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Abstract

In a world where data is getting bigger and time is valuable, new needs arise to

analyze big data in a timely manner while keeping costs controlled. There are

certainly existing methods and frameworks to do so. However, these methods

present their own drawbacks and weaknesses like compatibility or scalability.

There are currently hardly any methods or frameworks that tackle cost efficiency,

performance, scalability and compatibility all at once. In collaboration with Core

Life Analytics on a graduation project, this thesis aims to fulfill or help accomplish

that need.
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Chapter 1: Introduction

Companies are swimming in an ever-expanding sea of data. That data is either too voluminous to

be managed or too unstructured to be analyzed, sometimes even both (Davenport et al., 2012). In the last

decade, Big Data has been at the center of attention in the IT field and is mainly characterized by 5 Vs:

● Volume is the size of the data. Volume presents the most immediate challenge to IT architectures,

which is storage.

● Velocity is the speed at which data is generated or added to the existing data set. Velocity also

affects the speed at which the data can be processed and analyzed by relational databases.

● Variety is the structurability and form of the data (pictures, PDFs, emails, etc.), which in itself is

divided into three categories: Structured, semi-structured, and unstructured data. Each variety

usually requires different capabilities and algorithms to be analyzed.

● Veracity is the accuracy of the data. When faced with high volume, velocity, and variety of the

data, it might be possible that not all that data is 100% accurate or correct. Subsequently, the

analysis of the data depends on the veracity of the source data.

● Value;  Big Data can potentially be of great importance to companies and enterprises. However,

that value becomes apparent only if the data is analyzed correctly; otherwise, it can be wholly

useless and costly (Ishwarappa, 2015).

With the right tools and correct data analysis, Big Data has the potential to be a diamond when mining for

gold. Big Data can provide useful insight and critical decision-making information to an enterprise or

company. Big Data is present in many applications and fields like finance, biology, chemistry, economics,

and business. For example, in business, big data can be analyzed to lower costs and boost profits resulting

in a competitive advantage (Chen et al. 2017). Big data can similarly be a stepping stone in discovering a

new cure for a disease or simply predicting the weather.

However, it is not always rainbows and unicorns when handling Big Data. Most of the data is

unstructured by nature, it can come in many formats as it can be collected from mobile phones, social

media, GPS signals, sensors, and many more. Handling unstructured media can prove to be a tedious task

since unstructured data can’t be easily stored in the form of tables (rows and columns). Converting

unstructured data to structured data can be an expensive and time-consuming task.

Incomplete and missing data is also a common problem faced with big data, which may be caused by

improper recording of sensor data, skipping values while reading from a device, etc. This is sometimes

problematic since it creates uncertainty when trying to analyze the data.
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Additionally, due to the volume and velocity of big data, it can be costly to store and manage (S. Bagga

and A. Sharma, 2014). This phenomenon has driven big names like Amazon, Microsoft, and Google to

not just grasp the opportunities that big data provides, but also to come up with solutions to the problems

that arose with it, like storing the vast amount of data and analyzing it.

1.1 Analyzing Big Data

Initially, Big Data analytics required a new framework and set of tools since it was not possible to

analyze it in traditional ways (number crunching in tables with rows and columns). Frameworks like

Hadoop and MapReduce enabled users to analyze big data by bringing processing power to the data rather

than bringing the data to the processing power. However, these tools often need a powerful computing

cluster and fast network connections, which also may result in heavy data traffic. Additionally, big data

analytics packages like Hadoop rely on using distributed computing, however, traditional database

systems do not always provide the storage scalability that big data requires (Patil & Phursule. 2014).

Furthermore, more traditional packages like R, a programming language and framework made for data

analysis, also benefit from distributed computing. Usually, organizations use Hadoop to handle the data

volume, and then when the data is summarized and cleaned, they use traditional tools to further analyze

the data (Özcan et al., 2011). This whole process has made Cloud Computing the perfect match for the

job.

As stated by the US National Institute of Standards and Technology: “Cloud computing is a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction” (Mell P, and

Grance T. 2011).

Nowadays, all major cloud providers offer virtual machines (VMs) to suit the needs of their customers.

According to the most recent press release in Q4 2020, Amazon Web Services (AWS) leads the market

with 31% of the market share, followed by Microsoft (Azure) with 20%, Google with 8%, and lastly

Alibaba Cloud with 7%. Similarly to its competitors, AWS offers a wide range of VMs that can be

customized to fulfill an expansive list of purposes like general-purpose, computing optimized (High

Clock Speed CPUs), memory-optimized (more and faster RAM), storage optimized (dedicated storage

with high IOPS or a very high capacity of storage), and accelerated computing instances (instances with

one or more graphical processing unit (GPUs). At AWS it is also possible to have hybrid instances that

can be optimized for multiple applications, i.e compute and memory-optimized, general-purpose but with

high network throughput, etc. (Bao, Damon, Lanman & Gokhale, 2016). These instances can be spun up
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in 2 ways: On-Demand and Spot. With the on-demand option, an instance is reserved for the user which

can be accessed at any given time as long as the user pays an hourly rate for it (based on AWS’ capacity).

The spot option gives the user the ability to use AWS’s overhead instances at a cheaper price at the risk of

being terminated when reserved by an “on-demand” user or when other AWS users bid a higher price. Not

only do some instances have their own storage, but they can also be linked to Amazon’s Elastic Block

Store (EBS). EBS allows users to create physical storage volumes and attach them to AWS instances in

various configurations optimized for high IOPS (input/output operations per second) or high throughput.

Additionally, AWS instances can also query Amazon’s Simple Storage Service (S3), a scalable object

storage service that can be used to run everything from data lakes, websites, mobile applications, backups,

archiving, big data analytics, etc. (https://aws.amazon.com/, n.d). With that being said, AWS would make

the perfect environment to run big data analytics as it provides both scalable computing performance and

scalable storage to store all the data at a reasonable price (if done properly).

1.2 Efficiency in data processing:

Providing virtual machines to analyze and store big data is definitely a possible solution for a big

data analytics challenge. However, there are important factors to take into consideration when analyzing

large volumes of data.

1.2.1 Time

At AWS, it is possible to rent in a pay-for-play fashion a rather powerful virtual machine e.g.

containing 64 cores and 512 Gigabytes of RAM such as the r6g.16xlarge. This machine is quite powerful

and capable of chewing through the hardest of tasks. This machine is similar to a Troll ( a mythical beast,

with superhuman strength but minimal intelligence), all brawns but no brains. Even with this machine, it

could still take months to analyze large data sets due to their complexity and intensity. Thus, using cloud

computing blindly without any knowledge nor strategy to analyze big data does not yield many benefits.

For the purpose of this thesis, “efficiency” in data processing is demarcated using four main components:

Granularity, Code Optimization, Right Hardware, and Parallelization (Ross, 2013).
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Figure 1: Four components demarcating efficiency in this research.

1.2.2 Granularity & detail

Granularity can be described as the “resolution” of the data. In other words, how detailed does

our dataset allow the data scientist to zoom in on the data at hand? Granularity can often be a

double-edged sword. It can provide meaningful insights to the analysis but result in an increase in data

size. While that tradeoff might sometimes be worth it, it can often be the case that the additional detail has

no added value to the analysis. Usually, data scientists can get to a point of saturation or satisfaction using

less data. Therefore, choosing the right resolution or granularity and avoiding ultra-high dimensionality

can increase the efficiency of the data analysis a 10-fold or more (Thoman P., Jordan H., Fahringer T.,

2013).

1.2.3 Hardware

Choosing the right hardware is crucial in reducing the required time span to finish a

computational task while minimizing the costs. As stated earlier, AWS has these behemoths of virtualized

machines that can be rented. AWS also offers hundreds of instances that are less powerful but are far

more optimized for specific tasks. Renting these big machines may result in an overhead of resources that

might not be used to their fullest potential.
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Figure 2: Hypothetical Load on server

Figure 2 shows the hypothetical load distribution even when a cloud server is under heavy load. In

practice, a rented cloud instance will rarely reach its maximum load capacity even when multiple users

are using it.

