Scalability of Customizable Route Planning

Research Project - Master Thesis
Final Report

Supervisors
By MORRIS BREED Dr. E.J. vAN LEEUWEN (UU)
UTRECHT UNIVERSITY PrROF. DR. R.H. BIsseLING (UU)

P. AGTERBERG (ORTEC)

July, 2021

Contents

(1__Introduction | 6

[2__Literature | 9

2.1 Routing algorithms| 9

[2.1.1 Diykstra's algorithm| 9

[2.1.2 Othertechnique$ e 10

[2.2 Customizable Route Planning 11

[2.2.1 Metric-independent preprocessing e e e 11

222 Customizafion e 13

[2.2.3 QUENEE e e e e 13

224 Benetsof CRPl e 16

[2.2.5 Analysis e e 17

[2.3 Distributed memory for CRP and Dikstra|. 17

... 19

25 _GRERECMOAE] v v ot e e e e e e e e e 19
[3 Proposed algorithms | 21

[3.1 Partitioning-Based Parallelism (PBP)| 21

BIT T PBP-To 22

BIZ PBP-2 . . . oo 24

3.2 On-Demand Loading 27

[3.3 Discussion of the algorithms 30
[4 Implementations | 32

Vi MaDS . . . e e e e 32

BIT GREREQ ottt e e e 33

4.2 Azure FUNCtions e 36

4.3 Redis. e e 37

4.4 The algorithms 37

45 QUEHES . . . o o e e 40
5 Experiments and results 42

5.1 Setup 42

5.2 ResuUlts. e e e 43

5.3 Discussionoftheresults e 58

6 Conclusion 61

6.1 Future work e e e e 62

A Algorithms

List of Symbols

This list contains some of the symbols used in this report.

c Partition on level |

H Multilevel overlay graph tH1;H»2;:::;H. juwithtoplevel L 1

B'C Maximum number of boundary points in a cell on levell excluding its subcells
R- Maximum number of shortcuts of a cell on levell excluding its subcells
B Total number of boundary points in the overlay graph

B{: Maximum number of boundary points in a cell on levell including its subcells
C'pvg Cell on level | containing nodev

c! Cell numberi on level |

EL Maximum number of base level edges in a base level cell

K Split size of the graph, i.e. the number of subcells per cell

k Number of iterations during PBP-2 query

Ipeg Level of the cell of which edgee is a shortcut

L Split level of the graph

Istpvq Query level of nodev

PpSq Collection of source processes during a many-to-many query

ppsq Source process during a one-to-one query

Pprq Collection of target processes during a many-to-many query

ptq Target process during a one-to-one query

P Collection of processes

R Total number of shortcuts in the overlay graph

RL Maximum number of shortcuts of a cell on levell including its subcells
S Collection of sources during many-to-many query

Sp Collection of sources contained in the subgraph of procegs

T Collection of targets during many-to-many query

Tp Collection of targets contained in the subgraph of procesp

V¢ Maximum number of nodes in a base level cell

Xppg Processed nodes during a backward Dijkstra/CRP search on procegs
Xb Processed nodes during a backward Dijkstra/CRP search
Xt ppg Processed nodes during a forward Dijkstra/CRP search on process

X+ Processed nodes during a forward Dijkstra/CRP search

1 Introduction

Customizable Route Planning Customizable Route Planning(CRP) [8] is one of the current
state-of-the-art shortest path algorithms. Although Dijkstra's classic algorithm runs in log-linear
time with little overhead, computing a shortest path on large graphs still takes multiple seconds.
CRP computes shortest paths on continental-sized graphs within a couple of milliseconds.

CRP was speci cally designed for road networks. Other algorithms may achieve slightly faster
query times, but CRP distinguishes itself from other shortest path algorithms by being robust
to metric changes, being able to incorporate new metrics quickly and by having the ability to
simultaneously store data for multiple metrics. Meanwhile, its query times are fast enough for
interactive applications. CRP uses two separate preprocessing stages, a metric-independent and a
metric-dependent stage, before conducting a Dijkstra-like search in the query stage.

