Batching of divergent rays on GPU architectures

Nick Begg

Supervisors: dr. Ing. J. Bikker, dr. A. Vaxman
Utrecht University, Faculty of Science, Department of Computer Science
ICA-5968577
Abstract

Ray tracing is an image generation method that involves fundamentally incoherent access to
system memory. Ray batching is a technique developed to defer certain accesses to memory
when ray tracing, to allow many similar accesses to be performed together - increasing the
effectiveness of modern processors’ caches. This research aims to take an existing successful

ray batching system originally designed as a single-threaded CPU based system, and adapt it

for use in a GPU environment. A technique is presented which successfully performs batching

on a GPU, however no performance improvement is demonstrated over current
implementations. Insights into the performance of varying memory layouts and data
structures, and parallel access required to access these are gained.

=
@"

N

M = Universiteit Utrecht

S
‘;'%

Contents

1.

Introduction

1.1.

Background e e

Related Work

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Packet Tracing L
Ray Batching o
Hardware Based Implementations of Ray Batching
Traversal Algorithms L
Reduced Precision and Compressed Acceleration Structures
GPU architectures e

Implementation

3.1.
3.2.

3.3.

3.4.

3.9.
3.6.
3.7.
3.8.
3.9.

OVEIVIEW . . . o o e e e e e e
BVH Generation e e e
3.2.1. Main work loop
3.2.2. New Ray Generation and Next Work
3.2.3. Next Bucket Selection
BVH Traversal e
3.3.1. Top-Level Traversal Overview
3.3.2. Top-Level Traversal Parallelism and Algorithm Variations
3.3.3. Treelet Traversal e
Rays . . . o
3.4.1. Ray Storage o L
3.4.2. RayQueues Overview o oo
3.4.3. Linking and Delinking RayQueues
3.4.4. Enqueuing and Dequeuing L Lo oo
Locking and Parallelism o
Occlusion v. Closest hit
Shading e
Random Number Generation and Seeding
Debugging Tools e e e e

Experiments and Results

4.1.
4.2.
4.3.
4.4.
4.5.

OVErVIEW . . . o o e
CUDA Profiling
Initial Run and Tree-Size Testing o
Ray Count Experiments
Queue Size Experimentso oL

Discussion

Conclusions And Future Work

6.1.
6.2.
6.3.
6.4.

Parallelism and Improved Traversal Strategies
More Granular Measurements L L o
Multi-tier Trees e e e e e
Multi-queuing Rays and Fairer Queuing oL oL

=

NoREN SN e N)]

12
12

15
15
15
16
17
17
18
18
19
20
20
20
20
21
21
22
22
23
23
23

24
24
24
25
26
26

®

o 0 @ »

m

6.5. Dynamic Allocation
6.6. Memory Access

Acknowledgements
References

Structure Listings

Tuning Parameters
Initial-Run Results Table
RayCount-Run Results Table

QueueCount-Run Results Table

33
34
39
40
42
46

48

1. Introduction

The ray tracing family of algorithms are methods of image generation finding increasing application
within real time graphics. Whilst fairly well established within offline image generation environments
- such as image rendering for movies and television - it is now becoming feasible to apply these
methods to real-time image generation. This is due to, in part, the significant increase in compute
power available in recent GPU implementations, as well as developments in dedicated hardware for
processing parts of the problem.

Ray batching (also known as ray scheduling) is an optimisation for one particular challenge of ray
tracing; that is that memory access when ray tracing is effectively random, leading to sub-optimal
performance. Ray batching attempts to make access to memory more coherent by forming ad-hoc
or transient groups of rays as they progress through the ray tracer’s data structures. In particular,
we will take the work of Gasparian and Bikker [Gas16], a ray batching system designed to run in a
single-threaded CPU environment, and research its applicability to a GPU environment.

1.1. Background

Practically any modern computer system used for ray-tracing will have a multi-tier memory hierarchy;,
with each level having a specific storage capacity, locality (such as per-core or global) and performance
characteristic. For example, in a typical contemporary desktop computer system with an Intel Kaby
Lake CPU, there will be a 3-tier CPU memory cache, with the L1 cache (closest to the CPU core)
64KB in size, L2 256KB and L3 around 2MB. Main system RAM is typically sized in the order of
gigabytes. The L1 and L2 cache will exist per CPU core, and the L3 will be shared across all cores. In
addition, the system will have hard drive or SSD storage typically sized in the terabytes; this can also
be considered another memory tier. Even access to the main system ram can be optimised - DRAM
chips themselves contain a buffer in front of the main storage. Optimising access by being aware of
charge cycles and recent access can improve performance [Has+18].

By its very nature, ray tracing requires random access to memory for both intersection and occlusion
queries. This random access also poses a problem for caching, quickly making caches ineffective for
a naive implementation. For the lifetime of rendering a single frame, much of the memory access is
read-only, making the algorithms very easily parallelisable. As processing power has rapidly increased,
has caused ray tracing performance to become dominated by memory bandwidth limits rather than
computational capacity[Wal+01].

This has lead to a multitude of techniques to improve ray tracing performance, most of which boil
down to (at least in part) carefully controlling which parts of the scene geometry are accessed, and
in what order. In particular a focus has been on doing more work with the data fetched from RAM -
effectively getting better 'value for money’.

A series of data structures have been devised to divide the 3D space and optimise geometry queries -
both in terms of compute resources and memory bandwidth usage. These include manually constructed
bounding structures [RW80], voxel grids [AWS87], hierarchical spatial subdivision [Gla84], BSP trees
[SS92], K-D trees [Hav00] and finally, the bounding volume hierarchy (BVH).

The acceleration structure aims to solve one side of the problem - that is, to subdivide and group
subsets of a scene’s geometry, and provide a quick traversal path to a required subset. The other side
of the problem is to try to group rays together based on common paths through the scene, and allow
them to traverse an acceleration structure together, thus allowing the cost of fetching and processing
acceleration structure nodes and geometry to be amortised across many rays.

There are a number of strategies for grouping rays. A number of advanced traversal algorithms have
been devised in recent years that increase ray coherence by bundling active rays together dynamically
as they traverse an acceleration structure, such as Tsakok [Tsa09], DRST [BA14] and ORST[Fue+15].

Ray batching aims to create transient ray queues throughout points on an acceleration structure
as rays traverse by allowing the traversal algorithm to deposit rays in queues, attached to points
throughout the structure. Once a given queue has filed, the portion of the acceleration structure to
which it is attached is traversed by the queued rays. Gasparian and Bikker’s system|[Gas16], informally
known as RayCrawler is the starting point for this research, and can be considered a state of the
art implementation of a ray batching system and advanced traversal implementation, comparable to
ORST.

2. Related Work

2.1. Packet Tracing

One alternative method to ray batching intended to reduce memory incoherence is so-called packet or
pyramid traversal. A packet of rays is launched in a frustum from the camera point into the scene,
and the intent is that some degree of coherence will be observed in the set of geometry intersected.
Exploiting this coherence will amortise the cost of memory access over the entire packet. Various
notable examples of this method include van der Zwaan et al[vdZRJ95], Wald et al[Wal+01], Reshetov
et al[Res05], Boulous et al[Bou+07] and Garanzha et al|[GL10].

Considering diminishing coherence for divergent ray distributions in path tracing [Kaj86], several
authors suggest using wide BVHs instead of packet traversal. In particular, cpu vector instruc-
tion sets such as AltiVec, SSE, AVX and AVX-512 benefit from 4-, 8 and 16-wide BVH traver-
sal[DHKO8][EGO08][WBBO0S|.

Benthin et al.[Ben+12] devised a hybrid traversal model that combines ray packets and single ray
traversal.

2.2. Ray Batching

Pharr et al sought to address the problem as a scheduling challenge [Pha+97]. They developed a system
designed to handle scenes far too large for system memory, based on voxels. When tracing through a
given voxel, required data would need to be explicitly fetched from disc before tracing could continue
into that segment. They also ran into issues with the sheer volume of rays that are spawned by the
tree structure of by Whitted-style ray tracing [Whi79], especially when they scheduled a large number
of active concurrent traces rather than the traditional depth-first implementation. Their scheduling
algorithm was based around a two-tier storage model - that is system memory, and disc. As access to
disc was orders of magnitude slower, system memory was largely used as a ”cache” for state that had
been fetched from disc, optimising access to these memory-based ”caches” was a primary focus. The
CPU’s multi-tiered memory caches themselves were largely ignored during optimisation.

Navratil et al[Nav+07] develop these ideas further, considering Whitted’s algorithm and Pharr et
al’s as two points on a continuum of the number of simultaneously active rays a system can handle
- and attempt to find an optimal point on this line. Unlike Pharr et al’s 2-tier memory/disc model,
Navrétil et al optimised their system around the L2 cache of a contemporary CPU (though it could be
generalised to arbitrary cache models and sizes), using a ray representation that could be packed into
64 bytes. They also looked to limit the explosion of ray numbers inherent to the recursive nature of
Whitted-style [Whi79] ray tracing, which was an issue for Pharr et al. This was addressed by spawning
secondary rays in generations.

As they could determine the exact storage requirements of the cumulative geometry and acceleration
nodes below any given point in their acceleration structure, their queue point selection algorithm would
select the set of nodes closest to the root in the tree such that each queue point’s children would fit
entirely in L2 cache; indeed, if the whole tree fit in L2 cache, the algorithm regresses to regular K-D

tree traversal. Starting with regular top-down traversal, as rays reached a node with a queue point,
they would be placed in the given queue for later continuation. When a queue filled, all rays in the
queue would traverse the given sub-tree, including any leaf nodes. Thus the cost of fetching the subtree
and geometry was amortised across the whole ray queue. They also implemented a special case for
leaf-nodes that exceed L2 cache size, which would normally result in thrashing the cache for ray every
traversal - this was achieved by iterating all rays over cache-sized chunks of geometry.

Ultimately they did not propose a new traversal algorithm per se, but provided a ray scheduling
method that could transparently queue and restart rays as required for improved cache performance.
This research resulted in an improvement in memory traffic requirements, but the results were only
simulated.

Eisenacher et al [Eis+13] devised a CPU-based, two-level quad-BVH system with very large ray
batches to handle scenes much too large for system memory. A four stage pipeline processes each
iteration of a ray’s life. At the start of the pipeline, the large set of active rays (typically 30-60M) are
sorted into bins based on direction, and stored in a compressed format (36 bytes per ray, using lossless
octahedral normals [Mey+10] for ray directions). Once a bin reaches a fixed size, the batch is streamed
to disc. As traversal threads become idle, ray batches are read back in from disc, and traversed across
the main-BVH (using streaming packet traversal [GL10]) and child-BVHes (using naive traversal).
The directional coherence of the sorted rays gives and approximate front-to-back traversal ordering.
As the rays intersect with geometry they are binned together, based on the particular intersection
mesh. Finally, shading is performed in mesh order, meaning that the cost of retrieving shading data
from disc is spread across all intersecting rays.

A mobile-focussed MIMD hardware design was presented by Lee et al [Lee+15] which aims to
passively reduce memory accesses by actively reordering rays based on existing cache status. Its ray
traversal hardware uses a design called ”reorder buffer”, which implements a batching BVH traversal
method, inspired by the out-of-order non-blocking cache [FJ94]. It treats individual rays as a kind
of thread, which can be scheduled for processing by the hardware; In particular the cache status of
the acceleration structure or geometry data required by each ray is used to either queue or activate
individual rays, much like the latency hiding methods of programmable processors. Lines in the cache
are tagged to rays which depend upon them; This way, as a cache line becomes populated, dependent
rays can be scheduled together, ultimately reordering the traversal processing to match the cache
status. As the traversal hardware is a fixed function design, and works at the level of individual rays,
it does not suffer from potential occupancy issues that SIMT designs experience.

Bikker [Bik12] queues rays in the leaves of a shallow octree and traverse mini-BVHs for these leaves,
achieving improved performance for in-core rendering compared to single ray traversal.

2.3. Hardware Based Implementations of Ray Batching

Many attempts have been made to implement some or all parts of the ray-tracing pipeline in custom
hardware - In most cases, the successful projects were implemented on FPGA hardware. Ultimately
these designs faced similar challenges to processor based solutions - namely that the random-access
nature of ray-tracing generated a large amount of memory traffic, and that optimising this traffic
became a focus to improve performance. In addition, the nature of shading requirements imposed a
need for processor-like instruction sets.

Because hardware acceleration structure and geometry traversal units were typically implemented
as fixed-function designs, independent of acceleration structure generation/refit, ray generation and
shading units, in effect most of these systems involved some degree of ray batching or queueing as rays
entered or left the various components.

D-RPU included a hybrid BVH and KD-tree referred to as a bounded-KD (B-KD) tree [WMSO06].
As well as being able to traverse this structure, the design could also re-fit an existing tree.

SGRT implemented a dual-AABB based BVH[Lee+14]. Viitanen et al expanded upon this [Vii+16]
to build a hardware implementation of an MBVH [EGOS].

SaarCOR [SWS02] uses large ray packets, and implemented fixed-function hardware for acceleration
structure traversal, intersection and shading. Further research [SLa03] proposed a dedicated virtual
memory system for the accelerator; This system would use a local DRAM as a cache for the accelerator,
independent of a main system RAM. This virtual memory system was never built; Problems with
the design were identified when large changes to a scene’s working set occurred. Pre-fetching was
considered as a solution, but this was not explored further [Woo06].

SaarCOR was subsequently expanded into RPU [WSS05] which added a programmable intersection
unit (allowing for higher-order primitives to be intersected) and programmable shading. Finally D-
RPU [Wo006] built upon RPU, which added a B-KD tree acceleration structure [WMS06], and included
on-chip refitting of this structure. In addition, programmable shading was improved, with a GPU-like
processor allowing for improved shading programs, including the ability for shaders to instigate their
own recursive ray traces.

