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1 Introduction

The context of this thesis is the homotopy principle, usually abbreviated to the h-principle. The
main result, theorem 1.4, is an h-principle type result about the d-delay partial differential relation,
and is subsequently introduced. This thesis is meant in part as a proof of concept: it shows that
an old h-principle technique can be used in a broader setting, and that an h-principle technique
for local differential relations, namely convex integration, can be used for some non-local differential
relations. We shall also highlight a few other, more technical results, mainly two generalizations of
the Thom transversality theorem and multijet transversality theorem, theorem 4.14 and theorem 4.18.
Afterwards, the layout of the thesis is presented.

1.1 Context of this thesis

The homotopy principle, (originally weak homotopy equivalence principle) or h-principle, is a collective
term for a number of techniques and results in differential topology and geometry. The results usually
provide answers to questions of the form ‘what is sufficient topological or smooth data to ensure the
existence of a certain smooth map or geometric structure?’ A richer question that is often studied
is ‘how many structures or maps of a certain type exist up to homotopy?’ For example, given two
smooth manifolds, can one classify up to homotopy the immersions or embeddings between them?
Often, a set of ‘formal’ maps or structures is introduced, which emulate some of the properties of the
specific maps or structures under consideration. We say that ‘a full h-principle holds for this class
of maps/structures’ if there is a weak homotopy equivalence between the space of maps or structures
under consideration, and their formal counterparts. The techniques usually focus on constructing the
desired maps or structures through homotopies, starting at their ‘formal’ counterparts. The upshot is
that the formal data is often better understood in terms of homotopy type, or what the obstructions
to the existence of such data are.

Below we give two examples of h-principle results about immersions and smooth embeddings. Heuris-
tically, results about immersions are local results: the behaviour of map in a neighbourhood of a
point determines whether or not it is an immersion. In contrast, if a map is an embedding, this is a
statement about its global behaviour. This is reflected in the choice of formal data.

The father of h-principle theory is M. Gromov (who coined the term), whose book [6] contains many
h-principle results and techniques. The review article by D. McDuff [16] gives an appetizer for the
breath and scope of Gromov’s book. The book [3] by Y. Eliashberg and N. Mishachev, gives an
introduction to the h-principle and Gromov’s book, and is accessible for graduate students. Due to its
accessibility, it will be used as a reference for the notion of partial differential relations (PDRs),
which will be used to make concrete the notion of local and non-local partial differential relations,
such as the immersion relation and embedding relation, respectively. Their book will also be the main
reference for the techique of convex integration. This technique is normally used for local PDRs,
but we shall argue that under some conditions it can be used for non-local PDRs, too. A famous
application of convex integration is the Nash-Kuiper embedding theorem, a proof of which can be
found in [3] too.

1.1.1 h-Principles for immersion and embedding

The first example of an h-principle comes from a class of results about immersions, which is referred
to as Hirsch-Smale immersion theory. The main references are [12] and [17]. The papers focus on the
classification of immersions between a number of fixed spaces, up to homotopy. A broad statement
contained in [12] (spread over multiple statements) is the theorem below. Let M and N be smooth
manifolds, then we say that g : TM → TN is a formal immersion if g is a continuous bundle
monomorphism. I.e. fiberwise a linear, injective map. Any immersion f : M → N has an associated
formal immersion, Tf : TM → TN . Let Imm(M,N) denote the subset of immersions in C∞(M,N),
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where the latter is endowed with the compact-open Whitney C∞ topology (see definition 2.5). Let
Mono(TM, TN) denote the subset of C(TM, TN) consisting of continuous bundle monomorphisms,
and endow C(TM, TN) with the compact-open topology.

Example 1.1. [Hirsch-Smale Immersion Theorem] Let M and N be manifolds and let N have empty
boundary. If dimM = dimN and M is open, or if dimM < dimN , then the map

T : Imm(M,N)→ Mono(TM, TN), f 7→ Tf

induces a weak homotopy equivalence. 4

This result gives powerful information about the homotopy classes of families of immersions, and
implies that the existence and classification of immersions is topological in nature. A result of this
nature is a ‘true’ h-principle result, because there is weak homotopy equivalence between the mappings
of interest, and the formal mappings. For another example involving immersions, we refer to theorem
3.11.

Another important example appears in the context of smooth embeddings. A well known result, due
to H. Whitney, is the embedding theorem named after him [21], which guarantees the existence of
a smooth embedding f : M → N if dimN ≥ 2 · dimM . An h-principle type result about smooth
embeddings was obtained by A. Haefliger in [9]. Let M and N be manifolds, then we say that a
smooth map f = (f1, f2) : M ×M → N ×N is equivariant if for all (x, y) ∈M ×M (f1, f2)(y, x) =
(f2, f1)(x, y). A homotopy connecting f to any other map g is called equivariant if all interpolating
maps are equivariant.

Example 1.2. [Haefliger Embedding Theorem] Assume that M is compact.

(a) Suppose that 2 · dimM ≤ 3(dimN + 1). An immersion f : M → N is homotopic through
immersions to a smooth embedding if and only if there exists an equivariant homotopy H : M2×
[0, 1] → N2 connecting f × f to an equivariant map g : M2 → N2 that satisfies g−1(∆(N)) =
∆(M), and so that ∆(M) is open in H−1

t (∆(N)) for all t ∈ [0, 1].

(b) Suppose that 2 ·dimM < 3(dimN+1). A homotopy H : M× [0, 1]→ N connecting two smooth
embeddings is itself homotopic to an isotopy if and only if there exists an equivariant homotopy
Gτ,t : M2 → N2 connecting H2

τ = Gτ,0 to a homotopy Gτ,1 that satisfies G−1
τ,1(∆(N)) = ∆(M)

for all τ ∈ [0, 1], and so that ∆(M) is open in G−1
τ,t (∆(N)) for all τ, t ∈ [0, 1]. 4

The formal mappings are now equivariant maps or homotopies, whose preimage of the diagonal in N
is the diagonal in M . Since M is assumed to be compact, it follows that f : M → N is a topological
embedding if and only if (f × f)−1(∆(N)) = ∆(M). The formal embeddings carry more topological
data than the formal immersions, which is needed to ensure the existence of embeddings or isotopies.
In [18], A. Szücs gave a different proof of the above theorem, communicated to him by M. Gromov and
Y. Eliashberg. The technique presented in [18], which is a removal of singularities-type argument, is
adapted to prove the main result of this thesis, theorem 1.4. It remains an open question how general
the class of non-local differential relations is, to which this technique can be adapted.

1.1.2 Transversality

This thesis communicates a slightly more general version of the Thom transversality theorem and
multijet transversality theorem, namely theorems 4.14 and 4.18. These two theorems can be used to
make statements about the jet transversality and multijet transversality of equivariant maps, such as
theorems 5.11 and 5.14.

Thom’s theorem is usually used to argue that, for a smooth map f : M → N and a submanifold
W ⊂ N , the map f can be perturbed by an arbitrarily small amount so that f−1(W ) is a submanifold.
That is, f is made transverse to the submanifold W (see chapter 4). In fact, there are more powerful
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and flexible statements available than this. Whereas Thom’s theorem involves the preimage of single
maps, and multijet transversality involves the preimage of the product of a map with itself, such as
f × f : M2 → N2, the theorems presented in this thesis can be applied to products of many maps,
of which some factors may repeat. Moreover, it allows for inputs to be repeated, which can be useful
for homotopies of products of maps. These technical results are inspired by similar results claimed in
[18].

An example problem for which theorem 4.14 can be used is the following: let f1, f2 : M → N be
smooth maps, and suppose that H1 and H2 are homotopies connecting the respective maps to new
smooth maps g1, g2. Suppose we are given a submanifold W of N2. Can one perturb the combined
homotopy H1×H2 : M2× [0, 1]→ N2, (x, y, t) 7→ (H1(x, t), H2(y, t)) which connects f1×f2 to g1×g2,
to a new homotopy that is transverse to W , and such that all interpolating maps are products? The
theorem gives sufficient conditions for a positive answer to this question.

1.2 Main results

The main result we wish to present, theorem 1.4, is an h-principle type result about solutions of a
certain non-local differential relation, the d-delay differential relations Rd (definition 6.2), where
d > 0 is a real number. Let M denote one of the manifolds [0, 1], R, or S1 ∼= [0, 1]/{0 ∼ 1}. A smooth
map f : M → Rn is a d-delay solution, denoted f ∈ Sol(Rd), if and only if for every x ∈M ,

f ′(x) 6= f ′(x± d).

The inequality in the d-delay relation is non-local, in the sense that it depends on values the map
takes at two point that are not nearby. Inspired by Haefliger’s embedding theorem (example 1.2), our
main results shows there is a class of equivariant maps g : M2 → (Rn)2 to which the d-delay solutions
are either weakly homotopy equivalent, or when M = S1, have isomorphic homotopy groups (up to
some degree). We shall first introduce the formal data, before stating the result and giving some idea
of the proof.

1.2.1 Formal data

Given a map g : M → Rn that satisfies g(x) 6= g(x±d) for all x ∈M , one can wonder if g can be used
to find an element h ∈ Sol(Rd) such that h′ is equal (up to homotopy) to g. I.e. can we ‘integrate’
(up to homotopy) g to find a d-delay solution? Maps g : M → Rn satisfying g(x) 6= g(x ± d) for all
x ∈ M are solutions of the derivative d-delay relation R′d (see also definition 6.2). Notationally,
g ∈ Sol(R′d).

Let ∆±d = {(x, y) ∈ M2 : y = x± d} denote the d-shifted diagonal. Observe that g is an element of
Sol(R′d) if and only if g × g(∆±d) ∩ ∆(Rn) = ∅, where g × g : M2 × R2n is given by g × g(x, y) =
(g(x), g(y)). A generalization of the above question is: given a map h : M2 → R2n satisfying h(∆±d)∩
∆(Rn) = ∅, can one find g ∈ Sol(R′d) such that g × g is homotopic to h?

We say that h : M2 → R2n is a formal d-delay solution if h(∆±d) ∩ ∆(Rn) = ∅, and h is
equivariant, i.e. h1(x, y) = h2(y, x) for all (x, y) ∈ M ×M , where h1, h2 : M2 → Rn are the maps
such that h = (h1, h2). We denote this by h ∈ SolF (Rd) (definition 6.2).

The spaces of solutions and formal solutions inherit the weak Whitney C∞-topology, as a subspace
(see definition 2.5).

1.2.2 The h-principle for the delay relation

Our main result shows that for M = [0, 1] and M = R, there is a weak homotopy equivalence between
d-delay solutions and their formal counterparts, the formal d-delay solutions. The main point is that
the existence and classification question for Sk-families of d-delay solutions can be replaced by the
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same question for the formal d-delay solutions. The existence and classification of formal solutions
is very computable: one can show that formal d-delay solutions, contained in C∞(M2,R2n), can be
identified with the space of maps C∞(M, Sn−1), which is homotopy equivalent to Sn−1. Hence the
existence and classification of such maps becomes particularly easy.

Remark 1.3. At first glance, this result may look more straightforward than it is: since M is
contractible in both cases, perhaps one could prove a weak homotopy equivalence by reducing to the
case where M is an arbitrarily small interval. However, the non-locality of the d-delay relation makes
deformations of the base space more difficult, and hence the solution more subtle than this. 4

The main result also shows that, if M = S1, there are isomorphisms of homotopy groups between true
d-delay and formal d-delay solutions, up to a certain dimension of homotopy group, which depends on
d and and the dimension of Rn. It is not known to the author if there definitively do or do not exist
isomorphisms for the higher dimensional homotopy groups. In this case, the space of formal solutions
can be identified with C∞(S1,Sn−1).

As announced, this result is in part a proof of concept: it shows that equivariant maps can be used
to prove non-local h-principles, and shows that there is a removal of singularities-type technique
that can be used more broadly than its original application in [18]. In [18] the embedding relation is
studied instead, and the method requires some other results than those we use here. The choice for
the d-delay differential relations, as well as M being [0, 1],R or S1, is to keep this proof of concept
simple enough.

Theorem 1.4. Let 0 < d < 1, and assume that M = R or M = [0, 1]. Then

T × T : Sol(Rd)→ SolF (Rd), f 7→ f ′ × f ′

is a weak homotopy equivalence.

Assume that M = S1, then T × T : Sol(Rd)→ SolF (Rd) induces maps

(T × T )k : πk(Sol(R)d, f)→ πk(SolF (Rd), f
′ × f ′),

which are

• isomorphisms for all k ≥ 0 if d is irrational.

• isomorphisms for all k ≥ 0 if d = 1/2.

• isomorphisms for all k < q(n− 1)− 2 if d = p/q is rational, p, q ∈ N1 coprime.

1.2.3 Techniques and further results

The proof of theorem 1.4 is split into two parts: we first show in theorem 6.4 that there is a weak
homotopy equivalence between d-delay solutions and formal derivative d-delay solutions, whose proof
is based on H. Whitney’s classification of regular immersions from S1 to R2 [20]. Second, we show
in section 6.2 that there are isomorphisms of homotopy groups of derivative d-delay solutions, and
formal d-delay solutions (up to a certain dimension of M = S1).

A minor result of thesis is the application of convex integration to a particular class of non-local
partial differential relations, theorem 3.25, such as the d-delay differential relation. That is to say, we
can make use of the fact that the d-delay differential relation is not infinitesimally non-local, unlike
(for example) the embedding problem. Specifically, for every point in M , there is a neighbourhood
of that point in which no two points interact through the relation. This can be used to apply convex
integration in a small neighbourhood around a point, to deform a formal d-delay solution of the form
F × F to a true solution. In particular, this technique could be used instead of Whitney’s technique
to prove theorem 6.4.
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The proof of the second step in theorem 1.4 requires the most important technical result in this
thesis for non-local differential relations, an equivariant jet transversality theorem, and a multijet
counterpart: theorem 5.11 and theorem 5.14. When looking at non-local differential relations, such
as the embedding relation in theorem 1.2 or at our main result, it appears that a key feature of the
formal solutions g : M2 → N2 is that they are equivariant, i.e. g = (g1, g2) : M2 → N2 satisfies
g1(y, x) = g2(x, y) or equivalently (g1, g2)(y, x) = (g2, g1)(x, y) for every (x, y) ∈M×M . It is therefore
useful to have a variation of the Thom transversality theorem (theorem 4.2) and multijet transversality
theorem (theorem 4.5), which guarantees the existence of an arbitarily small perturbation of an
equivariant map g that is transverse to a chosen submanifold W , while remaining equivariant. We
shall show that these two theorems can be seen as consequences of theorems 4.14 and 4.18 respectively,
which are generalization of the Thom transversality theorem and multijet transversality theorem.

After having written down theorems 4.14 and 4.18, it turned out that a specific case, related to the
study of regular homotopies between immersions, had already been published by G.K. Francis and R.
Bott in [4]. The language is, accidentally, very similar.

The results presented need some careful analysis of the strong and weak Whitney C∞ topology
with which one can endow the space of smooth functions between manifolds. In particular, the new
transversality theorems, and study and deformation of formal d-delay solutions, rely on this. Hence,
a substantial part of this thesis and the appendix is devoted to it.

1.3 Layout of the thesis

The structure of the thesis is mostly linear: most chapters start by introducing concepts and auxiliary
results, and finish with main or supporting results.

In chapter 2 we recall the definition of a jet bundle of a pair of manifolds, jets of smooth maps between
manifolds, and how they can be used to define the strong and weak Whitney topologies on the space
of smooth functions. In particular we recall that the space of smooth functions with the (weak or
strong) Whitney smooth topology is a Baire space. This lays down the theoretical foundation for
many of the new results. The remainder of the chapter is used to prove some preliminary results
about the map which sends a tuple (f1, . . . , fn) of smooth maps fj : Xj → Yj to the product map
f1 × . . . × fn :

∏n
j=1Xj →

∏n
j=1 Yj , and the product of smooth function spaces. In particular, we

determine some topological properties of this map, and show that the space of smooth functions,
with either the weak or strong Whitney smooth topology, preserves the Baire property under finite
Cartesian products. The main reference is [5, sections II.2 and II.3], with an additional reference
being [13, section 2.1].

Chapter 3 consists of a collection of preparatory definitions and results, and ends with the proof of
theorem 3.25, which concerns non-local convex integration. In the first subsection, we hammer out
what we understand by the weak homotopy equivalence mentioned in theorem 1.4, and how it will be
studied in this thesis. For the basic definitions, the main reference is [11, chapter 4]. Subsequently,
we introduce the h-principle and recall the definition and some examples of a partial differential
relation. We introduce a technique which is used in chapter 6, which is the proof of theorem 3.11 (due
to H. Whitney). The final subsection of this chapter is spent on recalling a simple version of convex
integration, defining delay-type non-local PDRs, and proving a new application of conventional convex
integration, theorem 3.25. The main reference for convex integration is [3, chapter 17].

In chapter 4 we take leave of our study of differential relations for a moment, and focus on studying
transversality of product maps and families of product maps. In the first subsection we recall what
it means for a smooth map f : X → Y to be transverse to a submanifold W ⊂ Y , and why this is
of interest. We recall the Thom transversality and multijet transversality theorems, and in the first
two subsections (respectively) generalize these theorems to product maps, as introduced in chapter
2, that possibly depend on the same factor multiple times, theorems 4.14 and 4.18. These theorems
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are inspired by results claimed in [18], which needed an extra condition to be true, which we discuss
briefly. In the final subsection we conclude with a corollary about the transversality of preimage
manifolds. The main reference of this chapter is [5, section II.4].

In chapter 5 we return to the studying non-local differential relations, and study the set of equivariant
smooth maps as a subset of all smooth maps. We prove some elementary results, and use the results
of the previous chapter to find equivariant (multijet) transversality theorems, in particular theorem
5.11 and theorem 5.14. This lays the foundation for the final chapter.

In the final chapter, chapter 6, we introduce the d-delay differential relation, formal d-delay solutions,
and the derivative d-delay differential relation. Subsequently, we prove the main result, theorem 1.4.
The elementary results about equivariant maps, and the equivariant transversality theorems of the
previous chapter are used in a ‘removal of singularities’-type argument to prove the final theorem.
This argument is based on the argument provided in [18].

The appendix is used to prove the results of chapter 4. Most results are generalizations of [5, sections
II.3 and II.4].
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2 Jet bundles and Whitney topologies

Here, and throughout this thesis, we shall be making the distinction between product maps and the
coordinate maps of a single map. To be exact:

• let M,N1, N2 be sets, and let g : M → N1 ×N2 be a function. Denote its coordinate functions
by g1 : M → N1 and g2 : M → N2. I.e. g = (g1, g2).

• Let M1,M2, N1, N2 be sets, and let fi : Mi → Ni be functions. Denote by f1 × f2 : M1 ×M2 →
N1 ×N2 the map (x, y) 7→ (f1(x), f2(y)).

In this section, we first recall the basic definitions and properties of jet bundles, which are smooth
fiber bundles most often used to study smooth maps f between two manifolds X and Y . The k-th
jet bundle of a pair of manifolds X and Y , denoted Jk(X,Y ), roughly speaking, records the partial
derivatives of a smooth map f up to and including order k.

Jet bundles are used in two ways in this thesis. They are used in chapter 3 to make concrete the
notion of partial differential relations, both local and non-local. In this chapter we focus on their
second use: jet bundles can be used to endow the space of smooth functions C∞(X,Y ) with a number
of topologies, called the Whitney topologies, named after Hassler Whitney. Roughly speaking,
two smooth maps f, g : X → Y are ‘nearby’ in these topologies if for every point in X, their partial
derivatives are close to each other. We recall the weak and strong Whitney C∞ topology in particular,
which shall be the only two of the Whitney topologies of interest in this thesis. We subsequently recall
a number of properties of these two topologies. The most important of these for our purposes is that
C∞(X,Y ) is a Baire space with either topology, i.e. a space with the Baire property: a countable
intersection of open and dense sets in C∞(X,Y ) is dense.

Definition 2.1. Let A be a subspace of a topological space B. Then A is called a residual set if A
is a countable intersection of open and dense sets. 4

Remark 2.2. The Baire property of these topologies plays a key role when applying classical transver-
sality theorems, theorem 4.2 and 4.5. If a map f : X → Y is transverse to a submanifold W ⊂ Y
(see chapter 4), the preimage f−1(W ) is a manifold. Very briefly, the heart of the these theorems is
showing that the set of maps f transverse to a fixed submanifold W is residual. The Baire property
implies that the set of transverse maps is therefore dense within the set of all smooth maps, which is
usually the key property theorem 4.2 and 4.5 are used for. 4

In chapters 4 and 5 we introduce variations of the classical transversality theorems. Given families of
manifolds X1, . . . , Xn, Y1, . . . , Yn and families of maps between them fj : Xj → Yj , these theorems
focus on product maps

f1 × . . .× fn : X1 × . . .×Xn → Y1 × . . .× Yn
and the products of jets

jkf1 × . . .× jkfn : X1 × . . .×Xn →
n∏
j=1

Jk(Xj , Yj).

In the last part of this chapter we preempt these new transversality theorems, and focus on the
relation between families of maps in

∏n
j=1 C

∞(Xj , Yj) and the product functions they produce, lying
in C∞(X,Y ). Here X and Y denote the product manifolds, whose factors are the members of the
respective families. Specifically, if all factors of the former, as well as the latter, are endowed with the
strong or weak Whitney C∞ topology, we determine if the inclusion map (f1, . . . , fn) 7→ f1 × . . .× fn
is continuous or even an embedding. Subsequently we determine for either case if

∏n
j=1 C

∞(Xj , Yj)
has the Baire property.
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2.1 Jet bundles

We recall the definition of jet bundles, and a number of their basic properties. This summarizes a
number of results of [5, section II.2].

Let X and Y be manifolds, then the k-th jet bundle of X and Y , Jk(X,Y ), is a smooth fiber
bundle over X × Y . The fiber Jk(X,Y )(x,y) consists of equivalence classes ”∼k at x” of smooth
mappings f : X → Y with f(x) = y, where the equivalence relation is k-th order contact at x. More
precisely, the k-th order contact at x condition is defined as follows: define f, g : X → Y to have
0-th order contact at x if f(x) = g(x). Inductively define f to have k-th order contact at x with g if
Tf has k − 1-th order contact with Tg at x. Here we see Tf and Tg as smooth maps between the
manifolds TX and TY .

The k-th order contact at x of two smooth function from Rm to Rn can also be formulated in terms
of derivatives.

Lemma 2.3 (Lemma II.2.2 of [5]). Let U be an open subset of Rm and p be a point in U . Let
f, g : U → Rn be smooth maps. Then f ∼k g at p if and only if

∂|α|fi
∂xα

(p) =
∂|α|gi
∂xα

(p)

for every multi-index α with |α| ≤ k and 1 ≤ i ≤ n where fi and gi are the coordinate functions
determined by f and g, respectively, and x1, . . . , xm are coordinates on U .

As a corollary, one finds that smooth maps f, g : U → Rn have k-th order contact at x if and only if
the Taylor polynomial of f and g agree up to and including order k at x. More generally, for smooth
maps f, g : X → Y to have k-th order contact at x, it is necessary and sufficient that for each choice
of charts around x and f(x) = g(x), all mixed partial derivatives of order up to and including k
are equal. Equivalently, for each such choice of charts, the Taylor polynomial corresponding to those
charts agree up to and including order k at x.

To explain the smooth and bundle structures of Jk(X,Y ), we shall first define it over open subsets of
Euclidean space: suppose X = U and Y = V are open subsets of Rm and Rn respectively. Let Akm
denote the space of all real valued polynomials in m variables with vanishing constant term, whose
order is at most k. By taking the coefficients of the polynomials in Akm as coordinates, Akm is endowed
with a smooth structure, i.e. that of a real vector space. Let Bkm,n =

⊕n
i=1A

k
m, which then obtains a

smooth structure from its factors. For a smooth map f : U → R, define Tkf : U → Akm by mapping x
to the k-th order Taylor polynomial of f at x (omitting the constant term). One can show that the
map

TU,V : Jk(U, V )→ U × V ×Bkm,n, [f ](x,y) 7→ (x, f(x), Tkf1, . . . , Tkfn)

is a bijection. The smooth structure of the right hand side defines a smooth structure for the left
hand side.

For general manifolds X and Y , let φ : U → Rm and ψ : V → Rn be charts around x ∈ X and y ∈ Y ,
respectively. Denote U ′ = φ(U) and V ′ = ψ(V ). Then there is a bijection

ψ∗φ
∗ : Jk(X,Y )U,V → Jk(U ′, V ′), [f ](x,y) 7→ [ψ ◦ f ◦ φ−1]φ(x),ψ(y).

See also [5, proposition II.2.5]. The smooth structure of the right hand side again defines a smooth
structure for the left hand side. Bundle trivializations of Jk(X,Y ) over U × V are defined by TU,V ◦
ψ∗ ◦ φ∗, and the fiber of Jk(X,Y ) is Bkm,n, the n-fold space of polynomial of at most order k, in m
variables (without constant term).

Theorem II.2.7 of [5] verifies that this choice of bundle charts indeed endows each jet bundle with
a smooth structure, such that π : Jk(X,Y ) → X × Y is a submersion (and hence we have a fiber
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bundle). The transition functions are linear for J1(X,Y ), but generally not even affine for higher
order k-jets.

Example 2.4. Let ψ : R → R be the diffeomorphism x 7→ x3 + x. Using the identity map of R as
a chart twice, we can identify J2(R,R) with R2 × B2

1,1 = R2 × A2
1. Here A2

1 is the subspace space of
polynomials in one variable, of the form a2x

2 + a1x. The global charts (idR,R) and (ψ,R) induce a
diffeomorphism ψ∗id

∗
R on Jk(R,R), and the corresponding transition function on R2 ×Ak1 is given by

(x, y, a2z
2 + a1z) 7→ (x, y3 + y, (3ya2 + 3a2

1 + a2)z2 + (3ya1 + a1)z). It is clear that these transition
functions are not affine. 4

Although the transition functions may not be so nice for higher degree jet bundles, there are maps
between jet bundles whose degree differs by one,

πk,k−1 : Jk(X,Y )→ Jk−1(X,Y ), [f ](x,y) 7→ [f ](x,y), k ≥ 1,

which are well-defined, and which give another fiber bundle structure. Its fiber can be identified with
all polynomials representing points in Jk(X,Y ) that have fixed (k−1)-th and lower order terms. The
chain rule implies that the transition functions are affine.

Note that for every smooth map f : X → Y there is now a canonically defined map, the k-jet of f
or the k-jet extension of f , jkf : X → Jk(X,Y ), defined by jkf(p) = [f ]p,f(p). Theorem II.2.7 also

verifies that jkf is smooth. For an example, observe that j0f(p) = (p, f(p)), and hence we may think
of j0f as the graph of f contained in J0(X,Y ) = X × Y .

