
UTRECHT UNIVERSITY

MASTER THESIS

Designing an AI agent for Stratego

Author:
Freek SCHOENMAKERS

Supervisor:
Dr. Tillmann MILTZOW

Dr. Hans L. BODLAENDER

A master thesis submitted in partial fulfilment of the requirements
for the degree of Master of Computing Science

in the

Department of Information and Computing Sciences

August 6, 2021

https://www.uu.nl/
http://www.freekschoenmakers.nl
https://sites.google.com/view/miltzow/home
https://webspace.science.uu.nl/~bodla101/
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

i

UTRECHT UNIVERSITY

Abstract
Faculty Bèta Sciences

Department of Information and Computing Sciences

Master of Computing Science

Designing an AI agent for Stratego

by Freek SCHOENMAKERS

Stratego is a strategy board game that relies on incomplete information as an impor-
tant gameplay element. This lack of complete information makes Stratego a chal-
lenging game for a computer player to play well. The game relies heavily on keep-
ing information hidden from the opponent, allowing you to hide stronger pieces or
to bluff with weaker pieces. Traditional AI methods such as Minimax that have been
successfully applied to games like Chess are ill-equipped to deal with this hidden in-
formation, and AI agents based on these methods show poor results when applied
to Stratego.

The goal of this thesis is to apply new methods, such as Monte Carlo Tree Search
and Neural Networks, to Stratego AI agents in order to improve the quality of com-
puter players.

HTTPS://WWW.UU.NL/
https://www.uu.nl/organisatie/faculteit-betawetenschappen
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

ii

Acknowledgements

Many thanks to Till for his excellent supervision, support and ideas throughout this
Master’s Thesis.

Special thanks to Wessel and Naomi for brainstorming with me during our weekly
meetings, to Tom and Gijs for helping me test some AI agents and to Isabelle and my
family for supporting me throughout my thesis.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction and background 1
1.1 Introduction . 1
1.2 Stratego . 1

1.2.1 Rules for play . 1
1.2.2 Two-squares rule . 2
1.2.3 Victory conditions . 2

1.3 Basic strategies . 3
1.3.1 Setup . 3
1.3.2 During play . 3

1.4 Difficulties for computer agents . 4
1.4.1 Difficulties with static lookahead analysis 4
1.4.2 Difficulties with dynamic lookahead analysis 6

2 Literature Study 8
2.1 A note on Stratego literature . 8
2.2 AI agents designed using expert domain knowledge 8

2.2.1 Multi-Agent Stratego . 9
2.2.2 Monte Carlo Stratego . 9
2.2.3 Invincible, A Stratego Bot . 10
2.2.4 Stratego Senior Design Report 12
2.2.5 Using Domain-Dependent Knowledge in Stratego 13
2.2.6 Opponent Modelling in Stratego 13
2.2.7 Quiescence Search for Stratego 14
2.2.8 Competitive Play in Stratego . 15
2.2.9 Designing Agents for the Stratego Game 16

2.3 AI agents designed without using expert domain knowledge 17
2.3.1 Optimizing Stratego Heuristics With Genetic Algorithms 17
2.3.2 Feasibility of Applying a Genetic Algorithm to Playing Strat-

ego & Reachable Level of Stratego Using Genetic Algorithms . 18
2.3.3 Learning to Play Stratego with Convolutional Neural Networks 19

3 Research Question 21
3.1 Relevance of research question . 22

4 Methodology 23
4.1 StrAItego . 23
4.2 The Gravon database . 24
4.3 Determining agent quality . 25

4.3.1 Peter N. Lewis Agent . 26

iv

5 Setup Problem 28
5.1 Setup providers using a dataset . 29

5.1.1 Peter N. Lewis Setup Provider 30
5.1.2 Accolade Setup Provider . 30
5.1.3 Vincent de Boer Setup Provider 30
5.1.4 Gravon Setup Provider . 31

5.2 Setup providers that create original setups 31
5.2.1 Random Setup Provider . 32
5.2.2 Naive RvH Setup Provider . 32

5.3 Conclusion . 34

6 Dynamic Evaluation Problem 35
6.1 Minimax . 35
6.2 Monte-Carlo Tree Search . 36

6.2.1 Hidden information . 37
6.2.2 ε-greedy . 38
6.2.3 Upper-Confidence Bound . 39
6.2.4 pUCT . 40

6.3 The effect of information . 44
6.4 Discussion . 44
6.5 Conclusion . 45

7 Information Problem 46
7.1 Specifying the problem . 46

7.1.1 Chance nodes . 48
7.1.2 Making a single estimation . 51

7.2 Estimation methods . 52
7.2.1 Setup Reconstruction . 52
7.2.2 Omniscient Estimator . 53
7.2.3 Random Estimator . 53
7.2.4 Database Estimator . 53
7.2.5 Naive RvH Neural Network Estimator 55
7.2.6 Direct Rank Estimator . 58

7.3 Estimators’ “Home advantage” . 59
7.4 Discussion . 60
7.5 Conclusion . 60

8 Static Evaluation Problem 62
8.1 Evaluation Functions . 63

8.1.1 Naive Unit Count (NUC) Evaluator 63
8.1.2 Random Rollouts Evaluator . 64
8.1.3 Jeroen Mets Evaluator . 65
8.1.4 Flat NUC Evaluator . 66
8.1.5 NUC Without Flag Evaluator . 66
8.1.6 Naive Unit Value Count (NUVC) Evaluator 67
8.1.7 Neural Network (NN) Evaluator 68
8.1.8 Double NN Evaluator . 70
8.1.9 Double NN NUC Evaluator . 71

8.2 Discussion . 72
8.3 Conclusion . 73

v

9 Human Testing 74
9.1 The players . 74
9.2 The games . 75

9.2.1 Tom with Gravon Setup vs. AI agent - AI Victory 75
9.2.2 Tom with Custom Setup vs. AI agent - AI Defeat 77
9.2.3 Gijs with Gravon Setup vs. AI agent - AI Defeat 79
9.2.4 Gijs with Custom Setup vs. AI agent - AI Defeat 82

9.3 Discussion . 84
9.4 Conclusion . 86

10 Discussion 91

11 Conclusion 93

12 Future Work 94

A Source Code 96

1

Chapter 1

Introduction and background

1.1 Introduction

For over 5000 years people have played board games against one another. The abil-
ity of these games to entertain us has proven to be unwavering, as many ubiquitous
board games such as Chess or Backgammon have existed for well over a thousand
years. In more recent years, people have focused their efforts on making computers
play board games. This has multiple reasons, the simplest being that having a com-
puter player to play against makes it so that only one person ever needs to be in the
mood for a game to play. They can usually also offer a variety of difficulty settings,
so that players of any skill level can play a fun game at a challenging level.

A perhaps more important reason is that playing board games effectively is little
more than efficient decision-making. Techniques that are applied to make decisions
in board games can also be applied to real-life situations. This ranges from basic
decision-making via MiniMax trees to Neural Network techniques being applied
to Chess and Go but also to image recognition and more recently protein folding.
As such, the creation of a computer player for a different board game may help in
selecting and applying decision-making techniques to new problems.

For this thesis I will attempt to make a new computer player that can play Strat-
ego at a better level than existing AI agents. Stratego is different from games like
Chess and Go, in that it is an incomplete information game. This makes it a partic-
ularly challenging game for computer players, and techniques that have been suc-
cessfully applied to other games do not readily apply to Stratego.

1.2 Stratego

Stratego is a strategy board game based on the French game L’Attaque. The game
exists in its current form since 1961. It takes place on a 10x10 square board, with
two 2x2 lakes in the middle, dividing the center of the board into three lanes. Each
player has 40 pieces of one of 12 different ranks, one of which is the flag. The pieces
face away from the opponent, so that they are unable to see which rank a piece has.
The aim of the game is to either capture the opponent’s flag, or to have the opponent
be unable to make any move.

1.2.1 Rules for play

In the setup phase, each player places their 40 pieces in the four rows of the board
closest to them. After all 40 pieces have been carefully placed on a square without
revealing them to the opponent, the game begins by each player taking alternating
turns to move one of their pieces. Each piece can only move one square orthogonally,
with the exception of three ranks; the flag, the bombs and the scouts. The flag and

Chapter 1. Introduction and background 2

the bombs are unable to move, they must remain in the position they were initially
placed in. The scouts can move orthogonally for more than one square; they can
move until another piece is blocking its way. No piece can move into the two center
lakes; these lakes block all movement.

If a piece tries to occupy the same square as an opponents piece, it attempts to
capture it which removes it from the board. Whether or not it does so successfully
depends on the rank of the attacking and defending pieces. Each rank has a number
ranging from 1 (the spy) to 10 (the marshal), with the exception of the bomb and
the flag. In general, if an attacking piece has a higher rank than a defending piece,
it successfully captures the defending piece. If it is of a lower rank, it is removed
instead and the defending piece stays on the board. If the ranks are equal, both
pieces are removed from the board. There are exceptions to this rule: if a piece
attacks a bomb, then the piece is always removed regardless of its rank. The only
exception is the miner (rank 3), which can safely attack and capture bombs. If a spy
(rank 1) attacks the marshal (rank 10), the marshal is captured. If any piece attacks
the flag, the flag is captured and the game ends. The winner is the player who
captured the opponent’s flag. Note that with every attempted capture, both pieces
must reveal their ranks to the opponent.

1.2.2 Two-squares rule

One special rule is the two-squares rule. A player may not repeatedly move a piece
between the same two squares for more than three of their turns in a row. This is
to prevent players from repeatedly moving back and forth, stalling the game. Addi-
tionally, it can be used to trap an opponent’s piece, leading to a capture [Fed10].

1.2.3 Victory conditions

There are three possible ways for a player to achieve a victory. These are the follow-
ing:

1. Flag capture: The primary way of achieving victory is capturing the opponent’s
flag with any friendly piece. Upon capture, the game immediately ends and
victory is declared.

2. No possible moves: If a player is no longer able to make any moves, either be-
cause they have no movable pieces left or because the pieces that are still on
the board can no longer move (either due to being blocked by friendly unmov-
able pieces like bombs and the flag or because the two-squares rule prohibits
it), the game ends and the opponent is declared the victor.

3. Resignation: If a player resigns and the opponent does not agree to a tie, the
game ends and the opponent is declared the victor.

Note that depending on how the game plays out, it is entirely possible that cap-
turing the flag is no longer possible. An example would be a game in which one
player has the flag protected by bombs and the other player has no more miners left.
In such situations a player would be forced to eliminate all movement possibilities
of the opponent to achieve victory.

Chapter 1. Introduction and background 3

1.3 Basic strategies

The nature of the game makes it so that there is no apparent dominant strategy that
guarantees victory over the opponent. Certain defensive strategies may be able to
counter certain other offensive strategies well, and may fail to defend adequately
against certain others. Regardless, some strategies have proven to be consistently
strong in many games and thus generalise well. This section will briefly touch on
some of these.

1.3.1 Setup

For the setup phase, most players tend to place their flag either on the back row or
next to the lakes (often known as the shoreline bluff), with bombs surrounding the
flag. The back row is often chosen as it is furthest away from the opponents pieces
and the player has more opportunity to defend with their pieces against enemies.
To surprise and misdirect the opponent, some players like placing their flags next
to the lakes, hoping that their opponent will assume the flag is in the back row and
not search for it on the shoreline positions. The bombs surrounding the flag offer it
more protection, as it will require the opponent to bring a miner over to capture the
bombs. This may prove difficult, as the miner at rank 3 is lowly ranked and thus
susceptible to capture by the enemy. It also makes it possible to eliminate all of the
opponent’s miners, making defeat by having the flag captured impossible. Note that
in this scenario a player can still lose if they lose all of their other pieces, rendering
them unable to make a move. The remaining bombs can be placed elsewhere on
the board or protecting some other lowly ranked piece, as a bluff to misdirect the
opponent as to where the flag is located.

Most players like to divide their scouts over board. The scouts in the front serve
to scout ahead, finding high ranked pieces that the opponent may wish to attack
with. The rest of the scouts can be held in reserve until the late game, when searching
for bombs and the flag becomes more important. When there are fewer pieces on the
board, the scouts will also be able to make better use of their enhanced mobility.

For a balanced strategy, it is advised to keep the high ranking pieces (e.g. ranks
7-10) somewhat equally distributed over the left and right side of the board. This
prevents the opponent from bringing in a high ranking piece of their own on one side
of the board and being able to capture many pieces there, without having the ability
to mount a quick defense. Alternatively, one can focus their higher ranked pieces on
one side for a very aggressive play over one flank, though this is considered much
riskier.

Miners are valuable for disposing of the enemy’s bombs, which usually only
becomes a factor later in the game. Therefore, most players keep their miners near
the back of the board. It can however pay off to have one or two near the front of the
board, to deal with an opponent who has placed their bombs so that they completely
block off one or multiple lanes.

