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List of Symbols

This list contains some of the symbols used in this report.

Cl Partition on level l

H Multilevel overlay graph tH1, H2, . . . ,HL´1u with top level L´ 1

B̃l
C Maximum number of boundary points in a cell on level l excluding its subcells

R̃lC Maximum number of shortcuts of a cell on level l excluding its subcells

B Total number of boundary points in the overlay graph

Bl
C Maximum number of boundary points in a cell on level l including its subcells

C lpvq Cell on level l containing node v

C li Cell number i on level l

E1
C Maximum number of base level edges in a base level cell

K Split size of the graph, i.e. the number of subcells per cell

k Number of iterations during PBP-2 query

lpeq Level of the cell of which edge e is a shortcut

L˚ Split level of the graph

lstpvq Query level of node v

P pSq Collection of source processes during a many-to-many query

ppsq Source process during a one-to-one query

P pT q Collection of target processes during a many-to-many query

pptq Target process during a one-to-one query

P Collection of processes

R Total number of shortcuts in the overlay graph

RlC Maximum number of shortcuts of a cell on level l including its subcells

S Collection of sources during many-to-many query

Sp Collection of sources contained in the subgraph of process p

T Collection of targets during many-to-many query

Tp Collection of targets contained in the subgraph of process p

V 1
C Maximum number of nodes in a base level cell



Xbppq Processed nodes during a backward Dijkstra/CRP search on process p

Xb Processed nodes during a backward Dijkstra/CRP search

Xf ppq Processed nodes during a forward Dijkstra/CRP search on process p

Xf Processed nodes during a forward Dijkstra/CRP search



1 Introduction

Customizable Route Planning Customizable Route Planning (CRP) [8] is one of the current
state-of-the-art shortest path algorithms. Although Dijkstra’s classic algorithm runs in log-linear
time with little overhead, computing a shortest path on large graphs still takes multiple seconds.
CRP computes shortest paths on continental-sized graphs within a couple of milliseconds.

CRP was specifically designed for road networks. Other algorithms may achieve slightly faster
query times, but CRP distinguishes itself from other shortest path algorithms by being robust
to metric changes, being able to incorporate new metrics quickly and by having the ability to
simultaneously store data for multiple metrics. Meanwhile, its query times are fast enough for
interactive applications. CRP uses two separate preprocessing stages, a metric-independent and a
metric-dependent stage, before conducting a Dijkstra-like search in the query stage.

Cloud environment Software applications are increasingly offered as cloud services these days.
The developed software is not installed on on-premise servers but instead hosted on servers of a
cloud provider. Users can access the software over the internet, without installing any software
locally. The software, or certain components thereof, can be installed on multiple servers, which
can enhance the scalability : the property of a system to handle a growing amount of work [5].
Another way of handling peaks in work load is to start multiple instances of the same server.
Companies commonly pay cloud providers per server usage, where there exist cheaper servers (with
less memory and computing power) and more expensive ones.

Ortec has decided to offer CRP as a cloud service to their customers. CRP’s robustness to
metric changes and its ability to handle multiple metrics efficiently played a key role in convincing
Ortec to develop software using the algorithm. The most straightforward way of running CRP, or
any similar algorithm, in the cloud would be by having one server store all data (e.g. the entire
map, preprocessed data). Users then send their queries to this server, which computes and returns
the result. Queries arrive non-uniformly in most applications: there will be highs and lows in the
number of queries at a certain time. At the moment the number of queries becomes too large for
one server, a new instance of that server is started, which would have to load all data as well. This
can take quite some time and should be done before demand requires it, leading to a lot of idle
time and thus costs.

Project’s aim In this research project we focus on the query stage of CRP. Our goal is to
find a distributed memory approach to the query stage of CRP, such that scalability is improved.
Instead of using a few large, heavy processes, we aim to design algorithms that employ multiple
small interacting processes. We use the word “process” to indicate a (cloud) server or processor
throughout this report. Thus, the system becomes more nimble and more scalable in the presence
of large numbers of requests. In the resulting approach, query times should stay fast and memory
usage and total resource consumption should be kept low.

We present two different approaches to solving CRP queries in a distributive fashion: Partitioning-
Based Parallelism (PBP) and On-Demand Loading (ODL). For PBP, we use a partitioning of the
graph to distribute subgraphs among different processes. These processes communicate with each
other to answer queries. For ODL, we store the graph on one process and let a smaller process
answer queries by receiving the query’s search graph from the global process. For each algorithm,
we examine its benefits and drawbacks; its consequences with respect to correctness, running time,
memory use and scalability and whether it can be efficiently extended to an algorithm answering
many-to-many queries. Many-to-many queries ask for shortest paths from a set of source nodes to
a set of target nodes. In addition, for the PBP approaches, we investigate how we distribute the
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graph data among the processes, what communication is needed between the processes in order to
answer queries, and whether we can answer queries with source and target on one process’s sub-
graph without communication with other processes. For ODL, we look into the way we store the
graph on the external process, so that we can efficiently access the necessary data, what additional
data we store on the external process, and what data we keep on the process answering the queries.

Previous work A distributed memory approach to the query stage of CRP has not been devel-
oped yet. The introductory paper [8] describes a basic method of parallelizing the metric-dependent
preprocessing stage, but this method is not suitable to be extended to the query stage. There has
been research into distributed memory versions of Dijkstra’s algorithm, but these algorithms usu-
ally do not make full use of the advantages of CRP. One of our PBP algorithms is an extension
of a parallel Dijkstra algorithm introduced by Tang et al [36]. Research by Hamme [15] describes
a method of performing CRP queries on mobile devices, which typically have limited memory
capacity. We use this algorithm as the basis of our ODL algorithm.

Results We present two versions of PBP, which we call PBP-1 and PBP-2, and one ODL ap-
proach. PBP-1 answers queries using the two processes whose subgraphs contain the source node
and the target node. PBP-2 uses multiple label-correcting iterations on all processes to answer
queries. For ODL, we load a query’s search graph when we receive a query and calculate a shortest
path by performing a CRP search on the loaded graph data. For all three algorithms, we designed
a version that answers one-to-one queries and a version that answers many-to-many queries. We
show theoretical analyses of the algorithms, discuss implementations of them and show results of
several experiments we conducted in order to test their performance, scalability and total resource
consumption.

Methods of analysis In our theoretical analysis, we focus on the running time of the algorithms
and their reliance on the performance of the communication. We conducted analyses using the
BSP model [37] and the big-O notation. We investigate the communication frequency and message
size, to obtain an indication of how well the algorithms should perform in practice.

During the experiments, our main focus is on the scalability of each approach: how efficiently
does the algorithm handle peaks and low points in the number of received requests? In order to
test the scalability, we subject the algorithms to different types of loads (two artificial scenarios
and two taken from real customer data provided by Ortec) and test the consequences to the query
times and the amount of used resources (number of servers, memory usage and work load distribu-
tion among processes). Furthermore, we look closely at the communication between the processes,
as this is the prominent source of potential performance degradation. We empirically examine the
communication frequency and message size and examine if that strokes with our expectations based
on our theoretical analyses. Finally, we are interested in two more properties of the algorithms:
the influence of the query distance (the distance between the source and target) on the query times
and the impact of the natural cuts, which CRP exploits during preprocessing, on the overall perfor-
mance. To this end, we perform experiments with varying query distance and perform experiments
on artificial road networks.

The outline of this report is as follows. We will start by treating the existing relevant literature
in Section 2. In this section, we discuss CRP’s place in the current landscape of routing engines,
give a detailed explanation of the algorithm and treat literature regarding distributed memory
approaches to CRP and Dijkstra. Furthermore, we discuss the BSP model, which we use during
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our theoretical analysis of the algorithms, and the GREREC model that we use to generate random
road networks for our experiments. In Section 3, we describe our three different algorithms, PBP-1,
PBP-2 and ODL and their theoretical analyses. We continue by describing our implementations
of the algorithms in Section 4. Finally, in Section 5, we discuss the experiments we conducted and
show their results, followed by our final conclusions.
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2 Literature

2.1 Routing algorithms

Routing engines must be fast and must not require too much space to be suitable for interactive
applications. Current state-of-the-art routing algorithms have query times of just a few milliseconds.
In addition, they have to satisfy the following requirements to be applicable in a realistic setting
[3]:

• Query times must be robust to metric changes,

• Incorporating a new metric must be quick,

• Turn costs and turn restrictions must be accounted for, and

• Multiple metrics (cost functions) must be supported.

Users of real-world routing engines may want to use different metrics, e.g. shortest distance,
avoid toll roads and minimize CO2 emissions. For all these different metrics, the query times should
be fast. Finally, incorporating a new metric quickly is necessary to have the ability to account for
current traffic conditions and to give the user the opportunity to change to a new metric quickly.
Turn costs and turn restrictions were often neglected while developing routing engines, because
the assumption was widely supported that any algorithm could easily be adjusted to handle these
efficiently. However, Delling et al. [8] showed that this is not the case and that most algorithms have
a significant performance penalty when incorporating turns, especially if the turns are represented
space-efficiently. Supporting multiple metrics implies that metric-specific data structures should
be as small as possible, making it feasible to keep data for multiple metrics in memory.

In this section, we sketch the current landscape of routing algorithms. We will describe different
kinds of techniques that are used in efficient routing engines. First, we briefly recall Dijkstra’s
famous algorithm, after which we will touch upon more advanced types of techniques: goal-directed
techniques, separator-based techniques, hierarchical techniques and bounded-hop techniques. We use
the work of Bast et al. [3] as the basis for our description of these techniques. The paper chose
these particular techniques because, according to the paper, they quickly made real-life impact,
as they address problems that need solving before a routing algorithm can be used for large-scale
interactive applications.

2.1.1 Dijkstra’s algorithm

For computing a shortest path from source node s to target node t, Dijkstra’s algorithm maintains a
priority queue of nodes v, ordered by their tentative distances Dpvq to s. Initially, we set Dpsq “ 0
and Dpvq “ 8 for all nodes v ‰ s. The algorithm continues by scanning the node u with the
minimum tentative distance to s at every iteration: it extracts u from the priority queue and for
each outgoing edge pu, vq, it checks if Dpvq can be improved by using the edge. If so, Dpvq is
updated and v is added to the queue.

Dijkstra’s algorithm possesses the label-setting property : once a node v is scanned, Dpvq is
guaranteed to be optimal, i.e. Dpvq “ dps, vq. This implies that once we scan target node t, we can
stop searching, as we have found a shortest distance from s to t. The counterpart of this property
is the label-correcting property, which implies that all distances are considered temporary until the
final step of the algorithm. These properties will play an important role in the PBP approach of
solving our problem.
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The running time of Dijkstra’s algorithm on sparse graphs such as road networks isOp|E| logp|V |qq
when they are connected, using a Fibonacci heap as priority queue. A natural optimization of the
algorithm is to use bidirectional search: simultaneously running a forward search from s and a
backward search from t. When both searches meet, the tentative distance Dps, tq is updated. We
can stop iterating when the minimum key of both searches exceeds the tentative distance, as the
distance cannot be improved further in that case, so we have Dps, tq “ dps, tq. On road net-
works, using bidirectional search results in visiting roughly half as many nodes as in unidirectional
search [3]. We show the bidirectional version of Dijkstra’s algorithm in pseudocode in Algorithm 1
(Appendix A).

2.1.2 Other techniques

In every iteration of Dijkstra’s algorithm, the search moves to the node with the smallest tentative
distance to s. However, this gives no guarantee that we actually move towards our target t. Goal-
directed techniques aim at nudging the search into the right direction. One classical example is
the A* search algorithm [16], which is essentially a modification of Dijkstra’s algorithm. It uses a
potential function π : V ÝÑ R that maps each node v to a lower bound on dpv, tq. Instead of using
just the tentative distance Dpvq from s as key for node v in the priority queue, the algorithm uses
Dpvq ` πpvq. This causes nodes closer to t to be scanned sooner. Other goal-directed algorithms
are ALT [14], Geometric Containers [38] and Arc Flags [23, 17].

Separator-based techniques use preprocessing to compute a separator of the graph and use that
separator to construct an overlay graph. A subset of the nodes is a vertex separator if it decomposes
the graph into different cells when it is removed. Similarly, an arc separator is a subset of the arcs
such that when removed, the graph is split into different cells. An overlay graph is a subgraph of
the original graph, in which the original distances are preserved. In a separator-based algorithm,
an overlay graph is constructed by adding shortcuts to a separator S: the distances between the
nodes or arcs in the separator are calculated in a preprocessing phase, which we call shortcuts. The
overlay graph is much smaller than the original graph, so using these precomputed distances while
answering a query speeds up the process. CRP uses a separator-based approach and computes its
overlay graph from an arc separator. We treat the CRP algorithm extensively in the next section.
Another example of a separator-based algorithm is Hierarchical MulTi (HiTi) [20].

A road network has a natural hierarchy: important roads such as highways appear more fre-
quently in shortest paths than local roads. Hierarchical techniques use this fact to speed up queries.
An algorithm that obtains impressive query times using this approach is Contraction Hierarchies
(CH) [12]. In preprocessing it orders the nodes heuristically by importance. Then, the nodes are
contracted following this order, starting from the least important node. Contracting a node v means
first removing it from the graph. Then, if v was contained in the unique shortest path between two
of its neighbors u and w, we add a shortcut between u and w to preserve all shortest path lengths.
Queries are solved by performing a bidirectional search on the graph with shortcuts, only using
arcs to nodes of a higher rank. On simplified models of road networks, CH outperforms CRP: both
preprocessing and queries are faster [3]. In realistic models, we add turn costs and turn restrictions
and place some extra demands: multiple cost functions should be supported, query times must be
robust to the choice of cost function, and new cost functions should be incorporated quickly. The
performance of CH is significantly worse on metrics other than travel times without turn costs and
therefore less suited to use on realistic models than CRP [3].

Lastly, we treat bounded-hop techniques. These techniques use preprocessing to calculate dis-
tances between nodes and add corresponding shortcuts to the graph. During a query, the destination
can be found in fewer hops, resulting in faster query times. Precomputing the distances between all
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nodes, giving us single hop paths, is problematic for large graphs in terms of preprocessing time and
especially in terms of storage. The Hub Labeling (HL) algorithm [6, 11] uses a two-hop approach.
For each node v, the algorithm stores a set of labels, which contain shortest distances from v to
certain nodes. These nodes are chosen so that for any pair of vertices u and v, the distance dpu, vq
can be computed by only looking at the labels of u and the labels of v. HL achieves the fastest
known query times on road networks, but has one big disadvantage: storing all these labels causes
its space usage to be significantly higher than that of competing methods [3].

2.2 Customizable Route Planning

CRP was introduced by Delling et al. and meets all requirements for real-world routing engines
that we described in Section 2.1 [8]. All other methods fail at least one of them, according to
the paper. Hierarchical methods and goal-directed techniques are too sensitive to metric changes:
query times are significantly worse for unfavorable metrics. Bounded-hop techniques require too
much storage to be applicable in a realistic setting. Separator-based techniques such as CRP only
use the topology of the graph for speeding up, so by design they work equally well for any metric,
satisfying the first requirement. They were deemed too slow for interactive applications in the
past, but combining new concepts and careful engineering led to CRP, which proved to be fast
enough and to meet all other aforementioned requirements [8]. In this section, we will describe the
algorithm, after which we will explain how it satisfies these requirements.

CRP consists of three stages: metric-independent preprocessing, metric-dependent preprocess-
ing (also called customization) and the query stage. In the first stage, the topology of the network
is determined: a partition of the graph is computed and then used to build an overlay graph.
The second stage takes the cost function and computes the costs of the shortcuts that connect the
boundary nodes within each cell of the partition. Then, for each query, the query stage consists of
running a multilevel version of bidirectional Dijkstra on the union of the cell containing the source,
the cell containing the target and the overlay graph. We will treat each stage separately and in
more depth below.

2.2.1 Metric-independent preprocessing

In metric-independent preprocessing, the topological properties of the graph are determined. These
are static properties of each road segment or turn, such as length, number of lanes, road category,
speed limit or turn type. These properties do not change often in road networks, so this part of
preprocessing does not need to run often. Therefore, the running time of this phase is not a priority.

Preprocessing begins with computing a multilevel partition of the input graph G. A partition
of a graph is a family C “ tC0, C1, . . . , Cku of cells, where each node is contained in exactly one cell
Ci. A multilevel partition is a family tC0, C1, . . . , CLu of partitions of the graph, where l denotes
the level of partition Cl “ tC l0, C l1, . . . , C lml

u. CRP uses a nested multilevel partition, which means

that for each cell C li on level l ă L, there exists a cell C l`1j on level l` 1 such that C li Ă C l`1j . We

then call C li a subcell of C l`1j and C l`1j a supercell of C li . Partition C0 only contains singletons and

we define CL to consist of one cell, which contains the entire graph.
Overlay graph H corresponding to a graph G with partition C contains all boundary nodes

(or boundary points) and boundary arcs of C’s cells. Boundary nodes are nodes with at least one
neighbor in a different cell and boundary arcs connect two nodes in different cells. Since we use
a multilevel partition, the corresponding overlay graph H “ tH1, . . . ,HL´1u has multiple levels as
well. So, Hl consists of all boundary nodes and boundary arcs of partition Cl. For each cell on
each level of the overlay graph, a clique is built: between each pair of boundary nodes a shortcut is
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constructed. The costs of these shortcuts are computed in the customization stage. Naturally, we
do not compute shortcuts for the singleton graphs in C0 and the entire graph in CL. We call the
original graph G level 0 or the base level. A base level cell consists of the nodes and edges of the
original graph contained in one level-1 cell.