It will often be useful to consider not only the bundle projection π : Jk(X,Y )→ X × Y , but also the
composite projections s : Jk(X,Y )→ X and t : Jk(X,Y )→ Y , which will respectively be referred to
as the source map and the target map. It is important to remark that the k-jet of a function is a
section of the fiber bundle s : Jk(X,Y )→ X.

Another notion we shall make use of is a multijet bundle: the s-fold r-jet of X and Y or simply
multijet of X and Y is given by (Jr(X,Y ))s. It should be clear that the multijet is a smooth
fiber bundle over (X × Y )s. We call the map induced from Jr(X,Y )s to Xs the source map, and
to Y s the target map, in correspondence with the ordinary jet bundles. Similarly, for a smooth
map f : X → Y the s-fold r-jet of f , s-fold r-jet extension of f , or simply the multijet of f ,
jrsf : Xs → Jr(X,Y )s, is given by

(x1, . . . , xn) 7→ (jrf(x1), . . . , jrf(xn)).

It should be remarked that sometimes the multijet bundle is instead defined as the restriction of
s : Jr(X,Y )s → Xs to the fibers over the complement of the large diagonal ∆(s)(X) (see below).
One of the reasons for this can be found in the formulation of theorem 4.5.

Let S be a set. Here and throughout the thesis, we make the distinction between the small diagonal
∆n(S) and large diagonal ∆(n)(S) contained in the product of sets Sn for some n ≥ 1. Here

• ∆n(S) is given by {(s1, . . . , sn) ∈ Sn : si = s ∈ S ∀i}.

• ∆(n)(S) is given by {(s1, . . . , sn) ∈ Sn : si = sj for some 1 ≤ i < j ≤ n}.

2.2 Whitney topologies

Jet bundles allow us to compare two smooth maps f, g : X → Y : we can think of f and g as being
close to each other if the images of jkf and jkg lie close to another inside Jk(X,Y ). I.e. we think of
f and g being close to each other if their partial derivatives are close to each other. With this idea,
we can endow the space of smooth functions between X and Y , C∞(X,Y ), with a number of
topologies.
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Definition 2.5. Let X and Y be smooth manifolds.

(i) Fix a non-negative integer k. Let K be a subset of X and U be a subset of Jk(X,Y ). Then
denote by M(K,U) the set

{f ∈ C∞(X,Y ) : jkf(K) ⊂ U}.

(ii) In the special case that K = X, denote by M(U) the set M(X,U).

(iii) The family of sets {M(K,U)} where K ⊂ X is compact and U ⊂ Jk(X,Y ) is open, form a
subbasis for a topology on C∞(X,Y ). This topology is called the weak Whitney Ck topology or
the compact-open Ck topology.

(iv) The family of sets {M(U)} where U ⊂ Jk(X,Y ) is open, form a basis for a topology on
C∞(X,Y ), too. This topology is called the strong Whitney Ck topology or simply the Whitney
Ck topology.

(v) The weak Whitney C∞ topology on C∞(X,Y ) is the topology whose subbasis is W =
⋃∞
k=0Wk,

where Wk is the subbasis of the weak Whitney Ck topology. If C∞(X,Y ) is endowed with this
topology, we denote this topological space by C∞W (X,Y ).

(vi) The Whitney C∞ topology on C∞(X,Y ) is the topology whose basis is V =
⋃∞
k=0 Vk, where Vk

is the basis of the Whitney Ck topology. If C∞(X,Y ) is endowed with this topology, we denote
this topological space by C∞S (X,Y ). 4

Remark 2.6. • Let M(U1) and M(U2) be open subsets of C∞S (X,Y ). Observe that M(U1) ∩
M(U2) = M(U1 ∩ U2), but that a similar identity for unions is generally false.

• The weak Whitney C∞ and strong Whitney C∞ topology have a well defined (sub)basis, since
the Wk ⊂ Wl and Vk ⊂ Vl whenever k ≤ l. To see this, use the canonical mapping πlk :
J l(X,Y ) → Jk(X,Y ), which assigns each σ = [f ]p,f(p) to the class in Jk(X,Y )(p,f(p)) also

represented by f . Then M(K,U) = M(K, (πlk)−1(U)) and M(U) = M((πlk)−1(U)).

• The symbol C∞ is also be referred to as ‘smooth’. I.e. C∞W (X,Y ) is endowed with the weak
Whitney smooth topology. 4

In this thesis we will be concerned with the weak and strong Whitney C∞ topologies. These topolo-
gies have a number of important properties, listed in the proposition below. For a more complete
background, we refer to [13, chapter 2].

Proposition 2.7. Let X and Y be manifolds.

(i) The weak Whitney C∞ is weaker than the strong Whitney C∞ topology.

(ii) The weak and strong Whitney C∞ topologies are equal whenever X is compact.

(iii) C∞W (X,Y ) is a complete metric space, and in particular a Baire space.

(iv) C∞S (X,Y ) is a Baire space.

Proof. It is easy to verify that for every compact set K ⊂ X and open set U ⊂ Jk(X,Y ), M(K,U) =
M(U ′), where U ′ = (s−1(K) ∩ U) ∪ s−1(X \ K). To see that U ′ is open, note that U is open and
contained in U ′, and that K is closed. From this it follows that the weak Whitney C∞ topology is
indeed weaker. If X is compact, the strong open sets M(U) = M(X,U) are of course weak open, too.
For (iii), [13, theorem 2.4.1] shows that C∞W (X,Y ) can be endowed with a metric compatible with the
topology, for which the space is complete. The Baire category theorem implies that it is hence Baire.
For (iv), we refer to [5, proposition II.3.3]. Below we prove a straightforward generalization of this
proposition, and hence omit it here.
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2.3 Product Whitney topologies

Let X1, . . . , Xn and Y1, . . . , Yn be two families of manifolds, and let fj : Xj → Yj be a family of
smooth maps. Denote by X the product X1 × . . .×Xn, and denote by Y the corresponding product
space. In what follows, we will be interested in product maps f1 × . . . × fn : X → Y given by
(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)). Such product maps form a subspace of C∞(X,Y ), and it is
useful to compare the subspace topology endowed by weak (or strong) Whitney C∞ topologies with
that of the product topology given to C :=

∏n
j=1 C

∞(Xn, Yn), where each factor has the weak (or
strong) topology. We denote by p : C → C∞(X,Y ) the map sending a family of maps (f1, . . . , fn) to
its product map f1 × . . .× fn.

Proposition 2.8. With the above notation, endow C with the product topology induced by the weak
Whitney C∞ topology on each factor, and endow C∞(X,Y ) with the same topology. Then p is an
embedding with closed image.

Proof. Note that for every integer k ≥ 0, there exists a (smooth) embedding ik :
∏n
j=1 J

k(Xj , Yj) →
Jk(X,Y ) given by ([f1]x1,y1 , . . . , [fn]xn,yn) 7→ [f1 × . . . × fn]x,y, where x = (x1, . . . , xn) and y =
(y1, . . . , yn). To see that this is indeed an embedding, one can use product charts on X and Y to
find trivializations of the left and right hand side. For a product map f = f1 × . . .× fn : X → Y , it
moreover holds that ik ◦ (jkf1 × . . .× jkfn) = jkf , and hence that im jkf ⊂ im ik.

Let Kj ⊂ Xj be compact sets, and Uj ⊂ Jkj (Xj , Yj) be open sets. Without loss of generality, we may
assume that kj = k for each 1 ≤ j ≤ n. It is easy to verify that

p

 n∏
j=1

M(Kj , Uj)

 = M

 n∏
j=1

Kj , ik

 n∏
j=1

Uj

 ∩ im p.

From this identity it follows that p is an open map (onto its image): as ik is an embedding and each

Uj is open, it easy to extend ik

(∏n
j=1 Uj

)
to an open set.

It is left to show that p is continuous with closed image. Let K ⊂ X be compact and U ⊂ Jk(X,Y )
be open. Let (f1, . . . , fn) ∈ p−1(M(K,U)), and denote f = p(f1, . . . , fn). Let U ′ denote U ∩ im ik.
We shall indentify the domain of ik with its image. We construct a cover of compact product neigh-
bourhoods {Zx : x ∈ K} of K ⊂ X, such that each for each x ∈ K there exists an open subset
Vx ⊂ U ′. This subset Vx =

∏n
j=1 V

j
x is a product of open sets V jx ⊂ Jk(Xj , Yj), and for all x′ in

Zx = Z1
x × . . .× Znx , jkf(x′) ∈ Vx ⊂ U ′.

Let x ∈ K. As U ′ is open in
∏n
j=1 J

k(Xj , Yj) and jkf(x) ∈ U ′, there exists open product sets

V 1
x , . . . , V

n
x with V jx ⊂ Jk(Xj , Yj), such that Vx :=

∏n
j=1 V

j
x ⊂ U ′ and jkf(x) ∈ Vx. By the continuity

of jkf , there exists a product open neighbourhood Z ′ = Z ′1×. . .×Z ′n in X of x, such that jkf(Z ′) ⊂ Vx.
As each Xj is a manifold, we can replace Z ′ by Z = Z1 × . . .× Zn, which has the same properties as
Z, but each factor of Z is a compact neighbourhood of x. This completes the construction.

By the compactness of K, we can select a finite subcover Vx1
, . . . , Vxm for some m ≥ 0. It follows that

fj ∈M(Zj , V
j
xi) for each 1 ≤ j ≤ n and 1 ≤ i ≤ m, and that

V :=

m⋂
i=1

n∏
j=1

M(Zj , V
j
xi)

is an open neighbourhood of (f1, . . . , fn) such that p(V) ⊂M(K,U). This proves the continuity of p.

Finally, to see that the image of p is closed, one can observe that the complement is open. Suppose
that g : X → Y is not a product of functions, then im j1g is not contained in im i1. In particular,
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there exists x ∈ X such that j1g(x) does not lie in im i1. One can show that im i1 is closed, and
hence that im i1 ∩α−1(x) is closed. If we let W be the complement of this intersection, it follows that
g ∈M({x},W ), which is open and disjoint from the set of product functions.

Remark 2.9. The smooth embeddings ik :
∏n
j=1 J

k(Xj , Yj) → Jk(X,Y ) will play a role later on,
too. As is stated in the above proof, the following diagram commutes:∏n

j=1 C
∞(Xj , Yj)

∏n
j=1 C

∞(Xj , J
k(Xj , Yj))

C∞(X,Y ) C∞(X, Jk(X,Y ))

(jk)n

p (ik)∗

jk

Hereafter we shall consider at length products of funtions, and products of jets of functions. Although
it is not yet clear, it is crucial for the study of transversality to realize that the jet of a product map,
jk(f1 × . . . × fn), takes image in the product of jet bundles

∏n
j=1 J

k(Xj , Yj), seen as a subspace of

Jk(X,Y ). See also remark 4.7 and the discussion preceding it. 4

Corollary 2.10. The space C with the product topology induced by the weak Whitney C∞ topology on
each factor is a Baire space.

Proof. As C is homeomorphic to a closed subset of a complete metric space, it is itself a complete
metric space. By the Baire category theorem, it has the Baire property. Alternatively, as a product of
complete metric spaces, C is a complete metric space, and hence has the Baire property by the Baire
category theorem.

Corollary 2.11. Let k ≥ 0 be an integer, and let U ⊂ Jk(X,Y ) be an open set. Let V be the
complement of U . If s(V ) is compact, then p−1M(U) is open in C, where each factor has the strong
Whitney C∞ topology.

Proof. Observe that if s(U) 6= X, then M(U) = ∅, and hence the result would be trivial. So assume
without loss of generality that s(U) 6= X. The set s(V ) consists of all those points x in X for which
U does not contain the entire fiber s−1(x). It follows that M(U) = M(s(V ), U) = M(s(V ), U). The
proof of proposition 2.8 showed that p−1M(s(V ), U) was open in C when each factor had the weak
topology. Hence the same preimage is open when each factor has the strong topology.

Proposition 2.8 proves useful in the study of transversality of product maps. Unfortunately, a similar
proposition is false when each factor of C has the strong Whitney C∞ topology : the following example
will show that, in general, the map p is not continuous in this case. Of course, if all X1, . . . , Xn are
compact, p will be continuous regardless of the choice of topology.

Example 2.12. Let f : R → R be the constant map x 7→ 0. Let A ⊂ R4 ∼= J0(R2,R2) be the open
set {(x, y, z, w) ∈ R4 : |xw| < 1, |yz| < 1}. It is clear that M(A) is an open subset of C∞(R2,R2), and
that f × f ∈M(A). In fact, it is straightforward to verify that f × f is the only map in the image of
p : C∞(R,R)2 → C∞(R2,R2) : (g, h) 7→ g× h contained in M(A). It follows that p is not continuous:
if it were, p−1(M(A)) would contain a product neighbourhood of (f, f). One can show that any open
neighbourhood of f in C∞(R,R) has multiple maps in it, a contradiction. 4

Fortunately, C is still a Baire space, when each factor has the strong Whitney C∞ topology. The
following proposition is a straightforward generalization of [5, proposition II.3.3].

Proposition 2.13. Let X1, . . . , Xn and Y1, . . . , Yn be manifolds. Endow C with the product topology
induced by the Whitney topology on each factor. Then C is a Baire space.
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Proof. Endow for every s ≥ 0 and 1 ≤ j ≤ n the manifold Js(Xj , Yj) with a metric dj,s, which
makes Js(Xj , Yj) into a complete metric space. Let U1,U2, . . . be a countable sequence of open
dense subsets of C∞(X,Y ) and let V be another non-empty open subset of C. We must show that
V ∩

⋂∞
i=1 Ui 6= ∅. Since V is open in the the product topology, there exist open subsets W 1, . . . ,Wn,

W j ⊂ Jkj (Xj , Yj), such that N :=
∏n
j=1M(W

j
) ⊂ V and M :=

∏n
j=1M(W j) 6= ∅. It is enough to

show that N ∩
⋂∞
i=1 Ui 6= ∅.

To do this, we inductively choose a sequence of functions f1j , f2j , . . . for each j; a sequence of integers
k1j , k2j , . . . for each j; and for each i ∈ N and j an open subset Wij in Jkij (Aj , Xj) satisfying

(Ai) (fi1, . . . , fin) ∈M ∩
(⋂i−1

k=1

∏n
j=1M(Wkj)

)
∩ Ui.

(Bi)
∏n
j=1M(Wij) ⊂ Ui and (fi1, . . . , fin) ∈

∏n
j=1M(Wij).

(Ci) (i > 1) dj,s(j
sfij(x), jsf(i−1)j(x)) < 1/2i for all x ∈ Xj , 1 ≤ s ≤ i, and 1 ≤ j ≤ n.

We first show that by choosing the above data we can prove the theorem. Define gsj = limi→∞ jsfij(x).
This is well defined as each Js(Xj , Yj) is a complete metric spaces, and condition (C) implies that for
each x ∈ Xj the sequence jsf1j(x), jsf2j(x), . . . is a Cauchy sequence. We can define gj : Aj → Xj by
g0
j (x) = (x, gj(x)). We claim that g is smooth. If so, we are done: for each i, the tuple (fi1, . . . , fin) lies

in M by (A), and thus (g1, . . . , gn) ∈ N . By (B), the subsets Wsj were chosen so that
∏n
j=1M(Wsj) ⊂

Us and by (A) each fij for i > s was chosen to be in M(Wsj), thus gj = limi→∞ fij is in M(Wsj) for
every s. Hence, (g1, . . . , gn) ∈ N ∩

⋂∞
s=1 Us.

It remains to show that each gj is smooth and that we can choose the above data. The former is a local
question: let x ∈ Xj and let U be an open neighbourhood of x, and let V be an open neighbourhood
of g(x) ∈ Yj , such that both are chart domains. Select a compact neighbourhoods K of x contained in
U and L of g(x) such that g(K) ⊂ L ⊂ V . It suffices to show that g is smooth at x. Since the metrics
dj,s are compatible with the topology on Js(Xj , Yj), (C) implies that (jsfij)

∞
i=1 converges uniformly

on K for each s. Using the local coordinates of U and V , we see that the coordinate functions of
the maps jsfij are just ∂|β|fij/∂x

β for |β| ≤ s. Thus locally ∂|β|fij/∂x
β converges uniformly on K.

Using a classical theorem [2, 8.6.3], for every |β| ≤ s, the limit limi→∞(∂|β|fij/∂x
β)(x) exists, and is

equal to (∂|β|gj/∂x
β)(x). As s is arbitrary, all partial derivatives of g exist at x, and g is smooth at

x.

Finally, we show that we can choose the above data inductively. For the base step, choose (f11, . . . , f1n) ∈
M ∩ U1. This is possible since M is open and non-empty, while U1 is dense. Thus (A1) is satisfied.
Since U1 is open and (f11, . . . , f1n) is in U1 we may choose integers k1j ≥ 0 and open sets W1j in
Jk1j (Xj , Yj) so that f1j ∈M(W1j) and

∏n
j=1M(Wij) ⊂ U1. Thus (B1) is satisfied. (C1) is vacuous.

Now assume inductively that the data has been chosen for all k ≤ i− 1. We will choose fij satisfying
(Ai), (Ci), and (fi1, . . . , fin) ∈ Ui. As in the base step, it should be clear that we can then pick kij
and Wij that together with the chosen fij satisfy (Bi). Consider the set

Di := {(h1, . . . , hn) ∈ C : dj,s(j
shj(x), jsf(i−1)j(x)) < 1/2i for 1 ≤ s ≤ i and for all x ∈ Xj , 1 ≤ j ≤ n}.

If Di is open, then Ei := M ∩
(⋂i−1

k=1

∏n
j=1M(Wkj)

)
∩Di open. It is straightforward to check that

(f(i−1)1, . . . , f(i−1)n) is in Ei using the inductive hypotheses (Ai−1), (Bi−1), (Ci−1), and the definition
of Di. As Ui is dense and Ei is open and non-empty, we can choose (fi1, . . . , fin) in Ui ∩ Ei. By the
definition of Ei, (Ai) is satisfied, and by the definition of Di, (Ci) is satisfied.

The last step is to show that Di is open. Let

Fj,s = {h ∈ C∞(Xj , Yj) : dj,s(j
sh(x), jsf(i−1)j(x)) < 1/2i ∀x ∈ Xj}.
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Since Di =
⋂i
s=1

∏n
j=1 Fj,s, it is enough to show that each Fj,s is open in C∞S (Xj , Yj). Define

Bx = α−1(x) ∩B(1/2i, jsf(i−1)j(x)) where α : Js(Xj , Yj)→ Xj is the source map, and

B(1/2i, jsf(i−1)j(x)) := {σ ∈ Js(Xj , Yj) : dj,s(σ, j
sf(i−1)j(x)) < 1/2i}.

Let G =
⋃
x∈Xj Bx. It is easy to see that Fj,s = M(G), so we only need to show that G is an open

subset of Js(Xj , Yj). Let σ be a point in G and x = α(σ). Note that the mapping Ψ : X → R defined
by q 7→ ds(j

sf(i−1)j(q), j
sf(i−1)j(x)) is continuous by composition. Thus H = α−1Ψ−1(−δ/2, δ/2) is

an open subset of Js(Xj , Yj) where δ = 1/2i − dj,s(σ, jsf(i−1)j(x)). Note that δ > 0 since σ ∈ G. It
is clear that H ∩ B(δ/2, σ) is open and contains σ, so that if H ∩ B(δ/2, σ) ⊂ G, we are done. Let
τ ∈ H ∩B(δ/2, σ). To show that τ ∈ G, we need to show that dj,s(τ, j

sf(i−1)j(α(τ))) < 1/2i. Indeed,

dj,s(τ, j
sf(i−1)j(α(σ))) ≤ dj,s(τ, σ) + dj,s(σ, j

sf(i−1)j(x)) + ds(j
s
(i−1)jf(i−1)j(x), jsf(i−1)j(α(σ))) <

δ

2
+

(
1

2i
− δ
)

+
δ

2
=

1

2i
.
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3 The h-principle and convex integration

In this chapter, we shall give some context to the notion of a weak homotopy equivalence, and introduce
some h-principle concepts which contextualize theorem 1.4. Specifically, we recall the notion of a
partial differential relation, and introduce the dichotomy between local and non-local partial
differential relations. The main reference for the context is [3, chapters 5 & 6]. Afterwards, we present
the technique used in the first step of the proof of the main result, which is the proof of theorem 3.11.
We finish by recalling a simple version of convex integration, and adapt this result to a specific class
of non-local differential relations.

3.1 Weak homotopy equivalence

We want to recall and discuss the definition of a weak homotopy equivalence. To do so, we will
first recall the definitions of homotopy groups, and of relative homotopy groups. We moreover
recall the long exact sequence of (relative) homotopy groups, associated to a triple (Z,A, z0), of
a topological space Z, a subspace A, and a a point z0 ∈ A. We round of by giving a concrete definition
for a smooth homotopy connecting smooth functions, and show that it can be used to replace ordinary
homotopies when studying π∗(Z, z0), where Z = C∞W (X,Y ) for some manifolds X and Y . The main
reference for the basic definitions is [11, section 4.1].

Let p ∈ Sn be any point. Recall that for any topological space Z, the n-th homotopy group of
(Z, z0), πn(Z, z0), is the set of equivalence classes

{g ∈ C(Sn, Z) : g(p) = z0}/{homotopies relative p}, n ≥ 1.

For n = 0, π0(Z, z0) can be defined as the homotopy classes (not relative a point) of maps {·} → Z,
which can be identified with the path components of a space. The set πn(Z, z0) has a group structure
for all n ≥ 1, although we shall not be concerned much with that here. Let X and Y be topological
spaces. A weak homotopy equivalence is a continuous map f : X → Y , that induces for every
x0 ∈ X and n ∈ N0 isomorphisms

fn : πn(X,x0)→ πn(Y, f(x0)).

For n ≥ 1 this means group isomorphisms, and for n = 0, a bijection.

Definition 3.1. Let X and Y be smooth manifolds, and let f, g : X → Y be smooth maps. We say
that g and h are smoothly homotopic if there exists a smooth map H : X × [0, 1] → Y such that
H0 = g and H1 = h. We say that the smooth homotopy H connects g to/and h. 4

In the proof of theorem 1.4, we shall represent homotopies connecting two element g and h in the
same class of πk(Sol(Rd), f) by smooth homotopies, and the element g and h by smooth maps g, h :
M × Sm → Rn, and similarly for other homotopy groups. Here f is any base point. This may seem
disingenuous: in principle, g and h are merely continuous maps Sn → C∞W (M,Rn). However, the
representations are equivalent: let g : Sn → C∞W (M,Rn) be a continuous map. Let g̃ : M × Sn → Rn
denote the associated map (x, t) 7→ g(t)(x). The following is a consequence of [1, corollary 4.8(a)]:

Proposition 3.2. Let C∞,0(M × Sn,Rn) denote the subspace of C(M × Sn,Rn) consisting of maps
g, such that gt : M → Rn is smooth for every t ∈ Sn and such that jkgt : M × Sn → Jk(M,Rn) is a
continuous map for every k ≥ 0. Endow C∞,0(M × Sn,Rn) with the compact-open subspace topology.
Then the map

Φ : C(Sn, C∞W (M,Rn))→ C∞,0(M × Sn,Rn), g 7→ g̃

is a homeomorphism, where the left hand side has the compact-open topology too.

Hence, it is permissible to represent g by g̃ instead. Note that g̃ is still not entirely smooth, but
at least a continuous map M × Sn → Rn. Fortunately, it is a well known result that g̃ is itself
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homotopic to a smooth map G : M × Sn → Rn, which fixes gp (see for example [14, theorem 6.26]).
Hence, we can represent an element [g] ∈ πk(Sol(Rd)) as a smooth map g : M × Sn → Rn. A similar
argument validates the representation of a homotopy H as a smooth map H : M × Sn × [0, 1]→ Rn.
In conclusion:

Proposition 3.3. Let X and Y be manifolds, and p ∈ Sn. Let [g], [h] ∈ πn(C∞W (X,Y ), ω) for any
n ≥ 0 and ω ∈ C∞W (X,Y ). Then [g] can be represented by a map g : (Sn, p) → (C∞W (X,Y ), ω), such
that the associated map

g̃ : X × Sn → Y, (x, t) 7→ g(t)(x)

is smooth. Moreover, we can represent [h] by a map h such that the associated map h̃ : X × Sn → Y
is smooth, and [g] = [h] if and only if there exists a smooth homotopy H : X × Sn × [0, 1] → Y with
H(x, p, s) = ω(x) for all (x, s) ∈ X × [0, 1].

We can take this reasoning further: let Z be a topological space, A a subspace, and z0 ∈ A a point.
Recall that the n-th relative homotopy group of (Z,A, z0), πn(Z,A, z0) is defined as the set of
equivalence classes

{g : (Dn,Sn−1, p)→ (Z,A, z0), continuous}/{homotopies through maps of triples}, n ≥ 1.

Here ‘through maps of triples’ means that the homotopy H : Dn×[0, 1]→ Z for each t ∈ [0, 1] is a map
of triples Ht : (Dn,Sn−1, p)→ (Z,A, z0). We omit the details (which can be found in [11, section 4.1],
but our main interest in relative homotopy groups is due to the long exact sequence of (relative)
homotopy groups,

· · · → πn(A, z0)
i∗−→ πn(Z, z0)

j∗−→ πn(Z,A, z0)
∂−→ · · · → π0(Z, z0).

Here i∗ is the map induced by i : (A, z0) ↪→ (Z, z0), j∗ is is the map induced map j : (Z, z0, z0) →
(Z,A, z0), and ∂ is the map induced by restricting Dn to Sn−1. The upshot is the following: we can
conclude that i : A ↪→ Z is a weak homotopy equivalence if and only if πn(Z,A, z0) is trivial for
every n ≥ 1 and z0 ∈ A. In other words, i is a weak homotopy equivalence if and only if for every
continuous map g : (Dn,Sn−1, p) → (Z,A, z0), there exists a homotopy H : Dn × [0, 1] → Z relative
Sn−1 connecting g to a map h, with h(Dn) ⊂ A.

For the final proof of theorem 1.4, we shall be considering two subspaces A,Z ⊂ C∞W (X,Y ) for some
manifolds X and Y . Following the steps that led to proposition 3.3, we can conclude the following:

Proposition 3.4. Let X and Y be manifolds, and let A and Z be subspaces of C∞W (X,Y ) with A ⊂ Z.
Then i : A ↪→ Z induces for every f ∈ A an isomorphism

in : πn(A, f)→ πn(Z, f)

if and only if for k = n, n+ 1 and every smooth map

g : X × Dk → Y, gt ∈ Z ∀t ∈ Dk, gt ∈ A ∀t ∈ Sk−1,

there exists a smooth homotopy H : X × Dk × [0, 1]→ Y such that

• Ht,s : X → Y is an element of Z for every (t, s) ∈ Dk × [0, 1],

• H is relative X × Sk−1,

• Ht,1 : X → Y is a Dk-family of maps in A.
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3.2 Partial differential relations and the h-principle

In this section we recall the definition of a partial differential relation, and introduce some concepts
related to it. In particular, we discuss the philosophy of the h-principle for non-local PDRs. This
will be the second use in this thesis of jet bundles, as introduced in section 2.1. Partial differential
relations are the central object of Gromov’s h-principle theory. For manifolds X and Y , we introduce
what we mean by local and non-local PDRs, and rephrase the main result, as well as examples 1.1
and 1.2 in terms of PDRs.

