
Utrecht University
Faculty of Science

Department of Information and Computing Sciences

Strictness analysis in Helium

Computing Science MSc Thesis
August 10, 2021

Marco van de Weerthof
ICA-5871476

Supervised by:
Jurriaan Hage

Ivo Gabe de Wolff

2

Contents

Abstract iii

1 Introduction 1
1.1 Problem description . 1
1.2 Outline . 2

2 Preliminaries 3
2.1 Strict, non-strict and lazy evaluation . 3
2.2 Strictness in Haskell . 5
2.3 Motivations for strictness analysis . 6
2.4 Type and effect systems . 7

3 Strictness analysis 9
3.1 Relevance typing . 9
3.2 Relevance and applicativeness typing . 12

4 Helium 15
4.1 Design philosophy . 15
4.2 Architecture . 17
4.3 Core . 17

5 Related work 21
5.1 Related analyses . 21
5.2 Strictness analysis in UHC . 23
5.3 Recent work in Helium . 23

6 Research questions and setup 25
6.1 Research questions . 25
6.2 Setup . 26

7 Implementation 29
7.1 Transformation rules . 29
7.2 Algorithm . 37
7.3 Adaptation to polyvariance . 42

8 Experiment 45

9 Different approaches 47
9.1 Counting arguments . 47
9.2 Monotypes . 55

ii CONTENTS

10 Conclusion 57

11 Future work 59
11.1 Strictness analysis . 59
11.2 Helium . 60

A Datatypes 63
A.1 Tuples . 63
A.2 Lists . 64
A.3 Other datatypes . 66
A.4 Results . 66

Abstract

Strictness analysis is an important optimization in compilers for lazy languages. Expressions which are
guaranteed to be used should preferably be evaluated in a strict manner to improve performance. This
thesis implements strictness analysis in the Helium compiler for Haskell. The analysis is based on rele-
vance and applicativeness typing. Amonovariant and polyvariant analysis are proposed, with an optimal
precision-speed balance required. The monovariant analysis with monotypes provides the best trade-off,
while the polyvariant analysis provides better precision but at an increased analysis cost. An alternative
system without applicativeness annotations was proposed which could have improved the balance even
further, but this turned out to be unsound.

iv

1
Introduction

The introduction contains a description of the problem (1.1) and the outline for the thesis (1.2).

1.1 Problem description
Haskell is a functional programming language which uses lazy evaluation. Consider the program

let f = 𝜆x y → x + 1
in f (5 ∗ 5) (10 + 2)

Haskell creates a thunk inmemory for every subexpression. The thunks are only evaluated (to weak head
normal form) when they need to be. The thunk containing (5 ∗ 5) will be evaluated to 25, as it needs to
be calculated for the function to return the final answer of 26. Note that the second argument in f is never
used, which means its thunk is also never evaluated.

The opposite of lazy evaluation is strict evaluation. In the previous example, it would first evaluate
the arguments of f to 25 and 12, pass both arguments to f and return the result of 26. Even though the
second argument is not used, it has to be evaluated before passing it to the function, which is avoided
in lazy evaluation. The advantage of strict evaluation over lazy evaluation is memory usage, as storing
unevaluated expressions in thunks is more costly in that regard.

A lazy language like Haskell would benefit from strictness analysis. This is a static analysis to deter-
mine which parts of the program can be evaluated strictly rather than lazily. It would infer that f is strict
in its first argument, meaning it is safe to evaluate (5 ∗ 5) immediately instead of creating a thunk, thus
saving memory. The second argument is not used and therefore remains lazy, as it is beneficial to not
waste any time on evaluation there. Haskell has ways to force strict evaluation of expressions, with the
special function seq which always evaluates its first argument to weak head normal form and returns its
second.

Not every argument which is used can be made strict. Consider the function
f ∶∶ Bool → a → a → a
f x y z = if x

then y
else z

The first argument is guaranteed to be evaluated, as the if-statement needs to know the result of the condi-
tional to knowwhich branch to pick. The other two argumentsmight be evaluated, but this depends on x.

2 OUTLINE

If x is True, ywill be evaluated. If x is False, zwill be evaluated. It is not possible for both to be evaluated.
This means at least one argument is never going to be evaluated, which means making that argument
strict would result in unnecessary computation. Because we do not know which argument is given to
x beforehand, we do not know which of y or z will be used, and thus we cannot make either of them
strict. Furthermore, if all arguments were to be made strict, the application f True 3 (error "Crash")
would crash. However, if only x is made strict, the function returns 3 as expected in a lazy language. The
strictness analysis needs to be conservative and only infer strictness when an argument is guaranteed to
be evaluated under all circumstances, such that the meaning of the program does not change.

The goal of this thesis is to implement strictness analysis in Helium. Helium is a Haskell compiler
developed at Utrecht University with a focus on high-quality error messages [9]. This thesis seeks to
implement a monovariant and polyvariant strictness analysis based on relevance and applicativeness
typing proposed byHoldermans andHage [10]. Both variantswill be compared in precision, analysis cost,
and the trade-offs between them. A more elaborate analysis might return a better result, but might take
longer to compute, or uses more memory. The implementations are also compared against the strictness
analysis which is already present in Helium, with the goal to find an improvement over the existing
analysis.

1.2 Outline
The outline of this thesis is as follows:

• Preliminaries (Chapter 2): Background information such as the definition of strictness and type
and effect systems.

• Strictness analysis (Chapter 3): A description of strictness analysis using relevance and applica-
tiveness.

• Helium (Chapter 4): The architecture of the Helium compiler.

• Relatedwork (Chapter 5): Previous research into strictness analysis, related analyses andHelium.

• Research question and setup (Chapter 6): The main research question, subquestions and the
setup of the experiment.

• Implementation (Chapter 7): The implementation of strictness analysis in the Helium compiler.

• Experiment (Chapter 8): Results of the experiments on the analyses.

• Different approaches (Chapter 9): Two different approaches to improve the trade-off of the anal-
ysis.

• Conclusion (Chapter 10): Which strictness analysis should be used in Helium going forward.

• Futurework (Chapter 11): Improvementswhich can still bemade to the analysis and the compiler
itself.

• Datatypes (Appendix A): An extension of the analysis to include datatypes.

2
Preliminaries

The preliminaries give an overview of some topics of importance to this thesis. This includes the differ-
ence between strict and lazy evaluation (2.1), strictness in Haskell (2.2), practical motivations for strict-
ness analysis in a lazy language (2.3), and an introduction to type and effect systems (2.4). The chapters
on strictness analysis (3) and the Helium compiler (4) also contain background information, but due to
their size and importance they have their own chapters.

2.1 Strict, non-strict and lazy evaluation
Strict, non-strict and lazy evaluation are three different evaluation strategies. They differ in how they
handle arguments to functions. Subsection 2.1.1 describes the difference between strict and non-strict
evaluation, and subsection 2.1.2 describes the difference between non-strict and lazy evaluation.

2.1.1 Strict versus non-strict evaluation
Strict or eager evaluation first evaluates all arguments before passing them to the function body. This is
opposed to non-strict evaluation, in which arguments are passed to the function body unevaluated. Strict
evaluation is also known as call-by-value, while non-strict evaluation is known as call-by-name.

Consider the function
succ ∶∶ Int → Int
succ x = x + 1

Strict evaluation first evaluates (2 + 3) to 5, and passes that to the function:
succ (2 + 3)
=
succ 5
=
5 + 1
=
6

Non-strict evaluation on the other hand immediately proceeds to the function and evaluates (2 + 3) in
there:

4 STRICT, NON-STRICT AND LAZY EVALUATION

succ (2 + 3)
=
(2 + 3) + 1
=
5 + 1
=
6

In the previous example, both strategies return the same answer, and the difference in execution is
minimal. Differences between the strategies occur when arguments are not used.

Consider the function const, which takes two arguments and returns its first, ignoring the second:
const ∶∶ a → b → a
const x y = x

Strict evaluation would evaluate both arguments, but evaluating the second argument is a waste of time
as it is never used. The non-strict approach forwards the second argument to the function, where it is
never evaluated. This means the outcome of a function could change depending on what is given to the
second argument. In const 3 ⊥, where⊥ is an expression which causes abnormal termination, the strict
approach would crash on ⊥ while the non-strict approach returns 3, as ⊥ is never evaluated [10].

Another benefit of strict evaluation is reduced memory usage. If const is given a complex expression
as first argument, non-strict evaluation has to build a huge thunk containing all (sub-)expressions. Strict
evaluation immediately evaluates the entire expression and only has to store the result, which typically
takes less space. In the case of the first argument, strict evaluation is preferable as the argument will
be evaluated later anyway, while the second argument is better off in non-strict evaluation as it is not
evaluated at all.

Formally, for any function f, if f diverges when given a divergent argument, f is strict in that argument:

𝑓⊥ ; ⊥

where⊥ is a divergent argument. A computation is divergent when it does not terminate or terminates in
an exceptional state. Examples of diverging arguments in Haskell are an infinite loop, the error function
or undefined. If f converges given a divergent argument, then that argument is not necessary for the
computation, otherwise the function would have diverged. Therefore, it does not need to be evaluated
[12].

2.1.2 Non-strict versus lazy evaluation
In the function square, non-strict evaluation would need to evaluate its argument twice.

square ∶∶ Int → Int
square x = x ∗ x
square (2 + 3)
=
(2 + 3) ∗ (2 + 3)
=
5 ∗ (2 + 3)
=
5 ∗ 5
=
25

As the name call-by-name suggests, it replaces the occurrences of variable 𝑥 by the entire expression,
which is then evaluated twice. However, it is more efficient to share evaluations between the occur-
rences of the argument. Lazy evaluation, or call-by-need, is a non-strict evaluation strategy which avoids
repeated evaluation. Instead of passing the full argument, a memory thunk is created which stores the

PRELIMINARIES 5

(computation of the) argument. Upon reaching the first occurrence of the variable, the expression in the
thunk is evaluated and the result is written back to the thunk. The second time the argument is used, it
can directly take the result and does not need to evaluate the expression again.

square (2 + 3)
=
x ∗ x (where x = (2 + 3))
=
5 ∗ x (where x = 5)
=
5 ∗ 5
=
25

In general, lazy evaluation performs better than non-strict analysis, except when the thunk is used
exactly once. In lazy languages, sharing analysis is used to avoid an evaluated expression being written
to the thunk if it is not used anymore [6].

2.2 Strictness in Haskell
Haskell is a functional language which uses lazy evaluation. However, it also has constructs to force the
evaluation of expressions to weak head normal form (WHNF). An expression is in WHNF if it is either

• A constructor (True, [1, 2, 3]).

• A function applied to too few arguments (square, (+) 2).

• A lambda abstraction (𝜆x → expression).

Note that arguments of partially applied functions are not evaluated, only the head of the expression
is reduced. This is the difference between normal form and weak head normal form [1].

Haskell has multiple ways of enforcing strictness [17]:

seq: x ‵seq‵ y evaluates x to WHNF and returns y.

$!: f \$! x evaluates x to WHNF and applies f to x (f \$! x = x ‵seq‵ f x).

Bang patterns: data fields and variables can be made strict by annotating them with an exclamation
mark; For instance, data D = D ! Int Int will store its first argument strictly. The expression

let ! x = (5 + 5)
in x + 1

will first evaluate x to 10 before proceeding with the body. This requires the BangPatterns language
extension1.

StrictData/Strict: since GHC 8.0.1, the StrictData language extensions2 makes datatype declarations
strict by default, and the Strict language extension3makes everything binding strict by default. The
tilde is used to annotate bindings which should still be handled lazily.

1https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#bang-patt
erns-and-strict-haskell

2https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by
-default-data-types

3https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by
-default-pattern-bindings

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#bang-patterns-and-strict-haskell
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#bang-patterns-and-strict-haskell
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by-default-data-types
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by-default-data-types
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by-default-pattern-bindings
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/strict.html#strict-by-default-pattern-bindings

6 MOTIVATIONS FOR STRICTNESS ANALYSIS

2.3 Motivations for strictness analysis
Section 2.1 described the advantages and disadvantages of strict evaluation over lazy evaluation. Section
2.2 described how a user could manually influence evaluation in Haskell, a lazy language. To give a
motivation as to why this benefits the execution of the code, we sketch an example using folds. Folds are
higher-order functions which fold a list of values into one single value using a combining function and a
base value. In Haskell, the right-associative fold (foldr) can be defined as

foldr ∶∶ (a → b → b) → b → [a] → b
foldr f z [] = z
foldr f z (x ∶ xs) = x ‵f‵ foldr f z xs

For instance, foldr (+) 0 [1, 2, 3, 4, 5] returns 15, the sum of all elements in the list. The result is
calculated in a right-associative manner, namely (1 + (2 + (3 + (4 + (5 + 0))))). This means that the
additions can only be applied once all elements of the list are pushed on the stack. For very large lists,
this could result in a stack overflow.

Alternatively, the left-associative fold (foldl) can be defined as
foldl ∶∶ (b → a → b) → b → [a] → b
foldl f z [] = z
foldl f z (x ∶ xs) = foldl f (z ‵f‵ x) xs

The function starts with the base value and continuously applies f to the first item in the remaining list
until the list is empty. Using the previous example, the list unfolds to (((((0+1)+2)+3)+4)+5), and also
evaluates to 15. Note that foldr and foldl do not always give the same result, as foldr (−) 0 [1, 2, 3, 4, 5] =
3 and foldl (−) 0 [1, 2, 3, 4, 5] = −15.

In this version, it looks like it would be possible to apply the function during the calculation, which
would prevent the stack overflow. However, since Haskell is a lazy language, expressions are only eval-
uated once they are needed. In the example, Haskell would create a thunk for every element and only
starts reducing the expression when it cannot expand further, which is when the list becomes empty. It
then starts with the final addition, and works it way backwards. Executing the function would result in

foldl (+) 0 [1, 2, 3, 4, 5]
-- apply second branch of foldl

foldl (+) (0 + 1) [2, 3, 4, 5]
-- apply second branch of foldl

foldl (+) ((0 + 1) + 2) [3, 4, 5]
...
foldl (+) (((((0 + 1) + 2) + 3) + 4) + 5) []
-- apply first branch of foldl

(((((0 + 1) + 2) + 3) + 4) + 5)
-- inner reduction

((((1 + 2) + 3) + 4) + 5)
...
15

If the list is large enough it will once again trigger a stack overflow. This can be solved by forcing eval-
uation of the accumulating value. foldl′ is the left-associative fold which uses strict function application.
This function can be defined as

foldl′ ∶∶ (b → a → b) → b → [a] → b
foldl′ f z [] = z
foldl′ f z (x ∶ xs) = (foldl′ f $! f z x) xs

foldl′ (+) 0 [1, 2, 3, 4, 5] returns 15, just like foldr and foldl. However, instead of unfolding the entire
list before performing any addition, $! forces the evaluation after every step:

foldl′ (+) 0 [1, 2, 3, 4, 5]
-- apply second branch of foldl’

PRELIMINARIES 7

(foldl′ (+) $! (0 + 1)) [2, 3, 4, 5]
-- strict application

foldl′ (+) 1 [2, 3, 4, 5]
-- apply second branch of foldl’

(foldl′ (+) $! (1 + 2)) [3, 4, 5]
-- strict application

foldl′ (+) 3 [3, 4, 5]
...
foldl′ (+) 15 []
-- apply first branch of foldl’

15
As a result, foldl′ can take the sum of large lists without running into a stack overflow. In almost all cases,
foldl can be replaced by foldl′. There are some cases in which foldl is more efficient, or has a different
result. A function which is lazy in its first argument might only need the last element of the list, meaning
evaluation of earlier elements will not happen using foldl but will be done anyway in foldl′, with the
possibility of diverging [18].

To be able to receive the benefits, the programmer has to use foldl′ or any other function with strict-
ness measures manually. It would be better if the compiler could determine which expressions can be
evaluated strictly rather than lazily. This gives rise to strictness analysis. By doing a static analysis of the
program, we can determine which parts of the code would benefit from being executed strictly, which
would have a positive effect on memory usage, without needing the programmer to manually specify
where strictness should be applied.

We should be careful that we do not infer strictness on parts of the program where this changes the
outcome of the program. The original meaning of the program should be preserved, and the additional
strictness is only there to improve the performance. If there is even the slightest of doubt that strictness
changes the outcome, we cannot infer it and the expression remains lazy. With more elaborate strictness
analyses, we could infer more parts of the program as strict at the cost of performance of the analyzer
itself.

2.4 Type and effect systems
Haskell is a statically typed language. Its type system is based on the Hindley-Milner type inference
algorithm [15], extended with type classes [8]. Type polymorphism can be achieved in three different
ways:

Ad-hoc polymorphism is achieved by functions which can be applied to arguments of different types.
For instance, addition can be applied to integers or to floating point values with the (+) operator.
The function has a different implementation depending on the types of the arguments, but can be
used with the same operator. In Haskell, addition can be performed on any member of the Num
typeclass, of which Int and Float are instances.

Parametric polymorphism is achieved by giving functions and data types a type parameter which
can be instantiated with any type. For instance, the id function in Haskell can take and return an
argument of any type, and lists have a type parameter such that every type of list can be handled
via one constructor instead of requiring a separate datatype for lists of integers, booleans and so
on.

Subtyping relations can be defined between different types. For instance, any integer value can be
treated as a floating point value as well (2 becomes 2.0), or Square is a subtype of Rectangle. If
an Int is given to a function expecting a Float, the function can convert the argument to Float.
Haskell does not support explicit subtyping; a function which expects a Float cannot be given an

8 TYPE AND EFFECT SYSTEMS

Int. However, it is useful in type inference. Formally, for two types 𝜏1 and 𝜏2, if there is a partial
order ⊑ where 𝜏1 ⊑ 𝜏2, then 𝜏1 can be weakened to 𝜏2.

The opposite of polymorphism is monomorphism, which does not allow type variables to occur. This
means the type can only contain ground terms. Monotypes are in between polymorphism andmonomor-
phism, as it does allow for type variables but does not allow quantification over them.

To perform analysis on programs, we have to extend the type inference to include annotations [16]. To
illustrate this, consider parity analysis, which analyzed the parity of numbers. These can be either even
or odd, which are represented by E and O. If we want to perform this analysis without using annotations,
we would have to adapt the type system to have even and odd integers, which means every arithmetic
version needs to have different implementations depending on the exact type, which is unmaintainable.
A function double takes a number which is annotated with either E or O, and returns a number anno-
tated with E, as any number multiplied by two is even. The type signature of the function, including the
annotations on the arguments, becomes

𝑑𝑜𝑢𝑏𝑙𝑒 ∶∶ 𝐼𝑛𝑡{𝐸,𝑂} → 𝐼𝑛𝑡{𝐸}

Effects describe the computational properties of arguments. In the previous example, the annota-
tions are not effects because they say something about the type itself. An example of effects would be an
annotation to describe how often an argument is used [6].

Without polymorphism on the annotations, the previous function would only take arguments of
which the parity is unknown, which means information might be lost if we use arguments where the
parity is known. Subeffecting solves this problem, as the individual type annotations are subsets of the
set of acceptable types. We can define a partial order ⊑ on the annotations, with 𝐸 ⊑ {𝐸, 𝑂} and 𝑂 ⊑
{𝐸, 𝑂}. A number of any parity can now be passed to double. Using subeffecting, a function annotated
with effect T can be used with a value of effect S, as long as S can be weakened to T (𝑆 ⊑ 𝑇). Formally,
an effect system is a complete lattice (Ann, ⊑) with Ann being the set of annotations and ⊑ a partial
order on the annotations [16].

Other problems arise for a function like id, which can take any annotation and returns that same
annotation. However, it can only have one annotation associated, which needs to be the most general in
case multiple annotations are possible. In parity analysis, the function id (restricted to integers) would
become

𝑖𝑑 ∶∶ 𝐼𝑛𝑡{𝐸,𝑂} → 𝐼𝑛𝑡{𝐸,𝑂}

This is a monovariant or context-insensitive analysis [16]. A monovariant analysis has monomorphic
types.

However, annotating the variables like this loses information. If id is given an even argument it re-
turns an even number, and it returns an odd number given an odd number. According to the annotations,
id can only take an argument which is even or odd and returns a number which is even or odd. To solve
this we introduce polymorphism on effects as well. An analysis using polymorphic effects is called a
polyvariant or context-sensitive analysis [16]. Using polyvariance, the id example becomes:

𝑖𝑑 ∶∶ ∀𝛽.𝐼𝑛𝑡𝛽 → 𝐼𝑛𝑡𝛽

where 𝛽 can be instantiated by any subset of {E,O}.

3
Strictness analysis

This chapter discusses an implementation of strictness analysis using relevance typing (3.1) and an im-
proved version using applicativeness annotations (3.2).