One other quality that is good for any setup is to make it unpredictable. If the
same setup is used often for example, an opponent can more accurately estimate the
ranks of your positions, giving him an advantage.

1.3.2 During play

In general it is advised to postpone the revealing of the high ranked pieces as much
as possible, and conversely it helps to find the opponent’s high ranked pieces as

Chapter 1. Introduction and background 4

early as possible. This is because being able to trap or distract the opponents high
ranked pieces may give your own high ranked pieces free reign. As an example,
a game where the opponent has lost both their spy and their marshal renders the
friendly marshal effectively invincible, unless it attacks a bomb. At this point, the
marshal can attack any piece that the player knows has been moved at least once.
Particularly in the late game, when many pieces have moved, this can be a very
powerful position to find oneself in.

Bluffing with pieces is also advisable. For example, one can try to scare off an at-
tacking marshal by moving a piece towards it, pretending that it is the spy. Another
common bluff is moving the scout only one square per move, thereby keeping the
rank of the piece hidden.

Once a piece has moved, a player knows that the piece can not be a bomb. This
makes it much safer to attack it with a higher ranked piece. Pieces that have not been
revealed yet or that could be bombs are best attacked with lowly ranked pieces, as
they are not as good at capturing and therefore their possible loss is of minimal
importance.

1.4 Difficulties for computer agents

While games like Chess have been considered ‘solved’ since the 90s, Stratego re-
mains largely ‘unsolved’. There have been numerous attempts at creating an AI
agent for Stratego, but the previously applied techniques have considerable flaws,
leading to agents that do not perform at a decently high level, but remain at the
level of a beginning player. Often their strength also comes from applying a spe-
cific strategy that, once figured out by the opponent, can be easily countered [Boe07;
Wol18].

This mostly stems from the fact that certain aspects of Stratego are particularly
difficult to deal with for the most used AI strategies. Typically, an AI agent for
some particular game will decide the next move or action based on a combination of
static and dynamic lookahead analysis. For Stratego however, both of these types of
lookahead analysis are particularly difficult [Wol18].

1.4.1 Difficulties with static lookahead analysis

Static lookahead analysis involves looking at the current gamestate, and analysing
it to immediately provide the next action or some valuation of the gamestate. For
example, a function that evaluates a gamestate and outputs a single value that is
higher as the gamestate gets better, is a type of static lookahead analysis.

For Stratego, such an analysis based on the current gamestate is very complex.
A good analysis would at least have to take the following into account:

• Piece values: On a Stratego board, pieces will have different values, with higher-
ranked pieces typically having a higher value than lower-ranked pieces. Im-
mediately however, a number of problems arise: whilst most ranks are ordered
in a hierarchical way, there are exceptions: the spy, the scout, the miner and the
bomb. The spy of course is the lowest-ranked piece, but it is also the only piece
capable of capturing the enemy marshal in an attack. The scout has no extra
offensive abilities, but is able to move more than one square at a time. The
miner is the only piece capable of removing bombs. The bombs themselves do
not neatly fit anywhere in the hierarchy, as their role and abilities are unique.

Chapter 1. Introduction and background 5

There is also the issue of the ranks being able to shift around in the hierarchy:
once all bombs have been cleared out, the miners become less valuable. If the
enemy marshal is captured, the spy becomes much less valuable. If the enemy
marshal and spy are captured, there is no piece that can threaten the marshal
anymore, allowing it to freely attack any piece on the board that has moved
with no risk to itself. If the opponent for example has no pieces left above
some rank, then all owned pieces above that rank have practically the same
value, as they can all capture the remaining enemy pieces on the board.

Additionally, whilst in the early game it may be advantageous to sacrifice mul-
tiple lower-ranked pieces to capture a higher-ranked piece, this may be disad-
vantageous in the late game when there are few pieces left and a larger quan-
tity of pieces may be able to outmanoeuvre a lower quantity of pieces with a
higher quality.

• Revealed and concealed information: Stratego is a game without perfect informa-
tion. This naturally applies some value to the information (or lack thereof) on
the board. As a general rule, you want to reveal as much information about
your opponent as possible whilst concealing as much information about your-
self as possible. This allows for bluffing; the tactic of intentionally trying to
deceive the opponent into thinking that a piece is of a different rank than it
really is, in the hopes of tricking the opponent into making a wrong move.

A naive approach would be to simply keep track of which ranks a piece could
still have, and which ranks it can definitely not have. For example, an un-
known piece that has moved can not have the ranks of either bomb or flag.
Similarly, if all six miners are known, then an unknown piece can not have
the rank of miner. However, it is easy to see that this approach does not take
into account that information is not all valued equally: keeping the marshal
(or higher-ranked pieces in general) secret for a longer time is desirable, as it
gives you more time to discover the enemy higher-ranked pieces that can be
captured with the marshal, as well as discover the enemy spy.

It’s also clear that the value of information degrades as time progresses. Near
the end of the game, when there are few pieces on the board, it becomes much
easier to guess the ranks of the opponent’s pieces. At this point in the game,
the most valuable information concerns the position of the opponent’s flag.

• Piece positions: Perhaps the most complex part of a static analysis is the evalua-
tion of the positions of the pieces. One can easily infer general rules, e.g.: more
pieces on the opponent’s side of the board is better, or not having pieces next
to pieces that could capture it, but there are many nuances. There are many
positions that allow you or the opponent to trap and capture a piece, yet it is
not always immediately evident which positions those are.

As an example, consider having a piece ranked higher than a miner in each
of the three lanes between the lakes. This single piece is capable of evading
capture by a single other piece, whilst simultaneously capable of preventing
any miners from crossing over to the other side. It would require two pieces
with an equal or a higher rank to capture this blocking piece. This position is
very valuable, as long as there are no two pieces capable of capturing it moving
into the lane. However, determining if this is the case is difficult if the pieces
moving in are unknown; it could be a genuine threat or just a bluff. This makes
most evaluations of the positions of the pieces an evaluation of risk, which is
difficult to handle properly and consistently.

Chapter 1. Introduction and background 6

Even if one is able to do a proper, consistent static analysis of each of the above as-
pects, one still has to be able to weigh them properly when summing them together.
These weights too could change depending on how the game has progressed. If the
opponent appears to be using an unusual setup which is harder to predict, then the
value of information may be greater than usual.

1.4.2 Difficulties with dynamic lookahead analysis

In theory, a perfect static lookahead analysis should be sufficient to develop a per-
fect agent. In reality, such a perfect static lookahead analysis method does not exist,
or is not realistically attainable. To solve this issue, dynamic lookahead analysis is
applied. The idea is that by effectively looking at future gamestates and evaluat-
ing those, it is possible to overcome these shortcomings. The most commonly used
example is the Minimax method, a depth-first tree search algorithm that explores
moves up until a certain depth, and evaluates only the gamestates at that maximum
depth. By then continuously picking the best moves for each player (the minimum
scoring move will be picked by the opponent, and the maximum scoring move will
be picked by the player, hence the name ‘Minimax’), the AI agent can determine
the highest evaluated gamestate possible, where both the AI agent and its opponent
play optimally. This overcomes shortcomings in the short term through the dynamic
exploration of moves, and guides the AI agent towards a good final result through
the static lookahead analysis.

There are a variety of different tree search methods, the most notable being vari-
ations of Minimax (such as Expectimax, which can deal with chance nodes) and
Monte Carlo Tree Search. However, Stratego works in such a way that tree searches
often end up being very inefficient. Vincent de Boer, three-time Stratego world
champion and author of the ‘Invincible’ AI agent, has analysed the reasons why
in his master thesis [Boe07]. It boils down to the following problems:

• High branching factor: On average, each player can take approximately 21.7
unique moves every turn [Art10]. This means that for a tree search after two
moves there are approximately 470 unique move paths to explore, and after
five moves we have over 4.8 million unique move paths. Note that this is five
moves for both players combined, so just three moves for the AI agent and two
moves for the opponent.

• High required depth: In Stratego, most pieces can only move a single square per
turn. This means that before you see the effect of a certain series of moves, you
need a considerable search depth. For example, a miner moving to capture a
bomb 10 squares away requires a search depth of 19 (including the opponent’s
moves). Combined with the fairly high branching factor, means the tree that
needs to be explored is incredibly big, and searching it becomes very difficult
very quickly.

This is different from a game like Chess, where despite the higher branching
factor (approximately 31), most moves result in a large difference in the games-
tate far earlier. This is because most pieces in Chess can cross greater distances,
and also because the moves in Chess are often very strongly interrelated.

• Low interrelation between moves: Most moves in Stratego are not interrelated.
Consider moving pieces in the left and the right lane. These moves will have
no effective impact on one another, and can likely be executed in any order,

Chapter 1. Introduction and background 7

leading to no noticeably different gamestates. This has the unfortunate effect
of inflating the branching factor unnecessarily.

Unfortunately it is not clear-cut when exactly this inflation is unnecessary. If
a player finds a good move on the left flank by ignoring a real threat on the
right flank, it risks missing opportunities or threats and thus making the wrong
moves.

• Long games: The average game takes approximately 381 moves [Art10]. This
is much longer than an average game of Chess, which would take roughly 40
moves, and often less when less experienced players play.

This means that for most moves, the tree search will be unlikely to find a game
state where the game has ended, making it more reliable on the static looka-
head analysis. However, in general the total length of the games is much less
of a problem for the dynamic lookahead analysis than the other listed points.

It becomes apparent that any dynamic lookahead analysis will require consider-
able work on narrowing the branching factor to increase the search depth. However,
it seems that there may still be practical limits to the search depth that may be very
hard to overcome.

It seems that for any AI agent doing proper lookahead analysis will require both
a very strong static as well as a strong dynamic approach. If either is not good
enough the play of the AI agent will likely suffer considerably as a result. Particu-
larly against human players the AI agent will struggle, as humans typically have less
issues with separating moves that have no relation to one another and typically also
have an easier time looking multiple steps ahead when each of the steps is fairly
simple (e.g. it is easy to imagine moving the miner towards a bomb ten squares
away).

8

Chapter 2

Literature Study

——————————————————————————–

2.1 A note on Stratego literature

Compared to other games like Chess and Go, not much work has been done on
creating an AI agent for Stratego. As such, the available literature is far and few
between, and mostly consists of bachelor’s and master’s theses. In fact, most agents
created for Stratego are largely undocumented or closed-source, making it difficult
to effectively ascertain exactly which particular methods and techniques have been
applied and how effective they were. After a discussion with the supervisor, it has
been agreed that the literature study therefore will also be somewhat limited.

The current holder of the title of ‘Strongest Stratego AI’ is Probe 2, the latest
version of which has been incorporated in the ‘Heroic Battle’ mobile app. There
used to be annual Stratego Computer World Championships, but this competition
is now defunct. Other notable contenders from these contests include Master of the
Flag 2, Probe 1 and Invincible.

With the exception of Invincible, the AI agents listed are not covered by avail-
able literature. It is therefore difficult to determine exactly how these agents work,
although we can deduce the general approach. For the literature study, this is not
too detrimental; the literature that does exist covers most modern techniques and
approaches, and whichever techniques these agents may be using is likely a combi-
nation of several of these techniques or a refinement of some of them.

The literature study will therefore focus on the documented attempts at creating
a Stratego AI. Note that for many of these, it is hard to establish exactly how effective
the attempts were. With the exception of a few, most works tend to lack a proper
evaluation against either different AI agents or against human players. Typically the
evaluation does contain some description of certain strengths and weaknesses, from
which we can very roughly estimate the effectiveness of the AI agent.

2.2 AI agents designed using expert domain knowledge

The existing literature can be broadly subdivided into two groups. The first group
consists of people that designed their AI agents using expert domain knowledge.
Here, people have tried their best to design, create and fine-tune their AI agent based
on their own observations, knowledge and evaluations. The second group features
people that have attempted to use some kind of learning algorithm to help create
their AI agent instead. They may still be providing the basic framework, but for
example the exact way of doing static lookahead analysis is largely learned instead
of provided.

Chapter 2. Literature Study 9

This first group has an initial advantage, in that they are able to identify short-
comings of their agents more quickly and are able to adjust accordingly. Their agents
will therefore quickly reach a certain level of competence. They however have an un-
fortunate disadvantage in that their agents are also limited by the knowledge of their
creators. The second group has the potential to overcome these limitations and thus
the potential of the first group.

We will begin the literature study by starting with the first group.

2.2.1 Multi-Agent Stratego

The oldest literature concerning computers playing Stratego appears to be the mas-
ter thesis by Caspar Treijtel, written in 2000 [Tre00]. Treijtel proposes that a complex
system can often be simplified by dividing the complex system into multiple smaller,
much simpler systems.