In the customization phase, the costs of the shortcuts between the boundary points of each
cell are computed. During the query stage, for each boundary point we process, we have to check
each shortcut to other boundary points for possible improvements. Therefore, customization and
query times of CRP heavily depend on the number of boundary arcs in the partition [8]. Graph
partitioning algorithm PUNCH [9] finds partitions with roughly half as many boundary arcs as
general-purpose partitioners do and is therefore a good fit for CRP. It exploits natural cuts that
exist in road networks, such as rivers, mountains and highways. PUNCH identifies these cuts by
performing local maximum flow computations. Most popular partitioners are faster than PUNCH,
but as we mentioned, running time is not our main concern. The customization and query times,
however, are important. The customization phase is executed every time we incorporate a new
metric. We want to be able to incorporate new metrics quickly and compute queries in interactive
applications, so we prioritize minimizing the number of boundary arcs.

At the moment, Ortec uses graph-partitioner KaHIP [34]. This algorithm uses the same ideas
as PUNCH, as it also uses local maximum flow computations to minimize the number of boundary
arcs in the partition. KaHIP takes as input an integer K indicating the split size and returns a
partition of the graph into K balanced parts. Executing the algorithm recursively onto the parts
of the partitioning results in the desired multilevel partition (see Figure 1).

Figure 1: Multilevel partition of the map of Crete. The top picture shows the first partitioning.
The bottom picture shows the partitioning of the pink cell (top left) in the second partitioning
step.
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2.2.2 Customization

With the metric-independent data from the first preprocessing stage and the desired cost function,
we can enter the customization stage. This stage is executed every time a new metric is incorpo-
rated, so running time is important. In customization, we compute an all-pairs shortest path matrix
W l
i for each cell C li of the partition. We do this bottom-up: we first calculate all distances for cells

on the first level by running Dijkstra’s algorithm on the graph G from the boundary nodes, before
we move on to the higher levels of the partition. For cells on level l ą 1, we can speed up the search
by using overlay graph Hl´1 instead of G, as this level is already processed. Using the Bellman-
Ford algorithm instead of Dijkstra also improves performance [8]. Even faster customization times
are achieved by performing Bellman-Ford simultaneously from multiple sources: for Bellman-Ford
from k different sources, we maintain distance labels d1pvq, . . . , dkpvq for each node v. Every time
an arc pv, wq is scanned, we try to improve all labels dipwq for i ď k. For this approach we need as
many rounds as the worst of all k executions, but by storing the labels of each node contiguously
in memory, we improve locality and enable instruction-level parallelism.

Figure 2: The shortcuts on the highest level of the overlay graph, which are calculated during the
metric-dependent preprocessing phase.

2.2.3 Queries

The result of the preprocessing stages is a multilevel overlay graph, for which the shortcut costs
between each pair of boundary points for each cell of the (multilevel) partition are already computed.
In the query stage, the focus of this project, we use this information to speed up the Dijkstra search.

One-to-one queries One-to-one queries calculate a shortest path between a source s and a target
t. A CRP query performs a bidirectional Dijkstra search on overlay graph H “ tH1, . . . ,HL´1u and
the base level cells containing s and t. These two cells are the only parts of the original graph we
use. During the remainder of the query we only use the overlay graph with its shortcuts for which
we already computed the distances in the customization phase. The main observation is that we
can skip cells of the partition that do not contain s or t and instead use shortcuts. This is done in
the following way: each time we scan a node, we check if it is a boundary node on some level of
the partition. If so, we scan it using the overlay graph on the query level of the node. The query
level lstpvq of a node v is the highest level such that v is not in the same cell as s or t. We prove
in Proposition 1 that doing so indeed yields a shortest path. We use the following notation in the
proof (and in the entire report): C lpvq denotes the level-l cell containing node v and lpeq denotes
the level of the cell of which e is a shortcut.

13



Proposition 1. [18] Let H “ tH1, . . . ,HL´1u be an overlay graph corresponding to a graph G
and let s and t be two connected nodes in G. Then there exists a shortest s´ t path P consisting
of edges pe0, e1, . . . , enq, where every edge e “ pv, wq is a level-lstpvq shortcut in H or a base level
edge if lstpvq “ 0.

Proof. Let P “ pe0, e1, . . . , enq be a shortest s´ t path in overlay graph H. Let e “ pv, wq P P with
e P Hl for some l ă L´ 1.

If l ă lstpvq, then C lpvq Ă C l`1pvq, such that C l`1pvq ‰ C l`1psq and C l`1pvq ‰ C l`1ptq
by definition of lstpvq. Therefore, shortest path P at some point has to exit C l`1pvq. Let
P 1 “ pv1, . . . , v, w, . . . , vkq Ă P be the subpath through C l`1pvq, where possibly v1 “ v or vk “ w.
Then pv1, vkq is a shortcut of C l`1pvq, so we can swap P 1 with pv1, vkq in P without changing the
path distance.

If l ą lstpvq, then C lpvq “ C lpsq or C lpvq “ C lptq (or both) by definition of lstpvq. Assume
without loss of generality that C lpvq “ C lptq. Then there is a path connecting v and t only
using levels lower than l. Let P 1 “ pv, . . . , tq be a shortest such path. Level-l shortcut e “
pv, wq is constructed from edges in C lpvq and connects two level-l boundary points v and w. So,
pv, w, . . . , tq Ă P cannot have shorter distance than P 1 because of the triangle inequality. Therefore,
swapping pv, w, . . . , tq with P 1 cannot increase the path distance.

We conclude that there is a shortest s ´ t path consisting of edges e “ pv, wq on query level
lstpvq.

Figure 3: CRP query. Darker coloured cells indicate higher levels of the overlay graph.

When we use higher query levels to scan nodes, we operate on a higher level of the overlay
graph, which implies we skip larger parts of the graph. Figure 3 illustrates a CRP query and shows
the impact of scanning nodes on their query levels. Just as in regular bidirectional Dijkstra, we
update tentative distance Dps, tq whenever the forward and backward searches meet. When both
searches only move to nodes on levels of the overlay graph on or above their current level, we get
only up-down paths: paths pe0, e1, . . . , ek, . . . , elq where lpeiq ď lpejq for i ă j ď k and lpeiq ě lpejq
for k ď i ă j. Geisberger et al. [12] showed that if there exists a shortest s´ t path, then there also
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exists a shortest path that is an up-down path. Their proof relies on the order of importance used
in Contraction Hierarchies, but translates to the cell levels in CRP, as we show in Proposition 2.

Proposition 2. If there exists a shortest s ´ t path, then there also exists a shortest s ´ t path
that is an up-down path.

Proof. Let P “ pe0, e1, . . . , enq be a shortest s ´ t path in overlay graph H. Let ei “ pv, wq P P
with ei P Hli be the first local minimum, i.e. ei´1 P Hli´1

with li´1 ą li and ej P Hlj with lj ą li
for some j ą i.

We examine two cases: either C li´1pvq “ C li´1psq or C li´1pvq “ C li´1ptq (case 1), or neither is
true (case 2).

For case 1, without loss of generality assume C li´1pvq “ C li´1psq. Then, a level li´1-shortcut
cannot improve a shortest path from s to v (see the proof of Proposition 1). So, there exists a path
P 1 only consisting of edges on levels lower than li´1 of length at most dpei´1q. Therefore, we can
swap pe0, . . . , ei´1q Ă P with P 1, so that we use lower levels than li´1.

In case 2, a shortest path traverses through C li´1pvq. Let P 1 “ pv1, . . . , v, w, . . . , vkq Ă P , where
possibly v1 “ v or vk “ w, be the subpath through C li´1pvq. Then pv1, vkq is a shortcut of C li´1pvq,
so we can swap P 1 with pv1, vkq in P and we still have a shortest path.

So, if a shortest path contains a local minimum we can either decrease the level of the edge
before the minimum or increase the level of the minimum itself without increasing the path distance.
Therefore, we conclude that if there is a shortest path, there also exists a shortest path that is an
up-down path.

So, letting both the forward and the backward search only traverse to cells on levels equal
or above their current levels will still yield a correct answer for our query. This helps to make
queries more efficient, as they have to consider fewer nodes in the search. It also guarantees that
the meeting point of the forward and backward search will be on the highest level of the overlay
graph that is used in the entire query. Only considering up-down paths and scanning nodes on
their query level causes the search graph of CRP to be much smaller than for Dijkstra’s algorithm,
which is illustrated in Figure 4. The query phase of CRP is presented in pseudocode in Algorithm
3 (Appendix A).

The number of boundary points per cell generally increases as we move to higher levels of the
overlay graph [1]. Consequently, most calculations are done in the top level of the graph. Exploring
the top level in both the forward and backward searches is therefore costly and can be avoided by
stopping the search one level below the top level for one of the search directions. In our algorithms,
we choose to explore the top level only during the forward search. This optimization is simple, but
effective: it can halve the query times for many-to-many queries on large graphs [1].

Many-to-many queries For many-to-many queries, instead of trying to find a shortest path
from node s to node t, we are interested in shortest paths from all nodes in some set S to all nodes
in some set T . The straightforward approach would be to perform |S| ¨ |T | one-to-one queries, but
Knopp et al. [22] describe a better way to do this. Their crucial idea is to execute only one forward
search for each source and one backward search for each target, resulting in a total of |S| ` |T |
searches. During each backward search, we keep track of the search spaces by using buckets. We
associate a bucket bpvq to each node v. This bucket stores pairs pt;Dpv, tqq, which represent the
tentative distances of shortest paths from v to nodes t P T . These backward searches are performed
for every t P T , obtaining distances pt;Dpv, tqq for all nodes v. Then, during the forward searches,
we maintain tentative distances Dps, tq for all pairs ps, tq P S

Ś

T . Every time the forward search
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Figure 4: The search graph of Dijkstra’s algorithm (top) compared to the search graph of CRP
using a single-level partitioning (bottom) for a one-to-one query from the blue flag to the green
flag on the map of Crete. The black lines indicate the cell borders of the overlay graph. An edge
or shortcut is coloured blue if it is processed during the search.

scans a node v, after which dps, vq is known, the search goes through all pairs pt; dpv, tqq in bucket
bpvq and updates Dps, tq whenever dps, vq ` dpv, tq ă Dps, tq. We use this technique to answer
many-to-many CRP queries as shown in Algorithm 4 (Appendix A).

2.2.4 Benefits of CRP

In this section, we explain how CRP satisfies the requirements of real-world routing engines we men-
tioned in Section 2.1. The robustness of query times to metric changes follows directly from the fact
that CRP uses a separator-based technique and therefore does not exploit network characteristics
like road hierarchy.

Dividing the preprocessing phase into two different parts is a crucial property of CRP. The
metric-independent part has to be run infrequently, because the topological characteristics of a
network do not change often. Every time we incorporate a new metric, however, the customization
stage has to be performed. The second requirement of routing engines was the ability to incorporate
new metrics quickly. The reason that CRP satisfies this requirement is that while the metric-
independent part of preprocessing can take minutes or hours, customization times of less than a
second can be achieved [8].

CRP uses a relatively small part of the original graph: only the base level cells containing the
source(s) and the target(s) are processed. For the rest of the query the overlay graph is used. The
costs of the shortcuts in this overlay graph are computed during customization, in which the turn
costs and restrictions are taken into account as well. So, CRP only has to add turn costs and
restrictions for routing close to the source(s) and the target(s) during the query and therefore has
a small penalty for incorporating them, satisfying the third requirement.
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The customization phase of CRP is designed such that it is fast and it results in few metric-
dependent data. Careful engineering causes metric-dependent space consumption to be much
smaller than competing methods, such as Contraction Hierarchies [8]. One example of this en-
gineering is to exploit the fact that many intersections in road networks share the same turn costs.
By storing such turn tables only once and storing only a pointer to the corresponding intersections,
space consumption is reduced significantly. In particular, the space consumption is small enough
(around 70 megabytes per metric for a map of Europe [8]) so that it enables keeping data for
multiple metrics in memory, which means CRP also meets the last requirement of routing engines.

2.2.5 Analysis

In this section, we aim to express the running time of the query stage of CRP in terms of graph
properties. The running time of shortest path algorithms is commonly expressed in the number
of nodes |V | and edges |E| in the graph. We aim to find a more refined expression to better
capture the advantages of CRP with respect to Dijkstra’s traditional algorithm, and to enable
better comparisons with our own suggested approaches. To this end, we introduce the following
symbols: V 1

C for the maximum number of nodes in a base level cell, E1
C for the maximum number

of edges in a base level cell, and still L for the total number of levels and K for the split size of
the partitioning. Additionally, R and B denote the total number of shortcuts and boundary points
respectively.

The one-to-one algorithm of CRP can be split into two parts: one (bidirectional) Dijkstra search
on two base level cells and one Dijkstra search on the entire multi-level overlay graph. This leads
to the following running time:

OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq.

In Table 2 we show the number of nodes, edges, boundary points and shortcuts in the maps we use
during our research, and in Table 3 the averages of these properties for cells on each level of the
overlay graph. These tables give an indication of the impact of the speed-up technique of CRP.

The many-to-many version can be analysed similarly. For every target t P T we perform a
unidirectional search with running time OpE1

C ¨ logpV 1
Cq ` R ¨ logpBqq. Subsequently, we do the

same for every source, with the difference that during the search on the overlay graph, we perform
|T | heap operations, since we potentially update all targets in the backward search space. The
complete running time therefore becomes:

|T | ¨OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq ` |S| ¨OpE1
C ¨ logpV 1

Cq `R ¨ |T | logpBqq.

2.3 Distributed memory for CRP and Dijkstra

The customization stage can be parallelized in a relatively straightforward way, as described in the
introductory paper of CRP [8]. Computing all-pairs shortest paths for each cell can be done in
parallel, as only shortest path distances from each subcell are needed to process a cell. Delling et
al. [10] showed that customization can even be done on GPUs. However, extending this approach
to queries is not immediate. The query stage performs a variant of Dijkstra’s algorithm and is
therefore inherently sequential.

One way to make use of distributed memory in the query stage of CRP, would be to parallelize
each individual query. Research into parallelizing Dijkstra’s algorithm resulted in approaches like
those of Crauser et al. [7] or the ∆-stepping algorithm of Meyer et al. [27], where in each iteration
nodes are distributed among the processes for a label-correcting step. These types of approaches
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need communication between a global process and all other processes at every step. Also, they do
not exploit a partition of the graph like we have in CRP, but rather distribute the nodes depending
on their tentative distances to the source. Therefore, such an approach does not seem to fit our
problem.

A different approach is presented by Tang et al. [36]. In this approach, the same type of
label-correcting steps are performed, but it also exploits a partition of a graph, making it more
applicable to our research. They compute a partition of the graph and give each cell of the partition
to a different process. The processes containing source s and target t start by computing shortest
path distances for all nodes in their cells, after which they send the distances to the nodes on
the boundary of their cells to their adjacent cells. With this information, these cells can compute
tentative distances for their nodes. Then, they do the same: the cells communicate the tentative
distances of their boundary nodes to their adjacent cells. This is repeated until all nodes of the
graph are settled. Note that with each communication step, we may also need to update distances
to nodes v in an already processed cell Cpvq, as a shortest path to v may go through cells that
were untouched at the time Cpvq was processed. So, this algorithm uses a label-correcting approach
instead of a label-setting one. In the paper, they apply this method of parallelizing to the sequential
Dijkstra algorithm that uses two priority queues, which has complexity Op|V |2 ¨ |E|q [30]. When the
algorithm uses k iterations and the graph is distributed roughly equally among the |P | processes

(each process contains Op |V |
|P | q nodes and O |E|

|P | edges), the total running time becomes [36]

k ¨Opp |V |
|P |
q2 ¨

|E|

|P |
q ` k ¨ Tcomm,

where Tcomm denotes the cost of one communication step.
The thesis by Hamme [15] describes a completely different approach to using multiple processes

to solve CRP queries. The thesis describes a method to perform CRP queries on mobile devices.
As such devices have little internal memory, the method uses external memory to store the graph
and only stores the query’s search graph locally. For storing the graph in external memory, the
natural structure provided by the partition is used: entire cell graphs are serialized and stored.
Locality is improved by storing cells in memory based on the access patterns of CRP queries. In
customization and during a query, most cells are visited completely. Only cells on the border of
the search space may be visited only partially. Also, because CRP uses a nested partition, adjacent
cells on the same level are likely to be required simultaneously. Therefore, cells are stored as a
contiguous memory block and the blocks are ordered such that cells with a common supercell are
stored consecutively. First, all level-1 cells are stored, ordered by common level-2 supercell, then
all level-2 cells follow, ordered by common level-3 supercell and so on. A boundary arc is stored
for all cells in the overlay graph where it is a boundary arc. This adds a small redundancy, but
enables efficient access to the cells needed for a query.

When a query is performed on the mobile device, the search graph is built in internal memory
by loading the needed cells from external memory. The base level cells of the source and target
node completely determine which parts of the graph we need, which we will further discuss in
Section 3.2. The query duration is the sum of the time it takes to load the needed graph data and
the duration of the execution of CRP. It is therefore crucial to the query performance to use as
little memory as possible for graph data. Hamme [15] was able to reduce the average data needed
for each query on a continental-sized map to approximately 400 kilobytes by storing a skeleton
graph per cell instead of a clique.
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2.4 BSP Model

For analysing CRP and our suggested approaches, we use the bulk-synchronous parallel (BSP)
model [37]. This is a bridging model for designing parallel algorithms. A BSP computer is a
distributed-memory computer [4] that consists of a collection of p processors, each having access to
their own local memory. The processors are connected to a communication network, such that they
can communicate data. A BSP algorithm consists of a series of supersteps that each consist of a
computation step and a communication step. In a computation step, many floating-point operations
(flops) are executed, while during a communication step, data is transferred from one processor to
another. The processors can simultaneously do calculations and send or receive data. Therefore,
both the execution time of a computation step and of a communication step are dominated by
the maximum among all processes, as the processors that finish sooner will have to wait, resulting
in idle time. During BSP algorithms, synchronizations are performed after each calculation or
communication step, ensuring that all communication has been resolved (contains operations as
making sure all data has arrived, starting communication, etc.).

