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Introduction
Artificial Neural Networks have made great strides in a lot
of different fields the last decades. From beating grand mas-
ters in Chess and Go, to self-driving cars and predicting all
sorts of statistics such as mortality rate or length of stay in
hospitals (Rajkomar et al. 2018). The field of Natural Lan-
guage processing has not been left unexplored. Deep learn-
ing models in the field of natural language processing (NLP)
are now able to successfully translate, transcribe and produce
texts of a high quality. Since language was thought to be a
species-specific ability of mankind for so long, new and old
questions arise in the field of NLP. The main question that I
will be trying to answer in this paper is: Do artificial neural
networks and humans process language in the same way? If
they do, this will change the way we think about the nature
of language processing for good. Language would stop be-
ing something species-specific. Other agents might make use
of language in the same manner if they have a similar neural
network configuration. In this paper I will use many different
studies from linguistics and computational linguistics to com-
pare the linguistic capabilities of humans and of deep neural
networks (DNNs). After a short introduction, the concept of
syntax is explained. I will try to illustrate why syntax exists
and what kind of evidence there is for it. To compare the syn-
tactical abilities of humans and DNNs I will first explain how
humans use syntax. After a short explanation of DNNs I will
illustrate if and how DNNs use syntax. In the conclusion, I
will be able to make a full comparison.

Human language processing
To answer our question of whether artificial neural networks
use the same syntactic structure as humans, we will first
need to elaborate on how humans process a language and use
syntax. A child learns its first language(s) without the lan-
guage(s) being taught explicitly. Parents do not need to teach
a child a language, children will learn the language without
any explicit lessons. However, the parents of a child play an
important role in the acquisition of language by talking to
their child. The child also needs some sort of interaction with
the language and language-speakers. Without interaction,
like by only listening to the radio or the television, the child
will not learn a language. However, if two children that
have not learned to speak a language are put together, they
will naturally make their own language (Yang et al. 2017).
Thus, language is an inherent skill all humans share, not a
construct created by society. In order to process language,
we have some inherent capability but we need experience
and interaction with a language to be able to process it

fully. In the same way that children gain a vocabulary, they
also gain an understanding of the syntax of the language
that they are exposed to. However syntax is something
that children have knowledge of naturally. While children
get better at reading syntactic cues (Li et al., 2020), they
already use syntax to understand the most common language
structures from the moment they can speak simple phrases.
A formal definition of syntax is that it is the grammatical
rule structure that underlies a language. Whether syntax is
also gained through experience or whether there are inherent
rules that underlie it, has been a subject of debate for a long
time. Noam Chomsky has been the most influential person
in this debate. Noam Chomsky (2005, from Yang et al.,
2017) argues that, given the relatively brief history of homo
sapiens, and their species-specific computational capacity for
language. Language and its evolution is most likely built on
a foundation of other cognitive abilities that humans have.
Language acquisition is, according to Chomsky (2005, from
Yang et al., 2017), heavily reliant on three factors:

1- Universal Grammar (UG): the acquisition of language
is heavily dependent on our genetic endowment. There are
certain rules that have evolved within our brain, this helps us
in our learning and understanding of language.
2- Experience : by experiencing language first hand and
interacting with it, humans gain knowledge of the language.
This factor is the reason of why there are so many different
languages.
3- Third factors: Language acquisition is made possible by
the different cognitive abilities that we have had before we
learned to use language. Such abilities include hypothesis
formation and data analysis. Not only this, but the efficiency
of our brain and external factors also play a role.

Universal grammar
The first factor on universal grammar might need some more
explaining. To answer the question of how universal grammar
would have come into existence, UG is likely to be the result
of evolution and natural selection (Bolhuis, 2017). Where
just like in every species that has undergone evolution, the
species that mutated to have UG was more likely to develop
languages and thus had a better chance of survival. The ar-
gument against this, as Bolhuis mentions, might be that ma-
jor biological systems would need a very long time to evolve
(Christiansen et al., 2008). Critics like Christiansen et al. ar-
gue that since language is relatively young, this could not be
the result of evolution, which needs millennia before a muta-



tion can cause an entire species to adapt and evolve. Critics of
the evolution argument argue that language and UG has been
“shaped to fit the human brain, and not vice versa” (Chris-
tiansen et al., 2008). What they mean is that UG has been
produced by mankind for mankind, to make language easier
to process, and thus is a construct of society, not something
that has evolved over years of evolution. However, the evolu-
tion of UG may have been a much more simple than a com-
plex process. Because of this simplicity, it would not have
needed a lot of years to evolve, a simple mutation without
evolution could have been enough to cause the hierarchical
structure of language (Bolhuis 2017).