3.1 Relevance typing

Holdermans and Hage propose a strictness analysis based on relevance typing [10]. A variable 𝑥 is rele-
vant to term 𝑡 if any term bound to 𝑥 is guaranteed to be evaluated whenever 𝑡 is evaluated. S describes
termswhich produce relevant abstractions when the term ismade strict, and L describes termswhere it is
not known if it will produce relevant abstractions. These annotations are placed on the function arrows.
In terms of a type and effect system, relevance typing has two annotations (S for strict and L for lazy,
Ann = {S,L}) and a partial order S ⊑ L. The complete lattice can be written as (Ann, ⊑) with S as least
element, L as greatest element, the join defined as

𝑆 ⊔ 𝜑 = 𝜑

𝐿 ⊔ 𝜑 = 𝐿
and the meet defined as

𝑆 ⊓ 𝜑 = 𝑆

𝐿 ⊓ 𝜑 = 𝜑
where 𝜑 ranges over the annotations.

To introduce their analysis, they provide a simple, non-strict language, with 𝑥 ∈ Var containing all
variables, 𝑡 ∈ Term containing all terms and ̂𝜏 ∈ T̂ype containing all annotated types. The language
contains booleans, natural numbers, variables, lambda abstraction, strict and non-strict application, con-
ditionals and the error keyword which fails on evaluation. The difference between strict application
(𝑡1 • 𝑡2) and non-strict application (𝑡1𝑡2) is that the former forces 𝑡2 to WHNF before applying it to 𝑡1.
A term is in WHNF if it is a boolean (true or false), 0 or a lambda.

10 RELEVANCE TYPING

𝑡 ∶∶= false ∣ true ∣ 0 ∣ 𝑥 ∣ 𝜆𝑥.𝑡1
∣ 𝑡1𝑡2 ∣ 𝑡1 • 𝑡2 ∣ if 𝑡1 then 𝑡2 else 𝑡3
∣ succ 𝑡1 ∣ pred 𝑡1 ∣ iszero 𝑡1 ∣ error

̂𝜏 ∶∶= bool ∣ nat ∣ ̂𝜏1
𝜑
−→ ̂𝜏2

The goal of the analysis is to transform as many non-strict applications to strict applications as pos-
sible. Holdermans and Hage describe transformation rules of the form Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏𝜑, where Γ̂
represents the type environment, 𝑡 represents the original term, 𝑡′ represent the transformed term, ̂𝜏
represent the annotated type of 𝑡 (and 𝑡′) and 𝜑 represents the relevance context. A type environment
Γ̂ ∈ TEnv = Var →fin T̂ype × Ann maps from variables 𝑥 to a pair containing an annotated type
and an annotation (̂𝜏 , 𝜑). [] represents the empty environment, [𝑥 ↦ (̂𝜏 , 𝜑)] represents a singleton en-
vironment and Γ̂[𝑥 ↦ (̂𝜏 , 𝜑)] extends Γ̂ with a binding from 𝑥 to (̂𝜏 , 𝜑). The transformation rules are
described in figure 3.1.

[] ⊢ false� false ∶ bool𝜑 [r-false] [] ⊢ true� true ∶ bool𝜑 [r-true] [] ⊢ 0 � 0 ∶ nat𝜑 [r-zero]

[𝑥 ↦ (̂𝜏 , 𝜑)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏𝜑 [r-var]
𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏1, 𝜑1)] ⊢ 𝑡1 � 𝑡′

1 ∶ ̂𝜏 S2
Γ̂ ⊢ 𝜆𝑥.𝑡1 � 𝜆𝑥.𝑡′

1 ∶ (̂𝜏1
𝜑1
−→ ̂𝜏2)𝜑

[r-abs]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

S
−→ ̂𝜏)𝜑 Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏𝜑
2

Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1 • 𝑡′

2 ∶ ̂𝜏𝜑
[r-app1]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

L
−→ ̂𝜏)𝜑 Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏L2
Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′

1𝑡′
2 ∶ ̂𝜏𝜑

[r-app2]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ bool𝜑 Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏L Γ̂2 ⊢ 𝑡3 � 𝑡′
3 ∶ ̂𝜏L

Γ̂1 ⋄ Γ̂2 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 � if 𝑡′
1 then 𝑡′

2 else 𝑡′
3 ∶ ̂𝜏𝜑 [r-if]

Γ̂ ⊢ 𝑡1 � 𝑡′
1 ∶ natL

Γ̂ ⊢ succ 𝑡1 � succ 𝑡′
1 ∶ nat𝜑

[r-succ]
Γ̂ ⊢ 𝑡1 � 𝑡′

1 ∶ nat𝜑

Γ̂ ⊢ pred 𝑡1 � pred 𝑡′
1 ∶ nat𝜑

[r-pred]

Γ̂ ⊢ 𝑡1 � 𝑡′
1 ∶ bool𝜑

Γ̂ ⊢ iszero 𝑡1 � iszero 𝑡′
1 ∶ nat𝜑

[r-iszero]
[] ⊢ error� error ∶ ̂𝜏𝜑 [r-error]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏L
Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 S

[r-sub] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏𝜑

Γ̂[𝑥 ↦ (̂𝜏0, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏𝜑 [r-weak]

𝜑 � [] [c-nil]
S� Γ̂1

S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0)]
[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L)]

[c-cons-l]

Figure 3.1: Relevance typing, call-by-value transformations and containment. Adapted from [10]

Rules [r-false], [r-true] and [r-zero] require the environment to be empty. The weakening rule [r-
weak] states that any binding which has a relevance annotation L can be dropped from the environment.
This means that every variable in the type environment has to be set to L for these transformation rules.
Rule [r-var] demands the environment to be empty except for the variable itself, which also leads to the
conclusion that any other variable in the expression under scrutiny has to be set to L. The annotation of

STRICTNESS ANALYSIS 11

the variable itself is set to the context. If we are in a strict context (the first argument of const), the variable
is guaranteed to be used and can thus be set to S, but in a non-strict context (the second argument of const)
the variable is not guaranteed to be used.

New bindings are created via the [r-abs] rule. The type environment for the body is extended by the
variable. We reset the context to S to measure whether the variable is relevant to its body. However, any
information related to other variablesmight not be sound if the input context is L. Hencewe perform con-
tainment ([c-nil], [c-cons-s] and [c-cons-l]), which states that all annotations in the environment before
the abstraction have to be set to L if the context was L, thus preventing other variables to be erroneously
annotated with S. An L-context does not guarantee that the term is never executed, (we might still evalu-
ate the second argument of (&) if the first argument is True), thus it is still beneficial to determinewhether
an abstraction is relevant when defined within an L-context.

There are two rules for application, [r-app1] and [r-app2]. Rule [r-app1] transforms a non-strict ap-
plication to a strict application, and rule [r-app2] leaves the non-strict application as is. An application
can be transformed to a strict application if the function is relevant in its argument. If the function is
relevant, the argument is evaluated under the current context, otherwise the context is set to L as the
argument is not guaranteed to be used. The type environments used for the function and the argument
are different environments, as it is possible that a variable is relevant in one side and not relevant in the
other. In this case, if a variable is strict in either environment it is strict in the combined environment.
This is represented by the context split ⋄, which takes the pointwise meet of environments Γ̂1 and Γ̂2.

[] ⋄ [] = []
Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑1)] ⋄ Γ̂2[𝑥 ↦ (̂𝜏 , 𝜑2)] = (Γ̂1 ⋄ Γ̂2)[𝑥 ↦ (̂𝜏 , 𝜑1 ⊓ 𝜑2)]

Rule [r-if] handles if-statements. The conditional always has to be evaluated, which means we can
take the current context. However, only one of the branches is picked depending on the value of the
conditional, meaning neither is guaranteed to be evaluated, meaning the context for the branches is set
to L. Rules [r-succ], [r-pred] and [r-iszero] handle operations on natural numbers. Note that the successor
operation, unlike the predecessor operation, produces a weak head normal form, and thus the context of
the term is set to L. As the term error fails on evaluation, its transformation rule [r-error] can have any
type or context. Finally, [r-sub] allows for subeffecting. Whenever we are in a S-context, we can subeffect
to an L-context if the situation requires so. This will not lead to unsound transformations, as any strict
function can also be treated as a non-strict function without changing the outcome. This is not the case
the other way around, meaning we cannot go from an L-context to an S-context.

As example, the type signature for const can be derived as ̂𝜏1
S
−→ ̂𝜏2

L
−→ ̂𝜏1.

S� []
S� [𝑥 ↦ (̂𝜏1, S)]

[𝑥 ↦ (̂𝜏1, S)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 S1
[𝑥 ↦ (̂𝜏1, S), 𝑦 ↦ (̂𝜏2, L)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 S1

[𝑥 ↦ (̂𝜏1, S)] ⊢ 𝜆𝑦.𝑥 � 𝜆𝑦.𝑥 ∶ (̂𝜏2
L
−→ ̂𝜏1)S

[] ⊢ 𝜆𝑥.𝜆𝑦.𝑥 � 𝜆𝑥.𝜆𝑦.𝑥 ∶ (̂𝜏1
S
−→ ̂𝜏2

L
−→ ̂𝜏1)S

Using this definition of const, we can see that the first argument will be transformed into a strict
application, while the second argument remains a non-strict application:

…
[] ⊢ const� const ∶ (bool S

−→ bool
L
−→ bool)S [] ⊢ true� true ∶ boolS

[] ⊢ const true� const • true ∶ (bool L
−→ bool)S [] ⊢ false� false ∶ boolL

[] ⊢ const true false� const • true false ∶ boolS

12 RELEVANCE AND APPLICATIVENESS TYPING

Note that strictness and relevance are not equal. The expression (𝜆𝑥.error) is strict in its argument,
as it trivially diverges given a diverging argument, but is not relevant as 𝑥 does not occur in the body of
the abstraction. On the other hand, the expression ((𝜆𝑥.𝜆𝑦.𝑥) error) is not strict in its first argument, as
the function is not fully applied, but is relevant, as 𝑥 occurs in the body of the abstraction. This leads to
an unsound transformation, as ((𝜆𝑥.𝜆𝑦.𝑥) error) returns a function, but ((𝜆𝑥.𝜆𝑦.𝑥) • error) evaluates
error and fails:

…
[] ⊢ 𝜆𝑥.𝜆𝑦.𝑥 � 𝜆𝑥.𝜆𝑦.𝑥 ∶ (̂𝜏1

S
−→ ̂𝜏2

L
−→ ̂𝜏1)S [] ⊢ error� error ∶ ̂𝜏 S1

[] ⊢ (𝜆𝑥.𝜆𝑦.𝑥) error� (𝜆𝑥.𝜆𝑦.𝑥) • error ∶ (̂𝜏2
L
−→ ̂𝜏1)S

The rules also do not contain a transformation rule for applications which are already strict. An
obvious typing rule would be [r-sapp], which ignores𝜑0 as it does not matter if the argument is relevant,
as the application is already strict. However, adding this rule allows for unsound transformations as well.

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

𝜑0
−→ ̂𝜏)𝜑 Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏𝜑
2

Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1 • 𝑡2 � 𝑡′
1 • 𝑡′

2 ∶ ̂𝜏𝜑
[r-sapp]

For the function (𝜆𝑥.((𝜆𝑦.0) • (𝜆𝑧.𝑥))), we can derive the type (̂𝜏 S
−→ nat) with this rule, which

means any application of this function can be transformed to a strict application. However, the function
𝜆𝑧.𝑥 is evaluated in the strict application, resulting in the same function, and then passed to 𝜆𝑦.0where
it is never used. Hence the argument is never evaluated. Transforming to a strict application wouldmean
the argument is evaluated, resulting in a failure if the argument is error. A fix would be to take the join
of 𝜑 and 𝜑0 as context in the applicant. While this is sound, it is unable to use the extra information in
case 𝜑0 is L, as the context will be set to L, making it impossible to derive strictness from there.

3.2 Relevance and applicativeness typing
The relevance typing discussed in the previous section provided an implementation for strictness analy-
sis. However, there were two problems: it does not support applications which are already strict and it is
unsound on partial applications. Holdermans and Hage combat these issues by adding applicativeness
annotations (𝜓) in addition to relevance annotations [10]. A term is applicative if it is guaranteed to be
applied to an argument at least once. This was not the case in the two previous examples, as partial appli-
cation does not apply arguments and strict application does not guarantee application if the argument is
a function. They use the same lattice as the relevance annotation, with S describing a term is guaranteed
to be applied to an argument, and L describing the term might not be applied to an argument. Instead of
one annotation on the function arrow, there are now three: an applicativeness and relevance annotation
for the argument, and an applicativeness annotation for the remainder of the function 1.

̂𝜏 ∶∶= bool ∣ nat ∣ ̂𝜏1
(𝜓1,𝜑,𝜓2)
−−−−−−→ ̂𝜏2

The transformation rules are of the form Γ̂ ⊢ 𝑡� 𝑡′ ∶ ̂𝜏 (𝜑,𝜓), with an applicativeness context𝜓 added
next to the relevance context. The type environment Γ̂ ∈ TEnv = Var →fin T̂ype×Ann×Ann stores
both the relevance and applicativeness annotation per variable. The extended transformation rules are
described in figure 3.2.

1Holdermans and Hage place the applicativeness annotations on the terms instead of the function arrow. For convenience in
functions with multiple arguments, all three annotations will be placed on the arrow in the remainder of this thesis.

STRICTNESS ANALYSIS 13

[] ⊢ false� false ∶ bool(𝜑,L) [r-false]
[] ⊢ true� true ∶ bool(𝜑,L) [r-true]

[] ⊢ 0 � 0 ∶ nat(𝜑,L) [r-zero]
[𝑥 ↦ (̂𝜏 , 𝜑, 𝜓)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 (𝜑,𝜓) [r-var]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏1, 𝜑1, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

2

Γ̂ ⊢ 𝜆𝑥.𝑡1 � 𝜆𝑥.𝑡′
1 ∶ (̂𝜏1

(𝜓1,𝜑1,𝜓2)
−−−−−−→ ̂𝜏2)(𝜑,𝜓)

[r-abs]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

(𝜓2,S,𝜓)
−−−−−→ ̂𝜏)(𝜑,𝜑) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜑⊔𝜓2)
2

Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1 • 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
[r-app1]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

(𝜓2,L,𝜓)
−−−−−→ ̂𝜏)(𝜑,𝜑) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (L,𝜑⊔𝜓2)
2

Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
[r-app2]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

(𝜓2,𝜑0,𝜓)
−−−−−−→ ̂𝜏)(𝜑,𝜑) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜑⊔𝜓2)
2

Γ̂1 ⋄ Γ̂2 ⊢ 𝑡1 • 𝑡2 � 𝑡′
1 • 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
[r-sapp]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ bool(𝜑,L) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (L,𝜓) Γ̂2 ⊢ 𝑡3 � 𝑡′
3 ∶ ̂𝜏 (L,𝜓)

Γ̂1 ⋄ Γ̂2 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 � if 𝑡′
1 then 𝑡′

2 else 𝑡′
3 ∶ ̂𝜏 (𝜑,𝜓) [r-if]

Γ̂ ⊢ 𝑡1 � 𝑡′
1 ∶ nat(L,L)

Γ̂ ⊢ succ 𝑡1 � succ 𝑡′
1 ∶ nat(𝜑,L) [r-succ]

Γ̂ ⊢ 𝑡1 � 𝑡′
1 ∶ nat(𝜑,L)

Γ̂ ⊢ pred 𝑡1 � pred 𝑡′
1 ∶ nat(𝜑,L) [r-pred]

Γ̂ ⊢ 𝑡1 � 𝑡′
1 ∶ bool(𝜑,L)

Γ̂ ⊢ iszero 𝑡1 � iszero 𝑡′
1 ∶ nat(𝜑,L) [r-iszero]

[] ⊢ error� error ∶ ̂𝜏 (𝜑,𝜓) [r-error]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (L,L)

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝜓) [r-sub] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂[𝑥 ↦ (̂𝜏0, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [r-weak]

𝜑 � [] [c-nil]
S� Γ̂1

S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0, 𝜓0)]
[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L, L)]

[c-cons-l]

Figure 3.2: Relevance and applicativeness typing, call-by-value transformations and containment.
Adapted from [10]

Booleans and natural numbers cannot be applied to arguments, so rules [r-false], [r-true] and [r-zero]
always need to have an L-context. For variables ([r-var]), the applicativeness context is now stored along-
side the relevance annotation. Weakening ([r-weak]) is extended such that a variable can only be dropped
if both its relevance and applicativeness are L. Abstraction ([r-abs]) now contains over the applicative-
ness context instead of the relevance context. The containment rules [c-nil], [c-cons-s] and [c-cons-l] are
updated to reflect that containing on an L-annotation also means the applicativeness annotations have
to become L. Its right applicativeness annotation is used as context for the body of the abstraction.

The application rules [r-app1] and [r-app2] have the applicativeness context for the function set to the
relevance annotation, and the context for the argument is the join of the relevance context and the applica-
tiveness of the function. Furthermore, the applicativeness of the argument is equal to the applicativeness
context, which might have to be achieved via subeffecting. The use of applicativeness annotations makes
it possible to add a rule for applications which are already strict ([r-sapp]). We ignore the relevance of the
function, and propagate the relevance of the entire expression directly into the argument.

The conditional in [r-if] cannot be applicative because we can only match on booleans which cannot

14 RELEVANCE AND APPLICATIVENESS TYPING

be applied. The adaptations for [r-succ], [r-pred], [r-iszero] and [r-error] are trivial. The subeffecting rule
[r-sub] automatically weakens the applicativeness to L if the relevance is subeffected, as the invariant
𝜑 ⊑ 𝜓 might not be respected otherwise.

The definition for context split is also updated to reflect the addition of applicativeness annotations
in the environment.

[] ⋄ [] = []
Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑1, 𝜓1)] ⋄ Γ̂2[𝑥 ↦ (̂𝜏 , 𝜑2, 𝜓2)] = (Γ̂1 ⋄ Γ̂2)[𝑥 ↦ (̂𝜏 , 𝜑1 ⊓ 𝜑2, 𝜓1 ⊓ 𝜓2)]

Recall that const could be derived as ̂𝜏1
S
−→ ̂𝜏2

L
−→ ̂𝜏1 with respect to the original rules. Under the new

rules, leaving the applicativeness annotations uninstantiated, we instead derive the type

̂𝜏1
(𝜓1⊔𝜓2,𝜓1,𝜓1)
−−−−−−−−−→ ̂𝜏2

(L,L,𝜓2)
−−−−−→ ̂𝜏1

The second argument is still not relevant regardless of how the function is applied, but the first argument
only becomes relevant when the function is guaranteed to be fully applied, which is when 𝜓1 and 𝜓2
become S. This means we can transform ((𝜆𝑥.𝜆𝑦.𝑥) error false) to ((𝜆𝑥.𝜆𝑦.𝑥) • error false), but we
cannot transform ((𝜆𝑥.𝜆𝑦.𝑥) error) to ((𝜆𝑥.𝜆𝑦.𝑥) • error).

To prove that the partial application of const cannot be transformed to a strict application, we attempt
to transform the function by having an S-annotation on the function arrow. Since the entire term is not
guaranteed to be applied, we have to start the inference in an L-context for applicativeness. This means
the right applicativeness annotation on the function arrow becomes L, which is the annotation used for
containment. Since we contain on L, all annotations in the environment have to be set to L, which is
impossible if the function is relevant. Therefore, this transformation is impossible, meaning we can only
annotate the first argument with an L-annotation, which means rule [r-app1] cannot be used. Thus we
have to use rule [r-app2] which cannot perform a transformation.

S� []

L� [𝑥 ↦ (̂𝜏 , S, 𝜓)] [𝑥 ↦ (̂𝜏 , S, 𝜓), 𝑦 ↦ (bool, L, L)] ⊢ 𝑥 ∶ ̂𝜏 (S,𝜓)

[𝑥 ↦ (̂𝜏 , S, 𝜓)] ⊢ 𝜆𝑦.𝑥 ∶ (bool
(L,L,𝜓)
−−−−→ ̂𝜏)(S,L)

[] ⊢ 𝜆𝑥.𝜆𝑦.𝑥 ∶ (̂𝜏
(𝜓,S,L)
−−−−→ bool

(L,L,𝜓)
−−−−→ ̂𝜏)(S,S) [] ⊢ error ∶ ̂𝜏 (S,L)

[] ⊢ (𝜆𝑥.𝜆𝑦.𝑥) error ∶ (bool
(L,L,𝜓)
−−−−→ ̂𝜏)(S,L)

4
Helium

This chapter discusses the design philosophy of the Helium compiler (4.1), its architecture (4.2) and the
Core language (4.3).

4.1 Design philosophy

Helium is a compiler for Haskell, developed at Utrecht University [9]. The target audience of Helium is
students learning Haskell, and is not intended for industry use. The design philosophy of the compiler
is to give high-quality (type) error message. Consider the function (sic), which is a syntax error as the
closing bracket should be replaced by a parenthesis. GHC, the de facto standard Haskell compiler [7],
gives an error which only points out the point of the parse error (4.1). If this function is executed in
GHCi, only the parse error message appears. The red arrow pointing to the syntax error is not present,
leaving the user to figure out where exactly the error occurs.

Figure 4.1: Message from GHC for syntax errors

Helium is more helpful by pointing out the cause of the syntax error and giving a hint to fix the
problem 4.2.