A BSP computer can be completely described by four parameters: the number of processors p,
the computing rate (in flops per second) r, the communication cost per data word g and the global
synchronization cost or latency l. The BSP cost of a BSP algorithm predicts the running time of
the algorithm and can be expressed in the same four parameters. When, for each step i, we denote
the number of flops performed during computation step i by processor j by wji and the number of

8-byte data words sent or received by processor j by hji , the total cost of a BSP algorithm consisting
of kcal calculation steps and kcom communication steps is given by

kcal
ÿ

i“0

pmax
0ăjďp

wji ` lq `
kcom
ÿ

i“0

pmax
0ăjďp

hjig ` lq. (1)

We use the BSP model to analyse our algorithms. First, we express their running times in terms
of wji , h

j
i , g and l as above. Then, we express the different wji and hji using the big-O notation.

During our experiments we try to get an indication of the impact of g and l on the total running
time of the algorithms.

2.5 GREREC model

We will test our algorithms on two real maps. Recently, research has been conducted into the
field of random road networks. These random road networks provide the ability to control the
characteristics of the network, while keeping typical characteristics of real road networks, e.g. they
approximate planarity; undirected graphs representing road networks typically have very many
nodes of degree 3, many of degree 4, few of degree 5 and very few of degree 6+; and they have
heterogeneous edge travel costs [35].

The CRP algorithm exploits the natural obstacles in a map, such as mountains or large waters,
to compute partitions of the graph with few boundary edges between cells. To test how our
algorithms perform on arbitrary road networks, where such natural obstacles may not exist, we
also test them on two random road networks.

In the past, many different models were used to approximate road networks. Grid models
[2] are too regular to approximate road networks, their average degree, for example, is often too
homogeneous. A planar variant of the Erdős–Rényi model was developed [13] and the Growing
Random Planar Graph [25] which tries to simulate the effect of urban sprawls on the road network.
These models, however, generate more high degree nodes than real road networks typically contain.
A different method is used in the square-grid fractal model [21], which uses a hierarchical method.

19



However, just as the grid models, the resulting graphs are too regular and it has the limitation that
the node degree is limited to four.

The Grid model with Random Edges (GRE) [31] was developed with the main idea to randomly
introduce the effects of obstacles and shortcuts in a basic grid model. Using an optimisation
algorithm on the six parameters of the model (the length and width of the area, the average lengths
of vertical and horizontal lines in the network, the probability of the occurrence of obstacles and the
probability of the occurrence of shortcuts), they achieved road networks that reasonably correlated
with road networks of 66 main cities in Europe and the USA [35]. In this report, we will use the
Grid network with Random Edges and Regional Edge Costs (GREREC) model [35], which is an
improvement of the GRE model, to generate the two desired random road networks. GREREC
adopts four modifications compared to the GRE model: it allows the removal of edges at the
rim of the network; it allows unconditional removal of vertical and horizontal edges; all types of
diagonal shortcuts are allowed; and the edges are directly assigned a random travel cost depending
on the position in the network, instead of a cost depending on their geometric length. With the
first three modifications, the GREREC model relieves some of the restrictions on the network,
therefore allowing the generation of a wider variety of network topologies. The first modification
does imply we might generate an unconnected graph, but this happens in real road networks as
well. The fourth modification allows the introduction of road hierarchy effects in the network. In
the GREREC model, edge costs are randomly assigned, depending on their origin node. It makes
the assumption that roads in a certain area of a network likely share characteristics such as length
and speed limit and therefore assigns the same cost to each outgoing edge for a node. Assigning
costs in this way implies that the GREREC model may origin from a grid topology, but it can
actually model curved roads or other topology variations by incorporating them in the assigned
costs.

The model takes as input length n and width m of the grid, as well as the probability p of
keeping edges in the grid and probability q of generating shortcuts and uses the following procedure
to generate a network:

1. Generate a grid with length n and width m.

2. Remove each existing edge with probability 1´ p.

3. For each node vij in the grid for odd i and j, generate the four diagonal shortcuts departing
from vij with probability q.

4. For each node vij in the grid for even i, generate the four diagonal shortcuts with probability
q, unless the diagonal intersects an existing one.

5. Randomly assign a travel cost to the edges, where every edge departing from the same node
must have the same cost of travel.

Note that the condition placed in step 4 ensures the planarity of the graph.
To test the similarity of networks created with the GREREC model to real road networks,

Sohouenou et al. [35] generated 161 GREREC networks, categorised them into structural pattern
groups based on the division of the values of p and q into three equally spaced intervals and
computed the following topological indices for each of them. Index α: the ratio of the number
of cycles to the maximum possible number of cycles (2 ¨ |V | ´ 5 in planar graphs); index β: the
ratio of the number of edges to the number of nodes and the γ index: the ratio of the number of
edges to the maximum possible number of links (3 ¨ p|V | ´ 2q in planar graphs). The values for
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Table 1: The topological characteristics of GREREC networks for different values of p and q [35].

these indices for each structural pattern group are shown in Table 1. Subsequently, the mentioned
network characteristics were compared for the GREREC networks.

This comparison resulted in the following conclusions: GREREC networks tend to have a
larger range of networks with higher average degree and higher degree heterogeneity than real
networks and the networks in categories B1, B2, C1 and C2 resemble real networks the closest.
As we mentioned earlier, the most common node degree in real road networks is 3, followed by 4.
Furthermore, degrees higher than 6 are very uncommon. GREREC networks in the categories B2
and B3 had similar degree distributions and were deemed most similar to real road networks by the
paper. For our experiments, we used Table 1 together with the network characteristics of our real
maps to generate the random road networks. More on this procedure will follow in Section 4.1.1.

3 Proposed algorithms

We will describe our two main approaches to using distributed memory to solve CRP queries,
which we call Partitioning-Based Parallelism (PBP) and On-Demand Loading (ODL). For PBP,
we discuss two different variants: PBP-1 and PBP-2.

3.1 Partitioning-Based Parallelism (PBP)

For the PBP approach, we use one global orchestrator process that orchestrates the query and
multiple subprocesses (or just “processes”). Each process has its own part of the map and queries are
solved by local computation steps on the subprocesses and communication steps. In preprocessing,
we distribute the cells of the partition among the processes. We store each cell of the overlay graph
and each base level cell on one of the subprocesses. The orchestrator process maintains the tentative
distance Dps, tq for each query and facilitates the communication between the subprocesses. It is
not realistic to store only one cell on each process, e.g. the map of Western Europe we use in our
experiments uses 5 levels. For split size K “ 10 (meaning 10 subcells per supercell), this would
mean 111.110 cells and thus processes. So instead, we use a higher level of the overlay graph to
distribute the cells among the different processes. In our project, we split the graph on the highest
level, thus resulting in K processes. We call the level on which we split the graph the split level
and denote it by L˚.

We have two variations of PBP in mind. The first variation, PBP-1, still solves each individual
query sequentially, but the computations are spread over multiple processes such that many queries
can be handled more efficiently. PBP-2 parallelizes each individual query: the processes do parallel
work and combine their results to compute a shortest path.
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3.1.1 PBP-1

For the first PBP approach, besides their own cell of the partitioning, we store the levels l ě L˚ of
the overlay graph on each process. So in our case, we store the highest level of the overlay graph
on every process. This duplication will provide a way to make the connection between the different
processes and answer queries.

A bidirectional CRP query starts by exploring the base level cells containing s and t. This
can be done on source process ppsq and target process pptq, where we denote ppvq for the process
containing node v. At first, we will assume ppsq ‰ pptq. We will treat the one-to-one and the
many-to-many queries separately.

One-to-one queries A PBP-1 query begins with performing a backward search on the subgraph
of pptq. This process performs the search, only using its own cells of the partitioning without
the common highest overlay graph level, until its priority queue is empty, after which the distances
dpv, tq for each boundary node v of its subgraph are known. These distances are sent in a dictionary
Xb to source process ppsq. The source process then performs a forward CRP search. In the forward
search, the common top level of the overlay graph is also used. While scanning nodes v, it checks if a
backward distance dpv, tq is present in the received Xb and updates Dps, tq if applicable. Eventually,
this search will find a shortest s´ t path, as the complete algorithm performs a normal CRP query,
with the adjustments that the forward and backward search are performed sequentially and are
split over two different processes, which does not affect the found path.

In the case that ppsq “ pptq, we can answer a query using one process only. To achieve this,
we must make one adjustment to the preprocessing stage. In customization, the shortcut costs are
determined by only considering paths within the cell. However, it is possible that a shortest path
between two boundary points uses edges of an adjacent cell. In a normal CRP query, in which the
whole map is available, one would simply traverse to that adjacent cell and therefore still find a
shortest path. When partitioning the map like we do for PBP, it could happen that that adjacent
cell is not in the subgraph of the current process, which would mean we may not find a shortest
path. Therefore, we adjust the customization process to also take into account paths using edges
outside the cell of the two boundary points, which implies that every shortcut cost is a shortest
path. Then, when ppsq “ pptq “ p, we can answer a query by performing the regular CRP algorithm
on the subgraph of p.

Many-to-many queries We extend the PBP-1 approach for one-to-one queries to many-to-
many queries as follows. Instead of one target process for a one-to-one, we may have multiple
target processes that each may contain multiple targets. Let us say that each target process p
contains targets Tp Ă T . The query starts with each of these processes p performing a backward
search for each of their targets t P Tp. A target process p fills Xbppq with entries dpv, tq for their
boundary points v and their targets t P Tp. When the priority queues are empty for each target,
the process sends Xbppq to each source process (a process containing at least one source). That
way, each source process receives the complete backward search space Xb “

Ť

pXbppq. Then, each
source process p performs a forward search for each of its sources Sp Ă S, also using the common
highest level of the overlay graph. Source process p finds shortest s ´ t paths for all s P Sp and
t P T by checking if v P Xb when scanning node v. The entire cost array can then be formed by
collecting the different parts from each source process.

Algorithms 5 and 6 (Appendix A) show the one-to-one and many-to-many versions of PBP-1.
The algorithms are constructed such that all communication goes through the orchestrator pro-
cess. This process does not perform any calculations, but only “orchestrates” the calculations: it
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sends the messages to the right processes and collects and outputs the result. We will discuss the
communication in more detail in Section 4.

Analysis We use the BSP model as described in Section 2.4 to analyse the PBP-1 algorithms.
Both the one-to-one and the many-to-many algorithm consist of two computation steps and one
communication step in between. For the one-to-one algorithm, in the first computation step, the
target process pptq is the only active process, while during the second computation step, the source
process is the only active process. The BSP cost of the algorithm therefore is, following (1):

w
pptq
1 ` w

ppsq
2 ` gh1´1 ` 3l. (2)

Cost w
pptq
1 represents the cost of performing a unidirectional CRP search on the subgraph of pptq,

w
ppsq
2 represents the cost of a unidirectional CRP search on the subgraph of ppsq, including the

highest level of the overlay and checking XB for a possible improvement of Dps, tq. The number of
data words h1´1 that is sent during the only communication step is equal to the size of the backward
search space of a one-to-one query in 8-byte words. In our experiments we will investigate the size
of this backward search space empirically. We show a diagram of the BSP cost in Figure 5.

The many-to-many algorithm also consists of two computation steps and one communication
step. The message during the communication step has size h1´1 ¨ |Tp|, as each target process
performs the same search as for a one-to-one query for each of its targets. The BSP cost becomes
as follows:

max
pPP pT q

pwp1 ¨ |Tp|q ` max
pPP pSq

pwp2 ¨ |Sp|q ` max
pPP pT q

pgh1´1 ¨ |Tp|q ` 3l, (3)

where P pSq and P pT q denote the collections of source processes and target processes respectively.
We show a BSP diagram of the algorithm in Figure 6.

To further investigate the theoretical running time of both algorithms, we express wp1, wp2 and
h1´1 in big-O notation. To this end, we let RlC denote the maximum number of shortcuts in a level-l
cell and Bl

C the maximum number of boundary points in a level-l cell. For both these values we
include shortcuts or boundary points of subcells. When we intend to exclude these, we use symbols
R̃lC and B̃l

C respectively. We show the running times of both the one-to-one and the many-to-many
algorithm in Theorem 1.

Theorem 1. The one-to-one and many-to-many algorithms of PBP-1 take
OpE1

C ¨ logpV 1
Cq `R ¨ logpBqq ` g ¨OpBL´1

C q ` 3l and |T | ¨OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq`

|S| ¨OpE1
C ¨ logpV 1

Cq `R ¨ |T | logpBqq ` g ¨Op|T | ¨BL´1
C q ` 3l time, respectively.

Proof. The running time of a unidirectional CRP search using all levels but the top level, belongs
to OpE1

C ¨ logpV 1
Cq ` RL´1C ¨ logpBL´1

C qq, as we only use shortcuts inside one of the top level cells.
When we include the highest level and the check of XB for a new shortest distance, we perform
a search with the same running time (in big-O notation) as the regular CRP algorithm, which is
OpE1

C ¨ logpV 1
Cq ` R ¨ logpBqq as we showed in Section 2.2.5. The latter expression dominates the

first. Message size h1´1 is the size of backward search space XB in 8-byte data words and thus is
of size OpBL´1

C q. The running time of the one-to-one version of PBP-1 therefore can be expressed
using a combination of big-O notation and parameters g and l from the BSP model as (following
(2)):
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OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq `OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq ` g ¨OpBL´1
C q ` 3l “

OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq ` g ¨OpBL´1
C q ` 3l.

Similarly, the many-to-many algorithm has running time (following (3))

|T | ¨OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq`

|S| ¨OpE1
C ¨ logpV 1

Cq `R ¨ |T | logpBqq ` g ¨Op|T | ¨BL´1
C q ` 3l.

P1 P2 P3 P4 P5

Computation step 1

Synchronisation

Communication step

Synchronisation

Computation step 2

Synchronisation

Figure 5: BSP diagram of a one-to-one query of PBP-1 for which ppsq “ p2 and pptq “ p4. In
computation step 1 (red), a backward search on a process’s subgraph is performed. In computation
step 2 (blue), a forward search is performed on the union of a process’s subgraph and the highest
level of the overlay graph. In the communication step, the backward search space of target process
P4 is sent to source process P2.

3.1.2 PBP-2

Extending the approach to parallelizing Dijkstra of Tang et al. [36] to CRP leads us to PBP-2. We
do not store the highest level of the overlay graph on each process, but only give each process one
of the K top level cells and its subcells.

One-to-one queries Making the same adjustments to the preprocessing stage as we mentioned
for PBP-1, we can again answer a s ´ t query for which ppsq “ pptq without communicating to
other processes. We therefore assume ppsq ‰ pptq in this description. The algorithm starts by
exploring the subgraphs on ppsq and pptq, after which we obtain tentative (forward and backward,
respectively) distances for the boundary points of CL´1psq and CL´1ptq. These boundary points
lie on the border of a cell contained in a different process. Processes ppsq and pptq send the found
tentative distances to these adjacent cells, after which their processes add them to their forward
or backward priority queue. Then, each process performs multiple label-correcting steps: they
perform a bidirectional CRP search on their own subgraph, using these priority queues. When
both priority queues are empty, they send the found tentative distances of the boundary points
to the corresponding adjacent cells. Every process that receives such distances, we call an “active
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P1 P2 P3 P4 P5

Computation step 1

Synchronisation

Communication step

Synchronisation

Computation step 2

Synchronisation

Figure 6: BSP diagram of a many-to-many query of PBP-1 for which processes P2 and P4 contain
the sources and P1, P2 and P5 contain the targets. In computation step 1 (red), a backward search
on a process’s subgraph is performed. In computation step 2 (blue), a forward search on the union
of a process’s subgraph and the highest level of the overlay graph. In the communication step, the
backward search spaces of the target processes are sent to the source processes.

process” and updates the distances of their boundary points (if they are an improvement of the
current values). It also checks if it contains a node with both a forward and backward distance,
in which case it updates its local tentative distance Dps, tq, and starts a new label-correcting step.
Just as in the parallel Dijkstra algorithm of Tang et al. [36], a shortest distance dps, tq is found
when there passes an iteration without communication. This distance is retrieved by taking the
minimum of the local tentative distances of all processes.

Many-to-many queries For the many-to-many algorithm of PBP-2, we start by performing a
PBP-1-like search from every target t P T . This means every target process performs a backward
search on its own graph, obtaining distances dpv, tq for all local boundary points v, which are stored
in dictionary XB. This dictionary is stored on the process itself and not communicated to other
processes. Then we continue by performing a forward search from every source on each source
process, resulting in forward distances for all boundary points of the source process’s subgraph.
After these searches, we start with our label-correcting steps: each process with updated forward
distances Dps, vq for some s P S and local boundary points v (in the first iteration every source
process) sends these distances to the processes containing adjacent cells. Every process maintains
|S| priority queues, one for each source. When a process receives a forward distance Dps, vq, it
checks whether it is an improvement of its known tentative distance. If so, it adds it to the priority
queue corresponding to s. After processing all received distances, the process performs forward
CRP searches with the nodes in the priority queues. Afterwards, it sends its updated tentative
distances to adjacent processes and a new label-correcting iteration is started. Each target process
p maintains a tentative distance matrix of size |S| ˆ |Tp|, containing distances Dps, tq for s P S and
t P Tp. While scanning v during a forward search, it checks whether it can improve such distance by
looking into XB to see if we already determined a backward distance Dpv, tq for v and some t P Tp.
When there is no communication left between the processes, each target process contains shortest
paths from each source to their local targets. The complete distance matrix can be retrieved by
combining these distances for all target processes. In Algorithms 7 and 8 (Appendix A) we present
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both the one-to-one and the many-to-many version of PBP-2 in pseudocode.