1.2.4 Code Optimization

Optimizing code can have dramatic improvements in speed.

For this paper, the primary programming language used will be R. Additionally, code optimization will be

broken down into two main factors:

● Compiling: R is one of the go-to scripting languages for data analysis nowadays, as it is a

powerful tool to manipulate and visualize data. R code is interpreted while running it, where other

languages are usually first compiled before execution. Usually, R code runs slower than other

languages. R however, can make use of several powerful packages like the Rcpp package. Rcpp

gives R access to a C compiler, several existing C libraries, and efficient memory usage

(Eddelbuttel et al., 2011). Additionally, R does have a compiling ability by calling the cmpfun()

function in the base compiler package, which can speed up functions by a factor of 3 or 4 in some

cases.

● Code Efficiency: There are multiple ways of writing the same functions, or in other words, there

are several ways one can write code to serve the same purpose. However, not all of these ways

work equally, different ways present different execution times or even slightly different
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functionality. Benchmarking is a way to test and compare the speed at which functions are

executed. The system.time() function and microbenchmark package in R can be used to compare

execution times for functions written in different ways. For example, R can handle an object type

called data frame. At the time of their creation, data frames were an extremely powerful tool that

allowed faster data manipulation. However, as R grew, packages like data.table were introduced

that offered exactly what data frames offer, but better (Dowle et al., 2015). The “data.table”

package is a wrapper for data frames and can handle all functions that were originally designed

for data frames. The package is written in C and is therefore a very efficient library containing

functions using pointers to avoid copies and use the available memory extremely efficiently.

Together with the library “parallel”, (McCallum, E., & Weston, S., 2011), which offers

multithreading functionality, “data.table” library offers a faster execution time than the data.frame

way. That is just an example of how different packages can make a big difference. Nevertheless,

code efficiency can introduce syntax complexity and can even make it unreadable for outsiders.

Therefore, having a clear vision of what the code needs to do, the time it takes to execute, and if it

will be revisited in the future will greatly impact its usefulness (Ross, 2013).

1.2.5 Parallelization

At its core, parallelization is doing multiple tasks simultaneously to save time. Parallelization is

present in business process management, construction, cooking, and many fields. Parallelization within

the architecture of a computer with one CPU is called multithreading. Multithreading can use all potential

available CPU cores to execute multiple tasks simultaneously. Computational parallel processing applies

the split-apply-combine method (Wickham, 2009), which basically breaks up a task (or data), distributes

the split tasks among multiple cores, applies a certain function or calculation to each chunk of data and

then consolidates all the results into one output (Wickham, 2011). Nowadays, parallel processing can be

implemented in R with very little programming time. Implementing parallel processing on the average

workstation or a typical laptop with multiple cores can speed up a program or processing time by a factor

of 2 to 4 (Ross, 2013). This factor can be boosted by increasing the number of CPU cores. Parallelization

can be executed on a single machine i.e. multithreading or multi-core, parallelization can also be applied

using multiple machines (also called nodes) or multi-node. On paper, parallel processing seems to be the

go-to way of doing tasks, yet parallel processing can sometimes be a doubtful advantage. Parallelization

sometimes increases  execution time because the amount of work to delegate is greater than the actual

work that needs to be done. In other words, if the task is too small then it is not worth parallelizing it in

terms of time. Parallelization works best when a workload or problem is “Embarrassingly Parallel”,
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meaning the task at hand requires little to no effort to be separated into a number of parallel tasks. It is

often the case that communication between tasks in an embarrassingly parallel problem is not needed,

thus making the problem optimal for parallelization. Parallelization presents drawbacks when the split

tasks require input from another ongoing task. For example, it is very hard to parallelize a population

dynamics simulation, where for each time step, the output of the previous time step is needed, resulting in

time steps being inefficient to split up (Thoman P., Jordan H., Fahringer T., 2013).

1.3 High Content Screening (HCS)

Life science research has increasingly become reliant on data analysis (Leonelli, 2012).

Industrializing the drug discovery process was, and still is, one of the main goals of the biochemistry and

pharmaceutical industries (Williams, 2011). This goal was made possible with the introduction and

application of High Throughput Screening (HTS). HTS involved the use of robotics to carry out

large-scale miniaturized biological experiments in an automated fashion in standardized microplates

(Mayr, & Fuerst, 2008).

Figure 3: Simplified HCS Workflow Example

The main goal of HTS is to screen reagent libraries against biological assays using fluorescent

proteins, chemical substrates, antibodies or cells. The process was conducted with minimal human

interaction to maintain accuracy and consistency. Therefore, most of the drug dosing is executed by

robots. HTS allows the quick discovery of active molecules, genes, or antibodies that affect relevant
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biological processes. That output was essential to understand, design, and develop therapeutic drugs

(Kraljevic, Stambrook & Pavelic, 2004).

High Content Screening (HCS) shares many core techniques with HTS. The major difference

between the two is that HCS gets multiple readouts from cell analysis.

In HCS, live cell imaging is involved. It aims at extracting temporal dynamics and spatial information

and, thus, there is a heavy dependence on image analysis. The objective of high content screening is to

balance collecting comprehensive information with high efficiency. HCS typically uses 96, 384, or

sometimes 1536 microplates (Figure 4) (Mcdonald P, et al., 2008).

Figure 4: HCS microplate

Each of these microplates are divided into wells (comparable to geographic coordinates) where a dose of

a certain drug is pipetted on a collection of cells. In other words, each well allows for a small biochemical

experiment. Afterwards, several images of different fluorescent channels are taken, these fluorescent dyes

are crucial to understanding the effects of the biochemical experiment as they can be oblivious to the

naked eye. Each image can also be divided into coordinates, called fields, which in turn will be analyzed

by a cell image processing software package, i.e CellProfiler, and transform these images into numeric
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data to be analyzed. The extracted numeric data sets contain up to thousands of metrics called features

that describe the phenotype of each cell.

A typical HCS dataset contains both numerical and image data in large quantities and can be

representative of the type of data researchers and data analysts can run into in their day to day jobs. That

data is getting bigger as time advances, and the need to analyze said data in a timely manner is always

needed.

1.4 Research problem and goal:

Data is getting bigger as technology and time advances (Usman et al. 2017), even structured data.

Especially in HCS where data is generated from multiple micro-well plates. On average, each plate can

generate 50 GB of data, but this can go up to 150 GB. The average research center analyzes tens of

thousands of these microplates per year (Mcdonald P, et al. 2008, Omta et al. 2020). Additionally, the

increasing usage of HCS has led to data sets that can no longer be processed by biologists due to the

complexity of both the data and software used (Omta et al. 2020).

Therefore, biologists had to turn to data scientists to analyze their data. Although multidisciplinary teams

have their advantages, the introduction of data scientists has caused delays and multiple iterations of

going back and forth between the biologist and the data scientist, which are compounded by the

complexity of the biological systems used (Omta et al., 2020). Some solutions are already developed to

handle and analyze big data. However, these solutions can have problems like scalability, implementation

costs, and compatibility. (Davenport et al., 2012).

Time plays a big role when it comes to data analysis. A good example would be when a global

pandemic shook the entire population in 2020 (Haleem et al., 2020). Pharma companies rushed to create a

vaccine to save lives and restore normal life with the help of HCS. Furthermore, HCS can be a good

representative of what large quantities of structured data could look like as HCS data can be huge when it

comes to both image and numerical data.

Based on the previous paragraphs the following main research question for this thesis  can be

formulated: “How can a framework to analyze structured big data using cloud computing be developed?”
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Chapter 2: Theoretical Background

2.1: The need for speed

In 2020, a global pandemic shook the entire population and changed the way humans lived for a

long time (Haleem et al., 2020). Time was of the essence, as pharma companies raced to develop a

vaccine in an effort to save lives and to return to normal life (Haque, A., & Pant, A. B. 2020) . One of the

many challenges laboratories faced was the time consuming nature of certain processes that make drug

and vaccine discovery possible. HCS was commonly used to study the effects of the SARS-CoV-2 virus

on cells as well as testing possible drugs to beat it (Francis R. et al., 2021).