Figure 4.2: Message from Helium for syntax errors

16 DESIGN PHILOSOPHY

Another areawhere theHeliumcompiler aims to bemore helpful is type errors. Consider the function
f ∶∶ [Bool]
f = map [1, 2, 3] even

The error here is that the arguments to map are switched, as the first argument should be the function
and the second argument should be the list. GHC throws two error messages, one for each argument
(4.3). The first one claims that it expects a function but instead receives a list of something, which is a
bit confusing given that the actual types of the arguments are not used. The second error expects a list
instead of a function and gives the same message, but then assesses that the probable cause of this error
is the function even being applied to too few arguments, pointing the user in the wrong direction as the
actual fix is switching the arguments.

Figure 4.3: Message from GHC for type errors

Helium provides one error message with the full type signature of the function, including the instan-
tiated types Bool and Int, and gives the user the probable fix of switching the arguments (4.4).

Figure 4.4: Message from Helium for type errors

Recent work in the Helium compiler includes the addition of heap recycling analysis [22], normaliz-
ing the core representation [13], higher-ranked region inference for compile-time garbage collection [4],
and type error diagnosis for OutsideIn(X) [3].

HELIUM 17

4.2 Architecture
The Helium compiler has eleven phases, of which the first eight are:

Lexing converts the input into a sequence of tokens, removing whitespace.

Parsing builds a representation of the program according to the Haskell Language Report [14].

Importing handles the importing of Prelude and other modules specified in a Haskell file.

Resolving operators resolves operators based on their infix specification in lists of expressions.

Static checks performs static checks on the program such checking for undefined variables and scope
errors, but also for warnings like missing type signatures;

Kind inferencing infers the kinds of types. This phase is optional and turned off by default.

Type inference directives loads typing strategies which help the type inferencer to give better error
messages.

Type inferencing and checking infers the types of expression and checks whether they match the
type signatures. The generated constraints are solved using Top [22].

The next two phases handle desugaring to intermediate representations: Core and Iridium. The ab-
stract syntax tree from Helium is desugared to Core (see 4.3). The resulting Core representation is then
desugared to Iridium. Iridium is a strict, imperative language which handlesmemory allocation and lazi-
ness. One of the functions defined in Iridium is seq. The two optimizations which are performed in this
phase are dead code removal and tail recursion [4]. Finally, Iridium is desugared to the LLVM back-end.
LLVM defines primitive operations such as addition and comparison of integers [11].

4.3 Core
Core is the first intermediate representation used in the Helium compiler. It is an explicitly-typed variant
of SystemF. Inside Core, various optimizations are performed, such as let-inlining and strictness analysis.
As the new strictness analysis developed in this thesis is set to replace the old one, it will also be performed
on Core. This section contains information on the module system (4.3.1), type system (4.3.2), expression
representation (4.3.3), optimization passes (4.3.4) and the existing strictness analysis (4.3.5).

4.3.1 Module
Amodule in Core consists of the following five fields: name, major version, minor version, imports and a
list of declarations. A declaration can be either a DeclValue (functions), DeclAbstract (imported func-
tions), DeclCon (constructors), DeclExtern (foreign functions), DeclTypeSynonym (type synonyms
and newtypes) or DeclCustom (datatypes, infix, …). All declarations have a name, a flag whether they
are exported or not, a type (except DeclCustom) and a list of customs which contain any additional infor-
mation.

4.3.2 Type system
The type system of Core is defined in figure 4.5:

TCon represents type constants. They can be regular datatypes, tuples and typeclasses. The function
arrow is also a constant, but needs to be used within an application.

18 CORE

data Type = TCon TypeConstant
∣ TVar TypeVar
∣ TAp Type Type
∣ TForall Quantor Kind Type
∣ TStrict Type

data TypeConstant = TConDataType Id
∣ TConTuple Int
∣ TConTypeClassDictionary Id
∣ TConFun

newtype Quantor = Quantor (Maybe String)
data Kind = KFun Kind Kind

∣ KStar

Figure 4.5: Type datatype in Core

TVar represents type variables, which are represented as De Bruijn indices, meaning TypeVar is just a
synonym for Int.

TAp is used for application to datatypes. It is also used to represent functions, with the function 𝜏1 → 𝜏2
represeted as (TAp (TAp (TCon TConFun) 𝜏1) 𝜏2).

TStrict is used to communicate strict fields in constructors or strictness information from imported
functions. It should not occur in any other place.

TForall allows for quantification over types. Quantors can have an optional name. Kind is the type of
a type constructor. For example, Int has kind * (KStar) while Maybe has kind * -> * (KFun KStar
KStar) as it has one argument.

4.3.3 Expression
The expression syntax of Core is defined in figure 4.6.

Con represents data constructors and tuples.

Lit represents literals, such as integers and strings.

Var represents variables. Unlike type variables, these are referenced by identifier.

Let represents let bindings. A let binding has a variable with an expression bound to it, and a body. The
bindings can be strict, in which case the binding is evaluated before the body, or recursive.

Lam represents lambda functions, which have a flag whether it is strict or not, a variable and a body.

Ap represents function or constructor application.

Match represents pattern matching on a variable, including if-then-else statements. As the variable
needs to be evaluated before the pattern match, it is always preceded by a strict let or lambda
which evaluates the value to be matched on. Patterns which can be matched on are constructors
(including tuples) and literals. A default pattern can be specified for the user, or will be placed
there by the parser if it is possible for the pattern match to fail.

Forall represents quantification. If the type of the expression is quantified, the expression should be
preceded by foralls as well.

ApType represents type instantiation. If the type of the expression is quantified, all occurrences of the
type variable will be replaced by the given type.

HELIUM 19

data Expr = Con Con
∣ Lit Literal
∣ Var Id
∣ Let Binds Expr
∣ Lam Bool Variable Expr
∣ Ap Expr Expr
∣ Match Id Alts
∣ Forall Quantor Kind Expr
∣ ApType Expr Type

data Variable = Variable {variableName ∶∶ Id, variableType ∶∶ Type}
data Binds = Rec [Bind]

∣ Strict Bind
∣ NonRec Bind

data Bind = Bind Variable Expr
type Alts = [Alt]
data Alt = Alt Pat Expr
data Pat = PatCon Con [Type] [Id]

∣ PatLit Literal
∣ PatDefault

data Literal = LitInt Int IntType
∣ LitDouble Double
∣ LitBytes Bytes

data Con = ConId Id
∣ ConTuple Int

Figure 4.6: Expr datatype in Core

4.3.4 Passes
Core contains the following optimization passes:

Renamemakes all identifiers globally unique.

Saturate saturates all calls to constructors.

LetSort sorts all let bindings such that variables only occur after definition, or are actually recursive.

LetInline1 inlines let bindings if the definition is used at most once.

LetInline2 performs let-inlining again. This pass is done twice consecutively because it attempts to
reach a fixpoint. There is no guarantee of optimality after these passes, but the result after two
iterations is considered good enough compared to adding extra passes until a fixpoint is reached.

Normalize moves all non-trivial subexpressions to let bindings. This is useful for the strictness pass
because every application only contains variables as arguments, and those can be made strict in
the corresponding let binding.

Strictness1makes all expressions which are guaranteed to be used strict (see 4.3.5).

Strictness2 performs the strictness analysis again. Like LetInline, the strictness pass also has another
iteration to improve the solution.

20 CORE

RemoveAliases removes let bindings which only give a new name for a variable, with every occurrence
of the variable renamed to its original identifiers.

ReduceThunks transforms cheap expressions such as literal and constructors to strict bindings, as this
transformation does not change the semantics of the program.

Lift lifts lambdas and non-strict lets to top level functions.

Strictness3 runs the strictness analysis again as Lift introduces new top-level functions. Another strict-
ness pass can use this extra information to reach an even better solution.

4.3.5 Strictness analysis
Strictness analysis is already included in the current optimization passes. It is executed three times,
twice before lifting and once after lifting. Because it is a fixed point algorithm with only two iterations,
there is no guarantee of optimality. The existing analysis will serve as benchmark to compare against the
replacement strictness analysis, which is based on a type and effect system and only needs one pass to
reach its solution. To give an idea of what the strengths and weaknesses of the current analysis are, a
short description of the current pass is given.

The goal of strictness analysis is to turn as many non-recursive let bindings into strict bindings and
non-strict lambdas into strict lambdas, without changing the semantics of the program. On encountering
a variable in the expression, the arity of the variable is compared against the number of arguments given
to see if it is fully applied, which means it is safe to derive information. For variables which do not define
functions, this is always the case. For variables which define functions, this depends on the number of
applications beforehand. If the arity matches the number of arguments, the applied variables are added
to the set of variables which can be made strict, otherwise they are omitted. On a case expressions, the
sets from all cases are intersected, as only variables which are strict in all cases can be made strict. In
applications, the union of the set from the function and the set from the argument is taken, as being strict
in either branch is enough. On let and lambdas, all variable identifiers which are in the set obtained
from the body can be transformed from non-strict to strict. If this is the case, the remaining set can be
propagated as the let or lambda is now guaranteed to be executed.

There were concerns over the soundness of the current analysis, which is one of the reasons a re-
placement is wanted. Upon inspection, the following example resulted in an illegal transformation:

f ∶∶ Bool ∶ export f
= let 1 ∶ Bool = True;
in let 2 ∶ () → () = let 3 ∶ () = ⊥ {()};

in seq {()} {()} 3;
in seq {() → ()} {Bool} 2 1;

Because seq is strict in both arguments when fully applied, identifiers 1 and 2 were made strict, which is
correct. However, it also made identifier 3 strict, which is not allowed as it was supplied to the partially
applied seq. As a result, the program now returns ⊥ instead of True, and ⊥ diverges. The cause of
this issue was found in the handling of variable. If a variable representing a function is fully applied, it
returns all information regarding its arguments, as it should. However, the exact same information was
returned in the partially applied case, resulting in the unsoundness. This bug has been fixed to make the
comparison against the new analyses fairer. The results of the experimentation have not hinted at any
other case of unsoundness.

Another disadvantage to the current analysis is its lack of information across modules. Functions
store a list of booleans as strictness information, one per argument. Within its own module, these flags
can be used to determine the strictness of arguments. However, this information is not stored after com-
pilation of themodule, meaning it is not available for anymodule which imports it. This means functions
defined in Prelude do not offer strictness information, with the only alternative being redefinition of every
function which defeats the purpose of a modular system.

5
Related work

The related work describes analyses which are related to strictness analysis (5.1), strictness analysis in
UHC (5.2), and recent work in Helium (5.3).

5.1 Related analyses

5.1.1 Relevance typing
The goal of strictness analysis is to identify which functions can be evaluated in a strict manner, as op-
posed to lazy [10]. Changing these functions does not change the semantics of the program but generally
improves the performance cost. However, strictness analysis is undecidable and often too conservative
in its estimation.

Alternatively, one could consider relevance typing. A variable x is relevant to a term 𝜏 if x is guar-
anteed to be evaluated whenever 𝜏 is evaluated. In the analysis described by Holdermans and Hage, the
annotation S is used for terms which provide relevant abstractions, and L for those who do not. Note that
S and L can be interpreted as strict and lazy, but also as small and large, as a partial order ({S, L}, ⊑) can
be imposed, characterized by 𝑆 ⊑ 𝐿. Also note that strictness and relevance analysis do not necessarily
agree. For instance, 𝜆𝑥.error is strict but not relevant.

To optimize the program by introducing as many strict applications as possible, we have to show that
for a non-strict application 𝜏1𝜏2, successfully evaluating 𝜏1 will always result in a relevant abstraction.
The optimization is justified by the observation that 𝜏1’s relevancemeans the evaluation of 𝜏2 is required.
Because it is required to be evaluated, it is better to evaluate it strictly rather than non-strict. Holdermans
and Hage demonstrated that a relevance type system for a lazy language can be used to make programs
more strict.

Relevance typing cannot simply handle manual strictness in programs, meaning it is unsuitable for
real-world languages like Haskell. The system can be refined to include annotations of applicativeness
as well. These use the same annotations and partial order as before, but are annotated on the arguments
instead of the function arrows. A term is applicative if it guaranteed to be applied to an argument at least
once. Applicativeness implies relevance: if an expression is guaranteed to be applied to an argument, it
is also guaranteed to be evaluated [10].

22 RELATED ANALYSES

5.1.2 Usage analysis
Usage analysis is a combination of sharing analysis and uniqueness typing. Sharing analysis and unique-
ness typing both try to determine if a part of a program is only used once [6]. Sharing analysis uses this
information to avoid unnecessary closure updates, as the value is only used once it is not necessary to
write the result back to the thunk. Uniqueness typing is concerned with the referential transparency of
objects such as file handles which are meant to only be used once.

Hage, Holdermans and Middelkoop provide a generic usage analysis which combines the previous
two analyses. In their paper, they show a subsumption relation between the analyses, an explicitly typed
calculus including type polymorphism, effect polymorphism and subeffecting. Because subeffecting is
incorporated into a framework of qualified types, many tools and techniques can be reused [6].

Walker describes substructal type systems, which limit the number of uses on operations and data
structures [25]. The information from this type system can be used for compiler optimizations. If an
operation is only allowed to be used once, it is beneficial to immediately evaluate it when it is used.

In his PhD thesis, Wansbrough provides a polymorphic usage analysis implemented in the Glasgow
Haskell Compiler [26]. In the appendix, he observes that strictness is a property of usage. An argument is
strict if it is used at least once. Wansbrough provides an extended annotation domain which incorporates
strictness and absence analysis in addition to usage annotations.

5.1.3 Cardinality analysis
Cardinality analysis answers the following three questions:

• How often is a lambda expression called?

• Which components of a data structure are never evaluated?

• How many times is a syntactic thunk evaluated?

There is a difference between called and evaluated. Under normal circumstances, any argument
which is called is also evaluated. However, Haskell has the seq function which forces evaluation of its
first argument. If this argument is a function, it is evaluated to a lambda, but this does not guarantee
that this lambda is used elsewhere. Forcing evaluation on a function which will never be called should
be avoided.

Lambda expressions which are only called once are called one-shot lambdas. These are fairly com-
mon in functional programming, which makes them a target for optimization. For instance, an opti-
mizing compiler would perform short-cut deforestation to fuse two maps into one instead of needing an
intermediary list. However, currying complicates this analysis. The analysis needs to distinguish between
how often an argument is called and how often it is used. It beneficial for a function to be called many
times but used only once instead of being called once but used many times. In the first case, inlining
functions results in an improvement of the program as it reduces the number of thunks. In the second
case, inlining should be avoided.

Arguments which are never used are a waste of memory. However, optimizing unused parts of data
structures is not trivial. Consider a tuple of two integers, of which only the first is used. If this tuple is
referred to by a variable, it does not know yet that the second value will not be used, thus passing around
unused arguments which could have been optimized.

Lazy languages use thunks to memoize parts of the program which have not been evaluated yet.
When a thunk is evaluated, the result is written back to the thunk so the evaluation does not have to take
place again whenever the thunk is used again. If a thunk is only evaluated once, there is no need to write
back the result as it will never be used again. Preventing single-entry thunks from updating themselves
after evaluation is one of the optimizations cardinality analysis sets out to achieve [20].

RELATEDWORK 23

5.1.4 Counting analysis
Counting analysis is a combination of three different analyses: absence, strictness and usage (which
consists of sharing analysis and uniqueness typing). All analyses have in common that they determines
the number of times an expression is evaluated. Absence analysis determines if an expression is never
used and thus can safely be removed. Strictness analysis determines if an expression is used at least once,
which means it can be evaluated strictly rather than lazily. Sharing analysis determines if an expression
is used at most once and hence does not require to write its result back to its closure. Uniqueness typing
determines if an annotated expression is used at most once. Absence, strictness and sharing analysis are
all optimizing analyses, while uniqueness typing is concerned with the correctness of the program.

Sergey et al combined absence, sharing and strictness into cardinality analysis (see 5.1.3) [20]. Ver-
stoep combined the four individual analysis into one analysis in his thesis [24]. Bremer implemented
counting analysis in the Utrecht Haskell Compiler, a different Haskell compiler originating fromUtrecht
University [2].

5.1.5 Higher-ranked polyvariance
A monovariant analysis associates a single abstract value per expression in the program. Polyvariance
allows for a most general value to be associated with a let-bound expression, which can have different
instantiations per call site. Going another step further, we can generalize over properties of lambda-bound
identifiers. This is called higher-ranked polyvariance. Thorand and Hage introduced a higher-ranked
polyvariant type system for dependency analysis. Dependency analysis is a generic analysis which could
serve as blueprint for other analyses [21].

5.2 Strictness analysis in UHC
Strictness analysis has already been implemented in the Utrecht Haskell Compiler [5]. The Utrecht
Haskell Compiler is a different compiler developed at Utrecht University, and while it has some things
in common with Helium, they have largely grown their separate ways over the years. The theoretical
background is based on the work of Lokhorst [12], with the first implementation done by Verburg [23].
Passalaque Martins later extended the analysis to include polyvariance [19].

Lokhorst defined strictness optimization in an typed intermediate language [12]. He implemented
optimizations for first-order functions, which can be extended to include other analyses. Furthermore,
he discussed extensions to include strictness optimizations for higher-order functions.

Verburg later implemented a monovariant strictness analysis in UHC [23]. The reason for imple-
menting a monovariant but not a polyvariant analysis was that the latter also required major work in the
compiler itself. The implementation was based on the relevance typing approach by Holdermans and
Hage [10].

Passalaque Martins developed a polyvariant strictness analysis for UHC. His research consists of a
polyvariant system with support for higher-order functions and user-annotated strictness [19].

The work from Verburg and Passalaque Martins cannot directly be copied into this research due to
the differences in compiler architecture. However, certain backgrounds and analysis frameworks can be
utilized in this research.

5.3 Recent work in Helium

5.3.1 Heap recycling analysis
Heap recycling analysis is the most recent addition to Helium. The thesis by Van Klei provides an imple-
mentation of heap recycling analysis in Helium [22]. When updating the value of an expression, fresh

24 RECENTWORK IN HELIUM

heap space is allocated for the result. The original allocation is now redundant and could safely be re-
moved, but this requires garbage collection. It would bemuch easier if the thunk could be reusedwith the
result and avoid allocating extra memory. Van Klei’s implementation in Helium provided considerable
improvements in terms of memory usage for simple programs.

5.3.2 Higher-ranked inference for compile-time garbage collection
Originally, Helium used the LVM back end. However, this back end could no longer support 64-bit ma-
chines which are increasingly common nowadays. Hence, a switch was made to LLVM [11]. This intro-
duced a new intermediate language into the compiling pipeline: Iridium.

In hisMaster’s thesis, DeWolff investigated higher-ranked inference for compile-time garbage collec-
tion. Tied within this research was a simple strictness analysis, which only operates on first-order parts
of the program. Strictness analysis is performed before the region analysis, so that the complexity of the
region analysis is reduced. After evaluating a thunk, the garbage collector can remove that thunk, which
is much harder to do using region inference. The strictness analysis is performed on the Core language
[4].

6
Research questions and setup

The chapter describes the main research question and three subquestions (6.1) and the setup of the ex-
periment (6.2).

6.1 Research questions

[MQ]What are the trade-offs between precision and analysis cost of strictness analysis
in a real-world compiler?
This is the main research question for this thesis. A simple strictness analysis can give some simple
improvements, but will probably not be able to handlemore complicated cases. The analysis can bemade
more precise, at the cost of amore complex implementation. There are trade-offs between the precision of
the analysis and the cost of the analysis in terms of memory usage and speed. The two different versions
of the analysis scheduled to be implemented are a monovariant analysis and a polyvariant analysis.

[SQ1] Can relevance and applicativeness typing analysis be implemented in the Helium
compiler?
Helium is a compiler for Haskell, satisfying the “real-world compiler” part of the main question. Imple-
menting the analysis defined in chapter 3 in Helium will be the first part of this thesis and the basis for
the other subquestions.

[SQ2] Can a representative benchmark be constructed to compare trade-offs?
To compare the different versions, a benchmark has to be constructed. The benchmarks consist of multi-
ple programs which can or cannot be handled by certain analyses. The benchmarks should also include
measurements for time and space usage to measure the analysis cost.

[SQ3] What are the trade-offs against the current strictness analysis in Helium?
Helium already contains a strictness analysis in the Core pipeline, which already provides some perfor-
mance improvement. However, as described in section 4.3.5, there aremany cases in which the strictness
analysis does not infer strictness while it definitely should be possible. There are also suspicions that the

26 SETUP

analysis is unsound. Furthermore, it currently requiresmultiple passes which still results in a suboptimal
solution. This analysis can be used to compare the improved strictness analysis constructed in this thesis.

6.2 Setup
There are three different analyses: a monovariant analysis, a polyvariant analysis, and the original analy-
sis. They are compared on twomeasures: precision and analysis cost. The expectation is that the polyvari-
ant analysis ismore precise than themonovariant analysis but has aworse analysis cost. Both analyses are
more advanced than the original analysis and should bemuchmore precise, while limiting the difference
in analysis cost.

Precisionmeasures the number of let and lambdaswhich aremade strict. A number of these bindings
are already strict from the parser, mainly let bindings which precede pattern matches. The precision is
measured after the second strictness pass, since ReduceThunks also introduces strictness, which might
not give an accuratemeasure of the precision of the strictness analysis anymore. Note that themono- and
polyvariant analysis only need one pass of the strictness, and the second pass is not executed. After this
pass, the Core source file is examined and the number of exclamation marks is counted. It is important
that all of these transformations are in fact sound.