Definition 3.5. Let X and Y be manifolds. Let f : X → Y be a smooth map.

(i) A local partial differential relation of X and Y is a subset R1 of Jk(X,Y ), for some k ≥ 0.

(ii) A non-local partial differential relation of X and Y is a subset R2 of the multijet Jk(X,Y )s for
some k ≥ 0, s ≥ 2.

(iii) The map f is a solution of the local PDR R1, if im jkf ⊂ R1. This is denoted f ∈ Sol(R1).

(iv) The map f is a solution of the non-local PDR R2, if im jks f ⊂ R2. This is denoted f ∈ Sol(R2).

The above definition of a local PDR agrees with the general definition of a PDR in [3], while the
definition of a non-local PDR is new. Formal solutions, as well as the methods to deform them into
real solutions, can be quite different for non-local relations than for local relations. Our definition is
by no means the most general definition possible, but suffices for our purposes.

Remark 3.6. Partial differential relations R of either type are often given the topological adjectives
like closed, open, or contractible, reflecting their properties as subsets of the jet spaces. They are also
often said to have an order, depending on the type of jet space they are contained in. For example, if
R ⊂ J2(X,Y ), then R is said to be of second order, or a second order partial differential relation. 4

Often, to each partial differential relation R of either type, a class of sections of R is appointed as the
formal solutions of the relation R, denoted as a set by SolF (R). For local relations, it is common
to let SolF (R) be the space of smooth or continuous sections F : X → Jk(X,Y ) with im F ⊂ R.
For non-local relations this is usually the space of smooth or continuous section F : Xs → Jk(X,Y )s

with im F ⊂ R, with some additional properties. These additional properties are supposed to mimic
the fact that a genuine solution of a non-local relation is a map whose product of jet extensions takes
image in R. That is, if one wants to deform a formal solution to a genuine solution, we want to make
use of these additional properties to make sure that we can deform to a product of maps. In this
thesis we will make the following definition. Let Sym(s) denote the symmetric group on s integers,
i.e. the group of shuffles on the integers 1, . . . , s.

Definition 3.7. Let A and B be sets, let X and Y be manifolds, let R ⊂ Jk(X,Y )s be a non-local
relation, and let F : Xs → Jk(X,Y )s be a section.

(i) For every σ ∈ Sym(s), let σ : As → As be the map which shuffles an s-tuple as (aj)
s
j=1 7→

(aσ(j))
s
j=1, where a = (aj) ∈ As.

(ii) A map f : As → Bs is Sym(s)-equivariant or simply equivariant if, for every σ ∈ Sym(s), the
following diagram commutes:

As Bs

As Bs

σ

f

σ

f

(iii) the section F is a formal solution of R, denoted F ∈ SolF (R), if F is equivariant and im F ⊂ R.

4
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Note that this definition of equivariance agrees with the previous definition given for maps f : X2 →
Y 2.

Remark 3.8 (Philosophy of the h-principle). The philosophy of the h-principle is as follows: given
a partial differential relation, try to use the properties of formal solutions to find genuine solutions of
the relation. Given a relation R ⊂ Jk(X,Y )s, we say that ‘the h-principle holds for R’ if

jks : Sol(R)→ SolF (R)

is a weak homotopy equivalence. This can be interpreted as saying, Sn-families of formal solutions can
be deformed in to Sn-families of genuine solutions (surjectivity of the map between n-th homotopy
groups), and any two Sn-families of genuine solutions lie in the same homotopy class if and only if they
can be connected by a homotopy of formal solutions (injectivity of the map between n-th homotopy
groups). If the map jks only induces isomorphisms on homotopy groups up to a certain degree, one
can say that a ‘weaker version of the h-principle holds for R’, or that ‘the h-principle holds up to
degree k’ (where k is the highest degree of homotopy groups for which jks induces isomorphisms). 4

Example 3.9 (The immersion relation). Let Rimm ⊂ J1(X,Y ) denote all those [f ]x,y ∈ J1(X,Y )
with Tfx : TxX → Tf(x)Y an injective linear map. One can verify that this is indeed well-defined.
The relation Rimm is called the immersion relation, and f : X → Y is an immersion if and only if
f ∈ Sol(Rimm). Using the standard bundle trivializations of J1(X,Y ), one can show that Rimm is
open, and empty if dimX > dimY . Note that this implies that the set of immersions in C∞S (X,Y ) is
open. Before introducing example 1.1, we stated that a formal immersion was a continuous bundle
monomorphism F : TX → TY . Using the bundle trivializations of J1(X,Y ) once more, one can
pointwise show that there is a one-to-one correspondence between linear maps TxX → TyY and
elements of J1(X,Y )(x,y). With this identification, one can identify a bundle monomorphism with a

continuous section F̃ : X → J1(X,Y ), with image contained in Rimm, i.e. an element of SolF (Rimm).
Example 1.1 can now be rephrased as ‘there exists a weak homotopy equivalence between solutions
and formal solutions of the immersion relation, which is given by the 1-jet map j1 : f 7→ j1f ’. In
other words, the h-principle holds for the immersion relation Rimm. 4

Example 3.10 (The embedding relation). Let Remb ⊂ J1(X,Y )2 denote all those ([f ]x1,y1 , [g]x2,y2)
with Tfx1 and Tgx2 an injective linear map, and x1 6= x2 =⇒ y1 6= y2. The relation Remb is called
the embedding relation. If f : X → Y is a smooth proper map, then f is a smooth embedding if and
only if j1

2f : X → J1(X,Y )2 has image in Remb. Note that Remb is an open subset of R2
imm, and hence

open. As the set of proper maps is open in C∞S (X,Y ) (even in the strong C0 Whitney topology), it
follows that the set of smooth embeddings is open in C∞S (X,Y ). Assume that X is compact (which
guarantees properness), then formal embeddings in the context of example 1.2 are equivariant sections
g : X2 → J0(X,Y )2 whose image lies inR′emb = π2

1,0Remb. The formal embeddings of this example are
really different from formal solutions of Remb in our notation: we forget about the formal immersion
property of the formal solutions. This is no accident: Haefliger showed in [8] that the existence of
such equivariant map can be used to prove the existence of immersions, too. Haefliger’s embedding
theorem (example 1.2) can now be rephrased as: the map j0 induces an isomorphism of 0-th homotopy
groups of formal and true smooth embeddings. 4

3.3 Classification of circle immersions in the plane

In this section, we sketch the technique used by H. Whitney to classify immersions f : S1 → R2 up
to regular homotopy. This technique is the main ingredient of theorem 6.4, which is the first step in
the proof of theorem 1.4. Theorem 6.4 shows that we can find solutions of the d-delay relation if and
only if we can find true solutions of the derivative d-delay problem R′d.

Recall that for an immersion f : S1 → R2, there is an induced map f ′/|f ′| : S1 → S1 (the normalized
derivative map), and that the turning number of f was defined as the (topological) degree of f ′/|f ′|.
The following is the conclusion of [20].
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Theorem 3.11. Two immersions f, g : S1 → R2 are homotopic through C1 immersions if and only
if f and g have the same turning number.

Sketch of proof of theorem 3.11. The implication from left to right is simple: if two immersions f and
g are homotopic through immersions, the maps f ′/|f ′| and g′/|g′| are homotopic, and hence must
have the same degree. For the converse, one can first homotope any two immersions f, g : S1 ∼=
[0, 1]/{0 ∼ 1} → R2 through immersions to maps with |f ′| = |g′| ≡ 1, f(0) = g(0), and f ′(0) = g′(0).
For the second step, choose any continuous map H : S1 × [0, 1] → S1 connecting f ′ to g′. If we can
find h : S1 × [0, 1] → R2 such that h′t = Ht for every t ∈ [0, 1], and h0 = f, h1 = g the proof is

complete. The obstacle to finding ‘a primitive’ of Ht, is that
∫ 1

0
Ht(p)dp might not be zero, and hence

h̃t : [0, 1] → R2 given by h̃t(x) = f(0) +
∫ x

0
Ht(p)dp might not descend to a map S1 → R2. If the

degree of f ′ and g′ are not 0, one can verify that

ht(x) := f(0) +

∫ x

0

Ht(p)dp− x
∫ 1

0

Ht(p)dp

will always descend, and that ht is moreover a family of immersions connecting f and g. Here we

use that Ht not having degree 0 implies that ‖
∫ 1

0
Ht(p)dp‖ < 1. If the degree is 0, one has to be a

little more careful to make sure that this inequality holds. The inequality will only fail to hold if Ht

is constant for some t ∈ [0, 1]. It is however possible to perturb Ht so that this does not happen (and
we refer to the paper for the details of this).

3.4 Convex integration

The technique used in the proof of theorem 3.11 makes use of the fact that for any map f : S1 → S1,

the weighted average position
∫ 1

0
f(p)dp lies in the interior of the convex hull of S1 ⊂ R2, so long as

the degree of a map f is not zero. That is, when we constructed the family of immersions ht, we made

use of the fact that ‖
∫ 1

0
Ht(p)dp‖ < 1, and hence that ‖(∂/∂x)ht(x)‖ > 0 because (∂/∂x)ht(x) is a

difference of an element in S1 ⊂ D2 and an element of int D2, and hence never zero.

This technique can be applied in much greater generality, and is referred to as convex integration.
We introduce it and some useful language briefly. Normally, it is intended for use on local partial
differential relations, but we describe how this method can be applied to some non-local differential
relations, that are delay-like (definition 3.19), such as the d-delay relation.

Convex integration can be applied quite broadly to local relations on maps between manifolds. How-
ever, the technique makes use of integrating with respect to coordinates, and hence its results are
usually phrased for PDRs contained in J1(Rm,Rn) (m,n ∈ N). That is to say, to apply the technique
one usually needs use charts on the base and target manifold, and some ‘globalization argument’ to
patch together local solutions. Some important local convex integration results can in turn by deduced
by ‘special cases’ of these results for PDRs in J1(R,Rn), and hence we shall focus on non-local first
order partial differential relations contained in J1(R,Rn)2. Note that the d-delay differential relation
is essentially covered: when M = S1 or M = [0, 1], local charts can be used to reduce to such relations.
The key classic result we recall is lemma 3.17, which can be referred to as one-dimensional convex
integration.

3.4.1 One-dimensional convex integration

Let π : J1(R,Rn) → R × Rn denote the bundle projection. Observe that every fiber of π is an n-
dimensional vector space, and that π−1(x, y) can be identified with TyRn so that for every smooth
map f : R→ Rn the 1-jet of f at x, j1f(x), can be identified with Txf applied to 1 ∈ TxR ∼= R. I.e.
j1f(x) is identified with the Jacobi matrix of f evaluated at x.
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Definition 3.12. Let Ω be a subset of a finite dimensional affine space P , and let z ∈ Ω. Let n ≥ 1
be a natural number and let R ⊂ J1(R,Rn) be a partial differential relation.

(i) Denote by ConnzΩ the path component of Ω containing z.

(ii) Denote by ConvzΩ the convex hull of ConnzΩ.

(iii) The subset Ω is called ample if ConvzΩ = P for all z ∈ Ω.

(iv) Let R(x, y) := R∩ π−1(x, y), (x, y) ∈ R× Rn.

(v) A partial differential relation R ⊂ J1(R,Rn) is called ample if it is fiberwise ample, i.e. if R(x, y)
is ample for every (x, y) ∈ R× Rn. 4

Notice that the last item makes sense, because R(x, y) is a subset of the affine space TyRn.

Example 3.13. Let P = R2 and Ω1 = R2 \ l for any line l ⊂ R2, and let Ω2 be R2 \ D2. Then Ω1

is not ample, since ConvzΩ1 is a half-plane for any z ∈ Ω1, while Ω2 is ample, since it only has one
path component, whose convex hull is R2. The immersion relation Rimm ⊂ J1(R,Rn) (example 3.9)
is an ample PDR if n ≥ 2: Under the identification of π−1(x, y) with TyRn, R(x, y) is identified with
TxRn \ {0}, which is ample when n ≥ 2. 4

Definition 3.14. Let n ≥ 1 be an integer, and let R ⊂ J1(R,Rn) be a partial differential relation.
Let F : R → J1(R,Rn) be a formal solution of R, and denote by f : R → R × Rn the composition
π ◦ F , where π is the bundle projection of J1(R,Rn) to R× Rn.

(i) Denote by ConnF (x)R the path component of F (x) in R(f(x)) ⊂ π−1(f(x)).

(ii) Denote by ConvF (x) the convex hull of ConnF (x)R in π−1(f(x)).

(iii) Denote by ConvF the partial differential relation

ConvF :=
⋃
x∈R

ConvF (x)R ⊂ J1(R,Rn).

(iv) A formal solution F is called short, if f = π ◦ F is a solution of ConvFR. 4

Example 3.15. Let n = 2 and R1 be fiberwise defined by all those z ∈ π−1(x, y) ∼= TyRn that have
norm 1. Fiberwise, this means that R(x, y) can be identified with S1. Let F be a formal R1 solution,
and let f = π◦F . Then ConnF (x)R1 = R(f(x)) for all x ∈ R, and ConvFR can be fiberwise identified
with D2. The formal solution F is short if and only if ‖(∂/∂x)f‖ ≤ 1. This differential relation and
its short formal solutions are used in the study of isometric immersions (see chapter 21 of [3], for
example), and motivates the naming convention ‘short’. 4

Example 3.16. Let Rimm ⊂ J1(R,Rn) be the immersion relation. If F is a formal solution, then
ConvFRimm is fiberwise a half-line if n = 1, or the entire fiber π−1(f(x)) if n ≥ 2, where f = F ◦π. In
the second case, any formal solution is short. In fact, for any ample relation R̃, any formal solutions
is a short formal solution. 4

The following lemma can be referred to as ‘one-dimensional convex integration’ and can be used to
deduce convex integration statements ‘in more variables’. See for example [3, chapter 18].

Lemma 3.17 (Lemma 17.3.1 of [3]). Let n ≥ 1 be an integer, and let R ⊂ J1(R,Rq) be an open
differential relation. Let F : [0, 1]→ J1(R,Rn) be a short formal R solution, and let f = π ◦F , where
π : J1(R,Rn)→ R×Rn is the bundle projection. Then there exists a family of short formal solutions

Ft : [0, 1]→ J1(R,Rn), t ∈ [0, 1]

which joins F0 = F to a genuine solution F1. That is, there exists a R solution f1 : [0, 1]→ Rn such
that j1f1 = F1.
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Moreover, the family Ft can be chosen so that

(a) ft := π ◦ Ft is arbitrarily close to f for all t ∈ [0, 1] in the C0 Whitney topology.

(b) Ft(0) = F (0) and Ft(1) = F (1) for all t ∈ [0, 1].

(c) if F0 is already genuine at 0 and 1 (i.e. j1f(0), j1f(1) ∈ R), then Ft can be chosen fixed at 0
and 1.

Remark 3.18. The last observation in example 3.15, and lemma 3.17, are the key reasons for intro-
ducing ample relations. That is, if R ⊂ J1(R,Rn) is an ample relation, then any formal solution is
automatically a short formal solution. The lemma says that if R is moreover open, then any formal
solution is homotopic through formal solutions to a (true) solution of R. The lemma is in fact more
powerful than this, but if one is mainly interested in proving an h-principle, this is the key feature.4

3.4.2 Non-local convex integration

We introduce and prove theorem 3.25, which applies lemma 3.17 to a specific class of non-local partial
differential relations, the open delay-type non-local PDRs. The conclusion is that formal solutions
of such PDRs of the form F × F : R × R → J1(R,Rn)2 can be used to find true solutions of such
relations. We shall first introduce what it means to be infinitesimally non-local.

Definition 3.19. Let X and Y be manifolds, and let R ⊂ J1(X,Y )2 be a first order non-local PDR.

• The PDR R is called infinitesimally non-local if s(R) intersects every open neighbourhood of
∆(X) ⊂ X2, where s : J1(X,Y )2 → X2 is the source map.

• The PDR R is called of delay-type if it is not infinitesimally non-local. 4

Example 3.20. The embedding relation Remb ⊂ J1(R,Rn)2 (example 3.10) is infinitesimally non-
local: s(Remb) = R2 \∆(R), and hence intersects every neighbourhood of ∆(R). The d-delay relation
Rd (definition 6.2) is delay-like: s(Rd) = ∆±d, which is a closed set that does not intersect ∆(R).
Hence, its complement is a neighbourhood of ∆(R) disjoint from s(Rd). 4

Remark 3.21 (Key property of delay-like non-local PDRs). If R ⊂ J1(X,Y )2 is a non-local PDR
that is delay-like, then for every x ∈ X, there exists a closed neighbourhood V ⊂ X of x, such that
s(R) does not intersect V × V . This is the key property we wish to exploit, in order to define a local
relation RV (F ) to which we can apply one-dimensional convex integration. 4

Definition 3.22. Let X and Y be manifolds, and let s : J1(X,Y )2 → X2 be the source map of the
product, and let s′ : J1(X,Y )→ X be the source map of the single factor. Let F : X → J1(X,Y ) be
a section, and let R ⊂ J1(X,Y )2 be a delay-like non-local PDR.

(i) if F × F is a formal R solution, then we say that F is a spatially holonomic formal solution.

(ii) assume that F is a spatially holonomic formal R solution. For every x ∈ X and x0 ∈ X, and
neighbourhood V of x, define

RV,x0(F ) := {(x, y, v) ∈ J1(X,Y ) : (x, y, v, F (x0)) ∈ R and x ∈ V }.

(iii) define the local PDR RV (F ) ⊂ J1(X,Y ) by

RV (F ) = (s′)−1(X \ V ) ∪
⋂
x0∈X

RV,x0(F ).

We call RV (F ) the localized R-replacement for F on V . 4
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The localization of R should be thought of as follows: F traces out some graph in the second factor
of J1(X,Y ), and RV (F ) consists of all those points in the first factor that are ‘compatible with the
graph of F and R over V ’. That is, it consists of all triples such that the source lies in V , and such
that the triple paired with any point in the image of F lies in R. The key property is the following:
if we deform F only over V to some smooth section F̃ , so that F̃ is a formal RV (F )-solution, then
F̃ × F̃ will still be a formal R solution (which is the key step of the next theorem).

Definition 3.23. Let n ≥ 0 be an integer, and let R ⊂ J1(R,Rn)2 be a non-local PDR, which
is delay-like. We say that R is ample if for every smooth spatially holonomic formal R solution
F : R → J1(R,Rn), and for every x ∈ R, there exists a closed neighbourhood V of x such that
s(R) ∩ (V × V ) = ∅ and RV (F ) is ample. 4

Example 3.24. The d-delay relation Rd is an ample non-local PDR, when M = R and n ≥ 2. In
example 3.20 we already found that it was delay-like non-local. Let F : R→ J1(R,Rn) be a smooth
section such that F × F is a formal Rd solution. We shall find a closed neighbourhood V of 0 ∈ R,
determine RV (F ), and conclude that it is ample. It should then be clear that Rd is indeed ample.

Let V = [−d/3, d/3], then s(Rd) ∩ (V × V ) = ∅. The local relation RV (F ) ⊂ J1(R,Rn) is given by{
(x, y, z) ∈ J1(R,Rn) : x ∈ V =⇒ z 6= (F (x± d))3

}
where (F (x))3 means the third component of F (x) ∈ J1(R,Rn) ∼= R×Rn×Rn. To verify this, note that
RV,x0

(F ) is equal to s′−1(V ) without at most two points. One can also check that RV (F )∩π−1(x, y),
(x, y) ∈ R × Rn, can be identified with Rn without at most two points, and hence is ample when
n ≥ 2. 4

Theorem 3.25. Let R ⊂ J1(R,Rn) be an open non-local PDR which is delay-like, and ample. Assume
that there exists a smooth section F : R → J1(R,Rn) such that F is a spatially holonomic formal R
solution. Then there exists a family of sections Ft : R → J1(R,Rn), t ∈ [0, 1], such that F0 = F ,
every Ft is spatially holonomic formal R solution and F1 = j1f for some smooth map f : R→ Rn.

Before we prove the theorem, we shall need a lemma, which deals with the openness of the localized
R-replacement of F around a closed neighbourhood V . The lemma also verifies that F is, in fact, a
formal RV (F ) solution.

Lemma 3.26. Let R ⊂ J1(R,Rn) be an open non-local PDR. Assume that there exists a smooth
section F : R → J1(R,Rn) such that F is a spatially holonomic formal R solution. Let x ∈ R, and
let V be a closed neighbourhood of x. Then RV (F ) is open, and F is a formal RV (F ) solution.

Proof. Note that it suffices to show that RV (F ) is open in (s′)−1(V ), where s′ : J1(R,Rn)→ R is the
source map. Note that

RV (F ) ∩ (s′)−1(V ) =
{

(x, y, z) ∈ J1(R,Rn) : x ∈ V, x′ ∈ R, and (x, y, z : F (x′)) ∈ R
}
.

The openness ofR can be used pointwise to show that this set is indeed open. For the second assertion,
one only needs to verify that F ×F being a formal R solution implies that F is a formal RV solution.
We will not comment on this more.

Proof of theorem 3.25. The idea is to apply lemma 3.17 repeatedly. Let x ∈ R, then without loss
of generality there exists δ > 0 such that s(R) ∩ [x − δ, x + δ]2 = ∅ and RV (F ) is ample, where
V = [x − δ, x + δ]. By lemma 3.26, RV (F ) is a local open differential relation, and F |[x−δ,x+δ]

is a formal RV (F ) solution. By lemma 3.17, there exists a family of formal RV (F ) solutions Ft :
[x−δ, x+δ]→ J1(R,Rn), t ∈ [0, 1] and F0 = F , such that F1 = j1f1 for some smooth RV (F ) solution
f1 : [x − δ, x + δ] → Rn. Moreover, this family can be chosen so that F1(x − δ) = F0(x − δ) and
F1(x+ δ) = F0(x+ δ).
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Replacing F by F̃ , defined by

F̃ (y) =

{
F (x) if y /∈ [x− δ, x+ δ]

F1(y) if y ∈ [x− δ, x+ δ]
.

Because s(R) ∩ [x − δ, x + δ]2 = ∅, it follows that F̃ × F̃ is a (continuous) formal R solution, i.e.
F̃ × F̃ (x, y) ∈ R for all (x, y) ∈ R2:

• if (x, y) ∈ V 2 this is trivially true,

• if (x, y) ∈ (R \ V )2, this is true because F × F is a formal solution,

• for all other (x, y), this is true because F̃ |V is a formal (in fact true) RV (F ) solution.

For the same reasons, if we denote by F̃t the map obtained by replacing F |V with Ft|V , then F̃t× F̃t is
a family of formal R solutions. In principle, F̃ is only continuous, but by the openness of R, one can
‘smooth out’ F̃ near x± δ so that F̃ is smooth and still a true R solution on [x− δ, x+ δ]. Moreover,
if F was already a true solution on a neighbourhood of x ± δ, after smoothing out it will still be a
true solution over this neighbourhood.

Clearly, we can repeat this process as often as we like around as many points x ∈ R as we like.
However, to makes sure we obtain one R solution f : R→ Rn we need to be more careful. For every
point x ∈ R we can find a δ such that s(R) ∩ [x − δ, x + δ]2 = ∅ (as before). Clearly, the collection
of all [x − δ, x + δ]2 form a cover of ∆(R) ⊂ R2. As ∆(R) is second countable and R is delay-like
non-local, we can find a countable number points x1, x2, . . . and real positive numbers δ1, δ2, . . . such
that {[xj − δj , xj + δj ] : j ∈ N} is a subcover of R. Working inductively over the points xj , we can
obtain one R solution f : at the j-th step we are given Fj−1, which is a true R solution over all
[xi − δi, xi + δi], 1 ≤ i ≤ j − 1, and we select the closed neighbourhood

V := [xj − δj , xj + δj ] \
j−1⋃
i=1

(xi − δi, xi + δi).

If V is empty, we can skip the j-th step. By the above reasoning (slightly adjusted to V instead of
the entire interval), we can find a [0, 1]-family (F̃j)t of formal R solutions, so that F̃j = (F̃j)0, and

(F̃j)1 is a true solution of R over
⋃j
i=1[xi − δi, xi + δi].

To construct the homotopy H : R × [0, 1] → J1(R,Rn) between F and j1f so that Ht × Ht goes
through formal R solutions, we can define H to perform the homotopy between F and F̃1 on [0, 1/2],
and the homotopy between Fj and Fj+1 on [1/(j+1), 1/(j+2)]. As the homotopy stabilizes pointwise
in a finite amount of time, this is well defined. By use of bump functions, we can make sure that H
is smooth too. This completes the proof.

3.4.3 Parametric non-local convex integration

As remarked at the start of section 3.4, ordinary one-dimensional convex integration can be seen as
the base step for multi-dimensional convex integration for relations in J1(Rm,Rn). In turn, charts on
any two manifold X and Y can be used to deduce convex integration results for relations in J1(X,Y ).
Here we shall omit a multi-dimensional version of non-local convex-integration, but we remark that
such a statement can be proved in the same way as statement 18.2.1 of [3] is proved from lemma
3.17. I.e. one can deduce multi-dimensional statements by first proving a parametric version of the
one-dimensional statement. Hence, we shall give a a parametric version of theorem 3.25. This theorem
can be proved using statement 17.5.1 of [3] (which is a parametric local convex integration statement)
analogously to how the above theorem is proved with lemma 3.17. The details are left to the reader.
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Definition 3.27. Let X,Y , and P be manifolds, and let k and s ≥ 2 be non-negative integers.

(i) A fibered local PDR R is a subset of P × Jk(X,Y ).

(ii) A formal solution of R is a smooth map F : P ×X → P × Jk(X,Y ) such that im F ⊂ R and
(idP × s) ◦ F = idP×X .

(iii) A genuine solution of R is a smooth P -family of maps fp : X → Y such that the map P ×X →
P × Jk(X,Y ) given by (p, x) 7→ (p, jkfp(x)) is a formal solution of R.

(iv) For every p ∈ P , define by Rp ⊂ Jk(X,Y ) the local relation relation obtained by intersecting R
with {p} × Jk(X,Y ).

(v) The fibered local PDR R is ample, if Rp is ample for every p ∈ P .

(vi) A fibered non-local PDR is a subset of P × Jk(X,Y )s.

(vii) A formal solution of R is a smooth map F : P ×Xs → P × Jk(X,Y )s such that im F ⊂ R and
(idP × s) ◦ F = idP×Xs , and so that for every p ∈ P , Fp : Xs → Jk(X,Y )s is equivariant.