Merge This mutation is thought to be a rewiring of the brain
which allowed the operation of ‘merge’, which is not a lan-
guage specific theory and may also be used with mathematics
or logic. “Merge is a (dyadic) operation that takes two syntac-
tic objects, call them X and Y, and constructs from them a sin-
gle new syntactic object, call it Z. X,Y can be building blocks
that are drawn from the lexicon or previously constructed ob-
jects. Put simply, Merge (X,Y) just forms the set containing
X and Y. Neither X nor Y is modified in the course of the
operation Merge.”(Everaert et al., 2015) So, merge is a way
to make phrases have a hierarchical structure by adding ob-
jects, which can be words or phrases, to a new object structure
without removing any part of the added objects. Since merge
is not a language specific concept, this further solidifies the
idea of language acquisition being made possible not only by
experience but also by UG and the third factors, which are
cognitive domains/abilities that humans have had before we
learned how to use language, which play an important role in
our use of language.

Generative grammar Merge is a simple concept that
makes the language that we use today possible. However,
it does not encompass the entirety of UG. Merge in itself
does not explain why children have an innate ability to learn
languages quickly and thoroughly, while adults often will
not be able to achieve as much when they decide to learn a
new language. This might be because when the adults learn a
new language they try to use the rules they have learned from
their first language, instead of using their innate linguistic
knowledge. So, what is this innate linguistic knowledge
or UG? UG is a direct result of the generative grammar
linguistic theory. This theory regards language as having
innate grammatical structure as we have mentioned before.
With this structure, true and meaningful sentences can be
created instead of a sentence with words but no inherent
meaning. A phrase like “the cat” has meaning while a phrase
like “cat the” has no meaning. These structures can be laid
out with parse trees. A parse tree for the first sentence can be
seen in figure 1.

Here, the ‘NP’ stands for ‘Noun Phrase’, a noun phrase
consists of a determiner and a noun, as mentioned before
it also needs to be in that order, which is exactly what the
parse tree shows. In this manner, a parse tree can be created

Figure 1: A parse tree of the noun phrase ”The cat”

Figure 2: NP = Noun phrase, Det = Determiner, N = Noun
and Prep = Preposition

for every sentence. There need to be as many ‘leaves’ in the
parse tree as there are words in the sentence. The leaves then
connect via branches and converge to a single point which
is ‘S’, which stand for ‘sentence’, if it would be a complete
sentence, unlike our example. Generative grammar is also
recursive, this stems directly from the property of merge.
(Everaert et al. 2015). I will use the figures and explanation
from Everaert’s paper to demonstrate. As we have seen,
phrases can be structured by phrase structure rules. For the
parse trees show in figure 2, we can make two rules that
describe the grammar of the sentences:
1- NP → Det N
2- NP → Det N Prep Det N

As you can see, a sentence like “A man on the moon”
can theoretically go on forever by just adding prepositions
another determiner and a noun. For example: “A man on the
moon with the friend with a flag by the ship”. We would then
need to add another rule for our language which would be:
3- NP → Det N Prep Det N Prep Det N Prep Det N Prep Det N

Recursion Making rules based on each sentence is not an
efficient way of describing the grammar of a language. Thus,
we could also generalize this rule by making a simpler gram-
mar that is recursive. Such as:
1- NP → Det N (PP) (Noun phrases consist of a determiner
and a noun, but may also be followed up by a prepositional
phrase)
2- NP → Prep NP (prepositional phrases consist of a prepo-
sition and a noun phrase)
As Everaert et al. mentions, while this recursiveness means
that language has the potential to be infinite, it “should not
be incorrectly equated with real-time production or parsing
of actual utterances”. This means that while generative gram-
mar allows us to make an infinitely long sentence, this, does
not occur in the speech of humans. You may have noticed that
grammaticality does not always entail a semantically correct



sentence. In the sense that a sentence, that is grammatical,
does not always have meaning.