Cloud environment Software applications are increasingly o ered as cloud services these days.
The developed software is not installed on on-premise servers but instead hosted on servers of a
cloud provider. Users can access the software over the internet, without installing any software
locally. The software, or certain components thereof, can be installed on multiple servers, which
can enhance thescalability: the property of a system to handle a growing amount of work [5].
Another way of handling peaks in work load is to start multiple instances of the same server.
Companies commonly pay cloud providers per server usage, where there exist cheaper servers (with
less memory and computing power) and more expensive ones.

Ortec has decided to o er CRP as a cloud service to their customers. CRP's robustness to
metric changes and its ability to handle multiple metrics e ciently played a key role in convincing
Ortec to develop software using the algorithm. The most straightforward way of running CRP, or
any similar algorithm, in the cloud would be by having one server store all data (e.g. the entire
map, preprocessed data). Users then send their queries to this server, which computes and returns
the result. Queries arrive non-uniformly in most applications: there will be highs and lows in the
number of queries at a certain time. At the moment the number of queries becomes too large for
one server, a new instance of that server is started, which would have to load all data as well. This
can take quite some time and should be done before demand requires it, leading to a lot of idle
time and thus costs.

Project's aim In this research project we focus on the query stage of CRP. Our goal is to
nd a distributed memory approach to the query stage of CRP, such that scalability is improved.
Instead of using a few large, heavy processes, we aim to design algorithms that employ multiple
small interacting processes. We use the word \process" to indicate a (cloud) server or processor
throughout this report. Thus, the system becomes more nimble and more scalable in the presence
of large numbers of requests. In the resulting approach, query times should stay fast and memory
usage and total resource consumption should be kept low.

We present two di erent approaches to solving CRP queries in a distributive fashion: Partitioning-
Based Parallelism (PBP) and On-Demand Loading (ODL). For PBP, we use a patrtitioning of the
graph to distribute subgraphs among di erent processes. These processes communicate with each
other to answer queries. For ODL, we store the graph on one process and let a smaller process
answer queries by receiving the query's search graph from the global process. For each algorithm,
we examine its bene ts and drawbacks; its consequences with respect to correctness, running time,
memory use and scalability and whether it can be e ciently extended to an algorithm answering
many-to-many queries. Many-to-many queries ask for shortest paths from a set of source nodes to
a set of target nodes. In addition, for the PBP approaches, we investigate how we distribute the

6

graph data among the processes, what communication is needed between the processes in order to
answer queries, and whether we can answer queries with source and target on one process's sub-
graph without communication with other processes. For ODL, we look into the way we store the
graph on the external process, so that we can e ciently access the necessary data, what additional
data we store on the external process, and what data we keep on the process answering the queries.

Previous work A distributed memory approach to the query stage of CRP has not been devel-
oped yet. The introductory paper [8] describes a basic method of parallelizing the metric-dependent
preprocessing stage, but this method is not suitable to be extended to the query stage. There has
been research into distributed memory versions of Dijkstra's algorithm, but these algorithms usu-
ally do not make full use of the advantages of CRP. One of our PBP algorithms is an extension
of a parallel Dijkstra algorithm introduced by Tang et al [36]. Research by Hamme [15] describes
a method of performing CRP queries on mobile devices, which typically have limited memory
capacity. We use this algorithm as the basis of our ODL algorithm.

Results We present two versions of PBP, which we call PBP-1 and PBP-2, and one ODL ap-
proach. PBP-1 answers queries using the two processes whose subgraphs contain the source node
and the target node. PBP-2 uses multiple label-correcting iterations on all processes to answer
gueries. For ODL, we load a query's search graph when we receive a query and calculate a shortest
path by performing a CRP search on the loaded graph data. For all three algorithms, we designed

a version that answers one-to-one queries and a version that answers many-to-many queries. We
show theoretical analyses of the algorithms, discuss implementations of them and show results of
several experiments we conducted in order to test their performance, scalability and total resource
consumption.