(viii) For every p ∈ P , define by Rp ⊂ Jk(X,Y )s the local relation relation obtained by intersecting
R with {p} × Jk(X,Y )s.

(ix) The fibered non-local PDR R is ample, if Rp is ample for every p ∈ P .

(x) A genuine solution of R is a smooth P -family of maps fp : X → Y such that the map P ×Xs →
P × Jk(X,Y )s given by (p, x) 7→ (p, jks fp(x)) is a formal solution of R. 4

By abuse of notation, we will say that a non-local spatially holonomic formal solution F : P ×X →
P × Jk(X,Y )s is a genuine solution if F = ((p, x) 7→ (p, jks fp(x)) for some smooth P -family of maps
fp : X → Y .

Theorem 3.28. Let n, l be non-negative integers. Let R ⊂ [0, 1]l × J1(R,Rn)2 be an open, fibered,
ample, non-local PDR. Let F : [0, 1]l × R → [0, 1]l × J1(R,Rn) be a smooth map so that Fp : R →
J1(R,Rn) is a spatially holonomic formal solution of Rp for every p ∈ [0, 1]l, and so that (id[0,1]l ×
s) ◦F = id[0,1]l×R. Suppose that Fp is a genuine solution for all p in a neighbourhood of the boundary

of [0, 1]l. Then there is a homotopy of fiberwise formal solutions

Fτ : [0, 1]l × R→ [0, 1]l × J1(R,Rn)

which joins F0 = F to a genuine solution F1 = ((x, p) 7→ (p, j1fp(x))), where fp : R → Rn is a
[0, 1]l-family of smooth maps, such that

• Fτ is constant for all p in the neighbourhood of the boundary of [0, 1]l on which F was already
a genuine solution.

• the first partial derivatives of f(p, t) : P×X → Y with respect to the parameter p are (arbitrarily)
C0-close to the respective derivatives of t ◦ F0(p, t).

Remark 3.29. The bullet points in the last theorem have the following interpretation: if one wants to
do multi-dimensional convex integration, one wants to work over patches in the base space (modelled
by [0, 1]l), and ‘perform an iterative integral’, i.e. work one coordinate direction at a time. The first
bullet point says that one can patch solutions together, while the second can be used to make sure
that the first order formal derivatives of t ◦ F with respect to the paramter p, are preserved. 4
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4 Transversality

In many contexts it is of interest to know when the preimage f−1(W ) of a submanifold W ⊂ Y under
a smooth map f : X → Y is again a smooth manifold. Two usual initial results in this context are
the constant rank or submersion level set theorem [14, corollaries 5.13 & 5.14], which state that the
preimage of a point is an embedded submanifold if the map has constant rank (or in particular, is a
submersion). A sufficient condition for preimages of submanifolds that are not zero dimensional, is
usually stated in terms of transversality. A map f : X → Y is transverse to a submanifold W ⊂ Y
if for every x ∈ X either f(x) /∈ W or f(x) ∈ W and im Txf + Tf(x)W = Tf(x)Y . That is to say, for
all points where f intersects W , the image of the tangent map of f together with the tangent space
of W at that point, should span the tangent space of Y at that point. The common notation for f to
be transverse to W is f tW .

Theorem 4.1 (Theorem 4.4 of [5]). Let X and Y be smooth manifolds, and W a smooth submanifold
of Y . Let f : X → Y be smooth and assume that f t W . Then f−1(W ) is a submanifold of X.
Moreover, codim f−1(W ) = codimW .

It is straightforward to verify that the above theorem is merely the submersion level-set theorem in
the case that W is a point. From the proof of [5] it should be clear that one could prove a similar
result when the condition of f is weakened to im Txf + Tf(x)W being a constant rank subspace of
Tf(x)Y , whenever f(x) ∈ W . When W is again a point, this would be the constant rank level-set
theorem. We will not be concerned with this more general statement in this text.

Next to the preimage of a submanifold, it is also often useful to know when two submanifolds V and W
of a manifold X have an intersection V ∩W which is again a submanifold of X. Although this may look
like a separate question at first, we can use the above theorem and the canonical (smooth) inclusion
map i : V → X to conclude that V ∩W is a submanifold of X of codimension codim V + codim W
whenever i t W . Note that i t W is equivalent to TxV + TxW = TxX for all x ∈ V ∩W . For this
special case, we say that V and W are transverse, and the notation V tW is usually used instead of
i tW .

Although we now have have a sufficient condition for the preimage f−1(W ) to be a submanifold, one
can wonder whether it is reasonable to expect a map f to be transverse to a given submanifold W .
Thom’s transversaliy theorem [19] gives an affirmative answer. A modern formulation of the result is
taken from [5, theorem II.4.9].

Theorem 4.2 (Thom Transversality Theorem). Let X and Y be smooth manifolds and W a subman-
ifold of Jk(X,Y ). Let

TW := {f ∈ C∞S (X,Y )|jkf tW}.

Then TW is a residual subset of C∞(X,Y ) in the Whitney C∞ topology. Moreover, if W is closed,
then TW is open.

Remark 4.3. That TW is a residual subset of C∞S (X,Y ) is by itself not of particular interest. Instead,
if A is a residual subset of C∞S (X,Y ), then proposition 2.7(iv) implies that A is dense, which is applied
in many arguments. It is however more useful to conclude that TW is residual: a countable intersection
of residual sets is still residual, and in a Baire space also dense, in contrast to a countable (or even
finite) intersection of merely dense sets. 4

Note that the use of jet bundles implies that the theorem has a broader scope than merely smooth maps
f : X → Y and submanifolds W ⊂ Y : we can recover the latter by defining W ′ = X×W ⊂ J0(X,Y ).
Thom’s transversality theorem has some geometrically interesting consequences. For example, for
every two submanifolds V and W of a manifold X, an arbitrarily small movement of V yields a new
embedded submanifold V ′ which is transverse to W [13, theorem 3.2.4].
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Example 4.4 (Transversality for smooth embeddings). A context in which transversality is often
used, is the study of embeddings in C∞(X,Y ). Let f : X → Y be a smooth map, and assume that X
is compact. Then f is a smooth embedding if and only if f is an injective immersion. For the injectivity,
it is of interest to study the set of double points of f , i.e. the set {(x, y) ∈ X×X\∆(X) : f(x) = f(y)}.
If the smooth map f×f : X×X \∆(X)→ Y ×Y is transverse to ∆(Y ), then the set of double points
is a submanifold of codimension dimY . The techniques used to prove theorem 4.2 can be generalized
to product maps like f × f , and one can conclude that the set of maps f in C∞S (X,Y ) whose product
f × f |X×X\∆(X) is transverse to ∆(Y ) is a residual set. In particular, if dimY > 2 dimX, we can
immediately deduce the existence of a smooth injection f : X → Y . Using this, and some other
techniques found in chapter 2 of [12] which show that the set of immersions is also dense with this
dimension condition, one can even prove the existence of embeddings from X to Y . [13, theorem
2.13]. 4

The generalization of theorem 4.2 alluded to in the example is known as the multijet transversality
theorem, and is to the author’s best knowledge attributed to [15, proposition 3.3], although a slightly
weaker formulation can already be found in [7, theorem 1.10]. Recall that s : Jk(X,Y )s → Xs was
the source map of the multijet of X and Y , and that ∆(s)(X) is the large diagonal of X in Xs (see
section 2.1).

Theorem 4.5 (Multijet transversality theorem). Let X and Y be smooth manifolds with W a sub-
manifold of Jk(X,Y )s, such that s(W ) ∩∆(s)(X) = ∅. Let

TW := {f ∈ C∞(X,Y ) : jks (f) tW}.

Then TW is a residual subset of C∞S (X,Y ). Moreover, if W is compact, then TW is open.

We present a generalization of Thom transversality and multijet transversality, theorem 4.14 and 4.18.
It focuses on the transversality of products of maps. Specifically, let X1, . . . , Xn and Y1, . . . , Yn be two
families of smooth manifolds, and denote J =

∏n
j=1 J

kj (Xj , Yj) for some integers kj ≥ 0. Let X denote

the product manifold whose factors are Xj , and note that the source maps sj : Jkj (Xj , Yj) → Xj

together form a source map s : J → X. For every tuple of maps (f1, . . . , fn) in CS :=
∏n
j=1 C

∞
S (Xj , Yj),

there exists a smooth map j(f1, . . . , fn) : X → J , given by (x1, . . . , xn) 7→ (jk1f1(x1), . . . , jknfn(xn)).
Note that, as for the ordinary and multijet jets, the smooth map j(f1, . . . , fn) is a section for s.
Theorem 4.14 implies that for every submanifold W of J , the set of tuples in C whose associated
section X → J is transverse to W , is a residual subset of CS . Again, a version of this statement can
already be found in [7, theorem 1.9].

However, the scope of theorem 4.14 is larger: it extends to maps that possibly depend on the same
variable. An example helps to illustrate the situation: let X1 = R×Z1, X2 = R×Z2 and X3 = R×Z3,
where the Zj are smooth manifolds, and let fj : R× Zj → Xj be a collection of smooth maps. Then
we can define an associated smooth map

f : R× Z1 × Z2 × Z3 → Y, (t, z1, z2, z3) 7→ (f1(t, z1), f2(t, z2), f3(t, z3)).

Theorem 4.14 implies at least that, for every submanifold W of Y , the set of triples in
∏3
j=1 C

∞
S (R×

Zj , Yj) whose associated map is transverse to W , is a residual subset. More generally, we shall want
to consider the case where each Xj is itself a product of manifolds Zi,j , where a number of Zi,j can
possibly agree. Moreover, there is an appropriate jet transversality statement for this context. This
statement is however not about the jet of a product map, but instead about the product map of jets.
We elaborate on this point below.

Theorem 4.14 states that the set of tuples in CS whose induced section X → J is transverse to some
submanifold of W , is a residual set. The multijet transversality theorem states that the same is
true if X1 = . . . = Xn, Y1 = . . . = Yn, k1 = . . . = kn, and we restrict ourselves to the subspace
∆n(C∞S (X1, Y1)) ⊂ CS . That is, we restrict to n-fold tuples of the same smooth map f : X1 →
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Yn. Unfortunately, we cannot deduce the multijet transversality theorem from the theorem 4.14
immediately. Theorem 4.18 generalizes multijet transversality in the same way that theorem 4.14
generalizes Thom transversality: the scope is extended to products of maps between products of
manifolds, where the factors of the maps and spaces can repeat, and the associated map may depend
on the same variables multiple times. In the next part we shall give a number of examples.

Remark 4.6 (The difference between products of jets and jets of products). The application of
theorem 4.18 in this text is to families of product maps, parameterized by a smooth manifold (usually
Dk). The full generality of theorem 4.14 and 4.18 is inspired by [18, theorem 5.3 & 5.4]. Those theorems
claimed at least, in the above notation, that for any submanifold of Jk(X,Y ), the tuples in CS whose
induced section jk(f1 × . . . × fn) : X → Jk(X,Y ) are transverse to W , is a residual set. However,
these claims are generally false unless W is transverse to the subbundle

∏n
j=1 J

k(Xj , Yj) ⊂ Jk(X,Y )
(see remark 2.9 for the embedding). This was separately observed before in [10, section 4.1]. This
observation is the main reason for theorem 4.14 and theorem 4.18 to focus on sections of products
bundles

∏n
j=1 J

k(Xj , Yj), instead of sections of Jk(X,Y ). The reason why our result does hold, is that
the image of the products of jets can ‘span’ the product of jet bundles, while jet of products cannot
attain all values in the jet bundle of the products. The key lemma related to this is lemma A.2, which
is used on a local diffeomorphism of the product of jet bundles and perturbations of smooth product
maps in the proof of theorems 4.14 and 4.18. The following is a counter example to the theorems in
[18]. 4

Example 4.7. Let n = 2, let X1 = X2 = Y1 = Y2 = R, and let W ⊂ J1(X,Y ) ∼= R4 × R2×2 consist
of all tuples of the form (

x, x, y1, y2,

(
a1 0
0 a2

)
: x, yi, ai ∈ R

)
.

Let f, g ∈ C∞(R,R). A dimension count shows that j1(f×g) is tranverse to W if and only if j1(f×g)
does not intersect W . However, regardless of the choice of f and g, j1(f × g)−1(W ) = ∆(X). 4

4.1 Mixed jet transversality

In this section we introduce mixed jet bundles, which are the appropriate bundles to use, in order
to study the transversality of product maps depending on the same variables. Let X1, . . . , Xn and
Y1, . . . , Yn be two families of manifolds, and denote by X and Y the product families whose factors
are the members of the respective families. Suppose that there exists a third family of manifolds
Z1, . . . , Zm such that each Xj is a product of some Zi. That is to say, suppose there exist n ordered
subsets Ij ⊂ {1, . . . , k} such that Xj =

∏
i∈Ij Zi. The ordering on Ij does not have to be the one

inherited from N, and we shall suppress the ordering from the notation for ease of reading. Without
loss of generality, we may assume that

⋃n
j=1 Ij = {1, . . . , k}, and we shall assume this throughout this

text.

To every two families {Xj} and {Yj}, and a choice of n integers k = (k1, . . . , kn) ∈ Nn0 , we associate
the k-product bundle of X and Y or simply the product bundle of X and Y , Jk(X,Y ) given
by

Jk(X,Y ) =

n∏
j=1

Jkj (Xj , Yj).

Each factor of the product bundle is a fiber bundle over Xj × Yj , and hence the product bundle itself
is a fiber bundle over X × Y . As for the ordinary and multijet bundle, the map s : Jk(X,Y ) → X
is called the source map and the map t : Jk(X,Y )→ Y is called the target map. We shall define
a subbundle of the product bundle, which ‘counts’ each factor Zi of the Xj only once. To this end,
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define Z =
∏m
i=1 Zi, and denote by Ω the diffeomorphism

X × Y →

 m∏
i=1

∏
j:i∈Ij

Zi

× Y,
which assigns each Zi in Xj to its factor in

∏
j:i∈Ij Zi, and the Yj to themselves. I.e. Ω is merely

a reordering. The second product is again ordered by the ordering of Ij . Denote by Ni the integer
|{j : i ∈ Ij}|. We can embed Z×Y into the right hand side above, as

(∏m
i=1 ∆Ni(Zi)

)
×Y . We denote

the embedding by ι, and it follows that Ω−1 ◦ ι(Z × Y ) is a submanifold of
∏n
j=1Xj × Yj . Finally,

denote by I the tuple (I1, . . . , In). We are now ready to define the submanifold.

Definition 4.8. Define the (I, k)-mixed jet bundle of X and Y or simply the mixed jet bundle of X
and Y , JkI (X,Y ), to be the restriction of

Jk(X,Y )
(sj×tj)nj=1−−−−−−−→

n∏
j=1

Xj × Yj

to Ω−1 ◦ ι(Z × Y ). Define C∞I,k(X,Y ) to be

n∏
j=1

C∞(Xj , Yj).

Proposition 4.9. JkI (X,Y ) is a smooth submanifold of Jk(X,Y ). Moreover, it is a fiber bundle over
Z × Y , with bundle map given by ι−1 ◦ Ω ◦ (sj × tj)

n
j=1.

Proof. It should be clear that the restriction of the product bundle to its fibers over a submanifold of
the base, is a smooth submanifold. Moreover, since the product bundle fibers over

∏n
j=1Xj × Yj (as

each factor does), the restricted bundle has the same fiber. As Ω−1 ◦ ι maps Z × Y diffeomorphically
onto the base of JkI (X,Y ), it follows that JkI (X,Y ) is a fiber bundle over Z × Y .

Remark 4.10. An alternative definition for JkI (X,Y ) could be the pull-back bundle
(Ω−1 ◦ ι)∗Jk(X,Y ), and the two are isomorphic as bundles. However, in the remainder of the chapter
we make explicit use of JkI (X,Y ) being embedded, so we choose this definition. 4

Definition 4.11. Let π : JkI (X,Y ) → Z × Y be a (I, k)-mixed jet bundle. A section of JkI (X,Y )
is a smooth map F : Z → Jk(X,Y ) such that s ◦ F = idZ . Let (f1, . . . , fn) ∈ C∞I,k(X,Y ), and let
πj : Z → Xj denote the projection, which forgets the factors of Z not contained in Ij . The (I, k)-jet
extension of (f1, . . . , fn), jkI(f1, . . . , fn) : Z → JkI (X,Y ) given by

jkI(f1, . . . , fn) :=
(
jk1f1 ◦ π1, . . . , j

knfn ◦ πn
)
.

4

The following is a straightforward verification.

Proposition 4.12. Let f = (f1, . . . , fn) ∈ C∞I,k(X,Y ), then the (I, k)-mixed jet extension of f , is a

smooth section of s : JkI (X,Y )→ Z.

Example 4.13. We highlight a few examples of JkI (X,Y ) and jkI(f1, . . . , fn) for different choices of
n,m, k and I.

• If n = m = 1, then JkI (X,Y ) = Jk1(X1, Y1), and jkI(f1) = jk1f1. In other words, in this case we
obtain the normal jet bundle and jets of functions.
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• If n = m and Ij = (j) for each j, JkI (X,Y ) = Jk(X,Y ), and jkI(f1, . . . , fn) = jk1f1× . . .×jknfn.

• If n = 3, m = 2, and I = ((1), (2), (2, 1)) we have that X3 = X2 × X1, and that JkI (X,Y ) is
the restriction of s : Jk(X,Y )→ X1 ×X2 ×X3 to the fibers of the form (a, b, b, a). The section
jkI(f1, f2, f3) is given by (a, b) 7→ (jk1f1(a), jk2f2(b), jk3f3(b, a)).

• If n = 2,m = 1, k = (r, r), and I = ((1), (1)), we have that JkI (X,Y ) ∼= Jr(X1, Y1 × Y2) and
jkI(f1, f2) = jr(f), where f = (f1, f2). I.e. the following diagram commutes:

C∞(X1, Y1)× C∞(X1, Y2) C∞(X1, Y1 × Y2)

C∞(X1, J
k
I (X2

1 , Y1 × Y2)) C∞(X1, J
r(X2

1 , Y1 × Y2))

jkI

∼

jr

∼

The horizontal isomorphisms are meant as bijections, but [5, propositions II.3.5 & II.3.6] show that
these maps are homeomorphisms, if all sets are endowed with the strong Whitney C∞ topology. 4

The main result about mixed jet transversality we wish to present is the following. As announced, it
generalizes Thom’s transversality theorem.

Theorem 4.14. Let X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zm be three families of manifolds, such that
there exist n ordered subsets Ij of {1, . . . , n} with Xj =

∏
i∈Ij Zi (ordered). Let X,Y , and Z denote

the product manifolds whose factors are the members of the respective families. Let k ∈ Nn0 , and define
I = (I1, . . . , In). Let W be a submanifold of JkI (X,Y ). Then

TW := {f ∈ C∞I,k(X,Y ) : jkIf tW}

is a residual subset of C∞I,k(X,Y ) for the topology induced by the strong Whitney C∞ topology on each
factor.

The complete proof of this theorem can be found in appendix A. Here we give a sketch of the proof.
The first step (lemma A.1) is to show that the section jkIf associated to the tuple f = (f1, . . . , fn) ∈
C∞I,k(X,Y ) is transverse to W if and only if jk1f1 × . . . × jknfn is transverse to ι(W ), where ι :

JkI (X,Y ) → Jk(X,Y ) is the canonical inclusion map. In other words, the proof is reduced to the
special case wherem = n and Ij = (j). In the second step, one can choose an appropriate open covering
{Wx : x ∈ W} of the submanifold W such that each Wx is compact and contained in appropriate
charts. By the second countability of W , we can find a precompact countable subcovering W1,W2, . . .
of W . The central claim is that

{TWj
:= {f ∈ C∞I,k(X,Y ) : jkIf tW on Wj}

is an open and dense set, from which the residuality then follows. Openness is proved in lemma A.6,
while the density is the core of the final proof.

Sometimes, we can even guarantee that TW is open and dense. Specifically, when W is compact or
when W is a product of topologically closed sets, which factors over the product bundle Jk(X,Y ).
For this, we refer to proposition A.5. For applications of theorem 4.14, it is often useful to have more
flexibility than what is stated. The following corollary highlights some of the flexibility. The proof
can also be found in the appendix.
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Corollary 4.15. Let X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zm be three families of manifolds, such that
there exist n ordered subsets Ij of {1, . . . ,m} with

Xj =
∏
i∈Ij

Zi (ordered product).

Define I = (I1, . . . , In). Let k ∈ Nn0 , and let X, Y , and Z denote the product manifolds whose factors
are the members of the respective manifolds. Let W be a submanifold of JkI (X,Y ), and let W ′ ⊂ W
be a compact subset. Then

TW := {f ∈ C∞I,k(X,Y ) : jkIf tW on W ′}

is an open and dense subset of C∞I,k(X,Y ) for the topology induced by the strong Whitney C∞ topology
on each factor.

Moreover, let f ∈ C∞I,k(X,Y ), let V be an open neighbourhood of f , and suppose that s(W ) is contained

in an open product set U = U1 × . . . × Um ⊂ Z1 × . . . × Zm, where s : JkI (X,Y ) → Z is the source

map. The there exists g ∈ V such that jkIg = jkIf off U , and jk,lI g tW .

4.2 Symmetric mixed jet transversality

In this section we introduce symmetric mixed jet bundles. Where mixed jet bundles could be used
to study transversality of product maps depending on the same variables, the symmetric jet bundles
allow us to study the special case where the factors of such products repeat, like in the multijet
transversality theorem.

Let X1, . . . , Xn and Y1, . . . , Yn be two families of manifolds. Fix a tuple l in Nn1 and another tuple
k ∈ Nn0 , and define the symmetric product bundle of ({Xj}, {Yj}, k, l) or symmetric product
bundle as

Jk,l(X,Y ) :=

n∏
j=1

Jkj (Xj , Yj)
lj .

It should be clear that, similar to all previous jet bundles, the symmetric product bundle is a fiber

bundle over X l× Y l, where X l :=
∏n
j=1X

lj
j and Y l :=

∏n
j=1 Y

lj
j . Composing with the projections to

X l and Y l we obtain the source and target maps of the symmetric product bundle. We refer
to the lj as the multiplicities of the symmetric product bundle. Let |l|s =

∑s
j=1 |lj | and define

|l| = |l|n. Suppose that there exists a third family of manifolds Z1, . . . , Zm such that there exist |l|
ordered subsets Ij ⊂ {1, . . . ,m} with

X lj =

|l|j∏
j=|l|j−1+1

n∏
i∈Ij

Zi (ordered product).

That is to say, there exists a third family of manifolds such that each factor of X is individually a
product manifolds Zi. We stress that the factorization may be chosen differently among equal copies
of Xj , which allows for more flexibility. Let I = (I1, . . . , I|l|), and denote by kl the |l|-fold tuple with
(kl)j := ki for all |l|i−1 < j ≤ |l|i.

Definition 4.16. Define the (I, k, l)-symmetric mixed jet bundle of X and Y or simply the symmetric

mixed jet bundle of X and Y , Jk,lI (X,Y ), as JklI (X l, Y l). Define C∞I,k,l(X,Y ) to be

n∏
j=1

C∞(Xj , Yj).

4
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It should be clear that the symmetric mixed jet bundle of X and Y is a fiber bundle over Z × Y l,
and projecting further we can again define the source map and target map of the symmetrical
jet bundle. We can again define sections of s : Jk,lI (X,Y ) → Z from tuples in C∞I,k,l(X,Y ). Before

we do, we formalize a connection between C∞I,k,l(X,Y ) and C∞I,kl(X
l, Y l). The following proposition

is a straightforward verification, and does not follow from unique properties of the weak or strong
Whitney C∞ topology. Let fp denote the p-fold tuple whose entries are f .

Proposition 4.17. In the above notation, endow both

C∞I,k,l(X,Y ) =

n∏
j=1

C∞(Xj , Yj) and C∞I,kl(X
l, Y l) =

n∏
j=1

C∞(Xj , Yj)
lj

with the product topology induced by either the weak or strong Whitney C∞ topology on each of its
factors. Then the map ∆l : C∞I,k,l(X,Y ) → C∞I,kl(X

l, Y l) given by (f1, . . . , fn) 7→ (f l11 , . . . , f
ln
n ) is a

topological embedding with image
∏n
j=1 ∆lj (C∞(Xj , Yj)).

Let (f1, . . . , fn) ∈ C∞I,k,l(X,Y )). It is now straightforward to verify that the symmetric mixed jet

of (f1, . . . , fn), jk,lI (f1, . . . , fn), given by jklI ∆l(f1, . . . , fn) : Z → Jk,lI (X,Y ), is a smooth section of

s : Jk,lI (X,Y )→ Z.

The main result about symmetric mixed transversality we wish to present is the theorem below.
As announced, it generalizes theorem 4.5. Both theorems make reference to a certain generalized
diagonal, which is the last object that needs to be introduced before we state our result.

The l-symmetric diagonal of X or simply symmetric diagonal of X, ∆l(X), is given by

n∏
j=1

∆(lj)(Xj) ⊂ X l.

We emphasize that ∆l(X) is a product of large diagonals.

Theorem 4.18. Let X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zm be three families of manifolds, such that
there exist |l| ordered subsets Ij of {1, . . . ,m} with

X
lj
j =

∏
|l|j−1<i≤|l|j

∏
i∈Ij

Zi (ordered product).

Define I = (I1, . . . , I|l|). Let k ∈ Nn0 and l ∈ Nn1 , let X, Y , and Z denote the product manifolds whose

factors are the members of the respective manifolds, and let X l :=
∏n
j=1X

lj . Let W be a submanifold

of Jk,lI (X,Y ) such that s(W ) ∩ ∆l(X) = ∅, where s : Jk,l(X,Y ) → X l is the source map of the
symmetric mixed bundle. Then

TW := {f ∈ C∞I,k,l(X,Y ) : jk,lI f tW}

is a residual subset of C∞I,k,l(X,Y ) for the topology induced by the strong Whitney C∞ topology on
each factor.

Example 4.19. We highlight a few examples of Jk,lI (A,X), jk,lI (f1, . . . , fn) and ∆l(X), for different
choices of n,m, k, l, and I.

• If n = m, l = (n), and Ij = (j) for each j, then Jk,lI (X,Y ) = Jk1(X1, Y1)n, and jk,lI f = jk1n f . In
other words, in this special case we obtain the multijet bundle and multijet of f . ∆l(X) is the
large diagonal ∆(n)(X) ⊂ Xn.
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• Let n = m = 2, l = (2, 1), and I = ((1), (2), (2, 1)). Then X2 = X2
1 , and Jk,lI (X,Y ) is the

restriction of Jk1(X1, Y1)2 × Jk2(X2, Y2) → (X1)4 = X l to the fibers of the form (a, b, b, a).

The section jk,lI (f, g) is given by (a, b) 7→ (jk1f(a), jk1f(b), jk2g(b, a)). Moreover, ∆l(X) =
{(a, a, b, c) : a, b, c ∈ X1} ⊂ X l.