Treijtel suggests treating each piece on the Stratego board as a separate subsys-
tem, with their own perceptions, objectives and variables. Each piece would then
perform their own static lookahead analysis, and determine which action it would
prefer to take, e.g. attack another piece, move a square, run away, etc..., and how
much it would like to do these. The pieces then submit this information to the cen-
tral decision maker, which simply picks the move that is preferred most.

While this AI agent is capable of making some decent decisions when it comes
to small localised situations, it is largely incapable of any long-term planning. This
is largely due to the lack of any dynamic lookahead analysis, and a fairly basic,
uncoordinated static lookahead analysis. It may be able to defeat some weaker AI
agents, but it does not stand a reasonable chance against a human player.

It should be noted that while Treijtel originally developed this agent, most litera-
ture appears to reference a bachelor’s thesis by Ismail [Ism04], who has implemented
this agent. It appears however that large portions of text have been directly copied
from Treijtel’s work into Ismail’s. I will therefore not further reference this work.

2.2.2 Monte Carlo Stratego

Jeroen Mets wrote a paper in 2008 on applying the Monte Carlo Tree Search (MCTS)
method to Stratego [Met08]. MCTS is a technique where the agent randomly selects
moves in the gametree until it reaches a leaf node. At this point it does an evalu-
ation of the node, either through an evaluation function or a random rollout. The
obtained results are then averaged down the tree. To deal with uncertainty, Mets
uses ‘strooien’, e.g. assigning random possible ranks to the pieces.

Mets has divided his paper in three parts. The first part seeks to simply apply the
MCTS technique to Stratego. The evaluation function is defined as a random rollout
up to a certain depth, e.g. X random moves are selected to ‘simulate’ a potential
playthrough. At the end of the rollout, a valuation function is applied. The valuation
function is based on the revealing of information, the capture of pieces and moving a
previously unmoved piece. Mets assumes a direct inverse correlation between what
is good for the agent and what is good for the opponent, e.g. ten points for the agent
result in minus ten points for the opponent.

In his first test, he finds that MCTS is able to play the game somewhat decently.
It manages to beat a random agent 96-97% of the time. Mets notes that if there are
bombs around the flag, the MCTS agent is much less likely to capture it and may
instead rely on capturing all moving enemy pieces to win. The average game length
also goes up significantly. He also notes that the high branching factor, which leads

Chapter 2. Literature Study 10

to many different random games, is a cause for lowered performance. Mets also uses
a fairly low amount of rollouts (on average ∼ 330).

In the second part of the paper Mets investigates the effect of various param-
eters related to MCTS. He specifically looks at the time given to find a move, the
maximum number of moves used in rollouts and the method of ‘strooing’, the as-
signment of ranks to unknown pieces. Mets finds that the best ‘strooing’ method is
to do it once at the start of every turn. He also concludes that the performance of the
MCTS agent improves if he increases the amount of time given per turn and if the
rollouts use more moves before evaluating. He does note that the amount of rollouts
here matters most; more but shorter rollouts are superior to few but longer rollouts.

In the third part, Mets attempts to optimise the MCTS agent by using progres-
sive pruning. His exact implementation does not quite become clear, but the idea is
that during the exploration of the MCTS tree, moves that are found to be bad can be
eliminated and no longer explored. By doing this, the MCTS tree should naturally
begin exploring only the better moves. Unfortunately, the application provides lim-
ited results, showing an improvement only with specific parameters related to the
number of moves per rollout, which if shortened eliminates the advantage progres-
sive pruning provides. Mets also claims that if the number of rollouts increases, the
advantage turns into a disadvantage, as progressive pruning can on accident prune
away the best move.

Mets concludes by mentioning other methods to improve the MCTS agent’s per-
formance, though he has not implemented them himself. It appears that other move
selections that are typical for MCTS, such as the Upper Confidence Bound method
or the ε-Greedy method were not tried.

2.2.3 Invincible, A Stratego Bot

In 2004 three-time Stratego world champion Vincent de Boer developed a new AI
agent for Stratego in his master thesis named Invincible. De Boer used his extensive
and deep knowledge of the game to identify multiple weaknesses in the tree-search
approach for Stratego agents, which was by then typically used in the more powerful
agents such as Probe. Most of his findings can be found in section 1.4.2.

De Boer stipulates that humans, unlike computers, do not think of individual
‘moves’ when playing Stratego, but rather formulate plans. Each plan has a specified
goal, a method to attain that goal and a measure of necessity to reach said goal. He
gives an excellent example in figure 2.1.

In this example, all pieces have their ranks revealed. Red can win in this scenario,
but it requires a staggering 200 moves before this happens. This may seem like an
incredibly large amount, but a human player can quickly see how this will happen.
There are three things that need to happen:

• The blue miner in the bottom right needs to be trapped and captured by the
red marshal. This secures the red flag.

• The red miner in the bottom left needs to evade the blue general close by it.
There is only one higher ranked unit, so the general is unable to trap and cap-
ture it provided the miner keeps moving.

• Once the marshal has captured the miner, it needs to chase the blue general
away so that the red miner can capture the flag.

Each of these items is relatively easy to see and understand. The reason why it
takes such a large amount of moves is because of the second item, the evasion of

Chapter 2. Literature Study 11

FIGURE 2.1: An example provided by de Boer, showing a situation
that is easily solved by humans but is very difficult for computer play-

ers

the general by the miner. These pieces will alternate between moving up and down,
until the blue general reaches the limit set by the two-squares rule (see section 1.2.2).
Once the limit is reached, red will not have to use their turn to have the miner evade,
and can do just one move to further the other two plans (the capture of the miner
and the chasing of the general).

A human player, particularly one with some experience, will quickly see that the
miner in the bottom left is safe from harm, due to the two-squares rule. They can
then focus on executing the other two plans. A computer player however, particu-
larly one that uses a search tree, will still have to consider these moves. In this tree,
the optimal path is one that is 200 moves long, and roughly four out of five moves
involve the miner and the general repeatedly chasing and evading. This greatly
increases the size of the tree.

To work around this problem, de Boer created an AI agent that also thinks in
plans rather than moves. He used his expert domain knowledge to define a large
set of plans, e.g. ‘Have the marshal evade the spy’, or ‘Trap an enemy piece’. Every
turn, the AI agent determines how much each move would contribute to each plan.
The move that ends up contributing most to all plans collectively is the move that is
chosen by the bot to play.

To create a setup for the bot to use, De Boer uses a method that utilises statistical
data from a database of Stratego games played from the Gravon database. He uses
this data to calculate the chance that a certain piece is placed in a certain square, and
how likely it is that other pieces are next to it. He then generates a large number of
semi-random setups, and uses specific heuristics to select the best setup to use.

De Boer also uses heuristics to determine the odds that a certain enemy piece
on the board has a certain rank. Every move made by the opponent is evaluated
by these heuristics and the odds are updated accordingly. He uses normalisation to
make sure the sum of all percentages per piece and per rank remains close to 100%.

Chapter 2. Literature Study 12

Evaluation

De Boer effectively decides against any type of dynamic lookahead analysis, due to
its inefficiency, and focuses strictly on crafting a very strong static lookahead analy-
sis. De Boer may be uniquely positioned to do this, as likely few people exist with a
similar grasp of both Stratego as well as programming. In his evaluation, he states
that Invincible is able to defeat some human players, but not others.

It seems that in particular, Invincible struggles playing against players who use
an unexpected setup, or who play unconventionally. This makes sense; de Boer
has used his expert knowledge to teach Invincible how to play against typical op-
ponents, e.g. the ones he himself would likely encounter most, but not against a
player who might be far less skilled but a lot more unpredictable. He mentions that
a player who blocked off two lanes using bombs cost Invincible some of its high-
ranked units, ultimately leading to a defeat. A human however would be able to
recognise this situation and adapt accordingly, as in this case it is very easy to con-
trol the remaining opened lane while slowly threatening the blocked off lanes. De
Boer had simply not taught Invincible how to do this yet.

Ultimately, Invincible’s potential seems limited. De Boer says he can improve In-
vincible by adding more plans and refining the existing ones, but it seems inevitable
that at some point the amount of plans will begin conflicting with one another. It is
also clearly limited by de Boer’s knowledge of the game (which may be great, but is
ultimately still limiting).

2.2.4 Stratego Senior Design Report

Jeff Petkun and Ju Tan produced a senior design report on a Stratego AI agent in
2009 [PT09]. Their agent is a Minimax agent with α-β-pruning. A novelty in their
agent is that they have developed three different static lookahead analysis methods.

As de Boer mentions in his master thesis, the value of certain pieces and informa-
tion changes over the duration of the game [Boe07]. To account for this, Petkun and
Tan have developed a single evaluation function that can be tuned using various
weights. These weights are then adjusted based on the progression in the game. It
starts by prioritising discovery, material advantages and flag safety. In the midgame,
it adds the distance between the miners and opponent pieces that have not yet
moved. Once the game reaches the final phases, it prioritises this distance more,
as well as the distance between owned pieces and enemy unknown pieces.

The report does not mention how exactly the Minimax tree search deals with the
uncertainties of the ranks of the enemy pieces. It makes mention of a basic proba-
bility assignment to each piece, simply based on the number of remaining unknown
pieces of each remaining rank that could be assigned to the unknown piece. These
probabilities can only change through a capture (revealing the rank), movement of
two squares or more (revealing a scout) and moving (revealing it is not a bomb or a
flag).

The evaluation shows their tests against a random agent and against an agent
that uses their own evaluation function but only searches one move deep instead of
doing a tree search. Their results show that their agent is capable of beating both,
though they mention an interesting caveat; their agent ties the random agent in 28%
of games instead of winning. Usually, ties in AI Stratego games happen in the game
runs for longer than X moves. It is assumed that that is also the case in this paper,
however the exact number of moves after which a tie occurs is not mentioned. It is

Chapter 2. Literature Study 13

therefore difficult to estimate exactly how significant this 28% of games ending in a
tie is.

2.2.5 Using Domain-Dependent Knowledge in Stratego

In a paper from 2009 Mohnen attempts to use domain-dependent knowledge to im-
prove the evaluation function for Stratego and attempts to use move-specific heuris-
tics to apply for example forward-pruning to optimise an AI agent based on the
Minimax algorithm [Moh09].

The Minimax algorithm is a tree-search algorithm, and as a result it largely suf-
fers from the problems described by de Boer in his thesis [Boe07] (see also section
1.4.2). Mohnen attempts to use domain knowledge to at least partially mitigate some
of these issues.

The Minimax algorithm is a depth-first search algorithm. This has some notable
downsides, for example that if a bad move is made near the root of the tree, the
algorithm will first need to finish searching this branch before moving on to the next,
despite the bad move at the root probably negatively impacting the final evaluation
score of the leaf nodes. If that impact is large enough, then it may be more efficient to
do forward-pruning; reducing the search depth for this branch so that less resources
are wasted on searching it completely.

Mohnen applied a number of heuristics to see in which cases forward-pruning
has a positive effect on the AI agent. Unforunately there was little success; while the
heuristics as ‘Losing the last miner’, ‘Losing the spy’ and ‘Losing the marshal or gen-
eral’ seemed to provide a marginal improvement (winrate of 50-52% compared to an
agent without these pruning heuristics), the other attempted heuristics significantly
worsened the performance of the AI agent.

Mohnen also attempts to use domain knowledge to improve the evaluation func-
tion. To do this, a basic evaluation function is defined based on simply counting the
number of friendly and enemy pieces on the board. Mohnen then defines a number
of additional heuristics that could improve the evaluation function, e.g. capturing
the enemy spy, having pieces near the enemy’s flag, etc...

Interestingly, Mohnen finds that almost all of these heuristics individually seem
to improve the evaluation function when compared to the basic evaluation func-
tion. However, when all heuristics are added simultaneously performance degrades
significantly instead. This may stem from a problem where the heuristics are not
weighted correctly compared to the basic evaluation function.

Mohnen concludes stating that domain-dependent knowledge can improve the
AI agents performance, provided there is enough tuning done. Unfortunately, the
exact way in which the agent and the heuristics have been implemented and how
the tests are executed remains vague, with few details given. It therefore remains
difficult to estimate how much these heuristics actually contribute, or what the per-
formance of the AI agent is compared to a human.

2.2.6 Opponent Modelling in Stratego

Stankiewicz wrote a paper in 2009 on opponent modelling in Stratego [Sta09]. In this
paper Stankiewicz attempts to more correctly predict the ranks of the opponent’s
unknown pieces, based on several statistically determined metrics. It is effectively
an extension to the efforts of de Boer [Boe07] to find a good way to predict enemy
piece ranks.

Chapter 2. Literature Study 14

Stankiewicz used the Gravon database of 70000 games and tracked how often
a piece of a certain rank would move near a piece of another rank, and how often
they would move away instead. During the game, the AI agent also keeps track of
how often a revealed piece was determined to be a bluff. It uses this to determine a
bluffing probability for the opponent.

