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Abstract

This study presents a comparison between the Gene-pool Optimal Mixing Evolu-
tionary Algorithm for permutation problems (GOMEA) and the Biased Random-
Key Genetic Algorithm (BRKGA). The performance of the two algorithms is
evaluated on the Winner Determination Problem in Multi-Combinatorial Auc-
tions. The purpose of the study is to understand how well, the linkage tree
model on which GOMEA relies, is able to capture and explain the structure of
the problem and how well it performs when compared to an algorithm that’s
already been proven excellent in solving the aforementioned problem as the
BRKGA.
To test the algorithms problem instances are generated using the Combinatorial
Auction Test Suite (CATS). The test suite is able to generate ad hoc problem
instances varying in terms of dimension, hardness, and distribution.
Additional FOS models like the Univariate model, for the GOMEA algorithm,
are tested and evaluated. GOMEA is also tested with the RKGA and Ordering
Messy Genetic Algorithm (OMEGA) on deceptive permutations problems.
Results show that GOMEA performs well, especially on harder problem in-
stances when compared to the BRKGA, even though the linkage tree model
doesn’t fully represent the problem structure.
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1 Introduction

An auction is a process in which goods or property are sold to the highest bidder.
A bidder is an individual or an organization who makes a formal offer, called a
bid, in order to buy an item at an auction. The whole process is regulated, in
traditional auctions, by the auctioneer, who conducts the auction by accepting
bids and declaring items sold. There are many different types of auctions like
the English auction, the Japanese auction, the Dutch auction, the Sealed-bid
auction, etcetera.
All the different types of auctions can be grouped into three categories:

• Single unit auctions, where one good is involved

• Multi-unit auctions, where more tokens of the same goods are involved

• Combinatorial auctions, where more tokens of different goods are involved

During this research, the auction that will be examined is a combination of the
last two types of auctions, the multi-combinatorial auction. [1]

1.1 Problem definition

Multi-combinatorial auctions are a specific type of auctions where a bid consists
of a set of items rather than a single item. The Winner Determination Prob-
lem (WDP) is an NP-hard problem by reduction from the weighted set packing
problem [2].
The objective of this combinatorial optimization problem is to maximize the
auctioneer’s revenue, by choosing an allocation that maximizes the sum, over
all bidders, of the bidders’ valuation for the subset of items that they receive [3].

The set of bidders is denoted by N = {1, ..., n} and the set of items is de-
noted by M = {1, ...,m} .

A bundle S is a set of items: S ⊆M . The bid that bidder i makes for bundle
S is denoted by vi(S). The allocation of the items is described by the variable
Xi(S) :

X i(S) ∈

{
1, if bidder i gets bundle S

0, otherwise
(1)

An allocation is said to be feasible if it allocates no item more than once:∑
i∈N

∑
S⊆M,j∈S

xi(S) ≤ 1, for all j ∈M, (2)
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and at most one subset to every bidder:∑
S⊆M

xi(S) ≤ 1, for all i ∈ N. (3)

Given the bids vi, i = 1, ..., n, the Winner Determination Problem is defined
by:

x = argmax

(∑
i∈N

vi(S)xi(S) | x is a feasible allocation

)
. (4)

For a large number of bids, it is unfeasible for an algorithm to check every
possible combination of bids, due to the exponential nature of the problem.
Since any subset of bids is allowed there are n(2m − 1) bids with n for the
number of bidders and m for the number of goods. During the scope of this
research, the auction in exam will be a single-round auction, with non-negativity
constraints. A single-round auction differs from a multi-round auction as the
bids will be placed only once throughout the auction.

1.2 Affinity with the Multi-Dimensional Knapsack prob-
lem

There are many studies that report a similarity between the Multi-Dimensional
Knapsack Problem (MDKP) and the Winner Determination Problem in com-
binatorial auctions [4, 5, 3, 6] in particular they affirm that the WDP can be
seen and modeled as the MDKP.
Following a study by Holte [5] the multi-unit combinatorial auction is precisely
a MDKP, where each item in the auction is a dimension and accepting a bid
corresponds to inserting an item into the knapsack. In their studies, they fo-
cused on the performance of hill-climbing algorithms on combinatorial auctions
which includes both problems. The different types of hill-climbing algorithms
were found to score particularly well for both the MDKP and the WDP.
Kelly proposed another important study that shows the relations between the
two combinatorial problems [7]. It starts with the data center allocation prob-
lem. In this problem, there is a constant number of few recourse types and
a large number of units of these resources that need to be allocated, which is
comparable to the WDP. It is then intuitive to generalize the optimal allocation
problem as an MDKP.
Lehmann et al. [3] modeled the WDPXOR, that corresponds to the multi-
dimensional multiple-choice knapsack problem, by an integer linear program
that is identical to the one for the weighted set packing problem which objec-
tive is to find a non-intersecting set of maximal total weights [2].

max
∑n
i=1

∑
S⊆M vi(S)xi(S)

(WDPXOR)
∑n
i=1

∑
S⊆M,S3j xi(S) ≤ 1 for all j ∈M∑

S⊆M xi(S) ≤ 1 for all i ∈ N
xi(S) ∈ {0, 1}
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It was previously suggested in the literature to interpret a multi-item ver-
sion of the WDPXOR as a generalized knapsack problem [5]. In the general
KP, there is a set of objects with respecting weights and values and the algo-
rithm has to maximize the total value by selecting a set of objects respecting a
weight threshold, whereas in the case of the WDPXOR it is a multi-dimensional
multiple-choice knapsack problem.
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2 Previous works

Numerous meta-heuristics approaches have been undertaken for solving the win-
ner determination problem, in her work, Boughaci, [8] compares four of these
approaches both single oriented, like Stochastic local search and tabu search,
and population oriented, like genetic algorithms and memetic algorithms.
The different algorithms were implemented and tested on various benchmarks.
The Memetic Algorithm (MA), which is a population-based approach that com-
bines local search methods with crossover operators, resulted more efficient than
the rest of the algorithms. The reason for this improved efficiency resides in the
stochastic local search component that allows the crossover operator to create
better solutions.

The Biased Random-Key genetic algorithm has been proven successful for
the winner determination problems in multi-combinatorial auctions [4]. The
algorithm uses standardised chromosome encoding which consists of a vector
with t uniformly drawn random keys (alleles) over the interval [0, 1] [9] and
parametrised uniform crossover.
Different approaches are examined: Chromosomal approach, Greedy approach
and, Surrogate duality approach, all of them with an LP-relaxations variant.
They compared the algorithm with two exact and two heuristic algorithms, in
both cases state-of-the-art algorithms. The newly proposed algorithms outper-
formed the competitors, and between them, the version using LP-based initial-
isation performed better than the approaches that used instead of a random
vector as initial population.

The biased Random-key Genetic algorithm has been used to solve vari-
ous combinatorial optimization problems as resource-constrained multi-project
scheduling problem, the unequal area facility layout problem, 2D, and 3D bin
packing problems etcetera.
In their work, Gonçalves et al. [10] showed several applications for the algo-
rithm which in the vast majority of cases performed better than the other GAs
or heuristics. They were able to easily test it for 13 different problems due to
its adaptability. The algorithm is divided into problem dependent and problem
independent parts. For what concerns the problem independent parts, with the
BRKGA one does not have to worry about crossover operators and mutation
because they are already specified contrary to what happens in a normal genetic
algorithm.
The problem-dependent part of the algorithm is merely the fitness function
hence it becomes straightforward to incorporate a heuristic algorithm with the
BRKGA obtaining a better solution than the single heuristic. The BRKGA is
an improvement of the random-key GA proposed by Bean [9] whereas one of
the parents is always chosen from the elite set. This adds to the greediness of
the algorithm instead of pure randomization which considerably increases the
algorithm performances.