Analysis When we view the one-to-one PBP-2 algorithm in light of the BSP model, we distinguish
two different types computation steps: the first step, in which the initial searches from the source(s)
and target(s) are performed and the subsequent label-correcting steps. The total BSP cost for the
one-to-one algorithm is given by

maxtw
ppsq
1 , w

pptq
1 u ` g ¨maxth

ppsq
1 , h

pptq
1 u ` 2l `

k
ÿ

i“2

pmax
pPP

wpi ` g ¨max
pPP

hpi ` 2lq, (4)

when the algorithm uses k iterations and where we denote wp1 for the cost of the initial unidirectional
forward/backward search from the source/target on process p’s subgraph (same as in the analysis of
PBP-1), wji for i P t2, . . . , ku for the cost of updating the distances of the boundary points of process
p and performing a bidirectional CRP search on the local subgraph and hi denotes the maximum
sent (boundary point, distance)-pairs (in data words) between processes during communication step
i. We show a BSP diagram of the one-to-one algorithm in Figure 7. Note that hi is expected to be
smaller than in PBP-1, since we only send distances for boundary points at the outer boundary of
a process’s subgraph instead of the entire backward search space. This difference will be studied
more extensively in our experiments.

In the many-to-many algorithm, we do not have a communication step after the initial backward
searches, leading to the following BSP cost, when using k iterations:

max
pPP pT q

wp1 ` l `
k

ÿ

i“2

pmax
pPP

wpi ` g ¨max
pPP

hpi ` 2lq, (5)

where wpi for i P t2, . . . , ku represents the cost of updating boundary point distances and performing
a forward label-correcting search, including checking XB while scanning a node, hpi represents the
set of updated distances sent by process p and P denotes the collection of all processes. The
corresponding BSP diagram is presented in Figure 8.

Again, we want to go a bit further and express wpi and hpi in big-O notation. This leads to the
running times for both PBP-2 algorithms (one-to-one and many-to-many) presented in Theorem 2.

Theorem 2. The one-to-one and many-to-many algorithms of PBP-2 take
OpE1

C ¨ logpV 1
Cqq ` pk ` 1q ¨OpRL´1C ¨ logpBL´1

C qq ` pk ` 1q ¨ pg ¨OpB̃L´1
C q ` 2lq and

k ¨ pOpRL´1C ¨ |T | ¨ logpBL´1
C qq ` g ¨Op|S| ¨ B̃L´1

C qq ` p2k ` 1q ¨ l time, respectively.

Proof. As we showed in the proof of PBP-1’s running time, a unidirectional CRP search within
one top level cell is OpE1

C ¨ logpV 1
Cq ` RL´1C ¨ logpBL´1

C qq. For i P t2, . . . , ku, for both the one-to-
one and the many-to-many algorithm, we perform label-correcting steps, which are CRP searches
on only the boundary points within one top level cell. So the running time of one such step
is OpRL´1C ¨ logpBL´1

C qq for the one-to-one and OpRL´1C ¨ |T | ¨ logpBL´1
C qq for the many-to-many

algorithm. Message sizes hpi are also of the same order for all i P t1, . . . , ku. Each message can
only contain boundary points on the border of a top level cell, so hpi “ OpB̃L´1

C q for the one-to-one
algorithm and hpi “ Op|S| ¨ B̃L´1

C q for the many-to-many version. This results in the following
running time for the one-to-one PBP-2 algorithm (following (4)):
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OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq ` g ¨OpB̃L´1
C q ` 2l`

k ¨ pOpRL´1C ¨ logpBL´1
C qq ` g ¨OpB̃L´1

C q ` 2lq “

OpE1
C ¨ logpV 1

Cqq ` pk ` 1q ¨OpRL´1C ¨ logpBL´1
C qq ` pk ` 1q ¨ pg ¨OpB̃L´1

C q ` 2lq.

The running time of the many-to-many algorithm of PBP-2 can be expressed as (following (5))

OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq ` l`

k ¨ pOpRL´1C ¨ |T | ¨ logpBL´1
C qq ` g ¨Op|S| ¨ B̃L´1

C q ` 2lq “

OpE1
C ¨ logpV 1

Cq `R
L´1
C ¨ logpBL´1

C qq`

k ¨ pOpRL´1C ¨ |T | ¨ logpBL´1
C qq ` g ¨Op|S| ¨ B̃L´1

C qq ` p2k ` 1q ¨ l.

Note that the running time of the one-to-one algorithm of PBP-1 is the same running time as in the
analysis of Tang et al. [36] we mentioned in Section 2.3 when we swap their Dijkstra algorithm’s
running time for CRP’s running time, since B

|P | “ OpBL´1
C q and R

|P | “ OpRL´1C q. In our experiments,
besides looking at the impact of l and g on the algorithm’s performance, we are interested in the
number of iterations k we need to obtain a shortest path. We also take a closer look at how many
processes send or receive a message during one iteration.

3.2 On-Demand Loading

In the ODL approach, we use two processes in total: one maintains a database that contains the
entire graph in memory and one receives and answers queries by obtaining the necessary graph
data from the other process and performing a CRP search. We will call the process storing the
graph simply “the database” and the process answering queries the orchestrator process. Our ODL
approach follows the same idea as the thesis [15] we treated in the Section 2.3. In the thesis, the
search graph is built in memory during the query: every time the query wants to scan a node
that is not in memory yet, it fetches the corresponding cell from the database. In our algorithm,
we use a different approach: when the query arrives we obtain (possibly a superset of) the entire
search graph for the query. We use the fact that a one-to-one query traverses at most 2 ¨ K ´ 2
cells per level before switching to a different level. We prove this result in Proposition 3. Another
adjustment we make with respect to [15] is that we use a bidirectional implementation of CRP,
instead of the unidirectional variant used in the thesis.

Proposition 3. The search graph for a CRP one-to-one query contains nodes of at most 2 ¨K´ 2
cells per level l ą 0. In particular, it only contains nodes from cells in tC l | C l ‰ C lpsq, C l Ă C l`1psqu
and tC l | C l ‰ C lptq, C l Ă C l`1ptqu.

Proof. Let a node v be scanned on level lstpvq “ l. Then, C lpvq Ă C l`1psq or C lpvq Ă C l`1ptq
by definition of lstpvq. Furthermore, C lpvq ‰ C lpsq and C lpvq ‰ C lptq. So, C lpvq P tC l | C l Ă
C l`1psq

Ť

C l`1ptquztC lpsq, C lptqu. Each cell contains at most K subcells, so the last mentioned set
has cardinality at most 2 ¨K ´ 2.
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P1 P2 P3 P4 P5

Computation step 1

Synchronisation

Communication step 1

Synchronisation

Computation step i

Synchronisation

Communication step i

Repeated k ´ 1 times

Figure 7: BSP diagram of a one-to-one query for PBP-2 with k´ 1 label-correcting steps for which
p2 and p3 contain the source and target. In computation step 1 (red), a backward/forward search
is performed on the process’s subgraph. In computation step i P t2, . . . , ku (blue), the distances of
received boundary points are updated and a forward search is performed on the process’s subgraph.
In all communication steps, the found distances of boundary points that are shared with adjacent
processes are sent to those cells.

p1 p2 p3 p4 p5

Computation step 1

Synchronisation

Computation step i

Synchronisation

Communication step i

Synchronisation

Repeated k times

Figure 8: BSP diagram of a many-to-many query for PBP-2 with k ´ 1 label-correcting steps
for which p2, p3, p4 and p5 contain the targets. In computation step 1 (red) a backward search
is performed on the process’s subgraph. In computation step i P t2, . . . , ku (blue) the distances
of received boundary points are updated and forward searches are performed on the process’s
subgraph. In all communication steps the found distances of boundary points that are shared with
adjacent processes are sent to those cells. Note that not all processes have to be active during an
iteration: only the processes that found updates for boundary points on a cell border they share
with another process send a message, and only processes of which a neighboring process found any
updates of a shared cell border perform a forward search.
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Proposition 3 implies that we know exactly which cells of the overlay graph we may need during
our query. When a query arrives, we can load these cells and the two base level cells that contain
s and t from the database and perform the regular CRP algorithm to answer the query. Since
every node v is scanned on query level lstpvq of the overlay graph, we do not need cells on levels l
for which C lpsq “ C lptq. Indeed, if s and t are in the same cell, there must exist a shortest path
without a level-l shortcut (by the same argument we used to prove Proposition 1). We call the
lowest level l for which two nodes v and w share the same cell, i.e. C lpvq “ C lpwq, the lowest
sharing level l0pv, wq of two nodes. For an s ´ t query, we therefore load the 2 ¨ K ´ 2 cells as
described in Proposition 3 for all levels up to l0ps, tq.

When answering a many-to-many query, we build the search graph by loading the K ´ 1 cells
per source and target as described in the proposition, which results in a search graph of at most
p|S| ` |T |qpK ´ 1q cells per level. Additionally, we load the base level cells for all s P S and all
t P T . Again, we may not need cells of all overlay levels. For each source s P S, we only need cells
up to the maximum of all lowest sharing levels with targets t P T : maxtPT l0ps, tq. For each target
t, we only need cells up to level maxsPS l0ps, tq.

Analysis The analysis of ODL is more straightforward than those of both PBP algorithms. The
algorithm consists of two steps: one communication step in which the process with the database
in memory sends the necessary graph data to the orchestrator process and one calculation step in
which the CRP algorithm is performed on the orchestrator process. The BSP cost for the both the
one-to-one and the many-to-many version of ODL can be expressed as

w ` gh` 2l, (6)

where w denotes the cost of a CRP search on the loaded search graph and h is the size of the
search graph in data words. Only two synchronizations are needed, instead of the three for PBP-1,
because we have one calculation step for ODL and two calculation steps for PBP-1. We show
the corresponding BSP diagram in Figure 9. In Theorem 3, we show the running times for the
one-to-one and many-to-many algorithm of ODL.

Theorem 3. The one-to-one and many-to-many algorithms of ODL take
OpE1

C ¨ logpV 1
Cq`R ¨ logpBqq` g ¨OpB`R`E1

C `V
1
Cq` 2l and |T | ¨OpE1

C ¨ logpV 1
Cq`R ¨ logpBqq`

|S| ¨OpE1
C ¨ logpV 1

Cq`R ¨ |T | logpBqq` g ¨OpB`R`p|S| ` |T |q ¨ pE1
C `V

1
Cqq` 2l time, respectively.

Proof. For the one-to-one algorithm, the part of the overlay graph we need to load is of size
OpB ` Rq, because when l0ps, tq “ L, we load 2 ¨K ´ 2 cells for each level, including the highest
level of the overlay graph. The base level cells both have size OpE1

C ` V 1
Cq. Together they form

the message size h that is sent from the database to the orchestrator process. The computational
cost w is equal to the cost of the regular CRP algorithm. After the communication step, the
orchestrator process has all information it needs to compute a shortest path. This results in the
following running time of ODL’s one-to-one algorithm (following (6)):

OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq ` g ¨OpB `R` E1
C ` V

1
Cq ` 2l.

The search graph for the many-to-many algorithm also consists of an OpB ` Rq-sized part of the
overlay graph. Additionally, we need |S| ` |T | base level cells, so the total search graph is of size
OpB `R` p|S| ` |T |qpE1

C ` V
1
Cqq. Cost w is again the same as for regular CRP, leading to a total

cost of (again, following (6))
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|T |¨OpE1
C ¨ logpV 1

Cq `R ¨ logpBqq ` |S| ¨OpE1
C ¨ logpV 1

Cq `R ¨ |T | logpBqq`

g¨OpB `R` p|S| ` |T |q ¨ pE1
C ` V

1
Cqq ` 2l.

Orch. DB

Communication step

Synchronisation

Computation step

Synchronisation

Figure 9: BSP diagram of a one-to-one or many-to-many query for ODL. In the communication
step, the database process (DB) sends the search graph to the orchestrator process (Orch.). In
the computation step, the orchestrator process performs a CRP search and calculates (a) shortest
path(s).

3.3 Discussion of the algorithms

In this section, we discuss and compare the suggested algorithms and their analyses. We will
look at the criteria we mentioned in our introduction: performance in terms of running time and
memory usage, which includes the communication steps; scalability; the extension to many-to-many
queries; the distribution of work among the processes; and the impact of the query distance and
of the natural cuts in the network on the performance. We also mentioned the correctness of the
algorithm as a point of emphasis in case we would come up with an algorithm that affects the
correctness of CRP. The three algorithms we suggest, however, obtain the same path as CRP, so
the correctness is not an issue.

Performance All three algorithms add extra steps to the CRP algorithm while aiming to improve
scalability. The PBP-1 algorithm performs CRP spread across two different processes and adds one
communication step in between. The running time of PBP-1 is therefore of the same order as CRP’s
running time, with the added cost of size g ¨OpBL´1

C q`3l: the cost of the communication step plus
three synchronisations. Also important to note is that PBP-1 does not need any communication
when the query starts and ends within one process’s subgraph. Especially in realistic scenarios,
in which most queries are local, this is an important benefit. ODL follows a similar pattern: it
performs the same computing steps as CRP, but adds an extra communication step. The added
running time for ODL on top of CRP’s running time is therefore of size g ¨OpB`R`E1

C`V
1
Cq`2l.

The running time of PBP-2 relative to CRP is more ambiguous, as it not only depends on network
characteristics g and l, but also on the number of iterations k and the number of extra computations
it performs due to its label-correcting approach. The added cost due to communication has size
Opk ¨ g ¨ B̃L´1

C ` lq. Note that this means that the run time of PBP-2 relies a lot more (a factor
Opkqq on g and l than the run times of both PBP-1 and ODL, since the latter two have only
one communication step. However, the message size of PBP-2 is the smallest: OpB̃L´1

C q versus
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OpBL´1
C q for PBP-1 and OpB`R`E1

C `V
1
Cq for ODL. In our experiments, we will examine k and

the message sizes for all three algorithms empirically, which will give an indication of the tradeoff
between the multiple small messages of PBP-2 and the one large message for PBP-1 and ODL.

The memory usage for ODL is expected to be much lower than for the two PBP approaches,
since it does not have any graph data in memory continuously. PBP-1 and PBP-2 have a similar
amount of graph data in memory: approximately a fraction 1

|P | “
1
K of the graph. Another factor

in the amount of memory that is used by a process is the message sizes during communication.
During a query, these messages have to be created, sent, received and processed, which means they
are present in the internal memory. In addition, the subprocesses of PBP-2 have to keep some
state for every query it is working on during the label-correcting iterations. PBP-1 and ODL have
the advantage of only having to send or receive a message once, do corresponding calculations and
be able to delete all query-related data from memory. We expect therefore that the subprocesses
of PBP-2 will have the highest memory consumption of the three algorithms with PBP-1 not
too far behind. ODL will use very little memory compared to the other two. The regular CRP
algorithm keeps the entire graph in memory, but does not have the added memory usage due to
communication.

Scalability The orchestrator process of ODL does not have to preload any data, which means
starting a new instance will be fast. This implies that during peaks in work load, when we may need
extra instances to handle all incoming queries, the algorithm can efficiently scale up and during
times with few queries it can scale down quickly. We do not scale the database process, i.e. we
always have one instance of this process. If we would scale the database, we would have to load
the entire graph for each new instance, just as we would do for regular CRP. Therefore, we would
lose the scalability advantages of ODL compared to regular CRP. Both the PBP algorithms, as
well as the regular CRP algorithm, have to load graph data before they can perform calculations.
The startup times for instances of the PBP approaches will be similar, since the only difference is
the top level of the overlay graph that is included for every subprocess of PBP-1 and excluded for
PBP-2. Most of these cells of continental-sized graphs can be stored in less than one megabyte,
while all graph data together is a couple of gigabytes (see Section 4.1) hence this will not increase
the startup time of PBP-1 significantly compared to PBP-2. In our experiments we will look at the
impact on the starting time of only having to load fraction 1

|P | during PBP instead of the entire
graph during the regular CRP algorithm.

Many-to-many queries During the execution of the many-to-many algorithm of PBP-1, there is
communication between all target processes and all source processes. So, when many of the sources
and targets are contained in subgraphs of different processes, the number of messages increases. In
realistic applications, where most sources and targets are relatively close to each other, we do not
have many different target and source processes and hence not a big increase in communication
frequency. The message size increases with a factor OpT q: each target process p sends a message
of size |Tp| ¨ OpBL´1

C q “ Op|T | ¨ B̃L´1
C q. For PBP-2, we see the same type of increase in message

size: from OpB̃L´1
C q per process p for a one-to-one query to |Sp| ¨ OpB̃L´1

C q “ Op|S| ¨ B̃L´1
C q for a

many-to-many query. The number of messages will increase as well, as the number of iterations is
equal to the maximum among the needed iterations for one-to-one queries between each ps, tq-pair.
How much this increase is, will be investigated in our experiments. The message size for ODL
increases by a factor Op|S|` |T |q to OpB`R`p|S|` |T |qpE1

C `V
1
Cqq. Other than that, it performs

the same steps as the regular CRP algorithm.

31



Distribution of work The distribution of the work load in the PBP approaches strongly depends
on the partition of the graph, especially for PBP-1. If the sources and targets of the queries are
randomly chosen from the entire node set, the number of requests per subprocess is proportional to
the number of nodes per subgraph. So, if the number of nodes is roughly equal per subgraph, the
workload per PBP-1 subprocess will be roughly equal as well. However, this does not happen often
in realistic scenarios, as some areas of the graph will more commonly contain sources and/or targets
than other areas. In these cases, the load of the processes containing these areas of the graph will
increase. This is also an advantage in terms of scalability: we can increase the number of instances
of particular processes, instead of having to start another instance with the entire graph in memory
as we would have to do with regular CRP. The distribution of work for PBP-2 is spread more
evenly among the processes, since a process does not have to contain a source or target to be active
during a query. For realistic scenarios, where some subprocesses contain more sources or targets
than others, the work load will increase for these processes, but for their neighbour processes as
well. This is because the processes containing more sources or targets will also reach the common
boundary with their neighbouring processes more often, causing them to send messages to these
neighbours. For ODL, the work is not distributed among different processes: the orchestrator
performs all calculations, while the database stores all graph data.