On every move made by the opponent, the AI agent reads the probability that
the opponent would move a piece of each rank closer to the agent’s pieces from the
precalculated conditional probability table. It takes the chance that the opponent
might be bluffing into account. It uses these odds to update the probabilities for
each piece that they may be of a certain rank. These odds are then used in an AI
agent that uses Expectimax to determine the next move.

To evaluate the accuracy of the method, Stankiewicz tracked how often the agent
guessed the opponent’s piece rank correctly. A correct guess in this case is having the
actual rank as the highest probability for that piece when it is involved in a capture
(either offensive or defensive) as this reveals the rank. The agent ultimately manages
to guess 40% of piece ranks correctly.

While this may seem impressive, some crucial details are omitted. For example,
it is not known if these 40% correct guesses are evenly distributed over the full game,
or if the correct guesses all happen towards the endgame, when guessing correctly is
much easier. There is also no measure of exactly how wrong the wrong guesses are.
To a marshal, wrongly guessing an enemy piece has a rank of a sergeant when it is in
reality a lieutenant will not matter much. It is also unfortunate that the correctness
is only checked on an attempted capture, when the rank is revealed regardless. At
this point, guessing correctly is not too important anymore, it is mostly important in
the few moves leading up to the attempted capture.

These caveats may have a considerable impact, as the winrate of the agent with
opponent modelling against an agent without it is not considerably greater. One
would assume that knowing 40% of piece ranks leads to a significant advantage,
but the winrate never exceeds 56%. The effect of the measures intended to detect
bluffing is also unknown here, as the Expectimax agent may not bluff (this depends
on the evaluation function used, which is unfortunately not given).

2.2.7 Quiescence Search for Stratego

In 2009 Maarten Schadd and Mark Winands propose a method for quiescence search
[SW09]. They propose that tree-based search methods in Stratego suffer from the
horizon effect, which can be solved by briefly extending the search depth but limit-
ing the search to ‘volatile’ moves. This method is known as a quiescence search. In
their paper the authors also suggest a more specific method called an ‘Evaluation-
Based Quiescence Search’ (EBQS).

The horizon effect is an effect where a tree search will not accurately be able to
assign the correct value of a move, because a large change to the evaluation value
would only happen just beyond the search depth of the tree. As an example for Strat-
ego, imagine a tree search with a depth of five (three moves for the player, two for
the opponent). Between a friendly piece and the enemy flag there are three empty
squares, but there is also an enemy piece of a known lower rank just two squares
away. The tree search will be able to explore the move capturing the enemy piece of
a lower rank, which improves the evaluation score for the move moving the friendly
piece in that direction. It will not however quite reach the move capturing the enemy

Chapter 2. Literature Study 15

flag, which would end the game. That means the best move in this case is underval-
ued. Because this game-ending move is just beyond the ‘horizon’ of the search tree,
the tree suffers from the horizon effect.

To solve this problem, a quiescence search can be done. This is a brief extra search
at the search depth, only searching moves that would alter the evaluation score by a
significant amount. Any heuristics could be applied, e.g. only search capture moves,
or only search capture moves that are known to result in a successful capture. This
method effectively extends the search depth just a little bit beyond the horizon, and
thus reduces the horizon effect.

Unfortunately, directly applying quiescence search to Stratego did not improve
the agent’s performance much. The first problem is the large overhead of doing
quiescence search. Despite only searching specific moves, the branching factor re-
mained fairly large due to the large amount of chance nodes in the Expectimax
search algorithm. Even with low limits on the quiescence search depth, the algo-
rithm ended up spending almost as much or even more time on the quiescence
search than on the regular search. The second problem is the limited improvement
to the search results. In only 44% of cases was an improvement seen, and the av-
erage improvement was approximately merely the value of a single scout (in their
evaluation function).

Quiescence search ended up not improving the winrate of the agent. Only when
looking at the very next move (and none after) was a slight improvement seen. This
inspired the authors to do create a new method they called ‘Evaluation-Based Qui-
escence Search’. This method involves looking at the results of a single move in
specific situations. The first situation is when two known pieces are next to one an-
other. In that case, the capture is searched, and the results are the QS-value. The
second situation is where there is one known piece and one unknown piece. Again
the capture is searched, and the results are the QS-value.

This method provided a very small improvement over the normal agent without
quiescence search (52%) and the agent with a small quiescence search (56%). The
authors note that large gains are not expected in the Expectimax framework, so the
result is still good. Unfortunately, it seems that the method amounts to little more
than a very brief extension of the search depth, of which we would already expect
it to be performance improving. It seems the authors have actually proven that
it is better to search through more likely taken moves, rather than unlikely taken
moves. This unfortunately has not yet lead to a change in direction away from the
Expectimax algorithm.

2.2.8 Competitive Play in Stratego

In 2010 Sander Arts wrote his master thesis on using multiple heuristics such as the
history heuristic, transposition tables, α-β-pruning and more notably STAR1, STAR2
and STARETC to improve the performance of the Expectimax algorithm [Art10]. He
achieved a reduction of 75% of evaluated nodes. He also did the first complexity
analysis of Stratego.

Arts calculated a number of exact figures and upper bounds for Stratego in his
complexity analysis. These are as follows:

• No. of setups: ∼1023 different possible starting setups.

• Upper bound on state-space complexity: ∼10115.

• Average game length: ∼381 plies (analysed from the Gravon database).

Chapter 2. Literature Study 16

• Average branching factor: Starts at ∼ 23, quickly rises to peak at ∼ 25 and then
linearly goes down to ∼15. Total average is ∼21.7.

• Game tree upper bound: ∼ 10535 including chance nodes, ∼ 10509 excluding
chance nodes.

Arts notes that this complexity is considerably greater than a game like Chess,
which only has a state-space complexity of ∼ 1046 and a game tree complexity of
∼ 10123. This seems to support the findings of de Boer that show that tree search
algorithms struggle with the complexity of the game [Boe07].

To overcome this complexity hurdle, Arts applied specific heuristics to the Ex-
pectimax search algorithm, which will allow it to prune non-promising branches
earlier from the tree. The most important of these are STAR1, STAR2 and STARETC.
These are all ways to prune in the chance nodes of the Expectimax search tree. As
STARETC showed the greatest increase, it will receive a brief explanation of how it
works.

STARETC is a version of Enhanced Transposition Cutoff modified so that it can
deal with probabilities. It uses a transposition table to retrieve lower and upper
bounds, as well as the exact value. This information is retained between moves, so
that once the agent has a new turn it can look up a considerable amount of data from
the transposition table, instead of fully recalculating it. The lower and upper bounds
are used in a similar fashion as α-β-pruning. From the probabilities in a given chance
node, we can calculate the upper and lower values a certain result should at least
provide in order for the node not to be pruned by regular α-β-pruning. Suppose
for a chance node with two possibilities, both equally probable, we have an upper
bound of 9 and a lower bound of 8, with possible values between 0 and 10. If the first
possibility returns with a value of 5.5, then there is no value that the other possibility
could return that brings the average value for the chance node between 8 and 9. It
can therefore be safely pruned.

Using these heuristics Arts manages to prune up to 75% of nodes from the ex-
plored search tree. While this is an impressive result, the exponential nature of the
algorithm used means that still an incredible number of nodes has to be searched,
even with fairly small search depths. For a search depth of five total moves, the
STARETC method still searches an average of 1.17 million nodes, with a standard
deviation of 3.76 million nodes and a maximum of 33.6 million nodes. At higher
search depths, this will keep rising exponentially.

While Arts’ contributions are certainly great improvements, it seems unlikely
that considerable further improvements will be made to the method. The best im-
provements can probably be obtained by finding a better order in which to explore
moves in the tree, so that the upper and lower bounds can be found sooner and thus
more nodes can be pruned. Nonetheless, a considerable breakthrough is required to
make this method suitable for deeper searches.

2.2.9 Designing Agents for the Stratego Game

In 2018 Sergiu Redeca and Adrian Groza wrote a paper named ‘Designing Agents
for the Stratego Game’ [RG18]. In this paper they describe the design for two agents;
the probabilistic agent and the multi-ply agent. These agents are fairly simplistic and
do not seemingly improve on any previous results. They will be briefly explained
here, for completeness of the literature study.

The probabilistic bot evaluates all possible moves the agent can take in its current
turn. If these moves involve attacking a piece with an unknown rank, the agent

Chapter 2. Literature Study 17

chooses the rank with the highest probability. This probability is very basic; the
probability that a certain piece is a certain rank is proportional to the number of
pieces of that rank that are still unknown and left. Note that if a piece has moved,
it can no longer be the bomb or the flag. Since at the start of the game the pieces
with the rank of scout are the majority of the unknown pieces, the agent assumes
that any piece that it attacks will be of the scout rank. As the game progresses, the
proportions of remaining pieces shift and will indicate different ranks.

The multi-ply bot is very similar. It is effectively identical in its approach to the
probabilistic bot, except it searches through multiple plies. It simulates which move
the opponent would take by assigning possible ranks to the opponent’s pieces. It
is thus very similar to a simple Minimax tree search, where the probabilities are
handled by simply picking one option and using that. This avoids having to explore
many chance nodes that vastly increase the branching factor.

The effectiveness of both of these approaches is low. Ultimately, the agent con-
figuration best identified ended up being a 2-ply bot that only won in 91.3% of cases
against a bot that only selects random moves every turn. For an agent to be con-
sidered at least somewhat capable it would have to win more than 99% of games
against a random agent. Losing approximately one in ten games suggests a serious
deficiency in the applied strategy.

2.3 AI agents designed without using expert domain knowl-
edge

The amount of literature that uses techniques that do not require expert domain
knowledge is considerably smaller than the amount of literature that does use it.
There are notable advantages to methods such as these, specifically that no domain
knowledge is required and that the agents have the potential to exceed the ability
of the creator. The limits of agents relying on expert domain knowledge become
apparent in de Boer’s work on Invincible [Boe07] and for example in the papers by
Mohnen [Moh09] and Petkun and Tan [PT09].

It should be noted that few attempts have been made so far to design an AI agent
without expert domain knowledge, and the attempts so far are somewhat basic; for
most of these, it is the first time a certain technique has been applied to Stratego, so
there was little to no previous research they could base their research off of. Most of
the research is therefore not very refined or shows a proof of concept.

2.3.1 Optimizing Stratego Heuristics With Genetic Algorithms

In 2003 Ryan Albarelli wrote a paper on his attempts to use genetic algorithms to
optimise a set of weights that define how much certain heuristics contribute to the
evaluation function [Alb03]. This evaluation function is then used in a Minimax
agent. It should be noted that Albarelli does not appear to mention how the agent
deals with unknown piece ranks.

Albarelli suggests a basic evaluation function, which consists of a number of
heuristics and assorted weights. The heuristics include simple things like ‘number
of enemy pieces left’ and ‘number of friendly generals left’, etc... To introduce some
extra play variation, he introduces a random ‘tip’ value which modifies the heuristic
value by at most 3%. Each weight is defined as a signed 8-bit value.

The evolutionary process uses N-point crossover to generate child candidates
from two parents. The fitness function is composed of whether or not there was a

Chapter 2. Literature Study 18

victory, how many remaining pieces there are and how long the game took. Un-
fortunately, the random tip factor, the skill of the opponent and the starting setup
impact the evolutionary process in a negative way, as a good solution may simply
have bad luck and therefore be assigned a lower fitness than it should have, or vice
versa.

The result from the experiments are somewhat unclear. The first problem here
is that Albarelli seems to have mislabelled the axes on his graphs (they appear to
be swapped). Albarelli observes that there is a large amount of fluctuation in the
maximum and average fitness of the population, though there is an upward trend in
the maximum fitness.

He also notes that with a low mutation rate, the population quickly becomes ho-
mogeneous. This may indicate a local optimum that is easy to end up in, or that the
heuristics as defined by Albarelli simply do not allow for a more refined evaluation
function. Note here that while Albarelli uses genetic algorithms to ultimately find
and tune the evaluation function, he is still defining the heuristics himself. This will
impose a limit on the performance of the agent. The best weight configuration and
the exact heuristics are not mentioned, so no conclusions can be drawn from it.

2.3.2 Feasibility of Applying a Genetic Algorithm to Playing Stratego &
Reachable Level of Stratego Using Genetic Algorithms

In 2012, Vincent Tunru and Roseline de Boer worked together on their bachelor the-
ses on applying genetic algorithms to Stratego [Tun12; Boe12]. They each wrote their
own bachelor thesis, but the work they discuss is the same. For that reason, the two
theses are discussed as one.

De Boer and Tunru take a similar approach to Albarelli [Alb03]. The notable
differences include the lack of a Minimax tree search in de Boer and Tunru’s work,
as well as different heuristics that are applied to moves instead of the overall board
state. De Boer designed heuristics based on her experience as a Stratego world cham-
pion (note: both Roseline and Vincent de Boer have been Stratego world champions).
The weights that should be assigned to the heuristics also differ per rank; a scout
may weigh a heuristic based on exploration higher than a spy might. Heuristics in-
clude but are not limited to whether or not a move would be a piece’s first, whether
or not it would successfully capture an enemy piece and being in a strategic position
relative to the lakes.