The relatively new introduced Gene-Pool Optimal Mixing Evolutionary Al-
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gorithm (GOMEA), demonstrated its capabilities of scaling excellently on Cartesian-
space optimisation problem. In a recent work by Bosman et al, [11] they demon-
strated that using GOMEA in combination with the Biased Random-Key ge-
netic algorithm (BRKGA) could also be used to solve permutations optimisation
problems. One of the main advantages of the algorithm is the use of the fam-
ily of subsets (FOS) concept that captures and encodes dependencies between
problem variables.
The FOS model used by the algorithm is the Linkage Tree model, which is able
to capture both low and high order dependencies, in this case, using bottom-
up hierarchical clustering. The algorithm proved itself state-of-the-art with the
Permutation Flow-shop Scheduling problem as a benchmark.

Not only BRKGA is positively advantaged by using a heuristic for the pop-
ulation initialization, but Gene-Pool Optimal Mixing Evolutionary Algorithm
as well. Precisely in their work, Aalvanger et al. [12] showed how the algorithm
can be improved by incorporating a constructive heuristic to seed the initial
population and compare it to the state-of-the-art algorithm for the Permuta-
tion Flowshop Scheduling Problem.
As heuristic it was utilized the LR(x) [13] which simply works in three steps: It
first sorts the jobs according to an index function, then creates a list of sched-
ules, and finally, it picks the best schedule generated so far. There are two
different types of index functions, the first one penalizes the idle time of the
machines, the second one rewards the sum of completion times.
The algorithm is tested against the Variable Neighbor Search Algorithm (VNS4)
[14], one of the most successful algorithms in literature for PFSP, on three dif-
ferent types of instances. Job correlated instances, where processing times are
dependent on the job, and not on the machines, Machine correlated instances,
where the structure is reversed and Mixed correlated instances which are equal
to MCI but with the difference of the processing times of each machine to be
job-dependent.
Results show that for job-correlated and mixed correlated instances, Permuta-
tion GOMEA is able to higher benefits from the problem structure and always
outperform the VNS4 algorithm. The same is not encountered for machine-
correlated instances with a high amount of structure where the VNS4 algorithm
performs better. This is most likely due to the distance measure used to build
the linkage model that fails to fully capture the structure of the problem. Overall
results show that seeding the initial population with a heuristic for Permutation
GOMEA is an effective technique.

In their work, Bosman et al. showed how local search can improve the results
even in a black-box optimisation where partial evaluations are not possible [15]
.
Optimal mixing was also examined, and taken into consideration as an inte-
gration of local search into the variations operators of evolutionary algorithms,
which results in a better combination compared to generic memetic algorithms.
Local search was found to be particularly useful when dependencies between
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problem variables were identified using the model building.

The Linkage Neighbour, a variant of the Linkage tree model, has been in-
troduced by Bosman et al. [16] where even with the simplest learning approach
better results are obtained on the linkage benchmarks problem compared to
the LT model. The main difference between the two linkage models resides in
the ability of the LN to model overlapping building blocks. The LT model is
still able to model overlapping linkage relations but these are organised in a
hierarchical way where lower-order constituents of a linkage set are mutually
exclusive.
With the LN, which to determine a linkage neighbour uses the likelihood-ratio
test, it is possible to singularly represent linkage neighbour for a determined
variable singularly, instead of clustering all the variables together as it would
happen for the LT. Moreover, they extended the LN to a multi-scale variant
that combines the benefits of the LN in terms of overlapping blocks and the
benefits of the LT in terms of representing different scales of linkage.
The Multiscale hierarchy is obtained by reducing the size of the neighbourhood
with a specific ordering, that differs for different decomposition, creating in-
clusive subsets. This method had proven beneficial compared to representing
linkage at single scale.

Another solution to overlapping problems in linkage learning has been pro-
posed by Przewozniczek et al. [17] in their Parameter-Less Population Pyramid
for permutation-based problems (P4). The main difference from other evolution-
ary methods is the structure of its population. Individuals from subpopulations,
called levels, have their separate linkage information, and together they form the
pyramid structure. Each pyramid level has its separate Dependency Structure
Matrix (DSM) and a separate linkage tree.
At each iteration a new individual is crossed with each individual of the pyramid
using the optimal-mixing operator and if it improves it is added to the higher
level of the pyramid. The method is tested against LT-GOMEA using Permu-
tation Flowshop Scheduling Problem as the comparison base.
It is found that for a higher number of jobs and a small number of machines,
LT-GOMEA outperforms P4, however, the LT-GOMEA dominance vanishes
with the increasing numbers of machines. This is due to maintaining a smaller
number of linkages, hence P4 proves to be successful in preserving better diver-
sity.

2.1 BRKGA

Genetic algorithms that utilize random keys, known as random-key genetic al-
gorithm (RKGA) were first introduced in 1994 by Bean [9]. The algorithm was
proposed to solve combinatorial optimization problems, where the solution can
be represented as a vector of randomly generated real numbers in the [0, 1] in-
terval.
Each individual of the population is represented as a vector of random keys
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and a deterministic algorithm called decoder, takes as an input the individual,
which is the vector of random keys, and associates it to a feasible solution in
the combinatorial optimization problem space. The decoder computes the solu-
tion’s fitness and returns its value; the higher the fitness, the better the solution.

The algorithm starts with the random initialization of the population. The
population is composed of p individuals which are encoded as vectors of ran-
dom keys. At each generation, until the stopping criteria is met, the population
is evaluated and a new population is formed for the next generation. At the
beginning of each generation, the fitness of every individual is calculated using
the decoder. Based on their fitness, the individuals of the population are then
divided into two groups, a small group of elite individuals, which a higher fitness
value, pe, and the remaining non-elite individuals. The elite individuals from
generation k are copied unchanged to generation k + 1.
To introduce diversity in the population, some mutants are added to generation
k + 1, those elements, pm are newly randomly generated individuals. The re-
maining p− pe − pm individuals are the offspring created through the crossover
process.

RGKA selects the parents for the crossover at random from the entire popu-
lation and allows them to be selected more than one per generation. The differ-
ence with the Biased RKGA lies in the parent selection; one parent (ParentA)
is selected from the elite set and the other parent (ParentB)from the remaining
population [4], parents can still be selected more than once per generation.
Both versions of the algorithm implement parameterized uniform crossover,
where pa indicates the probability that the offspring inherits the vector compo-
nent from ParentA, and 1− pa is the probability of inheriting ParentB’s vector
component. If pa = 0.5 then it’s the case of the standard uniform crossover.
This increases exploitation since with pa > 0.5 there’s a higher probability that
the offspring will inherit from the elite parent.
Once the population is complete a new generation will start and the iteration
will continue until the stopping criteria is met; the algorithm returns the best
solution found.

2.2 GOMEA

The Gene-pool Optimal Mixing Evolutionary Algorithm is a population-based,
stochastic search algorithm. It is able to efficiently learn dependency informa-
tion between variables through a Family-Of-Subset model (FOS), it efficiently
decides between competing building blocks and transfers the optimal ones from
the parents to the offspring solution.
It starts by creating a random population of individuals, and subsequently, the
generation cycle starts and will terminate once specific conditions are satisfied.
The generation is divided into two steps: generating a FOS model and Optimal
Mixing.
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2.2.1 Family Of Subsets model

The objectice of the FOS model is to identify groups of problem variables that
together make an important contribution to the quality of solutions. These
variable groups interacts in a non-linear way and should be processed as a block
which will be called building block. The FOS model should capture the struc-
ture of the problem which can only be approximated from the knowledge in the
current population and provide the building blocks to construct the solution
through optimal mixing of the population. There are different types of FOS
models of different sizes and there is a trade-off between size and information.
A bigger FOS model with more building blocks means more times and steps for
the algorithm to perform the Optimal Mixing, but a smaller FOS model is not
always able to capture dependencies hence fewer informations.