Impact of query distance For PBP-1, a lot of the performance depends on whether it needs
its communication step. When the source and target are contained in the subgraph of one process,
the run time will be significantly faster. Therefore, for those cases, query times will be similar to
those of the regular CRP algorithm, with the addition that we expect a jump in query duration
for queries between nodes on different processes. We expect the same jump for PBP-2, as we only
have to communicate once the source and target are not on the same process. For ODL, we expect
a more gradual increase in run time as the query distance increases. We only load cells up to level
l0ps, tq, so when the source and target are in the same cell on low levels, i.e. the query distance
is small, we load fewer cells. The larger the query distance, the more cells we need to build our
search graphs. Hence, loading these cells from the database will take more time.

Impact of natural cuts The partitioning algorithm used for CRP exploits the natural cuts in
road networks to minimize the number of boundary edges between cells. The number of boundary
edges will therefore increase, and thus performance will decrease, when these natural cuts do not
exist or exist to a lesser extent. We expect the largest impact for the PBP-2 algorithm, as more
boundary edges implies paths will be more likely to traverse cell boundaries more often. This means
PBP-2 will need more iterations on average. Less convenient partitions will also increase the total
amount of graph data, as we have more boundary points and thus shortcuts per cell. Therefore,
the ODL algorithm will have to load more data on average, which will decrease performance. The
same goes for PBP-1: the one message it has to send, will be larger. We will examine the impact of
the partition’s quality by testing our algorithms on two maps generated by following the GREREC
model we treated in Section 2.5, as well as two real road networks.

4 Implementations

4.1 Maps

In our experiments we use two real maps provided by Ortec: one of The Netherlands, Belgium,
Germany and France (which we call the “Europe map” for convenience sake) and one of the 29 most
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Eastern states of the United States (the “USA map” from now on). These maps are modelled as
directed graphs, but in both maps approximately 95% of all edges has a counterpart in the opposite
direction. We use the aforementioned KaHIP algorithm to compute partitions consisting of 5 levels
of both graphs with split size K “ 10. Additionally, the algorithm takes a float α P r0, 1s that
controls the allowed imbalance in the partitioning, meaning that for all processes p, the constraint

|Vp| ď
p1` αq ¨ |V |

K

is satisfied. A higher allowed imbalance enables the algorithm to try more different cuts, generally
leading to fewer boundary edges, at the cost of having larger differences in cell sizes. For the
partitions of the maps in our experiments, we use α “ 0.4. These values for K and α were chosen
by Ortec after trying out a few different setups. For each setup, the performance of CRP queries
was determined. The setup was chosen for which the best performance was achieved.

We associate a cell of the overlay graph with a list of boundary points and a cost array-index.
The shortcuts in each cell form a clique. For the entire graph, we store an array with the costs of
all preprocessed shortcuts, where the costs of all shortcuts of a cell are stored contiguously. When
scanning a boundary point of a cell during our search, we use the index to access the part of the
cost array we need. As edge costs, we use a linear function of the two static road properties edge
length in meters and the needed time in seconds to traverse them (each edge has an associated
travel speed): 1.5 times the travel time plus the edge length. The reason for using a combination of
both travel time and travel distance is that in applications it is often not preferable to have slightly
shorter travel times if that means we have to take a large detour. For example, if driving an extra
20 km would result in a gain in total travel time of a few seconds, we prefer the route with shorter
distance and longer travel time. The ratio 1.5:1 is an arbitrary choice made by Ortec, which works
well for their applications. We use 44 bytes to represent a boundary point and three integers, i.e.
12 bytes, to represent a cost. These sizes are important to determine our message sizes for the PBP
approaches, since they consist of (boundary point, cost)-pairs.

Important for the ODL algorithm is the notion of partition codes. We associate a partition code
with each node to be able to determine to which cell it belongs on each level of the overlay graph.
A partition code consists of four bits per level. To determine in which level l-cell a node is situated,
we look at the 4 ¨ pL ´ lq most significant bits of its partition code. So the base level cell of node
is determined by looking at the entire partition code, while the top level-cell (on level L ´ 1) is
encoded by just the first four bits.

At the end of Section 4.1, we present some properties of the maps and their partitions in Tables
2 and 3. Furthermore, we show the sizes in bytes of the maps we use during our experiments in
Table 4, including the subgraph sizes for each PBP process. Lastly, we show the average sizes in
bytes of the graph cells in Table 5. This will determine the amount of data we have to load while
performing an ODL query.

4.1.1 GREREC

In this section, we explain how we generated the two random road networks we use in our experi-
ments. We follow the GREREC model [35] we treated in Section 2.5. We chose to generate maps
of size and with values for indices α, β and γ that are similar to our real maps of Europe and the
USA, so that we better isolate the effects of the (absence of) the natural cuts in the graph on the
performance of the algorithms. Our first artificial map, which we call “Grerec-1” aims to have
similar characteristics as the Europe map, while “Grerec-2” is modelled after the map of the USA.
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To generate a grid of similar dimensions to those of our real maps, we drew rectangles around
the maps and determined their ratios. Since the number of nodes in the grid is the product of
its dimensions, we subsequently multiplied the ratios of the rectangle with a factor based on the
total number of nodes of the real map. As an example, we take our Europe map, which consists of
20.321.661 nodes and can be boxed in by a rectangle with ratio 1105 : 1054. Hence, we determined
the length n of the grid for Grerec-1 by

n “

c

1105

1054
¨ 20.321.661 « 4616

and width m by

m “

c

1054

1105
¨ 20.321.661 « 4403.

What remains is determining values for p and q, the probabilities of keeping edges in the grid and
of generating shortcuts, respectively. We determined these values by calculating indices α, β and γ
for the real maps, then computing many networks following the procedure of the GREREC model
with varying values for p and q. For each generated map, we calculated α, β and γ, as well as the
total number of edges, and picked a map with similar values to those of the real map. These indices
are intended for undirected graphs, while the maps we use, as we mentioned earlier, are modelled
as directed graphs. However, because of the low number of one-directional roads in the graphs,
we simply use the underlying undirected graph to calculate the indices. Again, as an example
we take the generation of Grerec-1 based on the Europe map: for the latter map we calculated
pα, β, γq « p0.09, 1.18, 0.40q. Using parameter values p “ 0.55 and q “ 0.1 generated a map with
the same values for these indices. Moreover, the random network contains 47.918.162 (undirected)
edges, very close to the number of edges in the underlying graph of the Europe map (45.804.119).
We converted each undirected edge of the random network to two directed edges and used this
map as Grerec-1 during our experiments. Grerec-2 was generated with input values n “ 6513,
m “ 3995, p “ 0.6 and q “ 0.1, resulting in a map with properties similar to our USA map, for
which we calculated pα, β, γq « p0.13, 1.25, 0.42q. In Tables 2-5 we present properties of all four
maps we use in this project.

Europe Usa Grerec-1 Grerec-2

Nodes 20.321.661 26.018.211 20.324.248 26.019.435
Edges 91.608.238 123.650.100 95.836.324 130.331.152
Boundary points 1.477.762 1.475.904 744.196 1.235.732
Shortcuts 17.921.501 17.482.309 5.089.656 19.315.832
Size (in GB) 2.54 3.29 2.44 3.43

Table 2: The total number of nodes, edges, boundary points, shortcuts per map and their sizes in
gigabytes.
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Europe Usa Grerec-1 Grerec-2

Level 1

Nodes 236 299 231 319
Edges 1.063 1.422 1.092 1600
Boundary points 17 17 10 17
Shortcuts 98 111 35 95

Level 2

Nodes 2.192 2.772 2.170 2.910
Edges 9.882 13.175 10.230 14.575
Boundary points 39 36 21 41
Shortcuts 494 486 137 541

Level 3

Nodes 20.843 26.685 20.888 26.550
Edges 93.957 126.821 98.496 132.990
Boundary points 92 80 53 113
Shortcuts 2.818 2.282 860 4.062

Level 4

Nodes 203.217 260.182 203.242 260.194
Edges 916.082 1.236.501 958.363 1.303.312
Boundary points 223 165 153 341
Shortcuts 15.359 9.031 6.403 33.245

Level 5

Nodes 2.032.166 2.601.821 2.032.425 2.601.944
Edges 9.160.824 12.365.010 9.583.632 13.033.115
Boundary points 464 248 368 843
Shortcuts 58.523 19.198 36.370 188.095

Table 3: The average number of nodes, edges, boundary points and shortcuts per cell on each level
of the partitions of the maps. Each boundary point is counted twice: once for the cells on both
sides of the boundary it is situated on.

min max avg

Europe

PBP-1 subgraph 171 375 287
PBP-2 subgraph 165 369 281

USA

PBP-1 subgraph 136 497 361
PBP-2 subgraph 134 494 359

Grerec-1

PBP-1 subgraph 142 387 273
PBP-2 subgraph 138 383 270

Grerec-2

PBP-1 subgraph 135 539 392
PBP-2 subgraph 115 523 574

Table 4: The minimum, maximum and average sizes of the subgraphs for PBP-1 and PBP-2 in
megabytes.
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Europe Usa Grerec-1 Grerec-2

Base level graph 39.1 53.9 67.1 87.2

Level-1 cell 1.75 2.01 0.864 1.70
Level-2 cell 9.2 8.92 2.49 10.2
Level-3 cell 53.6 43.9 17.1 75.7
Level-4 cell 287 168 117 600
Level-5 cell 896 385 711 2844

Table 5: The average size of cells in the overlay graph in kilobytes.

4.2 Azure Functions

Azure Functions is a compute service offered by Microsoft [28] that we use to implement our
algorithms. It allows users to implement software into blocks of code, called “functions”. These
functions are executed when they are subjected to a certain trigger. Possible triggers include
HTTP-requests, timers and uploading a file to storage.

The main benefit of Azure Functions, and also the main reason why it suits our experiments,
is that they scale automatically: when the number of requests increases, it provides the function
with more resources, i.e. an extra instance of the function, to meet the demand. When the number
of requests decreases, the number of instances drops automatically. This allows us to not worry
about any scaling rules and just observe how many resources our algorithm needs in each scenario.

One instance of a function is provided with a certain number of virtual processors (vCPUs)
and amount of memory, depending on the hosting plan. A vCPU is a physical CPU, in this case
belonging to a computer in one of Microsoft’s data centers, that is assigned to a particular virtual
machine (or Azure Function in this case). Microsoft allocates these CPUs (and the memory), so as
a user, we have no control whether our different functions have their resources allocated on the same
underlying machine, while it could impact the performance of our communication steps. However,
it is guaranteed that the functions are hosted on machines in the same data center, which should
provide a reasonable upper bound: the latency for communication between computers in one data
center should be smaller than 5 ms. This uncertainty regarding the performance of communication
is one of our motivations to analyse the communication theoretically as well as empirically.

An Azure Function has a couple of options with respect to hosting. Microsoft offers three basic
hosting plans: a consumption plan, a premium plan and a dedicated plan. The dedicated plan
is intended for long-running scenarios and is therefore not applicable for our experiments. The
most relevant features for this research of the premium plan are that it offers more memory than
the consumption plan (up to 14 gigabytes versus 1.5 gigabytes) and that it enables the use of
pre-warmed instances. Pre-warmed instances are instances that run despite demand not requiring
them. When there is a peak in work load, they are readily available to handle part of it. When
this happens, a new instance is pre-warmed. So, the pre-warmed instances act as a buffer in case
of load peaks. In our experiments, almost all processes exceed 1.5GB memory use, so we use a
premium plan for every process. In a premium plan, billing is based on the number of core seconds
and the amount of memory allocated across instances.

When working with stateful workflows, Microsoft recommends using Durable Functions. This
extension of Azure Functions lets the user write stateful orchestrator functions and (stateless)
entity functions that are called by an orchestrator function and do actual calculations. Such an
orchestrator function works as follows: it runs its code and stores intermediate results from entity
functions. Then, it reruns its code multiple times, while checking every time an entity function
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should be called, if its result is already in storage. If the result is already in storage, the orchestrator
gets it from there; otherwise, it calls the entity function. This behaviour enables a function to keep
state.

At first sight, this seemed to suit our application: we want to call multiple processes when
performing a query and want to maintain a global state, e.g. the current tentative distance(s),
messages to be sent etc. Therefore, we initially implemented our algorithms using Durable Func-
tions. We found out that achieving any of our desired performance objectives was not possible
this way: queries could take up to 20 minutes. We suspect the rerunning mechanism causes this
problem, which made us decide to switch to regular Azure Functions. These functions are not
necessarily designed to maintain state, but when the duration of one execution is short (which it
is for answering shortest path queries) and by implementing some basic restarting mechanisms of
our own, the functions performed as we expected.

4.3 Redis

Redis (short for “Remote Dictionary server”) is an open source, in-memory data structure store,
which can be used as a database, cache or message broker [19]. It achieves high performance by
storing data in-memory rather than on a disk. When an application uses data from external sources,
the latency and throughput (the rate of message delivery over the communication channel) of those
sources can become the performance bottleneck, in particular during high work loads. A way to
improve performance in such cases is to store data in-memory, physically closer to the application.
Redis was created to do this: it uses the main memory of a server to store data types and structures
such as strings, hashes, bit arrays, lists, and sets [33]. Users can connect to the server and perform
atomic operations on these types, e.g. appending to a string, incrementing the value in a hash, or
adding an element to a list.

A Redis database stores key/value pairs. A Redis key must be a string, while the associated
value can be of any of the supported data types or structures.

We will use a Redis database to store graph data for our ODL approach. Microsoft offers Azure
Redis Cache: a Redis database on a Microsoft server. Different pricing options are offered. For our
application we require high networking performance, as we want to load a query’s search graph and
still answer the query within milliseconds. We therefore use a Redis P4 cache, which promises the
best networking performance (bandwidth of 750 megabytes per second) and provides a 53 gigabytes
database size.

One advantage of using an in-memory database is that performance is expected to be signifi-
cantly better than when we would store data on a disk. Among in-memory databases, Redis offers
the most high-end features, like supporting more advanced data structures and snapshots (period-
ically saving the dataset on disk). Furthermore, Redis achieves high performance: we experienced
loading times of approximately 9 ms per megabyte with a Redis P4 cache, which should be fast
enough to load the query’s search graph at the moment the query arrives. A drawback of Redis is
its cost: it is considerably more expensive than in-memory alternatives with fewer high-end features
like Memcached [26] or than on-disk alternatives like MongoDB [29].

4.4 The algorithms

We will describe our implementations of PBP-1, PBP-2 and ODL in this section. All code is
written in C#. The communication messages are in JSON format. For each process, we create one
Azure Function with its own hosting plan with four cores and 14 gigabytes of RAM per instance
(Azure’s EP3 plan). To compare our algorithms to the normal CRP algorithm, we used Ortec’s
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implementation of CRP. We created one Azure Function, to which we refer as the orchestrator
process of regular CRP, which keeps the entire graph in memory, receives queries, performs the
CRP algorithm and returns the result.

In our CRP implementation, we calculate queries from a source edge to a target edge, instead of
from a source node to a target node. These edges have an associated float inside the unit interval,
to indicate where on the edge the source/target exactly is situated. This enables more precise
routing: instead of having to start and finish a query at a node, we can start and finish at any
point on an edge. These source and target edges are traversed only partly. When we reach the first
node, the algorithm is just as we described.

PBP-1 Our PBP-1 implementation uses K`1 processes in total: one orchestrator processes and
one process per subgraph. The subgraphs are constructed by taking the highest level of the overlay
graph and assigning each of the K cells to a different process. The subgraph then consists of one
top level cell and all its subcells. Additionally, we store the boundary points and shortcut costs of
all K top level cells (naturally, without their subcells) on each process as well. The orchestrator
only keeps one mapping “EdgeToProcess” in memory. This mapping is built in preprocessing
and consists of (edge, process number)-pairs, so that the orchestrator can determine for each edge
on which process it is situated. In our pseudocodes (Appendix A), we show the algorithms that
compute node-to-node shortest paths. In such a case, we would create a “NodeToProcess” mapping
with (node, process number)-pairs. When the orchestrator receives a query, it determines on which
process the source and target lie. If both nodes/edges are on one process, the orchestrator sends
the query to that process. After performing a bidirectional CRP search, the process returns a
shortest path to the orchestrator. If the source and target processes are two different processes, the
orchestrator sends a message to the target process, which can start its backward search and return
its search space to the orchestrator process. The orchestrator then sends the search space to the
source process, which conducts the forward search and returns a shortest path. In Figure 10, we
show a diagram of the communication during a PBP-1 query.

For many-to-many queries, the orchestrator process uses the aforementioned mapping to deter-
mine all source and target processes. It sends a message containing local targets Tp to each target
process p. Each target process performs (in parallel) a backward search for each of its targets t P Tp
and sends its search space back to the orchestrator. The orchestrator combines these search spaces
to one search space and sends this combined search space to each source process. Each source
process p performs (again, in parallel) a forward search for each of its sources s P Sp, calculating
shortest distances to each target t P T . It returns these distances, after which the orchestrator can
fill the entire |S| ˆ |T | cost array by combining the messages of all source processes.

Note that this implementation differs a bit from our description of PBP-1 in Section 3.1.1.
Instead of having one message from the target process to the source process, we send it twice: once
from the target process to the orchestrator and once from the orchestrator to the source process.
For many-to-many queries, we send the entire backward search space to all source processes. We
will mention possible ideas to not have all communication go through the orchestrator process in
Section 6.1.

PBP-2 The PBP-2 implementation also consists of K subprocesses, each containing its own sub-
graph and one orchestrator process that only stores the EdgeToProcess map. These subgraphs are
created during preprocessing just as for PBP-1, but without the duplication of the entire highest
level of the overlay graph for every subgraph. The orchestrator receives the query and sends a mes-
sage to the source and target process, which perform a forward and backward search respectively
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Figure 10: PBP-1 communication for a one-to-one query for which pptq “ process 2 and ppsq “
process 3.

on their subgraphs. Both processes fill an array per neighbouring process with (boundary point,
cost)-pairs they should send to these processes. The arrays are returned to the orchestrator. Then,
for every label-correcting step: the orchestrator collects all returned message arrays and creates the
messages that need to be sent to the subprocesses; it sends each message to the corresponding pro-
cess, which perform their bidirectional label-correcting searches and return the new message arrays
and shortest distances Dps, tq they found on their subgraph; and the orchestrator, if applicable,
improves (global) tentative shortest distance Dps, tq. This is repeated until all returned message
arrays are empty after an iteration, which indicates we have found a shortest path. In Figure 11
we show a diagram of the communication during a PBP-2 query.