Semantics in syntax A property of syntax is that seman-
tics and syntax are very often intertwined. With words that
are called negative polarity items (Everaert et al., 2015) such
as the word “anybody”, there needs to be a negative element
that gives them meaning. You can’t say “Anybody liked my
song”. To make the sentence structurally correct it would
need to be “My song was not liked by anybody”, elsewise the
word ‘anybody’ would need to be changed. This is further ev-
idence that language is never just linear and requires an actual
structural hierarchy for it to have meaning and make sense.

UG through DNNs A very common way to study linguis-
tic structures is by simulation. We will go into detail about
deep neural networks (DNNs) in a later section, however, it
is important to mention that through simulation we can find
arguments that support the UG theory. Lepori and colleagues
(2020) found that when comparing constituency DNN models
and dependency DNN models the former model performed a
lot better. This is another argument that supports UG since the
constituency model is based on hierarchical structure, such as
parse trees, like UG. The dependency model is based on a lin-
ear representation of the data, this does not coincide with the
view that grammar has an inherent hierarchical phrase struc-
ture.

Wh-licensors A different property of syntax is that in some
sentences, a gap where a word could be is created. For exam-
ple: “I know who did that “, the follow up to this would
be: “I know that you did that”. The ‘who’ in the first word
is called a wh-licensor, having a word like this in a sentence
would make it ungrammatical if the object/subject that the
wh-word refers to would also be mentioned. For example:
“*I know who you did that”. We will come across this phe-
nomenon, along with a multitude of other phenomena, in
an upcoming section where we will be discussing syntax in
DNNs. The main takeaway from this section is that by ana-
lyzing language and syntax, we can clearly see that languages
are “structures, not strings” (Everaert et al., 2015).

Syntax in the brain

To find concrete and hard evidence of syntax, researchers
have tried to use brain-imaging techniques to figure out
where and how syntax is used within the brain. These tech-
niques have been very successful in finding the location of
the brain regions that are involved in syntactical processing
(Grodzinsky & Friederici, 2006). Other researchers have
researched the effect of brain lesions on the ability to process
language (Caplan, 2006, Hagoort, 2005). The processing
of syntactical information has been generally localized to
two distinct areas, the inferiorfrontal gyrus and the superi-
ortemporal cortex (Friederici et al., 2000). However, while
the question of where syntactic processing is located within
the brain is interesting, for linguists, it does not answer the
most important questions. The question of how syntactic

processing works in the brain is more important to this paper
as well.

A way to research this is to show the test-subject a
grammatical sentence and an ungrammatical sentence and
see how the brain reacts differently to this. The problem that
comes with this type of research, is that you can never be
certain what the brain really reacts to. To make a sentence
ungrammatical, the word order needs to change, the brain
might just be reacting to an unexpected change in word
order. One way to research the reaction to ungrammatical
sentences is the degree of expectedness. We will mention
this surprisal effect again in our analysis of syntax in DNNs.
In short, the rate of surprisal is determined by the chance
that a certain word will appear after a some other word, after
the word ”dog” we would sooner expect the word ”leash”
than the word ”soup”. To truly see if the brain reacts to
grammaticality or just uncommon sentences, a distinction
needs to be made between rule- and probability related
processes.

In research done by Pulvermüller & Assadollahi (2007)
they found direct neurophysiological evidence that sup-
ports a system in the brain that uses rules for words and
morphemes and not just statistical processing. Using magne-
toencephalography (MEG) they report a syntactic mismatch
negativity (sMMN) that “distinguished syntactic violations
from common grammatical strings, but not uncommon from
common grammatical strings”. This is evidence that the
brain reacts to grammaticality and not just uncommon strings.

Recursion in the brain In a previous subsection we have
talked about the language property that is recursion. Recur-
sion requires a sort of stack data structure or a push-down
algorithm, where items that are stored first are the last ones
that are retrieved. To see if there is any neurophysiological
basis for recursion within the human brain, Braitenberg et al.
(1992, from Pulvermuller, 2010) researched memory circuits.
Memory circuits can be activated serially and will gradually
lose activity. This would make the last activated circuit have
the most activity and the first activated circuit the least. To
be able to handle recursion, the brain only needs to have a
read out mechanism that prioritizes the highest activity in the
circuit when accessing the circuits. This way, the read out
mechanism will recursively go back on the activated circuits
in a last-in-first-out manner. This stack reading could be done
in parallel with multiple stacks at the same time (Joshi & Sch-
abes, 1997).