TRaX [Spj+09] is a programmable accelerator design specialised for ray-tracing, including a host
simulator and an LLVM[LA02] based compiler. TRaX used a multithreaded MIMD design to optimise
handling of divergent ray paths. TRaX was further enhanced [Kop+10] with increased shared caches
and functional units. STRaTA [Kop+13] expands TRaX with specialised pipelines — for BVH inter-
section and triangle intersection. These pipelines are controlled through the programmable interface
using special instructions and ultimately implements a treelet based ray batching system optimised
around the size of the L1 cache.

Aila and Kerras [AK10] proposed a GPU-like architecture for treelet-based subdivision of an accel-
eration structure, to allow for dynamic ray scheduling to manage memory bandwidth consumption.
Their design consisted of multiple proposed models of operation, starting with a stack memory layout
of Aila and Laine [AL09]. Strikingly, they determined that stack traffic is responsible for approximately
half of the total traffic.

Their initial finding was that parallel traversal of independent rays results in a very large working
set. To alleviate this, they build upon Navratil et al’s [Nav+07] model with a treelet-based BVH
subdivision, queuing rays at the top of the treelets. They also point out that Navratil’s design
assumed that all data from their root BVH stayed in cache, and did not measure the traffic between
relating to this. Furthermore, when a ray exited a treelet, it re-entered traversal from the root of the
tree.

They offer an extended model where treelets may contain other treelets; That is, a cut may be
placed between any two nodes, and the child becomes the root of a treelet; A ray queue is also placed
at the root of the treelet. The size of each treelet was optimised based on two factors - trying to
find the treelets which balanced between having the largest collective surface area (in the spirit of the
Surface Area Heuristic [MB90]) and those which would approximately match the size of the system’s
L1 cache. Also, they attempted to reduce the total number of treelet transitions, as this resulted in
increasing queue memory traffic. They then found that stack traffic constitutes 17-28% of overall
memory communication when treelets are used.

Scheduling methods are also presented as a vector for experimentation, with 2 presented; A Lazy
scheduler (when idle, binds the current processor to the queue with the most rays), and a Balanced
scheduler (tries to keep all queues at a given target size). These algorithms’ role is to assign ray
queues to processor resources. They showed that one algorithm was not implicitly better; rather that
memory traffic was reduced for certain sized treelets depending on the scheduler chosen.

Interestingly, whilst traversal stack traffic was shown to be significant in memory traffic generation,
they did not experiment with other traversal methods (in particular, stackless methods) or wider trees,
instead listing these as an option for future work.

Nah et al [Nah+11] developed a hardware based traversal and intersection engine, built around
Whitted-style [Whi79] ray tracing. This ultimately lead to the RayCore [Nah+14] system - a mobile
focussed pure solution with K-D tree traversal and construction. Rays are processed through the
system in a 4 stage macro pipeline (ray setup, T&I, hitpoint calculation, shading), with one progression
through this pipeline representing a single bounce of a ray. At the end of the pipeline, rays can queue
to come around again, or be terminated as required.

The core of the traversal mechanism is the so-called T¢I (traversal and intersection) unit, which
has its own internal pipeline. The unit contains four identical pipelines, each being of a unified design,
able to process its currently active ray through traversal and intersection; At any given time, each
pipeline operates in one of three modes - ray/box intersection, traversal or ray/triangle intersection
(that is, leaf processing).

Like other fixed-function hardware based solutions, the ray is treated somewhat like a thread in
programmable designs, and certain latency-hiding concepts are implemented at the ray level. Each
pipeline in the T&I unit contains its own dedicated L1 cache, and the four pipelines of the T&I unit
share an L2 cache. When an L1 miss occurs, the ray is marked as idle and continues through the 20
cycle pipeline (rather than stalling the pipeline). When the idle ray reaches the end of the pipeline,
it is returned to the start of the pipeline to be retried. The same process is repeated on an L2 miss,
although this time, the request goes to main memory.

Keely[Keel4] presents a hardware design that batches rays based on treelets, and allows immediate
traversal - that is to say, proceeding past a batching point without queueing - in the case when required
data is already in cache. Mathematical precision is reduced and BVH compression is employed to
reduce circuit complexity.

Most of the aforementioned projects are implemented as largely self-contained systems; That is,
they have moved most or all of the process of ray-tracing to their custom-built solution, and the
CPU takes up a supervisor or driver role. Little-to-no intra-frame communication takes place, and
instead the CPU transmits per-frame data to the accelerator in bulk for processing. Departing from
this model, SGRT [Lee+12] is mobile-focussed hybrid design, re-using an existing GPU for shading
and ray generation, a CPU for acceleration structure creation and custom hardware for acceleration
structure traversal and intersection calculation, as well as refitting existing BVHes.

NVIDIA’s Turing architecture[NVIa, p. 30-31] contains some elements of ray batching - or at least
wavefront tracing. With its dedicated bounding box and ray-triangle intersection hardware, rays are
scheduled between the SM units and dedicated BVH traversal and intersection hardware.

2.4. Traversal Algorithms

Naive traversal of a BVH on a CPU is a fairly straightforward affair; frequently it is implemented as
a recursive descent through the tree.

Many methods have been developed that either devise their own stack (rather than the implicit one
provided by the compiler), or use a non-stack based method to track their state. Whilst these give a
performance boost on a CPU, they are critical on a GPU as recursion is frequently not available at all.
Furthermore, a method independent of the compiler’s generated call stack is required in ray batching
as the lifetime of a ray is now completely decoupled from an individual thread’s walk through the
BVH tree.

10

Some methods are categorised as stackless - these generally involve the use of parent pointers to
walk upwards through the tree, and/or some kind of stack-like LIFO structure, often tightly packed
into a bitfield.

Hughes et al devised Kd-Jump [HI09] a traversal method for ray tracing on GPUs using K-D trees,
which is also possibly applicable to a BVH. The method is built upon Wald et al’s implicit K-D
tree [Wal+05]. In particular, it leverages the balanced nature of these trees to simplify the mapping
between a node’s logical position in the tree, to its array index. Coupled with a fixed lookup table
generated a tree construction time (and stored in the GPU’s constant memory), jumping up multiple
levels of the tree in constant time.

Traversal state is then tracked using a bitfield stack. That is, the next required branching point is
recorded using a bitfield. Instead of iteratively walking back up the tree, the number of levels to jump
up is determined using the bitfield, then this jump is executed in one operation.

Laine et al developed a limited stack-based method that would restart when insufficient storage
space is available to store required state, at the cost of having to re-traverse parts of the BVH[Lail0].

Hapala et al proposed a stackless BVH traversal algorithm for ray tracing [Hap+11] based on an
iterative method with parent pointers. This method shares some similarity with kd-Jump [HI09],
importantly however it does not rely on the ability to statically map between a node’s logical position
in an acceleration structure tree, and an array index to it; Kd-Jump requires its trees to be balanced,
giving a predicable mapping; Hapala’s method does not, giving more flexibility in the layout of the
tree. Whilst it does revisit nodes, it intersects each node only once.

Their method is built upon standard binary BVH traversal, and requires that a ray’s traversal be
deterministic - That is for a given ray and BVH, the traversal order should be repeatable. However,
different rays need not traverse the tree in the same order. In addition, for a given node, both the
parent and sibling node (for interior nodes) should be cheaply determinable; the exact method is
an implementation detail. For example, parent pointers can be held externally to the tree, or stored
within the node. Determining a sibling may be determined by walking up to the parent, then choosing
the other child.

Ultimately the method determines the traversal order using a simple state machine -

e if traversed down from the parent, descend to the first child.
o [f traversed up from the first child, traverse to the second.

e If traversed up from the second child, traverse up to the parent

This method could be extended to other structures, such as a BVH4, at the cost of a slightly more
complex state machine.

Tsakok [Tsa09] devised a method using a BVH4 that allows for efficient traversal of coherent rays
whilst still allowing fast single ray traversal when no coherency is present; however all rays must
traverse the tree in the same order, resulting in extraneous node traversal. It combines the benefits of
a wide style BVH such as a QBVH [DHKO08] or multi-BVH (MBVH) structure [EG08] [WBBO08] with
stream ray tracing [GRO8], using a method referred to as “Multi-BVH Ray Stream Tracing” (MBVH
RS).

The nodes of the BVH tree store a 4-wide set of child bounding boxes in structure-of-arrays form,
suitable for fast testing using SIMD intersection tests as described in [EGO08|. Large groups of rays
traverse the tree breadth first and are intersected against each BVH node together, amortising the cost
of the node fetch against the whole ray group. As the rays are ’filtered’ out during descent the SIMD
hardware is kept occupied, as the number of bounding boxes per node is constant. During traversal

11

of leaf nodes, a temporary SIMD packet of rays is built from the active set, and tested against the
geometry of that leaf. The performance ray stream tracing is highly dependent on the hardware’s
scatter and gather support [GROS§].

Tsakok’s method keeps the SIMD occupancy of the processor high, as each ray is individually
checked against an entire bounding box in one go. As the traversal descends, the set of rays in a
stream stays constant. If a given ray is not interested in traversing a particular leg of the BVH, it is
not processed during that phase. However, this means the memory cost of fetching the BVH node is
shared across fewer rays.

Dynamic Ray Stream Traversal (DRST) [BA14] builds upon Tsakok’s and similar methods to allow
ray traversal with varying order, implemented for both BVH2 and BVH4 trees. Instead of keeping
a constant stream of rays, it continuously rebuilds streams with each iteration of descent, using only
rays that are interested in following a particular path. As large sets of rays are dynamically bundled
together, SIMD intersection can be used to test multiple rays against a given bounding box at the
same time. A shared traversal stack is maintained representing the active work remaining for the
current set of rays. Additionally, it has a special case to fall back to single ray traversal in cases when
few rays wish to take a given path.

The method also looks to optimise traversal based on intersecting nearest bounding boxes first -
increasing the likelihood of early ray termination. For a BVH2, this is accomplished by generating up
to 3 new ray streams at each iteration - streams 1 & 3 representing left, and stream 2 representing
right. For rays that desire to go both left and right at a given node, if they want to go left first, they
go into streams 1 & 2; Equivalently, if they want to go right first, they go into streams 2 & 3. The
order of these streams is maintained as they enter the traversal stack, and if early termination occurs,
a ray can be removed from the stack entirely.

A similar method is implemented for a BVH4, however it involves an approximation to consider it
like a double BVH2, and to keep the number of potential stack allocations under control - at most 9
stack items will be allocated per iteration.

Ordered Ray Stream Traversal (ORST) [Fue+15] extends the concept of DRST specifically for
BVH4 traversal using lookup tables to reduce the required bookkeeping when determining traversal
order. In DRST, this bookkeeping involves a large amount of fragmentation, and potential for memory
traffic. Unlike DRST, ORST allows traversal over child nodes in any order, as opposed to only 8 out
of the possible 24.

The algorithm initially sorts rays by their direction signs - giving 8 bins of rays going in the same
direction. These rays will then be processed together with an expected traversal order.

The heart of the traversal algorithm replaces DRST’s stack reconstruction with a series of lookup-
tables (LUTSs) to define the traversal order. Nodes in the BVH4 now have a perm field added, which
defines the topology of how the 4 child nodes are subdivided, and on which axes they are split. When
traversing a node, by combining the perm field of the current node and the signs of the active ray,
and index into the orderLUT table is generated. This leads to an order index, which combined with
the an active mask (ie which child nodes of the current node are active), into the compactLUT table,
which gives an ordered list of active child node indices.

Their method also includes BVH4 adaptations of Wald et al’s [WBS07] coherent large packet traver-
sal. The implementation combines conservative early miss, speculative early hit, ordered traversal,
active ray tracking, and a packet test of last resort in a single unified traversal step.

Binder and Keller[BK16] developed a stackless method tuned for GPUs. Primarily their method
involves using a 2 dimensional hash table for back-tracking to unvisited nodes; that is, for each node
the hash table is used to determine the index of the n-th generation uncle - bypassing a 'parent pointer’.

12

A bitstack is used to determine the next postponed node. After implementing the hash table, they
observed that 57% of hash lookups involved either the sibling, uncle or grand uncle. To optimise
for this, the most recently postponed node’s index is stored in a register(often the sibling), and the
uncle and grand-uncle’s indices are encoded within the node itself, saving a hash lookup. Finally they
discard unreachable nodes - that is with a disjoint t-interval - after an intersection is found in the
current node, to avoid pointless backtracking.

The authors reported between 8% and 20% average speedup over Aila’s stack-based method [AL09].
It is not immediately clear how this could be adapted to BVH trees with wider branching factors.

Gasparian and Bikker’s method [GB17] includes a novel multi-tier BVH4-based method, using a
bitstack to record branching progress through the main BVH.

2.5. Reduced Precision and Compressed Acceleration Structures

A common and straightforward way to implement a BVH tree’s node layout is to use 6 32 bit floating
point variables for its bounding box (that is, 2 co-ordinates in 3D space) and 2 32 bit integers to
reference its child nodes (for an interior node) or its triangle set (for a leaf node). This requires 32
bytes of storage in total, which has the favourable property of allowing 2 BVH nodes to fit in one
standard CPU cache line.

However, as much of the memory traffic during raytracing is generated by fetching acceleration
structure nodes, research into reducing the storage required per node has yielded positive results.
Techniques such as reduced precision numerical values and using relative rather than absolute co-
ordinates are commonly seen. Additionally, extra information is often required in a BVH node, which
can be packed into a few spare bits. For example, ORST [Fue+15] requires perm and index parameters
in a node and parent-pointer based traversal (for example, Hapala’s method [Hap+11]) can optionally
encode a parent index in a given node.

Hwang et al[Hwa+15] experimented with hybrid fixed /floating point representations in hardware
suited for mobile computing. Watertight ray traversal with reduced precision|[VAS16] experimented
with reduced precision representations and compression for hardware acceleration structures.

Liktor et al developed a memory layout and node addressing scheme and mapped it to a custom
hardware design for fixed-function ray traversal[LV16].

Benthin et al developed a Compressed-Leaf BVH[Ben+18] - a hybrid model BVH which aims to
maintain almost the performance of an uncompressed BVH, but the space usage of a compressed BVH.