De Boer and Tunru apply universal crossover and use a parent selection method
based on an exponential relation between the fitness values (e.g. a solution with a
fitness twice as large is four times as likely to be chosen). The fitness function is
based on whether or not victory was achieved, the number of remaining pieces and
the total amount of moves required, similar to Albarelli.

Contrary to Albarelli, de Boer and Tunru find that the average fitness seems to
increase fairly steadily. This may in part be due to a larger amount of fine-tuning of
the parameters of the evolutionary process by de Boer and Tunru.

In their evaluation, one of the very few comparisons to a different agent is done,
specifically against STARBOT, the best agent produced by Arts [Art10]. They find
that for a search depth of four STARBOT is able to defeat the agent by de Boer and
Tunru, which they named VICKI. This is a fairly impressive result, as VICKI does
not use a search tree and thus effectively has a search depth of one. It is also much
faster than STARBOT, which they note struggles to complete a game at search depth
five within two days (which is in part due to it running on poor hardware), whereas
VICKI can find its move in less than a second.

Chapter 2. Literature Study 19

The resulting agent appears to be fairly aggressive, preferring to explore using
lower ranked pieces and capturing any known pieces with its higher-ranked pieces.
This is fairly atypical when compared to human play; exposing the higher ranked
pieces so early tends to be disadvantageous. It may be possible that VICKI has
evolved to a local optimum of very aggressive play, which may be exceedingly effec-
tive against weaker players, such as current AI agents that do not have the capacity
to think far ahead.

2.3.3 Learning to Play Stratego with Convolutional Neural Networks

Schuyler Smith details in his paper from 2015 how he trained a convolutional neu-
ral network for use in an AI agent for Stratego [Smi15]. He developed a simple
baseline AI and two neural networks, each employing a different strategy. It ap-
pears to be the first attempt at an AI agent for Stratego that does not employ any
expert domain knowledge at all (previous attempts using genetic algorithms still
used a small amount of expert domain knowledge to define heuristics [Tun12; Boe12;
Alb03], though no knowledge was required to tune them).

Smith uses a baseline AI for comparisons and to generate some of the training
data. This baseline AI uses a Monte Carlo strategy, where every move is assigned
a random board state, where the ranks of the pieces are consistent with the current
board. It then simulates a number of games for 10-50 moves and evaluates the results
based on if victory was achieved and the relative number of pieces left. This agent
is very weak, but does defeat a random agent in 94% of games.

For both neural network strategies Smith uses the same input representation,
which consists of six layers:

1. The player’s immovable pieces (bombs and flags)

2. The player’s movable pieces

3. The opponent’s movable pieces of a known rank

4. The opponent’s known bombs

5. The opponent’s unknown movable pieces (not bombs or the flag)

6. The opponent’s unknown, unmoved pieces

The second and third layer are encoded using the piece rank, e.g. a scout is encoded
as 2, a miner as 3, etc... The other layers are encoded in binary. Smith notes that this
representation is only able to capture first-order inferences, e.g. if a piece has moved,
it is not a bomb or a flag.

The first strategy was to have the neural network predict which move it should
make. Smith recorded the moves made by the baseline AI for a thousand games and
used this as training data. This training process was very unforgiving, as the neural
network would only be credited if it predicted the exact move the baseline AI made.
This is particularly difficult, as the baseline AI uses some level of randomness to
determine its move. To make the move, a single forward pass through the network
was done, and the move with the highest probability that is also valid was chosen
as the move to make.

The second strategy involves using a neural network to replace the evaluation
function in a traditional Minimax search algorithm. Here, Smith selected 15000
board states and ran a number of random games on them to estimate the probability

Chapter 2. Literature Study 20

of victory in each state. The neural network would then train on this information.
Compared to the first strategy, this method made for a much easier training process.

In his evaluation, Smith notes that strategy 2 appeared to be the strongest agent,
followed by the baseline AI. Strategy 1 did not work very well, though it could still
beat a random agent in 87% of games. It should be noted that this is still a fairly
good result, as strategy 1 takes 1̃ms to select its move, whereas the baseline AI and
strategy 2 take somewhere between 0.5-1 seconds.

There are still considerable improvements to attempt here. For example, Smith’s
input encoding does not take into account what information the opponent knows
about the player, as well as any deeper inferences. Moreover, encoding information
about known pieces as a rank may not be optimal; it may be better to split this into
multiple binary channels. It may also be possible to combine strategies 1 and 2 into
one agent, which does some kind of tree search but prioritises exploring moves that
strategy 1 thinks are good moves and evaluates boards using strategy 2.

21

Chapter 3

Research Question

As mentioned previously, the goal of this thesis is to create an AI agent that is capable
of playing Stratego at a decent level. Ideally it would surpass previous attempts at
computers playing Stratego, but as previous attempts have had mixed results this
may not be quite attainable within the scope of a Master thesis. Nonetheless, I intend
to create an AI agent that can at least pose some challenge to a beginning human
Stratego player.

The research question is therefore the following:

What methods can be used to let an AI agent play Stratego at higher levels than
previously achieved?

Stratego quite naturally lets itself subdivide it into smaller subproblems. While
the quality of the solutions to each of these subproblems will of course impact one
another, they can mostly be treated separately for development purposes. These
subproblems are the following:

• The Setup Problem: The first thing any Stratego player needs to do is come up
with a strong starting setup. There are a number of things that make any setup
strong, but some unpredictability is also very helpful.

• The Information Problem: Stratego is a game with hidden information, e.g. the
opponent’s starting setup. Being able to accurately guess the ranks of the op-
ponent’s pieces will help any Stratego AI.

• The Static Lookahead Analysis Problem: Ultimately, an AI player has to decide
which move to take. Finding out which move that should be appears to be no
trivial task, as there are considerable complications to consider when evalu-
ating the board. A necessary step is to develop a method that can do a good
static lookahead analysis.

• The Dynamic Lookahead Analysis Problem: If a static analysis method is perfect,
a dynamic one is unnecessary. However, given that it is extremely unlikely
that a perfect method can be developed, a dynamic lookahead analysis is very
important to improve the performance of the AI agent. Here, complications
arise that make tree-search methods less effective. Some kind of mitigation for
the issues that Stratego poses needs to be found.

It is fairly easy to see why these subproblems are mostly disconnected and can
be solved independently. An AI agent would create a setup and during play would
guess what the enemy piece ranks are. It would then perform a lookahead analysis
in every turn. The performance of the agent will depend on how well each of these
problems are solved. Because of this, we can define four smaller research questions:

Chapter 3. Research Question 22

1. How can a setup for Stratego be created that is of a high quality?

2. What methods can be used to guess the enemy piece ranks as accurately as possible?

3. In what way can we best perform a static lookahead analysis?

4. How can we overcome the complications posed by Stratego in a dynamic lookahead
analysis?

3.1 Relevance of research question

The simplest and most direct reason for why this research question is relevant is that
the current best Stratego AI agent still poses little challenge to an average or slightly-
above average player. For more advanced players, playing against it is simply not
as entertaining. For these people, it would be nice if they had an AI opponent that
could actually give them a hard time during play.

There are also more general reasons why developing an AI agent for Stratego is
relevant. Stratego is quite distinct when compared to Chess or Go due to the large
amount of information that is hidden from the player. This also adds a bluffing
aspect to the game. These are elements that so far have not been researched to a great
extent. A comparable game that comes to mind is Poker, which has only recently
seen an AI agent beat expert players in a tournament setting. But even here, the
hidden information can be probabilistically estimated; players don’t select the cards
they are dealt. With Stratego this is different, as players do choose their own starting
setup.

This may also have practical implications. A good Stratego AI agent is one that
understands risks and can balance multiple different complicated factors, such as
the importance of hiding and revealing information. This may be useful when deal-
ing with situations where certain actions taken by an agent are visible, but not the
information that they are based on. Being able to act accordingly may be very valu-
able. Perhaps in those cases, techniques that may be applied in this thesis may prove
to be useful.

23

Chapter 4

Methodology

As outlined in chapter 3, Stratego can be divided into multiple subproblems. In
this thesis I will attempt to solve these problems separately as well. For each of
these problems I will outline a number of ways in which these subproblems could
be potentially solved. I will most likely rely on methods and techniques that do not
require large amounts of expert domain knowledge, as I simply do not possess such
knowledge. I am a decent Stratego player, but I would rate myself as a beginning or
average player. I will therefore focus on methods that do not utilise expert knowl-
edge, either by self-improvement or information extracted from public databases.

It should be mentioned that solving each subproblem separately in complete iso-
lation of the others is not really feasible. Depending on the quality and characteris-
tics of a solution for a subproblem, it may become easier or harder to estimate the
quality of the solutions for the other subproblems. It may also create new ideas for
solutions for other subproblems. As an example, work on the Setup Problem led to
new insights that helped create solutions for the Information Problem.

As a result, during development I often switched between the different subprob-
lems. Presenting the work in a chronological order however would be confusing, so
this thesis presents the work categorised per subproblem. This means that occasion-
ally there may be a reference to a section further ahead, but I have tried to keep these
to a minimum.

4.1 StrAItego

The AI agent will be developed within the StrAItego framework. This is a frame-
work that I have written in C#.NET, the programming language I am personally
most comfortable with. I have used the Windows Forms library for building the UI
and will use the SciSharp package which offers TensorFlow.NET, a .NET binding
for Google’s TensorFlow, which will allow me to train neural networks. To use the
networks, I will use the more lightweight TF.Lite format which is more suited to
individual network calls instead of batch processing like regular TensorFlow is.

The framework is a fully functional Stratego game. It also offers an interface for
AI agents to play games. The framework does a couple things for every AI agent,
including:

• Board inversions: The board is always inverted so that the AI agent is always
playing as the red player. Every AI agent can therefore assume that a blue
piece is an enemy piece, and the top side of the board is the opponent’s side of
the board.

• Move validity: When being requested to make a move, the framework provides
the AI agents with methods that will create a list of all valid moves that it can

Chapter 4. Methodology 24

FIGURE 4.1: A screenshot of the StrAItego interface.

make. AI agents therefore will not have to for example check if they are com-
pliant with the Two-Squares rule, as any move violating that rule will simply
not be in the list.

• Full information and inferences: The framework tracks for every piece which
rank it could possibly have. This includes the fact that moved pieces can not
be a bomb or the flag, but also inferences such as eliminating the possibility
that a piece is of a certain rank, if all pieces of that rank have already been
revealed elsewhere.

• Execute all game logic: AI agents only have to select which move they wish to
play. The execution of the move and all logical inferences resulting from it (e.g.
revealing information about certain pieces) are all handled by the framework.

• Logging capabilities: To aid the development process, AI agents can log mes-
sages that can be reviewed during or after the game.

Additionally, the framework has options for running many games with different
AI agents pitted against one another for testing purposes. These ‘tournaments’ are
run in parallel using multi-threading and are heavily optimised to make as much
usage of the processing capabilities of the computer it is running on as possible.
For example, running 10000 games between random agents takes approximately 4
seconds on an Intel i7-4790k. Results are also automatically collected and displayed
in tables.

4.2 The Gravon database

The Gravon database [Jun15] is a database of 51338 games of classic Stratego played
online via the Gravon website, played between 2003 and 2015. Players on this web-
site can opt to have their game be recorded in the publicly accessible database for
review with the StraDoS2 application, which allows you to replay games from the
database. Each game is recorded in its own file, with either a .xml or .gsn file exten-
sion, using a human-readable notation. This makes parsing the files in a different
project fairly straightforward.

Chapter 4. Methodology 25

The purpose of this database within this thesis is to provide some basis from
which to build an AI agent upon. By analysing the games, it is for example possible
to see what humans would do in certain situations or what starting setups they like
to use. There are some caveats to this; not all games are of a high quality and the
games have been fully anonymised, which means the comparative strength of the
players is unknown. This means that it is hard to estimate if either player is actually
playing well. It is possible that a good move by a good player is countered by a
brilliant move from a brilliant player, or that an absolute blunder from a good player
is followed by a move from a bad player that does not capitalise on the mistake.

However, one thing that can be assumed is that whatever starting setup is used
or whatever moves are played during the game, will on average be much stronger
than a random starting setup or a randomly chosen move. This means that even
if an AI agent based on data from the Gravon database may be flawed in certain
ways, it will still be considerably better than a random agent and offer a good base
to develop further.

FIGURE 4.2: A screenshot of the StraDoS2 viewer.