All in all, there is enough evidence to know where the pro-
cess of syntax takes place and how it would be able to work
within the brain. It is very difficult to use any other kinds
of more concrete research methods like a single cell scan.
Right now, it is impossible to find out exactly which neuron
responds to which input, whether that is a word, a syntactical
property or something entirely different. The question that
we will try to answer in the next section will be: do DNNs
also use syntactical structure in their language processing.



Artificial Neural Networks

In this section, I will explain how NNs work and how
they are used in language processing. For this, I will use
the explanation provided by Linzen et al. (2020). Neural
networks are mathematical functions, these functions receive
an input, which is a sequence of real numbers, and output a
different sequence of real numbers. They do so by having
a large collection of “computation units” which you can
compare to neurons, each of these neurons calculates “the
weighted average of its input”. The function that is computed
by each unit/neuron is σ(w1x1 + . . . +wnxn), where the w
stands for the weight and the x stands for the input. While
each calculation in each neuron is very simple and easy, the
complexity emerges when the neurons are ordered into layers
and one layer’s output can act as the next layer’s input, this is
how much more complex functions are able to be computed.
The NNs weights are not set by the designer of the network,
but rather inferred by learning from examples. To use a NN,
first, training needs to take place. Here, the weights will
change according to inputs (xi) and their expected values(yi).
The weights will start with a random value but will change
with each iteration. The weights will change when the
output ŷ does not match the expected value y, they will be
changed in a way that the difference between ŷ and y will
be smaller, which is also known as “gradient descent”. This
process will keep going until no weights are changed for the
entire process. After that, these weights can be used on a
test-dataset, the model will be able to make predictions using
the input from the testdataset and the calculated weights from
training.

Vectors As mentioned before, DNNs are mathematical and
thus only compute real numbers. To be able to interact with
words in language processing, all words need to be translated
into numbers, or as a vector, which is a sequence of numbers.
The vector of the word “Horse” might be (2, 8, 9, 3.4), in
this way, words that are used in a similar context can have a
vector that has values which are close. In this way, “zebra” or
“saddle” might have a vector (2, 8, 9.5, 4), while a word like
“computer” might be (-4, 3.7, -6.3, 1). These values are not
inputted by the designer of the ANN, rather these vectors are
learned using gradient descent. In this manner, words can be
encoded. As there are thousands of words in a language, the
vectors can become very long. In order to encode sentences
or bigger language structures, we will need something more
complex.

Recurrent Neural Networks This is where recurrent neu-
ral networks come in (RNN). RNNs process a sentence from
left to right. In this process, a vector (ht) is maintained, this
vector is “ a hidden state which represents the first t words
of the sentence” (Linzen et al., 2020). This acts as a kind of
for-loop and a bottleneck, where ht+1 is calculated from ht
and the next word in the sentence, this way the RNN does not

have access to its previous states. To further improve upon
RNNs capabilities, gated networks are used. An example of
this is Long Short-Term Memory networks (LSTM). First in-
troduced by Hochreiter et al. in 1997, LSTMs serve as a
solution to previous systems that had problems with “back-
flow errors”. These back-flow errors are caused by com-
mon errors being “blown up” or vanishing, when using back-
propagation, this can “lead to oscillating weights” or having
to learn to bridge long time lags, which may not work and
is very time consuming. A LSTM is a RNN that uses cells,
input gates, output gates and a forget gate. By deciding to
forget about blown up or vanished errors, no more back-flow
errors can occur. LSTMs are the most common type of RNN
used today.

When RNNs are used in NLP, they are mostly used for
three different purposes. It can be used as a classifier, where
the network has to label a sequence ‘acceptable’ or ‘unac-
ceptable’, mostly in terms of grammaticality. The network
can also be used as a language model. In such a model, the
network is asked to assign probabilities to each next word. In
a sentence such as “the kids love to pet the . . . ”, such a model
will assign a higher probability to the last word being “cat”
than a word such as “table”. The last setting a network may
be put in is a “sequence to sequence” or “seq2seq” setting. In
this setting, the network is expected to generate its own out-
put sequence, based on the input sequence it has received.
RNNs have had surprisingly good results on a lot of different
NLP tasks, currently, achieving human performance (Young
et al. 2018). However, their success is the direct result from
their representations of the data, which are hard to interpret.
A lot of research is being done to try to get a glimpse into
what these RNNs data representations look like. Since syn-
tax plays a vital role in human language processing, it seems
more than natural to wonder if the success of RNNs is (partly)
based on their ability to encode something that is similar to
syntax.