2.6. GPU architectures

GPU architectures impose a varied set of additional challenges on top of optimising ray traversal for
MIMD or SIMD architectures - ie CPUs.

GPUs are built around an SIMT architecture. In practice this means that many threads of execution
(typically 32) are bundled together into a group (called a warp in NVidia parlance) with a single
instruction fetch and decode unit; This means that every thread must execute exactly the same
instruction, and any conditional divergence results in threads being held idle whilst their siblings take
alternate paths through code. Divergent code and idle processor units is said to reduce occupancy,
and increasing occupancy is one of the primary optimising tasks.

13

GPUs also tend to have a more complex memory hierarchy than CPUs, and require the programmer
to explicitly manage this. CPU cache architectures involve a coherent shared cache and common
memory across processing resources; Whilst naive access to memory will certainly result in poor
performance, the hardware will allow memory access to any location in storage from any processing
core. A GPU, on the other hand, is a non-uniform memory access (NUMA) architecture - it explicitly
has different categories of memory, with varying degrees of sharing between processing resources. For
example, commonly a thread has access to its local storage, accessible to it only; a shared memory,
accessible to all threads in a warp; and the global memory, accessible to all processors in the GPU. As
a memory becomes more shared, contention increases. Host memory and disc could also be considered
to fall into this hierarchy, at much greater access cost. Optimising for host memory from a GPU is
beyond the scope of this research, but certainly relevant to ray tracing research in general.

In general, GPU architectures have not had memory caches, instead using latency hiding techniques.
Latency hiding is a method employed at the hardware level, which involves having many streams
of work available. Whilst latency hiding is used at the CPU level to a degree (for example, Intel’s
hyperthreading), it is used extensively at the GPU level. When a memory transaction causes processing
to stall, a hardware based scheduler swaps the current warp with one that has had its memory
transaction completed. Thus to ensure adequate occupancy, sufficient work must be queued. The
amount of registers required by a certain piece of code is significant, as it dictates how many threads
can be held idle waiting for memory. Recent GPU designs are now also moving to also having caches
available, thus making memory optimisation more complex.

Unlike CPU architectures, GPU architectures have a large degree in flexibility between revisions.
Whilst the current range of contemporary Intel CPUs retain binary compatibility with CPUs from the
1980s, GPU makers are free to re-architect their designs at any time. Back- and forward-compatibility
are maintained using software interfaces, rather than hardware standards. The software interfaces
between the programmer and the hardware ensure that code is practically always JIT compiled to
some degree. Due to this flexibility, it is worth carefully evaluating the tools available, and how
performance varies with software revisions. It also carries the risk of tuning one’s design too heavily
to one exact hardware implementation, as well as imposing a smokescreen as to what is going on at
the hardware level.

Ultimately optimising this work for a GPU will involve optimising memory bandwidth usage and
occupancy. There are a few seminal works that provide great insight into ray tracing on GPUs [AL09]
[AK10] [LKA13].

The proposal of Aila and Kerras[AK10], whilst simulating a hypothetical architecture, provided
many interesting insights into GPU architectures and memory traffic of batching algorithms. The
future work section of this article contains many interesting strategies - in particular adapting stackless
traversal and wider trees to their BVH-treelet model.

NVidia have introduced memory compression in the Pascal architecture[NVIa]; it is claimed that
memory compression improves the effective bandwidth from L2 cache to main memory by 50%. Some
investigation may be warranted into the effects of this feature.

Majumdar et al[Maj+15] devised a taxonomy for different classes of GPU kernels -

e A. Compute-Bound Kernels
e B. Memory-Bound Kernels
e C. Balanced Kernels

e D. Kernels That Do Not Scale

14

Rather than just trying to optimise kernels based on statistics and hardware capabilities directly,
they postulate that classifying them can help to guide optimisation.

Saremi devised a thorough and vendor independent analysis toolkit for GPU performance evalua-
tion[Sar18].

3. Implementation

3.1. Overview

The research involved taking the existing RayCrawler algorithms of Gasparian and Bikker [Gas16],
which were targeted to a single-threaded CPU environment, and adapt them to a GPU environment.
The SIMT nature of GPU platforms made effective parallelisation a challenge; The existing Ray-
Crawler was optimised to maximise cache performance in a single-core CPU execution. In particular,
the challenge of avoiding divergence (and thus low occupancy) was significant.

The intent of the original RayCrawler, as well as this research, is to investigate ray batching partic-
ularly as it pertains to memory and cache performance (see section 2.2). The overarching strategy is
to reduce memory traffic by batching rays in a collection (or bucket), and dynamically creating path
segments by traversing large numbers of rays against subsets of the BVH; thus amortising the cost
of the BVH memory transaction across many rays. As different rays take varying paths through the
tree, diverging rays can be parked in a bucket, and then picked up at a later time to take their desired
alternative path, with other similarly pathed rays.

The experimental codebase was built on top of an existing cpu-based BVH builder and simple GPU-
based path tracer from earlier research. A working and tested CPU-based path tracer with a robust
SBVH [SFD09] builder and traversal code is available as a starting point.

The core RayCrawler algorithms for top-level BVH construction (see section 3.2) and traversal (see
section 3.3.1) were imported and adapted from the existing RayCrawler codebase. The GPU treelet
creation and traversal mechanism was adapted from Lighthouse2[Bik21].

Only ray generation, BVH traversal, geometry intersection, and shading code were implemented for
execution on the GPU. All remaining execution stayed on the CPU - in particular, the various BVH
construction mechanisms.

3.2. BVH Generation

All BVH generation takes place in CPU code. After the geometry is loaded, the BVH generator
produces a BVH2. This is compressed into a a BVH4 form. The BVH4 in turn is converted into
subtrees in one of two formats -

e GpuBuhj subtrees to be used as the treelet format[YKL17], suitable for Lighthouse’s traversal
code.

o A TopLevelNode format root BVH, which maintains the original RayCrawler’s format.

The algorithm for generating the top level BVH is taken directly from RayCrawler, and the code
and data structures are largely unmodified.

The top-level BVH is constructed by starting at the root of the the original BVH and copying nodes
recursively until the algorithm stops and creates a treelet. A treelet remains stored in a seperate data

15

16

structure, and is referenced in the top-level BVH at the point at which it is pruned. This stop occurs
when one of two conditions is met:

1. The current node contains a child with a treeletSize smaller than a tuneable threshold, controlled
by variables MIN_TREELETSIZE and TREELETSIZE. TreeletSize refers to the total number
of nodes under and including the node in question.

2. The current node has a depth of 16.

The hard limit of constraint 2 is due to a 64bit integer stack being used to track traversal progress
through the tree, requiring 4 bits per level. The details of this are described as part of the top level
traversal algorithm (see 3.3.1). The parameters of constraint 1 are experimental variables which may
be varied during during testing.

Whenever a treelet is pruned from the root BVH, a so-called bucket is created and associated with
the root of the treelets. Each bucket contains two RayQueues, referred to as the entry and exit queues;
The entry queue contains rays waiting to enter the treelet, whilst the exit queue contains rays waiting
to leave the treelet and continue traversing the top-level tree. The root node of the top-level BVH
also has a standard bucket associated with it; this is explained in section 3.3.1.

A separate structure BucketState is maintained for the purpose of bookkeeping; This tracks the
total number of rays per bucket, and is designed for quick scanning.

3.2.1. Main work loop

A streaming model of kernel execution was implemented - that is GPU kernel invocations are long-
running, and do not rely (heavily) on the CUDA implementation to schedule specific work. This is as
opposed to, for example, coupling a kernel invocation to the lifetime of one ray, or even more granular
models.

The streaming model was closely coupled to the ray-batching model itself. Earlier research has
considered this issue in some detail|[AL09]. In some ways, this work extends the wavefront[LKA13]
model of path tracing, albeit using queued path segments rather than generating new ones.

All active kernel invocations are equal during path tracing - they use the same entry point, and will
independently pick one of several tasks to perform based on current state.

e New Ray Generation: Not all rays are generated in one go; Instead rays are generated on demand
to keep enough live rays in the system to prevent the GPU becoming starved for work (see 3.2.2).

e Top Level Traversal: Top Level traversal will progress a group of rays through the master tree
(see 3.3.1).

e Treelet Traversal: Take rays from a treelet’s entry queue and traverse them through the treelet,
as well as possibly intersecting with geometry. When traversal through the treelet is completed,
rays are placed back in treelet’s exit queue for further top-level traversal. (see 3.3.3).

e Shading: Finished rays - that is rays that have had their intersection query answered - are shaded
using a simple shading method and possibly terminated and reused if their path is complete (3.7).

At any given time, all active rays are either stored in buckets, or being traversed. Once a ray is
removed from a bucket, and until it is placed in another bucket (or terminated), it is owned by the
thread that removed it; When outside a bucket, the ray is stored (either directly by value or indirectly
by reference) as a local variable in the thread’s stack. This avoids any kind or concurrent access to

17

rays; Locking is performed at the bucket level, once a ray is owned by a thread, it can assume exclusive
access to it.

3.2.2. New Ray Generation and Next Work

New ray generation is driven by the next-work generator, which tracks progress through the render
and triggers new rays to be created as required. This involves acquiring an available ray structure,
resetting its state and setting its initial origin and trajectory (this process is analogous to launching
a primary ray in a whitted-style[Whi79] ray tracer). Finally, the ray is enqueued in the root bucket
ready to begin its traversal through the BVH.

The total number of primary rays generated is defined by the number of pixels in the output image,
multiplied by the number of samples per pixel(SPP); When generating primary rays, the system can
either work in pixelFirst or frameFirst mode.

1. PixelFirst: Generate all primary rays for a given pixel contiguously, then iterate to the next
pixel.

2. FrameFirst: Traverse all pixels, creating one ray per pixel. Repeat until SPP rays have been
generated for every pixel.

Rarely will all new rays be generated in one go; Instead, blocks of rays will be generated whenever
the number of active rays falls below the tuneable parameter ACTIVE_RAY _LOWATER and
ceases when it reaches ACTIVE_RAY_HIWATER. The next-work generator is warp aware, and
will issue blocks of work in units of warps (that is, 32 threads).

New ray generation ceases when the required number of rays (ie SPP) have been generated for each
pixel; All threads will terminate when all rays have been generated, and there are no more active rays
remaining in the system.

”Boiling down” the image - that is taking the average energy per sample for every pixel’s total
accumulated energy - to produce the final colour value is performed in a separate kernel invoked after
the main path tracing process is completed. One instance of this kernel is invoked per pixel.

3.2.3. Next Bucket Selection

When choosing a next bucket, one of three algorithms will be used; This will result in a selected bucket
and choice of either the entry or exit queue.

e Random: Pick any bucket at random
e Next: Choose the bucket following the last chosen bucket (on this warp).

e Mostfull: Scan all buckets and choose the bucket (and thence entry or exit queue) containing
the largest number of rays.

The Mostfull selection is the only non-trivial implementation. The whole BucketState array must
be scanned. Each active thread in the wrap will scan a subset of the array, storing a local decision.
When scanning is complete, results across the wrap are merged using a butterfly reduction[Luil4] to
give one final result.

Next Bucket selection is a heuristic rather than a perfect deterministic decision; Bucket sizes change
frequently in parallel. Scanning of BucketState is performed without any locking. It is possible to

18

select a bucket based on the number of rays contained, and have this change by the time it comes to
consuming the rays; Conversely, earlier entries already scanned might change before completing the
scan. Additionally, multiple warps scanning BucketState at the same time will likely choose the same
bucket which might lead to sub-optimal results.

The BucketState array is maintained using a minimal memory footprint - 3 x 32 bit integers per
bucket. This structure is fixed - it is allocated along with the buckets during top-level BVH generation.
The ray counts stored within are modified using atomic operations to avoid a spinlock.

Once the bucket is chosen, the larger queue (that is, entry or exit queue) will determine the actual
task to be performed; If it is the bucket’s exit queue, then rays contained therein will be traversed
through the top-level tree. If it’s the entry queue of the root bucket, they will be shaded (and possibly
terminated). Finally, if it’s the entry queue of any other bucket, the rays will traverse the treelet
associated with the bucket.

3.3. BVH Traversal

3.3.1. Top-Level Traversal Overview

Methods that traverse rays through an acceleration structure frequently maintain traversal state in-
dependently of the ray structure itself. Through both recursive and stackless traversal methods, the
current traversal state (typically the current closest intersection and remaining parts of the acceleration
structure to visit) are encoded in local variables.

A ray batching system decouples a traversal through an acceleration structure from any function
calls and associated local state. As a ray may be enqueued and dequeued in a bucket, it must also
maintain enough state to restart the traversal through the BVH without repeating or skipping required
work.

The existing top-level traversal algorithm from RayCrawler was largely maintained. When a ray is
dequeued from a bucket, the bucket in question implies its current node in the top-level BVH.

Each ray maintains a stack, referred to as a bitstack denoting which node’s children it still desires
to visit in the path from the current node back to the root. As there are four children for each node,
each depth level requires 4 bits, and thus a 64 bit stack allows for a top-level BVH of at most 16 depth
levels. The least significant 4 bits of the stack represent the 4 children of the root node, with each
following 4 bits representing each following depth level, respectively.

When visiting a new node, the ray is intersected with the children’s bounding boxes. The result of
these up-to 4 intersections are stored in 4 bits (referred to as the interestMask), and written to the
current position in the stack. The ray will then descend into the child with the closest intersection,
setting its bit in the stack to zero to prevent re-entering this node in the future.

When a ray completes processing a given node and needs to step up in the tree, it can quickly
scan the bitstack for the next level with bits set to 1, representing unvisited nodes of interest. Each
node in the top-level BVH maintains an array of (up to) 15 ancestor pointers, which are set during
construction time. Thus, stepping up to the next node requiring work can be achieved in constant
time, and without touching any intermediate nodes.

When encountering a treelet-root node (and its associated bucket), the ray may choose to enter
it. In which case, the ray is enqueued in the bucket’s entry queue, and this ray’s current traversal
segment is completed.