• Let n = 1,m = 3, Ij = (1, 2, 3) \ {j}, and l = (3). Then, all Zi are equal, Z2
i = X1, and

Jk,lI (X,Y ) is the restriction of Jk1(X1, Y1)3 → Z6
1 = X l to the fibers of the form (b, c, a, c, a, b).

The section jk,lI f is given by (a, b, c) 7→ (jk1f(b, c), jk1f(a, c), jk1f(a, b)). Moreover, ∆l(X) =
{(a, a, b, b, c, c) : a, b, c ∈ Z1} ⊂ X l.

4

Again, sometimes TW is even open and dense, such as when W is compact. For a concrete statement,
we refer to proposition A.7. As in corollary 4.15, theorem 4.18 allows for more flexibility then is
stated:

Corollary 4.20. Let X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zm be three families of manifolds, such that
there exist |l| ordered subsets Ij of {1, . . . ,m} with

X
lj
j =

∏
|l|j−1<i≤|l|j

∏
i∈Ij

Zi (ordered product).

Define I = (I1, . . . , I|l|). Let k ∈ Nn0 and l ∈ Nn1 , let X, Y , and Z denote the product manifolds whose

factors are the members of the respective manifolds, and let X l :=
∏n
j=1X

lj . Let W be a submanifold

of Jk,lI (X,Y ) such that s(W ) ∩ ∆l(X) = ∅, where s : Jk,l(X,Y ) → X l is the source map of the
symmetric mixed bundle. Let W ′ ⊂W be a compact subset. Then

TW ′ := {f ∈ C∞I,k,l(X,Y ) : jk,lI f tW on W ′}

is an open and dense subset of C∞I,k,l(X,Y ) for the topology induced by the strong Whitney C∞ topology
on each factor. Moreover, let f ∈ C∞I,k,l(X,Y ), let V be an open neighbourhood of f , and suppose that

s(W ) is contained in an open product set U = U l11 × . . .×U lnn ⊂ X l, Uj ⊂ Xj. The there exists g ∈ V
such that jk,lI g = jk,lI f off U1 × . . .× Un, and jk,lI g tW .

4.3 Applications

The aim of this section is to prove corollary 4.24. If W1 ⊂ Y1 and W2 ⊂ Y2 are submanifolds,
then the corollary shows not only that the set of pairs (f, g) ∈ C∞S (X1, Y1) × C∞S (X2, Y2) such that
f t W1 and g t W2 is residual, but that the subset of those pairs satisfying f−1(W1) t g−1(W2)
too, is also residual. The corollary extends also the setting of product maps depending on the same
variables. The corollary is not used in the remainder of the thesis, but may be interesting to the
reader regardless. This section can by skipped otherwise without a problem. The main idea used is
to use a characterization of the tangent space of f−1(W1) and g−1(W2) in terms of a map cooked out
of f and g.

The following lemma can be used to prove theorem 4.1, although here we are interested in it because
it help characterize the tangent space of the preimage of a transverse map.

Lemma 4.21 (II.4.3 of [5]). Let X, Y be manifolds, let W ⊂ Y be a submanifold, and let f : X → Y
be a smooth map. Let x ∈ X and f(x) ∈ W . Suppose there is a neighbourhood U of f(x) in Y and
a submersion φ : U → Rk (k = codim W ) such that W ∩ U = φ−1(0). Then f t W iff φ ◦ f is a
submersion at x.

Corollary 4.22. If f : X → Y is a smooth map, transverse to a submanifold W ⊂ Y , then for
x ∈Wf := f−1(W ), the tangent space TxWf is given by {v ∈ TxX : Txf(v) ∈ Tf(x)W}.
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Proof. A neighbourhood U around f(x) such as in the above lemma always exists, as W is a sub-
manifold of Y . As φ ◦ f is a submersion at x, it follows that the tangent space TxWf is given by
kerTx(φ ◦ f). As φ is also a submersion, and W ∩ U = φ−1(0), it follows that kerTx(φ ◦ f) = {v ∈
TxX : Txf(v) ∈ Tf(x)W}.

We can now give a different characterization for the condition Wf t Wg, for two maps f and g
transverse to submanifolds W1 and W2 (respectively).

Lemma 4.23. Let X,Y, Z be manifolds, let W ⊂ Y and V ⊂ Z be submanifolds, and let f : X → Y
and g : X → Z be smooth maps transverse to W respectively V . Denote Wf = f−1(W ) and Vg =
g−1(V ). Then

Wf t Vg ⇐⇒ F := (f, g) tW × V.

Proof. Note that F−1(W × V ) = Wf ∩ Vg. Hence the result is trivial if Wf ∩ Vg = ∅.

Otherwise, let x ∈ Wf ∩ Vg, and let k = codim W and l = codim V . As W and V are submanifolds,
there exist open neighbourhoods Uf of f(x) and Ug of g(x), and submersions φf : Uf → Rk and
φg : Ug → Rl such that W ∩ Uf = φ−1

f (0) and V ∩ Ug = φ−1
g (0). By the above corollary, it follows

that Wf t Vg at x iff TxWf + TxVg = TxX iff {v ∈ TxX : Txf(v) ∈ Tf(x)W} + {v ∈ TxX : Txg(v) ∈
Tg(x)V } = TxX. Note that im TxF = {(Txf(v), Txg(v) : v ∈ TxX}. As im Txf + Tf(x)W = Tf(x)Y
and im Txg + Tg(x)V = Tg(x)Z, it follows that

Wf t Vg ⇐⇒ im TxF + TF (x)W × V = TF (x)Y × Z ⇐⇒ F tW × V.

Corollary 4.24. Let X1, . . . , Xn, Y1,1, . . . , Y1,n, Y2,1, . . . , Y2,n and Z1, . . . , Zm be four families of
manifolds, such that there exist n ordered subsets Ij of {1, . . . , n} with Xj =

∏
i∈Ij Zi (ordered).

Let X,Y1, Y2, and Z denote the product manifolds whose factors are the members of the respective
families. Let k ∈ Nn0 , and define I = (I1, . . . , In). Let W be a submanifold of JkI (X,Y1) and V be a
submanifold of JkI (X,Y2). Then

TW,V := {(f, g) ∈ C∞I,k(X,Y1)× C∞I,k(X,Y2) : jkIf tW, jkIg t V,Wf tWg}

is a residual subset of C∞I,k(X,Y1)× C∞I,k(X,Y2).

Proof. Note that by theorem 4.14, the set

TW × TV = {(f, g) ∈ C∞I,k(X,Y1)× C∞I,k(X,Y 2) : jkIf tW, jkIg t V }

is a product of residual sets. As a product of open and dense sets is again open and dense, it follows
that TW × TV is again residual. Let Y = Y1 × Y2 and note that JkI (X,Y1) × JkI (X,Y2) ∼= JkI (X,Y ),
(jkIf, j

k
Ig) = jkI(f1, . . . , fn, g1, . . . , gn), and that C∞I,k(X,Y 1) × C∞I,k(X,Y 2) ∼= C∞I,k(X,Y ) (see also

example 4.13). By theorem 4.14, the set

T̃W,V = {(f, g) ∈ C∞I,k(X,Y 1)× C∞I,k(X,Y 2) : F = jkI(f, g) tW × V }

is residual. By lemma 4.23, it now follows that TW,V is an intersection of two residual sets, and hence
residual.
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5 Equivariance and transversality

When one studies a class of maps or structures using h-principle techniques, one can wonder what class
of maps or structures should play the role of the formal solutions. As announced in the introduction,
in Haefliger’s embedding theorem (example 1.2) the formal counterpart to embeddings f : M → N
were at least equivariant maps g : M2 → N2. Heuristically, the equivariance emulates the property of
a product of maps f × f , that swapping the input of such a map would be the same as swapping the
output of such map. In this section we shall study some of the topology of equivariant maps, and we
shall derive an equivariant jet transversality theorem, and a companion multijet theorem. We expect
that equivariant maps can play a role in other h-principles that involve non-local differential relations.
Hopefully these results can be of use in the future.

5.1 Smooth equivariant maps

Definition 5.1. Let M,N , and B be manifolds. Let g : M ×M × B → N × N be a smooth map,
then g is Z/2Z-equivariant or simply equivariant if g the following diagram commutes:

M ×M ×B N ×N

M ×M ×B N ×N

Z2

g

Z2

g

Here the vertical maps swap the coordinates of M and respectively N . In terms of coordinates, if
g = (g1, g2), then g is equivariant if and only if

(g1(y, x, t), g2(y, x, t)) = (g2(x, y, t), g1(x, y, t)) ∀(x, y, t) ∈M ×M ×B.

4

Most often we will consider the case where B = Dk, the closed unit disk in Rk, and we think of an
equivariant map g : M2 × Dk → N2 as a smooth family of equivariant maps, parameterized by Dk.

Definition 5.2. Let M,N , and B be manifolds. Let g : M2 × B → N2 be an equivariant map, and
suppose that N = N1 ×N2 is a product of manifolds N1 and N2. We say that g = (g1, g2, g3, g4) is a
holonomic product in the first factor or simply holonomic in the first factor if (g1, g3) = ft×ft : M2×
B → N2

1 , where f : M ×B → N1 is a smooth map and ft × ft is the map (x, y, t) 7→ (f(x, t), f(y, t)).
We say that g is a holonomic product or simply holonomic if g = ft × ft for some smooth map
f : M ×B → N . 4

Note that there exists a one-to-one correspondence with equivariant maps and maps g : M2×B → N .
I.e. the second coordinate function of an equivariant map is determined by the first. For a map
g : M2 × B → N , denote its equivariant product by g ? g. Denote by C∞(M2 × B,N2;Z2) the
subset of equivariant maps containted in C∞(M2 ×B,N2).

Proposition 5.3. The map ? : C∞(M2 ×B,N)→ C∞(M2 ×B,N2) is a topological embedding for
both the strong and weak Whitney C∞ topology, whose image is precisely C∞(M2 ×B,N2;Z2).

Proof. As remarked above, one can check that the map ? is injective, with image all equivariant
maps. For any two manifolds M and N and an automorphism φ : M → M it is easy to check
that φ∗ : C∞(M,N) → C∞(M,N), f 7→ f ◦ φ is homeomorphism. Of course, the diagonal map
C∞(M,N) → C∞(M,N)2, f 7→ (f, f) is an embedding (true for any topological space). Moreover,
by proposition II.3.6 of [5] the map C∞(M2 × B,N)2 → C∞(M2 × B,N2), (f, g) 7→ F = (f, g) is
also a homeomorphism for the strong topology. For the weak topology, this is much simpler, and is
readily verified. It follows that ? = (f 7→ (f, f ◦ φ)) is an embedding by composition, where φ is the
automorphism of M ×M ×B swapping the coordinates on M .
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Corollary 5.4. The space C∞(M2 ×B,N2;Z2) with the weak or strong Whitney C∞ topology, is a
Baire space.

If N = N1 ×N2 is product of manifolds, define C∞(M,N1, N2;Z2) = C∞(M × B,N1) × C∞(M2 ×
B,N2). Observe that for every pair (f, g) ∈ C∞(M,N1, N2;Z2), there is a map E(f, g) : M2×B → N
given by E(f, g)(x, y, t) = (f(x, t), g(x, y, t)), and that

? ◦ E : C∞(M,N1, N2;Z2)→ C∞(M2 ×B,N2;Z2)

is a well defined map whose image is precisely all smooth equivariant maps that are holonomic in the
first factor. Unfortunately, E is generally not continuous if both factors of C∞(M,N1, N2;Z2) have
the strong Whitney C∞ topology, because the product map (f, g) 7→ f × g is not continuous for this
topology (see also the proposition below). If M is compact on the other hand, E is continuous, and
one can verify that ? ◦ E is an embedding by composition. If both factors are instead endowed with
the weak topology, the result is much better:

Proposition 5.5. Endow both factors of C∞(M,N1, N2;Z2), and C∞(M2 × B,N) with the weak
Whitney C∞ topology. Then E : C∞(M,N1, N2;Z2)→ C∞(M2 ×B,N) is an embedding.

Proof. By proposition 2.8, the map

C∞(M ×B,N1)× C∞(M2 ×B,N2)→ C∞((M ×B)× (M2 ×B), N), (f, g) 7→ f × g,

is an embedding (where the latter also has the weak topology). One can precompose the map f × g
with the embedding ι : M2 × B → (M × B)× (M2 × B), given by (x, y, t) 7→ (x, t, x, y, t). It is then
not hard to show that

ι∗ : C∞((M ×B)× (M2 ×B), N)→ C∞(M2 ×B,N), f 7→ f ◦ ι

is an embedding, too. Hence E is an embedding by composition.

When each factor of C∞(M,N1, N2;Z2) is endowed with the strong or weak Whitney C∞ topology, we
shall denote the corresponding topological space by C∞S (M,N1, N2;Z2) respectively C∞W (M,N1, N2;Z2).

Anticipating the next chapter, we say that a smooth map h : M2 × Dk → (Rn)2 is d-isovariant if
h is both equivariant, and h(x, x ± d, t) /∈ ∆(Rn) for all x ∈ M and t ∈ Dk, where 0 < d < 1 is a
real number. Here M is one of the manifolds R,S1 ∼= [0, 1]/{0 ∼ 1} or [0, 1]. We return to this in
definition 6.1.

Lemma 5.6. Let M = [0, 1] or S1 and let B = Dk. Then the subset of isovariant maps in
C∞W (M,N1, N2;Z2) is open.

Proof. Note that an equivariant map h : M2 × Dk → N2 is isovariant if and only if the image of
h is contained in the complement of V = ∆± × ∆(N). Let U denote the complement of V , then
M(U) is open in C∞W (M2 × B,N2), since the base space is compact. By proposition 5.3 and 5.5,
? ◦ E is an embedding for the weak topology. Hence the set of isovariant maps, which is given by
(? ◦ E)−1(M(U)), is open.

Although the above does not hold when X = R, the proof shows the following. For a subset K of R,
we say that h : R2 × Dk → N2 is isovariant on K if h(x, x± d, t) /∈ ∆(N) for all x ∈ K and t ∈ B.

Corollary 5.7. Let K ⊂ R be compact, and let B = Dk. Then

{(f, g) ∈ C∞(R, N1, N2;Z2) : ? ◦ E(f, g) is isovariant on K}

is open.
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Remark 5.8. The above propositions also hold when Dk is replaced by any compact manifold.

Lemma 5.9. Let M = [0, 1],R, or S1, and let N1 = Rn1 and N2 = Rn2 . The topological space
im (? ◦ E) is locally convex. That is, for every (f, g) ∈ C∞W (M,N1, N2;Z2) and open neighbourhood
U ⊂ im ? ◦E of h = ?(E(f, g)), there exists a smaller neighbourhood V ⊂ U of ?(E(f, g)) such that
for all h′ ∈ V, the linear homotopy connecting ?(E(f, g)) to h′ goes through equivariant maps.

Proof. It is not so hard to see that C∞W (M2 × B,N2) is locally path connected: let h ∈ C∞W (M2 ×
B,N2), and let U be an open set containg h. Select a basic open set M(K,U) ⊂ U containing h .
Here K ⊂ M2 × B is compact, and U ⊂ Jk(M2 × B,N2) is open. If necessary, we can shrink U
so that U ∩ s−1(x, y, t) is convex, where s : Jk(M2 × B,N2) → M2 × B is the source map. Note
that the fibers of s are vector spaces, as N = Rn. Let g ∈ M(K,U), then the linear homotopy
th + (1 − t)g : M2 × B × [0, 1] → N2 connects h and g. Hence M(K,U) is a path connected
neighbourhood of h containd in U . Suppose now that h and g were equivariant maps holonomic in
the first factor, then for every t ∈ [0, 1], th + (1 − t)g is also equivariant, and holonomic in the first
factor. The result now follows.

5.2 Equivariant jet transversality

The main goal of this section is to formulate and prove transversality statements about equivariant
maps. Specifically, for a submanifold W of N2, one can wonder when

{g ∈ C∞(M2 ×B,N2;Z2) : g tW} ⊂ C∞(M2 ×B,N2;Z2)

is residual (and hence dense). Moreover, is the same true when C∞(M2×B,N2;Z2) is replaced by the
set of smooth equivariant maps that are holonomic the first factor? What about a jet transversality
statement?

We shall focus on the case where N = N1 ×N2 and our maps are holonomic in the first factor. The
statement about ‘merely equivariant’ maps is then obtained as the special case of N1 being a point.
We shall also immediately treat a jet transversality statement, from which the non-jet transversality
statement follows. Afterwards, we shall also look at a type of multi-jet transversality statement.

The aim is to translate the equivariant jet transversality question into a question of symmetric mixed
transversality, to which we can apply theorem 4.14. Below we spell out the details of this identification,
culminating in proposition 5.10.

Define three families of manifolds:

X1 = X2 = M ×B, X3 = X4 = M2 ×B,

Y1 = Y2 = N1, Y3 = Y4 = N2,

Z1 = Z2 = M, Z3 = B.

Let I = ((1, 3), (2, 3), (1, 2, 3), (2, 1, 3)), and k = (k1, k1, k2, k2) be a tuple of nonnegative integers.
Define the k-equivariant jet bundle associated with (M,B,N1, N2) as JkI (X,Y ) (see definition
4.8). Explicitly, JkI (X,Y ) is the restriction of the product bundle

Jk(X,Y ) = Jk1(M ×B,N1)2 × Jk2(M2 ×B,N2)2 → (M ×B)2 × (M2 ×B)2

to the fibers over {(x, t, y, t, x, y, t, y, x, t) : x, y ∈ M, t ∈ B) ∼= M2 × B. If we reorder the second and
third factor of the product bundle, we can denote by Jk(M,B,N1, N1) the restriction of this reordered
bundle over the fibers of {(x, t, x, y, t, y, t, x, y, t) : x, y ∈ M, t ∈ B}. Let Ψ denote the reordering of
the product bundle (which is a diffeomorphism), and denote by ψ the restriction of Ψ to JkI (X,Y ).
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For every smooth equivariant map h : M2 × B → N2 that is holonomic in the first factor, we now
obtain a section of the bundle Jk(M,B,N1, N2) → M2 × B: recall from the previous section, that
for every such map h exists a unique pair (f, g) : C∞(M × B,N1) × C∞(M2 × B,N2) such that
h = ?(E(f, g)). In particular, recall that h4 = g ◦ ω, where ω is the automorphism of M2 × B = X4

swapping the factors of M2. Define jkEh by

(x, y, t) 7→ (jk1f(x, t), jk2g(x, y, t), jk1f(y, t), jk2(g ◦ ω)(x, y, t)).

It is straightforward to verify that jkEh is indeed a section.

Let ω∗ : Jk2(X4, Y4)→ Jk2(X4, Y4) denote the automorphism given by [f ]x,y 7→ [f ◦ω−1]ω(x),y, and let
Ω denote the automorphism of the reordered bundle, which acts as the identity on the first 3 factors,
and as ω∗ on the last. Observe that Ω ◦ ψ maps JkI (X,Y ) diffeomorphically onto Jk(M,B,N1, N2).
Let m = (k1, k2), l = (2, 2), and let φ denote the restriction of Ω to the image of ψ. Then the following
diagram commutes:

Jm,lI (X,Y ) Jk(M,B,N1, N2)

M2 ×B

φ◦ψ
∼

jm,lI (f,g)

jkEh

We have now proved the following proposition:

Proposition 5.10. Assume the above notation. Let h : M2 ×B → N2 be a smooth equivariant map
that is holonomic in the first factor, let (f, g) ∈ C∞(M × B,N1) × C∞(M2 × B,N2) be the unique

pair such that h = ?(E(f, g)), and let W be a submanifold of Jm,lI (X,Y ). Denote W̃ = φ(ψ(W )).
Then

jm,lI (f, g) tW ⇐⇒ jkEh t W̃ .

With this proposition, it is now easy to apply theorem 4.18 to determine for a submanifold W̃ of
Jk(M,B,N1, N2) if there exists an residual set of pairs C∞(M ×B,N1)×C∞(M2×B,N2) such that
the associated map h : M2 × B → N2 satisfies jkEh is tranverse to W̃ . Let W = (φ ◦ ψ)−1(W̃ ), then
observe that

∆l(X) ∩ s(W ) = ∅ ⇐⇒ s̃(W̃ ) ∩∆(M)×B = ∅.

Here s : Jm,l(X,Y )→ X l and s̃ : J̃kI (X,Y )→M2×B are the source maps associated to the respective
bundles. We conclude:

Theorem 5.11 (Equivariant jet transversality theorem). Let M , B, N1 and N2 be manifolds, and
denote N = N1 × N2. Let k = (k1, k1, k2, k2) be a tuple of non-negative integers, and let W be a
submanifold of the bundle s̃ : Jk(M,B,N1, N2) → M2 × B such that s̃(W ) ∩∆(M) × B = ∅. Then
the set

TEW := {(f, g) ∈ C∞(M,B,N1, N2;Z2) : jkEh tW, h = ?(E(f, g))}

is residual in C∞(M,B,N1, N2;Z2).

The following corollary follows from corollary 4.20 in the same as the above theorem follows from
theorem 4.18.
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Corollary 5.12. Let M , B, N1 and N2 be manifolds, and denote N = N1 × N2. Let W be a
submanifold of the bundle s̃ : Jk(M,B,N1, N2)→M2 ×B such that s̃(W ) ∩∆(M)×B = ∅. Let W ′

be a compact subset of W . Then the set

TEW ′ := {(f, g) ∈ C∞(M,B,N1, N2;Z2) : jkEh tW on W ′, h = ?(E(f, g))}

is open and dense in C∞(M,B,N1, N2;Z2). Moreover, let (f, g) ∈ C∞(M,B,N1, N2;Z2), let V
be an open neighbourhood of (f, g), and suppose that s̃(W ′) is contained in the product open sets
U = U1 × U2 × U3 ⊂ M ×M × B that is invariant under ω. That is, ω(U) = U where ω is the
automorphisms of M2 × B swapping the factors of M . Then there exists (f ′, g′) ∈ V such that
?(E(f, g)) = ?(E(f ′, g′)) off U and jkEh

′ tW on W ′ with h′ = ?(E(f ′, g′)).

5.3 Equivariant multijet transversality

We shall make a similar identification for multijets of smooth equivariant maps h : M2×B → N2 that
are holonomic in the first factor: let p be an integer and W be a submanifold of Jk(M,B,N1, N2)p,
then we wish to obtain a theorem which provides sufficient condition on W such that the ‘multijet’

jkEh× . . .× jkEh : (M2 ×B)p → Jk(M,B,N1, N2)p

is transverse to W for a residual set of pairs in C∞S (M,B,N1, N2;Z2).

Let {Xj}4j=1 and {Yj}4j=1 be the same two families as above. Define a new family {Z3j−2 = M,Z3j−1 =
M,Z3j = B : j = 1, . . . , p}, and

Ip = (I4j−3 = (3j−2, 3j), I4j−2 = (3j−1, 3j), I4j−1 = (3j−2, 3j−1, 3j), I4j = (3j−1, 3j−2, 3j))pj=1,

and let k = (k1, k1, k2, k2). Define the (k, p)-equivariant jet bundle associated with (M,B,N1, N2)

as Jk,pIp (X,Y ) (see definition 4.16). Although heavy on notation, one can verify that Jk,pIp (X,Y ) →
Z = (M2×B)p is isomorphic as a bundle to JkI (X,Y )p → (M2×B)p. I.e. Ip serves the same purpose
as I did for the equivariant jet transversality theorem, but p times. Let Ψp denote the reordering of
the symmetric product bundle, whose image is

p∏
j=1

(
Jk1(M ×B,N1)× Jk2(M2 ×B,N2)

)2
,

and let φp denote restriction of Ψp to Jk,pIp (X,Y ). Observe that the image of Ψ is a bundle over

((M×B)2× (M2×B))p, and that Jk(M,B,N1, N2)p is the restriction of this last bundle to the fibers
over

{(xj , tj , yt, tj , xj , yj , tj , xj , yj , tj) : j = 1, . . . , p, xj , yj ∈M, tj ∈ B} ∼= (M2 ×B)p.

Let (f, g) again be the unique pair such that h = ?(E(f, g)). Then we obtain a section jk,pE h of
Jk(M,B,N1, N2)p → Z = (M2 ×B)p, given by

(xj , yj , tj)
p
j=1 7→

(
jk1f(xj , tj), j

k2g(xj , yj , tj), j
k1f(yj , tj), j

k2(g ◦ ω)(xj , yj , tj)
)p
j=1

.

Let Ωp denote the automorphism of the reordered bundle, that acts as ω∗ on every fourth factor,
and acts as the identity on all others, and let φp denote the restriction of Ω to the image of ψp. Let
m = (k1, k2) and let lp = (2p, 2p), then the following diagram commutes:

J
m,lp
Ip (X,Y ) Jk(M,B,N1, N2)p

(M2 ×B)p

φp◦ψp
∼

j
m,lp
Ip (f,g)

jk,pE h

41



We have proved the following proposition:

Proposition 5.13. Assume the above notation. Let h : M2 ×B → N2 be a smooth equivariant map
that is holonomic in the first factor, let (f, g) ∈ C∞(M × B,N1) × C∞(M2 × B,N2) be the unique

pair such that h = ?(E(f, g)), and let W be a submanifold of J
m,lp
Ip (X,Y ). Denote W̃ = φp(ψp(W )).

Then
j
m,lp
Ip (f, g) tW ⇐⇒ j̃k,pIp h t W̃ .

As in the previous remark, let W̃ be a submanifold of J̃k,pIp (X,Y ). Theorem 4.18 gives a sufficient

condition for the existence of a residual set of tuples in C∞(M ×B,N1)×C∞(M2×B,N2) such that

the associated map h : M2 ×B → N2 satisfies j̃k,pIp h t W̃ . Let W = (φp ◦ ψp)−1(W̃ ), then

s(W ) ∩∆lp(X) = ∅ ⇐⇒ s̃(W̃ ) ∩ (∆(p)(M2 ×B) ∪ (∆(M)×Dk)p) = ∅.

Here s : J
m,lp
Ip (X,Y ) → X lp and s̃ : J̃k,pIp (X,Y ) → (M2 × B)p are the source maps of the respective

bundles. We conclude:

Theorem 5.14 (Equivariant multijet transversality theorem). Let M , B, N1 and N2 be man-
ifolds, and denote N = N1 × N2. Let k = (k1, k1, k2, k2) be a tuple of non-negative integers,
and let W be a submanifold of the bundle s̃ : Jk(M,B,N1, N2)p → (M2 × B)p such that s̃(W ) ∩(
(∆(M)×B)p ∪∆(p)(M2 ×B)

)
= ∅. Then the set

TEW := {(f, g) ∈ C∞(M,B,N1, N2;Z2) : jk,pE h tW, h = ?(E(f, g))}

is residual in C∞(M,B,N1, N2;Z2).