Grammatical structure in RNNs

So, the question is, do these RNNs encode a “hierarchical
context-free phrase structure” instead of some superficial use
of word order that is based on a probability for each word
in each sentence. To research this, several studies have been
conducted. Each of these studies uses a different strategy to
find out how the RNN is representing its input.

Agreement Some studies measure the state of the NN as it
is processing specific inputs. These inputs have been chosen
or made specifically to try and measure the processes of the
NN, for example: “using number agreement in subject-verb
dependencies” (Linzen et al., 2016). In sentences like “the
cat is eating”, the verb needs to agree with the subject in
terms of number. In a sentence like “The cat are eating”
this clearly is not the case, the subject or the verb needs to
be changed in this sentence to be grammatically correct.
In their research, Linzen and colleagues found that the NN
made incorrect number predictions in less than a percent of



the dependencies, but this might be because the verb and
subject are so close together. Linzen and colleagues have
experimented with making larger sentences as inputs. A
sentence like “The cat that had gotten fatter every day since
the lovers adopted it are eating” might be harder for a NN to
encode or ‘understand’, since “the lovers” might be seen as
the subject of the verb “are”, the noun “lovers” is therefore an
attractor. In such cases where they used up to four attractors,
the NN had an error rate of 84%, which is less than chance.
Linzen and colleagues’ conclusion was that LSTMs are just
sequence models and “they do not have built-in hierarchical
representations”.

Semantics in RNNs In research done by Bernardy et al.
(2017), where they experimented with LSTMs and different
DNN structures such as GRUs and CNNs, they found similar
results to the research done by Linzen. However, they also
found that DNNs “require large vocabularies to form sub-
stantive lexical embeddings in order to learn structural pat-
terns”. According to Bernardy and Lappin, this suggests that
DNNs would be more efficient in learning syntactic patterns
through more extensive lexical embeddings, that have syntac-
tic as well as semantic cues. This is a very different strategy
than the one used before where strings are made up of sim-
ple words to make a specific sentence structure. However, if
a DNN relies on semantic information, while getting better
results, this is a sign that DNNs do not encode a syntactical
structure like humans do, since grammatical sentences can
exist without being semantically correct.

Gulordova et al. (2018) did more research to find out if
RNNs truly depend on these semantic cues to make good pre-
dictions in the long distance agreement-task. In their research
they used standard corpus extracted examples as well as se-
mantically incorrect sentences. Quoting them, they were in-
spired by Chomsky’s argument that “grammaticalness cannot
be identified with meaningfulness”. As such, they used mean-
ingless sentences such as: “The colorless green ideas I ate
with the chair sleep furiously”. In such a sentence “ideas” and
“sleep” belong together, and the RNN should classify them
as such. Their results have been very convincing, while the
RNN’s predictions were not perfect, they also were not lag-
ging far behind the human performance. In Italian, the RNN
performed especially well, getting more than 92% correct in
the meaningless sentences while also getting 93,3% correct
in the standard corpus extracted examples. English was the
hardest language for the RNN, however, they explain that this
might be due to a lot of English sentences being slightly am-
biguous. In sentences such as “if you have any questions or
need/needs”, the target could be a noun as well as a verb.
The results did not differ greatly from that of human achieve-
ments, though this comparison was only made with the Italian
results.

The question that arises now, is whether this is enough ev-
idence to say that DNNs use syntactical structure in their lan-
guage processing methods. The fact that DNNs performed

well in a lot of agreement dependencies would certainly sug-
gest so. However, more research is needed to conclude this
with a better degree of certainty.