Methods of analysis In our theoretical analysis, we focus on the running time of the algorithms
and their reliance on the performance of the communication. We conducted analyses using the
BSP model [37] and the big-O notation. We investigate the communication frequency and message
size, to obtain an indication of how well the algorithms should perform in practice.

During the experiments, our main focus is on the scalability of each approach: how e ciently
does the algorithm handle peaks and low points in the number of received requests? In order to
test the scalability, we subject the algorithms to di erent types of loads (two arti cial scenarios
and two taken from real customer data provided by Ortec) and test the consequences to the query
times and the amount of used resources (number of servers, memory usage and work load distribu-
tion among processes). Furthermore, we look closely at the communication between the processes,
as this is the prominent source of potential performance degradation. We empirically examine the
communication frequency and message size and examine if that strokes with our expectations based
on our theoretical analyses. Finally, we are interested in two more properties of the algorithms:
the in uence of the query distance (the distance between the source and target) on the query times
and the impact of the natural cuts, which CRP exploits during preprocessing, on the overall perfor-
mance. To this end, we perform experiments with varying query distance and perform experiments
on arti cial road networks.

The outline of this report is as follows. We will start by treating the existing relevant literature
in Section 2. In this section, we discuss CRP's place in the current landscape of routing engines,
give a detailed explanation of the algorithm and treat literature regarding distributed memory
approaches to CRP and Dijkstra. Furthermore, we discuss the BSP model, which we use during

our theoretical analysis of the algorithms, and the GREREC model that we use to generate random
road networks for our experiments. In Section 3, we describe our three di erent algorithms, PBP-1,
PBP-2 and ODL and their theoretical analyses. We continue by describing our implementations
of the algorithms in Section 4. Finally, in Section 5, we discuss the experiments we conducted and
show their results, followed by our nal conclusions.

2 Literature

2.1 Routing algorithms

Routing engines must be fast and must not require too much space to be suitable for interactive
applications. Current state-of-the-art routing algorithms have query times of just a few milliseconds.
In addition, they have to satisfy the following requirements to be applicable in a realistic setting

[3]:
" Query times must be robust to metric changes,
" Incorporating a new metric must be quick,
~ Turn costs and turn restrictions must be accounted for, and

~ Multiple metrics (cost functions) must be supported.

Users of real-world routing engines may want to use di erent metrics, e.g. shortest distance,
avoid toll roads and minimize CO2 emissions. For all these di erent metrics, the query times should
be fast. Finally, incorporating a new metric quickly is necessary to have the ability to account for
current tra ¢ conditions and to give the user the opportunity to change to a new metric quickly.
Turn costs and turn restrictions were often neglected while developing routing engines, because
the assumption was widely supported that any algorithm could easily be adjusted to handle these
e ciently. However, Delling et al. [8] showed that this is not the case and that most algorithms have
a signi cant performance penalty when incorporating turns, especially if the turns are represented
space-e ciently. Supporting multiple metrics implies that metric-speci ¢ data structures should
be as small as possible, making it feasible to keep data for multiple metrics in memory.

In this section, we sketch the current landscape of routing algorithms. We will describe di erent
kinds of techniques that are used in e cient routing engines. First, we brie y recall Dijkstra's
famous algorithm, after which we will touch upon more advanced types of techniquesgoal-directed
techniques separator-based techniquesierarchical techniquesand bounded-hop techniquesWe use
the work of Bast et al. [3] as the basis for our description of these techniques. The paper chose
these particular techniques because, according to the paper, they quickly made real-life impact,
as they address problems that need solving before a routing algorithm can be used for large-scale
interactive applications.

2.1.1 Dijkstra's algorithm

For computing a shortest path from source nodes to target node t, Dijkstra's algorithm maintains a
priority queue of nodesv, ordered by their tentative distancesDpvqto s. Initially, we set Dpsq O
and Dpvg 8 for all nodesv s. The algorithm continues by scanning the node u with the
minimum tentative distance to s at every iteration: it extracts u from the priority queue and for
each outgoing edgepu; vqg it checks if Dpvq can be improved by using the edge. If soDpvqis
updated and v is added to the queue.