• Univariate FOS structure: it assumes every variable is independent from
the others and the model itself is a set of singleton whose union corresponds
to the set of all variables: for n vairables: F = {{x1}, {x2}, ...{xn}}. It is
the simplest FOS model.

• Marginal Product FOS structure: it creates mutually independents sets
of variables. These sets are formed by variables that possess a certain
degree of dependency between each other. The sets are not overlap-
ping and their union form the sets of all variables: for n variables: F =
{{x1, x4}, ...{x8, x9, ..., xn}}

• Linkage Tree FOS structure: it is a binary tree that has the set containing
all variables as root and singletons of all variables as leaves. Subsets or
branches are composed of sets of variables that share dependency between
each other. Problem variables in a subset are considered to be dependent
on each other but become independent in a child subset. The Linkage
Tree has l leaf nodes and l−1 internal nodes; l corresponds to the number
of problem variables. To create the linkage tree, the first step is to create
the univariate structure and after that, it builds the linkage tree using
bottom-up hierarchical clustering algorithm.

Figure 1: Exmple of linkage tree with 10 problem variables

11



In this work, the univariate and the linkage tree FOS will be analyzed.

2.2.2 Optimal mixing

Optimal mixing (OM) can be regarded as a greedy improvement of existing
solutions. The term optimal mixing comes from the fact that better instances
for substructures are immediately accepted and are not influenced by the noise
coming from other parts of the solution.
After the FOS structure is completed, the second phase of the generation can
start. For each individual of the population, a donor solution is randomly
selected from the population. The individual has to be recombined with the
donor once for every subset of the linkage tree. The subset is used as a crossover
mask, and the recombination is greedy; only improvements of the individual are
accepted.

Example of recombination:

Donor = [0, 0, 0]
Individual = [1, 1, 1]
Subset = [x2, x3]
NewIndividual = [1, 0, 0]

In this study, Gene-pool optimal mixing (GOM) will be analyzed, which
differs from the previously introduced Recombinative optimal mixing (ROM)
[18], since for each subset of the FOS model a new donor is randomly selected
while for the ROM a single donor solution was selected to perform OM, for each
individual of the population.

Once the algorithm has traversed entirely the FOS model, a new generation
starts, a new model is built, and the iterations continue. The algorithm stops
when it meets the termination criteria; the best solution is then returned.

2.3 Deception and genetic algorithms

Deceptive problems are misleading for genetic algorithms because they are struc-
tured in such a way that low-order building blocks that contain suboptimal
solutions are distant from the global solution. Genetic algorithms work by re-
combining low-order building blocks and, deceptive functions are able to attract
the algorithm towards a local optima instead of the global.

For example, the deceptive trap function, Counting Ones. The goal is to
maximize the function value of a binary vector; the global optimum is defined
as the vector of only 1.

Counting Ones function: xi ∈ {0, 1} : CO (x1 . . . x`) =
∑`
i=1 xi
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The vector is divided into low-order building blocks of length k = 4 which
are subfunctions containing two optimum, 1111 and 0000. Since the trap func-
tion consist of 100/4 = 25 concatenated subfunctions, it contains 225 − 1 local
optima and one global optima which is the string of all ones.

Figure 2: Distribution of fitness and the two optima of the trap function

In deceptive functions, for each subfunction, the lower-order schema fitness
averages that contain the global optimum 1111, have a lower value than the
lower-order schema fitness averages that contain the local optimum 0000.{

F (111∗) = 2
F (000∗) = 2.5{
F (11 ∗ ∗) = 1.25
F (00 ∗ ∗) = 2{
F (1 ∗ ∗∗) = 1.125
F (0 ∗ ∗∗) = 1.5

2.3.1 Ordering Messy Genetic Algorithm

In their study, Knjazew et al. compared the Ordering Messy Genetic Algorithm
(OMEGA) which is a fast messy genetic algorithm that uses random keys to
represent chromosomes, and the Biased Random Key Genetic Algorithm, on de-
ceptive combinatorial optimization problems. [19]. These problems come from
the work of Karugpta et al. [20] where they defined two deceptive functions of
order 4: the relative ordering function frel, and the absolute ordering function
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fabs. The problem is a 32-allele permutation problem in which 8 size 4 permu-
tation sub-problems are coupled together
The functions are defined as follow:

Figure 3: Definition of the function from the work of Karugpta et al. [20]

In the relative ordering problem, the relative ordering of the allele is impor-
tant, while in the absolute ordering problem, not only the order of the allele but
also the position of the allele is taken into consideration.
For both problems, the global optima string is the f(1234) one and has a value
of 4.0, whilst the second highest fitness string is f(3421) which has a value of
3.2 in the relative ordering problem and 3.3 in the absolute one.

Knjazew et al. in their work enhanced the problems by introducing tight
and loose coding of the problem. For tight coding, it means a coding scheme
where the blocks are tight with a defining length of 3. The defining length of a
block is the distance between the first and the last gene of the block, and deflen6
defines this length to 6. Loose coding is a type of coding where the defining
length is maximal.

Figure 4: Deflen6 and loose coding, from the work of Knjazew et al. [19]

These problems are an interesting benchmark on which GOMEA will be
tested; contrary to the winner determination problem, these deceptive problems
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have a clear structure and their complexity can be clearly evaluated.
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3 Problem Representation

3.1 Combinatorial Auction Test Suite

For the generation of problem instances, it is used the Combinatorial Auction
Test Suite (CATS), a universal test suite for combinatorial auctions, from the
work of Leyton-Brown et al. [21]. In their work, they presented a suite of dis-
tribution families for generating realistic, economically motivated combinatorial
bids.
The suite offers the option to generate bids according to all the previously
published test distributions in order to facilitate the comparison with previous
works. Some of the distributions are Uniform, Normal, Exponential, Random,
Linear Random, Quadratic etcetera.

CATS generate the instances in the form of a txt file, and depending on the
parameters specified in the CATS command line, the instances follow different
distributions, have different numbers of bids and goods. Additional parameters
like polynomial models, or feature weighting can also be specified to tweak even
more the resulting instances.

Once the txt file is generated, a Python function takes care of transforming
the file into an array, respectively with the following values:

[goodsNumber, bidsNumber, bidsV alue, bids]

which corresponds to:

• goodsNumber : an integer corresponding to the number of goods of the
auction

• bidsNumber : an integer corresponding to the number of bids of the auc-
tion

• bidsValue : a list of real numbers, representing the value of each bid

• bids : a list containing the bids. Each bid is in the form of a list of integers
where each integer corresponds to the index of the good associated with
the bid.

3.2 Representation in BRKGA

The population of the BRKGA is represented as a list of individuals. Each
individual is stored in the form of an array where each position is a list of two
elements.
The first element is an integer, and the second element is a real value between
zero and one, the random key. The first element corresponds to the index of the
random key and it’s sorted in increasing order at the moment the population is
created.
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This is an example of an individual (Ind.) taken from a problem instance with
4 bids.