Surprisal So far, we have only seen research conducted
in agreement dependencies, to truly get an idea of DNNs
syntactical capabilities it is important to look into research
methods that have included other syntactical properties as
well. In research done by Wilcox et al. (2018) they studied,
using LSTMs, filler-gap dependencies. Being able to show
that DNNs are able to implement filler-gap dependencies
would bring us a step closer to being able to say that DNNs
encode syntactical structure to process language, like humans
do. Filler gap dependencies use wh-licensors, we have
mentioned these shortly in our section on syntax in humans.
Wh-licensors are words like “who”, “what”, “why”, “which”
etc. and gaps. These gaps are places within a sentence where
a word could be, but whether we should fill the word in the
gap depends on whether a wh-licensor was used. In every
sentence where a wh-licensor is used, there should be a gap,
represented as an underscore: ‘ ’. The examples used in the
research done by Wilcox and colleagues are:

a) I know that the lion devoured a gazelle at sunrise.
b) * I know what the lion devoured a gazelle at sunrise.
c) * I know that the lion devoured at sunrise.
d) I know what the lion devoured at sunrise.

In these examples, we can see that in each sentence
where a wh-licensor is used, a gap is needed instead of “a
gazelle” to make the sentence grammatically correct. In the
sentences without a wh-licensor, using a gap instead of “a
gazelle” results in an ungrammatical sentence.

The way the LSTMs are tested is by using a measurement
called surprisal, a surprisal value can be assigned to every
word and sentence by an RNN. The value of the surprisal can
tell us whether the word or sentence was unexpected for the
RNN. In their paper, they researched whether the surprisal,
that is caused by an unusual sentence construction, like a
gap, would have a smaller surprisal value in the presence of
a licensor. “If the models learn that syntactic gaps require
licensing, then sentences with licensors should exhibit lower
surprisal than minimally different pairs that lack a proper
licensor” (Wilcox et al. 2018). They measure the surprisal at
the word that immediately follows the (filled) gap and over
the entire sequence of the sentence after the gap to the end
of the embedded clause. So, the surprisal is not measured
at “a gazelle” but rather at “at sunrise”. Their results show
that the LSTMs surprisal was higher when the sentence was
ungrammatical. Not only with the previous type of sentences,
but also with sentences where the object, subject or indirect
object was extracted, such as:

a. I know who showed the presentation to the visitors
yesterday (object extraction)
b. I know what the businessman showed to the visitors



yesterday (subject extraction)
c. I know who the businessman showed the presentation to
yesterday (indirect object extraction)

They also used island constraints, which is another
syntactic configuration the LSTMs could be tested on. An
‘island’ is a clause or a structure where a word, or most
commonly a noun phrase, cannot be removed from. For
example, in the following sentences it would be ungrammat-
ical for a gap to appear inside a sentence that has doubly
nested clauses with a wh-licensor: “I know what Alex
said whether your friend devoured at the party” If in this
sentence the word “whether” was ejected or replaced by
“that”, the sentence would not be ungrammatical. There are
a lot more constraints that they tested the LSTM on. On all
these constraints the LSTM performed well, at least as well
as human performance. With the exception of the ‘subject
island’ constraint. Under this constraint, a prepositional
phrase, following a noun phrase, can only contain a gap
if the subject of the sentence is not the noun phrase, these
examples are taken from the paper by Wilcox et al. (2018)

a) I know what fetched a high price at auction.
b) *I know who the painting that depicted fetched a high
price at auction.
c) *I know who the painting which depicted fetched a high
price at auction.
d) *I know who the painting by fetched a high price at
auction.

Their results show that LSTMs can learn to represent
filler-gap dependencies and their constraints. Since they did
not use some inductive bias, they argue that this can also be
seen as evidence that an inductive bias is not necessary for
language processing. Thus, this would represent a threat to
UG being necessary for language processing. They do warn
however, that the amount of data that they have used for
training, is a lot larger than the amount of data that can serve
as input for a child learner.

Testing other syntactical phenomena In a follow up
study done by mostly the same researchers (Futrell et al,
2019), they researched the effects of subordinate clauses
and garden path effects. A subordinate clause is a sentence
that announces a following clause, like: “When I brushed
my hair, . . . ” A garden path sentence is a sentence which
is grammatically correct but, due to the structure of the
sentence, lures the reader into an incorrect interpretation.
A sentence such as “The old man the boat” can be seen as
grammatically or semantically incorrect when really it is
not. Having a comma in place after “old” would make the
sentence more readable. To study this, they used 4 different
models which all had different results.