Each process has to maintain a state per query, as it needs the already calculated tentative
distances for its boundary points in order to perform a new label-correcting step. We accomplish
this by maintaining a data structure in which we store the priority queues per query, which we
associate with a query id. Each new query that is received by the orchestrator is assigned a unique
id, which is sent with every message regarding that query. Every subprocess can access the priority
queue corresponding to the query using this id. When all iterations have passed, i.e. we have
determined a shortest path, the orchestrator sends a message to all subprocesses indicating they
can delete local data corresponding to the query.

For many-to-many queries, the structure is similar. One difference is that the message arrays
contain (boundary point, cost, target)-triples to indicate which target is associated with the sent
cost. Furthermore, we only perform label-correcting steps for the forward search, so after the
target processes performed their searches, the label-correcting steps consist of unidirectional CRP
searches. The last difference in implementation is that, instead of updating the tentative distance
at each iteration, we wait until the final iteration is performed, after which every source process
returns its |Sp|ˆ |T |-sized part of the complete cost array. The orchestrator composes the complete
cost array by combining these costs.

Our implementation does not use the assumption that we considered paths outside the cell to
compute its shortcuts in preprocessing, so we do need label-correcting steps even when the source
and target are contained in one process’s subgraph.
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Figure 11: PBP-2 communication for a one-to-one query for which k label-correcting iterations are
needed; pptq “ process 2 and ppsq “ process 3.

ODL In our ODL algorithm, we use an orchestrator process as for the PBP approaches to an-
swer queries. For the database containing all graph data, we use Redis and C# client StackEx-
change.Redis [24]. In preprocessing, we construct the database as follows. We store all base level
cells as Redis values associated with their entire partition code of 4 ¨ L bits as its Redis key. Fur-
thermore, we store the cells (the boundary points and their corresponding shortcut costs) by using
a string encoding the level l of the cell and the cell’s partition code as Redis key. All our Redis
values are stored as byte arrays, so we do not use the JSON format as in the PBP approaches.

For each query, we know exactly which cells we need, as we described in Section 3.2. We
can determine the partition codes of these cells based on the partition codes of our source(s) and
target(s). We assume that we know these partition codes when the query arrives. In applications
where this is not the case, we could store a mapping on the orchestrator process containing this
information for each node. The Redis keys of the base level cells are simply the entire partition codes
of these nodes. The partition codes of cells C lpsq and C lptq are determined by looking at the 4¨pL´lq
most significant bits. As shown in Proposition 3, we need cells tC l | C l ‰ C lpvq, C l Ă C l`1pvqu
for v P ts, tu. For each level l, the partition codes of cells C l Ă C l`1pvq share the same first
4 ¨ pL´ l´ 1q bits. So, we can determine which cells we need by taking the first 4 ¨ pL´ l´ 1q bits
of the partition codes of both s and t, loading all cells on level l whose partition codes start with
the same bits, except the cells containing s or t. The orchestrator does not load any data before
a query arrives. It loads the necessary cells from the database as described above, performs the
bidirectional CRP algorithm on the composed graph and computes a shortest path. In Figure 12,
we show the communication diagram of ODL.

4.5 Queries

During our experiments we tested our algorithms on a few different types of queries. In this section,
we will describe how we generated these queries. All requests containing the queries were sent to
the Azure Functions of the orchestrator processes of the algorithms by using Postman [32]. We first
conducted experiments using random one-to-one and many-to-many queries with |S| “ |T | “ 100.
Initially, we generated larger matrix requests as well, e.g. queries with |S| “ |T | “ 1000. However,
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Figure 12: ODL communication for a one-to-one query.

Azure Functions have a maximum size it allows for its JSON messages and during such large
requests, some of the PBP messages exceeded this maximum size. This could possibly be solved
by using compression on the messages, but we did not investigate this during our project and only
performed many-to-many queries with at most 100 sources or targets. The random queries are
generated by simply picking two random nodes for a one-to-one or |S| ` |T | random nodes for a
many-to-many request.

To investigate the scalability of each approach, we test the algorithms on three different types
of loads. First, we look at the scenario that each query is performed consecutively: after a query
is sent, we wait until the result is returned by the algorithm, before we send the next request.
Second, we divide all queries in equally sized batches, which we perform concurrently. This creates
a heavier load on the system, which enables us to investigate how the algorithms handle such
scenarios. The third scenario is created using real customer data from Ortec. One of the customers
of Ortec which uses their routing engines is a Dutch grocery deliverer and we simulated two hours
of their requests to test our algorithms. We collected the source and target locations, as well as the
timestamp of each request during two different time periods of one hour. This resulted in two sets
of queries: “Scenario 1” consisting of 62.088 one-to-one requests and 860 many-to-many requests
and “Scenario 2” with 45.106 one-to-one queries and 455 many-to-many queries. Every request
has an associated timestamp. All locations were in the Netherlands, so we used our Europe map
to answer the queries. Some of the many-to-many queries had source or target sets S or T with
more than 100 nodes. For the reasons we explained above, we only took the first 100 nodes of such
sets. Ultimately, this is the goal of our algorithms: they should work well in realistic scenarios.
These scenarios have peaks and low points in the number of requests, which can provide insight in
the ability of the algorithms to scale up and down during such varying loads. Furthermore, we are
interested in their performance during such loads.

To investigate the impact of the query distance on the performance of the algorithms, we
generated sets of queries per Dijkstra rank. A node v has Dijkstra rank r with respect to source s
when it is scanned during the r-th iteration of Dijkstra’s algorithm started from s. We generated
these queries by picking a random node of the graph as source s, then performing Dijkstra’s
algorithm from s until we reached the desired Dijkstra rank. We took the node we scanned last
as the target node of the query. In realistic applications, it is unlikely that many queries have
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sources and targets on opposite sides of continental-sized graphs. Therefore, we focus on Dijkstra
ranks that are not too high. The maximum Dijkstra rank we used was 223. Most queries regarding
Dijkstra ranks have their source and targets inside one top level cell, only for the highest two ranks
we used (221 and 223) queries cross top level cell boundaries.

5 Experiments and results

5.1 Setup

In our experiments, we test four algorithms (PBP-1, PBP-2, ODL and regular CRP) on four
different maps (Europe, USA, Grerec-1 and Grerec-2). For each algorithm and each map, we
perform the following sets of queries:

1. 10.000 random one-to-one queries,

2. 50 random 100x100 queries,

3. 1000 queries per Dijkstra rank in t27, 29, . . . , 223u,

4. Scenario 1 (62.088 one-to-one queries, 860 many-to-many queries), and

5. Scenario 2 (45.106 one-to-one queries, 455 many-to-many queries).

The first two types of query sets were performed sequentially and in multiple concurrent batches,
as we described in Section 4.5. We used 100 concurrent batches consisting of 100 queries each for
the one-to-one queries and 10 batches of 5 queries each for the 100x100 requests. We executed the
sequential queries twice: once to log additional information regarding the queries such as message
size and function startup time and once to measure performance, so that performance was not
decreased by the extra logging. As for the query information, we first looked at the message sizes
of each algorithm. For PBP-1 and PBP-2, we logged the message sizes during the random one-to-
one and many-to-many queries. During the PBP-2 queries, we additionally examined the number
of iterations per query, as well as the average number of updates per iteration: the number of
processes that perform label-correcting calculations on their subgraphs per iteration. These results
can be found in Tables 6 and 7. The average message sizes of ODL can be computed using Table 5,
the results of which we present in Table 8. During the same queries, we also kept track of the
time it took to start a new instance. The average startup times are shown in Table 9. Lastly, we
investigated the distribution of work load among the subprocesses for both PBP algorithms during
the random queries. We compared them to the number of nodes per subgraph, as we expected (as
mentioned in Section 3.3) them to correlate, especially for PBP-1.

To measure performance, we looked at the duration of the queries, the memory consumption per
function instance and the total number of instances that were used. During some of the experiments
we experienced some failing requests, which were registered as queries with a duration of five
minutes. This caused the average duration to give a distorted representation of the performance,
which is why we chose to only consider the succeeded requests when calculating the average query
duration. In Figure 13, we show the distribution of query durations per algorithm during the first
experiment we conducted. Each algorithm had similar distributions for the other experiments,
except for the experiments with queries per Dijkstra rank, of which we show the query durations
in Figure 17. The number of instances remained constant in during the experiments regarding the
random queries, which is expected since the load remains constant during these experiments as
well. During the realistic load scenarios, the number of used instances did fluctuate, which we show
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in Figures 18-21. For all experiments, we present the average duration and the standard deviation
of the duration for the succeeded queries; the average memory usage and standard deviation of
the memory usage per instance and the total number of used instances. We calculated the average
and standard deviation for memory usage by recording the memory usage every second and taking
the average and standard deviation of that data. The performance results for the random one-to-
one queries are shown in Tables 10 and 11, followed by the performance results for the random
many-to-many queries in Tables 12 and 13.

We continue with the experiments regarding the queries per Dijkstra rank. We experienced
very similar results for every map, so we chose to only present the results of the duration per rank
for one map: the USA map. These can be found in Figure 17.

Finally, we performed the experiments using the real customer data from Ortec. In Figure 14
we show the distribution of these queries. In our Results section, we show the same performance
measures as for the random queries in Tables 14 and 15. We are particularly interested in their
scaling behaviour, i.e. how they react to peaks and low points in the number of received requests,
which is why we plotted the number of running instances over time in Figures 18-21, comparing
them to the distribution of the received requests. Because of the fact that all queries were situated
in the Netherlands, PBP-1 only used two of its ten subprocesses of the Europe map: processes with
numbers 3 and 4. This is the reason why we show the number of instances of process 4 in Figure 19.

As we will see in the upcoming results, the PBP-2 did not handle heavy loads well. We experi-
enced multiple failing requests during a many-to-many experiment on the Grerec-2 map (indicated
with *), to the point where we were uncomfortable presenting any results. Additionally, the re-
alistic load scenarios were too much to handle for this algorithm: it used an explosive number of
instances (couple of tens per subprocess), had very slow query times and many failing requests. We
therefore chose to exclude these results as well. In our discussion of the results in Section 5.3, we
will delve deeper into the possible reasons for these problems. One ODL experiment failed as well:
the many-to-many test on the Grerec-2 map (indicated with **) did not yield results. We expect
this is due to the large cell sizes of Grerec-2.

5.2 Results

Europe Usa Grerec-1 Grerec-2

One-to-one 462 332 234 492
Many-to-many 1152 963 652 1651

Table 6: The average message sizes of PBP-1 in kilobytes. For the many-to-many, the average size
of the message from a target process to the orchestrator is shown.
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Europe Usa Grerec-1 Grerec-2

One-to-one

Iterations 8.4 7.8 7.3 8.3
Updates per iteration 4.7 3.9 4.1 4.0
Message size 12 9 16 60

Many-to-many

Iterations 13.2 13.1 16.1 17.9
Updates per iteration 6.7 5.7 5.0 4.7
Message size 84 53 110 397

Table 7: The average number of iterations, the average number of cells that update their boundary
points during one iteration and the average message size in kilobytes for PBP-2 queries.

Europe Usa Grerec-1 Grerec-2

l0ps, tq “ 1 79 108 134 174
l0ps, tq “ 2 110 144 150 205
l0ps, tq “ 3 275 304 195 388
l0ps, tq “ 4 124 1096 503 1751
l0ps, tq “ 5 5437 4116 2611 12595
l0ps, tq “ 6 21606 11059 15462 63693

Table 8: The average size of the preloaded data for an ODL one-to-one query for different values
of the lowest sharing level l0ps, tq of source s and target t in kilobytes. These results are computed
as follows: for each level used in the query (levels l ă l0ps, tq), multiply the average cell size from
Table 5 by 2 ¨K ´ 2 “ 18, sum them and add the average size of two base level graphs.

PBP ODL RegCrp
Orch. Sub.

Europe 27 (3) 45 (13) 0.54 (0.43) 55 (12)
Usa 35 (5) 47 (6) 0.64 (0.35) 57 (9)
Grerec-1 26 (2) 39 (9) 0.97 (0.19) 42 (5)
Grerec-2 36 (4) 48 (5) 0.95 (0.14) 66 (22)

Table 9: Startup times of new instances of processes in seconds. The averages, with standard
deviation between brackets, over all conducted experiments are shown. For PBP, both the startup
times for the orchestrator process (Orch.) and the subprocesses (Sub.) or shown.
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PBP-1 PBP-2 ODL RegCRP
Seq. Conc. Seq. Conc. Seq. Conc. Seq. Conc.

Europe

Duration (ms) 149
(65)

186
(128)

581
(266)

2.1e3
(2.1e3)

587
(32)

2.9e3
(939)

34
(23)

34
(31)

Memory (GB) 4.2
(0.4)

4.3
(0.5)

2.0
(0.3)

2.3
(0.6)

0.5
(0.3)

3.5
(1.6)

4.4
(0.6)

5.3
(1.2)

Used instances 1 1 1 7 1 4 1 3

Usa

Duration (ms) 109
(76)

124
(162)

450
(241)

904
(578)

210
(25)

1.3e3
(804)

20
(10)

23
(37)

Memory (GB) 6.8
(0.7)

8.5
(0.9)

3.8
(0.2)

3.9
(2.0)

1.2
(0.3)

0.3
(0.4)

6.0
(1.0)

7.1
(3.6)

Used instances 1 1 1 9 1 3 1 4

Grerec-1

Duration (ms) 81
(42)

83
(58)

499
(223)

1.8e3
(1.8e3)

536
(116)

1.4e3
(635)

16
(11)

17
(23)

Memory (GB) 4.2
(0.4)

8.5
(0.5)

3.5
(0.5)

2.7
(1.9)

1.3
(0.3)

0.9
(0.4)

4.0
(1.2)

5.3
(2.7)

Used instances 1 1 1 9 1 5 1 3

Grerec-2

Duration (ms) 157
(93)

246
(222)

1.25e3
(467)

6.1e3
(4.0e3)

741
(77)

5.9e3
(1.7e3)

70
(32)

93
(62)

Memory (GB) 7.4
(0.5)

6.6
(1.3)

2.6
(0.1)

4.2
(1.3)

5.3
(1.9)

2.7
(1.9)

8.1
(1.2)

6.7
(3.9)

Used instances 1 1 1 10 1 8 1 8

Table 10: Performance results of the orchestrator processes of the different algorithms during the
random one-to-one queries. The 10.000 queries were executed sequentially (Seq.) as well as in
100 concurrent batches of 100 queries (Con.). The average duration of all succeeded queries in
milliseconds, with the standard deviation between brackets; average memory usage during the
queries in gigabytes per instance, with the standard deviation between brackets; and the total
number of used instances are shown.
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PBP-1 PBP-2
Seq. Conc. Seq. Conc.

Europe

Duration (ms) 38.0 (25.8) 50.6 (57.9) 10.4 (12.9) 18.8 (21.0)
Memory (GB) 2.0 (0.4) 1.8 (0.7) 1.1 (0.3) 3.5 (1.2)
Used instances 1 3 1 2

Usa

Duration (ms) 28.8 (24.4) 32.3 (50.0) 4.34 (3.64) 4.79 (3.97)
Memory (GB) 4.6 (0.7) 3.4 (1.5) 9.8 (0.4) 8.3 (3.3)
Used instances 1 2 1 2

Grerec-1

Duration (ms) 22.0 (18.3) 21.3 (27.3) 6.9 (7.4) 20.3 (26.2)
Memory (GB) 4.6 (0.5) 4.3 (1.2) 10.6 (0.9) 7.7 (3.7)
Used instances 1 2 1 5

Grerec-2

Duration (ms) 52.2 (33.8) 60.1 (42.8) 19.4 (26.2) 63.7 (71.3)
Memory (GB) 4.5 (0.3) 4.1 (1.2) 10.1 (0.7) 9.5 (3.1)
Used instances 1 2 1 9

Table 11: Performance results of the subprocesses of the PBP algorithms during the random one-
to-one queries. The 10.000 queries were executed sequentially (Seq.) as well as in 100 concurrent
batches of 100 queries (Con.). The average duration of all succeeded tasks in milliseconds, with the
standard deviation between brackets; average memory usage during the tasks in gigabytes, with
the standard deviation between brackets; and the total number of used instances are shown.
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PBP-1 PBP-2 ODL RegCRP
Seq. Conc. Seq. Conc. Seq. Conc. Seq. Conc.

Europe

Duration (s) 34.5
(7.9)

41.4
(21.2)

38.1
(7.0)

93.0
(43.3)

57.0
(4.1)

92.1
(51.1)

4.45
(0.167)

28.1
(23.9)

Memory (GB) 4.5
(0.7)

4.1
(2.1)

3.7
(1.3)

4.5
(2.6)

0.4
(0.1)

1.0
(0.5)

8.7
(0.8)

6.5
(1.8)

Used instances 1 3 1 3 2 2 1 3

Usa

Duration (s) 27.0
(9.5)

92.2
(53.0)

23.3
(13.6)

70.0
(53.5)

18.9
(0.353)

33.3
(7.7)

2.31
(0.143)

2.53
(0.218)

Memory (GB) 10.9
(1.3)

6.4
(3.0)

4.4
(1.0)

4.5
(2.5)

0.5
(0.1)

1.3
(0.7)

9.6
(0.7)

10.1
(1.8)

Used instances 1 3 1 3 1 2 1 3

Grerec-1

Duration (s) 20.7
(11.7)

45.1
(34.2)

41.5
(9.9)

99.4
(56.5)

45.2
(2.26)

75.1
(25.4)

1.99
(0.075)

4.58
(2.51)

Memory (GB) 6.7
(0.8)

4.9
(2.7)

6.3
(0.2)

4.0
(3.5)

1.2
(0.1)

1.1
(0.8)

8.0
(1.2)

7.6
(1.1)

Used instances 1 3 1 4 1 3 1 2

Grerec-2

Duration (s) 43.2
(1.3)

68.4
(26.9)

172
(13.1)

56.5
(0.623)

9.28
(0.342)

21.3
(19.0)

Memory (GB) 7.5
(0.6)

8.1
(2.7)

7.6
(0.9)

* 0.7
(0.2)

** 7.8
(3.1)

5.9
(3.4)

Used instances 1 2 1 1 1 4

Table 12: Performance results of the orchestrator processes of the different algorithms during the
random 100x100 queries. The 50 queries were executed sequentially (Seq.) as well as in 10 concur-
rent batches of 5 queries (Con.). The average duration of all succeeded queries in seconds, with the
standard deviation between brackets; average memory usage during the queries in gigabytes, with
the standard deviation between brackets; and the total number of used instances are shown.
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PBP-1 PBP-2
Seq. Conc. Seq. Conc.