Analysis cost is measured by the time it takes to compile the code. As it is difficult to measure the
effect of just the strictness pass, and the result of strictness analysis influences passes which come after
it, the time it takes to perform the entire compilation is measured. The time is measured using RTS with
profiling enabled.

The source filewhich is used to perform the experiment isTest.hs, displayed in figure 6.1. The analysis
cost is measured over the entire compilation of this module, which includes importing Prelude. Prelude
contains roughly 1000 lines of Haskell code, which is desugared to roughly 5000 lines of Core. Prelude
defines a lot of functions but also contains some complex and diverse functions such as IO functions and
type classes. The precision is measured on both the Prelude and Test module. While Prelude defines a
lot of functions, it does not use all of them in other functions. For instance, ($) is defined but never used
internally. The Test module uses some of the functions from Prelude and applies them to arguments to
see if they can be made strict.

RESEARCH QUESTIONS AND SETUP 27

module Test where
rconst ∶∶ Bool → Bool → Bool
rconst x y = y
const3 ∶∶ Bool → Bool → Bool → Bool
const3 x y z = x
nstrict ∶∶ Bool → Bool → Bool
nstrict x y = True
uconst, urconst, uconst3 ∶∶ Bool
uconst = const True False
urconst = rconst True False
uconst3 = const3 True False True
uconstp, urconstp, uconst3p ∶∶ Bool → Bool
uconstp = const True
urconstp = rconst True
uconst3p = const3 True False
uconst3p′ ∶∶ Bool → Bool → Bool
uconst3p′ = const3 True
fold1, fold2, fold3, fold4, fold5, fold6, fold7, fold8 ∶∶ Bool
fold1 = foldr seq True [False,True]
fold2 = foldr const True [False,True]
fold3 = foldr rconst True [False,True]
fold4 = foldr nstrict True [False,True]
fold5 = foldl seq True [False,True]
fold6 = foldl const True [False,True]
fold7 = foldl rconst True [False,True]
fold8 = foldl nstrict True [False,True]
applys, applyl ∶∶ Bool
applys = id $ True
applyl = (const False) $ True
applyp ∶∶ Bool → Bool
applyp = const $ True
constx3, constx25 ∶∶ Bool
constx3 = const (const True False) (const True False)
constx25 = const (const True False) (const True)
constl, constlf, constlp ∶∶ Bool
constl = let f = 𝜆x y → x in f True False
constlf = let f = 𝜆x y → x in f (f True False) (f True False)
constlp = let f = 𝜆x y → x in f (f True False) (f True)
caseall, case1a, case1b, casenone ∶∶ Bool → Bool → Bool
caseall x y = if x then y else y
case1a x y = if x then y else True
case1b x y = if x then True else y
casenone x y = if x then True else False
seq2 ∶∶ Bool
seq2 = (seq False) ‵seq‵ True

Figure 6.1: Test.hs

28 SETUP

7
Implementation

The implementation section contains the implementation of strictness analysis (chapter 3) in Helium
(chapter 4). This includes updated typing rules (7.1), an algorithmic implementation (7.2), and the adap-
tation to a polyvariant analysis (7.3).

7.1 Transformation rules
The type system, terms and transformation rules described in section 3.2 only support a small portion of
the Helium system. Therefore, we need to extend each of them to be closer to the real system. We assume
variables, constructors, literals, datatypes and type variables are sets ranged over 𝑥, 𝑐, 𝑙, 𝑑 and 𝛼.

𝑥 ∈ Var
𝑐 ∈ Con
𝑙 ∈ Lit
𝑑 ∈ Data
𝛼 ∈ TypeVar

The definition for the type environment remains unchanged, mapping from variables to a type, relevance
annotation and applicativeness annotation.

Γ̂ ∈ TEnv = Var →fin T̂ype × Ann × Ann

7.1.1 Terms
Figure 7.1 describes the updated terms for the new transformation rules, with the constructor on the right
hand side describing their equivalent constructors in the Helium type system.

Compared to the original system, true and false have been combined with all other data constructors
in a single term for constructors. Natural numbers are now part of the literals, which also includes floats,
characters and strings. Variables remain the same as they were. Abstraction is split into two terms,
reflecting the ability to make lambdas strict. They also store the annotated type of the variable, which is

30 TRANSFORMATION RULES

𝑡 ∶∶= 𝑐 Con
∣ 𝑙 Lit
∣ 𝑥 Var
∣ 𝜆𝑥{ ̂𝜏}.𝑡 ∣ 𝜆!𝑥{ ̂𝜏}.𝑡 Lam
∣ 𝑡1𝑡2 Ap

∣ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 ∣ let! 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 ∣ letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡𝑛 in 𝑡 Let
∣ case 𝑥 of 𝑎𝑛 Case
∣ forall 𝛼.𝑡 Forall
∣ 𝑡{ ̂𝜏} ApType

𝑎 ∶∶= 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡 PatCon
∣ 𝑙 → 𝑡 PatLit
∣ _ → 𝑡 PatDefault

Figure 7.1: Terms and patterns

helpful in the algorithm. Application (both function and constructor) no longer has its strict counterpart,
reflecting the change in introducing strictness. Let bindings did not exist in the original system, and have
been added in three flavors: non-strict, strict and recursive. Like abstractions, they also store the type of
the variable. If-then-else is generalized to a case system, which can pattern match on any datatype and
have any number of cases. Like in Helium, there needs to be a strict let or lambda defining the variable to
be matched upon. A pattern 𝑎 is either a data constructor with possible identifiers for constructor fields,
a literal or a default pattern which matches all cases. Finally, the system allows for type generalization
and instantiation.

7.1.2 Annotated types
Figure 7.2 described the annotated types, which see a smaller change compared to the terms.

̂𝜏 ∶∶= 𝑑 ̂𝜏 TCon, TAp TCon, TAp (TAp TCon) etc.

∣ ̂𝜏
(𝜓,𝜑,𝜓)
−−−−→ ̂𝜏 TAp (TAp (TCon ConFun)

∣ 𝛼 TVar
∣ ∀𝛼. ̂𝜏 TForall
∣ ! ̂𝜏 TStrict

𝜑, 𝜓 ∶∶= 𝑆 ∣ 𝐿

Figure 7.2: Annotated types

Booleans and natural numbers are grouped together, and all other possible datatypes (even those
of kinds other than *) are combined into one rule for datatypes. Tuples are assumed to be part of the

IMPLEMENTATION 31

datatypes for the purpose of this chapter, with the implementation of these delegated to Appendix A.
Function arrows remain annotated with three annotations, one relevance and two applicativeness anno-
tations. Furthermore, type variables, the ability to quantify over them, and a strictness type are added.
The latter should only be used for datatypes and for functions defined in Iridium.

7.1.3 Transformation rules
With the extended terms and types, the transformation rules described in 3.2 also have to be extended. The
transformation no longer occurs on applications but instead focuses on variables in lets and lambdas. The
transformation rules are still of the form Γ̂ ⊢ 𝑡� 𝑡′ ∶ ̂𝜏 (𝜑,𝜓), where Γ̂ represents the environment which
maps variables to a triplet containing the annotated type, a relevance and applicativeness annotation, 𝑡
represents the original term, 𝑡′ represents the transformed term, ̂𝜏 represents the annotated type of the
term, and 𝜑 and 𝜓 represent the relevance and applicativeness context respectively.

Constructors, literals and variables

The transformation rules for constructors, literals and variables are described in figure 7.3.

[] ⊢ 𝑐 � 𝑐 ∶ ̂𝜏 (𝜑,𝜓) [r-con]

[] ⊢ 𝑙 � 𝑙 ∶ ̂𝜏 (𝜑,L) [r-lit]

[𝑥 ↦ (̂𝜏 , 𝜑, 𝜓)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 (𝜑,𝜓) [r-var]

Figure 7.3: Transformation rules for constructors, literals and variables

Rule [r-con] handles constructors, and is a generalization of the [r-true] and [r-false] rules in the orig-
inal inference rules. The original system was limited to booleans, whereas the actual system can handle
any (user-defined) datatype. This also allows for constructors with arguments, and thus the applicative-
ness context is no longer mandatory to be L. The spirit of the rule remains the same, as the constructor
can only be used on an empty environment, meaning all variables in it have to be mapped to L by the
weakening rule.

Rule [r-lit] handles literals, which can be integers, doubles, characters or strings. The rule has the
same format as [r-con], except literals cannot be applied to arguments, which means the applicativeness
context has to be L here.

Rule [r-var] is the only syntax-directed rule which remains exactly the same. If a variable occurs in
the expression, we set its corresponding values in the environment to the current contexts. All other
variables occurring in the environment have to be weakened.

Application

The transformation rule for applications is described in figure 7.4.

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

(𝜓2,𝜑0,𝜓)
−−−−−−→ ̂𝜏)(𝜑,𝜑) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑⊔𝜑0,𝜑⊔𝜓2)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
[r-app]

Figure 7.4: Transformation rule for applications

The original system included three different rules for application: one to turn a normal application
into a strict application ([r-app1]), one which keeps the normal application ([r-app2]) and a rule which

32 TRANSFORMATION RULES

handles strict applications ([r-sapp]). In Helium, strictness can be introduced this way as well, though
it requires inserting the $! operator everywhere. Instead, Helium records strictness at the definition of
variables in lambda- or let bindings.

For the application rule, it means one rule suffices in the system. Rules [r-app1] and [r-app2] can be
combined into one rule, while [r-sapp] becomes obsolete as the syntax is no longer present. The relevance
context of the applicant is set to the join of the incoming relevance context 𝜑 and relevance annotation
𝜑0 on the function arrow in the type of the function. This is an accurate representation according to the
original rules, as rule [r-app1] would join 𝜑 with S, which results in 𝜑, and [r-app2] would join 𝜑 with
L, which results in L. The diamond operator for context splitting has changed appearance to receive the
meet operator as input, but this is equivalent to the original definition of ⋄. The extended definition of
this operator is explained later on.

Abstraction

The transformation rules for abstractions are described in figure 7.5.

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,S,𝜓2)
−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-abs1]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , L, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,L,𝜓2)
−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-abs2]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆!𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,𝜑1,𝜓2)
−−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-sabs]

Figure 7.5: Transformation rules for abstractions

As described in the previous section, Helium uses a different way of introducing strictness. Bang
patterns are introduced on the variables in abstractions instead of the applications. This means the ab-
straction rule has to be split into three different rules, similar to how the application rule was split into
three rules in the original system. Furthermore, each variable now has its type information stored as well,
though this is the same type as ̂𝜏1 in the original rule.

Rule [r-abs1] corresponds to rule [r-app1] in the original system, where a non-strict abstraction is
turned into a strict abstraction. A variable can only be made strict if it is both relevant, meaning the
middle annotation on the arrow has to be S in order for the transformation to be valid. The containment
remains unchanged, and the relevance context of the term inside the abstraction is still set to S tomeasure
the relevance of this particular variable within its own scope.

Rule [r-abs2] corresponds to rule [r-app2] in the original system, which does not turn a regular ab-
straction into a strict abstraction. The new rule therefore does not introduce a bang on the variable. This
is the case when the relevance annotation is equal to L.

Finally, rule [r-sabs] corresponds to rule [r-sapp], which handles abstractions which are already de-
clared as strict. The relevance annotation on the function arrow is not important for the transformation
rules, as the lambda is strict regardless of whether it is relevant. We can add the variable to the environ-
ment with its relevance annotation set to S.

Let bindings

The transformation rules for let bindings are described in figure 7.6.
Let bindings do not exist in the original type inference rules, but play an important role in Helium.

The let bindings are one of two ways (the other being lambda-abstractions) to introduce strictness. As

IMPLEMENTATION 33

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,𝜑)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let1]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , L, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑⊔𝜑1,L)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let2]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑⊔𝜑1,𝜑⊔𝜓1)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let! 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let!]

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂2[𝑥1 ↦ (̂𝜏1, 𝜑1, 𝜓1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛, 𝜓𝑛)] ⊢ 𝑡𝑖 � 𝑡′
𝑖 ∶ ̂𝜏 (𝜑⊔𝜑𝑖,𝜑⊔𝜓𝑖)

𝑖
𝜑 � Γ̂1 Γ̂1[𝑥1 ↦ (̂𝜏1, 𝜑1, 𝜓1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛, 𝜓𝑛)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝜓)

0

Γ̂1 ⋄⊓ Γ̂2 ⊢ letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡𝑛 in 𝑡 � letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡′𝑛 in 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)
0

[r-letrec]

Figure 7.6: Transformation rules for let bindings

with the abstractions, there are three different rules depending on the strictness of the variables. Rule
[r-let1] turns a non-strict let into a strict let, rule [r-let2] leaves the binding as normal, and rule [r-let!] is
used for bang-patterns.

The original system can give an indication of how a rule for let bindings should look, as a non-
recursive let binding let 𝑥 = 𝑡1 in 𝑡2 can be rewritten to (𝜆𝑥.𝑡2)𝑡1. Running the inference rules on
this expression results in the following derivation tree for rule [r-let1], using [r-app] and [r-abs1]:

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0

Γ̂1 ⊢ 𝜆𝑥{ ̂𝜏}.𝑡2 � 𝜆!𝑥{ ̂𝜏}.𝑡′
2 ∶ (̂𝜏

(𝜓1,S,𝜓)
−−−−−→ ̂𝜏0)(𝜑,𝜑)

[r-abs1]
Γ̂2 ⊢ 𝑡1 � 𝑡′

1 ∶ ̂𝜏 (𝜑,𝜑)

Γ̂1 ⋄⊓ Γ̂2 ⊢ (𝜆𝑥{ ̂𝜏}.𝑡2)𝑡1 � (𝜆!𝑥{ ̂𝜏}.𝑡′
2)𝑡′

1 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-app]

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let1]

The derivations for [r-let2] (using [r-abs2]) and [r-let!] (using [r-sabs]) are analogous.
A difference between lambdas and lets is that the latter can be recursive, in which case the derivation

above is not sound as the variables can occur in 𝑡1. Rule [r-letrec] combats this by extending Γ̂2 with the
variables defined in recursive let bindings, such that they can be used in 𝑡1. Unfortunately, no strictness
transformation exists for these bindings as Helium is not designed to handle this. However, information
obtained from the bindings and the body can be used for other, non-recursive let bindings. If a recursive
binding is guaranteed to be used in the body, then any variable guaranteed to be used in the binding itself
can be made strict.

Case

The transformation rules for pattern matches are described in figure 7.7.
If-statements were present in the original system, but pattern matching on arbitrary datatypes was

not possible. Not only is the [r-if] rule insufficient in the actual system, it is also very conservative in its
transformation. Both branches are inferred in an L-context for relevance, which makes it impossible to
infer strictness in the case a variable is guaranteed to be used in both branches. The problem can be fixed
by extending the definition of the context split operation. In all other instances, context splitting used
the meet operator, as being relevant and/or applicative in either part of the expression is enough to be
relevant and/or applicative. This is not correct for case-expression, as a variable has to be relevant and
applicative in all branches. Hence, we should use the join operator instead of the meet.

34 TRANSFORMATION RULES

Γ̂0 ⊢ 𝑥 ∶ ̂𝜏 (S,𝜓) ∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂𝑖 ⊢ 𝑎𝑖 � 𝑎′
𝑖 ∶ ̂𝜏 (𝜑,𝜓)

Γ̂0 ⋄⊓ (Γ̂1 ⋄⊔ … ⋄⊔ Γ̂𝑛) ⊢ case 𝑥 of 𝑎𝑛 � case 𝑥 of 𝑎′𝑛 ∶ ̂𝜏 (𝜑,𝜓) [r-case]

Γ̂[𝑥1 ↦ (̂𝜏1, L, L), … , 𝑥𝑛 ↦ (̂𝜏𝑛, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡 � 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-con]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑙 → 𝑡 � 𝑙 → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-lit]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ _ → 𝑡 � _ → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-def]

Figure 7.7: Transformation rules for pattern matching

The adjusted diamond operator receives an input2 ∈ {⊓, ⊔} to specify which operator needs to be
used for this specific context split. The new definition is as follows:

[] ⋄2 [] = []
Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑1, 𝜓1)] ⋄2 Γ̂2[𝑥 ↦ (̂𝜏 , 𝜑2, 𝜓2)] = (Γ̂1 ⋄2 Γ̂2)[𝑥 ↦ (̂𝜏 , 𝜑12𝜑2, 𝜓12𝜓2)]

Using the new diamond operator, we can define the inference rule [r-case], which can pattern match
on any datatype or literal and can have an arbitrary number of cases. We split the environment into
𝑛 + 1 subenvironments, one for each alternative and one for the variable. Γ̂0 is used for the variable,
which is defined in a strict let or lambda preceding the pattern match. Γ̂1 to Γ̂𝑛 are the environments for
the alternatives, and are split using the join operator. The resulting environment is split with Γ̂0 using
the meet operator. All branches can copy the input contexts without having to weaken them. Only if a
variable is guaranteed to be used in all cases, it will be set to S in the environment before the split.

Rules [a-con], [a-lit] and [a-def] are created to handle the different kind of patterns to match on. The
case for constructors, [a-con], needs to add all variables used for the constructor fields to the environ-
ment. Since we currently have no way of measuring their relevance or applicativeness, we can only set
these annotations to L. Rules [a-lit] and [a-def] do not add anything to the environment, and since no in-
formation can be gained from the literal or wildcard itself, we are only concerned about the information
from the term.

Generalization and instantiation

The transformation rules for generalization and instantiation are described in figure 7.8.

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ forall 𝛼.𝑡 � forall 𝛼.𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝜓) [r-forall]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑡{ ̂𝜏1} � 𝑡′{ ̂𝜏1} ∶ [𝛼 ↦ { ̂𝜏1}] ̂𝜏 (𝜑,𝜓)
[r-aptype]

Figure 7.8: Transformation rules for generalization and instantiation

Generalization and instantiation are also part of the Helium syntax via the Forall andApType expres-
sions. Rule [r-forall] describes generalization, while rule [r-aptype] describes instantiation. The former
quantifies over a (free) type variable, while the latter replaces the occurrence of a type variable with the
given type.

IMPLEMENTATION 35

Subeffecting, weakening and containment

Subeffecting, weakening and containment are described in figure 7.9.

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (L,L)

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝜓) [r-sub]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂[𝑥 ↦ (̂𝜏0, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [r-weak]

𝜑 � [] [c-nil]

S� Γ̂1
S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0, 𝜓0)]

[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L, L)]

[c-cons-l]

Figure 7.9: Subeffecting, weakening and containment

Rules [r-sub], [r-weak], [c-nil], [c-cons-s] and [c-cons-l] remain the same as they were in the initial
system, as subeffecting, weakening and containment are not related to the syntax.

Aside from rules mentioned in previous sections, rules [r-false], [r-true], [r-zero], [r-pred], [r-succ],
[r-iszero] and [r-error] have become obsolete.

Overview

All transformation rules defined in the previous sections are combined into figure 7.10 for convenience.

36 TRANSFORMATION RULES

[] ⊢ 𝑐 � 𝑐 ∶ ̂𝜏 (𝜑,𝜓) [r-con]
[] ⊢ 𝑙 � 𝑙 ∶ ̂𝜏 (𝜑,L) [r-lit]

[𝑥 ↦ (̂𝜏 , 𝜑, 𝜓)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 (𝜑,𝜓) [r-var]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,S,𝜓2)
−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-abs1]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , L, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,L,𝜓2)
−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-abs2]

𝜓 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,𝜓2)

0

Γ̂ ⊢ 𝜆!𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

(𝜓1,𝜑1,𝜓2)
−−−−−−→ ̂𝜏0)(𝜑,𝜓)

[r-sabs]

Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

(𝜓2,𝜑0,𝜓)
−−−−−−→ ̂𝜏)(𝜑,𝜑) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑⊔𝜑0,𝜑⊔𝜓2)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
[r-app]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,𝜑)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let1]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , L, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑⊔𝜑1,L)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let2]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S, 𝜓1)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝜓)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑⊔𝜑1,𝜑⊔𝜓1)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let! 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝜓)
0

[r-let!]