4.3 Determining agent quality

In order to determine if an agent is actually playing the game well, we need some
kind of quality evaluation method. As it is not really possible to directly assign some
number to the performance of an AI agent, this will have to be some comparative
method. This involves pitting the test subject against some benchmark AI agent and
recording the results of a large number of games (typically at least 50 or 100). In this
thesis I typically use one or multiple benchmark AI agents to evaluate if the current
AI agent has strengths or weaknesses against specific AI agents. As the gameplay

Chapter 4. Methodology 26

from each AI agent can drastically differ (e.g. one agent may be overly aggressive
or perhaps rather defensive), testing against multiple agents seems necessary to pre-
vent a type of rock-paper-scissors scenario, where agent A may be effective against
agent B, which in turn is strong against agent C, which then is very good against
agent A. Only by testing them all against each other can a proper comparison be
done.

The AI agents that are typically tested against are the following:

• Random Agent: A very simple agent that plays a random valid move each turn.
It needs little explanation that this is a very weak agent, and really only serves
as a simple test to see if something is very wrong.

• Random Agent (Avoids Piece Loss): A very simple agent that plays a random
valid move each turn that will not result in the guaranteed loss of that piece
(e.g. it will not attack a known enemy Marshal with a Scout). If no such move
exists, it plays a random valid move instead. Once again a very weak agent,
but one that is a bit more cautious than the Random Agent.

• Peter N. Lewis Agent: A C#reïmplementation of the agent written by Peter N.
Lewis in 1997 that went on to convincingly win the MacTech Programming
Challenge (see section 4.3.1). A fairly simple agent that uses 12 heuristics to
determine which move to make. This agent poses a much greater challenge
than the random agents, but has some obvious flaws that can be exploited.

• “Best-yet” Agent: The best agent developed during the thesis so far. Tested
against to see if the new agent is better than what was developed before.

• Variation of the test subject: A slight modification of the test subject (e.g. with
different hyperparameters) to tune and optimise the test subject.

The results of the games are expressed as a winrate, which is the percentage of
games that ended in a victory out of the total number of games. Ties are not in-
cluded in this total as they are quite rare and only really happen if the turn limit for
a game is exceeded (e.g. a game takes more than 2000 turns to finish). Although the
StrAItego program considers this a tie, it can probably be more accurately marked as
“indeterminate”. These incredibly long games with no clear outcome do not really
contribute to the comparison in a meaningful way and are thus excluded.

4.3.1 Peter N. Lewis Agent

In 1997 MacTech journal held a programming contest to see who could develop the
best Stratego AI [Boo97]. The winning solution was created by Peter N. Lewis from
Perth, Australia and was written in C++. Out of the 32 games his agent played,
it managed to win 30 games, far outscoring his competition (the second-best agent
only managed to win 13 games). Peter’s agent uses 12 heuristics that are traversed
in order to determine which move it should make. This results in a very aggressive
AI agent that usually wins by eliminating all enemy pieces instead of capturing the
flag (19 games were won this way, compared to only 10 flag capture victories).

This agent has been reïmplemented in StrAItego in C#to use as a benchmark
agent, as only testing against random agents does not give a great indication of how
strong an agent is exactly.

The agent has 12 heuristics that it tries out in order. The move that matches the
highest heuristic in the list is selected. For example, if no moves match heuristics 1

Chapter 4. Methodology 27

and 2 but one does match 3, that move is executed and no further evaluations are
made. The heuristics are as follows:

1. Use Spy: If the spy is next to the enemy marshal, capture it.

2. Defend against Spy: If the marshal is next to the enemy spy, capture it. If it
is next to unknown pieces, evaluate if it should be captured or if the marshal
should move away.

3. Attack weaker: If a known piece is next to a weaker known piece, capture it
unless the new position is dangerous.

4. Explore attack: If a scout, sergeant, lieutenant or captain is next to an unknown
piece, capture it.

5. Retreat: If a known piece is next to a stronger enemy piece, run away.

6. Scout: Try advancing scouts forward rapidly.

7. Attack distant: If a known piece is distant but a path exists that moves a stronger
piece towards it, advance the stronger piece over the path.

8. Explore distant: Advance lower-ranked pieces towards unknown pieces.

9. Attack known with same distant: If a known piece can be attacked by a known
identical piece, advance towards it and capture it.

10. Move forward: Move any piece we can forward.

11. Move: Move any piece we can.

12. Resign: No moves can be made at all, so the agent should resign.

In the source files, Lewis mentions a thirteenth heuristic called Find Flag, but
due to time constraints it was not implemented. This may also be why the Peter N.
Lewis agent tends to win by capturing all movable pieces of the opponent, rather
than capturing the flag.

The Peter N. Lewis agent behaves very aggressively, trying to capture as many
enemy pieces it can without losing too many of its own. Because the Attack distant
and Explore distant heuristics use an actual pathfinding algorithm, it is capable of
moving pieces from one place on the board towards a faraway position. This is a
notable advantage compared to typical tree-search-based agents, as exploring such
a long path in a tree-search with a high branching factor is largely infeasible.

The aggression and determination of the Peter N. Lewis agent is a considerable
strength against AI agents. However, this method is fairly weak against human
players. A player who realises how this agent works will quickly see that a piece
that is moving towards it is likely of a higher rank. This predictability makes the
Peter N. Lewis agent fairly easy to trick. Simply revealing the general will see the
agent immediately trying to move its marshal towards it, as it is the only piece that
can capture it. Because Defend against Spy only moves the marshal out of a potentially
dangerous situation, but does not prevent it from moving into such a situation, the
marshal can be eliminated fairly easily.

Regardless of its flaws, the Peter N. Lewis agent makes for a good benchmark to
test how well an AI agent deals with an extremely aggressive opponent.

28

Chapter 5

Setup Problem

The very first thing an AI agent playing Stratego has to do is come up with a starting
setup. Even though at this point the game has barely started, what may be the most
important single decision that determines the outcome of the game is made at this
point. A good starting setup allows a player to play the right balance of offence and
defence, allows a player to move important pieces around the board more easily and
protects their flag. It is important to note that these qualities can never be condensed
into a single perfect starting setup, as perhaps a quality that is even more important
to take into consideration is the unexpectedness of the setup. One of the primary
factors that determines who wins in a game of Stratego is how well a player can
guess the enemy’s piece ranks. If there were a single perfect starting setup, or even
a small number of them, it would be easy to deduce which setup is being used by
discovering just a few pieces.

A good example of a way to subvert he enemy’s expectations is the so-called
“Shoreline bluff” or “Lakeside bluff”. The idea is that to protect the flag, players
would typically place their flag in the back row. This makes sense, as it is furthest
removed from the opponent’s pieces and provides ample opportunities to stifle their
attacks with other defensively used pieces. The trick with the Shoreline bluff is to
place the flag on the front row next to one of the middle lakes instead. This is a
dangerous location and would be fairly easy to reach, but is also a lot less expected.
A player who is not expecting this could break through the initial defences, spend
their time to reach the back row, maybe even defuse a bomb structure that looks like
it is protecting the flag only to find the flag was never there. An example of such a
setup can be found in figure 5.1.

The process of creating a good setup is largely independent of the rest of the
agent. As the setup creation only happens once at the start of the game, before
any information is revealed at all, we can mostly treat the Setup Problem as separate
from the other problems. There is no setup that we can begin countering yet, nor is
there any opponent behaviour available that suggests we should either take a more
offensive or a defensive approach.

The question of “what exactly makes a good setup?” is a very difficult one. It is
possible to quantify how often a setup wins or loses, but that does not necessarily
indicate quality; it may also be possible that stronger players prefer using a specific
setup against weaker players, but would not use the same setup against players
of a greater strength. It is possible to simply check which setups are being used,
for example using the Gravon database [Jun15], as a setup that is being used will
probably be at least better than some randomly generated setup.

This is not to say that randomly generated setups are necessarily bad, or can
be improved using some expert knowledge. As de Boer has shown [Boe07], it is
possible to generate random setups and evaluate them based on certain hand-crafted
features. After finding a good potential candidate, some small adjustments can be

Chapter 5. Setup Problem 29

FIGURE 5.1: A game of Stratego where the player in Red is using a
version of the Shoreline bluff, whereas Blue is playing with a more

standard setup.

made to create a setup that someone like de Boer could feasibly use, or at least would
not immediately discard as a terrible setup.

As I personally lack the expert knowledge to hand-craft strong Stratego setups
or evaluate them in a meaningful way, other than filtering out really bad setups, I
will have to rely on using setups from specific sources or developing an evaluation
method that can evaluate setups based on machine learning. I have created 6 dif-
ferent setup providers, e.g. a method that (given a random seed) provides a starting
setup to an AI agent. Out of these 4 pull a setup from a provided dataset, the re-
maining 2 create a completely new setup.

5.1 Setup providers using a dataset

This section contains 4 setup providers that pull a setup directly from a dataset.
These setups are usually of a fairly high quality, but they may be considered too pre-
dictable if overused. Moreover, it should be considered that an AI agent using any

Chapter 5. Setup Problem 30

of these setup providers is not really creating its own setup; it is incapable of pro-
ducing something original or something better than what a human would typically
create.

Most of these setup providers contain very few setups (except for the Gravon
Setup Provider). Because of this I would consider them to be too predictable for
use against human players, particularly if they have played a few games against an
agent that is strictly using those setups. I will detail them here but not typically use
them for further comparisons or experiments.

5.1.1 Peter N. Lewis Setup Provider

This setup provider is the simplest; it provides a single setup used by the Peter N.
Lewis-agent when it was originally developed. Lewis in his source code defines
three possible starting setups that were intended to be used by his agent, but only
one is actually used. This setup is fairly offensively oriented, which matches the
kind of “hunter-killer”-playstyle employed by the Peter N. Lewis-agent.

FIGURE 5.2: The setup provided by the Peter N. Lewis Setup Provider,
intended to be used by the agent of the same name.

5.1.2 Accolade Setup Provider

In the 1990s a company called Accolade published a video game version of Stratego
for the Commodore 64. The game featured a very basic, not very good AI agent
that always used one of 13 different starting setups. These have been collected in
an online strategy guide for Stratego that details the setups and their strengths and
weaknesses [Ult].

According to this strategy guide, various players have pointed out that the se-
tups provided by Accolade are not very good setups. Nonetheless, I have included
them in the Accolade Setup Provider.

5.1.3 Vincent de Boer Setup Provider

In his master thesis de Boer details 6 setups that he has either used in the past or
still uses [Boe07]. He uses these setups as a type of test for his system that tries to

Chapter 5. Setup Problem 31

score setups based on certain features he believes are beneficial. The setups work as
a kind confirmation; his system should confirm de Boer’s belief that these setups are
good. If the system gives the setups a high score as he expected, the system works.

The highest-scoring setup is shown in figure 5.3. It achieved a score of 22 under
de Boer’s scoring system.

FIGURE 5.3: The setup in the Vincent de Boer Setup Provider that
scores highest according to de Boer’s scoring system.

5.1.4 Gravon Setup Provider

The Gravon database contains full records of over 50000 games [Jun15]. As every
game necessarily has a setup for either player, this means the database has more
than 100000 setups that were at some point utilised by human players. These have
been compiled into a single Gravon Setup Provider, which provides a random setup
from this set. This makes it possible to run experiments with setups that AI agents
can realistically encounter when playing against human players.

Working with the assumption that humans are pretty good at playing the game,
we can assume that on average the setups in the Gravon database are at the very
least ‘not terrible’, certainly better than a fully randomly generated setup. There are
some notable exceptions of course, from players who were maybe not playing too
seriously or who were experimenting with something completely new that may not
have worked out too well.

This setup provider is particularly useful when testing e.g. the effectiveness of
piece rank estimators, as the variety in setups is large and diverse. Additionally,
because these are human-made setups we avoid any bias that could be introduced
by creating original setups in a specific way.

5.2 Setup providers that create original setups

As calculated by Arts [Art10], Stratego has up to ∼ 1023 different possible starting
setups. But a large database such as the Gravon database only has just over 100000
setups, a very small fraction of this incredibly large number. This raises an immedi-
ate question: does the possible reuse of setups pose a risk in terms of predictability?
It may be that only a few pieces have to be revealed before an opponent could de-
duce what the rest of the setup might look like.

Chapter 5. Setup Problem 32

According to de Boer, this is not unrealistic [Boe07]. He mentions that he reused
a certain setup a couple times in a tournament, until he played a game against an
opponent who was unusually immune to bluffing tactics and always seemed able
to make the right captures. When this opponent attempted to capture a piece that
de Boer had switched with a bomb in the setup, losing a high-ranking piece in the
process, he revealed that he had written down and memorised the exact setup and
could, to de Boer’s amazement, perfectly reveal the exact ranks of de Boer’s remain-
ing 25 pieces.

Although it would likely require far too much memorisation from a human than
can be reasonably expected to do something similar for a more significant amount
of setups, computers of course have no such limitations. It is thus not infeasible that
a computer could quickly deduce which setup is being used if the opponent is using
one from the Gravon database, for example. Such a method to determine enemy
piece ranks is put into practice with the Database Estimator (see 7.2.4).