Ind . = [ [ 0 , 0 . 4 0 7 ] , [ 1 , 0 . 2 3 8 ] , [ 2 , 0 . 2 5 0 ] , [ 3 , 0 . 7 2 3 ] ]

The number of random keys of one individual is equal to the total number of
bids of the auction which is one of the values derived from the txt file and
corresponds to the length of the bids list.
The bids list is a list of lists, where, at each position, a list is present, indicating
the list of goods required by that specific bid.
For each bid, the list consists of single or multiple numbers indicating an index,
which is a representation, of the goods intended to be purchased. The goods
index range from 0, to goodsNumber - 1.
An example of a problem instance with 4 bids and 5 goods is shown below. As
shown in the example, the bids index ranges from 0 to 3 and the goods index
ranges from 0 to 4. For example, the fourth and last bid of the individual, at
index 3 contains respectively the indexes corresponding to three different goods,
2, 4, and 0.

Bids = [ [ 4 ] , [ 1 ] , [ 0 ] , [ 2 , 4 , 0 ] ]
Indexes : 0 1 2 3

The last piece of the representation is the bidsValue. It is also a list and consists
of real numbers, each one of them indicating the actual value of each bid.

BidsValue = [ 6 1 8 . 4 9 3 , 817 .067 , 985 .098 , 109 5 . 44 ]
Indexes : 0 1 2 3

Each random key is connected to its value and the list of goods it contains
through its index.

Having the index stored with the random key (see the Individual example
above), allows the algorithm to not having to store additional information in
case of shuffling of the population.
The random key in the first position, which has index 0, corresponds to the bid
at index 0 inside the bids list. Moreover, the value of the bid stored at index 0
inside the bidsValue list also corresponds to the random key at index 0.
For example, the random key in the fourth position, with index 3 corresponds,
to the bid containing 3 goods, [2, 4, 0] and has a value of 1095.44.

3.3 Representation in GOMEA

The representation in GOMEA follows the representation for the BRKGA. The
only difference is between the two representation is merely a programming choice
and does not affect the mechanism nor the way the problem instance and the
relations between goods, and bids are represented.
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The difference resides in the population representation, where for GOMEA,
an individual of the population is simply a list of random keys, whilst for the
BRKGA an individual is represented as a list of couples ( [index, random key]
). The index information, which connects the random key to the bid, is repre-
sented by the actual index of the random key inside the list (an individual is
represented as a list of random keys).

This is an example from a problem instance with 5 goods and 4 bids.

i n d i v i d u a l = [ 0 . 4 0 7 3 8 , 0 .23858 , 0 .25089 , 0 . 8 2278 ]
indexes : 0 1 2 3

To clarify, the random key in the first position will have index 0, in the
second position index 1, and so on. The indexes shown in the example above
are displayed for understanding and are not stored in the data structure.

Since an individual is not carrying any additional information regarding the
index of the random key, except the index of the key itself, the positions of the
random keys inside the individuals remain the same throughout the computa-
tion.
During the decoding phase, where a permutation of the keys is required, an
additional piece of information, representing the index of the random key is
momentarily appended to the individuals.
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4 Algorithms implementation

This section will explain the functioning and the implementation of the two
algorithms under examination, the Biased Random-Key Genetic Algorithm and
Gene-Pool Optimal Mixing Evolutionary Algorithm.

4.1 Biased Random-Key Genetic Algorithm

4.1.1 Creating the population

The first step taken by the algorithm is to create the population. The population
varies in dimension, which is the number of individual elements of which it is
composed and, being it a parameter of the algorithm, has to be specified a
priori. To create the population, information about the auctions are necessary
hence it is during this phase that the method to extract information about the
auction is invoked. The total number of bids will indicate how many random
keys an individual will contain and based on this information, a number of
individuals corresponding to the size of the population will be generated. Each
individual is composed of a list of lists, each one of them containing respectively
in first position an integer, representing the index of the random key which, as
stated before, is important to map each specific random key to the bid which
represents, and in the second position a real number between 0 and 1 which is
the random key.

4.1.2 Generation

After having created the population, the generation cycle can successfully start,
and the population will evolve and mutate at each new generation. The stop-
ping criterion used for this algorithm is based on the fitness evaluations of the
population singular individuals. If the fittest element remains unchanged for a
predetermined number of generations, the algorithm reached its maximum and
the computation is concluded.

4.1.3 Fitness calculation

At this phase of the algorithm it is important to calculate the fitness of the
population, not only as information about this current generation but also to
identify which individuals can assume the elite role and be passed on to the next
generation.
In order to calculate the fitness of the population, it is used as a decoder, the
decoder calculates the fitness for each individual singularly and returns a list of
pairs composed by each individual and its relative fitness values (See Algorithm
1). The decoder follows the chromosomal approach where the keys of an indi-
vidual are ordered in decreasing order and ties are broken by keys indices.
Once the keys of the individual are ordered, starting from the one in the first
position, for each one of them, following the index relative to the key, a list of
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goods is retrieved. These goods are associated with this specific bid, and in com-
pliance with the auction requirements, namely that one good can only appear
in one bid, the bid is accepted. The list of already accepted goods is adjourned
with the goods relative to the bid in exams, and the fitness corresponding to
the bid is added to the total fitness of the individual.
If the bid does not satisfy the requirements, which means that one or more of
the goods relative to the bid was already present inside the accepted goods lists,
then the bid is not taken into account, the accepted goods list is not adjourned
and the fitness of the individual is not increased. If the key associated with
the discarded bid has a lower value than 0.5 the bid is encouraged for the next
generation, which means that the random key values will be equal to one minus
the bid value.
This will increase the chances for that specific bid to be taken into account in
the next generations. The algorithm finishes once it checked all the random
keys and the final fitness value of the individual is calculated.

Algorithm 1: Decoder

1 Let S be an empty list to hold the solution;
2 Let kj be the key associated with bid Bj ;
3 Let L be a list of bid indexes ordered in non increasing order of keys k;

4 foreach j ∈ L in the given order do
5 if Bj has no marked goods then
6 S ← S ∪ {j};
7 Mark all goods of Bj ;

8 else if kj > .5 then
9 kj ← 1− kj ; // discourage bid Bj

10 L← L\{j} ;

11 end

12 return the fitness
∑
j∈S bj

4.1.4 Parameterized Uniform Crossover

After having decoded the fitness of the population the individuals are ordered
based on their fitness.
Three constant specified a priori will decide the ratio of the population for the
new generation. The first constant is e and corresponds to the ratio of elite
members that will be passed on to the next generation. Based on this constant
the first x number of elements of the population are copied into the next gener-
ation population.
The second constant µ specifies the ratio of new individuals randomly created
that will be present in the population. This allows the population to maintain
diversity and maximize the exploration. The remaining part of the population
will consist of offspring generated with parameterized uniform crossover, where
one parent is chosen from the elite set and the other from the entire population.
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The third constant γ is used as a parameter to decide whether the key is inher-
ited from the elite parent or the other parent. An increase in the value of the
constant will increase also the probability that the inherited key belongs to the
elite parent.
The parameters used for the algorithm are the ones suggested in their work by
de Andrade et al. [4] and are e = 0.4 which is is the ratio of elite individuals, µ
= 0.2 the ratio or random individuals and γ = 0.6 the probability of selecting
a random key from the elite parent for the crossover.

4.1.5 Termination

The algorithm terminates when no better fitness is found for a predetermined
number of generations. The output results in the best fitness, the time spent by
the algorithm to find the optimal value, and the total number of generations.

