Rn and (Xt)t∈T
be a mean zero random process. If for all t, s ∈ T

‖Xt −Xs‖ψ2 ≤ K‖t− s‖2,

for some constant K > 0, then

E sup
t∈T

Xt ≤ CKw(T ),

where C > 0 is a universal constant.
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The Gaussian width behaves similarly to the diameter under the transformation by a
Lipschitz continuous function. In fact, one can characterize Lipschitz continuity this
way.

Lemma 2.2.2. Let G : X ⊆ Rk → Rn, then G is γ-Lipschitz if and only if

w(G(Z)) ≤ γw(Z), for all Z ⊆ X.

The key to the proof of Lemma 2.2.2 is the Sudakov-Fernique inequality for
comparing two Gaussian processes.

Theorem 2.2.3. (Theorem 7.2.11 from [32]) Let (Xt)t∈T and (Yt)t∈T be two mean
zero Gaussian processes. If for all t, s ∈ T ,

E(Xt −Xs)
2 ≤ E(Yt − Ys)2,

then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.

Proof of Lemma 2.2.2. Assume that G is γ-Lipschitz, take any Z ⊆ X and define the
Gaussian processes Xt := 〈G(t), g〉 and Yt := γ〈t, g′〉 for all t ∈ Z, where g ∼ N(0, In)
and g′ ∼ N(0, Ik).

Note that these Gaussian processes have mean zero. Furthermore, the second
condition of the Sudakov-Fernique inequality is obtained through the observation that

E(〈G(t)−G(s)), g〉)2 = ‖G(t)−G(s)‖2
2 ≤ γ2‖t− s‖2

2 = E(γ〈t− s, g′〉)2,

hence
E(Xt −Xs)

2 ≤ E(Yt − Ys)2.

Thus by the Sudakov-Fernique inequality we can conclude that

w(G(Z)) = E sup
t∈Z
〈G(t), g〉 = E sup

t∈Z
Xt ≤ E sup

t∈Z
Yt = γE sup

t∈Z
〈t, g〉 = γw(Z).

For the other direction, let T = {t, s} ⊂ X be any two-point subset of X, using the
assumption that w(G(T )) ≤ γw(T ) combined with w(T ) = 1

2
w(T − T ) we find

Emax{0, g‖G(t)−G(s)‖2)} ≤ γEmax{0, g‖t−s‖2},

where gσ are centered Gaussian random variables with variance σ2. Rewriting both
sides to

‖G(t)−G(s)‖2Emax{0, N(0, 1)} ≤ γ‖t− s‖2Emax{0, N(0, 1)},

and dividing both sides by Emax{0, N(0, 1)} 6= 0 completes the proof. �
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Just like for the covering number, we still need to know the Gaussian width of the
standard latent space, the unit ball Bk

2 . This can be derived as follows:

w(Bk
2 ) = E sup

t∈Bk2

〈g, t〉 = E‖g‖2 ≤
√
E‖g‖2

2 =
√
k.

Thus we can conclude the following bound for the Gaussian width of the range of a
Lipschitz continuous generative model.

Corollary 2.2.4. If G : Bk
2 → Rn is γ-Lipschitz, then

w(G(Bk
2 )) ≤ γ

√
k.

While these results are the best we can achieve only assuming the Lipschitz continuity
of the generative model, better results can be achieved with the additional assumption
that the radius of the range of the generative model is relatively small. This is often
the case when working with images, where the generative model does not stray too far
from the origin, yet the Lipschitz constant can be very large. For example, the images
in the MNIST data set consist of 282 pixels with values in [0, 1] and therefore the data
set lies in a ball of radius 28, hence we expect that a generative model trained for this
data set does not stray far outside this l2-ball. These improved bounds will be
discussed at the end of the next section, as the proof follows directly from bounds for
a variant of the Gaussian width which we will discuss first.

2.3 Localized Gaussian Width

A slight variant on the Gaussian width is the localized Gaussian width, which, for
a set T ⊆ Rn and distance ρ > 0, is defined as

w((T − T ) ∩ ρBn
2 ).

Intuitively, it measures how well signals that are within distance ρ of each other are
separated by standard Gaussian measurements, but the main reason of its importance
will be discussed in the next section.

Combining the monotonicity of Gaussian width with bounds derived in the previous
section, we get for γ-Lipschitz generative models G : X ⊆ Rk → Rn the simple bound

w((G(X)−G(X)) ∩ ρBn
2 ) ≤ min{2γw(X), ρ

√
n}.

However, this relatively straightforward bound ruins the advantage of the relatively
low dimensional size of G(X) together with the small size of ρBn

2 . So the rest of this
section will be used to derive a better bound that uses both of these properties. To do
this, we will use the covering number discussed earlier. We begin by answering the
question how to extend the Gaussian width of a net to the whole signal set. For this,
we will use the following approximation property of the Gaussian width.
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Lemma 2.3.1. Let T, S ⊂ Rn such that S ⊆ T + εBn
2 , i.e., every point in S is at

most distance ε from T , then

w(S) ≤ w(T ) + ε
√
n.

Proof. Denote by T (s) the closest point in T to s. By assumption we have that
‖T (s)− s‖2 ≤ ε for all s ∈ S. We then get that

w(S) = E sup
s∈S
〈g, s〉

≤ E sup
s∈S
〈g, T (s)〉+ E sup

s∈S
〈g, s− T (s)〉

≤ w(T ) + w((T − S) ∩ εBn
2 )

≤ w(T ) + εw(Bn
2 )

≤ w(T ) + ε
√
n,

concluding the proof. �

A simple corollary of this lemma is the continuity of Gaussian width. If S, T ⊂ Rn are
equivalent up to ε-thickening, i.e., S ⊆ T + εBn

2 and T ⊆ S + εBn
2 , then Lemma 2.3.1

implies
|w(S)− w(T )| ≤ ε

√
n,

thus similar sets have similar Gaussian width.

Now we can use Lemma 2.3.1 to prove the following improved bound on the localized
Gaussian width.

Lemma 2.3.2. Let G : X ⊆ Rk → Rn be γ-Lipschitz, then

w((G(X)−G(X)) ∩ ρBn
2 ) ≤ Cρ

(√
log

(
N
(
X,

ρ

2
√
nγ

))
+ 1

)
,

for some universal constant C > 1.

Proof. Let N be a minimal ε/2γ-net of X, then G(N ) is an ε/2-net of G(X) and
G(N )−G(N ) is an ε-net of G(X)−G(X). Furthermore, we have that
log |G(N )−G(N )| ≤ 2 log |N |. Using Lemma 2.3.1 we find

w((G(X)−G(X)) ∩ ρBn
2 ) ≤ w((G(N )−G(N )) ∩ (ρ+ ε)Bn

2 ) + ε
√
n.

Note the additional ε in the distance of the localized Gaussian width. By using a
bound on the Gaussian width of finite sets (see for example Proposition 7.29 in [14] or
inequality (2.1)), we find

w((G(X)−G(X)) ∩ ρBn
2 ) ≤ C(ρ+ ε)

√
log |G(N )−G(N )|+ ε

√
n

≤ C(ρ+ ε)
√

2 log |N |+ ε
√
n

= C(ρ+ ε)
√

2 logN (X, ε/2γ) + ε
√
n.
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Choosing ε = ρ/
√
n allows us to conclude that

w((G(X)−G(X)) ∩ ρBn
2 ) ≤ Cρ

(√
log

(
N
(
X,

ρ

2
√
nγ

))
+ 1

)
,

for some C > 1. �

To get back to the final comment in the previous section, let us assume that G is a
bounded Lipschitz generative model, then using a similar argument as in the proof of
Lemma 2.3.2 above we get the following result.

Lemma 2.3.3. Let G : X ⊆ Rk → Rn be γ-Lipschitz and assume that G(X) ⊆ RBn
2

for some R > 0, then

w(G(X)) = w(G(X) ∩RBn
2 ) ≤ CR

(√
log

(
N
(
X,

R√
nγ

))
+ 1

)
,

for some universal constant C > 1.

For the case X = Bk
2 , the bound results in

w(G(Bk
2 )) ≤ CR

(√
k log

(
2
√
nγ

R
+ 1

)
+ 1

)
.

This bound is more efficient than the bound from Corollary 2.2.4 when the generative
model has a large Lipschitz constant, but the radius of the range is small. While it
might be possible to reduce the logarithmic dependency on n, practically, γ will be
much larger than n and will therefore be the dominating term in the logarithm.

The dependency on γ cannot be fully removed. It is straightforward to construct a
sequence of Lipschitz continuous functions such that the convex hulls of their range
converges to Bn

2 , hence, by continuity of Gaussian width and because the Gaussian
width is invariant under taking the convex hull, the low dimensionality of the
Gaussian width would be lost while the Lipschitz constant becomes much larger.

For comparison, when T is a compact Riemannian manifold similar results exist,
depending logarithmically on the diameter, volume and reach of the manifold.

Theorem 2.3.4 (Theorem 3.3. from [17]). Let M⊂ Rn be a compact k-dimensional
Riemannian manifold, then

w(M) ≤ C diam(M)

√√√√k max

{
1, log

(
c

√
k

min{1, reach(M)}

)}
+ log(max{1, vol(M)}),

for some constants c, C > 0.
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2.4 Star-shaped Sets

The need for the localized Gaussian width comes from the following lemma used for a
result by Dirksen et al. [12] which will be discussed in the next chapter.

Lemma 2.4.1. Let f : Rn → [0,∞) be positive homogeneous, ρ > 0 and W ⊆ Rn

satisfy λw ∈ W for all w ∈ W and λ ∈ [0, 1], then

sup
w∈W :‖w‖2≥ρ

f(w/‖w‖2
2) = sup

w∈W :‖w‖2=ρ

f(w)/ρ2 ≤ sup
w∈W :‖w‖2≤ρ

f(w)/ρ2.

This lemma is used for W = T − T , thus bounding the supremum over signals that
are far away by a supremum over the signals that are close together. The final
supremum can later be bounded by localized Gaussian width.

A problem lies in the additional requirement on T − T , hence the focus of this section
is to analyse this requirement, specifically in the Lipschitz continuous generative
model case where T = G(X).

The requirement on W is referred to as star-shapedness and is defined as follows.

Definition 2.4.2 (Star-shaped). A set T ⊂ Rn is called star-shaped around the
origin when

λT ⊆ T, for all λ ∈ [0, 1],

and called star-shaped around t ∈ Rn if T − t is star-shaped around the origin.
Similarly to convex sets, we define Star0(T ) and Start(T ) to be the smallest
star-shaped set around the origin and around the point t ∈ Rn that contains T ,
respectively.

Because (localized) Gaussian width is monotone, it will be enough to bound
G(X)−G(X) by its origin star-shaped hull, hence the quantity of interest in this
section will be

w (Star0(G(X)−G(X)) ∩ ρBn
2 ) .

In certain special cases this star-shaped hull is not necessary. This can happen when
G(X) is already star-shaped around some point, because then G(X)−G(X) is
star-shaped around the origin. For example, when G is positive homogeneous and X
is star-shaped around the origin, then G(X) is also star-shaped around the origin. A
practical example is when G is an unbiased feedforward neural networks with ReLU
activation with X = Bk

2 , as considered by Qiu et al. [30].

If G(X)−G(X) is not already star-shaped around the origin, then a way to upper
bound it is to use that Star0(T − T ) ⊆ Starx(T )− Starx(T ) for any choice of x ∈ Rn,
hence

w (Star0(G(X)−G(X)) ∩ ρBn
2 ) ≤ w ((Starx(G(X))− Starx(G(X))) ∩ ρBn

2 ) .
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In the case of a γ-Lipschitz generative model, we can construct Starx(G(X)) as the
image of a different Lipschitz continuous function and therefore use the results from
the previous section. This construction is given in the following lemma.

Lemma 2.4.3. Let G : X ⊆ Rk → Rn be γ-Lipschitz. Choose some x0 ∈ X and define
the star-shaped version of G around G(x0), G? : X × [0, 1]→ Rn as

G?(x, λ) := λG(x) + (1− λ)G(x0).

Then the image G?(X, [0, 1]) is star-shaped around the chosen point G(x0) and G? has
Lipschitz constant

√
2γ(1 + diam(X)).

Proof. The full proof can be found in appendix A, as it follows from a standard
analysis argument, but a picture of the idea of the proof is given in Figure 2.2. �

G(x0)

G(x) G?(x, λ)
G?(x, (λ+ µ)/2)

G(y)
G?(y, λ)

G?(x, (λ+ µ)/2)

Figure 2.2: Picture of the proof of Lemma 2.4.3.

Note that the actual choice of x0 does not matter for the Lipschitz constant of G∗,
therefore we let the choice be arbitrary.

In order to use the results of Lemma 2.3.2 we need to understand the covering number
of X × [0, 1], which can be easily bounded using the following lemma.

Lemma 2.4.4. If T ∈ Rn, S ∈ Rm and ε > 0, then

N (T × S, ε) ≤ N
(
T,

ε√
2

)
N
(
S,

ε√
2

)
.

Using Lemma 2.4.4 above we obtain

N (X × [0, 1], ε) ≤ N
(
X,

ε√
2

)
N
(

[0, 1],
ε√
2

)
=

⌈√
2

2ε

⌉
N
(
X,

ε√
2

)
.

By combining all the previously obtained lemmas we get the following bound for the
localized Gaussian width of the star shaped hull of a set.
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Lemma 2.4.5. Let G : Bk
2 → Rn be γ-Lipschitz, then for any ρ > 0,

w
(
Star0(G(Bk

2 )−G(Bk
2 )) ∩ ρBn

2

)
≤ Cρ

(√
k log

(
c
√
nγ

ρ
+ 1

)
+ 1

)
,

where C, c > 1 are universal constants.

Compared to the non-star-shaped bound

w((G(Bk
2 )−G(Bk

2 )) ∩ ρBn
2 ) ≤ Cρ

(√
k log

(
4
√
nγ

ρ
+ 1

)
+ 1

)
,

nothing has changes besides some constants.

Most of the bounds found in this chapter for the various size and complexity
quantities of the signal sets will be used in the next chapter to derive results for
one-bit compressed sensing for generative models from results on one-bit compressed
sensing for general signal sets.
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Chapter 3

(Sub-)Gaussian setting

In this chapter, we will discuss various reconstruction guarantees for one-bit
compressed sensing with generative models where the measurements vectors and often
also the noise have Gaussian or sub-Gaussian distribution. Most of these results hold
for general signal sets and will be combined with the results from the previous chapter
to get results for generative models. This chapter will be concluded with a discussion
of the optimality of the found sampling complexities.

3.1 Gaussian measurements

Plan and Vershynin [29] studied the use of convex programming to recover signals
from very general measurements including one-bit quantization. Their general results
allow for various models of noise, including pre-quantization noise and random
bit-flips. The following theorem, which is a slight variation of a corollary from their
paper.

Theorem 3.1.1. [Based on Corollary 1.2 of [29]] Let A be a random m× n matrix
with i.i.d. standard Gaussian entries, T ⊂ RBn

2 , ξ ∼ N(0, σ2I) and fix t0 ∈ T ∩ Sn−1
2 .

Consider measurements of the form y = sign(At0 + ξ) and let t̂ be the solution of the
optimization problem

min
t∈T
‖t‖2

2 −
2

λm
yTAt with λ =

√
2

π(σ2 + 1)
. (3.1)

Then there exists universal constants c, C > 0 such that for any ε > 0, if

m ≥ C
w2(T )

λ2ε2
,

then with probability at least 1− 4 exp(−cλ2ε2m),

‖t̂− t0‖2
2 ≤ ε.

The major differences compared to the original theorem is the added regularization
that allows for arbitrary signal sets and the specific choice of one-bit quantization
with Gaussian pre-quantization noise.

19



Also note that that in Theorem 3.1.1 the high-probability guarantee holds for a fixed
true signal t0. The other results discussed in this thesis are uniform results, meaning
that the high-probability guarantee holds uniformly for any true signal t0.

The keys to the proof of Theorem 3.1.1 are the following two lemmas regarding the
correlation function

ft0(t) :=
1

m

m∑
i=1

yi〈ai, t〉, (3.2)

with measurements yi = sign(〈ai, t0〉+ ξi).

Lemma 3.1.2 (Proposition 4.2 in [29]). For f as defined above, let T ⊂ RRn and
u > 0, then

P
(

sup
t∈T−T

|ft0(t)− Eft0(t)| ≥ 8w(T )/
√
m+ u

)
≤ 4 exp(−mu2/8).