19

Newly created rays are placed in the root bucket’s exit queue - as the exit queue of a given bucket
contains rays wanting to enter the top-level BVH at the associated node. Having a standard bucket a
the root node means that special cases are not required when traversing the root node, or appraising
which bucket to process next.

Rays that have completely finished traversal are placed in the root bucket’s entry queue, and are
ultimately picked up to be shaded, and possibly terminated.

3.3.2. Top-Level Traversal Parallelism and Algorithm Variations

The original RayCrawler traversal algorithm was adapted for use on a GPU in a relatively straight-
forward manner. As the majority of traversal concurrency issues are handled within the RayQueue
mechanism, the core traversal code remained structurally similar; Once a ray is dequeued from a
bucket, it is owned by the dequeuing thread, and thus the thread has exclusive access to said ray.
During traversal, access to other data structures is read-only. Thus the single threaded version can
be made to work largely as-is on a gpu.

Various minor elements required reimplementation - such as replacing parts reliant upon Intel AVX
instructions. The GPU code was designed to allow for compilation on a CPU (albeit in a single-
threaded fashion), so some degree of functional testing comparing the old to new implementation was
possible.

A top level traversal cycle begins at a given input bucket chosen by the nextWork algorithm. It will
continue consuming rays from the input bucket’s exit queue until it is empty. The bucket may also be
refilled by other active warps depositing rays in parallel.

As memory bandwidth optimisation is central to this research, for each BVH node fetched from
RAM, we want to intersect the maximum number of rays. Ideally, a full warp of threads (with one
ray per thread) would intersect each BVH node. One of the core challenges with designing these
algorithms is that, as rays diverge and are no longer interested in following certain paths through the
BVH, this cost amortisation drops.

The straightforward adaption of the original RayCrawler algorithm was referred to as the NAIVE
algorithm; It will start all threads at the same bucket (as chosen by the Next Bucket algorithm in
use), each dequeuing one ray from the exit queue, and then independently traversing until a thread
encounters a subtree its ray wishes to visit. The ray is then enqueued in the subtree bucket’s entry
queue; alternatively a ray might complete traversal, which means enqueuing in the root bucket’s entry
queue. This process will continue until the starting bucket’s exit queue is completely emptied. Once
rays are dequeued from the starting bucket, the bucket remains unlocked during traversal. Thus, other
warps may enqueue rays whilst traversal is taking place. The NAIVE algorithm allows all threads in a
warp to completely diverge; This keeps the threads far busier at the cost of more incoherent memory
access.

The NAIVE_INTERLOCKED algorithm is largely identical to NAIVE, however all threads will
synchronise after their ray has been parked in a queue, before restarting the process by dequeuing a
new ray from the starting bucket. In other words, they will resynchronise before starting a new ray’s
traversal, and reduce accesses to the starting RayQueue as many rays can be bulk-dequeued in one
transaction, at the cost of threads sitting idle waiting for the longest running thread in a warp. Once
traversal has begun, the threads in the warp operate independently allowing each ray to take its own
path through the top-level BVH.

Improved algorithms for traversal were designed, but never fully implemented. These are outlined
in section 6.1.

20

3.3.3. Treelet Traversal

The treelet traversal mechanism was taken from from Lighthouse2[Bik21]; This is a highly optimised
traversal implementation for GPUs. Each thread will dequeue rays from the treelet’s bucket’s entry
queue, traverse them, and enqueue them in the exit queue. No batching is implemented within treelet
traversal, so traversal state can be held completely within local variables; The ray’s top-level traversal
stack remains unmodified by the treelet traversal code.

The given warp Will continue consuming rays from the bucket’s entry queue until the entry queue is
empty. Other warps may deposit inbound rays whist the given warp is traversing against the treelet.

3.4. Rays

3.4.1. Ray Storage

The ray structure was used to store ray traversal and energy state. The ray was divided in half to
store state needed for traversal (Ray, see listing A.1) and state only needed when shading (RayFztra,
see listing A.2). The intent was reduced memory traffic required during the traversal phase.

When in INDIRECT mode (see section 3.4.2), the indices of the master array of Ray and RayExtra
structures are maintained in parallel, so the same index can be used to access the corresponding
structures. When in DIRECT mode, the rays are copied, so there is no index to match. In this case,
the index to the RayExtra array is stored as a member of Ray.

There are a fixed number of Rays and RayQueue objects in the system, allocated before path tracing
commences. As there is no "malloc” available in the environment, a mechanism is required to track
idle rays and RayQueues.

The SpareQueue holds unused RayQueue objects. The RayQueues themselves remain empty whilst
held in the SpareQueue, and instead are linked together using the single-linked list mechanism of the
RayQueue. Access to the SpareQueue is protected by its own spinlock.

The IdleQueue is used to store any idle rays - which includes all rays when the system is first started.
When in DIRECT mode, rays are stored by value and copied; so the effective storage for all rays is in
RayQueue objects, or local variables whilst traversing. When in INDIRECT mode, all rays are stored
only in a large buffer, and referred to by index. In this case, the IdleQueue is used to store indices of
arrays currently not traversing, for quick access when starting new rays. As a byproduct of using the
RayQueue mechanism, Rays are stored in the IdleQueue in approximate LIFO order.

3.4.2. RayQueues Overview

The implementation uses RayQueues as both an allocator and storage mechanism for rays. Two
models of ray storage were implemented - DIRECT and INDIRECT.

DIRECT storage holds the ray objects by value in the RayQueue. When an enqueue or dequeue is
required, the ray struct is copied by value. When in INDIRECT mode, the ray objects are allocated
in one large block and referred to by array index when stored in a queue (thus never copying them).
Terminated ray objects are reused in place.

RayQueues are implemented as a singly linked-list of arrays of rays. That is, each RayQueue could
hold a fixed number of rays, and if additional space is required, an additional queue object can be

21

attached to the end of the existing queue.

The original intent was to use only a ring buffer, implemented as an array; This would allow FIFO
queuing. This quickly became impractical however, as it quickly became clear that a fixed size array
would fill quickly or have to be so large that most of the system memory quickly became exhausted -
especially when multiplied by the number of RayQueues in the system.

Thus, a hybrid solution was taken modelled on the original cpu-based system. Individual ring buffers
remain as the base unit of storage, but a can be chained (and un-chained) in a singly linked list to
allow for growth or contraction as required. As only a singly-linked list is used, pure FIFO queuing is
no longer provided.

3.4.3. Linking and Delinking RayQueues

Rays are both enqueue to and dequeued from the front RayQueue object. Only this object is permitted
to be non-full; all queue objects further back in the list must be full.

Frequently, the number of rays to be enqueued to a given RayQueue will exceed the available
capacity, thus an additional RayQueue object will be added to the front and the previous front will
be pushed back. This transaction may require a split insert - inserting enough rays in the previous
front RayQueue, and the remainder in the new front RayQueue.

3.4.4. Enqueuing and Dequeuing

When accessing a RayQueue, any number of interlocked threads in a warp (that is, up to 32) may
wish to complete a transaction. Initially, the number of active threads wanting to access the queue
is tallied, and thus the number of rays in the transaction is known. Enqueue transactions against a
RayQueue thence involve a two step process, based around the concept of warp-aggregated atomics
[Adil4]:

e Choosing a leader thread. This thread handles locking / unlocking the spinlock protecting queue
(see 3.5), as well as updating the indices of the RayQueue to allocate space, and as determining
the base index at which to start the insertion.

e Each thread then calculates its own offset from the base index in the array, based on its thread
id’s position in the set of active threads. Each thread then performs its own write into the queue,
using this index. The write is either INDIRECT (using an index to the master array of rays) or
DIRECT, copying the ray into the RayQueue.

As storage within the queues is guaranteed to be contiguous, it is a matter of each thread determining
its offset point from the start of the queue; It need not worry about encountering empty slots and
having to search for a ray.

When more rays are to be enqueued than will fit in the RayQueue object, a new RayQueue is
obtained from the spare list, and singly-linked to the existing RayQueue. This new RayQueue becomes
the front queue object. If no spare queues are available, the system will fail, as this is beyond the
capabilities of the current implementation. Now, sufficient space is available a split enqueue is required.

When a split enqueue is required the algorithm is complicated slightly. The rays (and thus threads)
are split into two groups; Enough rays to fill the space in the old front RayQueue, and the remainder
which go into the new front RayQueue. The transaction is executed twice in parallel, with a leader
elected for each RayQueue.

22

Dequeuing is the same process in reverse, possibly involving freeing up a RayQueue object and
returning it to the spare queue.

The current setup does not allow a single enqueue or dequeue transaction across more than two
RayQueue objects, as each thread will only enqueue or dequeue a single ray, and the size of the queues
is always at least 32 (that is, the number of threads in a warp).

3.5. Locking and Parallelism

Mutual exclusion was required to protect access to shared data structures - predominantly RayQueues
- and this required solving two kinds of locking; inter-warp and intra-warp locking.

Historically, GPU architectures have one instruction pipeline and program-counter per Warp. Re-
cent CUDA platforms have changed the program-counter to be per-thread[nvil7], thus allowing com-
plete divergence of threads’ program location.

Inter-warp locking required a mutual exclusion mechanism; This was implemented using CUDA’s
atomicCAS() to implement a simple spinlock. For simplicity, a 3 spinlocks were used to protect all
shared storage data (as opposed to say - a spinlock per bucket). These locks protected all the active
buckets, the idle queue and the spare queue. Deadlocks were challenging to avoid with a more granular
locking structure, as access to buckets is effectively ordered arbitrarily.

As much as possible, threads within a warp were kept from diverging. When accessing a shared
resource the intent was for as many threads as possible to access it together, as a warp-aggregated
atomic transaction[Adil4]. The pattern adopted was to divide the active threads into as many groups
as the number of distinct resources required (sometimes only 1 group was required) and for each group
to elect a leader. In the implementation, this could split into as many as 4 groups - where rays were
being enqueued to two different queues, and each queue required linking a new RayQueue to expand
its capacity.

When multiple thread groups are required the this pointer of the objects to be accessed was used
as a key to group the active threads together and elect a leader within each group via CUDA’s
__match_any_sync() mechanism.

Where possible, synchronisation between threads within a warp was performed using the CUDA
mechanisms such as __match_any_sync() and __shfl_xor_sync() in preference to using shared data struc-
tures with locks. This avoids regular and atomic traffic to shared memory and requires fewer processor
instructions[Har14].

When a ray’s path is completed, its accumulated energy (ray.E) is atomically added to the shared
accumulator.

3.6. Occlusion v. Closest hit

Next Event Estimation (NEE) was to allow for two kinds of ray queries against the BVH. As NEE
queries require only an occlusion query, these rays could be terminated early upon an intersection
with the geometry, increasing divergence. NEE can be configured on, off, or in half-half mode; The
latter means one half of the frame is rendered with NEE, the other without.

23

3.7. Shading

A simple shading routine was reused from earlier research. It implements diffuse and specular reflec-
tion, and transmission. Additionally, it implements Next Event Estimation as described in section
3.6.

Laine et al[LKA13] make reference to the cost of shading code not being significant enough to
warrant breaking into streams of work. As such, very little focus was placed on shading; only enough
to provide the functionality required for the rest of the system.

3.8. Random Number Generation and Seeding

Random numbers are seeded at start of crawl per thread, using the thread id and the current pixel id
and sample number. From that point the RNG’s state is local to every thread. CUDA’s clock() function
was considered as a random number seed rather than tracking state through the code. However this
would remove the option of repeatability and determinism of explicitly seeding the RNG so was
discounted.

The RNG used is Xorshift RNGs for small systems[Bow14] based on XORShift[Mar+03].

3.9. Debugging Tools

To help catch bugs, various self debugging mechanisms were devised. In particular, the parallelism
model dictated that as one leader thread would modify a shared structure on behalf of many threads
in a warp it was imperative that they were in fact intending to access the same structure. For example,
when a set of n threads would access the same RayQueue, all threads would use the _match_any_sync()
function to compare their this pointers (that is, the RayQueue in question). If the number of active
threads does not match the number matched by _-match_any_sync(), an error has occurred and an
assert is fired.

4. Experiments and Results

4.1. Overview

Experimentation was focussed on testing three areas of the system - The size of the top-level BVH
(relative to the size of treelets), the number of active rays in the system and the size of each RayQueue
object’s contiguous storage array. DIRECT v. INDIRECT mode (see 3.4.2) was also tested at each
step as it changes the memory access pattern significantly.

Due to limitations in the implementation, it was ultimately decided to run the system only with a
single warp. Unfortunately, this limited the ability to stress the system.

Two scenes were used - Crytek Sponza with 262268 triangles, and Dragon with 871198 triangles.
Both scenes had a simple emissive plane added (made of 2 triangles) to act as an area light. All images
were rendered at a resolution of 1280 x 1280, with an SPP value of 2. Dragon is an open scene - with
a non-trivial possibility that initially launched rays might miss the object all together. Whilst Crytek
Sponza was not completely closed, the placement of the camera means that all rays launched from
the camera should intersect with geometry at least once.

Experimental parameters are set at compile time via the file tuning.h or via the compiler command
line. This allowed the script bulk.py to generate a mass number of runtime instances and run the
system against a large number of parameter sets, as well as automatically collecting the results.

The test GPU hardware was a NVidia GeForce RTX 2080 - with 8gb of ram. During experimen-
tation, care was taken to ensure that minimal external factors could add variance to the results. The
system was tested on a machine running a standard desktop operating system (Ubuntu Linuz 20.04.2
LTS) and as such parts of the system running on the CPU were in contention for resources with other
processes. However, testing was performed with the system’s GUI shut down - in the so-called text
mode or in runlevel 3 in Unix parlance. The result being that the GPU was effectively dedicated
to CUDA clients rather than shared with GUI rendering tasks; the system under test was the only
CUDA client in use at the time. This was confirmed with the nvidia-smi utility before commencing a
testing run to ensure no other processes had open CUDA resources. Only code running on the GPU
was measured in the following tests.