Algorithm 2: BRKGA scheme

1 Generate the initial population P ;

2 while a stopping criteria is not reached do
3 Decode each chromosome of P and extract its solution and fitness;

4 Sort the population P in nonincreasing order of fitness. Consider
the top pe individuals as the elite group E;

5 Copy E to the next generation Q, unaltered;

6 Add Pµ randomly generated new chromosomes (mutant) to Q;

7 Generate p− pe − pµ chromosomes (offspring) by parametrized
crossover selecting a random parent from E and another from
P \ E. Add them to Q;

8 P ← Q;

9 end

10 return best individual found

4.2 Gene-Pool Optimal Mixing Evolutionary Algorithm

4.2.1 Creating the population

As for the BRKGA, the first step is to create the population. An input parame-
ter to the GOMEA specifies the number of individuals of which the population
will be composed of. As previously explained in the problem representation sec-
tion, contrary to what happens in the BRKGA, an individual of the population
is merely represented by a list of random keys, and the index is the reference
that connects the random key to the bid, resulting in a simpler architecture.
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4.2.2 Family of subset: Linkage Tree

At every generation, a new Linkage Tree is created, in order to capture depen-
dencies between variables.
The process of building the linkage tree can be separated into two main pro-
cesses:

- Dependency matrix

- Hierarchical clustering

4.2.3 Dependency matrix

The dependency matrix, whose calculation is based on multiple parameters, de-
scribes the dependency of each variable compared to the other ones.
Following the work of Bosman et al. [11], a symmetric notion of dependency,
composed of two different parameters, is used to calculate the values of the ma-
trix; the bigger the value, the stronger the dependency between the variables:

δ(j, i) = δ(i, j) = δ1(i, j)δ2(i, j) (5)

The first parameter, δ1, focuses on relative-ordering information, which gives
us information about the ordering of two different variables. It computes the
entropy of the probability that the random key ri appears before the random
key rj , in other words, the value of the random key ri is bigger than the random
key rj .
The maximum value the entropy could reach is 1, which signifies a very weak
dependency so much that the reverse order could appear with the same proba-
bility. On the other hand, the minimum value that the entropy could reach is
0, which means a strong dependency hence it means that one ordering is more
plausible to manifest. The value obtained by the entropy is then negated sub-
tracting it to 1 and obtaining the desired notion of dependency:

δ1(i, j) = 1− {− [pij log2 (pij) + (1.0− pij) log2 (1.0− pij)]} (6)

where

pij =
1

n

n−1∑
k=0

{
1 if rki < rkj
0 otherwise

(7)

and rki is the random key i of the individual k of the population.

The relative-ordering information is not the only important information that
can be extrapolated from the variables ordering. The proximity between two
variables also plays an important role in discerning the dependency between
different variables. This type of information is called adjacency information,
δ2, and it is calculated by computing the average squared difference between
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two random keys. Like as in the entropy case, this value is within the [0, 1]
limits, and likewise to a greater value corresponds a weaker dependency, hence
to obtain the desired notion of dependency this value will also be negated by
subtracting it to 1 in order to revert its meaning.

δ2(i, j) = 1− 1

n

n−1∑
k=0

(
rki − rkj

)2
(8)

In the discussion section, it will be explained the choice behind the combi-
nation of the two deltas.

4.2.4 Hierarchical clustering

After having computed the dependency matrix, enough information is collected
to build the linkage tree.
The algorithm performs bottom-up hierarchical clustering starting from the
leaves of the tree and ending with the root node. It starts with the univariate
structure where each variable is assigned to its own cluster.
After that, using the dependency matrix, for each cluster it is calculated the
closest cluster, generating a list of dependencies. Each position of the list (in-
dex) corresponds to a cluster and the value at the specific position corresponds
to the most dependent one according to the dependency matrix. The list is
progressively examined and at each position, if none of the two clusters, the one
corresponding to the index, and the one corresponding to the closest one, are
already inside a node at this level, then the two clusters are grouped together
and will be a node for the next branch. When the list is terminated, the gener-
ated nodes are grouped together inside the branch structure which is added to
the linkage tree in the form of a list of lists.
The branch will be passed on to the algorithm and will be used to calculate the
next dependency list, using the branch structure instead of the univariate. The
branch structure will be gradually adjourned and the process will continue until
there is only one cluster left, containing all the variables, the root node.
The data structure of the linkage tree consists of a list, in which every element
corresponds to a level of the linkage tree. A level is itself a list, containing a list
of nodes, or clusters. Each one of them contains a list of indexes, corresponding
to the variables.

Example of a linkage tree representation for a 5 bids problem instance:

Root [[0, 1, 2, 3, 4]]
Branch [[0, 1, 3]]
Branch [[0, 1], [4, 2]]
UnivariateStructure [[0], [1], [2], [3], [4]]
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Algorithm 3: Linkage Tree

1 Let T be an empty linkage tree;
2 root ← GetRoot(population);
3 univariate ← GetUnivariateStructure(population);
4 tree.append(univariate);

5 while branch != root do

6 dependencies ← getDependenciesForBranch(depMatrix, branch);
7 nextBranch ← createNextBranch(branch, dependencies);
8 tree.append(nextBranch);
9 branch ← adjournBranch(branch, nextBranch);

10 end

11 return tree

4.2.5 Greedy recombination

The greedy recombination takes place inside the generation cycle. Once the link-
age tree is calculated, each individual of the population has to be recombined,
once for every branch on the linkage tree. For each branch, one individual of
the population and one donor are selected, the donor is randomly chosen from
the entire population, excluding the individual itself, see Algorithm 5.

4.2.6 Mechanism

A branch has several leaf nodes which will be called clusters, or as in the pre-
viously shown example, subsets. The individual of the population is initially
evaluated in order to have an initial fitness value. To calculate the fitness of an
individual, it is utilized the same decoder as for the BRKGA, see Algorithm 1.
After the initial fitness evaluation phase, the branch is entirely evaluated and
for each leaf node, the individual will be recombined with the donor. See an
example of recombination in section 2.2.2.
As shown in the example, the individual inherits the random key at the positions
specified inside the cluster from the donor, and then its fitness is evaluated. If
the new individual has a lower fitness score than the previous version, the indi-
vidual will remain unchanged, and the computation will continue with the next
cluster. On the contrary, if the newly created individual has a higher fitness
score, it will undergo two additional controls.

• Individual already present

• Solution already present

The first control simply checks if the individual is already present in the popu-
lation as if it exists already another individual that has the same random keys
positioned in the same order, if that is true, the new individual is discarded and
the computation continues with the next cluster. The second control aims to
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identify if there is already an individual of the population that yields the same
solution. This decision will be thoroughly explained in the discussion section.
As for the previous case, if there is already an element in the population that
yields the same solution, the new individual will be discarded.
If both checks are positively passed, the new individual takes the place of the
old one and the fitness is adjourned.
Once all the clusters have been evaluated, the individual, which is the fittest,
is returned and takes the position of the initial one that was fed to the greedy
recombination method.

Once every branch has been explored and the population adjourned, the
generation is concluded.

4.2.7 Termination

Two different parameters are used as stopping criteria for GOMEA, the total
number of generations and the changes in the population. The first one simply
alt the computations after a certain number of generations is reached. If this
first criterion is not in place, then the algorithm stops when no changes in the
population happened for a specific number of generations.
A counter keeps track for each generation if any individual of the population
changed. Every time there is a change in the population the counter is reset.
After a certain number of generations, it is possible that no better solution can
be found and the population will remain unchanged.
The algorithm returns the best solution found and the generation at which was
the maximum found, the total number of generations, and the time used for the
computation.