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂2[𝑥1 ↦ (̂𝜏1, 𝜑1, 𝜓1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛, 𝜓𝑛)] ⊢ 𝑡𝑖 � 𝑡′
𝑖 ∶ ̂𝜏 (𝜑⊔𝜑𝑖,𝜑⊔𝜓𝑖)

𝑖
𝜑 � Γ̂1 Γ̂1[𝑥1 ↦ (̂𝜏1, 𝜑1, 𝜓1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛, 𝜓𝑛)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝜓)

0

Γ̂1 ⋄⊓ Γ̂2 ⊢ letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡𝑛 in 𝑡 � letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡′𝑛 in 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)
0

[r-letrec]

Γ̂0 ⊢ 𝑥 ∶ ̂𝜏 (S,𝜓) ∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂𝑖 ⊢ 𝑎𝑖 � 𝑎′
𝑖 ∶ ̂𝜏 (𝜑,𝜓)

Γ̂0 ⋄⊓ (Γ̂1 ⋄⊔ … ⋄⊔ Γ̂𝑛) ⊢ case 𝑥 of 𝑎𝑛 � case 𝑥 of 𝑎′𝑛 ∶ ̂𝜏 (𝜑,𝜓) [r-case]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ forall 𝛼.𝑡 � forall 𝛼.𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝜓) [r-forall] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑡{ ̂𝜏1} � 𝑡′{ ̂𝜏1} ∶ [𝛼 ↦ ̂𝜏1] ̂𝜏 (𝜑,𝜓)
[r-aptype]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (L,L)

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝜓) [r-sub] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂[𝑥 ↦ (̂𝜏0, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [r-weak]

Γ̂[𝑥1 ↦ (̂𝜏1, L, L), … , 𝑥𝑛 ↦ (̂𝜏𝑛, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡 � 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-con]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ 𝑙 → 𝑡 � 𝑙 → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-lit] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝜓)

Γ̂ ⊢ _ → 𝑡 � _ → 𝑡′ ∶ ̂𝜏 (𝜑,𝜓) [a-def]

𝜑 � [] [c-nil]
S� Γ̂1

S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0, 𝜓0)]
[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L, L)]

[c-cons-l]

Figure 7.10: Adjusted relevance and applicativeness typing, call-by-value transformations and contain-
ment

IMPLEMENTATION 37

7.2 Algorithm

7.2.1 Preparations
Before the strictness analysis, binding group analysis is performed to order and group functions. If a
function calls another function, the other function should preferably be analyzed beforehand. However,
some functions are recursive or mutually recursive, which means they have to be analyzed together. A
complication for binding group analysis in Core is the structure of the declarations (see sections 4.3.1). All
declarations which are not DeclValue are put into a single list, while this analysis only concerns functions
and value declarations.

The analysis returns a list of binding groups, topologically sorted such that functions are defined
before use. A binding group is either:

• BindingNonFunction, which collects all declarations which are not a DeclValue, and puts them
at the head of the list;

• BindingNonRecursive, a single declaration which is a DeclValue;

• BindingRecursive, a list of declarations (DeclValues) which are recursive. If the list contains
one item, it is a function recursive in itself, if the list contains multiple items they are mutually
recursive (and possibly self-recursive).

The type system of Core has to be extended to include annotations, as the TStrict datatype by itself is
not enough. The extension are described in figure 7.11. We extend the type system to include annotations
(TAnn), which are placed on other types by using TAp. An annotation SAnn is either a constant L or S,
a variable, or a join or meet of two annotations. The SAnn datatype is only meant to be used within
the strictness analysis and is not part of the underlying type system of Core. Furthermore, polyvariance
requires us to quantify over annotations. To differentiate between quantification over type variables and
strictness variables, we add KAnn to the kind system. Technically, an annotation is not a kind, but this
is the easiest solution to include strictness quantification.

data Type = TCon TypeConstant
∣ TVar TypeVar
∣ TAp Type Type
∣ TForall Quantor Kind Type
∣ TStrict Type
∣ TAnn SAnn

data SAnn = S
∣ L
∣ AnnVar Id
∣ Join SAnn SAnn
∣ Meet SAnn SAnn

data Kind = KFun Kind Kind
∣ KStar
∣ KAnn

Figure 7.11: Extended Type datatype in Core

The expression syntax from figure 4.6 remains unchanged. As applications contain both function
and constructor applications, and an application expects the function to be annotated, we have to anno-
tate the constructors as well. Constructors fields are assumed to be annotated with L, unless the field is

38 ALGORITHM

marked as strict, in which case it is annotated as S. The saturate pass makes sure all constructors are fully
applied, thus we do not have to worry about partial applications, meaning any field which is relevant is
also applicative, and fields which are not relevant are not applicative.

Abstracts are functions imported from other modules. These functions export their strictness signa-
ture as well as their regular type signature, so the former can be stored in the type environment instead.
However, this is not the case for functions defined in Iridium. As a solution, the regular type signatures
from Iridium are annotated using the TStrict constructor for strict arguments. Unlike the data construc-
tors, they can be partially applied, so we manually have to set the applicativeness annotations to be the
join over all applicativeness annotations of later arguments.

The types stored with the variables in lambdas and lets are already annotated in the transformation
rules. This is not the case in the actual system,whichmeanswehave to annotate themduring the analysis.
This is also the case for type instantiations. Algorithm A, described in figure 7.12), places three fresh
annotations per function arrow. Type synonyms are replaced by their definition to avoid all occurrences
of a type synonym requiring the same annotations.

𝐴(𝑑 𝜏𝑛) = 𝑑 𝐴(𝜏𝑛)

𝐴(𝜏1 → 𝜏2) = let (𝜓1, 𝜑, 𝜓2) be fresh in 𝐴(𝜏1)
(𝜓1,𝜑,𝜓2)
−−−−−−→ 𝐴(𝜏2)

𝐴(𝛼) = 𝛼
𝐴(∀𝛼.𝜏) = ∀𝛼.𝐴(𝜏)

𝐴(!𝜏) = !(𝐴(𝜏))

Figure 7.12: Annotation algorithm𝐴

7.2.2 Analysis

The analysis functionW is an implementation of the transformation rules discussed in the previous sec-
tion. The input of the function is an environment with an annotated type, relevance annotation and
applicativeness annotation per variable, a relevance and applicativeness context and the current expres-
sion to analyze. The reason the constraints are split between an environment and a constraint set is for
containment. The annotationswhich belong to a variable in the expression, and thus have to be contained
in abstractions, are handled via the annotation environment. Constraints such as those for subeffecting
which are not affected by containment are handled via the constraint set. The output is the annotated
type of the expression, an annotation environment whichmaps annotation variables to annotations, a set
of constraints, and a map of variables which could be transformed, which maps from variables to anno-
tation variables. The only transformation the analysis does is converting unannotated types to annotated
types, and unpacking type synonyms. The actual transforming of lets and lambdas to strict ones is done
after the analysis, which is done on the original expressions such that all other annotations are removed
automatically. It is important that no trace of the strictness annotations is left behind at the end of the
pass, as other passes do not expect annotations to occur. It is impractical to adapt every other part of the
program to be able to handle annotations. The only information which has to be kept, aside from the
transformed expression, is a type signature with annotations which can be used when this function is
imported.

The starting environment contains all constructors and abstract functions. The remaining functions
are analyzed and solved binding group by binding group. In a non-recursive declaration, the type does not
have to be added to the environment in the analysis of the function. It does have to be added afterwards
as the next binding group might use that function. For recursive declarations, the declarations are added

IMPLEMENTATION 39

to the type environment beforehand. As they have to be added in annotated form, we annotate themwith
algorithm A. This will lead to constraints of the form 𝑎 ⊑ 𝑎, which we could then solve with 𝑎 = S.

Constructors, literals and variables

The algorithm for constructors, literals and variables is described in figure 7.13.

𝑊(Γ̂, 𝜑, 𝜓, 𝑐) = let (̂𝜏 , 𝜑′, 𝜓′) = Γ̂(𝑐)
in (̂𝜏 , ∅, 𝑓(Γ̂, L), [])

𝑊(Γ̂, 𝜑, 𝜓, 𝑙) = (𝑡(𝑙), ∅, 𝑓(Γ̂, L), [])
𝑊(Γ̂, 𝜑, 𝜓, 𝑥) = let (̂𝜏 , 𝜑′, 𝜓′) = Γ̂(𝑥)

in (̂𝜏 , ∅, 𝑓(Γ̂\𝑥, L)[𝜑′ ↦ 𝜑, 𝜓′ ↦ 𝜓], [])

𝑓([], 𝜒) = []
𝑓(Γ̂[𝑥 ↦ (̂𝜏 , 𝜑, 𝜓)], 𝜒) = 𝑓(Γ̂)[𝜑 ↦ 𝜒, 𝜓 ↦ 𝜒]

Figure 7.13: Algorithm𝑊 for constructors, literals and variables

For constructors and literals, all annotations which are in the environment are set to L. This is done
using the auxiliary function 𝑓 . For variables, all annotations except those associated with the variable are
set to L, with the annotations of the variable set to the contexts. The type of constructors and variables
can be taken from the environment. Literals are not in the environment because there are, in theory,
infinitely many of them, so we assume there exists a function 𝑡 which can give the type of a literal.

Application

The algorithm for applications is described in figure 7.14.

𝑊(Γ̂, 𝜑, 𝜓, 𝑡1𝑡2) = let (̂𝜏1
(𝜓1,𝜑′,𝜓2)
−−−−−−→ ̂𝜏2, 𝑐𝑠1, 𝑎𝑒1, 𝑟1) = 𝑊(Γ̂, 𝜑, 𝜑, 𝑡1)

(̂𝜏 ′
1, 𝑐𝑠2, 𝑎𝑒2, 𝑟2) = 𝑊(Γ̂, 𝜑 ⊔ 𝜑′, 𝜑 ⊔ 𝜓1, 𝑡2)

𝑐𝑠 = {𝜓 ⊑ 𝜓2} ∪ 𝑐𝑠1 ∪ 𝑐𝑠2 ∪ 𝑈(̂𝜏 ′
1, ̂𝜏1)

in (̂𝜏2, 𝑐𝑠, 𝑎𝑒1 ⋄⊓ 𝑎𝑒2, 𝑟1 ∪ 𝑟2)

𝑈(𝑑 ̂𝜏𝑛, 𝑑 ̂𝜏 ′𝑛) = ⋃ 𝑈(̂𝜏𝑛, ̂𝜏 ′𝑛)

𝑈(̂𝜏1
(𝜓1,𝜑,𝜓2)
−−−−−−→ ̂𝜏2, ̂𝜏 ′

1
(𝜓′

1,𝜑′,𝜓′
2)

−−−−−−→ ̂𝜏 ′
2) = {𝜓1 ⊑ 𝜓′

1, 𝜑 ⊑ 𝜑′, 𝜓2 ⊑ 𝜓′
2} ∪ 𝑈(̂𝜏1, ̂𝜏 ′

1) ∪ 𝑈(̂𝜏2, ̂𝜏 ′
2)

𝑈(𝛼, 𝛼) = ∅
𝑈(∀𝛼. ̂𝜏 , ∀𝛼. ̂𝜏 ′) = 𝑈(̂𝜏 , ̂𝜏 ′)

𝑈(! ̂𝜏 , ! ̂𝜏 ′) = 𝑈(̂𝜏 , ̂𝜏 ′)

Figure 7.14: Algorithm𝑊 for applications

40 ALGORITHM

In application, we get the type of the function from analyzing the function, which includes the an-
notations for the argument. Information from the function and the argument is merged using the meet.
The constraints are a union of four sets: the constraint set from the function, the constraint set of the
argument, a single constraint which constrains the right applicativeness annotation to the current con-
text, and the instantiation constraints. The instantiation constraints are taken from function 𝑈 , which
compares two types and returns the pairwise constraints.

Abstraction

The algorithm for abstractions is described in figure 7.15.

𝑊(Γ̂, 𝜑, 𝜓, 𝜆𝑥{𝜏}.𝑡) = let 𝜓1, 𝜑, 𝜓2 be fresh

(̂𝜏2, 𝑐𝑠, 𝑎𝑒, 𝑟) = 𝑊(Γ̂[𝑥 ↦ (𝐴(𝜏), 𝜑, 𝜓1)], S, 𝜓2, 𝑡)

in (̂𝜏
(𝜓1,𝜑,𝜓2)
−−−−−−→ ̂𝜏2, 𝑐𝑠, 𝑓(Γ̂, 𝜓) ⋄⊔ 𝑎𝑒, 𝑟[𝑥 ↦ 𝜑])

𝑊(Γ̂, 𝜑, 𝜓, 𝜆!𝑥{𝜏}.𝑡) = let 𝜓1, 𝜓2 be fresh

(̂𝜏2, 𝑐𝑠, 𝑎𝑒, 𝑟) = 𝑊(Γ̂[𝑥 ↦ (𝐴(𝜏), S, 𝜓1)], S, 𝜓2, 𝑡)

in (̂𝜏
(𝜓1,S,𝜓2)
−−−−−→ ̂𝜏2, 𝑐𝑠, 𝑓(Γ̂, 𝜓) ⋄⊔ 𝑎𝑒, 𝑟)

Figure 7.15: Algorithm𝑊 for abstractions

In the lambda rules, we analyze the body under a strict relevance and fresh applicativeness context.
The type associated with the lambda starts out unannotated, so we add these annotationsmanually using
𝐴. The containment is implemented by a join of the applicativeness context over all variables which are
in the input environment, which excludes the current variable. In the non-strict lambda, the variable is
added to the map of lambdas which could be made strict. This is not necessary in the strict case as there
is nothing to transform.

Let bindings

The algorithm for let bindings is described in figure 7.16.
Let bindings also have a containment relation on the information coming from the body, but this is

performed on the relevance context instead of the applicativeness context. Only non-strict let bindings
are added to the map of bindings able to transform. Recursive let bindings cannot be added to this set
because they cannot be transformed to strict bindings even if they were guaranteed to be used. All these
variables are annotated beforehand and added to the environment, unlike the type of variables in strict
and non-strict bindings because their annotated type can be determined from 𝑊 itself. Every binding is
then analyzed on its own, and the information is merged using the meet.

Case

The algorithm for pattern matches is described in figure 7.17.
The information from case expression is mergedwith the join, unlike othermerges where this is done

with the meet. The variable to be matched upon also returns an environment, which sets all other vari-
ables to L and itself to the context. Algorithm 𝑊𝑎 operates on the different alternatives, though the only
interesting case is pattern matching on a constructor, in which case it adds variables to the environment.
Otherwise, it just calls 𝑊 on the body again.

IMPLEMENTATION 41

𝑊(Γ̂, 𝜑, 𝜓, let 𝑥{𝜏} = 𝑡1 in 𝑡2) = let 𝜑′, 𝜓′ be fresh

(̂𝜏 ′, 𝑐𝑠1, 𝑎𝑒1, 𝑟1) = 𝑊(Γ̂, 𝜑 ∪ 𝜑′, 𝜑 ∪ 𝜓′, 𝑡1)
(̂𝜏2, 𝑐𝑠2, 𝑎𝑒2, 𝑟2) = 𝑊(Γ̂[𝑥 ↦ (̂𝜏 ′, 𝜑′, 𝜓′)], S, 𝜓, 𝑡2)
𝑎𝑒2′ = 𝑓(Γ̂, 𝜑) ⋄⊔ 𝑎𝑒2
in (̂𝜏2, 𝑐𝑠1 ∪ 𝑐𝑠2, 𝑎𝑒1 ⋄⊓ 𝑎𝑒2′, (𝑟1 ∪ 𝑟2)[𝑥 ↦ 𝜑′])

𝑊(Γ̂, 𝜑, 𝜓, let! 𝑥{𝜏} = 𝑡1 in 𝑡2) = let 𝜓′ be fresh

(̂𝜏 ′, 𝑐𝑠1, 𝑎𝑒1, 𝑟1) = 𝑊(Γ̂, 𝜑, 𝜑 ∪ 𝜓′, 𝑡1)
(̂𝜏2, 𝑐𝑠2, 𝑎𝑒2, 𝑟2) = 𝑊(Γ̂[𝑥 ↦ (̂𝜏 ′, S, 𝜓′)], S, 𝜓, 𝑡2)
𝑎𝑒2′ = 𝑓(Γ̂, 𝜑) ⋄⊔ 𝑎𝑒2
in (̂𝜏2, 𝑐𝑠1 ∪ 𝑐𝑠2, 𝑎𝑒1 ⋄⊓ 𝑎𝑒2′, 𝑟1 ∪ 𝑟2)

𝑊(Γ̂, 𝜑, 𝜓, letrec 𝑥𝑛{𝜏𝑛} = 𝑡𝑛 in 𝑡) = let 𝜑1, 𝜓1, … , 𝜑𝑛, 𝜓𝑛 be fresh

Γ̂′ = Γ̂[𝑥1 ↦ (𝐴(𝜏1), 𝜑1, 𝜓1), … , 𝑥𝑛 ↦ (𝐴(𝜏𝑛), 𝜑𝑛, 𝜓𝑛)]
(_, 𝑐𝑠𝑛, 𝑎𝑒𝑛, 𝑟𝑛) = 𝑊(Γ̂′, 𝜑 ∪ 𝜑𝑛, 𝜑 ∪ 𝜓𝑛, 𝑥𝑛{𝜏𝑛} = 𝑡𝑛)
(̂𝜏 ′, 𝑐𝑠, 𝑎𝑒, 𝑟) = 𝑊(Γ̂′, S, 𝜓, 𝑡)
𝑎𝑒′ = 𝑓(Γ̂, 𝜑) ⋄⊔ 𝑎𝑒
in (̂𝜏 ′, 𝑐𝑠 ∪ (⋃ 𝑐𝑠𝑛), 𝑎𝑒′ ⋄⊓ (⋄⊓

𝑖=1…𝑛𝑎𝑒𝑖), 𝑟 ∪ (⋃ 𝑟𝑛))

Figure 7.16: Algorithm𝑊 for let bindings

Generalization and instantiation

The algorithm for generalization and instantiation is described in figure 7.18.

7.2.3 Constraint solving and transformation

After analyzing each function or group of function in a binding group, we receive an annotation environ-
ment and a set of constraints. We solve the variables per binding group. The constraints are of the form
𝜑1 ⊑ 𝜑2, and assuming 𝜑2 is a variable, the entry for 𝜑2 in the environment is updated with the join of
its original value and 𝜑1. Solving the annotations in the environment requires them to be handled in a
specific order. We build a graph with every variable as node, and we draw an edge between 𝜑1 and 𝜑2
if the solution of 𝜑1 depends on 𝜑2. We then find the strongly connected components of the graph and
order them in reverse topological sort such that𝜑2 is handled before𝜑1, or they are in the same strongly
connected component.

We then process all annotations in order, where annotationswhich have their own strongly connected
component only need to look for the annotations which are already solved. For strongly connected com-
ponents with two or more nodes, we have to be a bit more careful, as this means 𝜑1 depends on 𝜑2 and
𝜑2 depends on 𝜑1. We take one of the annotations and replace its occurence in all other annotations in
the group. This means that an annotation could now depend on itself, which can be solved by replacing
the self-depedency by S. After all annotations are processed, there should no longer be any recursion and
the annotations can be solved.

In the monovariant analysis, any variable which is not solved to L or S is set to L. This has to be
done because of the applicativeness annotations, as we cannot know if the function is fully applied ev-

42 ADAPTATION TO POLYVARIANCE

𝑊(Γ̂, 𝜑, 𝜓, case 𝑥 of 𝑎𝑛) = let (̂𝜏 , 𝜑′, 𝜓′) = Γ̂(𝑥)
𝑎𝑒1 = 𝑓(Γ̂\𝑥)[𝜑′ ↦ 𝜑, 𝜓′ ↦ 𝜓]
(̂𝜏 ′𝑛, 𝑐𝑠𝑛, 𝑎𝑒𝑛, 𝑟𝑛) = 𝑊𝑎(Γ̂, 𝜑, 𝜓, 𝑎𝑛)
in (̂𝜏 ′

1, ⋃ 𝑐𝑠𝑛, 𝑎𝑒1 ⋄⊓ (⋄⊔
𝑖=1…𝑛𝑎𝑒𝑖), ⋃ 𝑟𝑛)

𝑊𝑎(Γ̂, 𝜑, 𝜓, 𝑐𝑥𝑛{𝜏𝑛} → 𝑡) = 𝑊(Γ̂[𝑥1 ↦ (𝐴(𝜏1), L), … , 𝑥𝑛 ↦ (𝐴(𝜏𝑛), L)], 𝜑, 𝜓, 𝑡)
𝑊𝑎(Γ̂, 𝜑, 𝜓, 𝑙 → 𝑡) = 𝑊(Γ̂, 𝜑, 𝜓, 𝑡)
𝑊𝑎(Γ̂, 𝜑, 𝜓, _ → 𝑡) = 𝑊(Γ̂, 𝜑, 𝜓, 𝑡)

Figure 7.17: Algorithm𝑊 for pattern matches

𝑊(Γ̂, 𝜑, 𝜓, forall 𝛼.𝑡) = let (̂𝜏 , 𝑐𝑠, 𝑎𝑒, 𝑟) = 𝑊(Γ̂, 𝜑, 𝜓, 𝑡)
in (∀𝛼. ̂𝜏 , 𝑐𝑠, 𝑎𝑒, 𝑟)

𝑊(Γ̂, 𝜑, 𝜓, 𝑡{𝜏1}) = let (∀𝛼. ̂𝜏 , 𝑐𝑠, 𝑎𝑒, 𝑟) = 𝑊(Γ̂, 𝜑, 𝜓, 𝑡)
in (̂𝜏 [𝛼 ↦ 𝐴(𝜏1)], 𝑐𝑠, 𝑎𝑒, 𝑟)

Figure 7.18: Algorithm𝑊 for generalization and instantiation

erywhere, including outside its own module if the function is exported. Setting these annotations to S
would mean the function is always fully applied, which renders the applicativeness annotations useless
and could again lead to unsound transformations. Unsolved relevance annotations are also defaulted to
L, for similar reasons to the applicativeness annotations. The function ($) does not know if it is always
given a strict function, and thus it is only safe to assume it will always receive a non-strict function.