Once more, we comment on some of the flexibility that the above theorem has:

Corollary 5.15. Let M , B, N1 and N2 be manifolds, and denote N = N1×N2. Let W be a submani-
fold of the bundle s̃ : Jk(M,B,N1, N2)p → (M2×B)p such that s̃(W )∩

(
(∆(M)×B)p ∪∆(p)(M2 ×B)

)
=

∅. Let W ′ be a compact subset of W . Then the set

TEW ′ := {(f, g) ∈ C∞(M,B,N1, N2;Z2) : jk,pE h tW on W ′, h = ?(E(f, g))}

is open and dense in C∞(M,B,N1, N2;Z2). Moreover, let (f, g) ∈ C∞(M,B,N1, N2;Z2), let V
be an open neighbourhood of (f, g), and suppose that s̃(W ′) is contained in the product open sets
U = (U1 × . . . × U3)p ⊂ (M ×M × B)p that is invariant under ω. That is, ω(U) = U where ω is
the automorphisms of M2 × B swapping the factors of M . Then there exists (f ′, g′) ∈ V such that

?(E(f, g)) = ?(E(f ′, g′)) off U1 × U2 × U3 and jk,pE h′ tW on W ′ with h′ = ?(E(f ′, g′)).
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6 Delayed relations

In this chapter we recall and prove the main result, theorem 1.4. We define the d-delay relation Rd,
the derivative d-delay relation R′d, and what it means to be in SolF (Rd), i.e. to be a formal d-delay
solution. Most of this chapter is devoted to proving the final ingredient of the proof of theorem 1.4:
theorem 6.5. Throughout we analyse families of Sol(R′d) and SolF (Rd) maps. We introduce some
more language:

Let M denote one of the distinguished manifolds R, [0, 1], or S1, and let N1 = Rn1 and N2 = Rn2 for
some integers n1, n2 ∈ N0. Let n = n1 + n2.

Definition 6.1. Let d > 0 be a real number, B be a manifold, and let M be one of the distinguished
manifolds. Let g : M2 × B → (Rn)2 be a smooth map. We say that g is d-isovariant or simply
isovariant, if g is a B-family of formal Rd-solutions. That is to say, g is equivariant, and

g(x, x± d, t) /∈ ∆(Rn) ∀x ∈M, t ∈ B.

4

We shall denote throughout this chapter by ∆±d ⊂M2 ×B the shifted diagonals

∆±d = {(x, x± d, t) : x ∈M, t ∈ B}.

6.1 The delay relation

We now give the formal definition of the d-delay relation, and define formal d-delay solutions.

Definition 6.2. Let M be the manifold [0, 1],R, or S1 ∼= [0, 1]/{0 ∼ 1}, and n ≥ 1 be an integer.
The d-delay relation, Rd, is the non-local differential relation in J1(M,Rn)2 given by

Rd := {(x1, y1, v1, x1, y2, v2) ∈ J1(M,Rn)2 : x1 = x2 ± d =⇒ v1 6= v2}.

The derivative d-delay relation, R′d, is the non-local differential relation in J0(M,Rn)2 given by

R′d := {(x1, y1, x2, y2) ∈ J0(M,Rn)2 : x1 = x2 ± d =⇒ y1 6= y2}.

The formal Rd-solutions are the equivariant sections M2 → J0(M,Rn)2 with image in R′d. We denote
the set of formal Rd solutions by SolF (Rd). 4

Theorem 1.4 says that if M = R or M = [0, 1] and 0 < d < 1 is a real number, then T ×T, f 7→ f ′×f ′,
is a weak homotopy equivalence between Sol(Rd) and SolF (R′d). In other words, the h-principle holds
for the d-delay relation in this case. Moreover, if M = S1 and d is either 1/2 or irrational, the h-
principle for Rd also holds, and if d = p/q with q > 2 and p, q coprime integers, then the map T × T
induces isomorphisms between homotopy groups of Sol(Rd) and SolF (Rd) up to a degree depending
on n (the dimension of the target space) and q.

The proof theorem 1.4 is split in two parts. First it is shown in theorem 6.4 that there is a weak
homotopy equivalence between the set of d-delay solutions, Sol(Rd), and derivative d-delay solu-
tions, Sol(R′d). Second, it is shown that there are isomorphisms of homotopy groups of Sol(R′d) and
SolF (Rd), the formal d-delay solutions.

Here we shall briefly give some motivation and a preliminary result used in the second step. Note first
that the map T : Sol(Rd) → Sol(R′d) given by f 7→ f ′ is a well defined map. I.e. if f : M → Rn is a
d-delay solutions, its derivative map f ′ : M → Rn is a derivative d-delay solution.

Note that g ∈ Sol(R′d) if and only if g × g(∆±d) ∩ ∆(Rn) = ∅, while h ∈ SolF (Rd) if and only if
h : M2 → (Rn)2 is equivariant, and h(∆±d) ∩ ∆(Rn) = ∅. Hence, for every g ∈ Sol(R′d), g × g ∈
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SolF (Rd), which means that the map g 7→ g× g is a well defined map from Sol(R′d) to SolF (Rd). Let
h : M2× (Rn)2 be a smooth map, then we say that h is holonomic if h = g×g for some smooth map
g : M → Rn (as in definition 5.2). We denote by SolF,Hol(Rd) the subset of all those h ∈ SolF (Rd)
that are holonomic.

Figure 1: The shifted diagonals in M .4

Lemma 6.3. Let 0 < d < 1 be a real number. The map

p : Sol(R′d)→ SolF (Rd), g 7→ g × g,

is a topological embedding. Its image is SolF,Hol(Rd), which consists of all those h ∈ SolF (Rd),
h : M2 → (Rn)2, that are holonomic. Moreover, the map p induces for every g ∈ Sol(R′d) an
isomorphism

pn : πn(Sol(R′d), g)→ πn(SolF (Rd), g × g)

if and only if the inclusion i : SolF,Hol(Rd) ↪→ SolF (Rd) induces an isomorphism

in : πn(SolF,Hol(Rd), g × g)→ πn(SolF (Rd), g × g).

Proof. By proposition 2.8 and the fact that the diagonal map g 7→ (g, g) is an embedding, we can
identify Sol(R′d) as a topological space with its image in SolF (Rd). That the image consists precisely
of the holonomic maps in SolF (Rd) is straightforward to verify. As p is an embedding, it is a weak
homotopy equivalence onto its image. Hence the moreover part follows from the identity p = i◦p.

6.2 Proof of main result

In this section we prove the main result, theorem 1.4. The first step is theorem 6.4, which shows that
there is a weak homotopy equivalence between solutions of the relation Rd (d-delay solutions) and
solutions of R′d, which were smooth maps g : M → Rn satisfying g(x± d) 6= g(x) for all x ∈M . The
equivalence is given by the map f 7→ f ′, and the proof is inspired by the proof of theorem 3.11. It
then remains to prove that the map g 7→ g × g induces isomorphisms of homotopy groups between
Sol(R′d) and SolF (Rd) (for all degrees when M = [0, 1],R and for some when M = S1). This is done
subsequently, using theorem 6.5, which is the topic of the remainder of this chapter.

Theorem 6.4. The map

T : Sol(Rd)→ Sol(R′d), (f : X → Rn) 7→ (f ′ : X → Rn)

is a weak homotopy equivalence (for the weak Whitney C∞-topology).

Proof. Let k be a non-negative integer. Let f : M → Rn be a smooth map, such f ∈ Sol(Rd). Let

Tk : πk(Sol(Rd), f)→ πk(Sol(R′d), f ′)
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denote the map induced by T on the k-th homotopy group. We need to show that Tk is a bijection for
each k. The key claim is the following: let G : M × Sk → Rn be a smooth map, such that gt = G(·, t)
is a R′d-solution for every t ∈ Sk. Then there exists a smooth homotopy H : M × Sk × [0, 1] → Rn
connecting G to G̃ = H1, and a smooth map F : M × Sk × [0, 1] → Rn, such that Hs is a smooth
family of Sol(R′d)-solutions for every s ∈ [0, 1], and for every t ∈ Sk, Tft = g̃t. Here ft = F (·, t) and

g̃t = G̃(·, t). Moreover, if H : M×Sk×[0, 1]→ Rn is a smooth homotopy connecting two Sk-families of
Sol(R′d) solutions G0, G1, lying in the image of Tk, then H is itself homotopic to a smooth homotopy

H̃ : M × Sk × [0, 1]→ Rn connecting G0 and G1, such that Gs = H̃s lies in the image of Tk for every
s ∈ [0, 1].

By proposition 3.3 and the claim, we are done: the first part of the proposition shows that Tk is
surjective, and the second shows injectivity.

Proof of claim: we make two case distinctions:

• if M = [0, 1] or M = R, we can select H to be the constant homotopy, and hence G̃ = G. Define
ft(x) =

∫ x
0
gt(p)dp. By the Fundamental Theorem of Calculus (FTC), Tft = gt, and by the

smoothness of G, F is also smooth. Moreover, as gt is a R′d-solution, ft is a Rd-solution. The

moreover part follows similarly: we can simply select H̃ = H and the homotopy connecting the
can be chosen as the constant homotopy. The ‘primitives’ of Gs can be constructed in a similar
fashion, too.

• if M = S1 ∼= [0, 1]/0 ∼ 1, select H(x, t, s) = gt(x) − s
∫ 1

0
gt(p)dp, and hence G̃(x, t) = gt(x) −∫ 1

0
gt(p)dp. It is straightforward to verify that Hs is a smooth family of Sol(R′d)-solutions for

every s ∈ [0, 1]. Define ft(x) =
∫ x

0
gt(p)dp − x

∫ 1

0
gt(p)dp. Then ft : S1 → Rn is a well defined,

smooth function: the FTC gives us that f̃t : [0, 1] → Rn is well defined and smooth, and all
order derivatives of ft,s agree at 0 and 1, so ft,s descends to a smooth map on S1. The FTC
also implies that Tft and g̃t agree. The smoothness of g implies the smoothness of f .

Finally,
f ′t(x± d)− f ′t(x) = g̃t(x± d)− g̃t(x),

and hence ft is an element of Sol(Rd) for every t ∈ Sk.

The moreover part is analoguous: assume that G0 = H0 and G1 = H1 are two Sk-families of
Sol(R′d) solutions, and that H is a homotopy connecting them. By linearly subtracting the

average position of Ht,s : M → Rn, we can find H̃ and the linear homotopy connecting H to H̃.
I.e. the homotopy is given by

M × Sk × [0, 1]2 3 (x, t, s1, s2) 7→ Ht,s1(x)− s2

∫ x

0

Ht,s1(p)dp.

One can check that this homotopy consists for all s1, s2 ∈ [0, 1] of Sk-families of R′d solutions,
and is relative s1 = 0, 1.

The proof of theorem 1.4 is now reduced to showing that the map Sol(R′d) → SolF (Rd) given by
g 7→ g × g induces isomorphisms on homotopy groups of appropriate dimensions. By lemma 6.3, this
is equivalent to showing that the inclusion map i : SolF,Hol(Rd) ↪→ SolF (Rd) induces isomorphisms
on homotopy of appropriate dimensions. The main result of this section is the theorem below, which
will be sufficient:
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Theorem 6.5. Let 0 < d < 1 be a real number. Let M be the manifold R or [0, 1], and let k ≥ 0 be an
integer. Then any smooth Dk family of SolF (Rd) maps h : M2 × Dk → (Rn)2 with ht : M2 → (Rn)2

in SolF,Hol(Rd) for every t ∈ Sk−1, is homotopic through isovariant maps relative Sk−1 to a Dk family
of SolF,Hol(Rd) maps.

Let M = S1. If d is irrational, d = 1/2, or d = p/q with p, q coprime positive integers and k <
q(n− 1)− 1, then the same conclusion holds.

Proof of theorem 1.4 assuming theorem 6.5. By lemma 6.3 and the discussion above it, we only need
to show that

ik : πk(SolF,Hol(Rd), g × g)→ πk(SolF (Rd), g × g)

is an isomorphism for all k ≥ 0 when M = [0, 1] or R, or for when M = S1 for all k when d = 1/2
or irrational, or all k < q(n− 1)− 1 when d = p/q rational. By the long exact sequence of (relative)
homotopy groups (see section 3.1) and proposition 3.4, ik is an isomorphism if and only if for l = k
and l = k + 1, every smooth isovariant map h : M2 × Dl → (Rn)2 with ht : M2 → (Rn)2 holonomic
for all t ∈ Sl−1, there exists a smooth homotopy H : M2 × Dl × [0, 1]→ (Rn)2 which connects h to a
smooth holonomic isovariant map h̃, which is relative M2 × Sl−1, and which goes through isovariant
maps. By theorem 6.5 the latter holds for all l ≥ 0 when M is [0, 1] or R. When M = S1 and d
is irrational or d = 1/2, the latter holds for all l ≥ 0 too. If M = S1 and d = p/q is rational with
p, q positive comprime integers, the latter holds for all l < q(n− 1)− 1. Hence i is a weak homotopy
equivalence when M is [0, 1] or R, and when M = S1 and d is irrational or d = 1/2. If M = S1 and
d = p/q, then ik is an isomorphism when k < q(n− 1)− 2. This completes the proof.

6.3 Singularities of isovariant maps

It remains to prove theorem 6.5. Let h : M2×Dk → (Rn)2 be an isovariant map such that ht : M2 →
(Rn)2 is holonomic for every t ∈ Sk−1. Out of the map h we somehow need to construct a map h̃ such
that h̃t is holonomic for every t ∈ Dk, and h̃ is homotopic through isovariant maps to h. Moreover,
such a homotopy connecting h to h̃ should be relative M2 × Sk−1. Our method is a removal of
singularities, on which we elaborate.

We want to improve h = (h1, . . . , h2n), hj : M2 × Dk → R, by induction over pairs of coordinate
functions (hj , hj+n). Observe that (hj , hj+n) : M2×Dk → R2 is equivariant. We want to inductively

replace (hj , hj+n) by new coordinate pairs (h̃j , h̃j+n) which are holonomic, i.e. (h̃j , h̃j+n) = ft × ft :
M2 × Dk → R2 for some smooth function f : M × Dk → R. Here the map ft × ft is given by
(x, y, t) 7→ (f(x, t), f(y, t)). When replacing the pair (hj , hj+n) of h by (h̃j , h̃j+n), our first worry is

that the new map h̃j : M2×Dk → (Rn)2 may not be isovariant anymore: equivariance is guaranteed,
since any map M2 → (Rn)2 is equivariant if and only if all its coordinate pairs are equivariant, but
the identity

h̃j(∆±d) ∩∆(Rn) = ∅

may no longer hold.

When does this identity fail to hold? Note that the equivariant map g : M2 × Dk → (Rn)2 is
isovariant if and only if for every (x, x± d, t) ∈M2 ×Dk, there exists a coordinate pair (gl, gl+n) of g
with (gl, gl+n)(x, x±d, t) /∈ ∆(R). Hence, the identity may no longer hold if there exists (x, x±d, t) ∈
M2 × Dk such that for all 1 ≤ l ≤ n, l 6= j, (hl, hl+n)(x, x± d, t) ∈ ∆(R).
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Definition 6.6. Let B be a manifold.

• Let h : M2×B → (Rn)2 be an equivariant map. Define hl̂ to be the equivariant map M2×B →
R2n−2 obtained by deleting the l-th and n+ l-th coordinate functions of h.

• Let h : M2 ×B → (Rn)2 be an isovariant map. Define the l-th singularity of h by

Σl(h) =
(
hl̂
)−1

(∆(Rn−1)) ∩∆±d.

Remark 6.7. For ease of notation, we will try to suppress the dependence of Σl(h) on h as much as
possible. 4

Figure 2: The l-th singularity of h. Points in Σl that lie ‘above’ on another (dashed line) are prob-
lematic when defining ft × ft. 4

So, when we replace (hj , hj+n) by a holonomic pair (h̃j , h̃j+n) we can guarantee that new map h̃j :
M2 × Dk → (Rn)2 is isovariant if and only if

(h̃j , h̃j+n)(Σj) ∩∆(R) = ∅.

Let H : M2×Dk × [0, 1]→ (Rn)2 be an equivariant homotopy connecting h to h̃j which only changes
the j-th coordinate pair. As Σj(Ht) = Σj(h) for every t ∈ [0, 1], H goes through isovariant maps if
and only if for every t ∈ [0, 1]

((Ht)j , (Ht)j+n)(Σj) ∩∆(R) = ∅.

6.4 Formal data over singularities and the boundary

With the above punchline, the proof of theorem 6.5 now revolves around defining a new holonomic
coordinate pair (h̃j , h̃j+n) which does not intersect ∆(R) over the singularity Σj . We know that the
old coordinate pair already has this property, as h is isovariant, so will use the old coordinate pair to
guide the definition of (h̃j , h̃j+n). The ideal situation is as follows:

Remark 6.8 (Ideal situation). Assume that Σl is a submanifold of M2×Dk, and that the projection
π : M2 × Dk → M × Dk, π(x, y, t) = (x, t) restricts to a smooth embedding π′ : Σl → M × Dk. Then
one can use (hj , hj+n) with relative ease to construct f : M × Dk → R: define

f(x, t) = hj(x, y, t), (x, t) ∈ π′(Σl)

where (x, y, t) is the unique point in Σl in the fiber of π′ over (x, t). The map f is well defined, defined
over a closed set (as Σl is closed) and admits a smooth extension pointwise. To see this last point,
one can use local smooth sections of π′ and the fact that hj is smooth. Hence, we can choose some
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global smooth extension of f to a smooth map M × Dk → R (see for example [14, lemma 2.26]).
Replacing (hj , hj+n) by (h̃j , h̃j+n) = ft × ft is now ideal: ft × ft is equal to (hj , hj+n) over Σl, and

hence h̃j : M2 × Dk → (Rn)2 is isovariant and its j-th coordinate pair is holonomic. Moreover, the
linear homotopy connecting h to h̃j only changes the j-th coordinate pair, and is constant over Σl.
Therefore, the linear homotopy goes through isovariant maps, too. 4

There are two primary obstructions to using this idealized solution: first, we shall show that Σl can
be assumed to be a manifold, but that π′ is in general not injective. However, note that Σl ⊂ ∆±d,
and hence fibers of π′ contain at most two points. That is, π−1(x, t) ⊂ {(x, x + d, t), (x, x − d, t) :
x ∈ M, t ∈ Dk}. We can however show that the double points of π′ can assumed to be a stratified
set, and that π′ restricted to the strata is a double cover. The aim is then to show that, up to
homotopy, we can assume that hj(x, x + d, t) = hj(x, x − d, t) for all double points of π′. This will
make f(x, t) = hj(x, x± d, t) well defined and we can again argue with local sections that f extends
to a global, smooth map. The second obstruction is that we have so far not taken into account that
ft × ft should be equal to (hj , hj+n) on M2 × Sk−1.

The first obstruction is the topic of the remainder of this chapter. In section 6.5 we show that, up to
homotopy, Σj can be assumed to be a manifold, and that the double points in Σj (or more precisely,
a subset thereof) can be stratified. In section 6.6 we argue that (up to homotopy) we can assume that
hj(x, x+d, t) = hj(x, x−d, t) over the double points. In the final section, section 6.7 we tie everything
together and prove theorem 6.5. For the second obstruction we introduce the following lemma. In
the remainder of the arguments this lemma shall provide some flexibility in our arguments near the
boundary of Dk.

Lemma 6.9. Let N = N1 ×N2. Let h : M2 × Dk → N2 be a smooth isovariant map, holonomic in
the first factor N1, such that ht : M2 → N2 is holonomic for all t ∈ Sk−1. Then there exists a real
number 0 < r1 < 1 such that h is homotopic through isovariant maps relative M2 × Sk−1 to a smooth
isovariant map h̃ holonomic in the first factor, such that h̃t is holonomic for all |t| ≥ r1.

Proof. Let φ : Dk × [0, 1] → Dk denote a smooth homotopy which blows up {t ∈ Dk : |t| ≤ r1}
radially up to the boundary of Dk. I.e. select any smooth function α : [0, 1] → [0, 1] that is non-
decreasing, α(s) = s on a neighbourhood of 0, and on [r1, 1] is identically 1. One can then define
φ by (t, s) 7→ (1 − s)t + s · α(‖t‖)t/‖t‖. This is well defined (and smooth) at 0, since α is equal to
the identity near 0. Precomposing h by (idM2 , φ), we obtain a smooth homotopy connecting h to
h̃ := h ◦ (idM2 , φ1). Because the homotopy preserves the slices of M2 in the product M2 × Dk, it
follows that this homotopy goes through isovariant maps. Evidently, h̃t = ht/|t| for all |t| ≥ r1, and
for such t it follows that ht is holonomic.

6.5 Stratification of the singularity

Let N = Rn1 × Rn2 and n = n1 + n2. Let h : M2 × Dk → (Rn)2 be an isovariant map, holonomic in
the first factor Rn1 . When we want to replace the n1 + 1 coordinate pair of h by a holonomic pair, we
are interested in the singularity Σn1+1. Due to lemma 6.9, we can assume without loss of generality
that there exists a real number 0 < r1 < 1 such that ht : M2 → (Rn)2 is holonomic for all |t| ≥ r1. To
guarantee that we do not change h near M2×Sk−1, we devote our attention to S := Σn1+1∩M2×Dkr2 ,
where Dkr2 := {t ∈ Dk : |t| ≤ r2} for some real number 0 < r1 < r2 < 1. Let πS denote the restriction
of π : M2 × Dk → M × Dk (as defined before) to S. Let S1 ⊂ S denote the double points of πS . We
also analyze S1 ⊂ S, which leads to the stratification of the double points in S, definition 6.12.
The main results of this section are lemmas 6.15 and 6.16, which state that S and the stratification
of S1 may be assumed to consist of manifolds.
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Remark 6.10. We can guarantee that S is a submanifold of M2 × Dk if j0(h
n̂1+1

) : M2 × Dk →
J0(M2 ×Dk,R2n−2) is transverse to (∆±d ∩M2 × Dkr2) ×∆(Rn−1) (as S is the preimage of a map
transverse to a submanifold). Theorem 5.11 will be used to find an isovariant smooth map near h
satisfying this condition. 4

Let ĥ be shorthand for h
n̂1+1

: M2 × Dk → R2n−2. Denote N ′ = Rn−1, and note that due to the

equivariance of ĥ ,the following are equivalent: for all t ∈ Dkr2 ,

• (x, x± d, t) ∈ S1.

• ĥ(x, x− d, t) ∈ ∆(N ′) and ĥ(x, x+ d, t) ∈ ∆(N ′).

• ĥ(x, x− d, t) ∈ ∆(N ′) and ĥ(x+ d, x, t) ∈ ∆(N ′).

• j0
2 ĥ(x, x− d, t, x+ d, x, t) ∈ {(x, x− d, t, x+ d, x, t)} × (∆(N ′))2.

We introduce a stratification of S1 based on these observations: we partition S1 into those (x, x±d, t)
whose repeated shift along ∆±d also lie in S. I.e. we subdivide S1 into subsets DL consisting those
(x, x ± d, t) that satisfy (x + ld, x + (l ± 1)d, t) ∈ S for at least L subsequent integers (containing
0). This subdivision will be important when we argue that we can assume, up to homotopy, that
hj(x, x− d, t) = hj(x, x+ d, t) for all (x, x± d, t) ∈ S1.

Let (x+ ld, x+ (l± 1)d, t)Ll=0 be shorthand for the 3(L+ 1)-tuple in (M2×Dk)L+1, whose first triple
is (x, x± d, t) and whose last triple is (x+ Ld, x+ Ld± d, t). Here we use the convention that either
all plus-minus signs are positive, or negative.

Definition 6.11. Let L ≥ 1. The chains of h of length L or simply L-chains of h are those tuples
(x+ ld, x+ (l ± 1)d, t)Lr=0 such that

ĥ× . . .× ĥ(x+ ld, x+ (l ± 1)d, t)Ll=0 ∈ ∆(N ′)L+1, t ∈ Dkr2 .

Let L ≥ 0. Define WL ⊂ (M2 ×Dk)L+1 × (N ′)2(L+1) to be the submanifold given by

{(x+ ld, x+ (l ± 1)d, t)Ll=0 : x ∈M, t ∈ Dkr2} ×∆(N ′)L+1.

4

Observe that from every L-chain of h, one obtains an L− 1 chain by omitting the last or first triple.
We will say that a triple (x, x ± d, t) ∈ M2 × Dkr2 is a part of a chain if there exists an L-chain z
(L ≥ 1) which has (x, x± d, t) as one of its triples.

Definition 6.12. The stratification of S1 is defined as

S1 =
⋃
L≥1

DL

where DL is defined as DL = {(x, x± d, t) ∈M2 × Dkr2 : (x, x± d, t) is part of a L− chain}. 4

Proposition 6.13. Let z = (x+ ld, x+ (l± 1)d, t)Ll=0. Then z is a L-chain if and only if j0
L+1ĥ(z) ∈

WL. Assume that j0
L+1ĥ t WL, then j0

L+1ĥ
−1(WL) is a manifold of codimension ((L + 1)(k + 2) −

k − 1) + (L + 1)(n − 1) = L(k + n + 1) + n. In particular, if L ≥ κ := b(k + 1)/(n − 1)c, the set of
L-chains is empty.

Proof. The first assertion is a straightforward verification. The second assertion follows from theorem
4.1 and a dimension count: the codimension of WL is equal to the codimension of {(x + ld, x + (l ±
1)d, t)Ll=0 : x ∈ M, t ∈ Dk} ⊂ (M2 × Dk)L+1 plus the codimension of (∆(N ′))L+1 ⊂ (N ′)2(L+1). The

final assertion follows from the second, as the dimension of j0
L+1ĥ

−1(WL) is k+1− (L+1)(n−1).
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Remark 6.14. In the following lemma, we shall make use of corollaries 5.12 and 5.15. It is important
to observe that J0(M,Dk,Rn1 ,Rn2−1) ∼= J0(M2×Dk,R2n−2), and more generally, that the following
diagram commutes for all p ≥ 1 and smooth equivariant maps h : M2×Dk → (Rn)2 holonomic in the
first factor Rn1 :

Jk(M,Dk,Rn1 ,Rn2−1)p (M2 × Dk)p × (Rn−1)2p

(M2 × Dk)p

∼

jk,pIp ĥ

j0pĥ

4

Lemma 6.15. Let h : M2 × Dk → N2 be an isovariant map, such that for all t ∈ Sk−1 ⊂ Dk, ht is
holonomic, and for all other t, ht is holonomic in the first factor of N = Rn1 × Rn2 . Assume that
M = R or M = [0, 1]. Then there exists a smooth map h̃ : M2 × Dk → N2 such that

(a) h̃ is isovariant, there exists 0 < r1 < 1 such that h̃t is is holonomic for all |t| ≥ r1 and holonomic
in the first factor for all t ∈ Dk.

(b) h̃ is homotopic through isovariant maps to h, and the homotopy is relative M2 × Sk−1.