Algorithm 4: GOMEA scheme

1 Generate the initial population P ;

2 while the termination criteria are not met do

3 Generate Linkage Tree (LT ) from P ;

4 foreach individual (I) in P do

5 foreach Branch in LT do

6 Select a random Donor(D) from P ;

7 P (I) = GreedyRecombination(I,D,Branch);

8 end

9 end

10 end

11 return Best I
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Algorithm 5: Greedy Recombination

1 NewIndividual = ReplaceBranchValues(Individual, Donor, Branch);

2 if ImprovementOrEqual(NewIndividual, Individual) then

3 Individual = NewIndividual ;

4 return Individual

4.3 Deceptive permutation problem

In order to adjust the previously implemented GOMEA algorithm to solve de-
ceptive problems, two methods of the algorithm need to be modified:

• Creating the population

• Decoder

The method to create the population is the same as for the winner deter-
mination problem, except that the population size for the latter problem is a
constant, 32. As in the previous version of the algorithm the individuals are
encoded using random keys.

For what concerns the decoder, depending on the encoding input parameter,
deflen6 or loose, the individual is divided respectively into 8 substrings which
are mapped through an external method to their correct value in case of relative
or absolute ordering. The total fitness of the individual is returned.
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5 Results

This section will presents the results of the experimentations which will be dis-
cussed in the next section (Section 6).

Both algorithms were tested on different problem instances. The instances
vary in terms of dimension, distribution, and complexity. Based on Leyton-
Brown works et al. [22] the hardness of a problem instance depends majorly
on the number of dominated bids in the auction. The higher the number, the
easier it will be for the algorithm to find an optimal solution since dominated
bids can be eliminated a priori from the instance resulting in a smaller problem
size.
Let vi(S) be the bid that bidder i makes for bundle S, vi(S) is a dominated bid
if there exist another bid from another bidder j for the same bundle S, where
vi(S) < vj(S).
Based on this information the distributions picked for testing are L3, L6, L7,
respectively the uniform, exponential and binomial distributions. Two different
problem instances are generated for each distribution, one medium size and
one of bigger size tweaked to be as hard as the test suite can produce. The
medium size instance has 100 goods and 300 bids, and the bigger instance has
256 goods and 1000 bids. This last problem instance has been generated using
the default-hard flag, which allows the test suite to use its hardness model
previously created to produce the instance; the number of goods and bids in this
last case is also standard since the models provided are trained on that specific
problem dimension.
The hardware used for the experiments is the free service provided by Google,
Google Colab, which offers:

–GPU: 1 Tesla K80 , compute 3.7, having 2496 CUDA cores, 12GB GDDR5
VRAM

–CPU: 1 single core hyper threaded Xeon Processors 2.3Ghz i.e. (1 core, 2
threads)

–RAM: 12.6 GB Available
–Disk: 33 GB Available

The choice of Google Colab lies in an higher computational power compared to
owned resources.
The two algorithms are mainly compared in terms of performance and efficiency
which translates into:

• Fitness of the best individual

• Number of fitness evaluations

Other relevant aspects as the number of generations, and time required for the
computation are also taken into consideration.
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5.1 Medium size problem instances, 100 - 300

Both algorithms are run for the same amount of fitness evaluation, precisely 1
million, but the number of generations differs for each of them. The BRKGA
algorithm performs a number of fitness evaluations per generation corresponding
to the size of the population, in this case, 10000, so the algorithm continues for
100 generations. The GOMEA algorithm instead performs a number of fitness
evaluations per generation depending on the linkage tree, the number of bids,
and the population size combined:

(n.bids - 1) * 2 * pop. size

Which explains in the linkage tree having l leaf nodes, and l-1 internal nodes;
the root of the linkage tree is not evaluated, hence in total l + l - 2, which is
equal to (l - 1) * 2.
Each element of the population is examined throughout the whole linkage tree
hence the number has to be multiplied by the size of the population. For this
specific problem instance GOMEA performs (300 − 1) ∗ 2 ∗ 50 = 29900 fitness
evaluations per generation, with a total of 34 generations per run.
For both algorithms, to calculate the total number of fitness evaluations for the
whole run it is necessary to add the initial individuals’ evaluation that happens
before the first generation starts, and this number is equal to the population
size.
The following graphs show the behavior of the two algorithms on medium-size
problem instances based on three different distributions. The title of the graph
(ex: L3-100-300) is an abbreviation that indicates distributions - n.of goods - n.
of bids of the problem instance. Results are averaged over 25 runs.

Figure 5: Problem instance based on the uniform distribution
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Figure 6: Problem instance based on the exponential distribution

Figure 7: Problem instance based on the binomial distribution

5.2 Big size problem instances, 256 - 1000

The same experiment has been done for the largest set of problem instances. The
algorithms are analyzed for the same number of fitness evaluations, 1 million,
and results are averaged over 25 runs.
The BRKGA still has a population of 10000 elements and computes for 100
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generations, whilst the GOMEA algorithm has a decreased size population of
30 individuals and computes for 17 generations.

Figure 8: Problem instance based on the uniform distribution

Figure 9: Problem instance based on the exponential distribution
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Figure 10: Problem instance based on the binomial distribution

5.3 Univariate model

In order to assess the performance of the linkage tree model, a comparison
between the GOMEA algorithm that uses the linkage tree as FOS model and
GOMEA that uses the univariate as FOS model has been computed.

The problem instance selected for the comparison is part of the hard prob-
lem instance and was generated using the binomial distribution, L7-265-1000.
The number of fitness evaluations per generation for the univariate FOS model
is almost half the number required for the LT model. This number is calculated
using the formula n.bids ∗ pop.size, where n.bids corresponds to the number of
variables of the problem instance or the number of leaf nodes of the linkage tree.

In order to have comparable results, the two algorithms are set to perform
the same number of fitness evaluations per generation, therefore the univariate
model has double the population size of the LT version of the algorithm, respec-
tively 60 individuals and 30 individuals.
Both versions of the algorithm use the same stopping criteria, 1 million fitness
evaluations threshold and results are averaged over 25 runs.
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Figure 11: Problem instance based on the binomial distribution, L7-256-1000

5.4 Deceptive permutation problem

In order to have comparable results, GOMEA was tested for the same amount
of fitness evaluation as in the previous study, a total of 2 million function eval-
uations [19].
Instead of comparing the fitness of the best individual of the population, during
this comparison, it is tested the total amount of correct subfunctions that the
best individual of the population obtained.
This is due to the nature of the deceptive function that makes the algorithm
converge to a local optima which still yields considerable fitness value but it
is far from the global optima. A good fitness score is not an indicator of the
correct functioning of the algorithm.

GOMEA has been tested with different population sizes, 100, 500, and 1000.
The best results, averaged over the 4 different problem instances, are obtained
with a population of size 500, which translates into 31000 fitness evaluations per
generation; a total of 65 generations are needed to reach the 2 million fitness
evaluations threshold. Results are averaged over 25 runs.