Lemma 3.1.3 (Lemma 4.1 in [29]). Let ft0 as defined above. For any t0 ∈ Sn−1 and
t ∈ Rn, we have

Eft0(t) = λ〈t0, t〉,

with λ =
√

2
π(σ2+1)

.

Proof of Theorem 3.1.1. By minimality of t̂, we get that

‖t̂‖2
2 −

2

λm
yTAt̂ ≤ ‖t0‖2

2 −
2

λm
yTAt0,

or equivalently

0 ≤ ‖t0‖2
2 − ‖t̂‖2

2 +
2

λ
f(t̂− t0).

Using the Lemma 3.1.2, we get for any u > 0, with probability at least
1− 4 exp(−mu2/8),

0 ≤ ‖t0‖2
2 − ‖t̂‖2

2 +
2Ef(t̂− t0)

λ
+

2

λ

(
8w(T )√

m
+ t

)
.

By Lemma 3.1.3,

0 ≤ ‖t0‖2
2 − ‖t̂‖2

2 + 2〈x∗, t̂− t0〉+
2

λ

(
8w(T )√

m
+ u

)
≤ −‖t̂− t0‖2

2 +
2

λ

(
8w(T )√

m
+ u

)
.

Choosing u = c′λε and m ≥ C ′w2(T )/λ2ε2 with constants c′ and C ′ completes the
proof. �
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Theorem 3.1.1 can directly be applied to the range of a generative model and
combined with either Lemma 2.2.2 or 2.3.3 to get the following result.

Corollary 3.1.4. Let A be a random m× n matrix with i.i.d. standard Gaussian
vectors as rows. Let G : X ⊆ Rk → Rn be γ-Lipschitz with G(X) ⊆ RBn

2 ,
ξ ∼ N(0, σ2I) and choose x0 ∈ Rk such that G(x0) ∈ Sn−1

2 . Consider measurements of
the form y = sign(AG(x0) + ξ) and let x̂ be the solution of the optimization problem

min
x∈X
‖G(x)‖2

2 −
2

λm
yTAG(x) with λ =

√
2

π(σ2 + 1)
. (3.3)

Then there exist universal constants c, C > 0 such that for any ε > 0, if either

1. m ≥ C γ2w2(X)
λ2ε2

or

2. m ≥ C R2

λ2ε2

(
log
(
N
(
X, R√

nγ

))
+ 1
)
,

then with probability at least 1− 4 exp(−cρ2m),

‖G(x̂)−G(x0)‖2
2 ≤ ε.

For our standard latent space X = Bk
2 , the two sampling complexities in Corollary

3.1.4 above become

1. m ≥ C γ2k
λ2ε2

and

2. m ≥ C R2k
λ2ε2

(
log
(

2
√
nγ
R

+ 1
)

+ 1
)
,

respectively.

Using the bound on the range gives an additional log
(

2
√
nγ
R

+ 1
)

term, but when

R� γ, this results in a smaller sampling complexity.

For Gaussian measurements, there are also results that directly consider generative
models in a paper by Liu et al.[26], as in the following result in the noiseless setting.

Theorem 3.1.5 (Corollary 1 from [26]). Let c1, c2 > 0 be universal constants, A be a
random m× n matrix with i.i.d. standard Gaussian vectors as rows, r > 0 and
ε ∈ (0, 1). For a γ-Lipschitz generative model G : rBk

2 → Rn with G(rBk
2 ) ⊆ Sn−1

2 , if

m ≥ c1
k

ε
log
(γr
ε2

)
,

then with probability at least 1− exp(−c2εm) the following holds: For any
G(x0) ∈ G(rBk

2 ) with noiseless measurements y = sign(AG(x0)) and G(x̂) ∈ G(rBk
2 )

with the same measurements, i.e., sign(AG(x0)) = sign(AG(x̂)), we have

‖G(x0)−G(x̂)‖2 ≤ ε.

21



This theorem states that with enough random hyperplane, with high probability each
cell in the tessellation of G(rBk

2 ) by these hyperplanes has diameter at most ε. Note
that, because no pre-quantization noise is considered, we require that the signal set
lies in the unit sphere, hence circumventing the loss of magnitude issue.

The pairing of γ and r in the theorem above is no coincidence and should always be
found in the pair γr, simply because multiplying by a factor r is an r-Lipschitz
function, and the Lipschitz constant of the composition of two functions is the
product of their Lipschitz constants.

Note that in the result, the sampling complexity depends on 1/ε slightly worse than
linear, this becomes slightly worse than quadratic when noise is introduced in the
measurements as in the following theorem.

Theorem 3.1.6. [Corollary 3 from [26]] With A and G as in Theorem 3.1.5 and
ε ∈ (0, 1). If

m ≥ c1
k

ε2
log
(γr
ε

)
,

then with probability at least 1− exp(−c2εm) the following holds. For any
G(x0) ∈ G(rBk

2 ) with noisy measurements ỹ satisfying dH(sign(AG(x∗)), ỹ) ≤ β1 and
its approximate reconstruction G(x̂) ∈ G(rBk

2 ) that satisfies dH(sign(AG(x̂)), ỹ) ≤ β2,
we have that

dS(G(x0), G(x̂)) ≤ ε+ β1 + β2,

where dH(a, b) := 1
m

∑
i∈[m] 1{ai 6=bi} is the normalized Hamming distance and

dS(a, b) := 1
π

arccos〈a, b〉 is the geodesic distance.

Theorem 3.1.6 allows for bit corruptions of the measurements and approximate
recovery at the cost of an additional factor 1

ε
. Also note the previous two theorems

require that the range of the generative model must lie on the unit sphere, hence there
is no quadratic dependency on the Lipschitz constant or radius of the signal set. This
constraint can be somewhat relaxed using a normalization argument.

3.2 Sub-Gaussian

Dirksen and Mendelson derived results that generalize the measurement and noise
distributions to sub-Gaussian and allow for the reconstruction of the norm using
dithering as described in the introduction [12].

For the recovery problem, let t0 ∈ T ⊂ Rn be a signal set and

yi = sign(〈ai, t0〉+ ξi + τi), for i = 1, . . . ,m,

where ai are i.i.d. centered, isotropic and sub-Gaussian random vectors and ξi are
i.i.d. centered sub-Gaussian random variables with variance σ2, the dithering τi are
i.i.d uniformly distributed on [−λ, λ]. Assume that the sub-Gaussian norm of the
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noise ξi and measurement vectors ai is bounded by L. Consider corrupted
measurements ycorr that satisfy

dH(ycorr, y) ≤ β,

where dH is the normalized Hamming distance, β ∈ [0, 1) is a percentage of bit-flips
and define the localized star shaped hull as

T Star
ρ = (Star0(T − T )) ∩ ρBn

2 .

Consider the optimization problem

min
t∈T
‖t‖2

2 −
2λ

m
yTcorrAt, (3.4)

which is similar to optimization problem (3.3). In this scenario, the following recovery
guarantee holds.

Theorem 3.2.1. [Slight generalization of theorem 1.7 in [12]] There exist constants
c0, . . . , c4 that depends only on L for which the following holds. Let T ⊆ RBn

2 , fix
ε > 0, set

λ ≥ c0(σ +R)
√

log(c0/ε)

and let r = c1ε/ log(eλ/ε). If m and β satisfy

m ≥ c2λ
2

((
w(T Star

ε )

ε2

)2

+
logN (T, r)

ε2

)
and β

√
log(e/β) = c3

ε

λ
,

then with probability at least 1− 8 exp(−c4mρ
2/λ2), for any t0 ∈ T , the solution t̂ of

optimization problem (3.4) satisfies ‖t̂− t0‖2 ≤ ε.

The original formulation of the theorem requires T to be convex, but, without major
modifications of the proof, this can be extended to arbitrary signal sets using the
star-shaped hull, as was also mentioned in the survey of quantized compressed sensing
by Dirksen [8].

A direct application of Theorem 3.2.1 to the range of a generative model together
with the bounds from the previous chapter leads to the following result.

Corollary 3.2.2. There exist constants c0, . . . , c4 that depends only on L for which
the following holds. Let G : Bk

2 → Rn be a γ-Lipschitz generative model, consider the
signal set G(Bk

2 ) ⊆ RBn
2 , fix ε > 0 small enough and set

λ ≥ c0(σ +R)
√

log(c0/ε).

If m and β satisfy

m ≥ c1
kλ2

ε2

(
log
(c2nγ

ε

)
+ log log

(
eλ

ε

))
,
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and
β
√

log(e/β) = c3
ε

λ
,

then, with probability at least 1− 8 exp(−c4mε
2/λ2), for any x0 ∈ Bk

2 , the solution
G(x∗) of optimization problem (3.4) satisfies ‖G(x∗)−G(x0)‖2 ≤ ε.

Compared to the results derived in Corollary 3.1.4, the dependencies on γ, 1
ε
, k and R

are similar up to logarithmic factors. However, the generalization from Gaussian to
sub-Gaussian distributions gives much more freedom on the measurement vectors.

In Chapter 5 we will take an in-depth look at the proof and results from Qiu et al.
[30] which further generalizes the measurement vectors to sub-exponential
distributions and allows for almost arbitrary noise distribution.

3.3 Optimality

Although the sampling complexities in Corollary 3.1.4 and 3.2.2 are very similar, the
first measures the error in terms of the squared norm. The following result by Dirksen
and Mendelson shows that the latter sampling complexity for sparse recovery is
near-optimal.

Theorem 3.3.1 (Variant of theorem 1.3 from [13]). Let νi be i.i.d. centred Gaussian
random variables with variance σ2, set A to be a (random) measurement matrix that
satisfies, with probability at least 0.95,

‖At‖2 ≤ κ
√
m‖t‖2, for all t ∈ Σs,n.

Let Ψ be any recovery procedure such that, for every fixed t0 ∈ Σs,n ∩Bn
2 , when

receiving as data the measurement matrix A and the noisy linear measurements
((At0)i + νi)

m
i=1, Ψ returns t∗ that satisfies ‖t∗ − t0‖2 ≤ ε with probability 0.9. Then,

for ε small enough, it holds that

m ≥ cκ−2σ2w
2(Σn

s ∩Bn
2 )

ε2
,

for some constant c > 0.

The required property of A is satisfied by matrices that satisfy a restricted isometry
property, like random (sub-)Gaussian matrices, see for example the book by Foucart
and Rauhut [14, Definition 6.1 and Theorem 9.2].

This result shows the near-optimality of the sampling complexity of Theorem 3.2.1,
including the optimal dependency on the Gaussian width, the inverse error and the
variance of the noise. The dependency on the sub-Gaussian norm of the measurement
vectors found in Theorem 3.2.1 is hidden in the universal constants and can therefore
not be analyzed for optimality.

We can slightly rephrase the optimality result for the scenario of generative models.
Assuming that the recovery procedure also works for scaled problems, we get that for
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every γ > 0 there exists a γ-Lipschitz function G : X ⊆ Rk → Rn such that, under the
same conditions of the theorem above, the sampling complexity is at least

m ≥ cκ−2σ2w
2(G(X))

ε2
.

The trick is to let the generative model G be a simple multiplication with γ and
X = Σn

s . The rescaling property of the recovery procedure is needed to extend the
properties outside the unit ball.

At the end of Chapter 5 we will look at another optimality result that is specifically
derived for generative models.
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Chapter 4

Linear and affine covering numbers of signal sets

The important quantities we needed in the previous chapters like the covering number
and Gaussian width were enough for those results, but for the analysis of the
statistical result by Qui et al. [30] in the next chapter we need another quantity.

Definition 4.0.1. Let T ⊆ Rn and k ∈ [n]. Then the linear covering number
Clin(T, k) (or C(T, k)) is defined as the minimal number of k-dimensional linear
subspaces of Rn needed to cover T .
The affine covering number Caff(T, k) is defined as the minimal number of
k-dimensional affine subspaces of Rn needed to cover T .

These two quantities are equivalent in the following sense.

Lemma 4.0.2. If T ⊆ Rn and k ∈ [n], then

Caff(T, k) ≤ Clin(T, k) ≤ Caff(T, k − 1).

Proof. For the lower bound, note that any linear subspace is also an affine subspace.
For the upper bound, let ∪mi=1Pi + pi be an affine covering of dimension k − 1, then
∪mi=1span (Pi, pi) is a linear covering of dimension at most k. �

We define both the linear and affine version, because the linear covering number
simplifies the proof in the following chapter, while the affine covering number is easier
to bound for some signal sets. So let us first look at the two most important examples
of signal sets with finite linear/affine covering number.

Sparse vectors
The simplest of non-trivial examples for which the linear covering number is finite is
set of s-sparse vectors. For this set Σn

s we have(n
s

)s
≤ Clin(Σn

s , s) =

(
n
s

)
≤
(en
s

)s
. (4.1)

Through rotation, a same bound holds for sparse vectors in any basis.

Neural networks
Qiu et al. [30] considered neural networks of the form

G(x) := σ(Wl σ(. . .W2 σ(W1x))),
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where Wi ∈ Rki×ki−1 with ki ≤ n for all i ∈ [l], and σ is the ReLU activation function.
They consider as signal set the bounded range G(Rk) ∩RBn

2 for which they show 1

that

Clin(G(Rk) ∩RBn
2 , k) ≤

(en
k

)kl
.

This result can be generalized to neural networks of the form

G(x) := σ(bl +Wlσ(. . . b2 +W2σ(b1 +W1x))), (4.2)

i.e., a neural network with bias. Furthermore, instead of ReLU activation functions,
we can also consider activation functions that componentwise consist of p linear
pieces, like the (leaky) ReLU consists of 2 linear pieces. For such a network we have

Caff(G(Rk) ∩RBn
2 , k) ≤

(epn
k

)kl
.

This generalization gives much more flexibility in the type of networks we can consider
and similar results can be derived for example for Convolutional Neural Networks, for
which convolution and max/average pooling operations are all piecewise linear.

It it important to note that general non-linear behaviour like the use of sigmoid and
logistic activation functions cannot be efficiently handled by the linear and affine
covering number, which is one of the big limitations of this approach.

4.1 Back to the (sub-)Gaussian setting

The linear and affine covering number can be used to bound the (localized) Gaussian
width and covering number of a signal set. Therefore, we can write the sampling
complexities of the previous chapter in terms of these new covering numbers. In this
section, we will derive these new bounds.

The linear and affine covering numbers tell us nothing about whether the set itself is
bounded, therefore we will always look at the set T ∩RBn

2 to circumvent this problem.
Also, most of these results work with both the linear and affine covering number, so
when the specific choice does not matter, we will use Clin/aff to denote either Clin or Caff.

4.1.1 Covering Number and (Localized) Gaussian Width

By definition of the k-dimensional linear covering number, there exists k-dimensional
linear subspaces P1, . . . , PC(T,k) such that T ⊆ ∪i∈[C(T,k)]Pi. Such a decomposition will
be important in the sizable proof in the next chapter, but also for the various
derivations in the remainder of this chapter, like in the following lemma.

1Technically, they did not use the idea of the linear covering number, but the number of linear piece
the domain Rk is split into by the network, which is the same. Furthermore, they also used the weaker

bound
∑k

i=0

(
k
d

)
≤ dk + 1 instead of bounding it by the slightly stronger (ed/k)k. See the proof of

Lemma A.2 in [30] for more details.
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Lemma 4.1.1. If T ⊆ Rn, then for any R ≥ 0 and ε > 0,

N (T ∩RBn
2 , ε) ≤ Clin/aff(T, k)

(
4R

ε
+ 1

)k
.

The proof of Lemma 4.1.1 follows directly from the bound on the covering number of
the union of linear subspaces. A similar argument can be done for the Gaussian
width, but it requires strong Gaussian concentration inequalities. The proof of the
following lemma can be found in appendix A.

Lemma 4.1.2. If T ⊆ Rn, then for any R ≥ 0,

w(T ∩RBn
2 ) ≤ CR

(√
log Clin/aff(T, k) +

√
k
)
,

for some constant C > 0.

To bound the localized Gaussian width, it is enough to bound the linear covering
number of the star-shaped hull Star0(T − T ). Luckily, we can combine the inequalities

Clin/aff(T ± S, k +m) ≤ Clin/aff(T, k)Clin/aff(S,m),

and
Clin(Star0(T ), k) ≤ Clin(T, k),

to conclude that the linear covering number of Star0(T − T ) is bounded by Clin(T, k)2,
hence we get the following corollary of Lemma 4.1.2.