Once all constraints are solved, we can apply the substitutions to the type signature and the expres-
sion. We receive the annotated type of an expression from the algorithm, and the solved constraints allow
us to replace any variable by its solved annotation. Any remaining annotation variable has to be set to
L, because we cannot know all of it usages. Transforming the expression relies on the secondary envi-
ronment returned from the algorithm. This environment maps variable identifiers to annotations. We
traverse the expression and check for every lambda and let if the variable occurs in the environment. If
it does not, it cannot be transformed to a strict binding because it is already strict or recursive. If the
variable does occur, we check the solved value of the annotation. If this annotation is S, we transform the
let or lambda to its strict counterpart, otherwise we leave the binding as is.

7.3 Adaptation to polyvariance
The algorithm described in the previous section described the monovariant analysis. With some adapta-
tions, this analysis can be turned into a polyvariant analysis. The main difference between the analyses
are generalization and instantiation on annotations, which is not supported in the monovariant analysis.
Whenever a monovariant analysis had a variable in the type after solving, it had to be set to the most
conservative annotation, which is L. In the polyvariant case, we can leave the annotation variables and
quantify over them, instantiating them with fresh variables whenever they are used.

The first adaptation is allowing annotation variables to occur in the type (7.19). To be as precise as

IMPLEMENTATION 43

possible, we also allow unsolved joins and meets to occur in the type, under the assumption that they are
simplified as far as possible. We also need to add the ability to quantify over annotation variables.

̂𝜏 ∶∶= 𝑑 ̂𝜏 TCon, TAp TCon, TAp (TAp TCon) etc.

∣ ̂𝜏
(𝜓,𝜑,𝜓)
−−−−→ ̂𝜏 TAp (TAp (TCon ConFun)

∣ 𝛼 TVar
∣ ∀𝛼. ̂𝜏 TForall
∣ ∀𝜑. ̂𝜏 TForall
∣ ! ̂𝜏 TStrict

𝜑 ∶∶= 𝑆 ∣ 𝐿 ∣ 𝛽 ∣ 𝜑 ⊔ 𝜑 ∣ 𝜑 ⊓ 𝜑
𝜓 ∶∶= 𝜑

Figure 7.19: Extended types for polyvariance

Since we add annotation polymorphism, we also need to be able to instantiate. Every variable which
refers to a function might now have quantification over its annotations, and needs to have a unique in-
stantiation to distinguish it from other calls. We instantiate them with fresh annotation variables, which
we enforce by placing ApTypes around the variable. The function const will have the type signature

(∀𝛼, ∀𝛽, ∀𝑎.∀𝑏.𝑎
(𝛼⊔𝛽,𝛼,𝛼)
−−−−−−→ 𝑏

(L,L,𝛽)
−−−−→ 𝑎)

The instantiation for the type variables is already done, so we only need to add two additional ApTypes
with fresh annotations.

A polyvariant analysis also extends to let bindings. If we define const locally, we would like to have
the same behavior as a globally defined const. This means the type signature of the local definition needs
to have the strictness quantifications. To achieve this, we have to solve part of the constraints which are
gathered from within a let binding. We can only solve variables which were created within the binding,
as they should not have any constraints outside their scope. This process is called simplification. Simpli-
fication works exactly the same as solving and transformation (7.2.3), except certain constrains cannot
be touched.

The solving algorithm is unchanged, except annotation variables which were not solved to a con-
stant are not defaulted to L. This allows for annotation variables, joins and meets to occur in the type.
Transformation still occurs at the end of the pipeline, once all constraints have been solved. There is no
intermediate transformation after simplification. Because transformation might depend on annotations
which were solved during simplification, we have to push up the entire set of solved constraints such that
we have all information available to perform transformations.

Polyvariance also allows us to improve transformation of lambdas. Since a function like const has
a variable as relevance annotation on its first argument, it could not be converted to a strict lambda as
that annotation would be defaulted to L. In polyvariance, this annotation variable remains, but since it is
not S a transformation will not take place. However, const is meant to be strict in its first argument, but
the applicativeness annotations prevent the annotation S from occurring as it needs to take into account
that the function might be partially applied. The expressions ((𝜆𝑥.𝜆𝑦.𝑥)error) and ((𝜆!𝑥.𝜆𝑦.𝑥)error)
are equivalent, as the lambda is only triggered when the function is evaluated, which does not happen
in partial application. This means it is allowed to transform a lambda into a strict lambda even if the
annotation is S, as long as the argument is strict when all arguments are applied. This transformation

44 ADAPTATION TO POLYVARIANCE

is important, as it tells the compiler to expect an argument which is guaranteed to be used. We collect
all applicativeness annotations which occur on the right hand side of the function arrow, as these are
unique for every argument. If the annotation variable belonging to a lambda is solved to S when all these
applicativeness annotations are set to S, the lambda can be made strict.

8
Experiment

The experiment tests the analyses described in the previous section (7) against the analysis which cur-
rently exists in Helium1 (4.3.5). The setup of the experiment is described in section 6.2. The analyses will
compile a test file which includes importing the Prelude. The precision of the analyses is measured by the
number of strict bindings in the source file, the analysis cost ismeasured by time using RTS. The compiler
was used with the argument –build-all enabled to force rebuilding of Prelude, and –strictness=n, where
𝑛 stand for the chosen analysis (1 = existing, 2 = monovariant, 3 = polyvariant)2.

Time (ms) let! (Prelude) 𝜆!𝑥 (Prelude) let! (Test) 𝜆!𝑥 (Test)

Old 7172 552 190 13 11
Monovariant 6734 418 191 23 9
Polyvariant 8422 641 200 34 11

Table 8.1: Results for the existing, monovariant and polyvariant analysis

Comparing themonovariant and polyvariant implementation, it is expected that the latter has a better
precision, but is also a bit slower. That expectation is realized, though the margins are much bigger than
expected, especially in regards to precision.

The problem of the monovariant analysis are the applicativeness annotations. In a monovariant set-
ting, all these annotations have to be set to either L or S. This means that it has to take into account all
applications of a function. If there is one case where the function is not fully applied, the annotation
becomes L and none of the usages will be able to derive strictness. Furthermore, even if all usages within
the module are fully applied, exported functions have no guarantee of being fully applied in any module
where they are imported, meaning they have to be conservatively set to L as well. This problem means
that the analysis is only able to infer strictness in the final argument, which can simply be achieved with-
out the applicativeness annotations. Therefore, the monovariant analysis has unacceptable precision as
it is even less precise than the old analysis, even though it is a slight bit faster.

1This includes the patch for soundness described in 4.3.5
2The implementation can be found at https://github.com/Helium4Haskell/helium/tree/strictness-analy

sis-deprecated. The full command (for 𝑛 = 1) is helium +RTS -T -s -RTS ”Test.hs” –build-all –strictness=1

https://github.com/Helium4Haskell/helium/tree/strictness-analysis-deprecated
https://github.com/Helium4Haskell/helium/tree/strictness-analysis-deprecated

46

The polyvariant analysis does not have this problem, as all applicativeness annotations are quantified.
This results in a very precise analysis, though it also slows down the analysis. Comparing the polyvariant
analysis to the existing analysis, it improves the number of strict lets and lambdas considerably. All infor-
mation which was found by the old analysis is also found by the new analysis, but the new analysis also
manages to gain information from places which the old analysis is unable to. However, the polyvariant
analysis is much slower than the existing analysis, the difference being almost one-and-a-half seconds.
While this is not a terrible analysis cost, especially considering Prelude is a very large file and is typically
only compiled once, it is an argument in favor of keeping the old analysis.

As for an intermediate conclusion, both systems have their positive and negative aspects. The poly-
variant analysis has a better precision but worse analysis cost, while the old analysis has a better analysis
cost but worse precision. Neither system has a balanced trade-off, which means the decision as to which
system to implement boils down to personal preference. One might prefer the analysis to be as precise as
possible at all cost, while another wants an average analysis which is very fast. As there were concerns
over the soundness of the strictness analysis, though the fix described in 4.3.5 seems to have fixed the
issue, the polyvariant analysis is the preferred aalysis to use.

While the polyvariant analysis is an improvement over the existing analysis in terms of precision,
there is still some room for improvement on the analysis cost. The next chapter describes two attempts
to make the analysis faster and create a better trade-off.

9
Different approaches

The results from the previous section provided an ambiguous result. The new analysis has a considerable
improvement in precision, but also slows down the compiler. This chapter hopes to find a compromise
which is both precise and fast. Section 9.1 describes an adaptation of the analysis which uses an ap-
plicativeness counter instead of applicativeness annotations. Section 9.2 describes an adaptation of the
monovariant analysis to include monotypes instead of monomorphic types.

9.1 Counting arguments
The applicativeness annotations seem to be slowing down the analysis. Removing these annotations
alltogether leads to an unsound analysis, but this can be mitigated by preventing the transformation of
partial applications. Section 9.1.1 describes the general idea, section 9.1.2 describes the new transforma-
tion rules and algorithm, and section 9.1.4 describes the results of the new analysis and compares it to
the previous version and the existing analysis. Finally, a note is made on the soundness of the analysis
9.1.5.

9.1.1 General idea
The original analysis uses relevance and applicativeness annotations to make strict transformations. The
relevance annotations are the ones which actually signal whether this transformation can take place.
The applicativeness annotations are there to make the system sound, but do not actually contribute to
the transformation as this is decided by a relevance annotation. The crucial observation why the analysis
with only relevance annotations failed is partial applications. As their name suggest, the applicativeness
annotations solved this problemmaking sure a relevance annotation could only become S if all arguments
of a function have been applied. Nevertheless, all these annotations have to be stored on function arrows,
in environments and have to be solved. If we can find a way to remove the applicativeness annotation,
the time needed to solve annotations could be reduced by two thirds. However, we would have to find an
alternative approach to ensure correctness.

Instead of looking at annotations to signal full application, we could look at the application rule
itself. If we were to add a counter, which counts how many arguments have been given, and know the
arity of a function (which can be calculated), we could prevent partial applications from being analyzed

48 COUNTING ARGUMENTS

in a S context. Instead of an applicativeness context as annotation, we have an applicativeness context
as counter. The counters starts at 0 at the start of every expression or when a context reset takes place.
If we encounter an application, the context for the function is incremented. By taking the arity of the
function, we can see howmany arguments are needed for this function, and by the incremented counter
we know how many arguments have been given. If these are equal, then the function is fully applied
and the relevance context of the argument is decided by the relevance of the entire application and the
function. Otherwise, the function is applied to not enough arguments, and we set to relevance context to
L.

As an example, consider the fully applied const true false and partially applied const true, const being a
function of arity 2. In the full application, we start with context counter 0, and encounter the application
of const true to false. The function has arity 1 because it still expects one argument, and the number
of arguments given is 0 + 1 = 1, meaning they match and we can use the relevance annotation of
the function, which is L as const is not strict in its second argument. As we increment the counter, the
expression const true has context counter 1. As const is of arity 2, and there have now been 1 + 1 = 2
arguments provided, we are again allowed to use the annotation on the function arrow, which in this case
is S, meaning the subexpression true can be made strict. If we look at const true as partial application, we
start with context counter 0, the function const has arity 2 but only 0+1 = 1 argument is being provided,
thus the relevance context of the argument is L even if const is strict in its first argument.

The type and terms from the original implementation can be reused, except for the applicativeness
annotations on the function arrows. The type environment also no longer stores an applicativeness an-
notation, only the annotated type and relevance annotation. We denote the arity of a type by ‖ ̂𝜏‖:

‖𝑑 ̂𝜏𝑛‖ = 0

‖ ̂𝜏1
𝜑
−→ ̂𝜏2‖ = 1 + ‖ ̂𝜏2‖

‖𝛼‖ = 0
‖∀𝛼. ̂𝜏‖ = ‖ ̂𝜏‖

‖ ! ̂𝜏‖ = ‖ ̂𝜏‖

9.1.2 Transformation rules and algorithm
The transformation are presented in a similar fashion as section 7.1. The terms remain unchanged, and
the type system reverts from three annotations on the arrow to one. Instead of an applicativeness annota-
tion, we have an applicativeness context, which is a natural number. The adaptation from transformation
rules to algorithm, constraint solving and adaptations for polyvariance are identical to those sketched in
chapter 7, and are omitted in this section.

Constructors, literals and variables

The transformation rules for constructors, literals and variables are described in figure 9.1.

[] ⊢ 𝑐 � 𝑐 ∶ ̂𝜏 (𝜑,𝑛) [r-con]

[] ⊢ 𝑙 � 𝑙 ∶ ̂𝜏 (𝜑,𝑛) [r-lit]

[𝑥 ↦ (̂𝜏 , 𝜑)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 (𝜑,𝑛) [r-var]

Figure 9.1: Transformation rules for constructors, literals and variables

Rules [r-con], [r-lit] and [r-var] remain the same except for the applicativeness context being dropped.
In return, the applicativeness counter is added, but they play no role in these transformation rules.

DIFFERENT APPROACHES 49

Application

The transformation rules for application are described in figure 9.2.

‖ ̂𝜏2‖ = 𝑛 + 1 Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

𝜑0
−→ ̂𝜏)(𝜑,𝑛+1) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑⊔𝜑0,0)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
[r-app]

‖ ̂𝜏2‖ ≠ 𝑛 + 1 Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

𝜑0
−→ ̂𝜏)(𝜑,𝑛+1) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (L,0)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
[r-papp]

Figure 9.2: Transformation rules for applications

The rule for application, [r-app], now only handles fully applied functions. This is the case if the
arity of 𝑡1 is equal to the incremented applicativeness counter. If so, the context of the argument is the
join of the annotation on the function arrow and the relevance context. The applicativeness counter in
the argument is reset to 0, as there might be a new application in there. The counter for the function is
incremented by one to reflect an argument has been provided.

Rule [r-papp] is added to reflect partial application. In this case, the arity is not equal to the incre-
mented counter, and thus the argument receives an L-context. In practice, the applicativeness counter
cannot be bigger than the arity, as this implies more arguments than expected have been given to the
function, which should not be possible in a well-typed system. The function const not False True might
seem to have too many arguments, but the instantiated type of const is

(Bool → Bool) → Bool → (Bool → Bool)

which is equivalent to
(Bool → Bool) → Bool → Bool → Bool

which has an arity of three. Because it is given exactly three arguments, both not and True can be con-
verted to strict bindings.

Abstraction

The transformation rules for abstractions are described in figure 9.3.

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏 S

−→ ̂𝜏0)(𝜑,𝑛)
[r-abs1]

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , L)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏 L

−→ ̂𝜏0)(𝜑,𝑛)
[r-abs2]

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆!𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

𝜑1
−→ ̂𝜏0)(𝜑,𝑛)

[r-sabs]

Figure 9.3: Transformation rules for abstractions

The containment in the abstraction rules [r-abs1], [r-abs2] and [r-sabs] reverts to the relevance con-
text, as the applicativeness context is no longer an annotation. The term bound to the abstractions have
their contexts reset to S and 0. This is done to get the strictness information for the newly defined variable.
The purpose of the containment is to avoid the information on every other variable being used if we are
in an L-context.

50 COUNTING ARGUMENTS

Let bindings

The transformation rules for let bindings are described in figure 9.4.

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let1]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , L)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (L,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let2]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let! 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let!]

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂2[𝑥1 ↦ (̂𝜏1, 𝜑1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛)] ⊢ 𝑡𝑖 � 𝑡′
𝑖 ∶ ̂𝜏 (𝜑⊔𝜑𝑖,0)

𝑖
𝜑 � Γ̂1 Γ̂1[𝑥1 ↦ (̂𝜏1, 𝜑1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝑛)

0

Γ̂1 ⋄⊓ Γ̂2 ⊢ letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡𝑛 in 𝑡 � letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡′𝑛 in 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)
0

[r-letrec]

Figure 9.4: Transformation rules for let bindings

The derivation of the let rules shown previously still holds, meaning rules [r-let1], [r-let2] and [r-let!]
can be derived as combination from the previous abstraction rules and the full application rule. Rule [r-
letrec] also follows the same format as these rules, with the adaptation that it contains multiple bindings
and all variables have to be included in Γ̂2.

Case

The transformation rules for pattern matches are described in figure 9.5.

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂𝑖 ⊢ 𝑎𝑖 � 𝑎′
𝑖 ∶ ̂𝜏 (𝜑,𝑛)

(Γ̂1 ⋄⊔ … ⋄⊔ Γ̂𝑛) ⊢ case 𝑥 of 𝑎𝑛 � case 𝑥 of 𝑎′𝑛 ∶ ̂𝜏 (𝜑,𝑛) [r-case]

Γ̂[𝑥1 ↦ (̂𝜏1, L), … , 𝑥𝑛 ↦ (̂𝜏𝑛, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡 � 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-con]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑙 → 𝑡 � 𝑙 → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-lit]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ _ → 𝑡 � _ → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-def]

Figure 9.5: Transformation rules for pattern matching

Rule [r-case] follows the same transformation as seen in previous rules, the applicativeness annota-
tion is replaced by the applicativeness counter and boolean. Like its previous counterpart, all alternatives
have the same context, the context before the case expression, and its information is merged with the join
to reflect that all branches should report S for a variable to be strict. As the variable to be matched on
is handled in a strict bind before the expression, and we no longer need to communicate the variable is
being applied in the pattern match, we can remove the premise surrounding the variable and no longer
need the initial context split to convey this information.

Rules [a-con], [a-lit] and [a-def] trade their applicativeness context for an applicativeness counter.

DIFFERENT APPROACHES 51

Generalization and instantiation

The transformation rules for generalization and instantiation are described in figure 9.6.

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ forall 𝛼.𝑡 � forall 𝛼.𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝑛) [r-forall]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑡{ ̂𝜏1} � 𝑡′{ ̂𝜏1} ∶ [𝛼 ↦ ̂𝜏1] ̂𝜏 (𝜑,𝑛)
[r-aptype]

Figure 9.6: Transformation rules for generalization and instantiation

The transformations for [r-forall] and [r-aptype] are trivial.

Subeffecting, weakening and containment

Subeffecting, weakening and containment are described in figure 9.7.

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (L,𝑛)

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝑛) [r-sub]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂[𝑥 ↦ (̂𝜏0, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [r-weak]

𝜑 � [] [c-nil]

S� Γ̂1
S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0)]

[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L)]

[c-cons-l]

Figure 9.7: Subeffecting, weakening and containment

The transformations for [r-sub] and [r-weak] are trivial. Containment rules [c-nil], [c-cons-s] and
[c-cons-l] revert to their original definition in section 3.1.

9.1.3 Overview
All transformation rules defined in the previous sections are combined into figure 9.8 for convenience.

52 COUNTING ARGUMENTS

[] ⊢ 𝑐 � 𝑐 ∶ ̂𝜏 (𝜑,𝑛) [r-con]
[] ⊢ 𝑙 � 𝑙 ∶ ̂𝜏 (𝜑,𝑛) [r-lit]

[𝑥 ↦ (̂𝜏 , 𝜑)] ⊢ 𝑥 � 𝑥 ∶ ̂𝜏 (𝜑,𝑛) [r-var]

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏 S

−→ ̂𝜏0)(𝜑,𝑛)
[r-abs1]

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , L)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆𝑥{ ̂𝜏}.𝑡1 � 𝜆𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏 L

−→ ̂𝜏0)(𝜑,𝑛)
[r-abs2]

𝜑 � Γ̂ Γ̂[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (S,0)

0

Γ̂ ⊢ 𝜆!𝑥{ ̂𝜏}.𝑡1 � 𝜆!𝑥{ ̂𝜏}.𝑡′
1 ∶ (̂𝜏

𝜑1
−→ ̂𝜏0)(𝜑,𝑛)

[r-sabs]

‖ ̂𝜏2‖ = 𝑛 + 1 Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

𝜑0
−→ ̂𝜏)(𝜑,𝑛+1) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (𝜑⊔𝜑0,0)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
[r-app]

‖ ̂𝜏2‖ ≠ 𝑛 + 1 Γ̂1 ⊢ 𝑡1 � 𝑡′
1 ∶ (̂𝜏2

𝜑0
−→ ̂𝜏)(𝜑,𝑛+1) Γ̂2 ⊢ 𝑡2 � 𝑡′

2 ∶ ̂𝜏 (L,0)
2

Γ̂1 ⋄⊓ Γ̂2 ⊢ 𝑡1𝑡2 � 𝑡′
1𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
[r-papp]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let1]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , L)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (L,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let2]

𝜑 � Γ̂1 Γ̂1[𝑥 ↦ (̂𝜏 , S)] ⊢ 𝑡2 � 𝑡′
2 ∶ ̂𝜏 (S,𝑛)

0 Γ̂2 ⊢ 𝑡1 � 𝑡′
1 ∶ ̂𝜏 (𝜑,0)

Γ̂1 ⋄⊓ Γ̂2 ⊢ let! 𝑥{ ̂𝜏} = 𝑡1 in 𝑡2 � let! 𝑥{ ̂𝜏} = 𝑡′
1 in 𝑡′

2 ∶ ̂𝜏 (𝜑,𝑛)
0

[r-let!]