Below, on the left are the results from the study of Knjazew et al. [19], on
the right the results of the GOMEA algorithm on the same deceptive problem.
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Figure 12: Relative ordering problem, deflen6 coding

Figure 13: Relative ordering problem, loose coding

Figure 14: Absolute ordering problem, deflen6 coding
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Figure 15: Absolute ordering problem, loose coding
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6 Discussion

6.1 Comparison between the two algorithms

As it is shown in the graphs, for the small problem instances BRKGA performs
better than GOMEA, in all three different distributions. This cannot be said for
the harder problem instances, where just on the uniform distribution instance
BRKGA performs better while on the two other distributions GOMEA’s score
is clearly superior.
When faced with a simpler problem instance the BRKGA scores better results,
particularly in Figure 7, where the initial random population of 10000 individ-
uals is enough to already obtain the global optimum value of the problem; the
BRKGA line is parallel to the x-axis. The reader will recall that the popula-
tion size of the BRKGA was chosen in order to compare both algorithms over
1 million fitness evaluations. A smaller population size for the BRKGA would
have resulted in hundreds if not thousands of generations reaching the 1 million
fitness evaluations threshold.
With harder problem instances instead, the BRKGA fails in most cases to reach
the optimum value. Figure 9 and Figure 10 shows that GOMEA outperforms
the BRKGA. It is not possible to guarantee the difficulty of the problem if not
by testing it with the algorithms that are being tested on these problem in-
stances themselves, but the binomial distributions problem instances are a clear
explanation of what was said before. The small version of the binomial distri-
bution, see Figure 7, is extremely easy to solve, in all the 25 tries BRKGA was
able to find the global optimum just by generating random solutions. The same
distribution was applied with the default-hard flag, generating, according to
the CATS documentation [3], a much harder distribution in terms of size and
non dominated bids. On this harder problem instance, BRKGA fails to achieve
satisfactory results compared to the GOMEA algorithm.

To further understand these results we need to take into consideration two
important factors, the number of fitness evaluations and the population size.
Due to time constraints, the number of fitness evaluations is set to 1 million,
since the results need to be averaged over 25 runs, resulting in hours of compu-
tation. At first glance, it seems that the GOMEA algorithm reaches the peak
considerably faster compared to the BRKGA, but this is just the effect of having
a smaller population.
The graph below shows the behavior of the BRKGA on the medium size prob-
lem instance L3-100-300 with three different population sizes, 50, 1000, 10000.
The stopping criterion is different for each population size algorithm, since for a
population size of 50 individuals, in order to reach 1 million fitness evaluations,
it would require 1000000/5 = 200000 fitness evaluations. The stopping criterion
for the population size 50 algorithm is 200 generations without an increase of
fitness of the best individual in the population. For the 1000 population size
algorithm the stopping criteria is 500 generations, and the usual 100 generations
(1 million fitness evaluations) for the 10000 population size one.
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Figure 16: Comparison of different population size for the BRKGA

As it is shown, the smaller the population size, the faster the algorithm
reaches its peak in terms of fitness evaluations, hence having the GOMEA a
population many times smaller than the BRKGA it is explained why it reaches
the peak earlier than the BRKGA.
It is interesting to notice that if on the x-axis is used the number of generations
instead of the Fitness evaluations, like in the graph below, the fitness lines follow
the same trend for different population sizes while reaching different fitness level;
they all seem to reach the peak around the 100 generations mark.
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Figure 17: Comparison of different population size for the BRKGA

An increase of 20 times the population size, from 50 to 1000 introduces
an important increase in the fitness of the population, but with an additional
increase of 10 times the population size, there is little to no increase in the
fitness value. The same cannot be said looking at Figure 16, where the same
increase in population size from 1000 to 10000 individuals reduces drastically
the convergence speed of the algorithm.

6.2 Effectiveness of the linkage tree

Although GOMEA is able to achieve interesting results from a fitness point of
view, some experiments have been conducted to understand the capability of
the linkage tree to obtain information about the problem and build an actual
model that would increment the population’s fitness.
Two different variants of the algorithm, that will be called Random, and Ran-
dom 2, have been created and applied to a problem instance and compared with
the normal version of the GOMEA algorithm.
The difference between the standard GOMEA and the Random version is that
the linkage tree is built upon a newly created random generation, instead of
using the population resulting from the previous generation to calculate the de-
pendency matrix. That allows the algorithm to create a random linkage tree
that isn’t able to capture dependencies between the problem variable of the
individuals of the population since the real population is in fact a different per-
mutation of random keys and values.
To ensure complete randomness, the Random2 variant has been introduced;
this version of the algorithm substitutes the dependency matrix, upon which
the linkage tree is calculated with a randomly filled matrix with real numbers
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between the [0− 1] interval.

Below is shown the comparison between the 3 versions of the GOMEA al-
gorithm, on the L7-256-1000 hard problem instance. Results are averaged over
25 runs and the stopping criterion is 1 million fitness evaluations.

Figure 18: Problem instance based on the uniform distribution

As it is shown in the graph, there is little to no difference between the results
of the three versions of the algorithm.

6.3 Delta1 & Delta2

The implementation of the GOMEA algorithms follows the implementation of
Bosman et al. [11], for the permutation flow shop scheduling problem. As previ-
ously explained the algorithm combined with the BRK encoding demonstrated
high capabilities in permutation optimization problems, in both terms of model
construction and results obtained.
Since the winner determination problems in multi-combinatorial auction is also a
permutation optimization problem, and the GOMEA algorithm with the BRK
encoding is being utilized to solve it, it comes naturally to implement it as
the previous authors did, utilizing the two deltas, one measuring the relative-
ordering information and one the adjacency information.
Different approaches although have been researched, without any positive feed-
back. Once the bids which constitute the individuals of the populations are
encoded using the BRK encoding, they are stripped away of every numeric
value, except the random keys, which are sorted in non-increasing order at the
moment of generating a feasible solution from the individual.
There is no information that they carry apart from the key itself which does not
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contain any value regarding the bid, except its position which is what is impor-
tant in a permutation problem. Delta 1 which calculates the relative-ordering
information is extremely important in building the structure of the linkage tree
since it measures the probability of one bid appearing before another, using
the value of the random key. This is intuitively an important correlation since
depending on the random key value, during the decoding phase, the bids will
be sorted, hence having a higher value compares to the other random keys one
bid will have a favorable position in the list. One bid can exclude another hence
being in the top position of the list increase favorably the possibility of the bid
to be accepted.
Delta 2 measures the adjacency information or the distance between two random
keys which carries information about the relations between two bids; a bigger
distance indicates weaker dependency and it increases the probability of the
latter bid being discarded from the solution hence a useful piece of information
to build the model. The two deltas are then combined to form a single piece of
information.

6.4 Linkage Tree model vs Univariate model

The objective of this comparison is to understand if a simpler FOS model like
the univariate structure is able to perform equally in term of fitness, compared
to the more structured linkage tree FOS model.
As previously explained, the univariate model is the base structure upon which
the linkage tree is built, therefore its implementation was already present in the
linkage tree version of the algorithm.
The reason behind this comparison is due to the poor performance of the
GOMEA algorithm in learning the problem structure. This is clearly visible
in Figure 12, where the standard version of the algorithm shows comparable
results with the other two random versions. As shown in the graph, the linkage
tree model outperforms the univariate model, although maintaining the same
fitness curve.
Performing a T-test shows that there is a statistically significant difference be-
tween the results of the two different FOS models, T value 2.89000 and P value
0.00532.

Since the size of the population utilized for the Univariate version of the
algorithm is twice as big as the population of the LT version, both algorithms
visited the same number of solutions per generation. Therefore these results
demonstrate the importance of having building blocks of more than one bit,
which allow the LT model to perform more efficient recombination resulting in
the linkage tree model outperforming the univariate one.