However, even with today’s advances, high content screening can still be a slow and tedious

process. Both academia and industry have different screening infrastructures. However, these screening

methods depend on instrumentation and compound allocations for reagents and data reading and output.

Usually academic research centers have a stricter budget and limitations to resources compared to the

pharmaceutical industry.

Academic and industry screening centers can scan upwards of 40000 compounds per day with an

average of 20000 compounds per day in the most common 384 well format (Major J, 1998 & Mcdonald P,

et al., 2008). On the other hand, some pharmaceutical companies can scan more than 100000 compounds

per day in high density 1536-well formats (Mcdonald P, et al., 2008).  Therefore on the lower average, the

industry would need to analyze 20000 compounds in 365 days divided into 384 wells, that’s roughly

38020 microplates a year. Each well in a microplate is divided into 12 fields and is usually screened over

5 channels. Pictures of each channel are then taken to analyze the effect of a certain compound over the

cells with an image size of about 2.2 MB (Omta et al. 2020), resulting in around 18371 TB worth of

images to analyze per year, excluding numerical data. Each microplate can then produce around 7 GB of

numeric data, resulting in 259 TB of data per year. Therefore, on average, each screening center would

have to process around 2096 TB of both numeric and image data per year.

1 40000 compounds * 365 / 384-well microplates ~ 38020 microplates per year. 38020 * 384 wells * 12 fields * 5 channels * 2.2Mb (average
HCS image size) ~ 1837 TB of image data per year.
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2.2: Cloud Computing and Hadoop

Big data analytics and cloud computing have been two of the most ground-breaking technologies

to enter the mainstream IT industry in recent years. In fact, these two technologies complement each other

quite well, resulting in benefits for multiple disciplines and domains like economics, life sciences, applied

sciences, and much more.

Big data is proving to be more and more useful, data can be collected from a multitude of devices and

analyzed to either help with decision making, develop new strategies, innovation or even fraud detection.

However, big data analysis requires a significant amount of computing resources. A solution to the

computing resources problem is deploying big data analytics in cloud computing (Balachandran, B. M., &

Prasad, S., 2017).

Big data analytics starts with the acquisition, cleaning, and distribution of the data. In the earlier

days, Apache Hadoop was the preferred solution to the traditional big data analytics problems. Apache

Hadoop is an Open-source software framework for storing and processing large data-sets on clusters of

hardware.

Hadoop has two main components: Firstly, the Hadoop distributed file system (HDFS), mainly used to

store large files, and secondly MapReduce which lies at the heart of Hadoop.

Mapreduce is in charge of performing two different tasks in Hadoop programs. The first job is to map, in

other words, it takes a collection of data and transforms it into another set of data. After transforming the

data, Mapreduce then breaks it into tuples, with key/value pairs, shuffles and reduces the data and then

outputs a final result.

Figure 5: Simplified Mapreduce Workflow Example. Extracted from www.edupristine.com
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In their first iterations, Hadoop and MapReduce presented several problems. The main issues were

storage and accessibility. However, with the current versions, cloud computing support alongside various

data management techniques have been used to reduce the performance gap. Nevertheless, using Hadoop

still has some disadvantages to this day, including (Jayasree, M. 2013):

● Restrictive programming model due to prevention of central data

● HDFS is designed in such a way that it doesn’t work with random reads on small files because of

its optimization for sustained throughput.

● Managing clusters is hard in operations like debugging, distributing software, collection logs etc.

● Because of the single-master model, it requires constant maintenance and may limit scaling.

● Hadoop offers a high security model, but because of its complexity it is hard to implement.

● MapReduce is a batch-based architecture which means it doesn’t allow for real-time data access.

2.3: How can HCS images be analyzed?

CellProfiler, a software solution for capturing and analyzing cell images and then transforming

the analyzed cell images into numerical data for further statistical analysis. CellProfiler has been the most

widely used tool for HCS since 2006. That is because CellProfiler is easy to use, and can be freely

downloaded from the CellProfiler website for Windows, Mac, and Unix. It is capable of handling

hundreds of thousands of images and contains algorithms for image analysis. The algorithm can

accurately identify crowded cells and non-mammalian cell types. CellProfiler was designed and optimized

for the most common 2-D high content screening image format. However, researchers interested in time

lapse and three-dimensional image analysis were able to build modules to do so because CellProfiler is an

open source software (Carpenter, A.E. et al, 2006).

Figure 6: Simplified CellProfiler Workflow (Carpenter, A.E, et al,2006)
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Although CellProfiler is the go-to when it comes to HCS, it presented some drawbacks when it

came to scalability and making use of multiple cores. Additionally, HCS is a slow procedure in nature due

to the sheer size of the data, and although using CellProfiler made it faster, it was still noticeably slow.

However, it was still widely used simply for the fact that CellProfiler excelled at bridging the gap between

advanced image analysis algorithms and scientists who lack computational expertise (Chakroun, I et al.,

2018).

Once the images have been analyzed, CellProfiler creates numeric data from the images. The

numeric data can be fed into softwares like StratoMineR for further statistical analysis (Omta et al,. 2016).

Figure 7: StratoMineR Workflow

Figure 5. explains the workflow of StratoMineR, a web-based and cloud-deployed commercial

software package for the analysis of HCS data. The workflow starts with the raw data that can be

uploaded by a biologist. The Meta Data section allows the user to configure the system in such a way that

any dataset from any vendor can be prepared for the ETL (Extract, Transform, Load) step which is part of

the Feature Selection step. Here, the data is fully prepared in the right structure and data type. Certain

features are removed that are redundant or contain high amounts of missing data. Quality Control allows
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the biologist to perform simple checks in order to determine if the quality of data is acceptable. Then

Normalization, Transformation, and Scaling are required steps to prepare the data for downstream

analysis steps. Dimensionality Reduction allows for avoiding high dimensionality and redundancy.

Dimensionality reduction avoids a biased analysis and reduces the required computational time for

multivariate data analysis processes. Hit Selection allows for selecting reagents that show a significant

phenotype. Then, Clustering allows reorganizing, grouping, and re-ordering of the data that demonstrates

a phenotype into consecutive groups with similar profiles(Omta et al., 2016).

Although the workflow consists of eight steps, the feature selection and hit selection steps usually

make up for around 50% of the entire process time (Omta et al., 2016), as they deal with most of the data

bulk and include heavy computationally intensive tasks. On that note, it is safe to say that if the time it

takes for these steps is minimized, then the overall workflow will also be tremendously affected.

StratoMineR was chosen as reference since this thesis is part of a graduation project at Core Life

Analytics, a company that offers cloud computing and data analysis consulting specialized in the life

science domain. StratoMineR is Core Life Analytic’s main software solution to numeric HCS data

analysis.

2.4: Apache Spark

High content screening is naturally an embarrassingly parallelizable problem. HCS is simply

docking and scoring libraries of ligands (molecules coordinated to a central atom or molecule in complex)

against target proteins by analyzing images of the whole process. HCS analysis and calculations are

usually carried out on powerful computer clusters or on large workstations in a brute force manner,

mainly by docking and scoring all available ligands. In 2018 Ahmed, L. et al. conducted a study using

conformal prediction based virtual screening (CPVS), a machine learning method, in Apache Spark to try

and reduce the number of ligands docked and still get an accurate analysis (Ahmed, L. et al., 2018).