Corollary 4.1.3. If T ⊆ Rn, then for any ρ ≥ 0,

w (Star0(T − T ) ∩ ρBn
2 ) ≤ Cρ

(√
log Clin(T, k) +

√
k
)
,

for some constant C > 0.

In many practical examples, like sparse vectors and neural networks, the linear/affine
covering number term will dominate the term

√
k.

4.1.2 Sampling Complexities

We can now combine these bounds with the sampling complexities found in the
previous chapter. Recall that the sampling complexity for Gaussian measurements as
in Theorem 3.1.1 is given by

m ≥ C
w2(T )

ε2
,

therefore, with the example of the sparse vectors T = Σn
s ∩RBn

2 , we get a new
sampling complexity of

m ≥ CR2 s log(en/s)

ε2
,
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which is the same bound as given in the work by Plan and Vershynin [29].

More interesting is using a generative model, where we assume that our generative
model is a neural network as described in Equation (4.2) with ReLU activation
functions. Under this assumption, we have

Clin(G(Rk) ∩RBn
2 , k) ≤

(en
k

)kl
.

The sampling complexity for sub-Gaussian measurements as in Theorem 3.2.1 then
becomes

m ≥ c2
λ2

ε2

(
kl log

(en
k

)
+ k log

(
5R

ε

))
,

for small enough ε. Thus we see that up to some additional logarithmic terms, the
linear covering number gives the dominating term.

4.2 VC-Dimension

Suppose two signals t1, t2 ∈ T are close together in the sense that ‖t1 − t2‖2 ≤ δ for
some δ > 0. It will be useful to understand how well they are separated by the
measurement vectors ai, as signals that are close together have measurements that are
as close together. We can measure this using

m∑
i=1

1{|〈ai,t1−t2〉|≥η},

for some η > 0. This process counts by how many of the measurement vectors they
are badly separated. For uniform results, we would like this quantity to be low with
high probability for all signals that are close together, i.e.,

sup
t∈(T−T )∩δBn2

m∑
i=1

1{|〈ai,t〉|≥η}.

Understanding this quantity is an important part of the proof in the next chapter.

Let P be a set of k-dimensional linear spaces that cover T such that |P| = C(T, k),
then we can bound this supremum as

sup
t∈(T−T )∩δBn2

m∑
i=1

1{|〈ai,t〉|≥η} ≤ sup
P1,P2∈P,t∈(P1−P2)∩Bn2

m∑
i=1

1{|〈ai,t〉|≥η/δ}.

To further bound this term with high probability, we will study the combinatorics of
this process through the VC-dimension of the following sets. Let the elements of P be
P1, . . . , PC(T,k) and c ≥ 0 be a fixed constant. Define the following classes of functions:

Hi,j :={1{|〈·,t〉|≥c} : t ∈ (Pi − Pj) ∩Bn
2 }, for i, j = 1, . . . , C(T, k), and

H := ∪C(T,k)
i,j=1 Hi,j.

Our interest will be in the VC-dimension of the class H.
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Lemma 4.2.1. For the class H as defined above we have

VC(H) ≤ c0 log C(T, k),

for some constant c0 > 0.
Furthermore,

Radm(H) ≤ c1

√
log C(T, k)

m
,

for some constant c1 > 0 and where Radm is the empirical Rademacher complexity.

Proof. Let us first consider the smaller class of half-space indicators

Ĥ′i,j := {1{〈·,t〉≥c} : t ∈ Pi − Pj}.

Because the underlying space of functions a 7→ 〈a, t〉 − c is an affine vector space of
dimension at most 2k it holds [34, Theorem 1.9] that VC(H′i,j) ≤ 2k. By the
Sauer-Shelah lemma [32, Theorem 8.3.16] we can therefore bound the growth function
like

Π(Ĥ′i,j, p) ≤
( ep

2k

)2k

.

Next we consider the two-sided class

Ĥi,j := {1{|〈·,t〉|≥c} : t ∈ Pi − Pj}.

Through preservation of the growth function under complement and by taking
pairwise intersection [28], we can bound its growth function by

Π(Ĥi,j, p) ≤
( ep

2k

)4k

.

Now note that Hi,j ⊂ Ĥi,j, hence Π(Hi,j, p) ≤ Π(Ĥi,j, p) and through a union
argument we get that

Π(H, p) ≤
C(T,k)∑
i,j=1

Π(Hi,j, p) ≤ C(T, k)2
( ep

2k

)4k

. (4.3)

We can recover a bound for the VC-dimension by finding a small p such that
Π(H, p) < 2p, in which case VC(H) ≤ p. For this it is enough to find p such that

2 log C(T, k) + 4k log
( ep

2k

)
< p.

This holds for p = c0 log C(T, k) for large enough c0, see Lemma A.0.3, allowing us to
conclude that VC(H) ≤ c0 log C(T, k).
The bound on the Rademacher complexity of H follows directly from the bound on
the VC-dimension together with the inequality [34, Corollary 1.21]

Radm(H) ≤ c1

√
V C(H)

m
,

for some constant c1 > 0. �
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Now define the empirical process

R̂m(t) :=
1

m

m∑
i=1

1{|〈ai,t〉|≥η/δ},

and its expectation
R(t) := E[R̂m(t)] = P(|〈a1, t〉| ≥ η/δ).

The process R̂m(t) can be uniformly bounded using the following corollary.

Corollary 4.2.2. Let u > 0, then with probability at least 1− 2e−u,

sup
P1,P2∈P,t∈(P1−P2)∩Bn2

|R(t)− R̂m(t)| ≤ c2

√
log C(T, k) + u

m
,

for some constant c2 ≥ 0. Furthermore, we get

sup
P1,P2∈P,t∈(P1−P2)∩Bn2

R̂m(t) ≤ sup
z∈Bn2

R(z) + c2

√
log C(T, k) + u

m
.

Proof. The first bound follows directly from the fact [34, Theorem 1.14] that for
u > 0, with probability at least 1− 2e−u it holds that

sup
P1,P2∈P,t∈(P1−P2)∩Bn2

|R(t)− R̂m(t)| ≤ 2Radm(H) +

√
u

2m
.

For the second inequality, notice that

sup
P1,P2∈P,t∈(P1−P2)∩Bn2

R̂m(t)− sup
z∈Bn2

R(z) ≤ sup
Pi,Pj∈P:t∈(Pi−Pj)∩Bn2

|R(t)− R̂m(t)|

�

Corollary 4.2.2 above will be a key component in bounding the Hamming distance in
the proof in the next chapter.
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Chapter 5

Sub-exponential setting

The results in Chapter 3 were all based on strong (sub-)Gaussian concentration
inequalities and generic chaining, therefore these results cannot be easily extended to
measurement vectors with distributions with tails heavier than sub-Gaussian. In this
chapter, we will focus on the statistical result by Qiu et al. [30], which is a step in
going beyond sub-Gaussian measurements in one-bit compressed sensing with
dithering.

Their result is specifically proven when the signal set is the range of an unbiased
neural network with ReLU activation functions, but they state that their proof can be
extended to other neural networks with piecewise linear behaviour. The biggest part
of this chapter will therefore be dedicated to the proof of this theorem when the signal
set has finite linear covering number, which is the most natural extension of their
result. This does not just extend the result to other neural network with piecewise
linear behaviour, but also to the standard sparsity assumption of Σn

s . Besides
generalizing the signal sets allowed by the theorem, some corrections and
improvements have been made to the arguments in the original proof. In the next
chapter we will look into further generalizing the distributions of the noise and
measurement vectors beyond sub-exponential distributions.

5.1 The Main Result

Let T ⊆ Rn be a signal set and let the objective function L : T → R be defined by

L(t) := ‖t‖2
2 −

2λ

m

m∑
i=1

yi〈ai, t〉,

where yi = sign(〈ai, t0〉+ ξi + τi) with t0 ∈ T . Denote the minimizer of L over T as t̂,
then the goal is to show that for suitably chosen values of λ and m, we have for u > 0,
that with probability at least 1− c0e

−c1u, t̂ satisfies

‖t̂− t0‖ ≤ ε.

This result is given in the following lemma. We will always assume that the random
variables we work with are continuously distributed.
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Theorem 5.1.1 (Generalization of Theorem 3.2 in [30]). Suppose ai are
independently sampled from a mean zero, isotropic, and sub-exponential distribution.
Also assume that the noise ξi is independently sampled from a sub-exponential
distribution. For any ε ∈ (0, 1) and R ≥ 1, set Ca,R,ξ := c1(‖a1‖ψ1R + ‖ξ1‖ψ1) and
assume that λ ≥ c2Ca,R,ξ log(c3Ca,R,ξ/ε) and

m ≥ c4
λ2

ε2
log2(λm) (u+ log C(T, k) + k log(2R) + k log(m)) .

Then, with probability at least 1− c5e
−c6u, t̂ satisfies

‖t̂− t0‖2 ≤ ε,

for any t0 ∈ T ∩RBn
2 , where c1, . . . , c6 ≥ 0 are absolute constants, depending only on

‖a1‖ψ1.

5.2 Bias-Variance decomposition

In order to prove Theorem 5.1.1, we will proof that if a signal is sufficiently far from
the true signal, say ‖t− t0‖2 > ε, then L(t)− L(t0) > 0 and therefore t cannot be the
minimizer. Therefore, the minimizer t̂ which satisfies L(t̂)− L(t0) ≤ 0, also satisfies
‖t̂− t0‖2 ≤ ε.
To achieve this, we can decompose the excess objective L(t)−L(t0) in two components
and bound each component separately. Therefore, we define a deterministic bias part

B(t, t0) := ‖t‖2
2 − ‖t0‖2

2 − 2λE[y1〈a1, t− t0〉],

and a random variance part

V (t, t0) :=
2λ

m

m∑
i=1

(yi〈ai, t− t0〉 − E [yi〈ai, t− t0〉]) ,

such that
L(t)− L(t0) = B(t, t0)− V (t, t0).

In the next couple of sections, we will show that under conditions of Theorem 5.1.1, if
‖t− t0‖2 > ε, then B(t, t0) ≥ 1

2
‖t− t0‖2

2 and V (t, t0) ≤ 1
4
‖t− t0‖2

2. From this we can
conclude that if ‖t− t0‖2 > ε, then

L(t)− L(t0) = B(t, t0)− V (t, t0) ≥ 1

4
‖t− t0‖2

2 > 0,

which would conclude the proof of Theorem 5.1.1.
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5.3 Bound for Bias

In order to lower bound the bias term, we will show that there exists a function K(λ)
such that ∣∣∣∣E[y1〈a1, t− t0〉]−

1

λ
〈t0, t− t0〉

∣∣∣∣ ≤ K(λ)‖t− t0‖2.

If it is then possible for any ε ∈ (0, 1) to choose λ such that K(λ) ≤ ε
4λ

, then we get
that if ‖t− t0‖2 > ε, then

B(t, t0) = ‖t‖2
2 − ‖t0‖2

2 − 2λE[yi〈ai, t− t0〉]

≥ ‖t‖2
2 − ‖t0‖2

2 − 2〈t0, t− t0〉 −
1

2
ε‖t− t0‖2

= ‖t− t0‖2
2 −

1

2
ε‖t− t0‖2

>
1

2
‖t− t0‖2

2.

A function K(λ) can be found to work with quite general measurements and noise,
only depending on the tail behaviour of the unquantized, undithered measurements.

Lemma 5.3.1. Let λ > 0 and define the independent random variables
τ v Unif ([−λ, λ]), an isotropic, mean zero random vector a and an arbitrary random
variable ξ. Then, ∣∣∣∣E[y〈a, t− t0〉]−

1

λ
〈t0, t− t0〉

∣∣∣∣ ≤ K(λ)‖t− t0‖2,

with

y = sign(〈a, t0〉+ ξ + τ), and

K(λ) = 2

√
P(|V | > λ) +

2

λ2

∫ ∞
λ

uP(|V | > u)du,

where V := 〈a, t0〉+ ξ.

Proof. Let V := 〈a, t0〉+ ξ and Z := 〈a, t− t0〉. Because a is isotropic and has mean
zero, we have E[ZV ] = 〈t0, t− t0〉, hence∣∣∣∣E[y〈a, t− t0〉]−

1

λ
〈t0, t− t0〉

∣∣∣∣ =

∣∣∣∣E[Zsign(V + τ)]− E[ZV ]

λ

∣∣∣∣ .
First we consider the decomposition

E[Zsign(V + τ)|Z, V ] =
ZV

λ
1{|V |≤λ} + Z1{V >λ} − Z1{V <−λ},
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whose proof can be found in Appendix A as Lemma A.0.1. From this decomposition
we obtain the following bound∣∣∣∣E[Zsign(V + τ)]− E[ZV ]

λ

∣∣∣∣ =

∣∣∣∣−E [ZVλ 1{|V |>λ}

]
+ E

[
Z1{V >λ}

]
− E

[
Z1{V <−λ}

]∣∣∣∣
≤ E

[∣∣∣∣ZVλ 1{|V |>λ}

∣∣∣∣]+ E
[
|Z|1{|V |>λ}

]
≤ 2E

[∣∣∣∣ZVλ 1{|V |>λ}

∣∣∣∣]
≤ 2

λ
‖V 1{|V |>λ}‖L2‖Z‖L2 .

Due to the assumption that a is isotropic, we have

‖Z‖L2 = ‖t− t0‖2,

and furthermore we have

‖V 1{|V |>λ}‖2
L2
≤ λ2P(|V | > λ) + 2

∫ ∞
λ

uP(|V | > u)du.

A proof of this final tail bound can be found in Lemma A.0.2 in Appendix A.
Combining these bounds concludes the proof. �

From this general lemma, we can derive the bounds for more specific distributions.
The following corollary results in bounds similar to that of the original work by Qiu et
al. [30, Lemma A.1] in the sub-exponential case, but from the above lemma we can
also derive sub-Gaussian results similar to that of Dirksen et al. [12, Lemma 4.1]

Corollary 5.3.2. Let λ > 0 and define the independent random variables
τi v Unif([−λ, λ]), an isotropic sub-exponential random vector ai with mean zero and
a sub-exponential random variable ξi. Then,∣∣∣∣E[y1〈a1, t− t0〉]−

1

λ
〈t0, t− t0〉

∣∣∣∣ ≤ K(λ)‖t− t0‖2,

with

K(λ) = c1

√
1 +

1

λ
Ca,R,ξ +

1

λ2
C2
a,R,ξ exp

(
−c2

λ

Ca,R,ξ

)
,

where Ca,R,ξ = R‖a1‖ψ1 + ‖ξ1‖ψ1.

Furthermore, if λ ≥ c3Ca,R,ξ log(c4Ca,R,ξ/ε), then B(t, t0) ≥ 1
2
‖t− t0‖2

2.

Proof. Because a1 and ξ1 are sub-exponential, we have that 〈a1, t0〉+ ξ1 is also
sub-exponential with ‖〈a1, t0〉+ ξ1‖ψ1 ≤ R‖a1‖ψ1 + ‖ξ1‖ψ1 = Ca,R,ξ. Therefore we have
that

P(|〈a1, t0〉+ ξ1| > λ) ≤ c1 exp

(
−c2

λ

Ca,R,ξ

)
,

35



hence ∫ ∞
λ

uP(|〈a1, t0〉+ ξ1| > u)dt ≤ c1

∫ ∞
λ

u exp

(
−c2

u

Ca,R,ξ

)
dt

= c1(λCa,R,ξ + C2
a,R,ξ) exp

(
−c2

λ

Ca,R,ξ

)
.

Hence we can conclude that

K(λ) = c1

√
1 +

1

λ
Ca,R,ξ +

1

λ2
C2
a,R,ξ exp

(
−c2

λ

Ca,R,ξ

)
,

works.
Now to get K(λ) ≤ ε/4λ, we want that

c1

√
λ2 + λCa,R,ξ + C2

a,R,ξ exp

(
−c2

λ

Ca,R,ξ

)
≤ ε,

for which it is enough to have

c1(λ+ Ca,R,ξ) exp

(
−c2

λ

Ca,R,ξ

)
≤ ε,

which holds for λ ≥ c3Ca,R,ξ log(c4Ca,R,ξ/ε). �

More general results, including the sub-Gaussian scenario and heavy tailed scenarios,
will be discussed in the next chapter.