6.5 Deceptive permutation problem

Results show that the GOMEA algorithm is outperformed by the OMEGA
algorithm in all 4 problem instances. For what concerns the RKGA instead,
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GOMEA is able to score better just when the problem instance uses loose en-
coding. In the absolute loose encoding problem instance, the RKGA reaches
a plateau at almost 6 correct subproblems whilst GOMEA scores an average
of 6.41 correct subproblems. In the relative loose encoding problem instance
instead, the RKGA stabilizes approximately around 2.5 corrects subproblems,
whilst GOMEA reaches an average of 7.08 correct subproblems.
In all the other problem instances both the RKGA and the OMEGA algorithm
reach 8 correct subproblems. It is noticeable the difference in performance for
the RKGA between the loose and deflen6 encoding, whilst GOMEA doesn’t
show any statistically significant difference between the problem instances with
a different encoding method. Performing a T-test between the two loose en-
coded problem instances and the two encoded using Deflen6, yields T value =
0.8221 and P value = 0.41302.
Performing the same statistical analysis but using the ordering method, relative
and absolute as a distinction between the two groups yields different results.
The T value is 3.18261 and the P value is 0.00196, which means that there is
a statistically significant difference between the two groups. The average of the
results of the relative ordering problems is 7.0 while the average of the results
for the absolute ordering problems is 6.86; the GOMEA algorithm is influenced
by the ordering function of the problem instance.
The data from the OMGEA and RKGA test are not available hence it is not
possible to perform a statistical analysis to compare them with the GOMEA
algorithm.

The two graphs below show a comparison between three different population
sizes for the GOMEA algorithm, 100, 500, and 1000 individuals. Two differ-
ent metrics are used for the analysis on the x-axis, fitness evaluations and the
number of generations. Results are averaged over 25 runs.

Figure 19: Absolute ordering problem, loose coding

It is interesting to notice that although the 500 individual population size
version, performs better in terms of fitness evaluations, according to the graph
on the left, the algorithm reaches its peak around 2 million fitness evaluations
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whilst the 1000 individual version is yet to achieve its peak and it is still steeply
increasing in terms of fitness.
Allowing the algorithms to run for a higher number of generations, removing
the 2 million fitness evaluations threshold, would result beneficial for GOMEA
algorithm with 1000 individual population size.

Although there is a difference in the average correct number of subproblems
between the 500 and 1000 population size version of the GOMEA algorithm,
there is no statistical difference between the groups. Specifically, the two groups
score an average of 7.08 and 6.88 correct subproblems respectively. Performing a
Ttest between the two different population size versions of the algorithm shows
a T value of 0.78974 and a P value of 0.43355, the null hypothesis is rejected,
therefore there is no statistically significant difference.

6.6 Implementation choices

6.6.1 BRKGA Chromosomal Approach

The implementation of the BRKGA comes from the work of De Andrade et al.
[4] where the algorithm was tested using three different approaches; the chro-
mosomal approach (CARA), the greedy approach (GARA), and the surrogate
duality approach (SDRA). Each one of these approaches was then implemented
and tested with (CALA, GALA, SDLA) and without linear programming relax-
ation to initialize the population to speed up the convergence of the algorithm.
The interest of this study lies in the approaches without LP-relaxations and
after careful analysis of the results, as shown below the chromosomal approach,
which is the most basic approach, performs better than the other variants. This
is due to the fact that the greedy and surrogate duality approaches make the
algorithm converge prematurely to poor local optima, resulting in lower fitness.

The 4 graphs below are a comparison between the aforementioned six differ-
ent variants of the BRKGA, Boughaci et al. Memetic Algorithm (BOMA) [23],
and Raidl and GottliebWeight-Biased Genetic Algorithm (RGRK) [24]. As ex-
plained before, the CARA outperforms the other variants without LP-relaxation.
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Figure 20: Dispersion of revenue for each heuristic using 100 generations at
most, from the work of de Andrade et. al.

6.6.2 GOMEA

In order to ensure and promote diversity within the individual of the popu-
lations, when an offspring or a new individual result in an individual that is
already part of the population, that individual is then discarded. If it was the
case of a newly generated individual of the population, a new individual will
be created, if it was the results of recombination, then the parent returns to
occupy his position. To ensure that the algorithm makes sure that the random
key of an individual does not match the ones belonging to another individual
already present in the population. This mechanism is not enough to ensure the
diversity of the population and avoid premature convergence.

In the winner determination problem, there is the constraint that a bid can
be accepted in the solution only if there is no clash between the goods to which
it is associated and the goods associated with the bids already in the solution.
One good can only be present in only one bid. This constraint results in the fact
that just a portion of the individual becomes part of the actual solution, hence
individuals having a different random key can still produce the same solutions
and in this way reducing the diversity of the population.
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To avoid that an additional control, foreign to the original implementation of
the algorithm has been implemented. Not only the bids of the offspring, or new
individual, are checked, but also the solution associated with the individual
is compared to the solutions present in the current population and if the same
solution is found, the individual is discarded. This way redundancy is eliminated
which results in less probability of premature convergence of the algorithm.

6.7 Final remarks

There is a substantial difference in how the BRKGA and the GOMEA algo-
rithms work on solving the winner determination problem. The first utilizes a
big population size and parametrized uniform crossover while the latter uses a
very small population size with greedy recombination in accordance with a FOS
model.
The BRKGA reaches a higher fitness value compared to GOMEA on simpler
problem instances while GOMEA performs better on harder problem instances.

Comparing the two algorithms using the same population size wouldn’t be
fair, due to the high number of fitness evaluations per generation performed by
the GOMEA algorithm. As an example, taking the first problem instance of
the smaller instances group, L3-100-300, the GOMEA algorithm with a 50 indi-
vidual population size performs 29900 fitness evaluations per generation, while
the BRKGA with a population size of 50 individuals still performs 50 fitness
evaluations per generation.
At each fitness evaluation a new solution is explored hence GOMEA would visit
598 times the number of solutions visited by the BRKGA per generation. To
make this even, the BRKGA algorithm should run with a population of 29900
individuals which is unrealistic and let us visualize the difference between the
two algorithms’ mechanism. The BRKGA is a smaller and faster algorithm, able
to reach sub-optimal results with a 1000 individual population size, as shown in
figures 16 and 17. GOMEA instead is a more complex algorithm that requires
considerable computational power and still maintaining a small population size,
30 individuals, is able to excel in harder problem instances.

The fact that GOMEA is not able to achieve the same results as the BRKGA
on a small problem instance is an indicator of the linkage tree not being able to
capture the problem structure. In addition, the random version of the linkage
tree proves the fact that there is no structure being learned from the model.
The comparison between the Univariate and the LT versions of GOMEA al-
though proved the latter FOS model capable to achieve better results, and
therefore the usefulness of having bigger building blocks on which performing
the recombination.
The building of the linkage tree has its foundation on the dependency matrix
which is calculated using the two deltas, as explained before. The procedure
behind these calculations has been thoughtfully examined and has been proven
successful in the previous work with different permutation problems [11].
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All these indications lead to the conclusion that these generated problem
instances lack structure. That explains why it is impossible for the linkage tree
model to work efficiently and moreover, it explains the lack of differences in the
results between the standard version and the two random versions of the linkage
tree.
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7 Conclusion

In this study, it has been proved the effectiveness of the Random Key encoding
for combinatorial optimization problems. The Biased Random Key Genetic Al-
gorithm proves once more successful in solving the winner determination prob-
lem in multi-combinatorial auctions. The GOMEA algorithm demonstrated
high capabilities in solving harder problem instances for the winner determi-
nation problem, compared to the BRKGA. CATS has been demonstrated to
be an optimal and reliable tool in generating problem instances. The compari-
son between the two FOS models, the Univariate and the Linkage Tree model,
demonstrated the superiority of the latter in this specific domain. Although
GOMEA was able to find optimal solutions, the linkage tree did not perform
as expected, as in being able to fully represent the problem’s structure. This
study shows that the problem instances generated using CATS don’t have a
clear exploitable structure that the linkage tree can utilize. At the same time,
the linkage tree performs better than the univariate FOS model, which proves
the recombination of groups of bits beneficial even though no structure was
learned.
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