The main reason Spark was used over MapReduce is because of its agility as it keeps the data in-memory

with support for iterative processing. In an even earlier study in 2017, Ahmed, L. et al. also showed that

Google’s MapReduce has some limitations. MR is based on a data flow model that penalizes many

popular applications where the same dataset needs to be accessed in multiple iterations, i.e machine

learning and graph algorithms. In fact, the lack of features like dataset caching, accumulators, broadcast
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variables, and native workflows support, makes it hard to develop scientific applications using Hadoop

MapReduce (Ahmed, L. et al., 2017).

Apache Spark is an open source cluster-computing framework that overcomes the limitations of

MR, while retaining scalability and fault tolerance. Another advantage of Spark is the scalable machine

learning library that includes a wide array of regression, classification, clustering and collaborative

filtering algorithms. A selection of tools such as featurization, machine learning pipelines, statistics and

linear algebra utilities are also available. Although Ahmed, L et al.’s research was promising, they had

many limitations. First, running the Apache cluster presented many limitations in terms of resources and

costs. They were unable to fire up more than 80 nodes to run their ML model and were only able to

achieve a 3.7 times speedup compared to the traditional computational cluster or workstation. However,

Ahmed, L et al. 2018 were able to show how processing large datasets in HCS can be time consuming and

costly in terms of large compute infrastructures to complete jobs within reasonable time.

Figure 8: Ahmed, L et al. 2018 paper’s results.

The paper concluded with the following statement: “This limited our opportunity for parameter

sweeps in the study and necessitated a more tailored approach”. In conclusion, on paper, using machine

learning within Apache is a possible solution. However, it presents a lot of limitations in terms of

scalability and cost.

2.5: The Power of GPU processing

CellProfiler lacked the high performance capabilities needed for HCS where workloads reach

hundreds of TB of data and demand computationally powerful workstations. To solve this problem, an

experiment was conducted in 2018 by Imen Chakroun, Nick Michiels and Roel Wuyts where they
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introduce a GPU-accelerated CellProfiler executing some of the most time-consuming algorithmic steps

on Graphics Processing Units. According to the authors of this research paper, CellProfiler was mainly

used because of its open-source nature, wide array of biological analysis and ever-growing user base.

CellProfiler has been cited in thousands of papers and has won the 2009 Bio-IT World Best Practices

Award in IT & Informatics.

As previously mentioned, companies nowadays are capable of scanning and testing upwards of

100000 compounds per day. And as technology advances, image resolution resulting from HCS images

are also getting better and bigger in size, therefore identifying objects in those images and analyzing them

is becoming more and more computationally intensive and time consuming. In theory, analyzing images

from independent samples is an embarrassingly parallel problem that can be sped up by allocating more

compute nodes to the analysis. However, up until recently, this was very costly. To put things into

perspective, in 2018, a CellProfiler pipeline that extracts 1400 features per cell applied to 7.5 million

images averaging in around 30 TB of data was tested. That process lasted about 14 days on 16 compute

nodes with 24 cores (Chakroun, I et al., 2018). For Chakroun and her colleagues’ research, they had to

analyze 50 TBs of HCS data in less than 24 hours. GPUs were a good candidate as they are historically

known for performing well on image processing workflows, and seemed to be a good cost effective

solution.

The research concluded with a GPU accelerated version of two of CellProfiler’s modules,

MeasureObjectSizeShape and MeasureTexture. With a data set of 50TB, the MeasureObjectSizeShape

and MeasureTexture modules would typically take 2.11 days and 7.72 days respectively. However, with

the GPU accelerated version, and the same dataset, the MeasureTexture module took 22.56 hours to

complete while the MeasureObjectSizeShape took 9.08 hours.

Although the results were very impressive, the GPU accelerated version would only work on

modules that handle image processing, these modules consist of only 2 out of the 90+ available modules.

Additionally, it was conducted using 1 single GPU and not a cluster of GPUs which limits the research in

terms of scalability, as running a cluster of GPUs to analyze data in parallel adds a whole other layer of

complexity.
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2.6 Literature Gap and Contribution

Big data comes in different sizes, shapes, and forms. Over the years, researchers have been trying

to figure out the fastest methods and techniques to analyze it. However, these techniques have their

limitations, either they prove to be very costly, time consuming or just not generalizable over multiple

domains and usages. For instance, using Spark or Hadoop for High Content Screening still proves to be

challenging in terms of cost and scalability. Additionally, using Graphics Processing Units might be the

fastest and most cost effective strategy. However, it requires advanced skill in graphics programming

(Zuntich. P , 2018). Furthermore, using GPUs for data analytics is still not heavily supported nor reliable

while lacking availability and compatibility to different modules and methods.

Based on the theoretical background, structured big data can be analyzed in many different

methods. These methods solve some of the issues that come with big data analysis, like being too costly

to implement, too slow, or scalability. Furthermore, compatibility can prove to be a major issue when it

comes to big data analysis as some methods work with image data for instance, but are not compatible

with numerical data and vice versa.  However, these methods do not solve the four issues mentioned

earlier at once, each method solves one or two issues at most but struggles with the rest. This thesis aims

to fill the gap or find a way to treat all the four aforementioned issues at once.
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Chapter 3: Methods & Materials

The approach taken in this research is based on the Research Design Framework developed by

John Latham, 2016. A framework designed to help align the main components of a study to deliver the

insights needed to draw credible conclusions. The research design framework is meant to help researchers

of all types design a custom research methodology for a particular project. The framework consists of

nine components linked to each other. These components are linked to the conceptual framework and are

organized into two groups:

● The foundation of the problem, which includes the problems, purpose, research questions, and

conceptual framework denoted as the “T” in the figure below.

Figure 9: “T” in John Latham’s Research Design Framework
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● The methodology, which includes the literature review, overall approach data collection, data analysis,

and drawing conclusions denoted as the “U” in the figure below.

Figure 10: “U” in John Latham’s Research Design Framework

3.1 Problem Statement:

It is often the case that the first step in research design is identifying a real-world problem or

dilemma. In this particular case, as stated in the introduction, because of big data’s variety, it is becoming

increasingly hard to analyze said data in a short period of time while keeping costs controlled. Although

there are a few solutions that tackle the cost and time problem, new problems like scalability and

compatibility arose with these solutions.

After substantial research, it seems that there are no methods or frameworks to analyze structured

big data that tackle cost efficiency, time efficiency, compatibility and scalability simultaneously.
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3.2 Purpose Statement:

The purpose statement builds on the knowledge gap in the problem statement.

This paper provides a framework to investigate the potential speedup of intensive computational

processes within the HCS domain while keeping the costs controlled (cheaper or the same), and

maintaining scalability. Furthermore, multiple applications will be deployed using this prototype to test

different scenarios so that it can be applied to different domains to ensure compatibility. Ultimately, this

thesis aims to build a framework that can generalize the process over other domains and applications.

3.3 Research Questions:

In addition to the main research question “How can a framework to analyze structured big data

using cloud computing be developed? ”, supporting questions were created to help guide and set the scope

of the framework:

SQ1: How can cloud computing make structured big data analysis cost efficient?

SQ2: How can cloud computing make structured big data analysis more scalable?

SQ3: How can cloud computing make structured big data analysis flexible?

SQ4: How can cloud computing speed up the analysis of structured big data?

3.4 Conceptual Framework:

It is common for data analytics and HCS, to own or arrange outsourced computing power in order

to perform data processing and analyses in an efficient manner. However, even with the usage of powerful

machines, it could take up to months to analyze the data due to its sheer capacity. Therefore, in this paper,

we develop a prototype that takes advantage of the scalability of cloud computing to help speed up the

HCS analysis process. StratoMineR can be used to research and find a solution to the problem statement.

In this thesis, StratoMineR will be adapted to answer the research questions.

Based on the research questions and theoretical background, there are four main components that

need to be researched and tested to be able to create the framework. These components are time

efficiency, cost efficiency, scalability and compatibility.