4.2. CUDA Profiling

For every parameter set, the system was (optionally) run twice. Once directly, where the run-time is
measured, and if applicable under the CUDA profiler, where selected hardware statistics are recorded.
The applicable CUDA profiler nv-nsight-cu-cli was used to capture the memory access hardware
statistics group listed in table 4.1. Hardware profiling was used sparingly as it could easily take over
45 minutes to run one instance of a parameter set.

24

25

Parameter Name Unit

Memory Throughput | Gbyte/second
Mem Busy %

Max Bandwidth %

L1 Hit Rate %

L2 Hit Rate %

Mem Pipes Busy %

Table 4.1.: Parameters captured from the CUDA profiler
4.3. Initial Run and Tree-Size Testing

For the initial run, a range of parameters was selected, which are listed in table 4.2. Whilst a vastly
larger combination of parameters was possible, the restricted set was chosen to make testing practical.
The effect of various parameter changes were tested early to eliminate variables where possible - in
particular, no measurable difference between the NAIVE and NAIVE_ INTERLOCKED modes was
observed.

Parameter Name Values

SCENE Dragon, Sponza
TOPLEVEL_MODES NAIVE
NEXTWORK_ALGO PIXELFIRST, FRAMEFIRST
BUCKETSELECT_ALGO | MOSTFULL
NEEMODE ON

REGCOUNT 64

DIRECT INDIRECT, DIRECT
NUM_WARPS 1

SPP 2

TREELETSIZE 200, 800, 1600, 2000
RAYCOUNT 1024, 10240, 1048576
MAXDEPTH 7

BVH_MAXDEPTH 15

SCRWIDTH 1280

SCRHEIGHT 1280

Table 4.2.: Parameters used during initial testing run

This parameter set resulted in 96 unique combinations to be run.

Four best results were chosen from the initial run, that is the best time for INDIRECT and DIRECT
mode for each scene. These are summarised in table 4.3. The complete results of the initial run are
listed in appendix C.

Scene DIRECT? | NextWork | treelet | rayCount | Render Time (sec)
Dragon | DIRECT FRAME | 800 10240 31.3964
Dragon | INDIRECT | PIXEL 2000 1024 59.9774
Sponza | DIRECT PIXEL 200 1024 151.381
Sponza | INDIRECT | PIXEL 800 1024 164.328

Table 4.3.: Best results from initial run

26

4.4. Ray Count Experiments

Given the best performing parameter set from the initial run, experiments were performed varying
the number of concurrently active rays. The 14 values of 2% through to 22! were used for testing; The
upper bound found as performance stabilised at this point. The complete results of the RayCount
testing run are listed in appendix D.

130 —
— —A‘:Jfagon
—a— Sponza

120 | :
110 | :

100

Nel
]
T
!

80 | 2

Crawl Time (sec)

70

60 |- 2

50 | -

4027 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

Ray Count

Figure 4.1.: Traversal times across both scenes with varying numbers of active rays

A TREELETSIZE parameter of 800 was used for both scenes, and in effect, the same BVH was
used for all runs through a given scene. The details are listed in table 4.4. Importantly, despite having
the same construction parameters, the resultant characteristics of the top-level BVHes varied greatly.

Scene | Top Level Size (nodes) | Treelet Count | Average Treelet Size (nodes)
Dragon | 95 71 2178
Sponza | 11 8 5927

Table 4.4.: Nature of BVH size distribution between scenes

4.5. Queue Size Experiments

Using a ray count of 1048576, and again a TREELETSIZE of 800, various RayQueue sizes were
investigated. The results are summarised in figures 4.2 and 4.3. These tests were performed for
both DIRECT and INDIRECT mode, as this causes a notably different memory access pattern. The

27

complete results of the QueueSize testing run are listed in appendix E.
Dragon Scene

52 | Crawl Time (sec)
50 |
48 +
46 |
44 |

42 1

40 INDIRECT
DIRECT

1024 512 256 128 64 32
QueueSize
Figure 4.2.: Comparison of performance of varying queue sizes for scene Sponza

Sponza Scene

Crawl Time (sec)

145 1

140 |

135 |

130 |

125 +

120 &

115 | —a— INDIRECT
-a— DIRECT

xgq);‘ A o0 ‘ P ‘ o>)
QueueSize
Figure 4.3.: Comparison of performance of varying queue sizes for scene Sponza

The range of queue sizes was determined by a hard minimal limit - the system can transact with
at most 2 RayQueues in a single transaction, so 32 (being the max number of threads in a RayQueue
transaction) was used as a minimum to guarantee that a transaction can never cross more than two
queues. The Upper bound was determined by memory limitations on the hardware in question.

28

Every test run was also profiled. The QueueSize test showed average hit-rates on the L1 cache of
61.7325% and L2 cache of 74.6225%

5. Discussion

Examining the memory usage statistics in table E, it seems that the lack of extensive parallelism
(due to only using a single warp) is failing to exercise the hardware in a meaningful way; The largest
contributor to improvements in cache performance is the selection of scene.

Whilst the top-level builder algorithm has various parameters to control the thresholds for creating
and sizing treelets, even with identical parameters the distribution of geometry within a scene causes
a marked difference in the final top-level/treelet BVH layout. For example, with a TREELETSIZE
parameter of 800, the algorithm generated 71 treelets for the Dragon scene and 8 for the Sponza scene.
These two scenes have triangle counts within the same order of magnitude.

The resultant layout of the overall BVH has a marked effect on the rendering performance. This
includes factors such as time spent in each portion of code and the number of potential batching points
(i.e. buckets) as well as the potential number of simultaneously live rays. This in turn means that the
division of time varies between treelet traversal using an existing traversal mechanism already highly
optimised for GPUs (Lighthouse2’s traversal code) and the top-level traversal implementation from
the existing system designed and tuned for CPUs.

The most striking performance difference came from DIRECT vs. INDIRECT mode. This mode
change causes a number of important changes to the code.

Ray enqueue/dequeue transactions will use only an index in INDIRECT mode, whilst the whole
ray is copied in DIRECT mode. This leads to larger memory transactions in DIRECT mode, however
it effectively compacts all the rays in use into one (or two) coherent block(s) of memory within the
RayQueues.

When traversing, the ray is copied to a thread’s local storage in DIRECT mode, whilst in INDIRECT
mode the ray stays in shared memory (only the ray’s index is copied locally). This leads DIRECT to
having reduced shared memory traffic, as well as making INDIRECT access incoherent - There is no
reason to believe that any two rays queued in a RayQueue consecutively will be allocated coherently
in the master ray array. The ray structure is accessed frequently during traversal, causing these
differences to be significant.

29

6. Conclusions And Future Work

This research has demonstrated that it is possible to implement the RayCrawler model in a GPU
environment. However, the current implementation does not demonstrate a practical system as it
exploits only a fraction of the resources available in a GPU. The limited parallelism in the current
implementation appears to have failed to exercise the hardware in any meaningful way; during the
QueueSize tests, whilst cache utilisation gave promising numbers (60%-70%), the overall memory
traffic was low; Despite this, the performance was vastly inferior to many contemporary ray tracing
systems.

Various useful results were observed, in particular showing improved performance with more lo-
calised and coherent memory access; Reliable correlations in performance characteristics between
DIRECT and INDIRECT modes in particular showed that more localised coherent memory access
yielded better performance, even at the cost of larger memory transactions (that is, constantly reading
and writing the entire ray structure). Further increasing the coherence of memory access - by enlarg-
ing the RayQueue’s QueueSize giving a larger block of memory to work in before needing to link-in
a new RayQueue - also object increased performance. In some cases increasing the number of active
rays - allowing more work to be performed on the same bucket before moving on - further increased
performance.

It is also noteworthy that the performance trend in the RayCount test went in differing directions as
the number of rays in the system increases. Despite having the same BVH construction parameters,
and a number of geometric primitives of the same order of magnitude, the resultant BVHes for both
scenes have dramatically different characteristics, as shown in table 4.4. It is likely that in the Sponza
scene huge numbers of rays are generated, and have to be enqueued and dequeued through a relatively
small number of RayQueues (in this case, having a size of 64 rays) - effectively serialising processing
large chunks of rays through the system and making memory access incoherent. The Dragon scene,
on the other hand, with its large number of treelets (and thus RayQueues) allowed the rays to diverge
more effectively and skip larger chunks of the tree without needing to be queued.

6.1. Parallelism and Improved Traversal Strategies

Future research may expand the system to truly engage a GPU’s many parallel resources. Most
importantly a full parallel version, allowing an arbitrary number of warps to be launched concurrently
should be able to move closer to fully exploiting the hardware.

With a full parallel implementation, further study into convergence and divergence of threads would
be possible beyond the existing NAIVE and NAIVE_INTERLOCKED models. Two other algorithms
to improve upon the NAIVE versions were designed, however due to time pressure they were not
implemented completely.

SHORT_SEGMENT: Traverse in a similar fashion to NAIVE, but whenever encountering a bucket,
enqueue all rays in this bucket. Those that wish to enter the treelet in question would enqueue in the
entry queue, those that didn’t would be enqueued directly in the exit queue, allowing them to skip
the treelet. Then return to the starting bucket. Rays that did not want to descend into a branch of
the top level BVH (referred to as ’sulking’ rays) would be forced to do so in order to keep the warp

30

31

non-divergent. This as an alternative to simply terminating the whole warp when >50% of rays are
dead, and re-queuing rays at the top of the tree as has been done previously[AK10].

LONG_HAUL: Continue traversing at all costs. When encountering a bucket, if a given ray wants
to enter that bucket, add it to the entry queue, and replace it with one from the exit queue. Descend
to a branch of the tree if and only if at least one ray wants to go that way.

Various unresolved complications exist with both of these approaches - in particular what to do
when divergence occurs at an interior node - if some rays wish to descend and some do not, what
action should be taken?

6.2. More Granular Measurements

Presently, only the total time taken for the system to render an image, as well as the memory access
statistics from the CUDA profiler are available. Recording statistics such as the number of times
rays are queued, and the number of rays entering a treelet would be very useful for further analysis.
Additional, having some idea as to the amount of processing time spent in the various parts of code
would be useful - that is to say comparing time traversing treelets vs top-level, ray generation and so
forth.

6.3. Multi-tier Trees

Explore a n-tier hierarchy model rather than just top-level and treelets. As suggested by Gasparian
and Bikker|GB17], ”Given the high performance gains for complex scenes, it may make sense to add
an additional level in the BVH hierarchy for extremely large scenes where the top-BVH itself no longer
fits in the L2 cache”. This latter option may also allow for using the same traversal algorithm across
all levels of the tree;

There is no implicit reason that different subsets of the acceleration structure require different
traversal implementations, so long as an implementation provides the facility to pause and restart
traversal - effectively freezing a ray’s state. Further more, due to the extensive parallel processing
capability of GPUs, further subdivision of the BVH may lend itself to improved performance with
smaller subsets of the acceleration structure more localised to separate processing resources.

Finally, it would be useful to enable a mode using a single treelet only - no top-level BVH at all.
This would effectively disable batching all together, and allow for a more ’straight-through’ traversal
method. This would provide a useful baseline case to compare performance when batching.

6.4. Multi-queuing Rays and Fairer Queuing

Consider a model allowing a given ray to exist in multiple buckets simultaneously; If the initial pass
through the top-level BVH finds multiple leaves or treelets that are to be traversed by a given ray, it
could be queued in multiple buckets. This will most likely involve more memory traffic and at least
one extra level of indirection, as well as an atomic reference counting and maintenance of the current
best intersection. It does lead to the possibility of intersecting structures when a closer intersection is
already known, so methods of handling this would be required.

There is no guarantee of fairness, which leads to the possibility of rays sitting in buckets for extended
periods. The system will ultimately complete them all, but this will lead to a kind of 'mopping up’

32

at the end of rendering a frame. Additionally the current nextBucket algorithm does nothing to stop
multiple warps processing the same bucket. With the possibility of a multi-tier BVH, explore more
rigidly assigning processing resources to buckets to keep the mechanism more streaming-oriented.

6.5. Dynamic Allocation

The system uses static allocation for all data structures; There is no "malloc” in a CUDA environment.
This leads to guesswork when tuning the system and potential for starvation. For example, with a
very large QUEUESIZE, the QUEUECOUNT must be reduced to prevent exceeding available ram. In
turn can lead to a scenario where the system fails as no RayQueue objects are available when required.

Similarly, the levels for generating new rays are fixed and created empirically. Further research
could lead to smarter methods for managing these issues.

6.6. Memory Access

As memory performance is so central to the optimisation, study of the caching mechanisms will be
important; Explicit pre-fetching of data into cache can improve performance. NVidia architectures do
expose prefetching instructions at the PTX level[NVIb]. Some research into explicit prefetching has
been performed by Lee et al[Lee+10], and they determined that explicit prefetching on a GPU can
be both helpful or harmful. Revisiting this research in relation to this specific problem and on more
recent architectures may be worthwhile.

7. Acknowledgements

I would like to thank my primary supervisor Dr. Bikker for his endless patience and sage advice, as
well as Victor Veldstra for great ideas and feedback during brainstorm sessions. Finally, my friends
and family for their ongoing encouragement and support.

33

8. References

[Adil4] Andy Adinets. CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics. NVIDIA
Developer Blog. Oct. 2, 2014. URL: https://devblogs.nvidia.com/cuda-pro-tip-
optimized-filtering-warp-aggregated-atomics/ (visited on Apr. 22, 2019).

[AK10] Timo Aila and Tero Karras. “Architecture Considerations for Tracing Incoherent Rays”.
In: High Performance Graphics. Saarbriiken, Germany, 2010, pp. 113-122.
[ALO9] Timo Aila and Samuli Laine. “Understanding the Efficiency of Ray Traversal on GPUs”.

In: Proceedings of the 1st ACM Conference on High Performance Graphics - HPG "09.
2009, pp. 145-145. por: 10.1145/1572769.1572792. URL: http://portal.acm. org/
citation.cfm?doid=1572769.1572792.