- JRNN (Jozeficz et al., 2016), this model is based on

the LSTM architecture and has a large data-size of about 800
million tokens.
- GRNN (Gulordova et al, 2018), this model is also based on
the LSTM architecture but has a smaller data-size of about
90 million tokens from Wikipedia.
- RNNG (Dyer et al. 2016), the architecture that this model
is based on is called RNN Grammar, and has a training data
size of about 1 million tokens
- TinyLSTM, this model is a version of LSTM that has a
small training data-size of only 1 million tokens.

The differences between these models can tell us if
the amount of training data plays a big role in whether or not
the RNN is able to correctly encode syntactical structure. In
their research they found that all of these models were able to
correctly deal with subordination and garden path sentences.
However, the TinyLSTM model was not able to deal with
“more fine-grained phenomena”. The JRNN could not deal
with the more fine grained phenomena of subordination, such
as the no-matrix penalty effect. The RNNG was not able
to deal with the more fine grained phenomena of some of
the garden path sentences, such as verb-transitivity. Overall,
the outcome of this study is fairly positive, many different
RNNs are able to deal with subordinate clauses and garden
path sentences, where the less common and more complex
phenomena require a lot more data for the RNN to be able
to handle correctly. The RNNG had relatively good results
while only being trained with 1 million tokens. This is a
direct result of the pre-programmed syntactical structure
within the RNN (Dyer et al., 2017). That RNNs perform a
lot better on tasks that require syntactical structure when the
model has a built in structure is further reinforced by McCoy
et al. (2020). In their research, they found that models where
they implemented a parse-tree structure, showed the most
clear bias towards a hierarchical structure.

Inner workings of a DNNs
Thus far, we have seen that DNNs respond well to most of
the grammatical phenomena they are tested on. These phe-
nomena are used to indicate whether or not a DNN has a
syntactical representation. Since, the DNN arguably would
not be able to correctly process these phenomena if it did not.
The phenomena that are used are the same phenomena that
are used to indicate syntax in human language processing, as
we have seen in our first section on syntax of humans. A
different way that we have discussed, to study syntax of hu-
mans, was to analyze the inner brain processes of humans. To
truly and fully compare the syntactical capabilities of humans
and AI/DNNs we will have to analyze the inner workings of
DNNs as well. Immediately, we can assume that analyzing
the inner workings of a DNN, several of the problems we have
encountered with the human analysis, will be a lot easier to
deal with while analyzing the DNNs. A major improvement
is that we would not need to have any expensive equipment
to peer into the inner workings of a DNN. However, since the
information is not encoded as an easy to analyze structure,



such as parse trees, but rather in vectors that can contain a
hundred real numbers, there is still plenty of hardship in ana-
lyzing the inner workings of a DNN. In order for us to analyze
anything, the vectors would need to be translated into a read-
able format. Which has proven to be very difficult. However,
there are some studies that have made an attempt to do this.

Regarding this, the first study we will discuss is by Shi et
al. (2016). To find out if the encoder learns syntactical infor-
mation about the source sentence and what kind of informa-
tion is learned, they used two different methods. Firstly they
created syntactical labels of the source sentence, such as: NP,
VP etc. They tried to predict the syntactic labels with logis-
tic regression. For sentence level labels they used the learned
sentence encoding vectors, and for the word-level labels, they
used the word-by-word hidden vectors. The second step is to
extract a full parse tree from the source sentence from the en-
coded vectors. This way, a structured manner to analyze the
information that is encoded can be represented. The results
of this study show promise, a lot of syntactical information
is encoded. In their research they find that different types of
syntactical information is encoded in different layers of the
DNN. However some syntactical information is still missing.
This causes the most common error in their research, which
is called “sense confusion”. Missing information has a lot
of effect on the rest of the parse tree. As can be seen in the
example they shared which is shown in figure 3. In this exam-
ple the word “beyond” is predicted as an RB instead of an IN,
which causes a missing prepositional phrase (PP), and thus
causes sense confusion.