(c) After deleting (n1 + 1)-th coordinate pair, Ĥ := h̃
n̂1+1

satisfies the following: there exists r1 <
r2 < 1 such that for every L ∈ N0,

j0
L+1(Ĥ) : (M2 × Dk)L+1 → (M2 × Dk)L+1 × (Rn−1)2(L+1)

is transverse to the submanifolds WL.

Assume that M = S1 and 0 < d < 1 is irrational or d = p/q is rational, with p, q ∈ N1, q > 2, p, q
coprime and k < (n− 1)q − 1. Then the same conclusion holds.

Proof. We shall treat each case separately.

Let M = [0, 1]. By lemma 6.9 we can assume without loss of generality that there exists 0 < r1 < 1
such that ht is holonomic for all |t| ≥ r1. We claim that we can choose an equivariant perturbation of

ĥ that is arbitrarily small in the topology of C∞W (M,Rn1 ,Rn2−1;Z2), that satisfies (c), and equals ĥ

near M2×Sk−1. It follows that h̃, given by the (n1 + 1)-th coordinate pair and the perturbation of ĥ,
can be chosen arbitrarily close to h. By lemmas 5.6 and 5.9, it then follows that h̃ is isovariant, and
linearly homotopic through isovariant maps to h. Hence, the homotopy connecting h and h̃ is relative
M2 × Sk−1, too. So if the claim holds, then we can find h̃ satisfying (a)-(c).

To prove the claim, we make use of corollary 5.15, and the above commuting diagram which identifies
jk,pIp ĥ with j0

p ĥ in our specialized case, for any p ≥ 1. That is to say, for any r2 > 0 with r1 < r2 < 1,

we may conclude that there exists an equivariant perturbation H : M2 × Dk → R2n−2 of ĥ that
is indeed arbitrarily small, equals ĥ off a small neighbourhood of M × M × Dkr2 , is holonomic on
M2 × {t ∈ Dk : |t| ∈ [r1, 1]} and holonomic in the first factor elsewhere, and so that j0

L+1H is

transverse to WL for each L ∈ N0 over (M2 × Dkr2)l+1. It should be clear that we can select such an
H satisfying the condition for each WL individually, where we apply the transversality result twice:
once to make sure that j0

L+1H is transverse and holonomic at M2×{t ∈ Dk : r1 ≤ |t| ≤ r2}, and once
more for |t| < r1, where we only require holonomicity in the first factor. Residuality and the Baire
property imply that we can select one such H, for which the multijet of H is transverse to WL, and
so that H = ĥ off a small neighbourhood of M2 × Dkr2 . Moreover, we have the freedom to choose H

as close to ĥ as we like.

Let M = S1 ∼= [0, 1]/{0 ∼ 1}. If d is irrational, we can apply the same arguments as above. If d = p/q
is rational with p and q coprime, positive integers, we can no longer use 5.15 to determine when
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j0
q+rĥ tWq+r−1 for every r ≥ 0. That is, s(Wq+r−1) has non-empty intersection with ∆q+r(M2×Dk),

where s : J0(M,Dk,Rn1 ,Rn2) → M2 × Dk is the source map. However, using the above arguments
we can conclude that we can find a perturbation of h satisfying (a),(b), and (c’), given as

(c’): j0
L+1Ĥ tWL, 0 ≤ L < q.

It follows that (j0
q Ĥ)−1(Wq−1) ∩ M2 × Dkr2 is a manifold of dimension k + 1 − q(n − 1) < 0 (by

assumption). Hence, there are no q − 1 chains, and there can therefore be no q + r − 1 chain either.

It follows that j0
q+rĤ tWq+r−1 for all r ≥ 0 as Wq+r−1 does not intersect the image of j0

q+r(Ĥ).

Let M = R. We shall argue that there exist inductively chosen perturbations (h̃r)
∞
r=1 of h, such that

h̃r satisfies the conditions (ar)-(cr), given by

(ar) h̃r is isovariant, (h̃r)t is holonomic for all |t| ≥ r1, and holonomic in the first factor for all other
t ∈ Dk.

(br) h̃r homotopic through isovariant maps to h̃r−1, and the homotopy is relative

((−∞,−r] ∪ [−r + 3/2, r − 3/2] ∪ [r,∞))2 × Dk ∪ R2 × Sk−1.

(cr) The map Ĥr := (h̃r)n̂1+1
: R2 × Dk → R2n−2 satisfies for every L ∈ N0, j0

L+1(Ĥr) t WL on

(M2 × Dkr2)l+1.

Here h̃0 = h. Indeed, using corollary 5.7 instead of lemma 5.6, we can use the arguments given for
M = [0, 1] to deduce that there exists a perturbation h̃1 of h satisfying (a1)-(c1), and it is not hard
to see that the arguments may be repeated inductively. Define h̃ as limr→∞ h̃r (either pointwise
or in the C∞W -topology). Because for each point this sequence stabilizes after finitely many points,

the limit function is smooth, and is straightforward to check that h̃ satisfies (a) and (c). To see
(b), denote by Gr the homotopy connecting h̃r−1 to h̃r, whose existence is guaranteed by condition
(br). We may concatenate all Gr to form a new homotopy, in which G1 is completed on the interval
[0, 1/2], and Gr is completed on the interval [1/r, 1/(r + 1)]. Because each Gr changes h̃r−1 only on
((−r,−r+3/2)∪ (r−3/2, r))2×Dkr2 , the new homotopy is well defined, and one may smooth out each
Gr near the boundaries of [1/r, 1/(r + 1)], so that it is also smooth. This completes the proof.

Lemma 6.16. Assume that M = [0, 1], or M = R, or that M = S1 and either d is irrational, or
d = p/q is rational, p, q ∈ N1 are coprime, q > 2, and k < q(n− 1)− 1. Let h : M2 ×Dk → N2 be an
isovariant map, and h satisfies condition (a) and (c) of lemma 6.15. Let κ := b(k + 1)/(n− 1)c and
L ≥ 1.

Then S and DL are topologically closed, S is a submanifold, and DL \ DL+1 is a submanifold of
dimension k + 1− (L+ 1)(n+ 1) embedded in M2 × Dkr2 . Moreover, DR is topologically embedded in
DL for every R ≥ L, and DL is empty for all L ≥ κ.

Proof. By property (c), VL := j0
L+1ĥ

−1(WL) is a topologically closed submanifold of (M2×Dk)l+1 for
every L ≥ 0, and contained (and hence embedded) in the submanifold of tuples AL := {(x+ ld, x+(l±
1)d, t)Ll=0 : x ∈M, t ∈ Dkr2}. Its dimension is k+1−(L+1)(n−1), and hence VL = ∅ for all L ≥ κ. Note
that S = V0, which proves the assertions about S. Observe that πl : (M2×Dkr2)L+1 →M2×Dkr2 , which

projects to the l-th factor, restricts to a smooth embedding π′l : AL →M2×Dkr2 . As DL = ∪L+1
l=1 π

′
l(VL),

it follows that DL is topologically closed. Moreover, as VL is empty for all L ≥ κ, the same is true
for DL. From the definition of DL, it follows that DR ⊂ DL whenever R ≥ L, and as both sets are
closed, the inclusion map is a topological embedding.

Let M = [0, 1] or M = R. Let 1 ≤ r < s ≤ l, then it is straighforward to verify that (x, x ± d, t) ∈
π′r(VL) ∩ πs(VL) ⇐⇒ (x, x± d, t) is part of an (r + s)-chain. Moreover, by studying the map j0

L+3ĥ,
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one can verify that the set of L-chains that do not come from L+ 1-chains, form an open subset ṼL
of VL. It follows that

DL \DL+1 =

L+1⋃
l=1

π′l(ṼL),

and that the right hand side is a union of disjoint manifolds (of dimension dimVl = k+1−(n−1)(l+1)),
and hence a smooth manifold. The manifolds π′l(ṼL) will hereafter be referred to as the rungs of DL,

with π′l(ṼL) being the l-the rung. See also figure 3.

LetM = S1. Assuming that d is irrational, it follows once again that (x, x±d, t) ∈ π′l(VL)∩πs(VL) ⇐⇒
(x, x ± d, t) is part of an (r + s)-chain. Hence, we can apply the same arguments as before to show
that DL \DL+1 is again a submanifold. However, if d = p/q is rational, with p and q coprime positive
integers, then any triple part of a q− 1-chain, is also a q+ r chain for every r ≥ 0, which breaks down
the reasoning. However, dimVq−1 < 0 by the assumption on k, so Dq+r−1 = ∅ for every r ≥ 0. Hence,
we can still conclude that (x, x± d, t) ∈ π′l(VL)∩ πs(VL) ⇐⇒ (x, x± d, t) is part of an (r+ s)-chain,
and the remaining arguments can be applied once again.

Figure 3: A slice of the manifold D5\D6. The equivariance of the map h which produces the singularity
implies that DL \DL+1 is symmetric under reflection along ∆(M). Connecting the symmetric points,
we can see the ‘rungs in the ladder’. 4

6.6 Construction of the coordinate pair

Let h : M2×Dk → (Rn)2 be an isovariant smooth map, such that ht is holonomic for every t ∈ Sk−1 and
holonomic in the first factor Rn1 for all other t ∈ Dk. By lemmas 6.15 and 6.16 we can assume without
loss of generality that (up to a smooth homotopy through isovariant maps) h is well positioned,

i.e. ht is holonomic for every |t| ≥ r1, and j0
L+1ĥ t WL for all L ≥ 0, so that the double points S1 of

S are stratified. Here r1 is some fixed real number 0 < r1 < 1, and

S1 =
⋃
L≥1

DL,

with each DL a closed subset of S1 ⊂ M2 × Dk, DR ⊂ DL for every R ≥ L, and DL \ DL+1 a
submanifold. In this section we shall show that the stratification of S1 can be used to prove the
following lemma:
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Lemma 6.17. Let 0 < r1 < 1 be a real number, and let h : M2×Dk → (Rn)2 be an isovariant smooth
map, such that ht is holonomic for every t ∈ Sk−1, and ht is holonomic in the first factor Rn1 for
all t ∈ Dk. Assume that h is well positioned. If M = S1, assume that d 6= 1/2. Then there exists a
smooth map h̃ : M2 × Dk → (Rn)2 such that

(i) h̃ is isovariant, ht is holonomic for every |t| ≥ r1, and holonomic in the first factor Rn1 of Rn
for all other t ∈ Dk.

(ii) h̃ is homotopic through isovariant maps relative M2 × Sk−1 to h.

(iii) h̃ differs from h only in the (n1 + 1)-coordinate pair, i.e. (h̃)
n̂1+1

= ĥ.

(iv) for every (x, x± d, t) ∈ S1 ∪M2 × Dk[r1,1],

h̃n1+1(x, x− d, t) = h̃n1+1(x, x+ d, t).

Here Dk[r1,1] = {t ∈ Dk : r1 ≤ |t| ≤ 1}.

Remark 6.18. In the following proof, we mean by a pre-closed neighbourhood a closed neigh-
bourhood Ω satisfying int(Ω) = Ω. 4

Proof. We shall construct a linear homotopy of the equivariant coordinate pair (hn1+1, hn+n1+1) to a
new equivariant pair (h̃n1+1, h̃n+n1+1). Recall from section 6.3 that induced homotopy connecting h
to h̃ (which then differs from h only in the (n1 + 1)-coordinate pair), goes through isovariant maps if
and only if for every interpolating map hs, s ∈ [0, 1],

((hs)n1+1, (hs)n+n1+1)(Σn1+1(h)) ∩∆(R) = ∅.

For later purposes, let S+
1 be the part of S1 contained in ∆+d, and S−1 the part contained in ∆−d.

Note that S+
1 ∩ S

−
1 is empty (here we use that if M = S1, then d 6= 1/2), and the two are closed

subsets covering S1.

The proof follows by finite induction over the strata of S1. I.e. recall from lemma 6.16 that there
are finitely many non-empty double point strata DL, with 1 ≤ L < κ (as defined in the lemma).
Let ω : M2 × Dk → M2 × Dk denote the automorphisms which swaps the coordindates on M . For
j ∈ {1, . . . , κ− 1}, the induction hypothesis is the existence of a smooth map hj : M2 × Dk → (Rn)2

which satisfies (i)-(iii), and so that the pair (hjn1+1, h
j
n+n1+1) : M2×Dk → R2 satisfies (iv) over a pre-

closed, ω-invariant neighbourhood Ωj of M2×Dk[r1,1]∪Dκ−1∪ . . .∪Dκ−j . I.e. for all (x, x−d, t) ∈ Ωj ,

hjn1+1(x, x− d, t) = hjn1+1(x, x+ d, t) = 0.

Th proof is then completed by setting h̃ equal to hκ−1. The purpose of the neighbourhoods Ωj is
to make the inductive step possible: it allows for a clean extension of hj−1 to hj when the strata
approach one another.

For the base step, let h0 = h, and recall from lemma 6.16 that Dκ−1 = Dκ−1 \Dκ, and hence Dκ−1

is a topologically closed manifold. Recall also from that lemma that

Dκ−1 =

κ−1⋃
l=0

π′l(Vκ−1),

where each π′l : Vκ−1 → M2 × Dk was an embedding and all rungs π′l(Vκ−1) of Dκ−1 are closed and
disjoint submanifolds. Let φ : M2 × Dk → M2 × Dk denote the diffeomorphism given by (x, y, t) 7→
(x+ d, y + d, t), and observe that

π′l(Vκ−1) = φlπ′0(Vκ−1).
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Note that (x, x± d, t) is in the 0-th rung (which we will also refer to as the bottom rung) if and only
if φl(x, x± d, t) ∈ Dκ−1 for all 0 ≤ l < κ and φ−1(x, x± d, t), φκ(x, x± d, t) /∈ Dκ−1.

Define the smooth map τ : M2 × Dk → R by

τ(x, y, t) = hn1+1(x, y, t)− hn+n1+1(x, y, t),

Using τ , we define (h1
1, h

1
2) over the rungs of Dκ−1, using the bottom rung as a reference point. We

shall then argue that (h1
1, h

1
2) admits a smooth extension to all of M2×Dk so that (iv) is satisfied over

some pre-closed ω-invariant neighbourhood of the rungs. Observe that S1 and all DL are ω-invariant.
Let (x, x− d, t) ∈ π′0(Vκ), then define for 0 ≤ l ≤ κ− 1,

(h1
1, h

1
2)(φl(x, x− d, t)) =

(
hn1+1 +

l∑
r=1

τ ◦ φ−r, hn+n1+1 +

l∑
r=1

τ ◦ φ−r
)

(φl(x, x− d, t)).

This means that on the bottom rung we do not change anything, and that for the higher rungs we
add the difference between hn1+1(x, x − d, t) and hn1+1(x, x + d, t) inductively, which forces (iv) to
hold over these rungs. To ensure equivariance, define for all (y, y + d, t) ∈ Dκ−1

(h1
1, h

1
2)(y, y + d, t) = (h1

2, h
1
1)(y + d, y, t) where defined.

The new pair is well defined over all of Dκ−1, because Dκ−1 is ω-invariant and all rungs of Dκ−1 are
disjoint. It is now straightforward to check that for all (x, x± d, t) ∈ Dκ−1, h1

1(x, x− d, t) = h1
1(x, x+

d, t), and that h1
1 − h1

2 = hn1+1 − hn+n1+1 over Dκ−1. To find the pre-closed neighbourhood Ω1, note
that hn1+1−hn+n1+1 does not vanish over every component of Dκ−1 because h is isovariant. Because
Dκ−1 is closed, M2 ×Dk is a manifold, and hn1+1 − hn+n1+1 does not vanish over the components of
Dκ−1, we can select for every component Σ ⊂ Dκ−1 an open neighbourhood UΣ ⊂M2×Dk such that
hn1+1 − hn+n1+1 has one sign on UΣ and UΣ intersects only the component Σ. Moreover, as Dκ−1

is ω-invariant, we can assume without loss of generality that for every component Σ ⊂ Dκ−1 there
exists a unique component Σ′ such that ω(UΣ) = UΣ′ . Define

Ω1 =
⋃

Σ∈π0(Dκ−1)

UΣ.

Over each UΣ we can extend the definition of (h1
1, h

1
2) by the pointwise definition. That is, if Σ ⊂

π′l(Vκ−1) ∩ S−1 , then for ever (x, y, t) ∈ UΣ, we define

(h1
1, h

1
2)(x, y, t) =

(
hn1+1 +

l−1∑
r=0

τ ◦ φr, hn+n1+1 +

l−1∑
r=0

τ ◦ φr
)

(x, y, t),

and for all (x, y, t) ∈ ω(UΣ) define

(h1
1, h

1
2)(x, y, t) = (h1

2, h
1
1)(y, x, t).

This defines (h1
1, h

1
2) over all of Ω1 well. It is straightforward to check that (iv) holds over Ω1.

The pair (h1
1, h

1
2) : Ω1 → R2 admits a smooth extension to all of M2 × Dk: it is defined over a

closed set, and admits a pointwise smooth extension. To see this last point, note that all UΣ can be
separated by disjoint opens. Hence the extension of the terms defining the pair can be extend in small
neighbourhoods of each point. Moreover, as for all |t| ≥ r1, the pointwise definition of (h1

1, h
1
2) consists

of holonomic terms. Hence the smooth extension can be chosen to be holonomic for all |t| ≥ r1.

Select any smooth extension, denoted (h̃1
1, h̃

1
2) : M2 × Dk → R2, so that (h̃1

1, h̃
1
2)t is holonomic for all

|t| ≥ r1. To complete the base step and the construction of (h1
1, h

1
2), recall that over each UΣ the map

hn1+1 − hn+n1+1 did not vanish. Select an open ω-invariant neighbourhood of U ⊂ M2 × int(Dk) of
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Figure 4: When selecting values over D5, we make sure that hj1 − h
j
2 = hj−1

n1+1 = hj−1
n+n1+1.4

Ω1 (which exists by the ω-invariance of Ω1 ⊂M2 × Dkr2) on which hn1+1 − hn+n1+1 does not vanish,
and choose a partition of unity {ρ1, ρ2} subordinate to {U,M2 × Dk \ Ω1}. As both opens in the
cover of M2 ×Dk are equivariant, we can assume without loss of generality that ρ1, ρ2 : M2 ×Dk are
ω-invariant. Finally, define

(h1
1, h

1
2) = ρ2 · (hn1+1, hn+n1+1) + ρ1 · (h̃1

1, h̃
1
2).

Note that (h1
1, h

1
2) agrees with (h̃1

1, h̃
1
2) on Ω1. Hence, it satisfies (iv) on Ω1. Moreover, hn1+1−hn+n1+1

has the same sign as h1
1 − h1

2 on ∆±d ⊃ Σn1+1. If we denote by h1 : M2 × Dk → (Rn)2 the map
obtained by replacing the pair (hn1+1, hn+n1+1) by (h1

1, h
1
2), it follows that h1 satisfies (i)-(iii). That

is to say, pointwise the linear homotopy between pairs does not cross 0 over Σn1+1, which ensures
isovariance. This completes the base step.

To induction step is not very different. Recall from lemma 6.16 that Dκ−j \Dκ−j+1 is a submanifold
contained in the topologically closed set Dκ−j+1, and that

Dκ−j \Dκ−j+1 =

κ−j⋃
l=0

π′l(Ṽκ−j),

where each π′l : Ṽκ → M2 × Dk was an embedding of disjoint submanifolds. Here Ṽκ−j was the open
subset of Vκ−j consisting of (κ− j)-chains that did not come from (κ− j + 1)-chains. We shall refer
to the 0-th rung as the bottom rung.

Define D′κ−j = Dκ−j \ int(Ωj). It is contained in Dκ−j \Dκ−j+1, and is closed. We refer to π′l(Ṽκ−j)∩
D′κ−j as the rungs of D′κ−j , and they too are disjoint. Moreover, one can verify that

π′l(Ṽκ−j) ∩D′κ−j = π′l(Vκ−j) ∩D′κ−j

from which it follows that the rungs of D′κ−j are the intersection of two closed sets, hence closed.

Define the smooth map τj : M2 × Dk → R by

τj(x, y, t) = hjn1+1(x, y, t)− hjn+n1+1(x, y, t).
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Using τj , we define (hj+1
1 , hj+1

2 ) over the rungs of D′κ−j , using the bottom rung as a reference point.
We use the same formula’s as in the base step with τ replaced by τj , i.e. first over all (x, x − d, t) ∈
π′l(Ṽκ−j) ∩ D′κ−j , and then over all (x, x + d, t) to ensure equivariance. It is again well defined
because all rungs are disjoint and D′κ−j is ω-invariant. It follows that for all (x, x ± d, t) ∈ D′κ−j ,

hj+1
1 (x, x− d, t) = h1

1(x, x+ d, t), and that hj+1
1 − h1

2 = hjn1+1 − h
j
n+n1+1 over Dκ−j \Dκ−j+1.

To find the pre-closed neighbourhood Ωj+1, note that hjn1+1−h
j
n+n1+1 does not vanish over the rungs

of D′κ−j ⊂ S1, because hj is isovariant. Let Σ be a component of Dκ−j \ Dκ−j+1. Because D′κ−j
is closed, M2 × Dk is a manifold, and hn1+1 − hn+n1+1 does not vanish over the rungs of D′κ−j ,

we can select for every component Σ an open neighbourhood UΣ ⊂ M2 × Dk of Σ ∩ Dκ−j , such
that hn1+1 − hn+n1+1 has one sign on UΣ and UΣ intersects only the component Σ (i.e. no other
component). Moreover, as Dκ−j \Dκ−j+1 is ω-invariant, we can assume without loss of generality that
for every component Σ ⊂ Dκ−j \Dκ−j+1 there exists a unique component Σ′ such that ω(UΣ) = UΣ′ .
Define

Ωj+1 = Ωj ∪
⋃

Σ∈π0(Dκ−j\Dκ−j+1)

UΣ.

Over each UΣ we can extend the definition of (h1
1, h

1
2) by the pointwise definition, as in the base step.

I.e. because all UΣ are disjoint, this can again be achieved. It is straightforward to check that (iv)
holds each UΣ. The pair (hj+1

1 , hj+1
2 ) :

⋃
Σ UΣ → R2 admits a smooth extension to all of M2×Dk: it

is defined over a closed set, and admits a pointwise smooth extension. To see this last point, note that
all UΣ can be separated by disjoint opens. Hence the extension of the terms defining the pair can be
extend in small neighbourhoods of each point. Moreover, for all |t| ≥ r1 the extension can again be
assumed to be holonomic.

Let (h̃j+1
1 , h̃j+1

2 ) denote any smooth extension, so that for all |t| ≥ r1 the map (h̃j+1
1 , h̃j+1

2 )t is holo-

nomic. As hjn1+1 − h
j
n+n1+1 does not vanish over each UΣ, there exists an open ω-invariant neigh-

bourhood U ⊂ M2 × int(Dk) containing all Uσ on which hjn1+1 − h
j
n+n1+1 does not vanish. Select a

partition of unity {ρ1, ρ2} subordinate to{
U,M2 × Dk \

⋃
Σ

UΣ

}
.

Finally define
(hj+1

1 , hj+1
2 ) = ρ2 · (hjn1+1, h

j
n+n1+1) + ρ1 · (h̃j+1

1 , h̃j+1
2 ).

Because the old pair satisfied (iv) over Ωj and (h̃j+1
1 , h̃j+1

2 ) satisfies (iv) over
⋃

Σ UΣ, the new pair
satisfies (iv) over Ωj+1. Moreover, by construction the new pair satisfies (i)-(iii). This finishes the
induction step.

6.7 Construction of holonomic isovariant maps

As explained at the start of this chapter, the proof of the main result, theorem 1.4, is reduced to the
proof of theorem 6.5. In this section we tie together lemmas 6.15, 6.16, and 6.17 to complete this
proof.

Proof of theorem 6.5. Assume that M = [0, 1] or M = R. Let h : M2 × Dk → (Rn)2 be a smooth
map, such that for every t ∈ Dk the map ht : M2 → (R)2 lies in SolF (Rd) and for all t ∈ Sk−1 the
map ht lies in SolF,Hol(Rd). We need to show that h is smoothly homotopic relative M2 × Sk−1 to a
Dk-family of SolF,Hol(Rd) maps. This homotopy needs the go through families of SolF (Rd)-maps.

We replace inductively the n coordinate pairs (hj , hj+1) : M2 × Dk → R2, 1 ≤ j ≤ n of h such that
in the end, all these coordinate pairs are holonomic. Denote by hj the map obtained in the j-th step,
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where the first j coordinate pairs of h have been replaced by a holonomic coordinate pair. The linear
homotopy which replaces the old j-th coordinate pair with the new holonomic one, shall induce a
linear homotopy between hj−1 and hj that goes through isovariant maps and is relative M2 × Sk−1.
I.e. the linear homotopy is relative M2 × Sk−1 and goes through families of SolF (Rd)-maps. Let
h = h0.

Assume we have completed step j − 1 and have constructed the map hj−1. This means that hj−1 is
an isovariant map, holonomic in the first j − 1 coordinate pairs. We want to select a smooth map
f : M × Dk → R so that ft × ft replaces (hj−1

j , hj−1
j+n), so that

(f(x, t), f(x± d, t)) /∈ ∆(R) ∀(x, x± d, t) ∈ Σj(h
j−1).

That is, if we can select such an f and replace (hj−1
j , hj−1

j+n) by ft × ft, then hj is also isovariant. For

all (x, x ± d, t) ∈ Σj(h
j−1) we ideally define f(x, t) = hj−1

j (x, x ± d, t). If this can be achieved, then

the linear homotopy connecting hj−1 to hj shall goes through isovariant maps. We shall argue that
this is indeed possible. I.e. we will argue that f can be defined over a closed set and allows a smooth
extension in a neighbourhood of every point in that set.

We partition Σj(h
j−1) in two parts: S = Σj(h

j−1) ∩M2 × Dkr2 and SHol = Σj(h
j−1) ∩M2 × Dk[r1,1],

where
Dkr2 = {t ∈ Dk : |t| ≤ r2} and Dk[r1,1] = {t ∈ Dk : r1 ≤ |t| ≤ 1}

with 0 < r1 < r2 < 1 some real numbers. By lemma 6.15 and 6.17 we may assume without loss
of generality that S = j0h−1

ĵ
(W0) is a submanifold of M2 × Dk, that (hj−1)t is holonomic for all

|t| ≥ r1 for some real number 0 < r1 < 1, and that for all double points (x, x± d, t) ∈ S1 ⊂ S (recall:
(x, x− d, t) ∈ S1 ⇐⇒ (x, x+ d, t) ∈ S1) it holds that hj(x, x− d, t) = hj(x, x+ d, t). We define

fj(x, t) = hj−1
j (x, y, t) ∀(x, y, t) ∈M2 × Dk[r1,1].