5.4 Bound for Variance

Recall that the variance term is defined as

V (t, t0) :=
2λ

m

m∑
i=1

(yi〈ai, t− t0〉 − E [yi〈ai, t− t0〉]) .

In order to show that under the conditions of Theorem 5.1.1 and when ‖t− t0‖2 > ε,
then V (t, t0) ≤ 1

4
‖t− t0‖2

2 holds uniformly with high probability, we can look at a
symmetrization of the variance term as given in the following lemma. The proof
follows directly from a lemma on symmetrization for probabilities [31, Lemma 2.3.7].

Lemma 5.4.1. If {yi〈ai, t− t0〉}i∈[m] are independent, mean zero stochastic processes
over t, t0 ∈ T , then,

P
(

sup
t,t0∈T

| 1
m

∑m
i=1 yi〈ai, t− t0〉 − E [yi〈ai, t− t0〉] |

‖t− t0‖2

≤ x

)
≥ P

(
sup
t,t0∈T

| 1
m

∑m
i=1 εiyi〈ai, t− t0〉|
‖t− t0‖2

≤ x

4

)
,
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where εi are independent Rademacher random variables. Therefore, if with probability
at least p,

sup
t,t0∈T

| 1
m

∑m
i=1 εiyi〈ai, t− t0〉|
‖t− t0‖2

≤ ε

32λ
, (5.1)

then with probability at least p,

sup
t,t0∈T

|V (t, t0)|
2λ‖t− t0‖2

≤ ε

8λ
.

Therefore, if ‖t− t0‖2 > ε, then with probability at least p for any t, t0 ∈ T we have

V (t, t0) ≤ 1

4
‖t− t0‖2

2.

Therefore, the current goal is to achieve inequality (5.1) with high probability, for
which we will use a covering argument. Let δ > 0 to be determined later and denote
by N a minimal δ-net of T and N (t) the best approximation of t in N . For simplicity,
denote next to yi the new measurement yvi := sign(〈ai, v〉+ ξi + τi) such that yi = yt0i ,
then we can split the symmetrization as follows

sup
t,t0∈T

| 1
m

∑m
i=1 εiyi〈ai, t− t0〉|
‖t− t0‖2

≤ sup
t,t0∈T,v∈N

| 1
m

∑m
i=1 εiy

v
i 〈ai, t− t0〉|

‖t− t0‖2

+ sup
t,t0∈T

| 1
m

∑m
i=1 εi(y

t0
i − y

N (t0)
i )〈ai, t− t0〉|

‖t− t0‖2

.

In the following two subsections we will bound these two terms separately. The first
term with the fixed signs will be bounded using another covering argument, while the
second term with the sign differences will be bounded by counting the number of
times that the signs will change between t0 and N (t0), i.e., we will bound the
normalized Hamming distance dH(yt0 , yN (t0)).

5.4.1 Fixed Signs

Bounding the fixed signs term can be done using the following lemma.

Lemma 5.4.2. For any u > 0 and finite set N , with probability at least
1− 2 exp(−u+ 2 log C(T, k) + 2 log(5)k + log |N |) we have

sup
t,t0∈T,v∈N

∣∣ 1
m

∑m
i=1 εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ c‖a1‖ψ1

(√
u

m
+
u

m

)
,

for some universal constant c > 0.

Thus if m ≥ cλ
2

ε2
(u+ log C(T, k) + k + log |N |) for ε ∈ (0, 1) with λ ≥ 1, ‖a1‖ψ1 ≥ 1,

then with probability at least 1− 2 exp(−u),

sup
t,t0∈T,v∈N

∣∣ 1
m

∑m
i=1 εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ ε

64λ
,

37



for some universal constant c > 0 dependent only on ‖a1‖ψ1.

Proof. Let us first consider fixed v ∈ N . It then follows that, because εi are
independent of the rest of the random variables, the distribution of εiy

v is same as εi,
hence we need to bound

sup
t,t0∈T

∣∣ 1
m

∑m
i=1 εi〈ai, t− t0〉

∣∣
‖t− t0‖2

.

Due to T being covered by C(T, k) linear subspaces of dimension k, we first restrict
ourselves to pairs of these linear subspaces, before using a union bound to conclude
the proof. So let P1 and P2 be such linear subspaces. For each Pi, there exists a
matrix W1 such that each point in Pi can be written as Wisi, with si ∈ Rk. Therefore
we can use the following sequence of equivalences:

sup
t1∈P1,t2∈P2

∣∣ 1
m

∑m
i=1 εi〈ai, t1 − t2〉

∣∣
‖t1 − t2‖2

= sup
s1,s2∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai,W1s1 −W2s2〉

∣∣
‖W1s1 −W2s2‖2

= sup
s∈R2k

∣∣ 1
m

∑m
i=1 εi〈ai,Ws〉

∣∣
‖Ws‖2

= sup
b∈E2k∩Sn−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ =: Em,

where W is obtained by concatenating W1 and −W2, and E2k is 2k dimensional
subspace spanned by the columns of W .
To bound Em, let M be a minimal 1

2
-net of E2k ∩ Sn−1 for which |M| ≤ 52k, because

E2k ∩ Sn−1 and S2k−1 are equivalent up to rotation. With this covering we get that

Em ≤ sup
b∈M

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+ sup
b∈E2k∩Sn−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b−M(b)〉

∣∣∣∣∣
≤ sup

b∈M

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+
1

2
sup

b∈E2k∩Sn−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b−M(b)〉
‖b−M(b)‖2

∣∣∣∣∣
≤ sup

b∈M

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+
1

2
Em.

Thus we have that

Em ≤ 2 sup
b∈M

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ .
For any fixed b ∈M and u ≥ 0 we have by Bernstein’s inequality, Theorem B.2.2,
that, with probability at least 1− 2e−u,

2

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤ c‖a1‖ψ1

(√
u

m
+
u

m

)
.
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Then using a union bound on the 1
2
-net M gives us that with probability at least

1− 2e−u+log(5)2k,

Em ≤ c‖a1‖ψ1

(√
u

m
+
u

m

)
.

Use a union bound over all the C(T, k)2 pairs of linear subspaces P1 and P2, and a
union bound over all the vectors in N concludes the proof of the first statement. The
second statement follows from a few substitutions. �

5.4.2 Sign Differences

The trick to bounding

sup
t,t0∈T

| 1
m

∑m
i=1 εi(y

t0
i − y

N (t0)
i )〈ai, t− t0〉|

‖t− t0‖2

,

is to show that with high probability and uniformly, dH(yt0 , yN (t0)) ≤ α� 1, as this
allows us to conclude that, with high probability,

sup
t,t0∈T

max
|I|≤αm

2

m

∑
i∈I

|〈ai, t− t0〉|
‖t− t0‖2

≤ sup
t̄∈Bn2

max
|I|≤αm

2

m

∑
i∈I

|〈ai, t̄〉|,

which can then be efficiently bounded using centralization and the concentration
properties of ai.

Bounding the Hamming distance directly is quite difficult, as it can be difficult to
work with the sign of the measurements. To circumvent this, note that if the
measurements are close together such that |〈ai, t0 −N (t0)〉| < η and one of them is far
away from the origin such that |〈ai,N (t0)〉+ ξi + τi| ≥ η for η > 0, then the
measurements must lie on the same side of the hyperplane and thus
sign(〈ai, t0〉+ ξi + τi) = sign(〈ai,N (t0)〉+ ξi + τi). In order to use this argument with
high probability, we will use the following lemma, whose proof can be found in
Appendix A, and then proof the requirements.

Lemma 5.4.3. Let η > 0 and ε ∈ [0, 1/2]. If with probability at least 1− p,

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,t0−N (t0)〉|≥η} ≤ ε,

and with probability at least 1− q,

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,N (t0)〉+ξi+τi|<η} ≤ ε,

then with probability at least 1− p− q,

sup
t0∈T

dH(yt0 , yN (t0)) ≤ 2ε.
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For the first component, we have already done most of the work during the
VC-dimension argument in the previous chapter, from which we can derive the
following lemma.

Lemma 5.4.4. Define

δ :=
η

‖a‖ψ1

log(c1λ/η) and

η := c2(λ+ ‖a‖ψ1)

√
log C(T, k) + u′

m
.

If u′ ≥ u ≥ 0 and N is a minimal δ-net of T , then with probability at least 1− 2e−u,

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,t0−N (t0)〉|≥η} ≤ 2
η

λ
.

Proof. Let P be a minimal set of k-dimensional linear subspaces that cover T . By the
VC-dimension argument in Corollary 4.2.2, we get with probability at least 1− 2e−u,
that

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,t0−N (t0)〉|≥η} ≤ sup
P1,P2∈P,t∈(P1−P2)∩δBn2

1

m

m∑
i=1

1{|〈ai,t〉|≥η}

= sup
P1,P2∈P,t∈(P1−P2)∩Bn2

1

m

m∑
i=1

1{|〈ai,t〉|≥η/δ}

≤ sup
z∈Bn2

P(|〈a1, z〉| ≥ η/δ) + c2

√
log C(T, k) + u

m
.

Because ai is sub-exponentially distributed,

sup
z∈Bn2

P(|〈a1, z〉| ≥ η/δ) ≤ c1 exp

(
− η

δ‖a‖ψ1

)
=
η

λ
, (5.2)

where the second step is by the choice of δ. The result then follows from the definition
of η, because

c2

√
log C(T, k) + u

m
≤ c2

λ+ ‖a‖ψ1

λ

√
log C(T, k) + u′

m
=
η

λ
.

�

The second term can be obtained through a covering argument.

Lemma 5.4.5. Define

δ :=
η

‖a‖ψ1

log(c1λ/η),

η := c2(λ+ ‖a‖ψ1)

√
log C(T, k) + u′

m
,
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and assume that m ≥ log C(T, k) + k log(5R) + u′ with u′ satisfying

u′ = u+ log C(T, k) + k log(5R) + Ck log

(
m

log C(T, k) + u′

)
.

and c2 ≥ 3. Then with probability at least 1− exp(−c0u),

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,N (t0)〉+ξi+τi|<η} ≤ 2
η

λ
,

Proof. First consider a single N (t0) and ai, then

P(|〈ai,N (t0)〉+ ξi + τi| < η) = P(−η < (〈ai,N (t0)〉+ ξi) + τi < η) ≤ η

λ
, (5.3)

independent of the distribution of 〈ai,N (t0)〉+ ξi. By using the Chernoff bound,
Theorem B.4.1, we get with probability at least 1− exp(−ηm/3λ) that

1

m

m∑
i=1

1{|〈ai,N (t0)〉+ξi+τi|<η} ≤ 2
η

λ
.

By a union bound over N (T, δ) this holds uniformly over the whole covering with
probability at least 1− exp(logN (T, δ)− ηm/3λ). The next goal is to bound this
probability by the simple 1− e−cu, for which we need to analyze both terms in the
exponent. First note that

log

(
1

δ

)
≤ C log

(
m

log C(T, k) + u′

)
.

Hence for the metric entropy we have that

logN (T, δ) ≤ log C(T, k) + k log

(
5R

δ

)
(5.4)

≤ log C(T, k) + k log(5R) + Ck log

(
m

log C(T, k) + u′

)
. (5.5)

Next, note that by definition of η,

ηm

3λ
≥ c2

3

√
(log C(T, k) + u′)m.

By filling in the definining property of u′, this is further lower bounded by

c2

3

√
m

√
u+ log C(T, k) + k log(5R) + Ck log

(
m

log C(T, k) + u′

)
.
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Furthermore, by constraint on m and definition of u′, we can rewrite the lower bound
to become

c2

3

(
u+ log C(T, k) + k log(5R) + Ck log

(
m

log C(T, k) + u′

))
.

Therefore we have that

logN (T, δ)− ηm/3λ ≤ −c2

3
u

from which we can conclude that

1− exp(logN (T, δ)− ηm/3λ) ≥ 1− exp(−c0u),

for some universal constant c0 > 0, concluding the proof. �

We now have everything to finish up bounding the Hamming distance with high
probability.

Lemma 5.4.6. Define

δ :=
η

‖a‖ψ1

log(c1λ/η), and

η := (λ+ ‖a‖ψ1)c2

√
log C(T, k) + u′

m

and assume that m ≥ c3 (C(T, k) + k log(5R) + u′) with u′ satisfying

u′ = u+ log C(T, k) + k log(5R) + Ck log

(
m

log C(T, k) + u′

)
,

c2 ≥ 3 and λ ≥ ‖a‖ψ1. Then with probability at least 1− 2e−u − e−c0u,

sup
t0∈T

dH(yt0 , yN (t0)) ≤ 4
η

λ
,

where c0, c3 > 0 are universal constants.

Proof. Although the whole lemma follows almost directly from combining Lemma
5.4.4 and 5.4.5 with Lemma 5.4.3, the one constraint that is worth mentioning is that
η
λ
≤ 1

4
must hold. However, this is equivalent to

m ≥ 16c2
2

(
λ+ ‖a‖ψ1

λ

)2

(log C(T, k) + u′) .

Therefore, by the assumption that λ ≥ ‖a‖ψ1 , this results in the additional universal
constant c3 in the lower bound on m. �
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Under the conditions of this lemma we have with probability at least 1− 2e−u − e−c0u
that

sup
t,t0∈T

| 1
m

∑m
i=1 εi(y

t0
i − y

N (t0)
i )〈ai, t− t0〉|

‖t− t0‖2

≤ sup
P1,P2∈P,t̄∈(P1−P2)∩Bn2

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, t̄〉|.

To further bound this, we consider the following further decomposition.

sup
P1,P2∈P

t̄∈(P1−P2)∩Sn−1

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, t̄〉|

≤ sup
P1,P2∈P

t̄∈(P1−P2)∩Sn−1

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉|

+ sup
t̄∈Sn−1

max
|I|≤4mη/λ

2

m

∑
i∈I

E|〈ai, t̄〉|.

To finish the proof of the variance, we now only need to bound these two terms.

Lemma 5.4.7. If m satisfies

m ≥ c2‖a1‖2
ψ1

λ2

ε2
log2(λm)(u+ log C(T, k) + k log(5R) + k log(m))

then, with probability at least 1− 2e−u,

sup
P1,P2∈P,t̄∈(P1−P2)∩Sn−1

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉| ≤
ε

128λ
.

Proof. Due to ai being isotropic and sub-exponential, and ‖t̄‖2 ≤ 1 it holds that
|〈ai, t̄〉| − E|〈ai, t̄〉| is also sub-exponential with sub-exponential norm at most 2‖a‖ψ1 .
Hence, by Bernstein’s inequality, Theorem B.2.2, we have with probability at least
1− 2e−u

′
, that

1

|I|
∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉| ≤ c‖a‖ψ1

(√
u′

|I|
+
u′

|I|

)
,

hence also

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉| ≤ c
‖a‖ψ1

m

(√
u′|I|+ u′

)
for fixed choice of t̄ and I. Now let

u′ = c log(λm)
√
u+ log C(T, k) + k log(5R) + k log(m)

√
m,
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and note that

|I| ≤ c
√
u+ log C(T, k) + k log(5R) + k log(m)

√
m.

Replacing u with u′ results in that with probability at least

1− 2 exp
(
−c log(λm)

√
u+ log C(T, k) + k log(5R) + k log(m)

√
m
)

it holds that

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉| ≤ c‖a‖ψ1 log(λm)

√
u+ log C(T, k) + k log(5R) + k log(m)

m
.

Now by a union bound over all possible I together with an argument similar to
Lemma 5.4.2, by noting that

log

b4ηm/λc∑
i=0

(
m
i

) ≤ c log(λm)
√
u+ log C(T, k) + k log(5R) + k log(m)

√
m,

and by assumption on m, we get that the above inequality holds uniformly with
probability at least

1− 2 exp
(
− c1 log(λm)

√
u+ log C(T, k) + k log(5R) + k log(m)

√
m

+ 2k log(5R) + 2 log C(T, k)
)

≥ 1− 2 exp (−c1u+ k log(5R) + 2 log C(T, k)) .

By substituting u we get with probability at least 1− 2 exp(−u) that

sup
P1,P2∈P,t̄∈(P1−P2)∩Sn2

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉|

≤ c‖a‖ψ1 log(λm)

√
u+ log C(T, k) + k log(5R) + k log(m)

m
.