[AWS7] John Amanatides and Andrew Woo. “A Fast Voxel Traversal Algorithm for Ray Tracing”.
In: (1987), p. 6.

[BA14] Rasmus Barringer and Tomas Akenine-Moéller. “Dynamic Ray Stream Traversal”. In:
ACM Transactions on Graphics 33.4 (July 27, 2014), pp. 1-9. 1sSN: 07300301. pOI: 10.
1145/2601097 . 2601222. URL: http://dl.acm.org/citation.cfm?doid=2601097.
2601222 (visited on Nov. 4, 2018).

[Ben+12] Carsten Benthin et al. “Combining Single and Packet Ray Tracing for Arbitrary Ray
Distributions on the Intel R MIC Architecture”. In: IEEE Transactions on Visualization
and Computer Graphics (2012), p. 10.

[Ben+18] Carsten Benthin et al. “Compressed-Leaf Bounding Volume Hierarchies”. In: ACM Press,
2018, pp. 1-4. 1SBN: 978-1-4503-5896-5. DOI: 10.1145/3231578.3231581. URL: http:
//dl.acm.org/citation.cfm?doid=3231578.3231581 (visited on Aug. 11, 2018).

[Bik12] Jacco Bikker. “Improving Data Locality for Efficient In-Core Path Tracing”. In: Computer
Graphics Forum 31.6 (Sept. 2012), pp. 1936-1947. 1ssN: 01677055. DO1: 10.1111/j.1467~
8659 .2012.03073.x. URL: http://doi.wiley.com/10.1111/j.1467-8659.2012.
03073.x (visited on May 7, 2018).

[Bik21] Jacco Bikker. Lighthouse 2 Framework for Real-Time Ray Tracing. June 29, 2021. URL:
https://github.com/jbikker/lighthouse?2 (visited on July 8, 2021).
[BK16] Nikolaus Binder and Alexander Keller. “Efficient Stackless Hierarchy Traversal with Back-

tracking in Constant Time”. In: High Performance Graphics. 2016, p. 50.

[Bou+07] Solomon Boulos et al. “Packet-Based Whitted and Distribution Ray Tracing”. In: Proceed-
ings of Graphics Interface 2007 on - GI ’07. Graphics Interface 2007. Montreal, Canada:
ACM Press, 2007, p. 177. 1SBN: 978-1-56881-337-0. DOI: 10.1145/1268517.1268547. URL:
http://portal.acm.org/citation.cfm?doid=1268517.1268547 (visited on Nov. 4,
2018).

[Bow14] James Bowman. Xorshift RNGs for Small Systems. Aug. 2014. URL: https://excamera.
com/sphinx/article-xorshift.html (visited on July 8, 2021).

[DHKO08] H. Dammertz, J. Hanika, and A. Keller. “Shallow Bounding Volume Hierarchies for Fast
SIMD Ray Tracing of Incoherent Rays”. In: Computer Graphics Forum 27.4 (2008),
pp- 1225-1233. 18SN: 01677055. DOI: 10.1111/j.1467-8659.2008.01261 .x.

[EGOS] Manfred Ernst and Gunther Greiner. “Multi Bounding Volume Hierarchies”. In: IEEE,
Aug. 2008, pp. 35-40. 1SBN: 978-1-4244-2741-3. DOI: 10.1109/RT.2008.4634618. URL:
http://ieeexplore.ieee.org/document/4634618/ (visited on Apr. 24, 2018).

34

https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://doi.org/10.1145/1572769.1572792
http://portal.acm.org/citation.cfm?doid=1572769.1572792
http://portal.acm.org/citation.cfm?doid=1572769.1572792
https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1145/2601097.2601222
http://dl.acm.org/citation.cfm?doid=2601097.2601222
http://dl.acm.org/citation.cfm?doid=2601097.2601222
https://doi.org/10.1145/3231578.3231581
http://dl.acm.org/citation.cfm?doid=3231578.3231581
http://dl.acm.org/citation.cfm?doid=3231578.3231581
https://doi.org/10.1111/j.1467-8659.2012.03073.x
https://doi.org/10.1111/j.1467-8659.2012.03073.x
http://doi.wiley.com/10.1111/j.1467-8659.2012.03073.x
http://doi.wiley.com/10.1111/j.1467-8659.2012.03073.x
https://github.com/jbikker/lighthouse2
https://doi.org/10.1145/1268517.1268547
http://portal.acm.org/citation.cfm?doid=1268517.1268547
https://excamera.com/sphinx/article-xorshift.html
https://excamera.com/sphinx/article-xorshift.html
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1109/RT.2008.4634618
http://ieeexplore.ieee.org/document/4634618/

35

[Bis+13]

[FJ94]

[Fue+15]
[Gas16]
[GB17]

[GL10]

[Glag4]

[GROS]

[Hap+11]

[Har14]

[Has+18]

[Hav00]

[HI09)]

[Hwa+15]

[Kaj86]

[Keel4]

Christian Eisenacher et al. “Sorted Deferred Shading for Production Path Tracing”. In:
Computer Graphics Forum 32.4 (July 2013), pp. 125-132. 1SsN: 01677055. por: 10.1111/
cgf.12158. URL: http://doi.wiley.com/10.1111/cgf . 12158 (visited on June 15,
2018).

Keith I Farkas and Norman P Jouppi. “Complexity/Performance Tradeoffs with Non-
Blocking Loads”. In: Proceedings of the 21st annual international symposium on Computer
architecture 22 (Apr. 1994), pp. 211-222. por: 10.1145/192007 . 192029. URL: http:
//doi.acm.org/10.1145/192007 .192029.

Valentin Fuetterling et al. “Efficient Ray Tracing Kernels for Modern CPU Architectures”.
In: 4.4 (2015), p. 21.

Tigran Gasparian. “Fast Divergent Ray Traversal by Batching Rays in a BVH”. University
of Utrecht, Dec. 5, 2016. 17 pp.

Tigran Gasparian and Jacco Bikker. “Ray Batching for Faster BVH Traversal of Incoher-
ent Rays”. In: (2017), p. 10.

Kirill Garanzha and Charles Loop. “Fast Ray Sorting and Breadth-First Packet Traversal
for GPU Ray Tracing”. In: Computer Graphics Forum 29.2 (May 2010), pp. 289-298. ISSN:
01677055. po1: 10.1111/j.1467-8659.2009.01598.x. URL: http://doi.wiley.com/
10.1111/3.1467-8659.2009.01598.x (Visited on Nov. 4, 2018).

Andrew S Glassner. “Space Subdivision for Fast Ray Tracing”. In: IEEE Computer Graph-
ics and applications 4.10 (1984), pp. 15-24.

Christiaan P. Gribble and Karthik Ramani. “Coherent Ray Tracing via Stream Filter-
ing”. In: IEEE, Aug. 2008, pp. 59-66. 1SBN: 978-1-4244-2741-3. DOI: 10.1109/RT.2008.
4634622. URL: http://ieeexplore.ieee.org/document/4634622/ (visited on Apr. 24,
2018).

Michal Hapala et al. “Efficient Stack-Less Bvh Traversal for Ray Tracing”. In: Proceedings

of the 27th ... 1 (2011), pp. 7-12. 1sSN: 9781450319782. DOI: 10.1145/2461217 .2461219.
URL: http://dl.acm.org/citation.cfm?id=2461219.

Mark Harris. CUDA Pro Tip: Do The Kepler Shuffle. NVIDIA Developer Blog. Feb. 3,
2014. URL: https://devblogs.nvidia.com/cuda-pro-tip-kepler-shuffle/ (visited
on Jan. 24, 2019).

Hasan Hassan et al. Exploiting Row-Level Temporal Locality in DRAM to Reduce the
Memory Access Latency. May 8, 2018. arXiv: 1805.03969 [cs]. URL: http://arxiv.
org/abs/1805.03969 (visited on Jan. 25, 2019).

Vlastimil Havran. “Heuristic Ray Shooting Algorithms”. Ph. d. thesis, Department of
Computer Science and Engineering, Faculty of ..., 2000.

D.M. Hughes and Ik Soo Lim. “Kd-Jump: A Path-Preserving Stackless Traversal for
Faster Isosurface Raytracing on GPUs”. In: IEEE Transactions on Visualization and
Computer Graphics 15.6 (Nov. 2009), pp. 1555-1562. 1SSN: 1077-2626. DOI: 10.1109/
TVCG.2009.161. URL: http://ieeexplore.ieee.org/document/5290773/ (visited on
Nov. 4, 2018).

Seok Joong Hwang et al. “A Mobile Ray Tracing Engine with Hybrid Number Represen-
tations”. In: ACM Press, 2015, pp. 1-4. 1SBN: 978-1-4503-3928-5. DOI: 10.1145/2818427.
2818446. URL: http://dl.acm.org/citation.cfm?doid=2818427.2818446 (visited on
May 1, 2018).

James T Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual Confer-
ence on Computer Graphics and Interactive Techniques 20.4 (1986), pp. 143—150. 1SSN:
0897911962. por: 10.1145/15886.15902.

Sean Keely. Reduced Precision for Hardware Ray Tracing in GPUs. 2014. DoI: 10.2312/
hpg.20141091.

https://doi.org/10.1111/cgf.12158
https://doi.org/10.1111/cgf.12158
http://doi.wiley.com/10.1111/cgf.12158
https://doi.org/10.1145/192007.192029
http://doi.acm.org/10.1145/192007.192029
http://doi.acm.org/10.1145/192007.192029
https://doi.org/10.1111/j.1467-8659.2009.01598.x
http://doi.wiley.com/10.1111/j.1467-8659.2009.01598.x
http://doi.wiley.com/10.1111/j.1467-8659.2009.01598.x
https://doi.org/10.1109/RT.2008.4634622
https://doi.org/10.1109/RT.2008.4634622
http://ieeexplore.ieee.org/document/4634622/
https://doi.org/10.1145/2461217.2461219
http://dl.acm.org/citation.cfm?id=2461219
https://devblogs.nvidia.com/cuda-pro-tip-kepler-shuffle/
https://arxiv.org/abs/1805.03969
http://arxiv.org/abs/1805.03969
http://arxiv.org/abs/1805.03969
https://doi.org/10.1109/TVCG.2009.161
https://doi.org/10.1109/TVCG.2009.161
http://ieeexplore.ieee.org/document/5290773/
https://doi.org/10.1145/2818427.2818446
https://doi.org/10.1145/2818427.2818446
http://dl.acm.org/citation.cfm?doid=2818427.2818446
https://doi.org/10.1145/15886.15902
https://doi.org/10.2312/hpg.20141091
https://doi.org/10.2312/hpg.20141091

36

[Kop+10]

[Kop+13]

LA
[Lail0]

[Lee+10]

[Lee+12]

[Lee+14]

[Lee+15]

[LKA13]

[Luil4]

[LV16]

[Maj+15]

[Mar+03]
IMBYO]

[Mey+10]

D. Kopta et al. “Efficient MIMD Architectures for High-Performance Ray Tracing”. In:
IEEE, Oct. 2010, pp. 9-16. 1SBN: 978-1-4244-8936-7. DOI: 10.1109/ICCD.2010.5647555.
URL: http://ieeexplore.ieee.org/document/5647555/ (visited on Apr. 24, 2018).

Daniel Kopta et al. “An Energy and Bandwidth Efficient Ray Tracing Architecture”. In:
ACM Press, 2013, p. 121. 1SBN: 978-1-4503-2135-8. DOI1: 10.1145/2492045.2492058. URL:
http://dl.acm.org/citation.cfm?doid=2492045.2492058 (visited on May 1, 2018).

Chris Lattner and Vikram Adve. The LLVM Instruction Set and Compilation Strategy.
2002.

Samuli Laine. “Restart Trail for Stackless BVH Traversal”. In: High Performance Graph-
ics (2010), p. 5.

Jaekyu Lee et al. “Many-Thread Aware Prefetching Mechanisms for GPGPU Applica-
tions”. In: 2010 43rd Annual IEEE/ACM International Symposium on Microarchitec-
ture. 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). Atlanta, GA, USA: IEEE, Dec. 2010, pp. 213-224. 1SBN: 978-1-4244-9071-4. DOIL:
10.1109/MICRO.2010.44. URL: http://ieeexplore.ieee.org/document/5695538/
(visited on Jan. 24, 2019).

Won-Jong Lee et al. “SGRT: A Scalable Mobile GPU Architecture Based on Ray Tracing”.
2012.

Jaedon Lee et al. “Two-AABB Traversal for Mobile Real-Time Ray Tracing”. In: ACM
Press, 2014, pp. 1-5. 1SBN: 978-1-4503-1891-4. DOI: 10.1145/2669062 . 2669088. URL:
http://dl.acm.org/citation.cfm?doid=2669062.2669088 (visited on Apr. 17, 2018).

Won-Jong Lee et al. “Reorder Buffer: An Energy-Efficient Multithreading Architecture
for Hardware MIMD Ray Traversal”. In: ACM Press, 2015, pp. 21-32. 1SBN: 978-1-4503-
3707-6. DOIL: 10.1145/2790060.2790064. URL: http://dl.acm.org/citation.cfm?
doid=2790060.2790064 (visited on May 3, 2018).

Samuli Laine, Tero Karras, and Timo Aila. “Megakernels Considered Harmful: Wavefront
Path Tracing on GPUs”. In: ACM Press, 2013, p. 137. 1SBN: 978-1-4503-2135-8. DOTI:
10.1145/2492045.2492060. URL: http://dl.acm.org/citation.cfm?doid=2492045.
2492060 (visited on May 1, 2018).

Justin Luitjens. Faster Parallel Reductions on Kepler. NVIDIA Developer Blog. Feb. 14,
2014. URL: https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
(visited on Aug. 25, 2019).

Gaébor Liktor and Karthikeyan Vaidyanathan. “Bandwidth-Efficient BVH Layout for In-
cremental Hardware Traversal”. In: Proceedings of High Performance Graphics. Euro-
graphics Association. 2016, pp. 51-61.