Europe

Duration (s) 3.41 (3.65) 6.15 (8.51) 0.108 (0.152) 0.320 (0.483)
Memory (GB) 1.7 (0.8) 3.9 (1.7) 1.5 (0.2) 4.1 (2.1)
Used instances 2 4 1 2

Usa

Duration (s) 2.86 (3.03) 8.03 (4.27) 0.039 (0.055) 0.264 (0.404)
Memory (GB) 5.7 (0.4) 3.5 (1.9) 5.4 (1.4) 4.0 (2.5)
Used instances 1 3 1 2

Grerec-1

Duration (s) 1.68 (1.68) 2.18 (2.37) 0.023 (0.040) 0.203 (0.429)
Memory (GB) 4.4 (0.9) 4.9 (2.7) 10.0 (2.8) 3.7 (2.3)
Used instances 1 2 1 2

Grerec-2

Duration (s) 4.65 (4.23) 4.69 (6.06) 0.027 (0.051)
Memory (GB) 5.0 (0.3) 3.5 (2.0) 5.4 (2.1) *
Used instances 1 1 1

Table 13: Performance results of the subprocesses of the PBP algorithms during the random
100x100 queries. The 50 queries were executed sequentially (Seq.) as well as in 10 concurrent
batches of 5 queries (Con.). The average duration of all succeeded tasks in seconds, with the
standard deviation between brackets; average memory usage during the queries in gigabytes, with
the standard deviation between brackets; and the total number of used instances are shown.

PBP-1 ODL RegCRP

Scenario 1

Duration one-to-one (ms) 27.9 (24.2) 116 (130) 7.24 (13.6)
Duration many-to-many (s) 20.2 (8.2) 121 (63.5) 4.33 (0.619)
Memory (GB) 6.9 (2.0) 1.7 (0.7) 7.4 (4.0)

Scenario 2

Duration one-to-one (ms) 30.2 (33.8) 87.1 (88.9) 7.14 (15.0)
Duration many-to-many (s) 22.5 (12.5) 93.3 (60.5) 4.33 (0.530)
Memory (GB) 6.7 (2.7) 1.6 (0.6) 8.1 (3.1)

Table 14: Performance results of the orchestrator processes of the different algorithms during the
realistic load scenario’s. The average duration of all succeeded one-to-one queries in milliseconds,
the average duration of all succeeded many-to-many queries in seconds and the average memory
usage during the queries in gigabytes are shown. In each column, the standard deviation is shown
between brackets.
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PBP-1

Scenario 1

Duration one-to-one (ms) 16.5 (16.4)
Duration many-to-many (s) 6.78 (5.78)
Memory (GB) 7.7 (2.9)

Scenario 2

Duration one-to-one (ms) 17.0 (17.8)
Duration many-to-many (s) 5.02 (2.61)
Memory (GB) 7.8 (3.1)

Table 15: Performance results of the subprocesses of PBP-1 during the realistic load scenarios. We
only considered the two active processes. The average duration of succeeded executions during all
one-to-one queries in milliseconds, the average duration of succeeded executions during all many-to-
many queries in seconds and the average memory usage during the queries in gigabytes are shown.
The standard deviations are shown between brackets.

Figure 13: Distribution of run times in milliseconds for the different algorithms during the 10.000
one-to-one queries on the Europe map. The horizontal axis is split into 100 buckets and for every
bucket the number of queries with a duration within that bucket is shown.
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Figure 14: Distribution of queries in the realistic load scenarios 1 (top) and 2 (bottom). The
number of received one-to-one requests (blue) and many-to-many requests (pink) are shown.
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Figure 15: Distribution of work load for PBP-1 during the 10.000 random one-to-one queries on the
USA map. We show the number of received requests per subprocess in pink. In blue, the number
of nodes (divided by 2000) per process is shown as a reference.
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Figure 16: Distribution of work load for PBP-2 during the 10.000 random one-to-one queries on the
USA map. We show the number of received requests per subprocess in pink. In blue, the number
of nodes (divided by 100) per process is shown as a reference.
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Figure 17: Run time in milliseconds of each algorithm per Dijkstra rank (in powers of two).
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Figure 18: Number of instances during the two realistic load scenarios for the orchestrator process
of PBP-1 (pink). As a reference, we show the number of received one-to-one requests (blue) and
the number of received many-to-many requests multiplied by 10 (orange).
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Figure 19: Number of instances during the two realistic load scenarios for process 4 of PBP-1
(pink). As a reference, we show the number of received one-to-one requests (blue) and the number
of received many-to-many requests multiplied by 10 (orange).
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Figure 20: Number of instances during the realistic load scenarios for ODL (pink). As a reference,
we show the number of received one-to-one requests (blue) and the number of received many-to-
many requests multiplied by 10 (orange).
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Figure 21: Number of instances during the realistic load scenarios for RegCRP (pink). As a
reference, we show the number of received one-to-one requests (blue) and the number of received
many-to-many requests multiplied by 10 (orange).
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5.3 Discussion of the results

Performance In order to improve scalability, all algorithms experienced lesser performance com-
pared to the regular CRP algorithm, which is in accordance with our theoretical analyses of Sec-
tion 3. As we saw in those analyses, PBP-1 and ODL both execute the CRP algorithm with one
added communication step consisting of one message (or actually two in our PBP-1 implementa-
tion), while PBP-2 adds multiple communication steps with multiple messages per step and extra
computations for its label-correcting approach. Looking at the results regarding these communica-
tion steps during the experiments in Tables 6-8, we see that the message sizes for PBP-1 queries are
on average around 500 kilobytes for a one-to-one and around 1 megabyte for the 100x100 queries.
The message size for PBP-2 is much smaller than for PBP-1: a factor 8 up to a factor 30. Further-
more, we see it uses on average approximately 8 iterations with 4 active processes (i.e. processes
that perform a label-correcting step on their subgraphs) for one-to-one queries and 13-18 iterations
with 5-7 active processes during 100x100 queries. ODL loads for long-range queries, in which we
need the top-level cells, 10-60 megabytes of graph data, depending on the map. The amount of
data decreases fast when we only need lower levels of the overlay graph, since the top level cells by
far take up the largest part of the data.

The performance results of the algorithms during our experiments can be viewed in Tables 10-
15. The added communication step for PBP-1 resulted in query times that were approximately 4-5
times slower than those of CRP during random one-to-one queries and around 10 times slower for
100x100. The requests handled by subprocesses, where the actual calculations are performed, have
durations close to query times of regular CRP. This was expected, as the subprocesses basically
perform CRP on their subgraph. This also implies that for queries with source and target on
one process’s subgraph, PBP-1 achieves query times similar to those of regular CRP, which also
explains the peak around the 30 ms mark in Figure 13. Furthermore, we see that the performance
does not get much worse during peaks in the number of requests: both for the concurrently sent
random queries and during the realistic load scenarios, we did not see a big increase in query times.
The memory usage of an instance of the orchestrator process is similar to that of CRP, during the
random queries as well as during the realistic load scenarios. This shows that receiving and sending
the requests, collecting results and combining search spaces (for many-to-many requests) uses quite
a lot of memory, as this process does not keep any graph data in memory. The subprocesses use
less data than an instance of regular CRP, which is to be expected as it has a smaller graph in
memory.

PBP-2 is significantly slower than PBP-1. During not so heavy loads, such as the sequentially
executed one-to-one queries, query times are around half a second (except on Grerec-2). The
algorithm performs more computation steps than regular CRP: in Tables 7 and 11 we can see
that the algorithm uses, for example, an average of 8.4 iterations on the Europe map, and the
actual calculations during these iterations take around 10 ms on average, while the complete query
times of regular CRP on this map were 34 ms on average. The rest of PBP-2’s query time is
spent on communication and synchronizing. This suggests that the cost per message and per
communication step (communication cost g and latency l in the BSP model) are not negligible
and play an important role in the algorithm’s run time. Interestingly, during the sequential many-
to-many queries, PBP-2’s query times approximated the query times of PBP-1 on the real maps.
However, when the load increases, things go wrong quickly for PBP-2. During the concurrently
executed queries, query times become around three times as bad and even exceed a second. The
memory usage of the orchestrator stayed relatively low, probably due to the small message sizes
it needs to handle, but memory usage is high for the subprocesses. We expect this to be caused
by the fact they have to maintain the state of many queries at once, especially during high loads.
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We also expect this to be the main reason PBP-2 needed an explosive number of instances for its
subprocesses, already during the concurrent random queries, but especially during the realistic load
scenarios.

For ODL, we see big differences in performance during the random queries on the different maps.
For the USA map, with the smallest cell sizes (see Table 5), the query times were approximately
three times as fast, for both the one-to-one and the 100x100 queries, compared to the Grerec-2 map
with the largest cell sizes. This makes sense, as for these random queries the algorithm loads the
top level cells relatively often, which are by far the largest in size. The algorithm needs a couple
of hundred milliseconds per one-to-one query, significantly more than PBP-1 or regular CRP. This
can all be attributed to the time it takes to load the necessary graph data, as that is the only
added part compared to regular CRP. Furthermore, ODL’s query times deteriorated when the load
increased. We expect this to happen due to the database process not scaling as the other processes
do: we always have only one instance. Therefore, when the maximum bandwidth of communication
with this process is reached, the orchestrator simply has to wait for the data of the previous query
to be done loading before it is able to load new data. One advantage we did see for ODL is the
memory usage: it rarely exceeded average memory use of 1 gigabyte per instance.

Scalability The three algorithms all needed less time to start a new instance than CRP (see
Table 9). The subprocesses of the PBP algorithms, which load approximately a tenth of the entire
graph, achieved an average reduction in startup time of approximately 18% compared to the regular
CRP implementation. Starting a new instance of ODL is almost instantaneous, as it does not have
to preload any data. In that sense, it has the ability to handle high work loads well. However,
during the experiments it seems that a lot depends on the database process, as the performance
decreased to such an extent during high loads to be unacceptable in most applications. During
the realistic load experiments, in which queries had relatively short distances, we saw similar signs:
query durations were quite good for one-to-one queries for which relatively little data was needed,
but were bad for the many-to-many queries that require more data.

PBP-1 did not need many instances to handle requests during our experiments, even during
higher loads, compared to the other algorithms. It has the additional advantage that it can scale
certain specific subprocesses that experience high work loads, as we saw during the realistic load
scenarios, where only two of the ten subprocesses were active. Regular CRP does not have this
flexibility.

PBP-2 seems not to scale well. As we mentioned, we saw performance decreasing drastically
during the high loads of our experiments with concurrently sent random queries. This also causes
the algorithm to need lots of instances, to the point where it even failed during the realistic scenarios.
The algorithm also does not share the advantage with PBP-1 of being able to scale specific parts
of the graph, as processes that do not contain source or target are still active during a query.

Distribution of work load The work load for each subprocess of PBP-1 is completely deter-
mined by the number of sources or targets its subgraph contains. This can be seen in Figure 15,
where the work load per process is proportional to the number of nodes during the random queries.
For PBP-2, we expected some correlation, but Figure 16 does not really show this.

During the realistic load scenarios, which only contained sources and targets in the Nether-
lands, only two subprocesses of PBP-1 were active, while every process of PBP-2 performed label-
correcting steps. As we mentioned, this provides PBP-1 with an advantage in terms of scalability:
more instances can be started for the processes experiencing the highest loads, while keeping the
number of instances for the processes with fewer requests low.
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Impact of query distance The impact of the query distance on the query duration per algorithm
is shown in Figure 17. These results reflect the behaviour we expected after our analyses, as we
described in Section 3.3: for PBP-1, we see a jump in query duration at the point where the queries
cross a top level cell boundary, due to the needed communication step for these queries. For PBP-2,
we see a similar jump, but query times already rise more on lower ranks and are significantly slower
for local queries compared to PBP-1. The ODL query times rise gradually as the query distance
increases, which can be explained by the fact that the query times are dominated by the time
it takes to load the necessary graph data. The size of this data increases as the query distance
increases, as higher level cells are needed.

Impact of natural cuts The two random road networks we generated following the GREREC
model differed in many ways. Grerec-1 had many characteristics that were beneficial for the per-
formance of the algorithms: it had by far the fewest total number of boundary points and shortcuts
among all four maps (see Table 2); the smallest average subgraph size for PBP (Table 4) and rela-
tively small cell sizes (Table 5). Grerec-2 on the other hand, looking at the same tables, contained
the most shortcuts among all maps, the largest PBP subgraphs and by far the largest cell sizes.
The performance of all algorithms on these two maps, therefore differed significantly. Message sizes
for Grerec-1 were small, while they were the largest for Grerec-2 (Tables 6-8) and startup times
for Grerec-1 were the fastest of all maps, slowest for Grerec-2 (Table 9). Furthermore, Grerec-2
was consistently the map with the worst performance results for every algorithm, including regular
CRP, while the algorithms performed relatively well on Grerec-1. The performance of PBP-2 and
ODL saw a larger downturn than PBP-1 and CRP, we expect due to their reliance on message
sizes and due to the fact that the increase in message size was larger for these two algorithms than
for PBP-1. The messages during PBP-2 and ODL at least tripled in size on Grerec-2 compared to
other maps (Tables 7 and 8). The difference in message size between PBP-1 and PBP-2 may be
explained by the fact that we send messages of size OpBL´1

C q, where BL´1
C « B

10 , for PBP-1 and

of size OpB̃L´1
C q during PBP-2, as Grerec-2 on average has more level-5 boundary points per cell

(Table 3), but not more total boundary points than the other maps (Table 2). The huge number
of shortcuts in higher level cells of Grerec-2 compared to other maps could explain the increased
message size for ODL, as it is the only algorithm whose message size is affected by the number
of shortcuts. Also, PBP-2 sends a lot more messages than the others, so increased message sizes
affects performance more than for other algorithms. These differences in performance indicate
that our partitioning algorithm found a convenient partition for Grerec-1, i.e. a partition with few
boundary arcs, but it was not able to find such partition for Grerec-2. We also note the impact
it had on the performance of regular CRP (query times at least doubled, see Tables 10 and 12),
showing the reliance of CRP on this partitioning.
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6 Conclusion

In this research, we presented three suggested approaches to using distributed memory for the
query stage of CRP in order to improve the scalability: PBP-1, PBP-2 and ODL. Both PBP-1 and
ODL show promise to improve scalability, while still being able to achieve performance standards
of modern day applications. The method of distributing calculations among the processes of PBP-2
does not seem to scale well, due to its heavy communication between subprocesses and maintaining
query states on each subprocess for each query.

PBP-1, with one adjustment to metric-dependent preprocessing, achieves similar query times to
CRP when source and target are contained in one process’s subgraph. This is especially beneficial
during realistic scenarios, in which local queries are typically common. When the query does
cross the boundary of such subgraph, queries can still be answered within a couple of hundred
milliseconds on maps of continental size. Additionally, we expect we can reduce these query times
further with some engineering, which we will discuss in the next section. The time needed to start
a new instance is reduced as each process keeps only a subgraph of the entire graph in memory.
During our experiments, in which we split the graph in ten parts of roughly equal size, this reduced
startup times by approximately 18% compared to the regular CRP implementation. Furthermore,
PBP-1 has the advantage of being able to scale specific processes that contain subgraphs where
many queries have their source or target.

PBP-2 does not seem to improve the scalability of CRP. Due to its use of multiple messages during
multiple iterations plus its keeping of state per query on each process, the algorithm suffers during
heavy work loads, in spite of its small message sizes. During lighter loads it also did not present
other clear advantages. Performance could be improved by calculating queries contained in one
subgraph using one process only. However, we do not expect PBP-2 to perform or scale better
than PBP-1, nor do we see other possibilities to improve the algorithm with further engineering
to accomplish that. We therefore conclude that the PBP-2 approach does not suit our desire of a
scalable approach to the query stage of CRP.

ODL’s ability to instantly start new instances is a big advantage in terms of scalability. The
algorithm keeps memory consumption low, as it only needs to keep one query’s search graph in
memory at once, which enables the use of cheaper servers. However, its performance during our
experiments did not satisfy the requirements of interactive applications. The performance relies
heavily on the database: for each query using the top level of the overlay graph, the algorithm
needs to load multiple megabytes. The bandwidth of the connection to the database, as well as
the memory efficiency of the graph data, thus become crucial in order to achieve good performance
during heavier loads. Therefore, for ODL to be applicable in realistic scenarios, we either have to
find a way to reduce the amount of necessary graph data per query or to load more graph data in
a short amount of time.

This research shows that PBP-1 and ODL are viable methods to improve the scalability of the query
stage of CRP. PBP-1 reduces the startup times of new instances and can answer local queries as
fast as regular CRP. For longer range queries, still reasonable query times can be achieved. The
scalability advantages for ODL are even more significant: starting new instances is practically
instantaneous. However, satisfying performance standards of real-world applications remains chal-
lenging.
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6.1 Future work

Future research could be done in several directions. For our implementations, we did not spend a
great amount of time on engineering to improve our algorithms as much as possible. Therefore, we
expect that there are still areas where improvements could be made. Also, some adjustments could
be made to preprocessing or the algorithms itself, which could benefit performance. In this section,
we will mention some of these possible improvements which could be explored in future work.