Time efficiency and cost efficiency will be researched and tested by mimicking a single-node computing

cluster and comparing its costs and performance to a multi-node parallel computing cluster. The

single-node and multi-node experiments will be tested by analyzing both image and numeric data in both

CellProfiler and StratoMineR using computing instances in AWS.
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The performance of these setups will be scored based on the requirements found in the literature

study, as well as the following KPIs:

● Cost: the cost of renting the AWS instances

● Completion time: the total time needed to complete the set of tasks

When the benchmarks of both configurations are completed, the scores can be compared using a one-way

ANOVA to control type 1 errors since the same data set will be used.

Additional research will be conducted to find a solution and tools for both scalability and

compatibility. The solution needs to preferably be within AWS to maintain conveniency and practicality

and to keep everything consolidated for ease of use. Once the research questions are answered a

framework to analyze structured big data in the cloud can be created based on the research and

experiments’ results.

3.5 Theoretical Background:

A preliminary research was required to develop the foundation and introduce key concepts

required to better understand the thesis. However, to fully grasp the need of this thesis, a theoretical

background  is needed to better understand and identify the variables, constructs, and relationships

identified in the framework and research questions. The preliminary research was based on the literature

found via Google Scholar as well as the AWS website.

3.5.1 Create Search Queries:

Search queries were created to find literature related to the paper. These search queries are based
on the preliminary research findings. Examples of search queries can be seen in table 1.

SQ1 SQ2 SQ3 SQ4

How can cloud

computing make

structured big

data analysis cost

efficient?

How can cloud computing make

structured big data analysis more

scalable?

How can cloud

computing make

structured big

data analysis

flexible?

How can cloud

computing speed

up the analysis of

structured big

data?

Cost-effective AWS instances Software Parallelization
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cloud computing Compatibility

Spot vs
On-demand

HCS analysis in cloud computing Coding in CUDA Code
Optimization

Cloud vs On-site Amazon S3 Machine Learning
versus
parallelization

Choosing correct
hardware for data
analysis

Data Granularity

R packages for
code
optimization

Table 1: Example of search queries for each sub-question

3.5.2 Applying Inclusion and Exclusion Criteria:

Although search queries were created to find relevant literature, the resulting list of potential

literature is still substantial. Thus, inclusion and exclusion criteria are needed. These criteria are based on

the preliminary research, and describe the conditions that decide whether a paper should be included or

not. The criteria are as follows:

Inclusion Criteria

● Papers and studies that are written in English

● Peer-reviewed papers

● Journal Papers

● Not more than 10 years old (with minor exceptions)

Exclusion Criteria

● Patents

● Studies not related to the research questions

3.5.3 Analyze Articles:

The resulting list of literature, after creating the search queries and applying the criteria, is
analyzed using NVivo, a qualitative data analysis software used to analyze articles using a technique
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called “Coding” (Basley & Jackson, 2013). Coding an article will result in all relevant materials being
labeled and indexed.

3.6 Overall Approach:

Based on the purpose of this study and the current knowledge of the research questions, a

multi-case computational experiment with a quantitative approach will be executed. According to Yin

RK. 1984, a multi-case study requires replication logic rather than sampling logic. In other words, upon

finding a significant result from a certain experiment, the immediate goal after that is to replicate the same

experiment and re-evaluate the results. Some subsequent experiments might have the same conditions as

the initial experiment, whereas other replications might alter a few experimental conditions to check if the

finding could still be duplicated. Thus, only with such replications would the original finding be

considered robust and worthy of continued investigation or interpretation.

With the previous paragraphs in mind, this thesis’ experiment will be conducted on a control

group (the single-node set up), and an experimental group (multi-node set up). These setups were chosen

as the single node setup represents analyzing data on a single machine in series, while the multi-node

setup represents analyzing data in parallel in the cloud on multiple machines. While parallelization can be

done on a single CPU using multithreading it lacks scalability as it is limited to the number of cores the

CPU has. Therefore, the power of parallelization can be utilized to its fullest when it is paired up with the

theoretical infinite scalability of cloud computing. The experiment will also have varying multiple

experimental conditions (the mixture of core count and machines). The experiment will then be re-run

multiple times and then an average of the KPIs (Time and Costs) will be measured and evaluated to draw

conclusions.

3.7 Data Collection:

According to Latham. 2014, data collection planning usually consists of three key components: a

sampling plan, a measurement plan, and a data collection plan. In this paper, the sampling plan consists of

the two experimental set-ups (single-node versus multi-node). Furthermore, the measurement plan

consists of using StratoMineR, and programming languages like R, specifically the system.time() function

alongside packages like the microbenchmark library to measure reproducible completion times.

Additionally, the AWS web app will be used to manage nodes and keep track of costs, CPU usage, and

other useful metrics that will be discussed further in the paper. As for the data collection plan, some

scripts and sample data will be provided by Core Life Analytics as this thesis is a graduation project in

collaboration with them.
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3.8 Data Analysis:

Measurement and data collection are usually focused on constructs, factors, variables, and

context. Data analysis, on the other hand, is generally focused on the relationships between these objects.

In this paper, the relationship between the constructs and variables will be analyzed to answer the research

questions.

3.9 Drawing Conclusions:

The last step in a research process is putting all the pieces together in a coherent discussion of key

findings and their implications for theory and practice. Therefore, after the data analysis step, a discussion

chapter will be introduced to draw a conclusion based on the results. Additionally, further research

options will be discussed.
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Chapter 4: Framework Research, Experiment Setup, and
Results

4.1 Framework Introduction

As described in the problem statement, there are currently no mainstream methods or frameworks

that solve all the issues associated with structured big data analysis at once. These issues are mainly

scalability, compatibility, cost efficiency, and time efficiency. For example, CellProfiler is a software

solution to analyze HCS image data, but CellProfiler does not work with other forms of structured data.

Additionally, GPU acceleration can be used to analyze data extremely fast. However, it only works on

image data and is not widely supported in many applications as it is not commonly used. Additionally,

GPU acceleration requires advanced coding skills. Furthermore, Solutions like Spark, MapReduce and

Hadoop can be viable in certain situations but can present drawbacks in scalability and cost effectiveness.

Some research was needed in order to develop a framework to possibly solve the problems

mentioned above. Additionally, two experiments were conducted to test performance and cost efficiency.

Those experiments were run on Amazon Web Services since AWS had some tools that made the

experiment easier to fulfill and maintain scalability and compatibility when needed. Additionally, since

AWS has the largest market share, it offers more availability and a larger selection of instances than most

of its competitors. However, any cloud computing provider that can provide similar tools and instances

can be used. Furthermore, AWS was used as it has the bigger market share, meaning that a wider selection

of nodes are more readily available. More details will be given in the upcoming sections of this chapter.

4.2 Scalability

To ensure scalability, two factors needed to be taken into consideration, storage and computing

power. When it comes to computing power, as mentioned in the introduction, AWS offers a wide array of

Amazon Elastic Compute Cloud (EC2) instances that are highly available. As for storage AWS offers
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their Simple Storage Service and Elastic Block store that are very scalable. More details will be revealed

in the upcoming sub-sections

4.2.1 Amazon Elastic Compute Cloud

The Amazon Elastic Compute Cloud (EC2) is on-demand computing power that allows

subscribers to rent virtual machines in the cloud with no long term commitment. It enables users to boot

up new AWS virtual servers in minutes and rapidly scale up or down. AWS supports Windows, Linux,

macOS, FreeBSD, and Open Solaris. Additionally, Amazon EC2 can be used with all major Web and

application platforms. An Amazon EC2 environment includes the operating system, services, database,

and application platform stack required for a cloud-hosted application service. The virtual application

stack can be started, stopped, restarted, or rebooted from a Web-based console using Web service APIs,

with 99.95% availability per region using Availability Zones (Whitehouse, L., & Buffington, J., 2012). As

a testament to AWS’ scalability, the Financial Industry Regulatory Authority (FINRA) in the USA has

issued a statement in 2021 stating that with the help of AWS they were able to automatically boot up and

shut down 100000 instances in a single day.