Dijkstra's algorithm possesses thelabel-setting property. once a nodev is scanned,Dpvq is
guaranteed to be optimal, i.e. Dpvg dps;vag This implies that once we scan target nodd, we can
stop searching, as we have found a shortest distance frosito t. The counterpart of this property
is the label-correcting property, which implies that all distances are considered temporary until the
nal step of the algorithm. These properties will play an important role in the PBP approach of
solving our problem.

The running time of Dijkstra's algorithm on sparse graphs such as road networks i©p|E | logp)V |qq
when they are connected, using a Fibonacci heap as priority queue. A natural optimization of the
algorithm is to use bidirectional search: simultaneously running a forward search froms and a
backward search fromt. When both searches meet, the tentative distanceD ps;tqis updated. We
can stop iterating when the minimum key of both searches exceeds the tentative distance, as the
distance cannot be improved further in that case, so we haveDps;tqg dps;tq On road net-
works, using bidirectional search results in visiting roughly half as many nodes as in unidirectional
search [3]. We show the bidirectional version of Dijkstra's algorithm in pseudocode in Algorithm 1
(Appendix A).

2.1.2 Other techniques

In every iteration of Dijkstra's algorithm, the search moves to the node with the smallest tentative
distance to s. However, this gives no guarantee that we actually move towards our target. Goal-
directed techniques aim at nudging the search into the right direction. One classical example is
the A* search algorithm [16], which is essentially a modi cation of Dijkstra's algorithm. It uses a
potential function :V YN R that maps each nodev to a lower bound ondpv;tq Instead of using
just the tentative distance Dpvqfrom s as key for nodev in the priority queue, the algorithm uses
Dpvq pvg This causes nodes closer tb to be scanned sooner. Other goal-directed algorithms
are ALT [14], Geometric Containers [38] and Arc Flags [23, 17].

Separator-based techniques use preprocessing to compute a separator of the graph and use that
separator to construct anoverlay graph A subset of the nodes is avertex separatorif it decomposes
the graph into di erent cells when it is removed. Similarly, an arc separator is a subset of the arcs
such that when removed, the graph is split into di erent cells. An overlay graph is a subgraph of
the original graph, in which the original distances are preserved. In a separator-based algorithm,
an overlay graph is constructed by adding shortcuts to a separatolS: the distances between the
nodes or arcs in the separator are calculated in a preprocessing phase, which we dlbrtcuts. The
overlay graph is much smaller than the original graph, so using these precomputed distances while
answering a query speeds up the process. CRP uses a separator-based approach and computes its
overlay graph from an arc separator. We treat the CRP algorithm extensively in the next section.
Another example of a separator-based algorithm idHierarchical MulTi (HiTi) [20].

A road network has a natural hierarchy: important roads such as highways appear more fre-
guently in shortest paths than local roads. Hierarchical techniques use this fact to speed up queries.
An algorithm that obtains impressive query times using this approach isContraction Hierarchies
(CH) [12]. In preprocessing it orders the nodes heuristically by importance. Then, the nodes are
contracted following this order, starting from the least important node. Contracting a node v means
rst removing it from the graph. Then, if v was contained in the unique shortest path between two
of its neighborsu and w, we add a shortcut betweenu and w to preserve all shortest path lengths.
Queries are solved by performing a bidirectional search on the graph with shortcuts, only using
arcs to nodes of a higher rank. On simpli ed models of road networks, CH outperforms CRP: both
preprocessing and queries are faster [3]. In realistic models, we add turn costs and turn restrictions
and place some extra demands: multiple cost functions should be supported, query times must be
robust to the choice of cost function, and new cost functions should be incorporated quickly. The
performance of CH is signi cantly worse on metrics other than travel times without turn costs and
therefore less suited to use on realistic models than CRP [3].