Because such vulnerabilities would pose a large risk to an agent using setups
directly from a database, it is a good idea to also be able to create original setups
that are not vulnerable to these techniques. We will consider two methods for creat-
ing new, original setups. A third variation was originally developed, but it did not
provide meaningfully different setups in both diversity and quality and thus was
dropped earlier in development in favour of a focus on the other variation.

5.2.1 Random Setup Provider

The easiest way to create a totally original setup is to simply fully randomise the
position of each of the pieces. This creates a unique setup that is completely unpre-
dictable to the opponent. While the predictability factor may be incredibly large, the
strategic qualities of the setups produced this way are often very lacking. For exam-
ple, there is a 15% chance that the Random Setup Provider creates a setup where the
flag is positioned directly in front of one of the three open lanes, a position which
the opponent could theoretically capture with a Scout on turn 1.

Even if the flag is placed more favourably, the other pieces likely are not in good
positions. This makes using these setups not very advisable. Because it is possible
that a setup is extraordinarily weak, this setup provider is not really recommended
for actually playing games. It can however serve as a baseline, to indicate how much
of an advantage is gained by using better setups.

To quickly illustrate this, an experiment was done where two Random-agents
which select completely random moves play against each other for 20000 games.
The only difference is that one agent uses the Gravon Setup Provider (see section 5.1.4)
and the other is using the Random Setup Provider. The agent using the Gravon setups
achieves a winrate of 64.9%, which shows that with high significance we can con-
clude that the quality of random setups is not very good.

5.2.2 Naive RvH Setup Provider

Creating setups that are better than random setups may seem like a simple task
for a human. However, figuring out exactly which features actually make a setup
better or stronger poses a significant challenge. Doing this in a truly accurate manner
would require playing thousands of games with very strong AI agents, to see what
setups do well and which do not. Because a very strong AI agent has not really been
developed yet, we have to stick to the best Stratego-playing agents that we do have
some access to: humans.

Chapter 5. Setup Problem 33

We can safely assume that human players can reliably produce setups that are
stronger than random setups. We could thus change our goal slightly; instead of
making setups that are strong, we could try making setups that are human. If a setup
looks human enough, it is probably also better than a fully random setup.

To estimate how human a setup is, a neural network has been trained to try and
make the distinction between a random versus a human setup. We do this by creating
a dataset which features all the setups from the Gravon database[Jun15] and an equal
number of setups that have been randomly generated.

Training a neural network

The network has an input vector of 480 nodes. The setups are converted to a one-hot
encoding. Each of the 40 positions in the setup can hold a piece which has one out of
12 ranks, which means we need 480 inputs to encode each possible pair of position
and rank. This input layer is followed by five fully-connected hidden layers of 150
nodes each, using a ReLu activation function. The softmax output layer has two
nodes; one for indicating how human a setup is and the other for how random a
setup is. Because it is a softmax-layer, this is translated to a percentage indicating
the likelihood of a setup belonging to a certain class.

Cross-entropy loss initially starts out at ∼ 0.7, and after training went down
to 0.21. At this point, an accuracy had been achieved of ∼ 96%. Testing shows
that the network at this point was very capable at discerning between human and
random setups, although it was mostly accurate at finding human setups, whereas
occasionally it would still misidentify a random setup as a human setup. It would
be more preferable if the network was a bit more strict in what it classifies as human.

To make the network more strict, a number of adversary setups were generated.
This is done by generating random setups and evaluating them with the network.
If the network is more than 90% confident that the random setup is human, it is
considered an adversary setup. These adversary setups are then mixed with the
Gravon setups and random setups, such that the number of adversary and random
setups is equal and that the sum of the adversary and random setups is equal to the
number of Gravon setups.

After continuing the training on the new dataset, the network now only reaches
an accuracy of 93%, which is still fairly high. A notable difference however is that
it now is 99% accurate in detecting random setups, whereas it might occasionally
mark a human setup as random. This is not really an issue; after all we are more
interested in recognising setups that are typical for humans, rather than a setup that
was man-made but looks mostly random.

Generating setups

A neural network that can discern between a human and a random setup is not
immediately capable of actually creating a human-like setup on its own. The most
simple and perhaps naive way of doing it would be to create a large amount of
random setups, evaluate them with the neural network and select either the most
human setup or the first sufficiently human setup. This is the idea behind the Naive
RvH Setup Provider.

The provider generates at most 10000 setups, evaluating them in order. Once it
finds a setup that is considered human with a confidence of at least 99%, it immedi-
ately returns that setup. If it does not find such a setup, it selects the most human
one out of the 10000 setups generated.

Chapter 5. Setup Problem 34

Because the setups are still fully randomly generated, there is a high degree of
unpredictability in these setups. From visual inspection it is clear that these setups
are probably not perfect, but they clearly show certain features. As an example, the
flag typically has a few bombs near or around it. Bombs also tend to cluster near
each other and high-ranking pieces seem to be spread out a bit.

Unfortunately, there is an apparent downside to a lot of the setups that are gen-
erated. The network makes a distinction between human and random, but it does
not make a distinction between setups that are frequently used by humans and in-
frequently used by humans. For example, the network has learned that setups em-
ploying the Shoreline bluff tactic of placing a flag next to the lakes are very human.
This means that the setup provider produces a disproportionate amount of setups
that also employ this tactic.

To counteract this issue, the generation of random setups was adjusted. The
random generation works by assigning each piece a random number between 0 and
1, and then simply sorting them. The lowest sorted piece is placed on the bottom-left
corner and the rest of the pieces are placed row by row until the highest sorted piece
is placed in the upper-right corner. To push the flag back away from the shores, the
randomly generated number for the flag is divided by two, meaning it is sorted far
lower in the list and thus placed further towards the back. This means that the flag
is usually near the back row but it is still possible for it to be closer to the front.

A simple experiment was done to evaluate if these setups are indeed better than
just a random setup. Two Random agents played against each other in 20000 games,
one agent playing with the Random Setup Provider and the other with the Naive RvH
Setup Provider. The agent using the Naive RvH Setup Provider managed to achieve
a winrate of 66.1%, which means we can conclude with certainty that these setups
are better than random setups.

5.3 Conclusion

The goal of this chapter was to look at multiple ways of supplying good setups to an
AI agent. Using a good setup is paramount to success. It is very important to find
the right balance between setup quality and setup predictability. It is fairly easy to
create a setup provider that produces one of the two, but it is hard to create one that
produces both at the same time. The Gravon Setup Provider is good at providing qual-
ity setups, yet they are potentially very predictable. The Naive RvH Setup Provider in
contrast is much better at creating something unpredictable, yet in terms of quality
it may be lacking compared to the Gravon Setup Provider.

The selection of setup provider therefore depends on a number of external fac-
tors. For example, when playing against an agent which is using the Database Esti-
mator (see 7.2.4), it may be unwise to use the Gravon Setup Provider. Yet when playing
against a human player, those same setups may be more than sufficient, as humans
are not capable of memorising over 100000 setups and quickly deducing which one
is being used.

Therefore, it is not really possible to designate a single setup provider as the
‘best’ or ‘most optimal’ setup provider. Even comparing them in terms of setup
quality is already difficult, as much depends on the agent using them. For this thesis,
we typically use the Gravon Setup Provider or where necessary the Naive RvH Setup
Provider, if the results of an experiment may be disproportionally affected by an
agent figuring out exactly which setup is being used very quickly.

35

Chapter 6

Dynamic Evaluation Problem

Stratego is a highly complex game for a computer to solve effectively. Not only does
the lack of information pose a significant issue, the large branching factor each turn
and relatively small game impact of individual moves is not an insignificant prob-
lem either. In Chess for example, almost every move is important as it immediately
changes the strategic value of the position by a considerable amount. Pieces can
move across the entire board in one move, and project large amounts of influence
over the rest of the board (e.g. by covering or threatening other pieces). In Stratego,
a piece can only move one square at a time, and the only piece that can move further
is the low-ranked scout, whose only tactical purpose is to reveal enemy pieces, not
capture them. This also makes games last much longer on average. As Arts cal-
culated, the upper bound on the game tree complexity is ∼ 10535 including chance
nodes and ∼ 10509 without chance nodes [Art10], which is much higher than Chess
at ‘only’ ∼10123.

This complexity puts any tree-search based algorithm at a significant disadvan-
tage. The depth of the tree that needs to be searched is large, as moves have little
individual impact, yet the tree itself is also very wide. The chance nodes in this tree
further complicate this issue. For this reason de Boer opted to not use a tree-search
algorithm at all and instead opted for his solution based on plans [Boe07]. This
approach relies on a lot of expert domain knowledge, which de Boer as a Stratego
world champion certainly has. Unfortunately, it also required de Boer to carefully
balance and fine-tune the weights for each of the plans he developed. This means
introducing new knowledge to his AI agent does not scale well and thus becomes
increasingly difficult.

To develop an AI agent without a significant amount of expert domain knowl-
edge therefore still requires some kind of tree-search algorithm. The effectiveness
of the tree-search will determine how much it can contribute to the final solution
quality. Making the tree-search as effective as possible is at the heart of the Dynamic
Evaluation Problem.

6.1 Minimax

The Minimax algorithm is likely the most well-known tree-search algorithm. It is
also the most well-studied algorithm when it comes to its application in Stratego.
Considerable efforts have been made to optimise it as much as possible, dealing
with chance nodes and aggressively pruning as many branches as possible without
affecting the final result, or to use it in conjunction with other new techniques [Bal82;
PT09; Moh09; Sta09; SW09; Art10; RG18; Alb03; Smi15].

In the Minimax algorithm, the game-tree is searched fairly exhaustively up to a
certain depth, only pruning branches when the outcome can no longer be changed

Chapter 6. Dynamic Evaluation Problem 36

by them. The optimal move is then found by alternating picking the best and the
worst move for the playing agent. It simulates what would happen if both players
consistently made the most optimal move possible, and tries to find the best possible
outcome. It can be made more efficient by various techniques such as α-β-pruning,
heuristics-based pruning, quiescence search, etc..., which seek to limit the amount of
the game tree that needs to be explored.

Despite these efforts, agents based on the Minimax algorithm still lack in quality.
It seems that Arts’ STARETC agent has the best implementation [Art10], but it can
still only search up to a depth of at most 5 moves before the search costs become in-
credibly high. Even at that search depth, Arts found that a maximum of 33.6 million
nodes were searched in a particularly bad case. Searching this many nodes every
turn costs far too much processing power for a relatively low search depth.

Although there are potential optimisations to be made with the Minimax algo-
rithm, in particular in connection to the chance nodes, we will instead opt to explore
different tree-search methods that have not been explored as fully as Minimax, but
still hold considerable potential.

6.2 Monte-Carlo Tree Search

More recently, the Monte-Carlo Tree Search (MCTS) method has been successfully
applied to several games, most notably the AI developed by Deepmind to mas-
ter Go [Sil+16]. It has also previously been applied to Stratego by Mets [Met08],
which was a fairly limited application on the algorithm but showed good poten-
tial nonetheless. Compared to other tree-search algorithms, MCTS often manages to
make high quality decisions while exploring far less of the tree. This can partially be
explained by how MCTS evaluates nodes at every level in the tree instead of only at
the leaf nodes, allowing it to better direct the search and exploration of the tree.

The MCTS algorithm follows 4 steps a number of times, which can be a prede-
termined number or a dynamically selected number. The steps are as follows:

1. Selection: Starting from the root node, select successive child nodes (moves in
the game) until a leaf node is reached that has some child node that has not yet
been simulated, according to some selection method.

2. Expansion: From the leaf node, attach a new leaf node that represents a specific
move (unless no more moves can be made) and move to the newly created
child node.

3. Simulation: The current state is simulated according to some kind of simulation
method and receives a value representing the desirability of that state.

4. Backpropagation: The resulting value is backpropagated to the root node, up-
dating the values of these nodes along the way.

The simulation method can be any method that converts the node state into a nu-
merical value that represents the desirability of the state. A commonly used simu-
lation method is the random rollout, where random decisions are made until some
kind of end state is reached, the type of which determines the value assigned to the
node. This is the method used by Mets [Met08]. Other methods exist that do not
necessarily require a full playout of the game but instead perform an evaluation of
the current state, such as neural networks. I will refer to these methods as Evaluation
methods and discuss them further in chapter 8.

Chapter 6. Dynamic Evaluation Problem 37

The selection method determines which nodes are explored. A naive option would
be to randomly select a node, but better methods typically use the value of the child
nodes as well as how often they have been visited. The aim of the selection method is
to select the child nodes that expand the search tree towards the most useful nodes.
To determine what moves to explore, we can use domain-agnostic methods such
as ε-greedy and Upper-Confidence Bound. These are fairly easy to implement and
should provide a selection method of acceptable quality already. However, it is also
possible to add some knowledge about Stratego to the selection method so that it is
able to make better selection.