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂2[𝑥1 ↦ (̂𝜏1, 𝜑1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛)] ⊢ 𝑡𝑖 � 𝑡′
𝑖 ∶ ̂𝜏 (𝜑⊔𝜑𝑖,0)

𝑖
𝜑 � Γ̂1 Γ̂1[𝑥1 ↦ (̂𝜏1, 𝜑1), … , 𝑥𝑛 ↦ (̂𝜏𝑛, 𝜑𝑛)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝑛)

0

Γ̂1 ⋄⊓ Γ̂2 ⊢ letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡𝑛 in 𝑡 � letrec 𝑥𝑛{ ̂𝜏𝑛} = 𝑡′𝑛 in 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)
0

[r-letrec]

∀𝑖.1 ≤ 𝑖 ≤ 𝑛 ∶ Γ̂𝑖 ⊢ 𝑎𝑖 � 𝑎′
𝑖 ∶ ̂𝜏 (𝜑,𝑛)

(Γ̂1 ⋄⊔ … ⋄⊔ Γ̂𝑛) ⊢ case 𝑥 of 𝑎𝑛 � case 𝑥 of 𝑎′𝑛 ∶ ̂𝜏 (𝜑,𝑛) [r-case]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ forall 𝛼.𝑡 � forall 𝛼.𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝑛) [r-forall] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ∀𝛼. ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑡{ ̂𝜏1} � 𝑡′{ ̂𝜏1} ∶ [𝛼 ↦ ̂𝜏1] ̂𝜏 (𝜑,𝑛)
[r-aptype]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (L,𝑛)

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (S,𝑛) [r-sub] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂[𝑥 ↦ (̂𝜏0, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [r-weak]

Γ̂[𝑥1 ↦ (̂𝜏1, L), … , 𝑥𝑛 ↦ (̂𝜏𝑛, L, L)] ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡 � 𝑐𝑥𝑛{ ̂𝜏𝑛} → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-con]

Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ 𝑙 → 𝑡 � 𝑙 → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-lit] Γ̂ ⊢ 𝑡 � 𝑡′ ∶ ̂𝜏 (𝜑,𝑛)

Γ̂ ⊢ _ → 𝑡 � _ → 𝑡′ ∶ ̂𝜏 (𝜑,𝑛) [a-def]

𝜑 � [] [c-nil]
S� Γ̂1

S� Γ̂1[𝑥 ↦ (̂𝜏 , 𝜑0)]
[c-cons-s]

L� Γ̂1
L� Γ̂1[𝑥 ↦ (̂𝜏 , L)]

[c-cons-l]

Figure 9.8: Adjusted relevance typing, call-by-value transformations and containment

DIFFERENT APPROACHES 53

9.1.4 Results

A monovariant and polyvariant analysis based on the applicativeness counter (r) are compared against
the monovariant and polyvariant analysis with applicativeness annotations (r & a). The experiment is
performed using the same setup as described in 6.2, and with the commands described in 8 1.

Time (ms) let! (Prelude) 𝜆! (Prelude) let! (Test) 𝜆! (Test)

Old 7172 552 190 13 11
Monovariant (r & a) 6734 418 191 23 9
Polyvariant (r & a) 8422 641 200 34 11
Monovariant (r) 7266 626 189 35 11
Polyvariant (r) 7891 626 189 40 11

Table 9.1: Results for the existing analysis, the monovariant and polyvariant analysis with applicative-
ness annotations, and the monovariant and polyvariant analysis without applicativeness annotations

Comparing the new monovariant and polyvariant with each other, there is almost no difference in
precision. While this might seem surprising, the equality on Prelude is easily explained. The Prelude
mostly defines functions instead of using them. For instance, ($) is a function which would behave dif-
ferently in a monovariant and polyvariant analysis. While Prelude defines this function, it is never used
in that module, meaning the difference between the two analysis is not visible in Prelude. Only when
the dollar sign is used, which is the case in Test, does the difference become apparent. The test cases in
which they differ is a test case where the ($) is used with a strict and non-strict function, and folds. The
monovariant analysis infers strictness on neither, while the polyvariant analysis is able to determine the
argument applied to the first function can be made strict.

Their difference in time is much closer than the monovariant and polyvariant analysis with applica-
tiveness annotations. This can be explained by the reduced number of annotations. The previous versions
included three annotations per argument, while the new version only has one. This leads to a reduction
in the number of annotations needed to be solved, which means the solving algorithm becomes quicker.
However, the algorithm itself is still called the same number of times as in the previous versions, meaning
polyvariance is much quicker than its counterpart. The monovariant analysis is slightly slower than its
previous version because the overhead of checkingwhether a variable is used in a fully applied function is
bigger than the timewe gain by reducing the number of annotations, which points to the observation that
calling the solving algorithmmany times with a smaller set of constraints is now almost as fast as calling
the algorithm once with all constraints. As the monovariant and polyvariant analysis are almost as pre-
cise as each other, and the former is considerably faster, a monovariant analysis without applicativeness
annotations is preferable over a polyvariant analysis without applicativeness annotations.

Comparing to the analyses with applicativeness annotations, while the speed is a step forward, the
precision is a slight step back, which is to be expectedwith a less complex analysis. The difference between
the previous and current version remains marginal though, as the five cases for let bindings in Prelude
are all related to IO functions. Since IO is stored as a type synonym for (RealWorld -> IORes), the new
version is not able to infer any strictness because of the missing arguments for RealWorld. An example in
the test file which is handled by the previous versions but not by the current is that of functions returning
functions. Consider the example 𝜆𝑥.if 𝑥 then not else id. Giving one argument to this function returns
another function, not or id depending on the input. If we give undefined as input, the function crashes

1The implementation can be found at https://github.com/Helium4Haskell/helium/tree/strictness-analy
sis-deprecated. The options to enable these versions of the strictness analysis is –strictness=4 for the monovariant version
and –strictness=5 for the polyvariant version

https://github.com/Helium4Haskell/helium/tree/strictness-analysis-deprecated
https://github.com/Helium4Haskell/helium/tree/strictness-analysis-deprecated

54 COUNTING ARGUMENTS

as it needs to evaluate 𝑥. The analysis with applicativeness annotations is able to derive that the first
argument is strict when only one argument is given, while the analysis with the application counter will
determines that the function is not fully applied because no argument is given to not or id, and thus the
strictness information cannot be used.

Comparing the new versions to the existing analysis, the analysis cost is almost equal if we take the
monovariant version. In terms of precision, the new version can infermuchmore. Therefore, it looks like
themonovariant analysis without applicativeness annotations provides the best trade-off, even compared
against the monotyped version in the previous section, if it turns out to be sound.

9.1.5 Soundness
While the simpler approach manages to avoid the problem with partial application, it instead creates
another: functions as arguments. Consider the apply function 𝜆𝑓.𝜆𝑥.𝑓𝑥. This example has been used
to differentiate between a monovariant and polyvariant analysis, with the former unable to differentiate
between a strict or non-strict function, defaulting to the latter. The polyvariant analyses inferred a type
signature ∀𝜑.((̂𝜏1

𝜑
−→ ̂𝜏2) S

−→ ̂𝜏1
𝜑
−→ ̂𝜏2). As example, let the function apply take const (̂𝜏1

S
−→ ̂𝜏2

L
−→ ̂𝜏1)

and True as arguments.

‖Bool S
−→ ̂𝜏2

L
−→ Bool‖ ≠ 1 [] ⊢ apply const ∶ (Bool S

−→ ̂𝜏2
L
−→ Bool)(S,1) [] ⊢ True ∶ Bool(L,0)

[] ⊢ apply const True ∶ (̂𝜏2
L
−→ Bool)(S,0)

Because the arity of apply const is two, True cannot be made strict because it is not fully applied. So
far, so good. Now, assume that instead of applying function 𝑓 to argument 𝑥, apply’ evaluates 𝑓𝑥 and
returns False (𝜆𝑓.𝜆𝑥.(𝑓𝑥) ‘seq‘ False). The type of this function is ∀𝜑.((̂𝜏1

𝜑
−→ 𝜏2) S

−→ ̂𝜏1
𝜑
−→ Bool). If

this function is applied with const and true, the arity of apply const is no longer two but one, as it returns
Bool instead of the remainder of the function. As a result, the hypothetical let binding which defines
true can be made strict, because the application is full according to the calculations. This means the
polyvariant version of this analysis is unsound.

‖Bool S
−→ Bool‖ = 1 [] ⊢ apply’ const ∶ (Bool S

−→ Bool)(S,1) [] ⊢ True ∶ Bool(S,0)

[] ⊢ apply’ const True ∶ Bool(S,0)

The problem lies in the derivation of the type for apply’. The relevance of the second argument should
no longer depend on the relevance of the function, but be L because it is not guaranteed that the function
has an arity of one. This means that for every lambda which defines a function with type variables, we
can no longer use the strictness information from the body of the abstraction because we cannot know
which functions are passed to apply’. This restriction also exists in a let binding because of its equivalence
to a lambda combined with an application. The loss of precision brings the analysis to a level even below
the existing analysis, meaning it no longer serves as a compromise between precision and speed.

Themonovariant analysis does not experience this specific problem, because the annotation variables
are defaulted to L and thus the argument to apply and apply’ are always non-strict. However, this analysis
is also not free of soundness issues. The applicativeness counter was explicitly designed to combat par-
tial applications, but the transformation rules defined by Holdermans and Hage noted another problem.
When an application is already strict, it can infer strictness in certainly places when functions are given
as arguments. The given example2 was 𝜆𝑥.(($!) (𝜆𝑦.0) (𝜆𝑧.𝑥)), in which it erroneously derived this

2Strict application • replaced by its function counterpart $!. The monomorphic type of $! is ((̂𝜏1
L
−→ 𝜏2) S

−→ ̂𝜏1
S
−→ ̂𝜏2).

DIFFERENT APPROACHES 55

function to be strict in 𝑥 while 𝑥 is never evaluated. This analysis suffers the same problem3:

S� []
‖((̂𝜏2

L
−→ ̂𝜏1) S

−→ Int)‖ = 1 …
S� [𝑥 ↦ (̂𝜏 , S)] [𝑥 ↦ (̂𝜏1, S), 𝑧 ↦ (̂𝜏2, L)] ⊢ 𝑥 ∶ ̂𝜏 (S,0)

1

[𝑥 ↦ (̂𝜏1, S)] ⊢ (𝜆𝑧.𝑥) ∶ (̂𝜏2
L
−→ ̂𝜏1)(S,0)

[𝑥 ↦ (̂𝜏1, S)] ⊢ (($!) (𝜆𝑦.0) (𝜆𝑧.𝑥)) ∶ Int(S,0)

[] ⊢ 𝜆𝑥.(($!) (𝜆𝑦.0) (𝜆𝑧.𝑥)) ∶ (̂𝜏1
S
−→ Int)(S,0)

In summary, by replacing the applicativeness context with an applicativeness counter, the problems
regarding partial application are fixed. However, the problems regarding strict application by program
input are still present, and are not easily solvable except removing all manual strictness altogether, which
seems counter-intuitive for an analysis which has the purpose of introducing strictness. The applicative-
ness annotations do manage to solve both problems in a sound manner while remaining precise, at a
slight but not major increase in analysis cost. Therefore, this entire section cannot provide an improve-
ment on the analysis described in chapter 7, and does not even provide a significant improvement over
the existing analysis.

9.2 Monotypes
Themonovariant analysis with applicativeness annotations is fast but imprecise, whereas the polyvariant
analysis with applicativeness annotations is precise but slow. If we could somehow combine the best of
both analyses, we get an analysis which is precise and fast, and would be far superior over the existing
analysis. This can be achieved by adapting the monovariant analysis to support monotypes instead of
monomorphism. In the previous implementation, all annotation variables had to be weakened to L to be
sound. The polyvariant analysis could leave these annotation to get more precision, but the slowdown
might be caused by instantiation and frequent solving. If we allow the annotation variables to stay in the
type, but we do not quantify over them, we could get an analysis with precision close to the polyvariant
analysis at better speeds.

Themonovariant algorithm in chapter 7 barely needs any change, only the provision that any remain-
ing annotation variable has to defaulted to L is removed. There is no instantiation with a fresh variable
or simplification. This means that if a function is used multiple times per binding group, it can only re-
ceive one annotation per variable, which should be the least restrictive. If the function ($) is used with
a strict and non-strict function within the same binding group, the annotation variable on the argument
passed to the function becomes L and the argument to neither function can be made strict. An important
assumption in this analysis is the uniqueness of the strictness annotations between functions, as using
the same annotation will lead to weaker results as the annotation can only receive one value per binding
group.

The analysis using monotypes is compared against the previous monovariant and polyvariant analy-
sis, as well as the existing analysis. It is performed using the same setup as described in section 6.2, and
with the commands described in chapter 84.

The results of the analysis withmonotypes look very promising, as it matches the speed of the existing
analysis while being significantly more precise. Compared to the monomorphic monovariant analysis, it
solves the problem of applicativeness as it ismuchmore precise. The differences in precision compared to
the polyvariant analysis occur when a function is used multiple times within a function, as polyvariance
is still able to differentiate between different calls while the monotyped analysis needs to combine the
two, but unlike the monovariant analysis it can make different instantiations per function instead of the

3⋯ = [𝑥 ↦ (̂𝜏1, S)] ⊢ ($!) (𝜆𝑦.0) ∶ ((̂𝜏2
L
−→ ̂𝜏1) S

−→ Int)(S,1)
4The implementation can be found at https://github.com/Helium4Haskell/helium/tree/strictness-analy

sis. The option to enable the versions with monotypes is –strictness=6.

https://github.com/Helium4Haskell/helium/tree/strictness-analysis
https://github.com/Helium4Haskell/helium/tree/strictness-analysis

56 MONOTYPES

Time (ms) let! (Prelude) 𝜆!𝑥 (Prelude) let! (Test) 𝜆!𝑥 (Test)

Old 7172 552 190 13 11
Monovariant 6734 418 191 23 9
Monotyped 7312 611 197 35 10
Polyvariant 8422 641 200 34 11

Table 9.2: Results for the existing, monovariant (monomorphic), monovariant (monotypes) and poly-
variant analysis

entire module. The expectations of the analysis are met, as it is slightly slower than the monomorphic
analysis and slightly less precise than the polyvariant analysis, but does provide a very good balance
between the two. Unlike the analysis proposed in 9.1, there is no clear evidence of unsoundness found
in the transformations on both Prelude and the test file.

The analysis with monotypes has provided the best balance out of the analyses implemented in this
thesis, and is also a considerable improvement over the existing analysis. The polyvariant analysis is
still a viable option if one wishes to increase the precision and the added speed is not a problem, but the
analysis with monotypes can achieve similar results for less analysis cost.

10
Conclusion

The conclusion answers the three subquestions posed in section 6.1, before answering the main research
question: What are the trade-offs between precision and analysis cost of strictness analysis in a real-world
compiler?

[SQ1] Can relevance and applicativeness typing analysis be implemented in the Helium
compiler?
The systemdescribed byHoldermans andHage in section 3.2 can be implemented inHelium, though they
requiremajormodifications to fitwith the expression syntax inHelium. Some language constructs like let
bindings and pattern matching were not handled in the original transformation rules and thus had to be
definedmanually. Furthermore, themethod of introducing strictness proved to be impractical inHelium.
Instead of strict application, Helium relies on strict let and lambda bindings, but the transformation from
one method to the other did not cause many issues.

[SQ2] Can a representative benchmark be constructed to compare trade-offs?
A benchmark was constructed which measured the precision and cost on the compilation of a test file
which imported the Prelude. Prelude is a very big file and thus very representative to measure the speed
of the analysis. While it is suitable to measure precision improvements between different approaches
to strictness analysis, it is not suited to measure the differences between a monovariant and polyvariant
analysis, because Prelude is used for defining functions rather than using them. The test file provided
much more variation in that regard, and provided a suitable comparison for precision. A balanced trade-
off should be an analysis which is precise for relatively little analysis cost.

[SQ3] What are the trade-offs against the current strictness analysis in Helium?
The current analysis in Helium has a very low analysis cost, but its precision is left to be desired. The
reason for a low precision is its lack of information carried across modules. The new analyses do provide
this, which makes themmore precise in that regard. The monovariant analysis matches its analysis cost,
but falls behind in precision due to a conservative approach on applicativeness. The polyvariant analysis
is much more precise but at an increased analysis cost. While not as bad as during development, it did
provide a debatable improvement as neither analysis provided a compromise, a relatively precise analysis
at relatively low analysis cost.

58

[MQ]What are the trade-offs between precision and analysis cost of strictness analysis
in a real-world compiler?
A monovariant and polyvariant analysis were implemented in Helium. The former did not result in a
suitable analysis as a monomorphic implementation of applicativeness annotations needs to be very con-
servative for the lack of knowledge on how the functions are applied. The polyvariant analysis did prove
to be an analysis capable of being very precise, though this did come at a reduction in performance. An
alternative system was proposed which left out the applicativeness annotations, and while the improve-
ment in analysis cost seemed promising, the precision was hugely reduced if the system were to remain
sound. However, if the requirement of monomorphic types in a monovariant analysis is changed to
monotypes, the analysis matches the precision of the polyvariant analysis at similar analysis cost, which
proves to be an almost optimal trade-off. The monotyped analysis also gives a lot more precision for little
additional analysis cost compared to the analysis which is currently implemented in Helium. Therefore,
the monotyped analysis is the best analysis to be implemented in Helium.

11
Future work

While this thesis accomplished its goal of improving the strictness analysis inHelium, it is still not perfect.
Further improvements can bemade in the strictness analysis itself (11.1) as well as general improvements
to Helium (11.2).

11.1 Strictness analysis
Future work in strictness analysis includes improving its analysis cost (11.1.1) and precision (11.1.2).
These are specifically related to the strictness analyses implemented here.

11.1.1 Analysis cost improvements
The analysis can always be made faster. This could be minor optimizations in the source code, such as
using manual strictness annotations. Larger optimizations could be made in the solving algorithm, as
the handling of recursive constraints could lead to a major loss of speed. As the analyses in this thesis
shared a common framework, completely separating all analyses would also lead to some performance
increases, though there would be no reason to keep all analyses around and thus all things unnecessary
for the monotyped analysis can be removed.

If the analysis is made faster, we could also look to improve the precision again as this would remain
balanced. This wouldmean the polyvariant analysis could come into play again. The polyvariant analysis
has an improved precision compared to the monotyped analysis, but instantiation and simplification
proved to be costly operations. A possible improvement to the simplification would be to maintain a set
of variables which the simplification is not allowed to solve rather than calculating which variables can
be solved, as the latter required an extra iteration over the expression.

11.1.2 Precision improvements
There are also a few cases where the analysis is not able to infer strictness while this should theoretically
be the case. Appendix A provides a look at how to handle datatypes, which increases the precision of
certain datatypes such as tuples and lists. Creating a general analysis which can handle any datatype
could be complicating, given datatypes can have many shapes and supporting them all might be a real

60 HELIUM

slowdown. A naive implementation to support all datatypes wasmade, but this slowed down the analysis
to such an extent that it took minutes to compile Prelude, which is obviously too slow. However, a few
simple and often-used datatypes can benefit from extending the strictness analysis to include them at a
relatively low cost in precision. A few of these cases are sketched out in the Appendix.

Another case where the analysis is still imprecise is type classes. Type classes are implemented as
data constructors, with a constructor field for every function which is related to this class. Function like
addition and multiplication on integers are strict by their definition. However, they are part of the Num
typeclass, for which other datatypes can also have an instance. It is possible that a user-defined datatype
has a Num instance which does not have strict addition. Under the current analysis, it means that all
additions and multiplications are restricted in their strictness signature because it might be possible for
the type to be non-strict in any argument, and thus none of the arguments provide to these functions
can be made strict. A possible solution would be to replace the overarching operators with their specific
instance wherever possible. This would result in any integer addition being able to infer strictness on
both arguments, while the theoretical lazy instance of a user-defined datatype is only used when this
datatype is used or can be used.

11.2 Helium

Improvements which could be made to Helium are the removal of unreachable patters (11.2.1) and the
extension of strictness analysis to counting analysis (11.2.2).

11.2.1 Pattern matches
Pattern matches in Core consist of a variable and a number of alternatives. Almost every pattern match
has a wildcard pattern which always matches. However, in many cases the wildcard pattern is untrig-
gerable. Under normal circumstances this would be a slight inconvenience as it needs to generate some
extra code, but for analyses it could hurt precision. An example of the problems this can give in strictness
analysis is a function which takes an argument and a tuple, and returns the argument.

f ∶∶ a → (b, c) → a
f x (y, z) = x
f ∶∶ forall a forall b forall c a → (b, c) → a ∶ export f

= forall a ∶ ∗.forall b ∶ ∗.forall c ∶ ∗.
𝜆x ∶ a → 𝜆u1 ∶ (b, c) →
let ! var ∶ (b, c) = x;
in match var with {

(@2) {b} {c} y z → x;
→ primPatternFailPacked {a} "..."; };

In the Haskell code, it is clear variable x is strict. However, after desugaring to Core, the function
provides a default pattern in case the pattern match fails, which is impossible as the first case unpacks
the tuple and will thus always be triggered. As the strictness analysis needs something to be strict in all
branches to be strict, and the argument x is only strict in the first branch, the argument for the function
is not inferred as strict.