4.2.1 Amazon Simple Storage Service

Amazon Simple Storage Service (S3) is a cloud-based object store available through Web services

interfaces such as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP). It

is used as a cloud storage container for backup data and images. Users can write, read, and delete virtually

an unlimited number of objects ranging from one byte to 5 TB of data each. Amazon S3 is similar to a

traditional on-premise Storage Area Network (SAN) or Network Attached Storage (NAS) device.

However, as an AWS cloud implementation, it is far more agile, flexible, and virtually available anywhere

in the world (Whitehouse, L., & Buffington, J., 2012).

4.2.2 Amazon Elastic Block Store

Amazon Elastic Block Store is Amazon’s block-storage service, it is designed to be used with

Amazon Elastic Compute Cloud (EC2) for both throughput and transaction intensive workloads at

varying scale. EBS supports a broad range of workloads, such as relational and non-relational databases,
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enterprise applications, containerized applications, big data analytics engines, file systems, and media

workflows are widely deployed on Amazon EBS (https://aws.amazon.com/, n.d).

4.3 Compatibility

As discussed in the previous chapters, compatibility can prove to be a tough challenge, certain

data sets require specialist software to be analyzed, others have hardware or operating system

requirements. When parallelizing in the cloud, especially on multiple machines, the user might need to set

up these machines in a certain way before they can be operational. This can be a tedious task especially if

the user needs to set up hundreds or thousands of instances.

In AWS it is possible to back up data on an Amazon Elastic Block Store (EBS) volume to

Amazon Simple Storage Service (S3) by taking point-in-time snapshots. Snapshots are incremental

backups, which means that only the blocks on the device that have changed after the most recent snapshot

are saved. This minimizes the time required to create the snapshot and saves on storage costs by not

duplicating data. Each snapshot contains all of the information that is needed to restore the data from the

moment when the snapshot was taken to a new EBS volume.

When an EBS volume is created based on a snapshot, the new volume begins as an exact replica

of the original volume that was used to create the snapshot. The replicated volume loads data in the

background so that the user can begin using it immediately. If the user tries to access data that hasn't been

loaded yet, the volume immediately downloads the requested data from Amazon S3, and then continues

loading the rest of the volume's data in the background. Amazon Machine Images (AMI) were used to

ensure compatibility with different softwares and set ups using the EBS snapshots. An Amazon Machine

Image basically provides the information required to launch an instance. The user first sets up a machine,

its operating system, required softwares, applications, etc. and then takes an EBS snapshot of their setup

and registers it, this is called an AMI. This AMI can be used to fire up instances with the same settings

and setup as the machine initially configured. Multiple instances can be launched from a single AMI, this

is useful when multiple instances with the same configuration are needed. Different AMIs can be used to

launch instances with different configurations as well (https://aws.amazon.com/, n.d).
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Figure 11: Simplified AMI workflow. Extracted from (www.amazon.com)

For example in this experiment, an AMI was configured to boot instances with a version of

CellProfiler to analyze image HCS data while another AMI was configured to boot instances with a

version of StratoMineR and other tools like R to analyze numeric HCS data. As soon as the instances

would fire up they would automatically install the appropriate applications and software in the AMI.

That is why AMIs and the wide selection of AWS instances that vary in operating systems and

hardware can prove to be a powerful tool to ensure compatibility with almost any software or data set.

4.4 Time Efficiency

The experiment begins with both a numeric and image HCS data set, HCS data sets were chosen

as they can be a good representative of what a typical structured data set could look since it contains both

numerical and image data. The purpose of this part of the experiment is to check whether analyzing the

data on compute instances in the cloud is faster than doing it locally on a single machine. Multiple

machines with different setups will be tested versus similar multi-machine setups in the cloud.
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4.4.1 Analyzing Numeric Data Set in StratoMineR

The numeric data set contains cell-level data from 24 micro-well plates in duplicates resulting in

48 plates, each plate has 384 wells and has approximately 444.4 thousand records per plate totalling in

21.3 million records in the entire data set. This data set was previously uploaded to S3 for the purpose of

this experiment, but first needs to be queried on to the master node. The master node is also an EC2

instance responsible for getting the data from S3 to either the multi-node setup or the single-node setup.

In this case the master node is the node that is running the StratoMineR user interface on the cloud. Once

the data is on the master node, it can be uploaded to either one of the setup options in table 2. These

instances were particularly picked as they are the most efficient memory optimized Advanced RISC

Machines (ARM) instances according to Amazon. Additionally the setups were created this way to try

and create the fairest one to one comparison between single-node setups and multi-node setups.

1 machine 4
cores  (local)

1 machine 8
cores (local)

1 machine 16
cores (local)

4 machines 1
core (parallel)

8 machines 1
core (parallel)

16 machines 1
core (parallel)

r6g.xlarge

4 cores

32 gbs RAM

4.75 Gbit/s
throughput

$0.12 per Hour

r6g.2xlarge

8 cores

16 GBs RAM

4.75 Gbit/s
throughput

$0.1587 per
Hour

r6g.4xlarge

16 cores

32 GBs RAM

4.75 Gbit/s
throughput

$0.3174 per
Hour

4 c6g.medium

4 cores in total

8 GBs RAM

40 Gbit/s
throughput

$0.072 per
Hour

8 c6g.medium

8 cores in total

16 GBs RAM

80 Gbit/s
throughput

$0.144 per
Hour

16 c6g.medium

16 cores in total

32 GBs RAM

160 Gbit/s
throughput

$0.288 per Hour

Table 2: Numeric data experiment node setups

Once uploaded to the required setup, the data undergoes the StratoMineR workflow, but for the

purpose of this study only the ETL, Feature Elimination (FE), and Feature Selection (FS) Processes will

be measured since as stated previously, the ETL and Feature Selection processes make up for the majority

of the StratoMineR workflow in terms of time. Therefore, if there is a significant decrease in completion

time in these steps then the overall workflow will benefit greatly. The Feature Elimination Process will

also be measured as it is a prerequisite step going from the ETL to the  Feature Selection Process.

Each of these setups will analyze the same data set using StratoMineR for 5 times. Additionally,

after each run, the instance(s) used were shut down and re-booted to ensure that no data was cached on an

instance. Following the data analysis runs, the mean and standard error will be calculated for each of the
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StratoMineR steps as well as the overall process. After calculating the mean and standard error a one-way

ANOVA test will be conducted to determine the p values for the aforementioned steps.

The results were as follows:

Local 4 cores
(N = 5)

Local 8 Cores
(N = 5)

Local 16 Cores
(N = 5)

ETL ~247 seconds ~290 seconds ~91 seconds

FE ~0.3 seconds ~0.16 seconds ~0.14 seconds

FS ~508 seconds ~77 seconds ~45 seconds

Overall ~756 seconds ~366 seconds ~146 seconds

Money Spent $0.0192 $0.0161 $0.012
Table 3: Single-node setups run times for ETL, FE, and FS

Cluster 4 cores
(N = 5)

Cluster 8 cores
(N = 5)

Cluster 16 cores (N =
5)

ETL ~217 seconds ~113 seconds ~56 second s

FE ~6 seconds ~5 seconds ~5.6 seconds

FS ~276 seconds ~123 seconds ~58 seconds

Overall ~497 seconds ~241 seconds ~120 seconds

Money Spent $0.00994 $0.00964 $0.0096
Table 4: Multi-node setups run times for ETL, FE, and FS

Overall p-value (
⍺ = 0.05)

ETL p-value  (⍺ =
0.05)

FE p-value (⍺ =
0.05)

FS p-value  (⍺ =
0.05)

4 core single-node
vs multi-node

< .00001 < .00001 < .00001 < .00001

8 core single-node
vs multi-node

< .00001 < .00001 < .00001 < .00001

16 core
single-node vs
multi-node

< .00001 < .00001 < .00001 < .00001

Table 5: Single vs Multi-node setup p-values using one-way ANOVA
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The experiment resulted in a mean of around 30% increase in performance to the overall

workflow in a multi-node setup. Furthermore, based on the p-values for all the comparisons in table 5, it

is clear that a multi-node setup is significantly better than a single-node setup for ⍺ = 0.05.