Lastly, we treat bounded-hop techniques. These techniques use preprocessing to calculate dis-
tances between nodes and add corresponding shortcuts to the graph. During a query, the destination
can be found in fewerhops resulting in faster query times. Precomputing the distances between all

10

nodes, giving ussingle hop pathsis problematic for large graphs in terms of preprocessing time and
especially in terms of storage. TheHub Labeling (HL) algorithm [6, 11] uses a two-hop approach.
For each nodev, the algorithm stores a set of labels, which contain shortest distances fronv to
certain nodes. These nodes are chosen so that for any pair of verticesand v, the distance dpu; vq
can be computed by only looking at the labels ofu and the labels ofv. HL achieves the fastest
known query times on road networks, but has one big disadvantage: storing all these labels causes
its space usage to be signi cantly higher than that of competing methods [3].

2.2 Customizable Route Planning

CRP was introduced by Delling et al. and meets all requirements for real-world routing engines
that we described in Section 2.1 [8]. All other methods fail at least one of them, according to
the paper. Hierarchical methods and goal-directed techniques are too sensitive to metric changes:
guery times are signi cantly worse for unfavorable metrics. Bounded-hop techniques require too
much storage to be applicable in a realistic setting. Separator-based techniques such as CRP only
use the topology of the graph for speeding up, so by design they work equally well for any metric,
satisfying the rst requirement. They were deemed too slow for interactive applications in the
past, but combining new concepts and careful engineering led to CRP, which proved to be fast
enough and to meet all other aforementioned requirements [8]. In this section, we will describe the
algorithm, after which we will explain how it satis es these requirements.

CRP consists of three stages: metric-independent preprocessing, metric-dependent preprocess-
ing (also calledcustomization) and the query stage. In the rst stage, the topology of the network
is determined: a partition of the graph is computed and then used to build an overlay graph.
The second stage takes the cost function and computes the costs of the shortcuts that connect the
boundary nodes within each cell of the partition. Then, for each query, the query stage consists of
running a multilevel version of bidirectional Dijkstra on the union of the cell containing the source,
the cell containing the target and the overlay graph. We will treat each stage separately and in
more depth below.

2.2.1 Metric-independent preprocessing

In metric-independent preprocessing, the topological properties of the graph are determined. These
are static properties of each road segment or turn, such as length, number of lanes, road category,
speed limit or turn type. These properties do not change often in road networks, so this part of
preprocessing does not need to run often. Therefore, the running time of this phase is not a priority.
Preprocessing begins with computing amultilevel partition of the input graph G. A patrtition

of agraphis afamilyC t Cg;Cy;:::;Ckuof cells, where each node is contained in exactly one cell
Ci. A multilevel partition is a family tC% Ct;:::;C-u of partitions of the graph, where | denotes
the level of partition C t C};Cy;:::;Cl, u CRP uses anested multilevel partition, which means

that for each cell C! on levell L, there exists a cellC{ * onlevell 1 suchthatCl€ Cj ' We
then call C! a subcell of Cj' ! and Cj' 1 a supercell of C!. Partition C° only contains singletons and
we de ne C- to consist of one cell, which contains the entire graph.

Overlay graph H corresponding to a graphG with partition C contains all boundary nodes
(or boundary points) and boundary arcs of Cs cells. Boundary nodes are nodes with at least one
neighbor in a di erent cell and boundary arcs connect two nodes in di erent cells. Since we use
a multilevel partition, the corresponding overlay graph H t Hj;:::;H_ 1uhas multiple levels as
well. So, H, consists of all boundary nodes and boundary arcs of partitionC. For each cell on
each level of the overlay graph, a clique is built: between each pair of boundary nodes a shortcut is

11

	Introduction
	Literature
	Routing algorithms
	Dijkstra's algorithm
	Other techniques

	Customizable Route Planning
	Metric-independent preprocessing
	Customization
	Queries
	Benefits of CRP
	Analysis

	Distributed memory for CRP and Dijkstra
	BSP Model
	GREREC model

	Proposed algorithms
	Partitioning-Based Parallelism (PBP)
	PBP-1
	PBP-2

	On-Demand Loading
	Discussion of the algorithms

	Implementations
	Maps
	GREREC

	Azure Functions
	Redis
	The algorithms
	Queries

	Experiments and results
	Setup
	Results
	Discussion of the results

	Conclusion
	Future work

	Algorithms