Abhinandan Majumdar et al. “A Taxonomy of GPGPU Performance Scaling”. In: 2015
IEEE International Symposium on Workload Characterization. 2015 IEEE International
Symposium on Workload Characterization (IISWC). Atlanta, GA, USA: IEEE, Oct. 2015,
pp. 118-119. 1sBN: 978-1-5090-0088-3. DOI: 10.1109/IISWC.2015.22. URL: http://
ieeexplore.ieee.org/document/7314157/ (visited on Jan. 28, 2019).

George Marsaglia et al. “Xorshift Rngs”. In: Journal of Statistical Software 8.14 (2003),
pp. 1-6.

J. David MacDonald and Kellogg S. Booth. “Heuristics for Ray Tracing Using Space Sub-
division”. In: The Visual Computer 6.3 (1990), pp. 153-166. DOI: 10.1007/BF01911006.

Quirin Meyer et al. “On Floating-Point Normal Vectors”. In: Computer Graphics Forum
29.4 (Aug. 26, 2010), pp. 1405-1409. 1sSN: 01677055. DOI: 10.1111/5.1467-8659.2010.
01737 .%. URL: http://doi.wiley.com/10.1111/j.1467-8659.2010.01737.x (visited
on Feb. 3, 2019).

https://doi.org/10.1109/ICCD.2010.5647555
http://ieeexplore.ieee.org/document/5647555/
https://doi.org/10.1145/2492045.2492058
http://dl.acm.org/citation.cfm?doid=2492045.2492058
https://doi.org/10.1109/MICRO.2010.44
http://ieeexplore.ieee.org/document/5695538/
https://doi.org/10.1145/2669062.2669088
http://dl.acm.org/citation.cfm?doid=2669062.2669088
https://doi.org/10.1145/2790060.2790064
http://dl.acm.org/citation.cfm?doid=2790060.2790064
http://dl.acm.org/citation.cfm?doid=2790060.2790064
https://doi.org/10.1145/2492045.2492060
http://dl.acm.org/citation.cfm?doid=2492045.2492060
http://dl.acm.org/citation.cfm?doid=2492045.2492060
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
https://doi.org/10.1109/IISWC.2015.22
http://ieeexplore.ieee.org/document/7314157/
http://ieeexplore.ieee.org/document/7314157/
https://doi.org/10.1007/BF01911006
https://doi.org/10.1111/j.1467-8659.2010.01737.x
https://doi.org/10.1111/j.1467-8659.2010.01737.x
http://doi.wiley.com/10.1111/j.1467-8659.2010.01737.x

37

[Nah+11]

[Nah+14]

[Nav+07]

[NVIa]

[NVIb]

[nvil7]

[Pha+97]

[Res05]

[RWSO]

[Sar18]

[SFDOY]

[SLa03]

[Spj+09]

SS92]

[SWS02]

Jae-Ho Nah et al. “T&I Engine: Traversal and Intersection Engine for Hardware Accel-
erated Ray Tracing”. In: ACM Press, 2011, p. 1. 1SBN: 978-1-4503-0807-6. DOI: 10.1145/
2024156 .2024194. URL: http://dl.acm.org/citation.cfm?doid=2024156.2024194
(visited on Apr. 19, 2018).

Jae-Ho Nah et al. “RayCore: A Ray-Tracing Hardware Architecture for Mobile Devices”.
In: ACM Transactions on Graphics 33.5 (Sept. 23, 2014), pp. 1-15. 1ssN: 07300301. DOT:
10.1145/2629634. URL: http://dl.acm.org/citation.cfm?doid=2672594.2629634
(visited on Apr. 17, 2018).

Paul Arthur Navratil et al. “Dynamic Ray Scheduling to Improve Ray Coherence and
Bandwidth Utilization”. In: IEEE, Sept. 2007, pp. 95-104. 1SBN: 978-1-4244-1629-5. DOT:
10.1109/RT.2007 .4342596. URL: http://ieeexplore. ieee.org/document/4342596/
(visited on May 2, 2018).

NVIDIA. NVIDIA Turing GPU Architecture. URL: https://www.nvidia.com/content/
dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf (visited on Dec. 4, 2018).

NVIDIA. Parallel Thread Execution ISA Version 6.3, Data Movement and Conversion
Instructions: Prefetch, Prefetchu. URL: https://docs.nvidia.com/cuda/parallel-
thread-execution/index . html#data-movement - and- conversion-instructions-—
prefetch-prefetchu (visited on Jan. 24, 2019).

nvidia. NVIDIA TESLA V100 GPU ARCHITECTURE. Aug. 2017, p. 58. URL: https:
//images .nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf (visited on July 6, 2021).

Matt Pharr et al. “Rendering Complex Scenes with Memory-Coherent Ray Tracing”. In:
ACM Press, 1997, pp. 101-108. 1SBN: 978-0-89791-896-1. DOI: 10.1145/258734.258791.
URL: http://portal.acm.org/citation.cfm?doid=258734.258791 (visited on May 2,
2018).

Alex Reshetov. “Multi-Level Ray Tracing Algorithm”. In: ACM Transactions on Graphics
(TOG) (2005), p. 10.

Steven M Rubin and Turner Whitted. “A 3-Dimensional Representation for Fast Render-
ing of Complex Scenes”. In: ACM SIGGRAPH Computer Graphics (1980), p. 7.

Navid Saremi. “Low Level GPU Performance Characteristics Using Vendor Independent
Benchmarks”. Utrecht University, July 2018. 58 pp. URL: https://drive.google.com/
file/d/15j6a_jKs-bNFCpvrrakLjq6t8Dx16j0A/view.

Martin Stich, Heiko Friedrich, and Andreas Dietrich. “Spatial Splits in Bounding Vol-
ume Hierarchies”. In: Proceedings of the Conference on High Performance Graphics 2009
(HPG’09) (2009), pp. 7-14. 1sSN: 9781605586038. DOI: 10.1145/1572769.1572771. URL:
http://dl.acm.org/citation.cfm?id=1572771.

Jorg Schmittler, Alexander Leidinger, and et al. “A Virtual Memory Architecture For
Real-Time Ray . . .” In: Computer & Graphics 27, 5 (October), 693-699. Issn. 2003,
pp. 97-8493.

J. Spjut et al. “TRaX: A Multicore Hardware Architecture for Real-Time Ray Tracing”.
In: IEEFE Transactions on Computer-Aided Design of Integrated Circuits and Systems
28.12 (Dec. 2009), pp. 1802—-1815. 18SN: 0278-0070, 1937-4151. DOI: 10.1109/TCAD.2009.
2028981. URL: http://ieeexplore.ieee.org/document/5324031/ (visited on Apr. 23,
2018).

Kelvin Sung and Peter Shirley. “Ray Tracing with the BSP Tree”. In: Graphics Gems II1
(IBM Version). Elsevier, 1992, pp. 271-274.

Jorg Schmittler, Ingo Wald, and Philipp Slusallek. “SaarCOR: A Hardware Architecture
for Ray Tracing”. In: Conference on Graphics Hardware (2002), pp. 1-11. 1SSN: 1-58113-
580-7. URL: http://dl.acm.org/citation.cfm?id=569051.

https://doi.org/10.1145/2024156.2024194
https://doi.org/10.1145/2024156.2024194
http://dl.acm.org/citation.cfm?doid=2024156.2024194
https://doi.org/10.1145/2629634
http://dl.acm.org/citation.cfm?doid=2672594.2629634
https://doi.org/10.1109/RT.2007.4342596
http://ieeexplore.ieee.org/document/4342596/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prefetch-prefetchu
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prefetch-prefetchu
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prefetch-prefetchu
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1145/258734.258791
http://portal.acm.org/citation.cfm?doid=258734.258791
https://drive.google.com/file/d/15j6a_jKs-bNFCpvrrakLjq6t8Dx16jOA/view
https://drive.google.com/file/d/15j6a_jKs-bNFCpvrrakLjq6t8Dx16jOA/view
https://doi.org/10.1145/1572769.1572771
http://dl.acm.org/citation.cfm?id=1572771
https://doi.org/10.1109/TCAD.2009.2028981
https://doi.org/10.1109/TCAD.2009.2028981
http://ieeexplore.ieee.org/document/5324031/
http://dl.acm.org/citation.cfm?id=569051

38

[Tsa09]

[VAS16]

[vdZRJ95]

[Vii+16]

[Wal+-01]

[Wal+05]

[WBB0S]

[WBS07]

[Whi79]

[WMS06]

[Wo006]

[WSS05]

[YKL17]

John A. Tsakok. “Faster Incoherent Rays: Multi-BVH Ray Stream Tracing”. In: Proceed-
ings of the 1st ACM Conference on High Performance Graphics - HPG ’09. The 1st ACM
Conference. New Orleans, Louisiana: ACM Press, 2009, p. 151. ISBN: 978-1-60558-603-8.
DOI: 10.1145/1572769.1572793. URL: http://portal.acm.org/citation.cfm?doid=
1572769.1572793 (visited on Nov. 4, 2018).

K Vaidyanathan, T Akenine-Moller, and M Salvi. “Watertight Ray Traversal with Re-
duced Precision”. In: (2016), p. 8.

Maurice van der Zwaan, Erik Reinhard, and Frederik W. Jansen. “Pyramid Clipping for
Efficient Ray Traversal”. In: Rendering Techniques ’95. Ed. by Patrick M. Hanrahan and
Werner Purgathofer. Vienna: Springer Vienna, 1995, pp. 1-10. 1SBN: 978-3-211-82733-8.
DOI: 10.1007/978-3-7091-9430-0_1. URL: http://link.springer.com/10.1007/978-
3-7091-9430-0_1 (visited on Nov. 4, 2018).

Timo Viitanen et al. “Multi Bounding Volume Hierarchies for Ray Tracing Pipelines”.
In: ACM Press, 2016, pp. 1-4. ISBN: 978-1-4503-4541-5. DOI: 10.1145/3005358 . 3005384.
URL: http://dl.acm.org/citation.cfm?doid=3005358.3005384 (visited on Apr. 17,
2018).

Ingo Wald et al. “Interactive Rendering with Coherent Ray Tracing”. In: Computer
Graphics Forum 20.3 (2001), pp. 153-165. DO1: 10.1111/1467-8659.00508. URL: http:
//doi.wiley.com/10.1111/1467-8659.00508.

1. Wald et al. “Faster Isosurface Ray Tracing Using Implicit KD-Trees”. In: IEEE Transac-
tions on Visualization and Computer Graphics 11.5 (Sept. 2005), pp. 562-572. 1SSN: 1077-
2626. DOL: 10.1109/TVCG.2005.79. URL: http://ieeexplore. ieee.org/document/
1471693/ (visited on Nov. 19, 2018).

Ingo Wald, Carsten Benthin, and Solomon Boulos. “Getting Rid of Packets - Efficient
SIMD Single-Ray Traversal Using Multi-Branching BVHs”. In: RT’08 - IEEE/EG Sym-
posium on Interactive Ray Tracing 2008, Proceedings. 2008, pp. 49-57. Do1: 10.1109/
RT.2008.4634620.

Ingo Wald, Solomon Boulous, and Peter Shirley. “Ray Tracing Deformable Scenes Using
Dynamic Bounding Volume Hierarchies”. In: ACM Transactions on Graphics 26.1 (2007),
p. 18.

Turner Whitted. “An Improved Illumination Model for Shaded Display”. In: ACM SIG-
GRAPH Computer Graphics 13.2 (1979), pp. 14-14. 1SsN: 0897910044. por: 10.1145/
965103.807419. URL: http://portal.acm.org/citation.cfm?doid=965103.807419.

Sven Woop, Gerd Marmitt, and Philipp Slusallek. “B-KD Trees for Hardware Accelerated
Ray Tracing of Dynamic Scenes”. In: Work (June 2014 2006), pp. 67-77. 1SSN: 3905673371.
DOI: 10.1145/1283900.1283912. URL: http://portal.acm.org/citation.cfm?id=
1283912.

Sven Woop. “DRPU A Programmable Hardware Architecture for Real-Time Ray Tracing
of Coherent Dynamic Scenes”. Saarland University, 2006. URL: http://sven-woop.de/
papers/2006-Thesis-DRPU-V1.1.pdf (visited on Apr. 23, 2018).

Sven Woop, Jorg Schmittler, and Philipp Slusallek. “RPU: A Programmable Ray Pro-
cessing Unit for Realtime Ray Tracing”. In: (2005), p. 11.