We performed our experiments once and presented their results. We believe that, because
of the relatively large size of our query sets and the use of multiple different maps, we could
confidently present a clear picture of the scalability, performance and resource consumption of
the algorithms. However, the algorithms may benefit from extra testing. It may especially be
helpful to test algorithms on query scenarios (load distribution, query distance, etc.) specific to
the desired application. This is also the reason why we performed experiments using real customer
data of Ortec, to see how the algorithms would perform if Ortec decided to implement these
approaches. These realistic scenarios provided great insights. For example, it became clear that
ODL’s performance was significantly better during these scenarios than during random queries.

PBP First, we discuss our choice of distributing the cells among the processes for the PBP
algorithms. We opted to use the highest level of the overlay to split the graph: each process
received a top level cell and all its subcells, resulting in (for K “ 10) ten processes. However,
one could also choose to use lower levels of the overlay to distribute the cells, or choose a more
refined way of distributing the cells. We believe that in some applications, a smart distribution of
cells could improve the scalability. For example, when it is known beforehand that many queries
will have their sources and/or targets in a certain area of the map, we could choose to make sure
that one process contains such area entirely. This would enable answering many queries without
communication to other processes and scaling up only that process during heavy loads.

A different area where improvements may be possible is in communication. All communica-
tion in our implementations goes through the orchestrator process, which causes messages to be
sent twice: once from the sending process to the orchestrator, once from the orchestrator to the
receiving process. We therefore could reduce the number of total messages by letting subprocesses
communicate directly to each other. One possibility is to let the user send requests directly to
the target process, as a query starts on that process. However, in many applications this is not
really desirable. An alternative would be to have an orchestrator process still receive the messages,
but enabling subprocesses to send and receive messages to and from each other and return the
result to the user. So for PBP-1, a query would arrive at the orchestrator, which sends it to the
target process. The target process performs its calculations, but instead of sending its search space
back to the orchestrator, it sends it directly to the source process. The source process calculates a
shortest path and returns the result to the user.

A different improvement of PBP would be to be smarter in the choice of which data we send
to other processes. In our implementation of PBP-1, we send the entire backward search space
from the target process to the source process. However, based on the partition codes of the source
and target nodes, we know the query will not use nodes on levels higher than the lowest sharing
level l0ps, tq of the overlay graph (see Section 3.2). In addition, Proposition 3 describes a way to
determine the exact cells per level that the search in the opposite direction might use for its search.
We could therefore only send the (boundary point, cost)-pairs with boundary points of those cells
of levels up to l0ps, tq to reduce the message size. This filtering works for both PBP-1 and PBP-2.
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ODL For ODL, the main reason we could not achieve performance close to the regular CRP
implementation is that loading the needed graph data from the database took too long. One way
to improve this, is to reduce the amount of graph data needed per query. As we mentioned in
Section 4.1, we use cliques to represent the shortcuts between all boundary points of a cell. By
using a skeleton graph per cell instead, as is done by Hamme [15], the amount of data per cell
would be reduced. The disadvantage of this approach would be that we would need to perform
Dijkstra’s algorithm on the (very small) skeleton graph each time we want to use a shortcut, which
could increase query times.

Increasing the bandwidth or loading speed is another way to achieve better performance. We
explained earlier why we do not want to scale the database process as we do for all other processes:
we would lose the scalability advantages of ODL. However, we could opt to have a (constant)
number of instances of the database process, so graph data could be loaded faster. It remains to
be seen if this is a viable option in practice, as services as Redis are quite expensive, but it would
increase performance.

Another optimization for some applications would be to keep some parts of the graph in memory
continuously. We started ODL queries without any graph data in memory and loaded everything
we needed from the database. When we know that certain data is needed for a large number of
queries, we could choose to not load this again for every query, but store it on the orchestrator
process instead.

A different direction that would be interesting to explore, is that of a combination of the regular
CRP implementation, where one process contains the entire graph, and ODL. When starting a new
instances of regular CRP, the entire graph has to be loaded. We could opt to load this data in
an order determined by the incoming queries. So, when the number of queries increases to the
point where we need a new instance, this new instance first loads the graph data it needs for its
first received query and keeps that data in memory. Then for the second received query, it loads
that search graph, and so on, until it has the entire graph in memory. This way the algorithm can
already compute shortest paths, while starting the new instance.
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A Algorithms

Algorithm 1: Dijkstra’s algorithm (bidirectional)

Result: distance d(s,t)
Input : graph G “ pV,Eq, nodes s and t

Create priority queues Qf , Qb;
Create dictionaries Xf , Xb;
foreach v P V zts, tu do

Add pv;8q to Qf and Qb;

Add ps; 0q to Qf ;
Add pt; 0q to Qb;
µÐ8;
while Qf and Qb are not empty do

uÐ argminvPQf
Dps, vq;

w Ð argminvPQb
Dpv, tq;

Remove u from Qf ;
Remove w from Qb;
Add pu;Dps, uqq to Xf ;
Add pw;Dpw, tqq to Xb;
if Dps, uq ą µ and Dpw, tq ą µ then

break;

if u P Xb and Dps, uq `Dpu, tq ă µ then
µÐ Dps, uq `Dpu, tq

if w P Xf and Dps, wq `Dpw, tq ă µ then
µÐ Dps, wq `Dpw, tq

foreach pu, vq P E do
newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance ;

foreach pv, wq P E do
newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance ;

Output: µ

Algorithm 1: The bidirectional version of Dijkstra’s algorithm for one-to-one queries. The forward
priority queue Qf maintains entries pv,Dps, vqq for all nodes v during the forward search, while
dictionary Xf keeps track of the nodes that are dequeued and thus have optimal distance. Queue Qb
(with entries pv,Dpv, tqq) and dictionary Xb have the same role for the backward search. Tentative
distance Dps, tq is denoted by µ.
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Algorithm 2: ExtractNode

Result: updated priority queue Q, updated dictionary X, node u, distance Dpuq and u’s query level
Input : priority queue Q, dictionary X, preprocessing data

uÐ argminvPQDpvq;

Remove u from Q;
Add pu;Dpuqq to X;
level Ð lstpuq;
Output: (Q, X, u, Dpuq, level)

Algorithm 2: A function that is used in the subsequent algorithms. The function extracts a
node from the priority queue, adds the node’s distance to the dictionary of processed nodes and
determines the node’s query level.

Algorithm 3: CRP query phase (one-to-one)

Result: distance d(s,t)
Input : graph G “ pV,Eq, nodes s and t, preprocessing data

Create priority queues Qf , Qb;
Create dictionaries Xf , Xb;
foreach v P V zts, tu do

Add pv;8q to Qf and Qb;

Add ps; 0q to Qf ;
Add pt; 0q to Qb;
µÐ8;
while Qf or Qb is not empty do

(Qf , Xf , u, Dps, uq, forwardLevel) = ExtractNode(Qf , Xf );
(Qb, Xb, w, Dpw, tq, backwardLevel) = ExtractNode(Qb, Xb);
if Dps, uq ą µ and Dpw, tq ą µ then

break;

if u P Xb and Dps, uq `Dpu, tq ă µ then
µÐ Dps, uq `Dpu, tq

if w P Xf and Dps, wq `Dpw, tq ă µ then
µÐ Dps, wq `Dpw, tq

cell Ð CforwardLevel
puq;

foreach pu, vq P Ecell do
newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance ;

if backwardLevel = L then
continue;

cell Ð CbackwardLevel
pwq;

foreach pv, wq P Ecell do
newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance ;

Output: µ

Algorithm 3: One-to-one algorithm of CRP. We denote EC for the edges within cell C plus the
edges either exiting or entering the cell, depending on the search direction. In the forward search,
EC includes edges with beginpoint in C and endpoint in another cell. During the backward search
EC includes edges with beginpoint in a different cell and an endpoint in C.
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Algorithm 4: CRP query phase (many-to-many)

Result: distances dps, tq @s P S, t P T
Input : graph G “ pV,Eq, node sets S and T , preprocessing data

Create priority queues Qf , Qb;
Create dictionary Xb;
Create distance matrix µ;
foreach t P T do

foreach v P V zttu do
Add pv;8q to Qb;

Add pt; 0q to Qb;
while Qb is not empty do

w Ð argminvPQb
Dpv, tq;

Remove w from Qb;
Add ppw, tq;Dpw, tqq to Xb;
level Ð lstpwq;
if level = L then

continue;

cell Ð C level
pwq;

foreach pv, wq P Ecell do
newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance;

foreach s P S do
foreach v P V ztsu do

Add pv;8q to Qf ;

Add ps; 0q to Qf ;
while Qf is not empty do

(Qf , Xf , u, Dps, uq, level) = ExtractNode(Qf , Xf );
if pu, tq P Xb for some t P T and Dps, uq `Dpu, tq ă µps, tq then

µps, tq Ð Dps, uq `Dpu, tq

cell Ð C level
puq;

foreach pu, vq P Ecell do
newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance ;

Output: µ

Algorithm 4: Many-to-many algorithm of CRP. Dictionary Xb keeps track of the entire backward
search space, containing entries ppv, tq;Dpv, tqq for nodes v and targets t. Distance matrix µ is a
matrix of size |S| ˆ |T | that stores distances Dps, tq for each source s and target t.
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Algorithm 5: PBP-1 (one-to-one)

Result: distance d(s,t)
Input : graph G “ pV,Eq, nodes s and t, preprocessing data

ppsq Ð nodeToProcesspsq;
pptq Ð nodeToProcessptq;
Send t to pptq;

Create priority queue Qb and dictionary Xb;
foreach v P Vpptqzttu do

Add pv;8q to Qf and Qb;

Add pt; 0q to Qb;
while Qb is not empty do

(Qb, Xb, w, Dpw, tq, level) = ExtractNode(Qb, Xb);
if level ě L˚ then

continue;

cell Ð C level
pwq;

foreach pv, wq P Ecell do
newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance ;

Send Xb to orchestrator;
Send Xb to ppsq;

Create priority queue Qf and dictionary Xf ;
foreach v P Vppsqztsu do

Add pv;8q to Qf and Qb;

Add ps; 0q to Qf ;
µÐ8;
while Qf is not empty do

(Qf , Xf , u, Dps, uq, level) = ExtractNode(Qf , Xf );
if Dps, uq ą µ then

break;

if u P Xb and Dps, uq `Dpu, tq ă µ then
µÐ Dps, uq `Dpu, tq

cell Ð C level
puq;

foreach pu, vq P Ecell do
newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance ;

Send µ to orchestrator;
Output: µ

Algorithm 5: One-to-one algorithm of PBP-1. The red-boxed and blue-boxed parts are executed
on the target and source process respectively. The rest is executed on the orchestrator process.
Vp Ă V represents the nodes of the subgraph on process p. Mapping nodeToProcess, which we
created during (metric-independent) preprocessing, maps each node to the process whose subgraph
contains the node.
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Algorithm 6: PBP-1 (many-to-many)

Result: distances dps, tq @s P S, t P T
Input : graph G “ pV,Eq, node sets S and T , preprocessing data

foreach process p do
Sp Ð ts P S | nodeToProcesspsq “ pu;
Tp Ð tt P T | nodeToProcessptq “ pu;
Send Tp to p;

foreach process p in parallel do
foreach t P Tp do

foreach v P V zttu do
Add pv;8q to Qb;

Add pt; 0q to Qb;
while Qb is not empty do

w Ð argminvPQb
Dpv, tq;

Remove w from Qb;
Add ppw, tq;Dpw, tqq to Xbppq;
level Ð lstpwq;
if level ě L˚ then

continue;

cell Ð C level
pwq;

foreach pv, wq P Ecell do
newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance;

Send Xbppq to orchestrator;

Xb “
Ť

pXbppq ;

foreach process p do
Send Sp and Xb to p;

foreach process p in parallel do
Create distance matrix µppq;
foreach s P Sp do

foreach v P V ztsu do
Add pv;8q to Qf ;

Add ps; 0q to Qf ;
while Qf is not empty do

(Qf , Xf , u, Dps, uq, level) = ExtractNode(Qf , Xf );
if pu, tq P Xb for some t P T and Dps, uq `Dpu, tq ă µppqps, tq then

µppqps, tq Ð Dps, uq `Dpu, tq

cell Ð C level
pwq;

foreach pu, vq P Ecell do
newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance;

Send µppq to orchestrator;

µ “
Ť

p µp;
Output: µ

Algorithm 6: Many-to-many algorithm of PBP-1. Symbol µppq denotes the |Sp| ˆ |T | sized matrix
containing distances Dps, tq for sources s P Sp and targets t P T and µ denotes the entire |S| ˆ |T |
distance matrix.
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Algorithm 7: PBP-2 (one-to-one)

Result: distance d(s,t)
Input : graph G “ pV,Eq, nodes s and t, preprocessing data

Create message arrays Mf,p and Mb,p for each process p;
ppsq Ð nodeToProcesspsq;
pptq Ð nodeToProcessptq;
µÐ8 ;
Add ps; 0q to Mf,ppsq and pt; 0q to Mb,pptq;

while
Ť

p Mf,p
Ť

Mb,p is not empty do

Send Mf,p and Mb,p to each process p;
foreach process p in parallel do

foreach pv;D1ps, vqq PMf,pq do
if D1ps, vq ă Dps, vq then

Dps, vq Ð D1ps, vq;
Add pv;Dps, vqq to Qf ;
if v P Xf then

Update pv,Dps, vqq Ð pv,D1ps, vqq;

foreach pv;D1pv, tqq PMb,pq do
if D1pv, tq ă Dpv, tq then

Dpv, tq Ð D1pv, tq;
Add pv;Dpv, tqq to Qb;
if v P Xb then

Update pv,Dpv, tqq Ð pv,D1pv, tqq;

while Qf or Qb is not empty do
(Qf , Xf , u, Dps, uq, forwardLevel) = ExtractNode(Qf , Xf );
(Qb, Xb, w, Dpw, tq, backwardLevel) = ExtractNode(Qb, Xb);
if u P Xb and Dps, uq `Dpu, tq ă µp then

µp Ð Dps, uq `Dpu, tq

if w P Xf and Dps, wq `Dpw, tq ă µp then
µp Ð Dps, wq `Dpw, tq

cell Ð CforwardLevelpuq;
foreach pu, vq P Ecell do

newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance;
if v P process q ‰ P then

Add pv;Dps, vqq to Mf,qppq

cell Ð CbackwardLevelpwq;
foreach pv, wq P Ecell do

newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance ;
if v P process q ‰ p then

Add pv;Dpv, tqq to Mb,qppq

Send µp and Mf,qppq and Mb,qppq for each q ‰ p to the orchestrator.

foreach processor p do
Mf,p Ð

Ť

q‰pMf,ppqq;

Mb,p Ð
Ť

q‰pMb,ppqq;

if µp ă µ then
µ “ µp

Output: µ

Algorithm 7: One-to-one algorithm of PBP-2. The part of the algorithm in the red box is performed
on the subprocesses. Mf,p denotes the message that has to be sent to process p for a forward label-
correcting step. It contains entries pv;Dps, vqq with updated distances for boundary points v of
process p. Mb,p fulfills the same role for the backward search, consisting of entries pv;Dpv, tqq. We
denote Mf,ppqq for the message that process q sends to process p, so the complete forward message
that process p receives is

Ť

q‰pMf,ppqq. Symbol µp represents shortest distance Dps, tq found on
process p. 72



Algorithm 8: PBP-2 (many-to-many)

Result: distances dps, tq @s P S, t P T
Input : graph G “ pV,Eq, node sets S and T , preprocessing data

foreach process p do
Sp Ð ts P S | nodeToProcesspsq “ pu;
Tp Ð tt P T | nodeToProcessptq “ pu;
Mf,p Ð tpps, sq, 0q | @s P Spu;
Send Tp to p;

foreach process p in parallel do
foreach t P Tp do

foreach v P V zttu do
Add pv;8q to Qb;

Add pt; 0q to Qb;
while Qb is not empty do

w Ð argminvPQb
Dpv, tq;

Remove w from Qb;
Add ppw, tq;Dpw, tqq to Xbppq;
level Ð lstpwq;
if level ě L˚ then

continue;

cell Ð Clevelpwq;
foreach pv, wq P Ecell do

newDistance Ð dpv, wq `Dpw, tq;
if newDistance ă Dpv, tq then

Dpv, tq Ð newDistance;

while
Ť

p Mf,p is not empty do

Send Mf,p to each process p;
foreach process p in parallel do

foreach s P S do
foreach pps, vq;D1ps, vqq PMf,pq do

if D1ps, vq ă Dps, vq then
Dps, vq Ð D1ps, vq;
Add pv;Dps, vqq to Qf psq;
if v P Xf psq then

Update pv,Dps, vqq Ð pv,D1ps, vqq;

while Qf is not empty do
(Qf , Xf , u, Dps, uq, level) = ExtractNode(Qf , Xf );
if pu, tq P Xbppq for some t P T and Dps, uq `Dpu, tq ă µppqps, tq then

µppqps, tq Ð Dps, uq `Dpu, tq

cell Ð Clevelpuq;
foreach pu, vq P Ecell do

newDistance Ð Dps, uq ` dpu, vq;
if newDistance ă Dps, vq then

Dps, vq Ð newDistance;
if v P process q ‰ p then

Add pps, vq;Dps, vqq to Mf,qppq

Send Mf,qppq for each q ‰ P to the orchestrator;

foreach process p do
Mf,p Ð

Ť

q‰pMf,ppqq;

foreach process p do
Send termination message to p;
Receive µppq;

µÐ
Ť

p µppq;
Output: µ

Algorithm 8: Many-to-many algorithm of PBP-2. The red-boxed part is performed on every
target process, the blue-boxed part on every subprocess, the rest of the code is performed on the
orchestrator process. 73
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