The remainder of the proof follows directly from the assumption on m.

�

Lemma 5.4.8. If m satisfies

m ≥ c
(λ+ ‖a‖ψ1)

2

ε2
(u+ log C(T, k) + k log(5R) + Ck log(m)) /ε2,

then, with probability at least 1− c1e
−u,

sup
t̄∈Bn2

max
|I|≤4mη/λ

2

m

∑
i∈I

E|〈ai, t̄〉| ≤
ε

128λ
.
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Proof. Due to ai being isotropic and ‖t̄‖2 ≤ 1, we have that E|〈ai, t̄〉| ≤ 1, hence

sup
t̄∈Bn2

max
|I|≤4mη/λ

2

m

∑
i∈I

E|〈ai, t̄〉| ≤ max
|I|≤4mη/λ

2|I|
m
≤ 8η

λ
.

Furthermore, by choice of η and u′, we get that

8η

λ
≤ 8

λ+ ‖a‖ψ1

λ
c2

√
u+ log C(T, k) + k log(5R) + Ck log(m)

m
.

The remainder of the proof follows directly from the constraint on m. �

5.4.3 Completing the Proof

Now that all the terms are bounded, we only have to combine everything with a union
bound and choose a sampling complexity that satisfies all constraints.

Because all these probabilities are of the form 1− c0e
−c1u, we get a final probability of

the form 1− c3e
−c4u.

Because of the bias bound we require that λ ≥ c2Ca,R,ξ log(c3Ca,R,ξ/ε) with
Ca,R,ξ := c1(‖a1‖ψ1R + ‖ξ1‖ψ1). As for m, it is enough for m to satisfy the dominating
sampling complexity of Lemma 5.4.7. Hence

m ≥ c2
λ2

ε2
log2(λm)(u+ log C(T, k) + k log(5R) + k log(m))

is enough to satisfy all of the previous requirements on m. Therefore, concluding the
proof of Theorem 5.1.1.

5.5 Comparison

If we combine Theorem 3.2.1 with Corollary 4.1.3 and Lemma 4.1.1, we obtain in the
sub-Gaussian settings the sampling complexity

m ≥ C
λ2

ε2

(
log C(T, k) + k log

(
4R

ε

))
with λ ≥ c0(σ +R)

√
log(c0/ε).

For comparison, the sampling complexity in the sub-exponential setting of
Theorem 5.1.1 is

m ≥ c4
λ2

ε2
log2(λm) (u+ log C(T, k) + k log(2R) + k log(m)) ,

with λ ≥ c2Ca,R,ξ log(c3C
2
a,R,ξ/ε) and Ca,R,ξ := c1(‖a‖ψ1R + ‖ξ‖ψ1).
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To simplify this, the additional logarithmic terms in m can be enforced when

m ≥ c4
λ2

ε2
log5

(
λ

ε

)(
u+ log C(T, k) + k log

(
2R

ε

))
.

Therefore, the major difference between these sub-Gaussian and sub-exponential
results are some addition logarithmic dependencies on λ and 1/ε.

5.6 Optimality

In Chapter 3 we discussed an optimality result that relied on sparse vectors, but lower
bounds specifically for generative models do exist. To mention one result in
particular, Qiu et al. [30] proved, based on a similar result by Liu et al. [27], the
following theorem.

Theorem 5.6.1 (Theorem 3.4 from [30]). Let k and n be large enough and satisfying
k � n, then there exists a ReLU neural network G : Rk+1 → Rn, consisting of 3
layers, for which the following holds.

Consider the signal set T = G(Rk) ∩Bn
2 , with unquantized measurements

yi = 〈ai, t0〉+ ξi with t0 ∈ T and independent random variables ξ ∼ N(0, 1) and let the
measurement vectors ai composed of i.i.d. standard normal entries. If
m ≥ c1k log(n/k), then

sup
t0∈T

E‖t̂− t0‖2 ≥ c2

√
k log(n/k)

m
,

for any estimator θ0 that depends only on ai and yi for i ∈ [m], where c1, c2 > 0 are
universal constants.

Considering that for the generative model considered in the theorem we have the
bound

log Clin(G(Rk) ∩RBn
2 , k) ≤ 3k log

(en
k

)
,

which can be arbitrarily tight for large n and k, the logarithmic dependency on the
linear covering number and the quadratic dependency on 1/ε2 seem to be optimal,
and the two theorems using dithering discussed in this thesis are near optimal up to
additional logarithmic factors. As for the term k log(R), this one is generally
dominated by log C(T, k) and is therefore of little importance.
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Chapter 6

Heavier tailed setting

Because the proof in the previous chapter does not rely on strong sub-Gaussian
properties like generic chaining, it was able to generalize the permissible distributions
to sub-exponential distributions by using the still very strong Bernstein’s inequality,
Chernoff bound and the VC-dimension argument. In this chapter we will look into
ways to extend the results to heavy-tailed distributions.

6.1 Bias and Noise

A possibly surprising observation in the proof of the previous chapter is that in the
bound on the variance, the only time the additive noise ξi has been used was in
inequality (5.3) and there the result was independent of the actual distribution of
〈ai, t〉+ ξi, as long as it is continuously distributed. Therefore, we have the option to
consider heavy tailed noise distributions, which can work with Lemma 5.3.1.
Furthermore, we can generalize the way the noise interacts with measurement. For
example, a result similar to that of Lemma 5.3.1 also holds for measurements of the
form ξi〈ai, t〉, i.e., multiplicative noise. In this section we will look at various results
for heavy tailed additive and how we can allow for multiplicative noise, still under the
assumption that the measurement vectors are sub-exponential.

6.1.1 Sub-Weibull additive noise

Sub-exponential and sub-Gaussian random variables are both characterized by the
their tail behaviour, decaying like 2e−cu and 2e−cu

2
respectively for some constant

c > 0. In more generality, we say that a random variable is sub-Weibull with tail
parameter θ if the tail decays like 2e−cu

1/θ
, for some c > 0. This more general family

of random variables allows for the generalization of various well known properties of
sub-exponential and sub-Gaussian random variables and has various applications in
high-dimensional probability [23].

Sadly, the tail integral∫ ∞
λ

uP(|〈a1, t〉+ ξ1| > u)du = 2

∫ ∞
λ

u e−cu
1/θ

du,

found in Lemma 5.3.1 has no simple solution for general θ > 0. For the easily
computable sub-exponential distribution (θ = 1) however, we have seen in
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Corollary 5.3.2 that
λ ≥ c0Ca,R,ξ log (c1Ca,R,ξ/ε) ,

with Ca,R,ξ = R‖a1‖ψ1 + ‖ξ1‖ψ1 is enough to bound the bias.

Similar computations for sub-Gaussian distributions (θ = 1/2) show that

λ ≥ c0Ca,R,ξ

√
log (c1Ca,R,ξ/ε),

with Ca,R,ξ = R‖a1‖ψ2 + ‖ξ1‖ψ2 is enough to bound the bias.

6.1.2 Lp Additive noise

To bound the bias term when the unquantized measurements have finite Lp norm, we
can again make use of Lemma 5.3.1. Replacing the exponentially decaying tail with
Markov’s inequality results in the following lemma, similar to Corollary 5.3.2.

Lemma 6.1.1. Let λ > 0 and define the following independent random variables
τi ∼ Unif([−λ, λ]), ai be an isotropic random variable and ξi be an arbitrary random
variable with zero mean. Furthermore, let ‖〈a1, t0〉+ ξ1‖pLp =: M <∞ for p > 2. Then,∣∣∣∣E[y1〈a1, t− t0〉]−

1

λ
〈t0, t− t0〉

∣∣∣∣ ≤ K(λ)‖t− t0‖2,

with

K(λ) =
4

λp/2

√
M +

2

p− 2
.

Furthermore, if λ ≥ Cp,M(1/ε)
1

p/2−1 , then B(t, t0) ≥ 1
2
‖t− t0‖2

2, where Cp,M is a
constant that only depends on p and M .

When the measurement vectors ai are sub-exponential, the Lp-norm can be bounded
like ‖〈a1, t0〉+ ξ1‖pLp ≤

(
Cp‖a1‖ψ1 + ‖ξ1‖Lp

)p
.

For comparison, the lower bound on λ for sub-exponential 〈ai, t0〉+ ξi is logarithmic in
log(1/ε) and in the sub-Gaussian case it behaves like

√
log(1/ε), both of which are

asymptotically better than the power law behaviour of the lemma above.

6.1.3 Multiplicative noise

Now consider the case of multiplicative noise, i.e.,

V = ξ1〈a1, t0〉.

To generalize Lemma 5.3.1 to this scenario, we need to assume that E[ξi] 6= 0 and ξi is
independent of ai. Furthermore, assume for simplicity that E[ξi] = 1, otherwise we
need to modify the optimization problem, and therefore the variance to handle this
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scaling. Under these additional assumptions, the same result as Lemma 5.3.1 holds,
because

〈t0, t− t0〉 = Eξ1〈a1, t0〉〈a1, t− t0〉

Therefore, based on whether V is sub-Weibull or has finite Lp norm we get similar
results like in the previous two subsections, with similar asymptotic behaviour in 1/ε,
but different dependence on the ψθ-or Lp-norms.

There is a caveat however, although multiplicative noise is permissible in inequality
(5.3), we would require that |ξi〈ai,N (t0)〉+ τi| > η and |ξi〈ai, t0 −N (t0)〉| ≤ η for
sign(ξi〈ai,N (t0)〉+ τi) = sign(ξi〈ai, t0〉+ τi). Lemma 5.4.5 was distribution
independent, hence can be directly modified to cover the first term. Lemma 5.4.4
requires some more modifications. For example, if ξ1 and a1 are a sub-Gaussian
random variable and random vector respectively, then for any z ∈ Bn

2 ,

‖ξ1〈a1, z〉‖ψ1 ≤ ‖ξ1‖ψ2‖〈a1, z〉‖ψ2 ≤ ‖ξ1‖ψ2‖a1‖ψ2 ,

hence

sup
z∈Bn2

P(|ξ1〈a1, z〉| ≥ η/δ) ≤ c1 exp

(
− η

δ‖ξ1‖ψ2‖a1‖ψ2

)
.

Therefore, in this sub-Gaussian setting, the difference in the Hamming distance
argument becomes the term ‖ξ1‖ψ2‖a1‖ψ2 replacing ‖a1‖ψ1 .

6.2 Heavy-tailed measurement vectors

In this section, we will discuss how to possibly generalize the measurement vectors
beyond sub-exponential distributions. First, we will see that to use the argumentation
of the previous chapter, inverse polynomially decaying tails is not enough for
reasonable sampling complexities. Second, we will use that the tails of some random
variables partially behave sub-Gaussian. This will nearly allow us to extend the
results of the previous chapter to heavy tailed distribution, but as we will see, this
argumentation currently causes a small, but currently unsolved, contradiction.

6.2.1 Convergence speed of weak law of large numbers

Bernstein’s inequality shows that the convergence speed of the weak law of large
numbers is exponential. To take this assumption to the extreme, we will assume in
this section that the weak law of large numbers converges like a power law, more
precisely, assume that there exist M,α, β > 0 such that

P

(∣∣∣∣∣ 1

m

m∑
i=1

ε〈ai, t〉

∣∣∣∣∣ ≥ u

)
≤ M

mαuβ
,

for all t ∈ Bn
2 and t > 0. The easiest example of this is the case of α = 1 and β = 2,

which holds if the variance of ε〈ai, t〉 is uniformly bounded.
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We will not discuss a full sampling complexity, but only that the natural flow of the
proof of last chapter results in practically unachievable, if not impossible, sampling
complexities. For this we will only look at the fixed signs and Hamming distance
components of the proof. Bounding the fixed signs with the weaker convergence, just
like in the previous chapter, results in the following lemma.

Lemma 6.2.1. For any u > 0 and finite set N ⊆ T , if

m ≥ C

(
λ

ε

)β/α (
uMC(T, k)252k|N |

)1/α

for ε ∈ (0, 1) with λ ≥ 1, then with probability at least 1− 1
u

it holds that

sup
t,t0∈T,v∈N

∣∣ 1
m

∑m
i=1 εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ ε

64λ
,

for some universal constant C > 0.

If we assume that the Hamming distance argument does not change, which is not the
case, then by Equation (5.4), the set N would satisfy

N (T, δ) ≤ C(T, k)(5R)kmck.

If you think that the sampling complexity Lemma 6.2.1 already seems large, we now
would have that m ≥ Cmck/α, which is impossible to achieve if ck ≥ α.

This argument shows just how important the exponential behaviour in Bernstein’s
inequality is to obtaining reasonable sampling complexities in the proof of the
previous chapter. The remainder of this chapter is concerned with trying to find a
way between the good exponential decay and bad polynomial decay.

6.2.2 Partially sub-Gaussian random variables

An important characterizing property of sub-Weibull distributions [33] is that, for
some tail parameter θ > 0,

P(|X| ≥ u) ≤ 2 exp
(
−(u/C1)1/θ

)
,

for some constant C1 > 0 if and only if

‖X‖Lp ≤ C2p
θ for all p ≥ 1,

for some constant C2 > 0. However, some random variables do not even have
moments of all order but behave similarly to sub-Weibull distributions. For example,
a Student’s t-distribution with d degrees of freedom only has moments up to order
d− 1, yet the moments of a Student’s t-distribution behave similar to sub-Gaussian
random variables [21, 10].

For such a random variable, whose moments partially behave like a sub-Weibull
random variable, we can show that their tails behave similar to that of a sub-Weibull
random variable on some bounded set.
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Lemma 6.2.2 (Based on lemma 11 from [11]). Let 0 < p0 < p1 ≤ ∞ and θ > 0. If X
is a random variable that satisfies

‖X‖Lp ≤ Kpθ,

for some K > 0 and for all p ∈ [p0, p1], then

P(|X| ≥ eKuθ) ≤ e−u,

for all u ∈ [p0, p1].

Proof. Let u ∈ [p0, p1], then by Markov’s inequality

P(|X| ≥ eKuθ) ≤
(
‖X‖Lu
eKuθ

)u
≤
(

1

e

)u
= e−u.

�

To replace Bernstein’s inequality with a heavy tailed concentration inequality, we
need to understand the behaviour of sums of heavy tailed random variables. The
following lemma shows that the weak moment assumption in Lemma 6.2.1 above can
result in sub-Gaussian moments for the sum of random variables, therefore resulting
in a partially sub-Gaussian concentration inequality for sums of enough heavy tailed
random variables.

Lemma 6.2.3 (Lemma 2.8 from [24]). For m ∈ N, Let X1, . . . , Xm be i.i.d. copies of
a mean zero random variable X, that for some p0 ≥ 2 satisfies

‖X‖Lp ≤ Kpθ, for all p ∈ [2, p0],

for some constant K > 0 and θ ≥ 1/2. If m ≥ p
max{2θ−1,1}
0 , then∥∥∥∥∥ 1√

m

m∑
i=1

Xi

∥∥∥∥∥
Lp

≤ CθK
√
p, for all p ∈ [2, p0],

where Cθ = Ce2θ−1 for some constant C > 0.

Applying Lemma 6.2.2 to the Lemma 6.2.3 gives us the following partial sub-Gaussian
concentration inequality for random variables that satisfy a weak moment assumption.

Corollary 6.2.4. Under the conditions of Lemma 6.2.3 we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ eCθK

√
u

m

)
≤ e−u,

for u ∈ [2, p0].

In the following sub-sections, we will try to derive recovery guarantees for one-bit
compressed sensing with heavy tailed distributions whose moments partially behave
like a sub-Weibull distribution.
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6.2.3 Variance Bound - Fixed Signs

Let us first consider Lemma 5.4.2, which is the first step in the variance bound of the
previous chapter where the sub-exponentially of the measurement vectors was used
when using Bernstein’s inequality. Specifically, it was used to show with probability at
least 1− 2e−u that

2

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤ c‖a1‖ψ1

(√
u

m
+
u

m

)
,

where b ∈ Sn−1.

If we assume that there exists p0 ≥ 2, θ ≥ 1/2 and K > 0 such that for all p ∈ [2, p0],

sup
x∈Sn−1

‖〈ai, x〉‖Lp ≤ Kpθ,

then we can replace Bernstein’s inequality with Corollary 6.2.4 and get with
probability at least 1− e−u that

2

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤ 2eCθK

√
u

m
,

with the additional constraints that m ≥ p
max{2θ−1,1}
0 and u ∈ [2, p0].