Henri Ylitie, Tero Karras, and Samuli Laine. “Efficient Incoherent Ray Traversal on GPUs
through Compressed Wide BVHs”. In: Proceedings of High Performance Graphics on -
HPG ’17. High Performance Graphics. Los Angeles, California: ACM Press, 2017, pp. 1-
13. 18BN: 978-1-4503-5101-0. pOI: 10.1145/3105762.3105773. URL: http://dl.acm.
org/citation.cfm?doid=3105762.3105773 (visited on Nov. 28, 2018).

https://doi.org/10.1145/1572769.1572793
http://portal.acm.org/citation.cfm?doid=1572769.1572793
http://portal.acm.org/citation.cfm?doid=1572769.1572793
https://doi.org/10.1007/978-3-7091-9430-0_1
http://link.springer.com/10.1007/978-3-7091-9430-0_1
http://link.springer.com/10.1007/978-3-7091-9430-0_1
https://doi.org/10.1145/3005358.3005384
http://dl.acm.org/citation.cfm?doid=3005358.3005384
https://doi.org/10.1111/1467-8659.00508
http://doi.wiley.com/10.1111/1467-8659.00508
http://doi.wiley.com/10.1111/1467-8659.00508
https://doi.org/10.1109/TVCG.2005.79
http://ieeexplore.ieee.org/document/1471693/
http://ieeexplore.ieee.org/document/1471693/
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1145/965103.807419
https://doi.org/10.1145/965103.807419
http://portal.acm.org/citation.cfm?doid=965103.807419
https://doi.org/10.1145/1283900.1283912
http://portal.acm.org/citation.cfm?id=1283912
http://portal.acm.org/citation.cfm?id=1283912
http://sven-woop.de/papers/2006-Thesis-DRPU-V1.1.pdf
http://sven-woop.de/papers/2006-Thesis-DRPU-V1.1.pdf
https://doi.org/10.1145/3105762.3105773
http://dl.acm.org/citation.cfm?doid=3105762.3105773
http://dl.acm.org/citation.cfm?doid=3105762.3105773

A. Structure Listings

Listing A.1: Ray Layout

struct Ray

{

uint64 stack;
uint depthQueueCount ;
uint extraldx;

float4 o;

float4 d;

Listing A.2: RayExtra Layout

struct RayExtra

{

float3 E, T;

uint neeTarget;
float NdotL;

uint flags;
uint pixelldx;

39

)%

B. Tuning Parameters

Parameter Description Section | Valid Values
SCRWIDTH Horizontal resolution of output image
SCRHEIGHT Vertical resolution of output image
NUM_SPP Number of Samples Per Pixel
MIN_TREELETSIZE Minimum size of a treelet
TREELETSIZE Maximum number of nodes in a BVH branch before
creating a treelet
BVH_MAXDEPTH Max depth of a top-level BVH branch before creating
a treelet
BUCKET_ALGO Controls selection algorithm for next bucket BoZod) MOSTFULL, RANDOM, NEXTBUCKET
DIRECT DIRECT (copy by value) or INDIRECT (external ar- | 3.4.2 DIRECT or INDIRECT
ray index) storage of rays in RayQueues
MAXDEPTH Maximum number of bounces for a ray before termi-
nation
NEEMODE Next Event Estimation ON, OFF, HALFHALF
NEXTWORK Algorithm to determine ordering of Ray creatiion PIXELFIRST or FRAMEFIRST
NUM_WARPS Active number of CUDA warps to invoke
RAYCOUNT Total number of ray slots to allocate
REGCOUNT Number of registers to allocate to kernels. Passed to
CUDA’s CUJIT_MAX_REGISTERS parameter
TOPLEVEL Selects variant of top-level traversal algorithm to use | 3.3.1 NAIVE, NAIVE_INTERLOCKED

ACTIVE_RAY LOWATER
ACTIVE_RAY_HIWATER
QUEUECOUNT
QUEUESIZE
NUM_WARPS
SINGLE_LANE

Number of active rays to trigger new ray generation
Number of active rays to cease new ray generation
Number of RayQueue objects to allocate

Capacity of RayQueue object in Rays

Number of CUDA warps to launch

Force only a single thread to be launched for debug-
ging purposes

Table B.1.: Compile-time parameters to the system

v

41

C. Initial-Run Results Table

Scene ‘ NextWork ‘ Direct ‘ TreeletSize ‘ RayCount ‘ CrawlTime | ResToplevelNodeCount ‘ ResTreeletCount ‘
dragon-plane | FRAMEFIRST | DIRECT 800 10240 31.3916 95 71
dragon-plane | FRAMEFIRST | DIRECT 200 10240 31.5113 111 83
dragon-plane | FRAMEFIRST | DIRECT 1600 10240 31.9685 55 41
dragon-plane | FRAMEFIRST | DIRECT 2000 10240 32.4625 51 38
dragon-plane | PIXELFIRST DIRECT 200 10240 35.6 111 83
dragon-plane | PIXELFIRST DIRECT 800 10240 35.9678 95 71
dragon-plane | PIXELFIRST DIRECT 1600 10240 38.5691 55 41
dragon-plane | PIXELFIRST DIRECT 2000 10240 38.9551 51 38
dragon-plane | PIXELFIRST DIRECT 200 1048576 40.6952 111 83
dragon-plane | PIXELFIRST | INDIRECT 2000 1024 47.178 51 38
dragon-plane | PIXELFIRST | INDIRECT 1600 1024 47.388 55 41
dragon-plane | PIXELFIRST | INDIRECT 200 1048576 47.9515 111 83
dragon-plane | PIXELFIRST | INDIRECT 800 1048576 48.5205 95 71
dragon-plane | PIXELFIRST | INDIRECT 1600 1048576 49.0762 55 41
dragon-plane | PIXELFIRST | INDIRECT 800 1024 49.0766 95 71
dragon-plane | PIXELFIRST | INDIRECT 2000 1048576 49.4686 51 38
dragon-plane | PIXELFIRST | INDIRECT 200 10240 49.6134 111 83
dragon-plane | PIXELFIRST | INDIRECT 200 1024 49.7819 111 83
dragon-plane | PIXELFIRST | INDIRECT 1600 10240 49.9643 55 41
dragon-plane | PIXELFIRST | INDIRECT 800 10240 50.0471 95 71
dragon-plane | PIXELFIRST | INDIRECT 2000 10240 50.4176 51 38
dragon-plane | PIXELFIRST DIRECT 800 1048576 51.8846 95 71
dragon-plane | PIXELFIRST DIRECT 1600 1048576 52.442 55 41
dragon-plane | PIXELFIRST DIRECT 2000 1048576 52.573 51 38
dragon-plane | FRAMEFIRST | DIRECT 200 1048576 53.3317 111 83

dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
dragon-plane
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza

FRAMEFIRST
PIXELFIRST
PIXELFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST
PIXELFIRST
PIXELFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST

FRAMEFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST

DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT

800
1600
2000
1600
2000
2000
1600

800

200

800

200
2000
1600

200

800

200
1600
1600

800
2000
2000

800

200
1600

200

800
2000

200

800
1600
2000

200
1600

800
2000

1048576
1024
1024

1048576

1048576
1024
1024
1024
1024
1024
1024
1024
1024

1048576

1048576

10240
10240
1048576
10240
1048576
10240
1024
1024
1024
1024
1024
1024
10240
10240
10240
10240

1048576

1048576

1048576

1048576

93.5255
04.1857
54.259
54.3778
04.4668
56.3235
96.3612
57.1981
58.0435
59.8121
61.0349
61.9878
62.3267
63.5158
63.7678
63.7755
64.3306
64.4131
64.5181
64.7786
64.9063
64.9686
66.0856
128.751
128.763
128.786
130.534
137.864
137.881
137.93
138.803
139.45
139.464
139.469
139.857

95

95

o1

55

o1

51

95

95
111
95
111
51

55
111
95
111
95

95

95

o1

o1

95
111
11

11

11

11
11
11

11
11
11

1t 00 0O G0 Ut 0O CO CO Ot CO 0O 0o

9%

sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza
sponza

PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
PIXELFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST
FRAMEFIRST

DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
DIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT

1600
800
200

2000
200

1600
800
200
800

1600

2000

2000
800

1600
200

2000

1600
200
800
200

1600
800

2000

2000
200

1600
800

2000
800
200

1600

2000
800

1600
200

1024
1024
1024
1024
1048576
10240
1048576
10240
10240
1048576
1048576
10240
1024
1024
1024
1024
1048576
1048576
10240
10240
10240
1048576
1048576
10240
1024
1024
1024
1024
10240
10240
10240
10240
1048576
1048576
1048576

151.418
151.419
151.497
153.951
158.681
158.79
158.821
158.854
158.856
159.002
159.362
159.53
159.66
159.668
159.679
161.852
163.488
163.655
163.961
164.116
164.153
164.177
164.288
164.525
172.768
172.78
172.805
174.919
181.109
181.116
181.138
182.321
182.731
182.745
182.755

11
11
11

11
11
11
11
11
11

11
11
11

11
11
11
11
11
11

11
11
11

11
11
11

11
11
11

o0 00 00 U1 GO OO CO Ut GO OO OO CU U1 00 OO0 GO G0 GO OO Ut CO CO OO Ut Ut 00 00 0O GO GO GO Ut GO CO OO

44

sponza

| FRAMEFIRST | INDIRECT |

2000

1048576

182.921

1%

9

D. RayCount-Run Results Table

Scene ‘ NextWork ‘ Direct ‘ TreeletSize ‘ RayCount ‘ CrawlTime | ResToplevelNodeCount ‘ ResTreeletCount ‘
dragon-plane | FRAMEFIRST | DIRECT 800 2097152 42.7255 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 1048576 42.2104 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 524288 42.224 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 262144 42.5673 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 131072 42.7765 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 65536 43.0972 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 32768 43.1299 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 16384 43.5578 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 8192 43.7934 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 4096 44.2371 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 2048 45.3382 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 1024 46.8913 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 512 51.4182 95 71
dragon-plane | FRAMEFIRST | DIRECT 800 256 59.6428 95 71

sponza FRAMEFIRST | DIRECT 800 2097152 129.177 11 8
sponza FRAMEFIRST | DIRECT 800 1048576 128.696 11 8
sponza FRAMEFIRST | DIRECT 800 524288 128.686 11 8
sponza FRAMEFIRST | DIRECT 800 262144 128.126 11 8
sponza FRAMEFIRST | DIRECT 800 131072 128.452 11 8
sponza FRAMEFIRST | DIRECT 800 65536 128.425 11 8
sponza FRAMEFIRST | DIRECT 800 32768 128.705 11 8
sponza FRAMEFIRST | DIRECT 800 16384 127.846 11 8
sponza FRAMEFIRST | DIRECT 800 8192 128.879 11 8
sponza FRAMEFIRST | DIRECT 800 4096 128.752 11 8
sponza FRAMEFIRST | DIRECT 800 2048 127.668 11 8

sponza
sponza
sponza

FRAMEFIRST | DIRECT
FRAMEFIRST | DIRECT
FRAMEFIRST | DIRECT

800
800
800

1024
512
256

124.919
120.878
115.416

11
11
11

co

Ly

%

E. QueueCount-Run Results Table

For every run, treeletSize was 800 and rayCount 1048576.

| Scene | Direct | QueueSize | CrawlTime | MemThrput | MemBusy | MaxBandwidth | L2HitRate MemPipesBusy | L1HitRate
dragon-plane | DIRECT 2048 39.9134 247.76 0.05 0.06 76.28 0.03 66.74
dragon-plane | DIRECT 1024 39.7674 203.3 0.04 0.05 75.15 0.03 65.81
dragon-plane | DIRECT 512 39.9843 246.22 0.05 0.06 76.44 0.03 66.75
dragon-plane | DIRECT 256 40.0036 202.63 0.04 0.05 75.29 0.03 65.68
dragon-plane | DIRECT 128 41.2178 245.61 0.05 0.06 76.4 0.03 66.61
dragon-plane | DIRECT 64 42.2853 201.66 0.04 0.05 75.33 0.03 65.54
dragon-plane | DIRECT 32 44.5195 243.99 0.05 0.06 76.67 0.03 66.44
dragon-plane | INDIRECT 2048 47.2589 200.1 0.04 0.05 75.55 0.03 65.03
dragon-plane | INDIRECT 1024 47.9698 243.03 0.05 0.06 76.3 0.03 66.24
dragon-plane | INDIRECT 512 48.1684 199.51 0.04 0.05 75.48 0.03 64.96
dragon-plane | INDIRECT 256 48.6586 240.07 0.05 0.06 76.76 0.03 65.8
dragon-plane | INDIRECT 128 49.1721 197.64 0.04 0.05 75.31 0.03 64.7
dragon-plane | INDIRECT 64 50.3644 235.2 0.05 0.05 77.35 0.03 64.94
dragon-plane | INDIRECT 32 52.5423 195.79 0.04 0.05 75.62 0.03 63.92
sponza DIRECT 2048 119.092 259.06 0.04 0.06 73.22 0.03 58.3
sponza DIRECT 1024 119.904 220.25 0.04 0.05 72.81 0.03 58.24
sponza DIRECT 512 120.749 258.17 0.04 0.06 73.05 0.03 58.23
sponza DIRECT 256 121.686 219.92 0.04 0.05 72.8 0.03 58.17
sponza DIRECT 128 124.996 256.95 0.04 0.06 73.39 0.03 58.15
sponza DIRECT 64 128.67 219.38 0.04 0.05 73.11 0.03 58.08
sponza DIRECT 32 133.046 256.07 0.04 0.06 73.35 0.03 58.01
sponza INDIRECT 2048 133.516 218.84 0.04 0.05 72.69 0.03 57.91
sponza INDIRECT 1024 135.232 255.26 0.04 0.06 73.47 0.03 57.8

sponza
sponza
sponza
sponza
sponza

INDIRECT
INDIRECT
INDIRECT
INDIRECT
INDIRECT

512

256
128
64
32

136.372
137.858
140.317
143.967
148.129

217.28
252.86
215.24
248.19
213.06

0.04
0.04
0.04
0.04
0.04

0.05
0.06
0.05
0.06
0.05

73.12
73.56
73.48
73.93
73.52

0.03
0.03
0.03
0.03
0.03

57.68
57.49
57.36
56.92
57.01

6¥

	Introduction
	Background

	Related Work
	Packet Tracing
	Ray Batching
	Hardware Based Implementations of Ray Batching
	Traversal Algorithms
	Reduced Precision and Compressed Acceleration Structures
	GPU architectures

	Implementation
	Overview
	BVH Generation
	Main work loop
	New Ray Generation and Next Work
	Next Bucket Selection

	BVH Traversal
	Top-Level Traversal Overview
	Top-Level Traversal Parallelism and Algorithm Variations
	Treelet Traversal

	Rays
	Ray Storage
	RayQueues Overview
	Linking and Delinking RayQueues
	Enqueuing and Dequeuing

	Locking and Parallelism
	Occlusion v. Closest hit
	Shading
	Random Number Generation and Seeding
	Debugging Tools

	Experiments and Results
	Overview
	CUDA Profiling
	Initial Run and Tree-Size Testing
	Ray Count Experiments
	Queue Size Experiments

	Discussion
	Conclusions And Future Work
	Parallelism and Improved Traversal Strategies
	More Granular Measurements
	Multi-tier Trees
	Multi-queuing Rays and Fairer Queuing
	Dynamic Allocation
	Memory Access

	Acknowledgements
	References
	Structure Listings
	Tuning Parameters
	Initial-Run Results Table
	RayCount-Run Results Table
	QueueCount-Run Results Table