4.4.2 Analyzing Image Data Set in CellProfiler

The image dataset used is the “AGM dataset”. It is derived from a high content screen published

by the Carragher group at the University of Edinburgh in 2010. Four cell-lines were screened against a

library of 102 well-annotated drugs and inhibitors. The reagents were run in eight half-log doses, in

triplicate assay 96-well plates. The cells were stained with dyes to label the actin cytoskeleton,

microtubule and the DNA. The images were acquired on a Molecular Devices ImageXpress 5000A with a

20X magnification. An example of what the images look like is shown in Figure 12.

Figure 12: HCS images example from the “AGM” dataset (University of Edinburgh, 2010)

The images for one cell line were loaded into the Image Data Repository, and the Broad Bioimage

Benchmark Collection. CellProfiler was used to extract 479 features per cell. The cell-level data generates

~230MB of data per plate. The AGM set in total contains 57 96-well plates of data. In addition, the

dataset contains 5 annotated classes (NEGATIVE, Docetaxel, Doxorubicin, LatrunculinB, A Z). This data

is from one 96 well plate containing 240 images across 3 channels resulting in 720 image sets. These sets

translate into 503 batches that need to be analyzed by CellProfiler.

Similar to the numeric data analysis, the image data set will be analyzed in CellProfiler using

multiple setups. The main setups to compare are again single node machines with powerful specifications,

versus multiple small machines with single cores. However, since CellProfiler currently does not work on

ARM architecture CPUs, different instances and setups were chosen to run the experiment. Additionally,

because of some time constraints, the analysis time of only 5 batches was measured on each of the set ups
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in table 6. The analysis was repeated 5 times and the mean analysis time was calculated to compare the

set ups.

1 machine 1
cores

1 machine 2
cores (laptop)

1 machine 4
cores

1 machines 16
cores

1 machines 36
cores

1 machines 72
cores

t2.small

1 core

2 gbs RAM

4.75 Gbit/s
throughput

$0.0250 per
Hour

laptop

2 cores

8 GBs RAM

300 Mbit/s

N/A

c5.xlarge

4 cores

8 GBs RAM

4.75 Gbit/s
throughput

$0.192 per
Hour

c5.4xlarge

16 cores

32 GBs RAM

10 Gbit/s
throughput

$0.768 per
Hour

8 c6g.medium

36 cores

72 GBs RAM

10 Gbit/s
throughput

$1.728 per
Hour

16 c6g.medium

72 cores

144 GBs RAM

10 Gbit/s
throughput

$3.456 per Hour

Table 6: Image data analysis setups

CellProfiler runs image analysis tasks in series the majority of the time, there is an option to run

image analysis in parallel, however the number of images that need to be analyzed have to match the

number of cores available in a machine. Additionally, the multithreading option is only supported by a

few out of the 90+ modules that CellProfiler has since it’s an open source software, and most of its

modules are written by the community. Therefore, a decision was made to compare running CellProfiler

in parallel on multiple 1 core machines in the cloud versus a local laptop limited to 2 cores (to have a fair

comparison) and versus the single, multiple core, machines mentioned in table 7.
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Instance 5 batches runtime
(N = 5)

Money Spent Estimated Total
runtime for 500
batches

Estimated Total
Money Spent

t2.small ~310 seconds $0.002152778 ~310 seconds
(parallel)

~$0.215 (for 100
instances spun up)

c5.xlarge ~387 seconds $0.020640000 ~38700 seconds ~
645 mins (series)

~$2.064

c5.4xlarge ~349 seconds $0.074453333 ~34900 seconds ~
582 mins (series)

~$7.4496

c5.9xlarge ~357 seconds $0.171360000 ~35700 seconds ~
595 mins (series)

~$17.136

c5.18xlarge ~351 seconds $0.336960000 ~35100 seconds ~
585 mins (series)

~$33.696

Local laptop (2
core)

~1380 N/A ~138000 seconds
~ 2300 mins
(series)

N/A

Table 7: Image data analysis results for each setup

The experiment shows us that 5 batches take roughly 6 minutes to be analyzed on CellProfiler

regardless of core count. The single machines with multiple cores need to run the remaining batches in

series, therefore, the entire data will take approximately up to 10 hours to complete and cost anywhere

between $1.92 and $34.5. However, the machines with a single core will take roughly 6 minutes and cost

around ~$0.215 to analyze the entire data set with 100 instances since the machines are running in parallel

in the cloud. Additionally, the increased analysis time on the local laptop can be explained by the thermal

throttling of the CPU and poor heat management. Therefore, the laptop CPU could not perform as good as

it normally would in optimal conditions.

4.5 Cost Efficiency

As previously mentioned in the introduction, there are two ways to fire up instances in AWS, on

demand and spot pricing. A user can pay to get immediate access to a computing instance and pay per

hour (On demand), or the user can bid to rent instances from AWS’ spare capacity and get a discount from

on-demand pricing (Spot) at the risk of having the instance terminated from AWS at a certain moment.

For example an a1.medium instance costs $0.0288 per hour on demand whereas it can go as low as
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$0.0089 per Hour in spot pricing. The underlying hardware is the same, there’s no difference in

performance yet prices differ greatly.

In this experiment 80 a1.medium and 1 r6g.16xlarge ran in both spot and on-demand pricing were

given a data set to analyze and put under load for 12 minutes. The purpose of this experiment is to

determine how cost efficient parallelization in the cloud can be, given the same hypothetical analysis

times.

Figure 13: Queued and Completed Jobs in CellProfiler

In figure 13, the blue line represents the analysis jobs or batches the instances need to do. The green line

in return represents the amount of finished jobs. At the first glance, it is noticeable that the 80 a1.medium

instances cost $0.142464 and $0.4608 in spot and on-demand respectively while the r6g.16xlarge is

$0.2544 and $0.72192 in spot and on-demand respectively. It is quite clear that for both cases using spot

pricing is the most cost efficient solution. Nonetheless, the more remarkable point is that 80 a1.mediums

were 56% cheaper than the r6g.16xlarge in spot pricing under the same hypothetical workload. However,

there are a few things to take into consideration in this experiment:

Figure 14: Single-node Setup Costs AOU Representation

Firstly, as shown in figure 14, as the number of jobs starts to decrease the load on the machine is

decreasing as well. However, the user is still paying for the full 64 cores for the duration of the analysis
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task as depicted by the red area in the graph. This means that roughly 45% into the data analysis process

the machine is not being used to its fullest potential.

Figure 15: Multi-node Setup Costs AOU representation.

Secondly, as shown in figure 15, in a multi-node setup, as soon as an instance finishes its given

task, it can be shut down immediately. Meaning that in a real world scenario, there are no lost costs when

using a multi-node setup depicted by the hashed blue area in the graph. On that account, if the area under

the blue hashed curve is roughly 45% of the red box then the actual spot costs for 80 a1.mediums would

be $0.0641088.
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Chapter 5: Discussion, Framework, and Conclusion

5.1 Experiment Overview

The experiments and research conducted in chapter 4 show some interesting results. Figure 16

shows how all the previous small experiments come together to form one coherent workflow to analyze

structured big data using AWS.

Figure 16: Workflow to analyze structured big data using AWS
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The workflow starts with structured big data queried from the user’s S3 bucket (Mass storage)

containing either numeric data (StratoMineR) or image data (CellProfiler ). The data then gets split up

into smaller chunks, called jobs, following a certain granularity that the user decides. The data is then sent

to the master node where it fetches the necessary coding scripts needed to run the analysis in the cloud.

These scripts can contain the instance specifications, the number of instances needed, the

split-apply-combine scripts and many more, depending on what the user needs to do. After fetching the

necessary scripts, the master node then requests additional instances to be fired up from AWS in spot

pricing. These instances are then configured to a registered AMI which also in turn installs the required

software needed to run the analyses on the instances in the cloud. Afterwards, the results from the

analyses are merged using a merge script with the preferred coding language and stored back in the user’s

S3 bucket.