The remainder of the proof of Lemma 5.4.2 consists of a union bound over a 1/2-net
of a 2k-dimensional unit sphere, C(T, k)2 pairs of linear subspaces and an arbitrary set
N . Therefore, we can conclude with probability at least
1− exp (−u+ 2 log C(T, k) + log(5)2k + log |N |),

sup
t,t0∈T,v∈N

∣∣ 1
m
εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ 2eCθK

√
u

m
,

if m ≥ pmax{2θ−1,1} and u ∈ [2, p0].

The relatively straightforward substitutions towards a simpler bound shows that to
get non-trivial results, we will need to put additional restriction on the number of
sub-Weibull moments p0. Say that u′ = u− 2 log C(T, k)− log(5)2k − log |N |, such
that with probability at least 1− e−u′ we have

sup
t,t0∈T,v∈N

∣∣ 1
m
εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ 2eCθK

√
u′ + 2 log C(T, k) + log(5)2k + log |N |

m
,

if m ≥ pmax{2θ−1,1} and

u′ ∈ [2− 2 log C(T, k)− log(5)2k − log |N |, p0 − 2 log C(T, k)− log(5)2k − log |N |].

For non-trivial bounds on the probability we would like that u′ > 0 and this requires

p0 > 2 log C(T, k) + log(5)2k + log |N |, (6.1)
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thus the number of sub-Weibull moments required increases with the complexity of
the signal set and will increase even further in later steps of the proof. For now, let us
conclude this sub-section with the weak moment assumption version of Lemma 5.4.2.

Lemma 6.2.5. Let N be a finite set and define

Complexity := 2 log C(T, k) + log(5)2k + log |N |.

If u > 0 satisfies

2− Complexity ≤ u ≤ p0 − Complexity, and

m ≥ max

{
Cθ
λ2K2

ε2
(u+ Complexity), p

max{2θ−1,1}
0

}
then with probability at least 1− e−u,

sup
t,t0∈T,v∈N

∣∣ 1
m
εiy

v
i 〈ai, t− t0〉

∣∣
‖t− t0‖2

≤ ε

64λ
,

where Cθ > 0 is some constant dependent on θ.

6.2.4 Variance Bound - Hamming Distance

To obtain a uniform bound of the Hamming distance with high probability like in
Lemma 5.4.3, we required two parts. The second part, Lemma 5.4.5, used the
Chernoff Bound combined with a bound that does not depend on the distribution of
the measurement vectors and noise. The first part, Lemma 5.4.4, relied on the
distribution of the measurement vectors through the term

sup
z∈Bn2

P(|〈a1, z〉| ≥ η/δ).

We will now try to replace the sub-exponential tail bound with a weak moment based
tail bound like in Lemma 6.2.2. If θ = 1, i.e., the moments behave sub-exponential,
then letting

δ :=
η

eK
log(λ/η),

would result in
sup
z∈Bn2

P(|〈a1, z〉| ≥ η/δ) ≤ exp
(
− η

eKδ

)
=
η

λ
,

with the condition that η/δ ∈ [2eK, eKp0].

The issue is however with

η := c2(λ+K)

√
log C(T, k) + u′

m
,
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as required for Lemma 5.4.5, we get that

η/δ = eK log(η/λ) ≤ eK log(1/4) < eK,

where the second to last inequality is because for Lemma 5.4.3 we require that
η/λ ≤ 1/4.

To fix this issue, we would like to have a concentration inequality that extends
towards zero. For this, we can slightly weaken Lemma 6.2.2, by increasing the
probability enough such that the inequality also holds on [0, 2].

Lemma 6.2.6. Let 0 < 2 < p0 ≤ ∞ and θ > 0. If X is a random variable that
satisfies

‖X‖Lp ≤ Kpθ,

for some K > 0 and for all p ∈ [2, p0], then

P(|X| ≥ eKuθ) ≤ ce−u,

for all u ∈ [0, p0], for some c > 0.

It is also at this part of the proof where the set N for Lemma 6.2.5 is chosen such that

log |N | ≤ C

(
log C(T, k) + k log(5R) + k log

(
m

log C(T, k) + u′

))
,

such that for the lower bound on the number of moments from equation (6.1) it will
be enough to hold that

p0 > C

(
log C(T, k) + k log(5R) + k log

(
m

log C(T, k) + u′

))
,

or
p0 > C (log C(T, k) + k log(5R) + k log(m)) .

6.2.5 Variance Bound - Sign Differences

The final component to the variance bound is bounding the term

sup
P1,P2∈P,t̄∈(P1−P2)∩Bn2

max
|I|=b4mη/λc

2

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉|,

like in Lemma 5.4.7. This is where following the same steps as the proof in the
previous chapter will result in a contradiction.

From the centralization inequality

‖|〈ai, t〉| − E|〈ai, t〉|‖Lp ≤ 2‖〈ai, t〉‖Lp , for p ≥ 1,
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it follows with probability at least 1− e−u2 that

1

|I|
∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉| ≤ 4eCθK

√
u2

|I|
, (6.2)

if |I| ≥ p
max{2θ−1,1}
0 and u2 ∈ [2, p0].

In the next step, we take a union bound over all possible subsets I ⊂ [m] that satisfy
|I| = b4mη/λc. For simplicity, assume that 4mη/λ is a natural number. The resulting
lower bound on the probability then becomes

1− exp

(
−u2 + log

(
m

4mη/λ

))
.

To get non-trivial results, we would like that log

(
m

4mη/λ

)
≤ u2, which requires

log

(
m

4mη/λ

)
≤ p0,

because u2 cannot be larger than p0. Now note that

4
η

λ
log

(
λ

4η

)
≤ log

(
m

4mη/λ

)
≤ 4

η

λ
log

(
eλ

4η

)
.

Compare this to the constraint

p0 ≤ |I| =
4η

λ
.

As discussed in the proof of Lemma 5.4.6, 4η
λ

is at most 1 due to the sampling
complexity and becomes arbitrarily small when m becomes even larger. Hence, as m

becomes larger, log
(
λ
4η

)
becomes greater than one, implying that

log

(
m

4mη/λ

)
=

4η

λ
+ x ≤ p0 ≤

4η

λ
,

for some x > 0 cannot hold. Another way to see the problem is that if one writes out

log
(
eλ
4η

)
, one gets an additional log(m) factor. Therefore, the lower bound on p0

increases asymptotically faster than the upper bound.

Instead of trying to directly apply concentration inequalities, we could also to try to
derive concentration properties of the smaller sum by concentration properties of the
sum over all i ∈ [m]. While we can use Jensen’s inequality to find∥∥∥∥∥sup
t∈S

1

m

∑
i∈I

|〈ai, t̄〉| − E|〈ai, t̄〉|

∥∥∥∥∥
Lp

=

∥∥∥∥∥sup
t∈S

E

[
1

m

m∑
i∈1

|〈ai, t̄〉| − E|〈ai, t̄〉|
∣∣∣∣ai for all i ∈ I

]∥∥∥∥∥
Lp

≤

∥∥∥∥∥sup
t∈S

1

m

m∑
i=1

|〈ai, t̄〉| − E|〈ai, t̄〉|

∥∥∥∥∥
Lp

,
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for some set S, we cannot also take the supremum over the different subsets I into
consideration with this inequality. This is because the conditioning depends on the
choice of I. Using the union bound on all subsets |I| after using this method only on
all the vectors t̄ will result in the same contradiction as before.

Sadly, we will end this chapter without proving recovery guarantees with heavy tailed
measurements and leave the final lemma unanswered. At the end of the next chapter
we will observe through numerical experiments that the behaviour for some heavy
tailed distributions is similar to the sub-Gaussian and sub-Exponential results.
Furthermore, there exist results for other compressed sensing problems that make use
of the weak moment assumption, see for example Lecué and Mendelson [24] or Dirksen
et al. [10]. Hence, it is to be expected that this problem will someday be solved.
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Chapter 7

Numerical experiments

In the previous chapters we have seen various theoretical guarantees on one-bit
compressed sensing with generative models. In this chapter we will see various
experimental results, focusing on the difference between reconstruction methods that
exploit sparsity with respect to a basis and methods that use generative models. We
will also look into the impact of dithering. Most experiments have been done using
the MNIST data set, with some final experiments to show similar behaviour for the
more complex CIFAR-10 data set.

7.1 Normalized scenario

Recall that in the normalized scenario as treated in Section 3.1, we consider
measurements of the form

yi = sign (〈ai, t0〉+ ξi) , for i = 1, . . . ,m.

Without control of the noise, we can only hope to reconstruct the signal up to
normalization, hence we are interested in measuring the normalized error∥∥∥∥ t0

‖t0‖2

− t

‖t‖

∥∥∥∥
2

.

Alternatively, one could use the normalized geodesic distance

1

π
arccos

(〈
t0
‖t0‖2

,
t

‖t‖2

〉)
.

7.1.1 Algorithms

Most theoretical guarantees for one-bit compressed sensing that were discussed in
earlier chapters where in the form of minimizing

min
t∈T

L(t) := ‖t‖2
2 −

2λ

m
yTAt,

for some λ and signal set T . Because this optimization problem has both a correlation
and regularization term, we will refer to this optimization problem as the regularized
problem.
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This optimization problem can be solved numerically using a projected gradient
descent method [16], resulting in an iterative method:

tk+1 = PT (tk − δ∇L(tk)) , with (7.1)

∇L(tk) = 2tk −
2λ

m
ATy,

where δ is the learning rate and PT (t) is the closest element in T to t, i.e., the
generally non-linear projection of t onto T .

The projection PT (t) can be efficiently computed when T is the set of s-sparse vectors
Σn
s by setting all but the s absolute largest values to zero. Similar algorithms based

on this efficient projection like Iterative Hard Thresholding have been successful in
unquantized compressed sensing [1]. By transforming a signal into another basis, we
can also relatively efficiently compute the projection onto the s-sparse vectors in any
basis. However, when T is the range of a generative model G, the projection becomes
an optimization problem without a simple solution.

PyTorch is used for the experiments in this chapter. This machine learning framework
can train neural networks, but also train the input of a neural network instead of its
parameters, therefore resulting in a simple, yet relatively expensive, implementation
for solving the intermediate optimization problem

PG(X)(t) := G(arg min
x∈X

‖G(x)− t‖2), (7.2)

when the generative model G is a neural network. This algorithm is given in
Listing 7.1. Note that instead of only using the decoder part of the auto-encoder, the
whole auto-encoder is used. Practically, this makes no big difference, but it does show
that we do not need to know about the low dimensional bottleneck in the network to
be able to benefit from it. In some cases, the resulting signal set can also be smaller
than when only using the decoder.

Listing 7.1: Projection algorithm

def p r o j e c t i o n ( im ) :
inp = im . c lone ( ) ;
inp . r e q u i r e s g r a d ( True ) ;

opt imize r = torch . optim .Adam( [ inp ] , l r=l e a r n i n g r a t e ) ;

for i in range ( num epochs ) :
opt imize r . z e ro g rad ( ) ;
out = autoEncoder ( inp ) ;
l o s s = torch . norm( im=out ) ;
l o s s . backward ( ) ;
opt imize r . s tep ( ) ;

return autoEncoder ( inp ) . detach ( ) ;
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Another algorithm proposed by Jacques et al. [19, 18] for one-bit compressed sensing
on Σn

s is Binary Iterative Hard-Thresholding (BIHT), which is defined as

tk+1 = PΣns

(
tk + δAT (y − sign(Atk))

)
,

which is a projected sub-gradient descent method for the optimization problem

min
t∈T
‖ [y � At]− ‖1,

with � being the Hadamard product and [x]− := min{x, 0}. This method penalizes
only incorrect signs.

As proposed by Liu et al. [26], we can use the same algorithm with a projection onto
the range of a generative model and we will refer to this algorithm as Binary Iterative
Projection (BIP).

7.1.2 Experimental results

Unless stated otherwise, the following assumptions and notations will be used in the
remainder of this chapter:

� Any error is the average of three separate reconstructions with different
realizations of the random measurement matrix and noise.

� The measurement matrices A consist of element-wise i.i.d. distributed random
variables with mean zero and variance one.

� Gaussian pre-quantization noise with mean zero and standard deviation 0.1 has
been added.

� When using a generative model, the number of layers in the encoder and
decoder is denoted by l and the bottleneck with k.

� The activation functions in the neural networks are ReLU for all layers except
the last one, for which the sigmoid activation function is used.

� Each neural network has been training using an Adam optimizer with mean
square error loss function for 20 epochs with a learning rate of 0.001.

� The projection on the range of a generative model is implemented as in Listing
7.1, with a learning rate of 0.001 and 50 iterations when the projection is used
as part of a reconstruction algorithm and a learning rate of 0.0001 and 200
iterations when used to project the true image to the range of the generative
model.

For precise details on the implementations, the code used for the experiments can be
found at github.com/jeverink/MastersThesis.

Both the regularized algorithm and binary iterative projection require the expensive
operation of projecting a signal onto the range of the generative model, so the cost of
a single iteration is approximately equal for both algorithms.
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Figure 7.1: First five elements of the MNIST test set.

To test the two algorithms, we apply them to the reconstruction of the first five
elements from the test set of MNIST [25] as seen in Figure 7.1.

Figure 7.2 shows how the accuracy improves when increasing the number of
measurements for both the regularized and binary iterative
hard-thresholding/projection methods assuming sparsity in the standard basis,
Fourier basis, single level Haar wavelets [5] and using a generative model. The choice
of sparsity and bottleneck has been chosen empirically. For the behaviour for varying
sparsity and bottleneck, see Figure 7.6.

First, note that the regularized methods initially decrease faster, yet when the binary
iterative hard-thresholding/projection overtakes, it quickly reaches a better accuracy.
Because the binary iterative hard-thresholding/projection, once quickly decreasing,
reaches a better accuracy and it does not require tuning a regularization parameter,
we will use this method for further experiments in the normalized scenario.

Second, the level of sparsity has quite an impact on the achievable accuracy for some
images, hence the spread of the lines for larger m. One can improve the achievable
accuracy by increasing the sparsity level, but this will also increase the number of
measurements required for a good reconstruction. The generative model is trained to
compress all the different classes of images, hence the achievable accuracy can
generally be more uniform over all the images and therefore results in less spread of
the lines for large m.

Third, the sparsity in the standard basis is clearly not as well a representation of the
data set as using Haar wavelets, reaching similar if not better results with less than
half the sparsity and almost half the measurements. The generative model requires
even less measurements, but seems to result in less consistent results.

Although the normalized errors allows for good quantitative comparison of the
methods, visually comparing the images allows us to qualitatively compare the
difference between the sparsity and generative model assumptions. Figures 7.3 and 7.4
show reconstructions with increasing m compared to the directly projecting the true
signal onto the signal set using sparsity and a generative model.
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algorithm parameters
Learning rate iterations

Standard, Fourier and Haar
BIHT 0.0005 500
regularized 0.1 250

Generative model
BIP 0.02 50
regularized 0.8 50

Figure 7.2: Normalized error for the reconstruction of the first five images from the
test set of MNIST, each image a line, using both the regularized and binary iterative
hard-thresholding/projection algorithms for varying number of measurements.
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Figure 7.3: Reconstructions using Binary Iterative Hard Thresholding for varying num-
ber of measurements and assuming sparsity within the standard basis and Haar wave-
lets. A learning rate of 0.0005 for 500 iterations has been used.
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Figure 7.4: Reconstructions using Binary Iterative Projection using a generative model.
A learning rate of 0.02 for 50 iterations has been used.

Perhaps the biggest difference between the sparsity in the standard basis or Haar
wavelets in Figure 7.3 and the generative model in Figure 7.4 is that in the former the
noise decreases while the true image increases, while in the latter the image shift from
various blobs towards the real image. This difference in behaviour results in a
problem when visually assessing whether a solution is true or at least believable. In
the sparsity images of Figure 7.3 one can visually judge that the solution consists of
mostly noise, while in the generative model images of Figure 7.4 one can get solutions
that might be misleading. Thus one has to be very careful when assessing solutions
obtained from very little measurements through a generative model, because such a
model contains much less extraneous signals.