This example is easily solvable by adding an extra analysis to remove default patterns when all con-
structors of a datatype are matched upon. This analysis has been included as part of the implementations
in this thesis to increase the precision. Still, this analysis is not optimal and only fixes simple cases like
this one, as it relies on the different patternmatches on the same argument to be consecutive. It is benefi-
cial to perform this analysis after let inlining because the expression is more likely to be in this form, but
it would also benefit from being executed before let inlining because it could remove let bindings which
are no longer used because their pattern has been removed. As a compromise, the analysis was installed
between the two let inlining passes, to benefit from the structure of the expression and give a chance to

FUTUREWORK 61

remove unused bindings. The more obvious way to remove excess patterns is by not placing them in the
first place, though it might be difficult to determine if a pattern match is complete during parsing.

An example of a function which still has a untriggerable case even after the added analysis is xor,
using the following definition in Haskell and its desugared definition in Core:

xor ∶∶ Bool → Bool → Bool
xor True False = True
xor False True = True
xor = False
xor ∶∶ Bool → Bool → Bool ∶ export xor

= 𝜆u0 ∶ Bool → 𝜆u1 ∶ Bool →
let nc1 ∶ Bool = let nc2 ∶ Bool = False;
in let ! m1 ∶ Bool = u0;

in match m1 with {
False →
let ! m2 ∶ Bool = u1;
in match m2 with {
True → True;

→ nc2; };
→ nc2; };

in let ! m3 ∶ Bool = u0;
in match m3 with {
True →
let ! m4 ∶ Bool = u1;
in match m4 with {
False → True;

→ nc1; };
→ nc1; };

The function should be strict in both arguments, as xor needs to determine that the first argument
is not equal to the second argument. The first argument of xor will correctly be inferred as strict, but
the analysis as is cannot infer the second argument to be strict. While u1 is matched on both True (m2)
and False (m4), these matches are in separate bindings. The strictness analysis cannot infer strictness
because u1 is not relevant in the wildcard match in m1. A possible solution would be to inline nc1 and
remove the excess patternmatches, which would lead to the following definition which would be capable
of determining xor is strict in its second argument:

xor ∶∶ Bool → Bool → Bool ∶ export xor
= 𝜆u0 ∶ Bool → 𝜆u1 ∶ Bool →
let nc1 ∶ Bool = let nc2 ∶ Bool = False;
in let ! m3 ∶ Bool = u0;
in match m3 with {
True →
let ! m4 ∶ Bool = u1;
in match m4 with {
False → True;

→ False; };
→
let ! m5 ∶ Bool = u1;
in match m5 with {
True → True;

→ False; }; };
In this function, u1 is relevant to both cases ofm3 as it is required for matchm4 andm5.

62 HELIUM

11.2.2 Counting analysis
Counting analysis combines strictness analysis, sharing analysis, absence analysis and uniqueness typing
into one analysis. Uniqueness typing has previously been implemented byVanKlei during heap recycling
analysis (5.3.1). This analysis is distinct from the other three analysis in being a verifying analysis opposed
to an optimizing analysis. Absence and sharing analysis has not been implemented in Helium yet.

Verstoep provided the theoretical groundwork of combining these analyses into one analysis 5.1.4.
Since they are intertwined, the structure of strictness analysis can be reused to implement the other anal-
yses as well. One of the major facets which have to be changed are the lattice, which no longer suffices
with two possible annotations. For the combined analysis, at least the annotations 0, 1 and 𝜔 (many)
are necessary to define how often an expression is (guaranteed to be) used. New operators on these an-
notations also have to be defined, such as addition. The applicativeness annotations will also play an
important role in the combined analysis as partial application also influences the other analysis in how
they are allowed to use the information when a function is not guaranteed to be applied.

A
Datatypes

The analyses described in this thesis did not take strictness on datatypes into account, other than was
already provided by annotating the constructor fields. The appendix attempts to extend the strictness
analysis to handle tuples (A.1), lists (A.2) and other datatypes (A.3). Finally, we look at the precision
improvements of the extension (A.4).

A.1 Tuples
Tuples are hard-coded into the Core type and expression system, making them suitable for a standalone
implementation. For this section, we assume a tuple consists of two values. The analysis is generalizable
to tuples with higher arities. The type of the constructor for tuples is ∀𝑎.∀𝑏.𝑎 → 𝑏 → (𝑎, 𝑏). As the
arguments applied to the constructor are stored as applications, there needs to be a triplet of annotations
on both function arrows. There is an obvious connection between the annotations on the arrows and the
type variables, meaning the annotations can also be placed inside the tuples. As Helium does not allow
constructors to be partially applied1, the applicativeness annotations are obsolete and could be removed,
but they are kept for now. This leads to an annotated type of

∀𝑎.∀𝑏.𝑎
(𝜓1,𝜑,𝜓2)
−−−−−−→ 𝑏

(𝜓′
1,𝜑1,𝜓′

2)
−−−−−−→ (𝑎(𝜓1,𝜑,𝜓2), 𝑏(𝜓′

1,𝜑1,𝜓′
2)).

Consider the function fst:
fst ∶∶ (a, b) → a

= 𝜆u1 ∶ (a, b) →
let ! var ∶ (a, b) = u1;
in match var with {

(@2) {a} {b} x y → x; };
The annotated type of this function should reflect that the first element of the tuple is relevant, but the
second element is not. The tuple itself is strict as it is used in a pattern match. Therefore the desired type
signature would be

∀𝑎.∀𝑏(𝑎(𝜓1,S,𝜓1), 𝑏(𝜓2,L,𝜓2))
(𝜓,S,𝜓)
−−−−→ 𝑎

1The saturate pass saturates all calls to constructors.

64 LISTS

To be able to achieve this, the variables introduced by the patternmatch should receive fresh annotations.
This can be done by adding three fresh annotations per type instantiation. As x occurs in the body of the
patternmatch, its associated relevance annotation can be set to S, while y does not occur and its relevance
annotation becomes L. This information will be propagated to 𝑣𝑎𝑟, then to u1 and finally to the type
signature itself. If there had been another case in the pattern match2, then the join over all annotations
is taken as the first element needs to be strict in all cases.

We can now provide information about whether a tuple is strict in its first, second or both values. This
information should end up propagated to the place where a tuple is defined. Take the following function:

f ∶∶ Bool
= let tup ∶ (Bool, Bool) = let v1 ∶ Bool = True;

in let v2 ∶ Bool = False;
in (@2) {Bool} {Bool} v1 v2;

in fst tup;
To properly make use of the information, the binding for v1 can be made strict while 𝑣2 should be left
untouched. When creating the tuple, it has fresh annotations which correspond to the annotations used
for the let bindings. Upon use, those annotations can be instantiated to the annotations provided by
the function, which in this case means the annotation for the first element of the tuple, and thus the
annotation for v1, becomes S and can be transformed to a strict binding. Note that using the tuplemultiple
times can provide better instantiations. If a function uses both fst and snd in a relevant context, both
bindings can be strict.

Using the information relies on the information flowing back to the bindings which put the values
in tuples. This implies that a polyvariant implementation for datatypes is not desired, as the information
can never flow back as the type of the tuple is quantified over its annotations. Therefore, tuples (and all
other datatypes) are treated as monovariant even if the analysis is polyvariant. Thus, we cannot simplify
any annotation related to datatypes, and they can only be solved at function level. Strictness information
from the type variables itself can also be reused. If we create a tuple of not and const, take the first element
and apply it to an argument, that argument can be made strict as it is applied to a strict function.

A.2 Lists
Lists are often used in programming, thus getting strictness information about them is valuable. Unlike
tuples, lists are not hard-coded into the system and are part of the regular datatype syntax. However,
strings (which are lists of characters) are hard-coded as they belong to the literals. List has two construc-
tors:

[] ∶ ∀𝑎.[𝑎]
(∶) ∶ ∀𝑎.𝑎 → [𝑎] → [𝑎]

We want to know whether every element in the list is guaranteed to be used, meaning we can evaluate
every value to WHNF when creating the list.

While placing the extra annotations for tuples was straightforward, placing the annotations on lists
is slightly more problematic. Placing it on the type variable a would be the obvious answer, but this
creates a problem in type class instances of lists. The type of fmap is ∀𝑎.∀𝑏.∀𝑓.(𝑎 → 𝑏) → 𝑓𝑎 → 𝑓𝑏,
where 𝑓 can be instantiated as []. In this instance, there would be no strictness annotation on 𝑎 or 𝑏,
which would now be expected. If we add annotations to a and b, every datatype needs to have these
annotations, something which is not yet supported. The only solution is to place the annotation on []
itself. The added of bonus of placing the annotation here is that we do not have to carry around obsolete
applicativeness annotations, just the relevance annotation suffices.

2A default pattern in case of a pattern match failure occurs in this function, but is removed due to reasons explained in 11.2.1.

DATATYPES 65

Consider the following function:
f ∶∶ [a] → Bool

= 𝜆list ∶ [a] →
let ! m1 ∶ [a] = list;
in match m1 with {

[] {a} → True;
∶∶ {a} x xs →
let ys ∶ Bool = f {a} xs;
in seq {a} {Bool} x ys; };

This function is guaranteed to use every element in the list, and returns True. To reflect this informa-
tion on the annotation, both the case for the empty list and cons have to reflect that all elements are used.
The empty list trivially uses all its elements, and we can always place an annotation S there. Therefore,
the type of the constructor [] is ∀𝑎.[𝑎]S. In the non-empty list case, the element at the head of the list is
used in the first argument of seq and thus relevant. The tail of the list depends on the strictness of f itself.
Because f is a recursive function, it will introduce a constraint 𝜑 ⊑ 𝜑, which can be instantiated to S if
there are no other constraints for this variable. Compare this to the following function:

g ∶∶ [a] → Bool
= 𝜆list ∶ [a] →

let ! m1 ∶ [a] = list;
in match m1 with {

[] {a} → True;
∶∶ {a} x xs → g xs; };

In this case, the argument at the head of the list is not used and will have an L annotations. The tail
of the list will still produce the constraint 𝜑 ⊑ 𝜑, which might still becomes S. This implies that the
relevance information from cons is the join of the relevance from the head and the tail. The annotated
type of the constructor should thus become

∀𝑎.𝑎
(𝜓1⊔𝜓2,𝜓1,𝜓1)
−−−−−−−−−→ [𝑎]𝜑

(𝜓2⊔𝜑,𝜑,𝜓2)
−−−−−−−−→ [𝑎](𝜓1⊔𝜑)

Note that the tail can only be made strict if the annotation on the list is strict, as we cannot infer that
every element in the list is guaranteed to be used if the list itself is not guaranteed to be used.

The information obtained from the functions once again needs to flow back to the let bindings which
form the creation of the datatype. Like tuples, strictness information of the values stored inside lists can
also be kept and used. If a list only stores strict functions, then any argument passed to a function in this
list can be made strict. However, if one of the functions happens to be lazy, the strictness information
of the entire list is reduced to being a list of lazy functions in order to be sound. The use of strictness
information of the lists might lead to some surprising results. If we have a list only containing not (which
is thus a strict function), take the tail (empty list of strict functions), take the head (a strict function)
and apply it to an argument, the argument can be made strict. However, taking the head of an empty
list results in an error, thus the argument hypothetically passed to the function is never used, despite
the analysis determining it can be made strict. If the argument diverges, it can lead to a different error
message if the argument is evaluated before head is called. This is valid according to the definition of
strictness though, as this program diverges given a diverging argument, in this case diverges for any
arguments as it fails on head.

User-defined datatypes do not benefit from this extension, as it is configured to look for the standard
list datatype [] and its constructors [] and (:). For instance, if the user wishes to make a specialized
implementation for list of integers, creating a datatype IntList with constructors Nil and Cons Int IntList
will not use the analysis. However, if the user defined IntList as a type synonym of [Int], it will use the
analysis as all types are unpacked from their synonyms during the analysis. As Strings are literals, their
type has to be manually adjusted to [Char]𝜑, where 𝜑 is a fresh annotation.

66 OTHER DATATYPES

A.3 Other datatypes
Other constructors have so far been conservatively analyzed to be non-strict in all its arguments. A first
improvement can be made by allowing manual annotations on the datatypes. This is possible in the Core
syntax, and reflected by an exclamation mark on type of the constructor field made strict. Using this
information means we can make any argument which is passed in this specific position strict.

A simple datatype like Maybe can easily be implemented in the similar spirit as lists, except it is not a
recursive datatype. This means the information from the argument to Just can be directly placed on the
datatype itself. Nothing, like the empty list, always uses the argument as it does not have one. Either has
two type variables, and two constructors Left and Right which both operate on a different type variable.
This means that instead of one, we have to place two annotations on Either, one for each constructor.
If we were to place one annotation, it could only become S if both the argument to Left and Right were
guaranteed to be used, which defeats the purpose of the datatype.

As datatypes become more complex, the annotations to accurately reflect its strictness information
also become more complex. Therefore, it is essential that if a user wishes to improve the performance of
datatypes, it is often better to add the annotations manually than expect the strictness analysis to handle
it. The complexity of datatypes can quickly diminish the performance of the analysis, as was the case
with an earlier version of the analysis which naively placed an annotation on every type variable applied
to a datatype, which slowed down the analysis to intolerable levels of performance for little gain.

A.4 Results
The extension is implemented on the monotyped analysis discussed in section 9.2. The experiment com-
pares this analysis without the extension against this analysis with the extension enabled. It is performed
using the same setup as described in section 6.2, and with the commands described in chapter 8 3. The
only difference is an extension of the test file to contain more function which use datatypes (figure A.1) .

Time (ms) let! (Prelude) 𝜆!𝑥 (Prelude) let! (Test) 𝜆!𝑥 (Test)

Without datatypes 7688 611 197 58 12
With datatypes 8615 611 197 67 13

Table A.1: Results for the monotyped analysis with and without the datatypes extension

The analysis with the datatypes is obviously more precise, and does not miss any transformation
which is also covered by the analysis without the extension. However, this added precision is achieved
at a reduced analysis cost of a second, which makes it even slower than the polyvariant analysis. The
extension worsens the trade-off between precision and analysis cost, as the added precision is not worth
the added analysis cost. The annotations ondata constructors donot requiremajor changes to the analysis
and are not the main cause, so those can be kept. Tuples are separate from any other datatype in the Core
type and expression system, and as such can also be handled quite easily, though it does seem to have a
negative effect on the analysis cost already. Lists are the major cause of the reduced speed, as it requires
two annotations per element (the element itself and the tail of the list), and the analysis needs to check
for the list constructors and place these annotations manually. Implementing support for more datatypes
will only worsen the trade-off as most of them are not used as often and also need to be handled in special
cases. Creating a general-purpose analysis extension to cover all datatypes is probably not going to get a
favorable trade-off either.

3The implementation can be found at https://github.com/Helium4Haskell/helium/tree/strictness-analy
sis. The option to enable the versions with datatypes is –strictness=7.

https://github.com/Helium4Haskell/helium/tree/strictness-analysis
https://github.com/Helium4Haskell/helium/tree/strictness-analysis

DATATYPES 67

lall, lnone, lsome ∶∶ [Bool] → Bool
lall [] = True
lall (x ∶ xs) = x ‵seq‵ lall xs
lnone [] = True
lnone (x ∶ xs) = lnone xs
lsome [] = True
lsome [x] = x
lsome (x ∶ xs) = lsome xs
l1, l2, l3 ∶∶ Bool
l1 = lall [True, False]
l2 = lnone [True, False]
l3 = lsome [True, False]
lapp ∶∶ Bool
lapp = (head [id, id]) True
tup1, tup2, tup12, tup0, tupapp ∶∶ Bool
tup1 = fst (True, False)
tup2 = snd (True, False)
tup12 = let tup = (True, False) in fst tup ‵seq‵ snd tup
tup0 = let tup = (True, False) in if True then fst tup else snd tup
tupapp = (fst (id, const)) True
data SMaybe a = SNothing ∣ SJust ! a
maybe1 ∶∶ Maybe Bool
maybe1 = Just True
maybe2 ∶∶ SMaybe Bool
maybe2 = SJust True

Figure A.1: Extensions to Test.hs

68 RESULTS

Bibliography

[1] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics, volume 103. North Holland,
revised edition, 1984. http://www.cs.ru.nl/ henk/Personal Webpage.

[2] Tibor Bremer. Implementing counting analysis in UHC. Master’s thesis, Utrecht University,
Utrecht, Netherlands, January 2018. https://dspace.library.uu.nl/handle/1874/362949.

[3] Joris Burgers. Type error diagnosis for OutsideIn(X) in Helium. Master’s thesis, Utrecht University,
Utrecht, Netherlands, June 2019. https://dspace.library.uu.nl/handle/1874/382127.

[4] Ivo Gabe de Wolff. Higher ranked region inference for compile-time garbage collection. Master’s
thesis, Utrecht University, August 2019. https://dspace.library.uu.nl/handle/1874/383633.

[5] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the Utrecht Haskell
Compiler. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell ’09, page 93–
104, New York, NY, USA, 2009. Association for Computing Machinery.

[6] Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. A generic usage analysis with subef-
fect qualifiers. In Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’07, page 235–246, New York, NY, USA, 2007. Association for Computing Ma-
chinery.

[7] Cordelia Hall, KevinHammond,Will Partain, Simon Peyton Jones, and PhilipWadler. The Glasgow
Haskell Compiler: A retrospective. pages 62–71, 01 1992.

[8] Kevin Hammond, Simon Peyton Jones, Philip Wadler, and Cordelia Hall. Type classes in Haskell.
In ACMTransactions on Programming Languages and Systems, European Symposium on Program-
ming (ESOP’94), volume 18, pages 241–256. Springer Verlag LNCS 788, April 1994.

[9] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning Haskell. In Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell ’03, page 62–71, New York, NY,
USA, 2003. Association for Computing Machinery.

[10] Stefan Holdermans and Jurriaan Hage. Making ”stricterness” more relevant. In Proceedings of the
2010 ACM SIGPLANWorkshop on Partial Evaluation and ProgramManipulation, PEPM ’10, page
121–130, New York, NY, USA, 2010. Association for Computing Machinery.

[11] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis, Com-
puter Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[12] Tom Lokhorst. Strictness optimization in a typed intermediate language. Master’s thesis, Utrecht
University, August 2010. http://www.cs.uu.nl/education/scripties/scriptie.php?SID=INF/SCR-
2009-055.

70 BIBLIOGRAPHY

[13] Reinier Maas. Normalizing the core representation in Helium. Master’s thesis, Utrecht University,
Utrecht, Netherlands, July 2019. https://dspace.library.uu.nl/handle/1874/383380.

[14] SimonMarlow.Haskell 2010 Language Report. https://www.haskell.org/onlinereport/haskell2010/.

[15] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3):348–375, 1978.

[16] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis. Springer
Publishing Company, Incorporated, 2010.

[17] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart, editors. Real World Haskell, chapter
25. Profiling and optimization. O’Reilly Media, Inc., November 2008.

[18] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart, editors. Real World Haskell, chapter 4.
Functional programming. O’Reilly Media, Inc., November 2008.

[19] Augusto Passalaqua Martins. Polyvariant strictness analysis in UHC. Master’s thesis, Utrecht Uni-
versity, Utrecht, Netherlands, August 2013. http://dspace.library.uu.nl/handle/1874/282675.

[20] Ilya Sergey, Dimitrios Vytiniotis, Simon L. Peyton Jones, and Joachim Breitner. Modular, higher
order cardinality analysis in theory and practice. Journal of Functional Programming, 27:e11, 2017.

[21] Fabian Thorand and Jurriaan Hage. Higher-ranked annotation polymorphic dependency analysis.
In PeterMüller, editor, Programming Languages and Systems, pages 656–683, Cham, 2020. Springer
International Publishing.

[22] Mias van Klei. Heap recycling analysis in Helium. Master’s thesis, Utrecht University, Utrecht,
Netherlands, August 2020. https://dspace.library.uu.nl/handle/1874/398841.

[23] Gerben Verburg. Strictness analysis in UHC. Master’s thesis, Utrecht University, Utrecht, Nether-
lands, 2012. http://dspace.library.uu.nl/handle/1874/255389.

[24] Hidde Verstoep. Counting analyses. Master’s thesis, Utrecht University, Utrecht, Netherlands, July
2013. http://dspace.library.uu.nl/handle/1874/282657.

[25] David Walker. Substructural Type Systems, page 3–43. The MIT Press, 2002.

[26] Keith Wansbrough and Simon Peyton Jones. Simple usage polymorphism. 2000.

	Abstract
	Introduction
	Problem description
	Outline

	Preliminaries
	Strict, non-strict and lazy evaluation
	Strictness in Haskell
	Motivations for strictness analysis
	Type and effect systems

	Strictness analysis
	Relevance typing
	Relevance and applicativeness typing

	Helium
	Design philosophy
	Architecture
	Core

	Related work
	Related analyses
	Strictness analysis in UHC
	Recent work in Helium

	Research questions and setup
	Research questions
	Setup

	Implementation
	Transformation rules
	Algorithm
	Adaptation to polyvariance

	Experiment
	Different approaches
	Counting arguments
	Monotypes

	Conclusion
	Future work
	Strictness analysis
	Helium

	Datatypes
	Tuples
	Lists
	Other datatypes
	Results