In research done by Conneau et al. (2018) they used similar
probing tasks to uncover information from the DNN. There
were several tasks that tested specific things. Firstly, a bi-
gram shift task, this task “tests whether an encoder is sensi-
tive to legal word orders”. The model needs to be able to tell
the difference between intact sentences and a sentence where
a random pair of words is switched, for example: “What you
are doing out there?”. The second task is the tree depth task,
in this task the encoder needs to be able to retrieve the maxi-
mum depth of a parse tree of the sentence. The last task about
syntax was the top constituent task. In this task, the encoder
needs to be able to formulate the first couple of constituents
and say what sort of constituent it is, such as NP, VP etc. A
lot of the encoders did well on all of these tasks.

Giullianelli et al. (2018) revealed that the ‘diagnostic clas-
sifiers’, which are trained on number agreement from the in-
ternal state of the model, “provide a detailed understanding
of how, when and where this information is represented”. In
their research they find that it can also be shown where wrong
information is generated and how that influences the model
into making a mistake. They used the extracted information
to help the LSTM during the processing of a difficult sen-
tence and found that it drastically increases the accuracy of
the model.

Saved information usage This does point out a problem
that these methods face. While the methods discussed can

Figure 3: The upper parse tree shows the expected result and
the lower parse tree shows the tree that the DNN outputted.

show that a DNN has syntactical information stored, that does
not necessarily mean that it uses that information. For exam-
ple, in the previous study they had to manually feed the stored
information back into the model to help it get better results.
Funnily, this sound like a very human mistake, storing infor-
mation without using it.

While not only reinforcing the previously mentioned find-
ings of the research done by Gulordova et al. (2018), Lakretz
and colleagues (2019) found that when tracking individual
neurons or computation units, after some training on raw cor-
pus data, the units began tracking very specific linguistic in-
formation. The number information is managed by a pair of
neurons, so whether the phrase is single or plural. These neu-
rons in turn are “partially controlled by other units indepen-
dently shown to track syntactic structure”. So, each neuron
keeps track of some aspect of the syntactical information of
the sentence. In turn these neurons influence the information
in a different neuron. This (sub)network is supported by other
(sub)networks that track non-syntactical information such as
linear distance. While the model still had some trouble with
the tracking of plurality of a sentence with embedded phrases,
this research has the most convincing results. Not only show-
ing that the model is able to deal with grammatical tasks, but
also being able to point out exactly which neurons do what
and the role that they play in the entire network.

Conclusion
All in all, the research in NLP that has been done using DNNs
in the last couple of years has changed the consensus on the
topic completely. A few years back in 2017, the conclusion of
Linzen’s and Bernardy’s first research was that DNNs do not



encode syntactical structure and rather rely on large amounts
of data to fuel their conclusions in a statistical manner. I think
it is safe to say that most of the experts of the topic agreed
with this conclusion even before Linzen’s and Bernardy’s re-
search. However, in the 3 years after, an entirely new con-
clusion was being drawn from other sources. Gulordova has
proven that RNNs can handle long-distance agreement tasks,
even with meaningless sentences. To reinforce the conclusion
that RNNs encode syntactical information within the model,
a lot of different syntax tasks were tested. Using the surprisal
calculation method, Wilcox (2018) and Futrell (2019) had
very positive results. Though Futrell’s research does point
out that larger training-datasizes will still perform better on
the more complicated syntax constraints. However, models
that have a built in hierarchical structure such as a parse-
tree structure, were the most human-like in their processing
of language (Futrell et al., 2019, McCoy et al., 2020). Fi-
nally, Lakretz and colleagues were able to show definitively
that the network encodes syntactical information and uses it
as well. Their model, however, did encounter some problems
with embedded phrases, since this model was still based on a
linear structure.

As research and models develop, it seems clear that DNNs
are able to process language with fairly minimal mistakes.
The more data the DNNs are trained on, the less mistakes
they make. The only way to make a DNN make relatively
few mistakes without making them train on billions of to-
kens, since humans have less training data as well, is to im-
plement a hierarchical bias into the model. This further rein-
forces the argument of UG and the three factors that Chom-
sky (2005, from Yang et al., 2017) mentioned are necessary
for language acquisition/processing. So, artificial neural net-
works can process language in a similar hierarchical manner
as humans, however, just as humans have a bias towards hi-
erarchical language processing in the form of UG, evidence
suggests that the model needs to have a bias towards such a
hierarchical based structure, like an implemented parse-tree
structure, to have a chance of correctly processing language
in this manner.
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