Having seen that a generative model can greatly reduce the number of measurements
needed to obtain accurate solutions, we have yet to see how the complexity of the
model influences the accuracy and sampling complexity. Because of the steep descent
seen for the Binary Iterative Hard-Thresholding/Projection in Figure 7.2, we will
measure how many measurements a signal set requires by considering for what value
of m this steep descent happens. For this, we will call the threshold m the first value
of m for which accuracy passes halfway between the approximately worst accuracy
obtained by reconstructing with one measurement and the accuracy obtained by
projecting the true signal onto the signal set. How this threshold m is determined is
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visualized in Figure 7.5. How this value behaves compared to the error of directly
projecting onto the range of the generative model and the sparsity level and
bottleneck size is shown in Figure 7.6.

projector

worst
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m
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r

Figure 7.5: Visualization of the threshold m, the approximate number of measurements
needed for a reasonable reconstruction.

algorithm parameters
Learning rate iterations

Standard basis 0.001 500
Haar wavelets 0.001 500
Generative model 0.001 75

Figure 7.6: Approximate number of measurements needed for a reasonable reconstruc-
tion using different models when varying the sparsity/bottleneck. Averaged over five
images. The left plot shows the impact of the sparsity, while the right plot shows how
the same data compares to the approximate best possible error as obtained by directly
projecting the true image on the signal set. The encoder and decoder each consist of 1
layer.

In Figure 7.6 we can see that great reduction in required measurements as seen earlier
holds for many networks. Only when you want to greatly increase the accuracy by
increasing the complexity of the network or the bottleneck does the number of
measurements required greatly increase, however, as seen in Figures 7.3 and 7.4 the
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additional details obtained in this final stretch are far from necessary to speak of a
good solution in this specific data set.

7.1.3 Union of smaller generative models

Instead of using a single, large neural network as generative model for the MNIST
data set, we can also use multiple smaller neural networks, one for each label. The
natural interpretation is that the data set is not sampled from one large manifold, but
that each number has its own smaller manifold. Hence, instead of working with the
signal set G(X), we will consider ∪9

i=0Gi(X). The hope is that by splitting into
multiple generative models, the whole signal set becomes simpler by not containing
signals to connect the different labels.

You could replace the projection on the larger generative model by multiple
projections and then choose the best one, however, this can cause issues when the
smaller generative models are well separated. Instead, we can reconstruct the signal in
each generative model separately and then choose the reconstruction with the best
objective value. In some sense, we are actually combining the reconstruction
algorithm with a sample-based classification algorithm. Figure 7.7 shows the results of
such an algorithm. We can see that when the number of measurements is very low,
multiple labels can give optimal objective values and therefore, no decision can be
made. Yet, when increasing the number of measurements, the objective value of the
reconstruction from the true label will increase the slowest, thus for enough
measurements, the smaller, true generative model will dominate.

65



Figure 7.7: Reconstructions using multiple, label-specific generative models. The ones
marked with a red border in each row are the ones with the lowest objective value,
hence could be chosen as final solution. The final row shows the images obtained by
directly projecting the true image on the range of each generative model. The encoder
and decoder part of each generative model consists of 2 layers with a bottleneck of 20.
A learning rate of 0.02 for 50 iterations was used.

7.2 Dithering

Recall that if we also want to reconstruct the norm of the signal, we consider
measurements of the form

yi = sign(〈ai, t0〉+ ξi + τi), for i = 1, . . . ,m,

where the τi are i.i.d. uniformly distributed on [−λ, λ] for some λ > 0. The
regularized optimization problem as seen in previous chapters can be solved using the
same gradient projection method as seen in Equations (7.1), where the λ used for
dithering and regularization are the same.
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7.2.1 Sparsity versus generative model

Before we can start comparing the different structural assumptions, we need to make
a choice for the dithering parameter λ. Assuming that there is no noise, then any
dithering beyond the radius of the signal set is useless. As we will be using only a
little Gaussian noise, we will use λ = 18 for the following numerical experiment, which
is slightly larger than the radius of the MNIST data set.

Figure 7.8 shows how the error decays when increasing the number of measurements
for various structural assumptions. It also shows the normalized error and the error of
the norm. Similar to the normalized scenario, the generative model gives the best
results, then the Haar wavelets and finally the standard basis. It looks like the error
of the norm seems to stagnate or even slightly increase while mostly the normalized
error seems to continue improving.

7.2.2 Optimal regularization

In the previous experiments, the choice of the dithering constant λ has been 18, which
is approximately the radius of the MNIST data set. However, while this value results
in enough dithering to distinguish between all the elements in the signal set that
could reasonably be correct, this does not have to be optimal. From the results in the
previous chapters, we know that increasing the regularization parameter should
increase the number of required measurements, but how does it behave for relatively
low λ?

Figures 7.9 and 7.10 show for both sparsity in the standard basis and using a
generative model the error when reconstructing using various λ. It is important to
notice that choosing λ too large is just as bad, if not worse, in terms of the error as
choosing λ far too low, thus choosing a good regularization parameter can drastically
impact the number of measurements required for good reconstructions. We also see
that the optimal regularization parameter differs with the signal that is being
reconstructed. The optimal choice of λ seems to correlate with how well we can
reconstruct that specific signal, as is expected from the lower bounds on λ found in
earlier chapters, thus choosing optimal λ a priori without additional information
about the signal is out of the question.
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Figure 7.8: Errors when reconstructing the first five elements from the MNIST data
set with dithering (λ = 18). A learning rate of 1 for 100 iterations was used for the
standard basis and Haar wavelets, while a learning rate of 0.2 for 50 iterations was used
for the Generative model.
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Figure 7.9: Average error of reconstructing the first five elements from the CIFAR-10
test set with varying regularization parameter λ and number of measurements m. A
learning rate of 0.1 for 100 iterations was used for the standard basis and learning rate
of 0.1 for 100 iterations was used for the Generative model.

Figure 7.10: Errors for different test images with 5000 measurements for various reg-
ularization parameter λ. A learning rate of 0.1 for 100 iterations was used for the
standard basis and learning rate of 0.1 for 100 iterations was used for the Generative
model.

It turns out that the optimal choice of the dithering parameter λ correlates with norm
of the signal. For the first 3216 images in the MNIST test set, the approximate
optimal choice of λ is plotted against their norm in Figure 7.11. In the sparsity
scenario it clearly shows a correlation between optimal λ and norm, and that the
optimal lambda increases with the number of measurements. In the generative model
scenario, even though the algorithm for finding the optimal value of λ has been greatly
affected by the inconsistent recovery as seen in Figure 7.10, shows similar correlation.
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Figure 7.11: Approximation of the optimal λ for the first 16 images of the MNIST test
set in terms of the norm of the image, together with a linear fitted line. A learning rate
of 0.05 for 200 iterations was used for standard sparsity and a learning rate of 0.2 for 50
iterations was used for the Generative model. The optimal value of λ is approximated
using ternary search.

7.2.3 A more complex data set: CIFAR-10

We have only looked at the relatively simple MNIST data set as of yet. Hence we will
now finish these numerical experiments by looking at the more complex CIFAR-10
data set [22], which consists of colored images with 322 pixels. A sample of the
CIFAR-10 data set is given in Figure 7.12.

Figure 7.12: Sample of CIFAR-10 data set.

As basis for sparsity, we consider single level Haar wavelets for each color channel of
the image. Figure 7.13 shows that behaviour for increasing m for this sparsity
assumption and a generative model is similar to the behaviour on the MNIST data set.

7.2.4 Stronger noise

Though a very little bit of noise has been added to the previous experiments, we have
yet to look at the impact of stronger noise. Figure 7.14 shows what happens when we
increase the variance of the Gaussian pre-quantization noise. As expected from the
theoretical results, stronger noise requires more measurements and stronger dithering.
Perhaps surprising is what happens when over-dithering. The experimental results
show that when choosing λ too large, the noise has no impact on the error. Or worded
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Figure 7.13: Errors of reconstructing the first five images from the CIFAR-10 data set
with dithering (λ = 60). A learning rate of 0.01 for 200 iterations was used for the
Haar wavelets and a learning rate of 0.2 for 50 iterations for the generative model.
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differently, over-dithering gives results similar to stronger noise. It is likely that as the
dithering becomes the dominant noise term, the outer values of the dithering are more
detrimental than helpful.

Figure 7.14: Average error of reconstructing five images using a generative model with
various noise levels. A learning rate of 0.2 for 50 iterations was used.

7.2.5 Heavier tailed measurements

In Chapter 5, we have seen that sub-Gaussian and sub-Exponential measurement
vectors should give similar results and in Chapter 6 we were close to showing that
even the heavy tailed Student’s-t distribution should behave similar. So as a final
experiment, let us look at these different measurement vectors. Figure 7.15 shows the
error for varying λ, m and distributions. The data is nearly indistinguishable and,
perhaps surprisingly, even the Student’s-t distribution with only 3 degrees-of-freedom,
which does not have a third moment, behaves sub-Gaussian.

7.3 Which assumption is better?

When looking at the experimental results, they would suggest that using a generative
model is the more efficient choice. However, we are not even close to exhausting all
possible choices of basis, generative models and data sets.

From an algorithmic point of view, sparsity has the benefit of being easily structured
and therefore having a relatively easy constraint to work with. In contrast, the
geometry of the range of a generative model can be very complex and therefore has an
expensive projection, but it has the benefit of using modern machine learning
methods to learn this geometry from a data set.

Learning the geometry can sometimes be relatively easy, like in the case of natural
data sets like MNIST and CIFAR-10, as seen in the previous experiments. However,
not all data sets are easy to learn. To take it to the extreme, consider the signal set of
sparse vectors Σ784

100, which we used in the MNIST experiments earlier. The MNIST
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Figure 7.15: The average error over five images, when reconstructing from measure-
ments with different standardized measurement vector distributions. A learning rate of
0.2 for 25 iterations was used.
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data set would only occupy a small part of this set, but the whole set satisfies

Clin(Σ784
100, 100) =

(
784
100

)
≈ 10128.

Training a neural network with relatively small bottleneck to model the many
subspaces of Σ784

100 is not an easy task, while working with Σ784
100 is straightforward. The

complexity of the resulting generative model will probably result in requiring more
measurements than when using sparsity.

Whether to work with sparsity or a generative model can therefore be highly
dependent on the application. We cannot conclude from these limited experiments
that the use of a generative model is better for natural data sets in general.
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Chapter 8

Conclusion and further research

In this thesis we have seen how using a generative model, instead of assuming
traditional sparsity, can be very powerful in one-bit compressed sensing. We have
shown that the number of measurements required for reconstruction depends linearly
on the radius of the signal set and the dimension of the latent space, while it only
depends logarithmically on the complexity of the generative model in terms of the
Lipschitz constant or the number of linear pieces.

We have seen that the statistical recovery guarantee on sub-exponential measurement
vectors and noise by Qiu et al. [30] for one-bit compressed sensing with dithering can
be generalized to signal sets that consist of piecewise, low-dimensional linear pieces,
which includes sparsity in a basis and piecewise linear neural networks. The noise can
be further generalized to only require more than the first two moments at the cost of
stronger dithering and therefore requires more measurements. It is highly likely that
the measurement vectors can also be generalized to only require a few well-behaved
moments, however the arguments used caused a contradiction in the final step.

Even though the numerical experiments were conducted with relatively simple data
sets and neural networks, the reduction in the required number of measurements was
substantial, although at the cost of computation time and possible issues with the
visual assessment of the reconstructions. Using dithering to also reconstruct the
magnitude of the signal is observed to be a powerful technique, but if the dithering is
not well-tuned then it can even worsen the reconstruction.

Even though the experiments show that using a generative model in one-bit
compressed sensing is very powerful, one has to decide whether the reduced number of
measurements is worth the great increase in required computational power.

Further research

The incompleteness of the argument for extending from the sub-exponential setting to
the heavy-tailed setting is perhaps the most frustrating part of this thesis. It is only
in the final lemma where the argumentation used causes a contradiction, hence finding
a fix for this part of the argument or trying to find an alternative route towards using
heavy-tailed distributions is an important topic of further study.

In the (sub-)Gaussian part of this thesis we have seen that Lipschitz continuous
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functions are a natural choice for generative models, yet in the sub-exponential and
heavy-tailed part we only considered piecewise linear generative models. Although
both can be used with the Gaussian width in the sub-Gaussian setting, the piecewise
linearity is quite a limitation in the heavier tailed settings. Hence, an important topic
for further research is to further generalize the set of permissible signal sets and
generative models in the sub-exponential and heavy-tailed settings. In the best case,
another quantity similar to Gaussian width could work with heavier tailed
distributions.

In this thesis, we only considered independent and identically distributed
measurement vectors. Such measurements are not very realistic and an important
topic of research within compressed sensing is the study of various kinds of structured
matrices, for example, Fourier sub-sampling and partial circulant matrices.

The numerical experiments conducted were limited to the relatively simple MNIST
and CIFAR-10 data sets. Furthermore, the neural networks used were relatively
simple and not perfectly trained. To truly test whether generative models are
beneficial in practical scenarios, tests could be carried out with more complex and
realistic data sets, for example, those used in medical imaging, together with well
trained deep neural networks.

The projection onto the range of a generative model is quite a bit more time
expensive than projecting on the set of sparse vectors. Hence, whether the reduction
of the number of measurements is worth the additional computation time of the
methods considered in this thesis is application dependent. Other methods could
probably be more efficient, for example, by considering the generative model as a part
of the objective functions instead of a constraint or using deep learning to speed up
the projection process. Therefore, further research could be done on improving the
reconstruction algorithm with generative models.
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Appendix A

Miscellaneous proofs

Proof of lemma 2.4.3

Let G : X ⊆ Rk → Rn be γ-Lipschitz. Choose some x0 ∈ X and define the
star-shaped version of G around G(x0), G? : X × [0, 1]→ Rn as

G?(x, λ) := λG(x) + (1− λ)G(x0).

Then the image G?(T, [0, 1]) is star-shaped around the chosen point G(x0) and G? is
Lipschitz continuous with Lipschitz constant at most

√
2γ(1 + diam(X)).

Proof. That G?(X, [0, 1]) is star-shaped around G(x0) follows directly from the
definition of G?.
For the Lipschitz constant, we start by splitting up the distance between any two
points G?(x, λ) and G?(y, µ) with (x, λ), (y, µ) ∈ X × [0, 1] as follows

‖G?(x, λ)−G?(y, µ)‖2 ≤‖G?(x, λ)−G?(x,
1

2
(λ+ µ))‖2

+‖G?(x,
1

2
(λ+ µ))−G?(y,

1

2
(λ+ µ))‖2

+‖G?(y,
1

2
(λ+ µ))−G?(y, µ)‖2.

For the middle term we get

‖G?(x,
1

2
(λ+ µ))−G?(y,

1

2
(λ+ µ))‖2 ≤

1

2
(λ+ µ)‖G(x)−G(y)‖2

≤ γ‖x− y‖2.

For the first term we get

‖G?(x, λ)−G?(x,
1

2
(λ+ µ))‖2 ≤ ‖

1

2
(λ− µ)G(x)− 1

2
(λ− µ)G(x0)‖2

≤ 1

2
|λ− µ|‖G(x)−G(x0)‖2

≤ 1

2
diam(G(X))|λ− µ|.
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Furthermore, we have that diam(G(X)) ≤ γdiam(X). Combining this with the same
bound for the third term results in

‖G?(x, λ)−G?(y, µ)‖2 ≤ γ‖x− y‖2 + diam(G(X))|λ− µ|
≤ γ(1 + diam(X))(‖x− y‖2 + |λ− µ|).

Now using that for any a, b ∈ R it holds that (a+ b)2 ≤ 2(a2 + b2), results in√
(‖x− y‖2 + |λ− µ|)2 ≤

√
2
√

(‖x− y‖2
2 + |λ− µ|2) =

√
2‖(x, λ)− (y, µ)‖2,

thus we can conclude that

‖G?(x, λ)−G?(y, µ)‖2 ≤
√

2γ(1 + diam(X))‖(x, λ)− (y, µ)‖2,

for any x, y ∈ X and λ, µ ∈ [0, 1], hence G? is
√

2γ(1 + diam(X))-Lipschitz. �

Proof of lemma 4.1.2

If T ⊆ Rn, then for any R ≥ 0,

w(T ∩RBn
2 ) ≤ CR

(√
log Clin/aff(T, k) +

√
k
)
,

for some constant C > 0.

Proof. Note that we only have to proof the lemma for the affine covering number,
because Caff(T, k) ≤ Clin(T, k), and for simplicity we will abbreviate Caff(T, k) to C.