This is well defined, because (hj−1
j , hj−1

j+1) is holonomic there. This makes sure that after replacement,

(hj)t = (hj−1)t for all t ∈ Sk−1 too. We also define

fj(x, t) = hj−1(x, x± d, t) ∀(x, x± d, t) ∈ S.

This is well defined: it evidently agrees with the definition given for those (x, t) with |t| ≥ r1. Moreover,
when both (x, x−d, t) and (x, x+d, t) lie S, hj(x, x−d, t) = hj(x, x+d, t). We have now defined f over
the closed set M2×Dk[r1,1]∪π(S), where π : M2×Dk →M ×Dk is the map given by (x, y, t) 7→ (x, t).

Recall that π restricted ∆±d ⊂M2×Dk is a smooth two sheeted covering, and that Σj(h
j−1) ⊂ ∆±d.

For all (x, t) with r1 < |t| ≤ 1, the maps already is defined over a neighbourhood of (x, t), and it is
smooth there. For points (x, t) with |t| < r2, one can choose a small enough neighbourhood of (x, t)
and a section of π|∆±d : ∆±d → M × Dk to extend the definition of f using hj−1

j . Hence, we can

choose a global extension of f to a map M2 × Dk. This finishes the proof for M = [0, 1] or M = R.

Assume that M = S1. If d is irrational or d = p/q with q > 2 and k < n(q − 1) − 1, we can apply
exactly the same arguments. If d = 1/2, we can not apply lemma 6.15 or lemma 6.17. However,
by lemma 6.9 we can assume without loss of generality that ht is holonomic for all |t| ≥ r1. We
can complete the same induction process as above. Partition Σj(h

j) in two parts, S and SHol, and
define f(x, t) = hj−1(x, y, t) over SHol and f(x, t) = hj−1(x, x ± d, t) for all (x, x ± d, t) ∈ S. Note
that in principle S is just a closed set, and that we have no stratification of the double points.
The key observation is that x + d = x − d ∈ S1 ∼= [0, 1]/{0 ∼ 1}, from which it follows that
π|∆±d : ∆±d →M × Dk is a diffeomorphism, and hence there are no double points. It follows that f
is well defined, and it is even easier than before to show that f admits pointwise a smooth extension
over a neighbourhood. This completes the proof.
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A Proof of the transversality theorems

In this appendix we prove theorems 4.14 and 4.18, and their subsequent corollaries. We shall first
prove three lemmas needed to prove theorem 4.14, and discuss how this proof should be modified for
theorem 4.18. The first lemma reduces the proof to the special case that Xj = Zj and Ij = (j), and
the second and third are the main tools for proving density. We separately address the openness of
the sets TW . The second and third lemma, as well as the final proof of both theorems are respectively
based on lemma II.4.6, proposition II.4.5, theorem II.4.9, and theorem II.4.13 of [5].

Lemma A.1. In the context of theorem 4.14, let f = (f1, . . . , fn) ∈ C∞I,k(X,Y )). Denote by ιI the

inclusion of JkI (X,Y ) into

Jk(X,Y ) =

n∏
j=1

Jkj (Xj , Yj).

Then
jkIf tW ⇐⇒ jk1f1 × . . .× jknfn t ιI(W ).

Proof. Denote by jkf the map jr1f1 × . . . × jrnfn : X → Jk(X,Y ). For (z, y) ∈ Z × Y , denote by
(xj , yj)

n
j=1 the element Ω−1 ◦ ι(z, y) ∈

∏n
j=1Xj×Yj , and by x and y the respective n-tuples consisting

of the xj and yj .

As W ⊂ JkI (X,Y ), it is clear that jkIf(x) ∈W ⇐⇒ (jk(f))(x′) ∈ ιIW . Hence it suffices to show for
all x ∈ X such that jkIf(x) ∈W , that

TjkIf(z)J
k
I (X,Y ) = im Tzj

k
If + TjkIf(z)W ⇐⇒ Tjkf(x)J

k(X,Y ) = im Tx(jkf) + T jkf(x)ιI(W ).

For every factor of Jk(X,Y ) one may choose an open product set Uj × Vj ⊂ Xj × Yj around the
corresponding factors of (x, (f1 × . . . × fn)(x)), that trivializes the bundle. Let U :=

∏n
j=1 Uj , and

S =
∏n
j=1 Uj × Vj . Let Lj denote the fiber of Jkj (Xj , Yj), i.e. Jk(X,Y )|S ∼=

∏n
j=1(Uj × Vj × Lj).

The tangent bundle of U and Jk(X,Y )|S then factors as

TU ∼=
n∏
j=1

TUj , T
(
Jk(X,Y )|S

) ∼= n∏
j=1

T (Uj × Vj × Lj).

With these identifications, it follows that T (jkf) can be represented by the matrix
Tjk1f1

Tjk2f2

. . .

Tjknfn

 .

We can refine our representation of each Tjkjfj : we may identify TJkj (Xj , Yj)|Uj×Vj ∼= TUj×T (Vj×
Lj). It follows that Tjkjfj can be represented by(

id
pVj×Lj ◦ Tjkjfj

)
.

For a further needed refinement, we may assume without loss of generality that each Uj is a product
of opens Uj,i, where the second index runs over the elements of {1, . . . , n} contained in Ij . A short
calculation shows that TJkI (X,Y )|S consists of all those vectors

(vj,i, wj) ∈ T (ΠJ)|S ∼=
n∏
j=1

∏
i∈Ij

TUj,i × T (Vj × Lj)


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where i = i′ implies vj,i = vj,i′ . From this calculation, the fact that TιI(W )|S ⊂ TJkI (X,Y )|S and
the above block structure, it then follows that

im Tx(jkf) + Tjkf(x)ιI(W ) = Tjkf(x)J
k(X,Y ) ⇐⇒

im Tz(j
kf ◦ Ω−1 ◦ ι) + Tjkf◦Ω−1◦ι(z)W = Tjkf◦Ω−1◦ι(z)J

k
I (X,Y ) ⇐⇒

im Tzj
k
I + TjkI(a)W = TjkIf(a)J

k
I (X,Y ).

Lemma A.2. In the setting of theorem 4.14, let B1, . . . , Bn be manifolds, and (g1, . . . , gn) ∈
∏n
j=1 C

∞(Xj×
Bj , Yj). Define B = B1×. . .×Bn. Let Φ : Z×B → JkI (X,Y ) be given by Φ(z, b) = jkI(g1,b1 , . . . , gn,bn)(z).
Assume that Φ is smooth, and that Φ t W . Then the set {b ∈ B : jkI(g1,b1 , . . . , gn,bn) t W} is dense
in B.

Proof. Define ω : B → C∞(Z, JkI (X,Y )) by b 7→ jkgI(g1,b1 , . . . , gn,bn). By lemma 4.6 of [5] and the
assumption that Φ tW , we are done.

Remark A.3. Lemma 4.6 of [5] is where the density of sets of transverse maps comes from. Although
we shall not go into the details here, the meat of the proof of the lemma is showing that the set of
critical values of a smooth map has measure zero (i.e. Sard’s lemma).

A.1 Openness of mixed transversality

We want to determine sufficient conditions for openness of TW for both theorems. We start by
analyzing a simple case, from which the general case will follow. Let X1, . . . , Xn, Y1, . . . , Yn be
manifolds, and let X =

∏n
j=1Xj , Y =

∏n
j=1 Yj . Let W be a submanifold of Y . In order to show

that TW := {(f1, . . . , fn) : f1 × . . . × fn t W} is open, it suffices to show that for every tuple
(f1, . . . , fn) ∈ TW , there exist integers k1, . . . kn ≥ 0 and open subsets Uj ⊂ Jkj (Xj , Yj), j = 1, . . . , n,
such that fj ∈M(Uj) and M(U1)× . . .×M(Un) ⊂ TW . In general it is not obvious what a sufficient
condition W must be for TW to be open, but we will show that TW is open if W is a product
W1×. . .×Wn of topologically closed submanifolds Wj ⊂ Xj , or if W is compact, or ifW is topologically
closed and for every tuple (f1, . . . , fn) ∈ TW , (f1 × . . . × fn)−1(W ) is compact in A. The opens Uj
will be contained in J1(Aj , Xj).

We define the set Wt by

Wt =

(σ1, . . . , σn) ∈
n∏
j=1

J1(Xj , Yj) : f1 × . . .× fn tW at x, where σj = [fj ]xj ,fj(xj)

 .

It should be clear that for any tuple (f1, . . . , fn) ∈
∏n
j=1 C

∞(Xj , Yj), f1 × . . . × fn t W ⇐⇒
im j1f1 × . . . j1fn ⊂Wt.

Proposition A.4. With the above notation, let W be a topologically closed submanifold of X. Then
Wt is an open set.

Proof. We will show that the complement of Wt, denoted W c is closed. Let t : J1n(X,Y ) :=∏n
j=1 J

1(Xj , Yj)→ Y denote the target map, and tj : J1(Xj , Yj)→ Yj the target map of each factor.

Let moreover s : J1n(X,Y )→ X denote the source map, and sj the source map of each factor. Note
that σ = (σ1, . . . , σn) ∈ W c ⇐⇒ t(σ) ∈ W and im Ts(σ)(f1 × . . . × fn) + Tt(σ)W 6= Tt(σ)X, where
σj = [fj ]sj(σj),tj(σj).
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Let σk = (σk1 , . . . , σ
k
n), k ∈ N be a convergent sequence contained in W c, whose limit point is σ. We

will show that σ is contained in W c. As W is topologically closed and t continuous, it follows that
t(σ) ∈ W . As W is a submanifold, we can select a chart (U,ϕ) around t(σ) ∈ Y , such that W is a
dimW -dimensional plane in ϕ(U). It follows that the the normal bundle NW of W in TY can locally
be identified as NW |W∩U ∼= (W ∩ U)× RdimY−dimW . Similarly identify TYU ∼= U × RdimY . Denote
by pW : TY |W∩U → NW |W∩U the continuous projection corresponding to these identifications, which
under the trivializations is given by the projection p : (W ∩ U)×RdimY → (W ∩ U)×RdimY−dimW .
By restricting the neighbourhood U if necessary, we may assume without loss of generality that there
exists an open neighbourhood V of s(σ), such that V × U is the domain of a bundle trivialization
for J1n(X,Y )|V×U . Let fkj : Xj → Yj represent σkj , the factors of σk. As stated, σk ∈ W c ⇐⇒
t(σk) ∈W and imTs(σk)(f1× . . .× fn) +Tt(σk)W 6= Tt(σk)Y (and similar for σ). By selecting product
charts (Vj , ηj) and (Uj , ϕj) for the factors Xj and Yj around s(σ) and t(σ) respectively, we can further
restrict V and U so that

J1n(X,Y )|V×U ∼=
n∏
j=1

Vj × Uj ×Hom(Rnj ,Rmj ),

where nj = dimXj and mj = dimYj . Under this identification, σ is mapped to (sj(σ), tj(σ), Dfj)j ,
where Dfj denotes the Jacobi matrix with respect to chosen trivializations. The right hand side of
the ‘if and only if’-statement is then equivalent to rank deficiency at (s(σk), t(σk)) of the matrix

p ◦

(Dfk1 )
. . .

(Dfkn)

 ∈ V × U ×Hom(RdimX ,RdimY−dimW ),

whenever (s(σk), t(σk)) ∈ V × U . Note that p is not generally the map that forgets the last dimW
columns, as the submanifold charts for W and product charts for the factors Xj and Yj are possibly
different. The rank deficient maps in Hom(RdimY ,RdimY−dimW ), form a closed sets, and as the local
embedding J1n(X,Y )|V×U ∼=

∏n
j=1(Uj×Vj)×Hom(Rnj ,Rmj )→ U×V ×Hom(RdimX ,RdimY−dimW )

(block diagonal embedding fiberwise) is continuous, it follows that W c ∩ J1n(X,Y )|V×U is closed.
Hence σ ∈W c.

With this knowledge in hand, we can find sufficient conditions for TW as in theorem 4.14 to be open.

Proposition A.5. In the context of theorem 4.14, let s denote the source map JkI (X,Y ) → Z. The
set of transverse tuples TW is open if

(a) W is a product W1 × . . .×Wn of topologically closed manifolds Wj ⊂ Jkj (Xj , Yj), or

(b) s(W ) is compact.

Proof. By lemma A.1, we may assume without loss of generality that Ij = (j). I.e. if we may replace
Zj by Z ′j := X and Ij by (j), leaving all kj unchanged and recording everything in the new tuple

H. We can then conclude that a tuple in C∞I,k(X,Y ) produces a section of JkI (X,Y ) transverse to

W if and only if the same tuple produces a section JkH(A,X) transverse to ιI(W ). I.e. we use that
C∞H,k(X,Y ) = C∞I,k(X,Y ). Observe that this does reduction does not influence conditions (a) or (b).

Let (f1, . . . , fn) ∈ TW . Let Fj = jkjfj , and let J1
j be shorthand for J1(Xj , J

kj (Xj , Yj)). As observed

before proposition A.4, for any tuple g = (g1, . . . , gn) ∈ C∞I,k(X,Y ), if we denote Gj = jkjgj too, then

jkIg = G1 × . . .×Gn tW ⇐⇒ im j1G1 × . . .× j1Gn ⊂Wt ⊂
n∏
j=1

J1
j .
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Assume (a). Because W factors, one can observe that W c ⊂
∏n
j=1 J

1
j is the union

⋃n
j=1W

c
j , where

σ = (σ1, . . . , σn) ∈ W c
j ⇐⇒ tj(σj) ∈ Wj and im Tsj(σj)Hj + Ttj(σj)Wj 6= Ttj(σj)J

1(Xj , Yj), where sj
and tj are the source and target map of Jkj (Xj , Yj)→ Xj×Yj and σj = [H]sj(σj),tj(σ). I.e. we can now
check the rank deficiency per factor. Note that W c

1 = W ′1×
∏n
j=2 J

1
j , where W ′1 is a closed set, and the

other W c
j factor in a similar fashion as whole copies of J1

j and a closed set W ′j ⊂ J1
j . Closedness of W ′j

follows from proposition A.4. It is readily checked thatWt = U1×. . .×Un, where Uj is the complement
of W ′j , and that M(U1) × . . . ×M(Un) is an open neighbourhood of (j1F1, . . . , j

1Fn) contained in∏n
j=1 C

∞(Xj , J
1
j ). By the continuity of the maps j1 : C∞(Xj , J

kj (Xj , Yj)) → C∞(Xj , J
1
j ) and

jkj : C∞(Xj , Yj) → C∞(Xj , J
kj (Xj , Yj)) (prop. II.3.4 of [5]), it follows that there exists an open

neighbourhood of (f1, . . . , fn) of tuples whose induced section is transverse to W .

Let (f1, . . . , fn) ∈ TW and assume (b). Let s′ :
∏n
j=1 J

1
j → X be the source map, and observe that

s′(W c) = s(W ). It follows that s′(W c) is a compact set. Hence corollary 2.11 tells us that the set

{(g1, . . . , gn) ∈
n∏
j=1

C∞(Xj , J
1
j ) : im j1g1 × . . .× j1gn ⊂Wt}

is open. In particular we can select an open neighbourhood of (j1F1, . . . , j
1Fn) contained in this open

set. By the continuity of the maps j1 : C∞(Xj , J
kj (Xj , Yj))→ C∞(Xj , J

1
j ) and jkj : C∞(Xj , Yj)→

C∞(Xj , J
kj (Xj , Yj)), it follows that there exists an open neighbourhood of (f1, . . . , fn) of tuple whose

induced section is transverse to W .

Let W be a submanifold of JkI (X,Y ), and let W ′ be any subset of W . We say that a tuple f =
(f1, . . . , fn) ∈ C∞I,k(X,Y ) is transverse to W on W ′ if for all z ∈ Z, either jkIf(z) /∈ W ′ or

im Tzj
k
If + TjkIf(z)W = TjkIf(z)J

k
I (X,Y ). The following can be proved by retracing the steps in the

above two proofs.

Lemma A.6. Let W be a submanifold of JkI (X,Y ), and let W ′ be a compact subset of W . Then

TW ′ := {f ∈ C∞I,k(X,Y ) : jkIf tW on W ′}

is an open set.

Proposition A.7. In the context of theorem 4.18, let s denote the source map Jk,lI (X,Y )→ Z. The
set of transverse tuples TW is open if

(a) W is a product W1 × . . .×W|l| of topologically closed manifolds Wi ⊂ Jkj (Xj , Yj) with |l|j−1 <
i ≤ |l|j, or

(b) s(W ) is compact.

Proof. Most of the hard work has been done in the previous proposition: we know that

T ′W := {(f1, . . . , f|l|) ∈ C∞I,kl(X
l, Y l) : jk

l

I f tW}

is an open set. As C∞I,k,l(X,Y ) embeds into C∞I,kl(X,Y ) and under this embedding TW is mapped

into T ′W , the result follows.
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A.2 Proof of mixed transversality

Proof of theorem 4.14. By lemma A.1, it suffices to prove the theorem in the case that X consists of
n factors, and that Ij = (j) for each j. To see this, embed W into the full product bundle, with image
ιI(W ), and jkIf t W ⇐⇒ jk1f1 × . . . × jknfn t ιI(W ). By setting Z ′j = Xj , k

′
j = kj , Hj = (j),

and recording everything in the new tuple H, we can see that the right hand side is the statement
jk
′

Hf t ιI(W ). Note in particular that C∞I,k(X,Y ) = C∞H,k′(X,Y ). So we will assume without loss
generality that Z consists of n factors and each Ij = (j), and we will simply write Xj for Zj . Note
that JkH(X,Y ) = Jk(X,Y ), too. We split the remainder of the proof in steps (1) through (4), with
an eye on the next proof.

(1) We need to show that TW is a the countable intersection of open dense subsets. We can choose
an open covering {Wα}α∈J for some indexing set J , such that

(a) the closure of Wα in JkI (X,Y ), Wα, is contained in W ,

(b) Wα is compact,

(c) there exist coordinate neighbourhoods Uα,j in Xj and Vα,j in Yj such that
π(Wα) ⊂

∏n
j=1 Uα,j × Vα,j , where π : Jk(X,Y )→ X × Y is the bundle projection, and

(d) each Uα,j is compact.

To see this, let w ∈W . We can select a bundle trivialization (V, ψ) so that w ∈ Jk(X,Y )|V , V ⊂ X×Y ,
and without loss of generality we may assume that V =

∏n
j=1 Uw,j×

∏n
i=1 Vw,i, a product of coordinate

neighbourhoods Uw,j ⊂ Xj , Vw,i ⊂ Yi. By restricting the Uw,j if necessary, we may assume that Uw,j
is compact for each j. As W is a submanifold, we can select a chart (U, φ) around w in Jk(X,Y ) such
that W looks like a dimW -dimensional plane in the chart. By restricting the chart if necessary, we can
assume without loss of generality that the chart is contained in Jk(X,Y )|V . By another restriction,
we can assume that the image of φ is an open ball B(w) in RN , with N = dim Jk(X,Y ), whose closure
is compact, and such that the closure of φ−1(B(w) ∩ φ(W )) is contained in W . It is now easy to see
that the constructed chart domains satisfy (a)-(d).

(2) As W is second countable, we may extract a countable subcover W1,W2, . . . from the above open
cover {Ww}w∈W . Let

TWr = {f ∈ C∞I,k(X,Y ) : jkIf tW on Wr}.

It is clear that TW =
⋂∞
r=1 TWr

. Thus the proof reduces to showing that each TWr
is open and dense

in CI(A,X).

(3) To see that the set is open, note that we can simply apply lemma A.6.

(4) To prove denseness, choose charts ψj : Ur,j → Rnj and ηr,j : Vr → Rmj , and smooth functions
ρj : Rnj → [0, 1] and ρ′j : Rmj → [0, 1] such that

ρj =

{
1 on a neighbourhood of ψj ◦ sj(W r)

0 off ψj(Ur,j)
, and ρ′j =

{
1 on a neighbourhood of ηj ◦ tj(Wr)

0 off ηj(Vr,j)
.

Here nj = dimXj , mj = dimYj , sj : Jk(X,Y )→ Xj is the j-th source map, and tj : Jk(X,Y )→ Yj
the j-th target map. The choice of ρj and ρ′j are possible since Wr is compact.

Let f ∈ C∞I,k(X,Y ), and let U be an open neighbourhood of f . We will show that we can locally

perturb f to f̃ such that jI f̃ t W on Wr and f̃ ∈ U , which will be sufficient for denseness. Denote
f = (f1, . . . , fn), and for x ∈ X, denote x = (x1, . . . , xn). Let B′j denote the space of polynomials from

Rnj to Rmj of degree at most kj . Define B′ =
∏n
j=1B

′
j . For b ∈ B′, define gb = (gb1,1, . . . , gbn,n) ∈
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C∞I,k(X,Y ) by

gbj ,j(xj) =

{
fj(xj) if xj /∈ Ur,j or fj(xj) /∈ Vr,j
η−1
j (ρj(ψ(xj))ρ

′
j(ηjfj(xj))bj(ψj(xj)) + ηjfj(xj)) otherwise.

The choice of ρj and ρ′j guarantees that gb is a smooth function. Define Φ : X × B′ → Jk(X,Y ) by

Φ(x, b) = jkIgb(x). By inspection of the above formula, Φ is smooth. We aim to apply lemma A.2 to
Φ, for which we need to show that Φ t W on Wr. Although this might not be true for all of B′, we
will select an open neighbourhood B of 0 in B′ for which it does hold. Assuming we have found this
neighbourhood B, lemma A.2 tells us that for a dense set in B, jIgb t Wr. It is a straightforward
verification that for values of b near enough 0 in B, gb ∈ U too. Selecting any such b, it follows that
f̃ = gb ∈ U , and jkI f̃ is transverse to W over Wr. So it remains to find a neighbourhood B of 0 so
that Φ|X×B is transverse to W over Wr.

We will show that there exists a neighbourhood B of 0 in B′ on which Φ is a local diffeomorphism
whenever Φ(x, b) ∈Wr, and hence trivially transverse to W over Wr. Let

ε =
1

2
min{d(suppρ′j ,Rmj \ ηj(Vr,j)), d(ηjtj(Wr), (ρ

′
j)
−1[0, 1)) : j = 1, . . . , n},

which is positive by the choice of ρ′j and the compactness of ηjtj(Wr). Define B = {b ∈ B′ :
|bjψj(xj)| < ε, ∀xj ∈ suppρj , ∀j = 1, . . . , n}, which is an open neighbourhood of 0 ∈ B. Here we used
the compactness of each Ur,j to find that ρj is compactly supported. Suppose that (x, b) ∈ X × B
such that Φ(x, b) ∈ Wr, then xj ∈ sj(Wr) and gbj ,j(xj) ∈ tj(Wr) for each j. It follows for each j
that ρj is one on a neighbourhood of xj , and that ρ′j is 1 on a neighbourhood of gbj ,j(xj) containing
fj(xj): for ρj this is immediate, and for ρ′j , it follows from the definition of ε and ρ′j , and that
d(ηj(fj(xj)), ηj(gbj ,j(xj))) < ε. To verify this last point, note that

|ηj(fj(xj))− ηj(gbj ,j(xj))| = |ρjψj(xj)ρ′j(ηjfj(xj))bjψj(xj)| ≤ |bjψj(xj)| < ε.

Because all bump functions are 1 near their respective source and target of both Φ(x, b) and f(x), it
follows that for all b′ in a neighbourhood of b ∈ B and x′ in a neighbourhood of x ∈ X,

gb′j ,j(x
′) = η−1

j (ηjfj(x
′) + ηjbj′(x

′)).

It is now clear that Φ is a local diffeomorphism near (x, b): let σ ∈ Jk(X,Y ), let x′ = s(σ), and
let (b1, . . . , bn) denote the unique tuple of polynomials in B such that σ = jkI(f̃)(x′), where f̃(x′) =

(f̃1, . . . , f̃n)(x′), f̃j(x
′) = η−1

j (bjψj +ηjfj). Then σ 7→ (x′, b1, . . . , bn) is a smooth map and the inverse
to Φ.

Proof of corollary 4.15. Let W ′ ⊂ W be a compact subset: in step (2) of the proof of theorem
4.14, we replace the set TWr

by the set

T ′Wr
:= {f ∈ C∞I (A,X) : jIf tW on Wr ∩W ′}.

Steps (3) and (4) show that T ′Wr
is open and dense. As W ′ is compact, we need finitely many Wr

to cover W ′, and hence {f ∈ C∞I,k(X,Y ) : jkIf t WonW ′} = ∩Ni=1T
′
Wri

is open and dense. For the

last claim: in step (1) we can refine our choice of Uw,j so that
∏n
j=1 Uw,j ⊂ U . In step (4) we then

perturb f only within U to make it transverse to W . As the set of values in B′ was dense, for which
a perturbation of f over

∏n
j=1 Ur,j was transverse to W on Wr, it follows that we can choose g to lie

in V.
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Proof of theorem 4.18. The proof of the theorem is a modification of the above proof.

Recall that C∞I,k,l(X,Y ) embeds into C∞I,kl(X
l, Y l). Denote this embedding by ∆l. By lemma A.1

and that jk,lI f tW ⇐⇒ jkI ◦∆lf tW , it suffices to prove the theorem in the case that Z consists of
n factors, Zj = Xj , and that Ij = (j). I.e. as before one can construct Z ′ and H. We continue with
the proof by following steps (1)-(4) of the previous proof, highlighting changes/additions to each step.

(1) We choose an open cover {Ww} as before, indexed by the set all w in W whose source does not lie
in ∆l(X) ⊂ X l, which is possible by assumption. By restricting the Uw,i if necessary, we may assume
that Ww satisfies properties (a)-(d), and in addition (e): for every 1 ≤ q ≤ m and |l|q−1 < i < j ≤ |l|q,
Uw,i ∩ Uw,j = ∅.

(2) We can extract a finite subcover W1,W2, . . . that covers W . For each TWr , we define

TWr := {f ∈ C∞I,k,l(X,Y ) : jk,lI f tW on Wr}.

As in the previous proof, it follows that TW =
⋂∞
r=1Wr. Thus the current proof reduces to showing

that each TWr is open and dense in C∞I,k,l(X,Y ).

(3) Openness follows from lemma A.6 and the fact that the embedding of C∞I,k,l(X,Y ) into C∞I,kl(X
l, Y l)

is continuous, and that this embedding maps a tuple f whose induced section jk,lI is transverse to W ,

to a new tuple f ′ whose induced section jk
l

I f
′ is transverse to W .

(4) To prove density for the sets TWr
, we may simply apply the same argument as before. Note that

by our choice of disjoint Uw,i, Uw,j ⊂ Xj whenever |l|q−1 ≤ i < j ≤ |l|q, the local perturbation may
still be performed per each open. I.e. because the open neighbourhoods are disjoint, we can modify
the same function multiple times (so that the resulting functions lies in the image of ∆l). This finishes
the proof.

Proof of corollary 4.20. This is essentially the same as the proof of corollary 4.15.
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