5.2 Limitations

The experiments conducted for this thesis presented some interesting results. However, the

research and thesis in general still had a few limitations that need to be noted and can prove to be useful

for the experiment’s reproducibility and future work.

● The most notable limitation is that the experiments conducted in the cloud were embarrassingly

parallel problems. Meaning that the data used is structured enough to be divided into batches that

are independent of each other. This allows the data to be processed in parallel without having the

output of a certain batch analysis as input to another batch of data. This could prove to be a

problem to compatibility as it can be extremely hard to analyze unstructured big data in parallel

using the same methods in this thesis’ experiments.

● Although this thesis’ experiments provided ways to deal with compatibility by using AMIs in

AWS, it was still only tested using StratoMineR and CellProfiler. Meaning that no other

applications or softwares were tested to ensure compatibility with everything.

● All the instances used and tested in AWS were located in Ireland. Therefore, the availability and

spot prices of other areas might differ. However, AWS is usually consistent with pricing and

availability.

● Instance boot-up and shut down times were not measured, which adds up to the total analysis

times in the cloud. However, on-demand instances power up almost instantly while spot instances

might take 30 to 60 seconds to boot up. Nonetheless these numbers were not logged and may

seem rather arbitrary.
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● The data sets used were not very large in terms of raw size. The numeric data set was around 12

GBs while the image data set was around 7.5 GBs. Nevertheless, it’s expected to have even better

results with a larger data set as analysis times increase greatly. However, in certain cases the

analyzed data might surpass the instance’s local storage capacity which might cause some

problems. A quick fix would be using EBS but it has not been tested in this thesis as a larger data

set was not readily available.

● S3 storage and EBS pricing was not taken into consideration. Nonetheless, a quick search

revealed that the average price per GB on an enterprise Hadoop or spark cluster is between $1000

to $2000 depending on the desired performance. Whereas the price per TB on S3 averages around

$24 excluding EC2 instances.

5.3 Discussion and Framework

Taking the experiment results and limitations into consideration there are a few things worth

mentioning and discussing.

5.3.1 Discussion

Firstly, although boot up times were not logged, they are still very important to take into

consideration. Boot up times, individual batch completion times, and data size play a fundamental role in

deciding if a data set should be analyzed in parallel in the cloud or in series on a single machine. For

example, in section 4.4.1 the feature elimination step actually performed better on a single machine than

on the cloud. It first has to wait for the ETL process to be done, aggregate the data and then run the

feature elimination step. Using multiple machines on the cloud, the feature elimination step was actually

20 times slower on average. Although it was only a matter of split seconds, combined with the instances’

boot up times, it might actually make a great difference in choosing whether to analyze in parallel or

series since it also takes some time for the nodes to pick up the jobs and start the analysis. Therefore, a

possible solution to this problem is to actually do some testing beforehand and measure how long an

analysis batch actually takes and compare it to boot up and pick up times and come up with some sort of

ratio. If a batch takes longer to analyze than the node boot up and pick up times, then it’s probably better

to run the analysis or task in the cloud, otherwise it might be better to just do it in series (more details and

an example in appendices).
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Secondly, the experiment design for the data analysis step was created in a way to make the

comparison as direct and fair as possible. However, in practice, the strength of cloud computing lies in the

ability to fire up hundreds of nodes to tackle a problem instead of nodes equivalent to the single machine

set up. For example in section 4.4.1 only 16 machines were fired up to make the comparison as fair as

possible, yet in practice it would have been possible to fire up nodes and match each batch or job to be

completed by a node, resulting in 48 nodes fired up. This however means that the analysis time was

actually decreased from 146 seconds down to 38 seconds on average while only spending $0.010032

instead of $0.012. Although the user is firing up and using more nodes, the reduction in overall analysis

time also reduces or roughly maintains the overall cost.

Thirdly, taking both previous paragraphs into consideration, cost plays a fundamental role in running

tasks in parallel in the cloud. In theory, a user can fire up thousands of instances in the cloud to run certain

tasks in parallel. However, that is only applicable if the user has an infinite amount of money and no

budget constraints. Therefore, for future usage of this paper’s method (or framework) a budget needs to

be specified beforehand to determine the amount of instances a user can fire up and to make sure that the

amount of instances used is actually going to make the process faster by a significant margin.

Finally, taking budget, batch completion times, node start up and pick up times into consideration

alongside the previous methods, a framework can be developed and used to analyze structured big data in

the cloud.

5.3.2 Framework

These are the steps shown in figure 16 for the framework:

● Step 1: Decide data granularity

○ This step is crucial as it can reduce the size of the data, without losing accuracy, and have

a major impact on the analysis computing performance

● Step 2: Upload data into mass storage.

○ Preferably a mass storage service similar to S3 to ensure scalability

● Step 3: Decide batch size, budget, and purpose

○ Based on the batch sizes and budget, it is possible to determine the type and number of

instances needed to run the analysis in parallel in the cloud

○ Based on the purpose, there is a vast selection of instances to choose from. For example

there are memory optimized, compute optimized and even GPU instances to choose from.
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● Step 4: Fire up required instances using AMI or similar technology

○ Using AMIs ensures compatibility as it will pre-install the required tools on the instance

before it runs the assigned task. However, AMIs need an initial configuration which

might take some time, but it enables the user to fire up thousands of instances

automatically and install the required tools with a single click.

● Step 5: Submit Data to computing cluster in the cloud

○ This step might prove to be tricky, but if the user follows Hadley Wickham’s

Split-Apply-Combine method (Previously discussed in the thesis) then it should be easily

possible.

○ This step can be realized and done using the preferred scripting language

● Step 6: Combine Analysis Results and Re-upload aggregated results to mass storage

○ Again, this step can be done using the preferred scripting language.

Figure 16: Framework to analyze structured big data in the cloud
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5.4 Conclusion and future work

Cloud computing is a broad and vast domain. Based on this thesis’ research and experiments,

cloud computing can provide a stepping stone to make structured big data analysis more accessible and

easier for scientists to use. Both cost and time efficiency can be ensured by using multi-node setups in

spot pricing. Whereas compatibility can be ensured by using AMIs. AMIs eliminate the need to have

software compatible with parallel programming and enables any software to be used in parallel on

multiple machines in the cloud with virtually no issues. Scalability can be ensured by using Amazon’s

EBS and S3 or other similar block storage technologies. However, this thesis is not perfect, it definitely

has its limitations, such as the lack of compatibility with non embarrassingly parallel programs,

overlooking storage pricing, and the data size of its experiments. Nonetheless, this thesis provides a

foundation for future work to make structured data analysis in the cloud even better.

Examples of future work include but are not limited to:

● Testing other services similar to AWS as they might be better or easier to use

● Compare storage pricing with other storage options as it was not taken into consideration. A good

starting point would be to take a deeper look into Spark, Hadoop and AWS’ storage and

performance pricing.

● Test using Quantum Computing instances instead of normal CPU instances in the cloud for even

better computing performance

● The possibility to build on top of this thesis’ framework and try to figure out a way to fire up or

shut down instances at varying stages of a certain workflow for even further cost reductions. In

other words, use more or less instances in a particular workflow depending on each step’s

computing complexity by possibly training a ML model to do so.

● Using Machine Learning to automatically decide on granularity or sampling the data to reduce

data size
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Appendices
Series Vs Parallel Demonstration Using R

Figure 1: R markdown file part 1

51



Figure 2: R markdown file part 2
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Figure 3: R markdown file part 3

The R markdown file above aims to compare 2 functions done in both parallel (multithreading) and series

on a single machine. In situations like these where the data or the task is not very computationally heavy,

it’s better to do tasks in series. This is because the time it takes to partition the data and distribute it over

the cores actually takes longer than the function itself.
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