Let pi + Vi for i = 1, . . . , C be k-dimensional affine sub spaces of Rn, such that

T ⊆ ∪Ci=1pi + Vi.

By the monotonicity of Gaussian width we find

w(T ∩RBn
2 ) ≤ w

((
∪Ci=1pi + Vi

)
∩RBn

2

)
.

Without loss of generality we can assume that pi ∈ RBn
2 , because if we cannot find

such pi, then pi + Vi and RBn
2 are disjoint. We can split the pi from the Vi using

w
((
∪Ci=1pi + Vi

)
∩RBn

2

)
= E sup

i∈[C]
sup

vi∈Vi:pi+vi∈RBn2
〈g, pi + vi〉

≤ E sup
i∈[C]

sup
vi∈Vi:ti+vi∈pi+2RBn2

〈g, pi + vi〉

= E sup
i∈[C]

sup
vi∈Vi∩2RBn2

〈g, pi + vi〉

≤ E sup
i∈[C]

sup
vi∈Vi∩2RBn2

〈g, vi〉+ E sup
i∈[C]
〈g, pi〉

= w((∪Ci=1Vi) ∩ 2RBn
2 ) + w({p1, . . . , pC}).
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By assumption and the Gaussian width of a finite set, w({p1, . . . , pC}) ≤ cR
√

log C for
some constant c > 0. Using a centralization argument results in

E sup
i∈[C]

sup
vi∈Vi∩2RBn2

〈g, vi〉 ≤ E sup
i∈[C]

∣∣∣∣∣ sup
vi∈Vi∩2RBn2

〈g, vi〉

∣∣∣∣∣
≤ E sup

i∈[C]

∣∣∣∣∣ sup
vi∈Vi∩2RBn2

〈g, vi〉 − E sup
vi∈Vi∩2RBn2

〈g, vi〉

∣∣∣∣∣+ sup
i∈[C]

E sup
vi∈Vi∩2RBn2

|〈g, vi〉|.

For the second term we find that

E sup
vi∈Vi∩2RBn2

|〈g, vi〉| = w(Vi ∩ 2RBn
2 ) ≤ 2R

√
k.

Next, by a concentration inequality for supremum of Gaussian processes (see e.g.
Theorem 5.8 in [3]) we get that

sup
vi∈Vi∩2RBn2

〈g, vi〉 − E sup
vi∈Vi∩2RBn2

〈g, vi〉,

is a centered 2R-sub-Gaussian random variable, hence

E sup
i∈[C]

∣∣∣∣∣ sup
vi∈Vi∩2RBn2

〈g, vi〉 − E sup
vi∈Vi∩2RBn2

〈g, vi〉

∣∣∣∣∣ ≤ cR
√

log C,

for some constant c > 0.

Combining all these bounds allows us to conclude that

w(T ∩RBn
2 ) ≤ CR

(√
log C +

√
k
)
,

for some absolute constant C > 0. �

Proof of decomposition of sign

Lemma A.0.1. If Z and V are arbitrary random variables and τ ∼ Unif[−λ, λ], then

E[Zsign(V + τ)|Z, V ] =
ZV

λ
1{|V |≤λ} + Z1{V >λ} − Z1{V <−λ}.

Proof. First note that

E[Zsign(V + τ)|Z, V ] = E[Zsign(V + τ)1{|V |≤λ}|Z, V ] + Z1{V >λ} − Z1{V <−λ},

i.e., two cases where the sign is deterministic, independent of the value of τ and one
term where it actually depends on τ .

79



As for the first term in the summation, this is equivalent to

E[Zsign(V + τ)1{|V |≤λ}|Z, V ] = Z (P(V + τ ≥ 0)− P(V + τ ≤ 0)) 1{|V |≤λ}

= Z

(
λ+ V

2λ
− λ− V

2λ

)
1{|V |≤λ}

= Z
V

λ
1{|V |≤λ},

concluding the proof.

�

Tail bound - Bias

Lemma A.0.2. For any random variable V and λ > 0 we have

‖V 1{|V |>λ}‖2
L2
≤ λ2P(|V | > λ) + 2

∫ ∞
λ

tP(|V | > t)dt.

Proof. For any random variable X we have

E|X|2 =

∫ ∞
0

P(|X|2 > t)dt = 2

∫ ∞
0

tP(|X| > t)dt.

Now letting X = V 1{|V |>λ} and splitting the integral results in

‖V 1{|V |>λ}‖2
L2

= 2

∫ λ

0

tP(|V |1{|V |>λ} > t)dt+ 2

∫ ∞
λ

tP(|V |1{|V |>λ} > t)dt.

For t ∈ (0, λ), P(|V |1{|V |>λ} > t) is constant as |V |1{|V |>λ} almost surely takes the
value 0 or a value higher than λ, so the first term reduces to

2P(|V |1{|V |>λ} > λ)

∫ λ

0

tdt = λ2P(|V |1{|V |>λ} > λ).

For t ≥ λ, it does not matter that 1{|V |>λ} reduces any value of |V | below λ to 0,
hence P(|V |1{|V |>λ} > t) = P(|V | > t). Therefore, the first term further simplifies to

λ2P(|V | > λ),

while the second term simplifies to

2

∫ ∞
λ

tP(|V | > t)dt,

completing the proof.

�
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Proof Lemma 5.4.3

Let η > 0 and ε ∈ [0, 1/2]. If with probability at least 1− p,

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,t0−N (t0)〉|≥η} ≤ ε,

and with probability at least 1− q,

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,N (t0)〉+ξi+τi|<η} ≤ ε,

then with probability at least 1− p− q,

sup
t0∈T

dH(yt0 , yN (t0)) ≤ 2ε.

Proof. By a union bound it holds with probability at least 1− p− q that both

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,t0−N (t0)〉|≥η} ≤ ε,

and

sup
t0∈T

1

m

m∑
i=1

1{|〈ai,N (t0)〉+ξi+τi|<η} ≤ ε,

hold.

The key to the proof is the observation that if µ is a probability measure or a
normalized counting measure, and A and B are two events that both satisfy
µ(A), µ(B) ≥ 1/2 + ε with ε ∈ [0, 1/2], then from the equality
µ(A ∩B) + µ(A ∪B) = µ(A) + µ(B) it follows that µ(A ∩B) ≥ 2ε.

Now fix arbitrary t0 ∈ T and let µ be a normalized counting measure over [m] with A
the set consisting of the i for which |〈ai, t0 −N (t0)〉| < η and B the set consisting of
the i for which |〈ai,N (t0)〉+ ξi + τi| ≥ η, such that µ(A) ≥ 1− ε and µ(B) ≥ 1− ε by
assumption. Therefore µ(A∩B) ≥ 1− 2ε, hence at least 1− 2ε percent of the i satisfy
both |〈ai, t0 −N (t0)〉| < η and |〈ai,N (t0)〉+ ξi + τi| ≥ η, and therefore
sign(〈ai, t0〉+ ξi + τi) = sign(〈ai,N (t0)〉+ ξi + τi).

From this we can conclude that

dH(yt0 , yN (t0)) ≤ 2ε,

for any t0 ∈ T with probability at least 1− p− q, concluding the proof.

�
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Missing step in the proof of Lemma 4.2.1

For simplicity we will denote log C(T, k) and k by x and y respectively.

Lemma A.0.3. There exists constant c > 0 such that for any x, y > 0,

2x+ 4y log

(
ecx

2y

)
< cx.

.

Proof. We can rewrite the inequality we want to proof as

4

c− 2
log
(ec

2

)
+

4

c− 2
log (z) < z,

with z := x/y and assuming that c > 2.

The first term that depends only on c converges to 0 as c goes to infinity, thus for c
large enough, it will be enough to prove that

0.5 + 0.5 log(z) < z.

This follows from the fact that the function f(z) = 0.5 + log(z)− z is concave with
maximum at z = 0.5 with value f(z) = log(0.5) < 0. �
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Appendix B

High-dimensional probability theory

Because concepts from high-dimensional probability theory come up throughout this
whole thesis, this appendix contains a small overview of some of the definitions and
theorems used. The main focus is on the definitions and some important properties of
sub-Gaussian and sub-Exponential random variables/vectors and concentrations of
their sums. Most of this theory can be found in extended form in the book
High-Dimensional Probability: An Introduction with Applications in Data Science by
Roman Vershynin [32]. Some small proofs not found in this book are provided.

B.1 Sub-Gaussian random variables

Random variables that have similar behaviour to Gaussian random variables satisfy
some of the same strong concentration phenomena, hence the following definition
characterizes this similar behaviour.

Definition B.1.1. (Sub-Gaussian random variable) A random variable X is called
sub-Gaussian of any of the following equivalent definition holds:

1. There exists a constant C1 such that

P(|X| ≥ u) ≤ 2e−u
2/C2

1 for all u ≥ 0.

2. There exists a constant C2 such that

‖X‖Lp ≤ C2
√
p for all p ≥ 1.

3. There exists a constant C3 such that

E exp(X2/C2
3) ≤ 2.

The sub-Gaussian norm is defined by

‖X‖ψ2 := inf{K > 0 : E exp(X2/K2) ≤ 2},

and satisfies
P(|X| ≥ u) ≤ 2e−cu

2/‖X‖2ψ2 for all u ≥ 0,

for some c > 0.
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Two standard examples of sub-Gaussian random variables are Gaussian random
variables and bounded random variables.

Although we will not directly use the concentration of sums of sub-Gaussian random
variables in this thesis, we will see a form of Hoeffding’s inequality for comparison
with the sub-exponential Bernstein’s inequality in the next section.

Theorem B.1.2 (Hoeffding’s inequality, Theorem 2.6.2 in [32]). Let X1, . . . , Xm be
i.i.d. mean zero, sub-Gaussian random variables, then for any u ≥ 0, we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ c‖X1‖ψ2

√
u

m

)
≤ 2e−u,

for some universal constant c > 0.

B.2 Sub-exponential random variables

Weakening the quadratic behaviour of sub-Gaussian random variables to linear
behaviour result in the following definition.

Definition B.2.1. (Sub-Exponential random variable) A random variable X is called
sub-exponential of any of the following equivalent definition holds:

1. There exists a constant C1 such that

P(|X| ≥ u) ≤ 2e−u/C1 for all u ≥ 0.

2. There exists a constant C2 such that

‖X‖Lp ≤ C2p for all p ≥ 1.

3. There exists a constant C3 such that

E exp(|X|/C3) ≤ 2.

The sub-exponential norm is defined by

‖X‖ψ1 := inf{K > 0 : E exp(|X|/K) ≤ 2},

and satisfies
P(|X| ≥ u) ≤ 2e−cu/‖X‖ψ1 for all u ≥ 0,

for some c > 0.

Standard examples of sub-exponential variables includes Laplace random variables,
bounded random variables and all sub-Gaussian random variables.

A fundamental concentration inequality that we will use in this thesis is Bernstein’s
inequality for the sum of sub-exponential random variables.
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Theorem B.2.2 (Bernstein’s inequality). Let X1, . . . , Xm be i.i.d. mean zero,
sub-exponential random variables, then for any u ≥ 0, we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ c‖X1‖ψ1

(√
u

m
+
u

m

))
≤ 2e−u,

for some universal constant c > 0.

Proof. From Corollary 2.8.3 in [32] we get that under the assumptions of the theorem
that for any t ≥ 0,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2

‖X1‖2
ψ1

,
t

‖X1‖ψ1

)
m

)
.

Now let t = K‖X1‖ψ1

(√
u
m

+ u
m

)
for some K > 0, then we find that

t2

‖X1‖2
ψ1

m = K2u+ 2K2u

√
u

m
+K2u

2

m
≥ K2u,

and
t

‖X1‖ψ1

m = K
(√

um+ u
)
≥ Ku.

Hence,

2 exp

(
−cmin

(
t2

‖X1‖2
ψ1

,
t

‖X1‖ψ1

)
m

)
≤ 2 exp

(
−cumin(K2, K)

)
.

Now choose K large enough such that min(K2, K) ≥ 1/c finishes the proof. �

B.3 Random vectors

To extend the definition of sub-Gaussian and sub-exponential random variables to
random vectors, consider the following definition.

Definition B.3.1. (Sub-Gaussian and sub-exponential random vectors) A random
vector X is called sub-Gaussian if for any x ∈ Rn, 〈X, x〉 is sub-Gaussian. We define
the sub-Gaussian norm for random vectors by

‖X‖ψ2 := sup
x∈Sn−1

‖〈X, x〉‖ψ2 .

Similarly, a random vector X is called sub-exponential if for any x ∈ Rn, 〈X, x〉 is
sub-Gaussian. We define the sub-Gaussian norm for random vectors by

‖X‖ψ1 := sup
x∈Sn−1

‖〈X, x〉‖ψ1 .
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Note that we use the name notation for the sub-Gaussian/sub-exponential norm for
random variables and random vectors. Which one is being used should be clear in the
context.

As an example, any random vector with i.i.d.mean zero, sub-Gaussian or
sub-exponential random variables is a sub-Gaussian or sub-exponential random vector
respectively.

We do not want measurement vectors a that are biased towards specific directions.
Hence, if we consider the marginal 〈a, x〉 for unit vector x, we would like this value to
be constant for any unit vector x. The following definition

Definition B.3.2. (Isotropic random vector) A random vector X in Rn is called
isotropic if

E〈X, x〉〈X, y〉 = 〈x, y〉,

for all x, y ∈ Rn.

For a mean zero random vector, being isotropic is equivalent to the covariance matrix
being the unit matrix.

Lemma B.3.3. A random vector X in Rn is isotropic if and only if

EXXT = In,

where In the n× n identity matrix.

Proof. Assume that EXXT = In, then for any x, y ∈ Rn we have

E〈X, x〉〈X, y〉 = ExTXXTy = xTEXXTy = xT Iny = 〈x, y〉.

If X is isotropic, then for any x, y ∈ Rn we have

xTy = E〈X, x〉2 = xTEXXTy.

Thus, for any i, j ∈ [n] we have[
EXXT

]
i,j

= eTi EXXT ej = eTi ej = δij,

hence EXXT = In. �

From Lemma B.3.3 it directly follows that random vectors i.i.d. elements with mean
zero and unit variance are isotropic.
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B.4 Chernoff bound

A final important concentration inequality for the sum of Bernoulli random variables
is the Chernoff bound. Because we will use a different version than used in the
High-dimensional probability book [32], a proof will be given similar to that in the
book.

Theorem B.4.1 (Chernoff bound). Let X1, . . . , Xm be i.i.d. Bernoulli random
variables with parameter µ, i.e., EXi = P(Xi = 1) = µ = 1− P(Xi = 0), then for
α > 0 we have

P

(
1

m

m∑
i=1

Xi ≥ (1 + α)µ

)
≤ exp

(
−α2mµ

2 + α

)
.

Proof. For λ > 0 and α > 0 we have

P

(
m∑
i=1

Xi ≥ (1 + α)mµ

)
≤ e−λ(1+α)mµ

m∏
i=1

EeλXi ,

The moment generating function of a Bernoulli random variable Xi with parameter µ
satisfies

EeλXi = eλµ+ (1− µ)1 + (eλ − 1)µ ≤ exp
(
(eλ − 1)µ

)
,

hence,

P

(
m∑
i=1

Xi ≥ (1 + α)mµ

)
≤
[
exp

(
−λ(1 + α) + (eλ − 1)

)]mµ
.

Now choose λ = log(1 + α) to conclude that

P

(
m∑
i=1

Xi ≥ (1 + α)mµ

)
≤ exp ((α− (1 + α) ln(1 + α))mµ) ≤ exp

(
−α2mµ

2 + α

)
.

�
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[10] S. Dirksen, G. Lecué, and H. Rauhut. On the gap between restricted isometry properties and
sparse recovery conditions. IEEE Transactions on Information Theory, 64(8):5478–5487, 2016.

[11] S. Dirksen, J. Maly, and H. Rauhut. Covariance estimation under one-bit quantization. arXiv
preprint arXiv:2104.01280, 2021.

[12] S. Dirksen and S. Mendelson. Non-gaussian hyperplane tessellations and robust one-bit
compressed sensing. arXiv preprint arXiv:1805.09409, 2018.

[13] S. Dirksen and S. Mendelson. Robust one-bit compressed sensing with partial circulant
matrices. arXiv preprint arXiv:1812.06719, 2018.

[14] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. 2013.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.
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