This chapter will consider a few selection methods. The primary concern is AI
agent quality, although it is not possible to fully ignore performance. Whichever
selection method is used, it may be called O(dn) times per move, with d the maxi-
mum depth of the tree and n the maximum number of simulations. That means that
whichever method is used should not be too computationally intensive, or the AI
agent will take too long to make a move.

6.2.1 Hidden information

It is important to mention the Information Problem here briefly. When exploring a tree
with hidden information, issues quickly arise. What happens for example when a
piece attempts to capture a previously unseen enemy piece? The lack of information
means we are unable to decide how the tree should continue.

There are two ways of dealing with this issue. The first option is to use chance
nodes: every time we are unable to decide how the tree should continue, we instead
add several chance nodes that represent every possible outcome. For example, if we
attempt to capture a piece that has moved but not yet revealed itself with a sergeant,
we add ten chance nodes, each revealing a different piece and thus having a different
outcome. This immediately presents a problem however, as this widens the already
very wide search tree considerably. This problem worsens when the opponent needs
to make a move in the search tree, as it is not clear which moves could even be made.

To counteract the issue of chance nodes widening the tree, we can use the general
approach of Mets [Met08]. This involves making an educated guess on all piece
ranks of the opponent simultaneously at the start of the search, that is consistent with
the known information on the opponent. The agent can then use this information to
decide how the events with unknown information should play out. This has some
obvious drawbacks, in that it makes the agent implicitly 100% sure that a certain
event will go a certain way. For example, suppose we estimate that an enemy piece
has the highest chance of being a lowly Sergeant. We may not be certain of this at all,
perhaps we are only 30% certain that it is a Sergeant, and the other 70% is split over
the other ranks. Now, despite the fact that we are unsure about the exact rank of the
piece, the agent will decide that if we attack it with a Marshal we will surely capture
it. The agent will likely see attacking this piece as very beneficial, disregarding the
risks. In reality, that enemy piece may be a Bomb which would make the agent lose
its Marshal, but that possibility is not considered at all. Particularly in cases like this
where there is no outcome that is much more probable than other outcomes this can
lead to inaccuracies in the full search, which impacts the final found values of the
moves. If these errors are large and frequent enough, this will cause the AI agent to
make bad decisions.

Despite these issues, the MCTS agents in this thesis will always use the second
option, as the use of chance nodes would impact performance too heavily. Details
on this problem and the exact methods to solve them can be found in chapter 7.

Chapter 6. Dynamic Evaluation Problem 38

6.2.2 ε-greedy

One of the simplest selection methods is known as ε-greedy. In this method, we sim-
ply select a random child node with ε probability, and we select the child node with
the highest value in 1 − ε cases. The value of ε thus determines the ratio of exploita-
tion, e.g. how often we simply go down the most optimal move, versus exploration,
e.g. how often we look at some random move to determine its potential.

There are numerous variations of the ε-greedy method, that typically change how
ε behaves. In the most simple variant ε is simply constant throughout the full search,
whereas certain variations try to modify ε depending on the number of simulations
so far or the found values for each move. Typically those variations try to lower the
value of ε in some way, so that early on the search favours exploration and later on
the search favours exploitation instead.

For many applications, ε-greedy is not the most optimal selection method, even
when all kinds of variations are applied. This commonly found lack of potential
means I have only implemented the constant-ε version of the ε-greedy method. In
this version it is important to select the right value for ε, so that there is a good
balance between exploration and exploitation.

Experiment to determine ε

To find the right value, an experiment is done for all values of ε in the [0.05, 0.95]
range, with 0.05 intervals. In this experiment an ε-greedy-agent using the Database
Estimator (see 7.2.4), NUC Evaluator with 10000 evaluations (see 8.1.1) and a Gravon
setup (see 5.1.4) is pitched against a Peter N. Lewis-agent using the Peter N. Lewis
setup in 100 games. All ε-greedy agents use the same starting seed, so they are
playing identical matches against the Peter N. Lewis-agent. The results of this test
can be found in figure 6.1.

FIGURE 6.1: Graph depicting the experimental results of the ε-
greedy-agent pitched against the Peter N. Lewis agent, with various

values for ε. Error bars depict p ≤ 0.05.

The blue line in the graph depicts the actual results, the red dotted line shows a
moving average of the results. The moving average helps to filter some noise from
the results, as the results are all roughly in the same range. From this graph we

Chapter 6. Dynamic Evaluation Problem 39

can see that the performance of the ε-greedy-agent appears to improve until ε =
0.65 after which the agent performance slightly seems to drop, although the error
margins are quite high. It thus seems that more exploration is beneficial, favouring
a wider search of the tree, up to a certain point, though it is hard to conclude this for
certain.

Exploration being beneficial could be in part explained by the nature of Stratego,
where individual moves tend to have little impact, and the true impact of a series of
moves only becomes apparent after some time. This means that the values assigned
to the states for the different moves will not differ too much from each other, and
thus the ‘best’ move so far according to the ε-greedyagent may not actually be much
better than the other moves. In fact, if the agent explores this ‘best’ move too often,
it is more likely to reach a state that is considerably different from the starting state.
Because this information propagates backwards, it will become difficult for the other
moves to essentially ‘catch up’ to it. By using a fairly large value for ε, this effect is
somewhat mitigated. Based on this experiment, we select ε = 0.65 as the optimal
choice for this agent.

When using the agent with this ε, we find that it can search to a depth of 10
moves when doing 10000 simulations. Increasing this to 100000 means it can achieve
a search depth of 13. This is surprisingly deep, as various Minimax approaches did
not manage to search this deep even with millions of nodes explored [Art10].

6.2.3 Upper-Confidence Bound

The major problem with the ε-greedy-agent is that it is fairly inflexible with how it
decides to explore or exploit. The ε-value is always fixed and even in the variations
where it does change it often does not do so in an optimal way. A generally bet-
ter way to balance exploration and exploitation is known as the Upper-Confidence
Bound method (UCB). The UCB method not only evaluates the value of the child
nodes, but also the confidence it has in those values. The UCB method then tries to
explore the child nodes of which the value has a low confidence and exploit the child
nodes with a high value and confidence.

To select the next child move to explore, the UCB method uses the following

formula: f (t) = arg maxt

[
Q(t) + c ·

√
log(n)

nt

]
, where t denotes the move, Q(t) the

average return value, n the total amount of simulations ran, nt the amount of sim-
ulations ran for move t and c a constant. This constant c determines the balance
between the average return value and the confidence the agent has in that value. As
c becomes larger, the confidence value becomes more pronounced, making the agent
take exploration moves more often. If c decreases, the agent will choose exploitation
moves more often.

Experiment to determine c

To determine the optimal value for c, the UCB-agent is pitched against the best agent
thus far, the ε-greedy-agent Specifically, an experiment is done for all values of c in
the [0.05, 0.95] range, with 0.10 intervals. In this experiment a UCB-agent using the
Naive RvH Estimator (see 7.2.5), NUC Evaluator with 10000 evaluations (see 8.1.1)
and a Gravon setup (see 5.1.4) is pitched against a ε-greedy-agent (ε = 0.65) using
the same estimator, evaluator and setup provider for 100 games. The agents are thus
virtually identical, the only difference is the selection method. The results of this test
can be found in figure 6.2.

Chapter 6. Dynamic Evaluation Problem 40

FIGURE 6.2: Graph depicting the experimental results of the UCB-
agent pitched against the ε-greedy-agent, with various values for c.

Error bars depict p ≤ 0.05.

The blue line in the graph depicts the actual results, the red dotted line shows
a moving average of the results. The moving average helps to filter some noise
from the results. From this graph we can see that the performance of the UCB-agent
appears to start strong with low values of c, after which performance appears to
decline. Based on the general trend, it appears the values for c = 0.45 and c = 0.75
in particular may be outliers (unusually low and unusually high, respectively).

It is noteworthy to see that the winrate is far less ‘convincing’ than the winrate
for the ε-greedy-agent against the Peter N. Lewis-agent. This is because both agents
at their core use the same algorithm: Monte-Carlo Tree Search. Because the agents
are mostly identical, large advantages are not expected if only one part of the agent
is changed. It is possible that this effect is similar to the effect Schadd and Winands
observed in their attempts to optimise an Expectimax-based agent [SW09].

From the graph it appears the performance peaks at roughly c = 0.15, and then
declines somewhat. This is expected: because the simulation method used typically
only provides a small range of different values, using values for c that are larger
makes the confidence factor absolutely dominate the value factor, which means the
agent explores all moves equally often. This would entirely nullify the advantage
that UCB provides in how it balances exploration and exploitation.

With c = 0.15 and 10000 simulations, we find that the search manages to get a
search depth of 5, considerably less deep than the ε-greedy-agent. Nonetheless, it
does manage to get an advantage over ε-greedy, if only slight. It thus appears that
the UCB-agent is capable of searching the lower depths more efficiently, whereas ε-
greedy searches considerably deeper but may be missing other branches that should
have been explored at lower depths. When we increase the number of simulations
to 100000, it occasionally manages to search up to a depth of 8.

6.2.4 pUCT

Both ε-greedy and Upper-Confidence Bound attempt to steer the tree search in the
right direction using data acquired during the search. This works fairly well, partic-
ularly if the search has been going on for a while and a lot of simulations have been

Chapter 6. Dynamic Evaluation Problem 41

done. Nonetheless, these methods are not perfectly optimal. These two methods
essentially slowly build up a sort of ‘idea’ or ‘hunch’ about which moves it should
select. However, it can only do so by acquiring data from the search. It would per-
haps be more efficient to start out with this ‘hunch’ instead.

Being able to generally steer the search before the search has even started requires
some outside knowledge. In this case, we require some prediction function P that
takes a state s and for all N moves that can be made from S outputs a probability
pmove, for which ∑i<N

i=0 pi = 1. We can then use such a function to help steer the
search, by selecting moves with a higher probability more often.

This concept was put into practice by David Silver et al. in their efforts to master
the game of Go [Sil+16]. They approached Go using a novel approach based fully on
neural networks and Monte-Carlo Tree Search. The selection method they employed
is called pUCT, or “Predictor + Upper-Confidence bound applied to Trees”. The
exact formula used is the following:

ak = arg max
a

[
Q(s, a) + P(s, a) ·

√
∑b N(s, b)

1 + N(s, a)

(
c1 + log

(
∑b N(s, b) + c2 + 1

c2

))]
(6.1)

In this formula ak represents an action a taken from state s at timestep k, P(s, a)
a prediction function that outputs the probability of a being selected from s, Q(s, a)
the value for action a taken in state s found during the search, N(s, a) the number
of visits to a taken at state s. c1 and c2 are constants used to tune the formula so
that a good balance is found between the found value, the predicted value and the
confidence value.

Prediction function

The prediction function P(s, a) has been created using publicly accessible data from
the Gravon database [Jun15]. This database contains more than 50.000 games played
online by humans. We can use these games to train a neural network that outputs a
softmax probability that predicts which move is most likely to be made. It is impor-
tant to note that ideally we want a function that predicts which move should be made
next, e.g. the best possible move, rather than the move that humans are most likely
to make next. Such a prediction function is possible, but would require extensive
self-training and a very strong agent to use for data generation. Considering such
an agent is not available to me for this purpose, we assume that whatever a human
does is considered ‘good enough’ for now.

From the Gravon database I have extracted over 1.7 million states and associated
moves. These have been converted to a one-hot encoded input and output represen-
tation. For the input, we use 3312 input nodes, which can be divided into three sets
of 1104 nodes.

• The first set contains the true owned piece ranks on every square. For each of
the 92 squares we have 12 possible ranks that can be placed there. As this is a
one-hot encoding, each input corresponds to a single (rank, square) tuple that
is set to 1 if that rank is actually on the square or 0 otherwise.

• The second set contains the owned potential piece ranks on every square. Sim-
ilar to the first set, we not only mark the true ranks but also all ranks that that
piece could potentially have according to the information revealed to the op-
ponent. In case something has moved, the bits for the bomb and flag are set to

Chapter 6. Dynamic Evaluation Problem 42

0. If we have revealed all our scouts, then none of the other pieces will have
the scout-bit enabled, etc...

• The third set contains the enemy potential piece ranks on every square. It is
thus identical to the second set, but for the opponent’s pieces instead of the
owned pieces.

This representation ensures that all information regarding piece positions and
ranks is passed to the neural network. Note that this is not all information that is
potentially available; moves made thus far and the current state of the Two-Squares
rule are excluded. The first was excluded due to this not easily fitting in a stan-
dard input representation, and the second was excluded because it rarely has a large
enough impact (as it only affects a single move, which the tree-search will detect
anyway).

The output representation is again a one-hot encoded output vector with 1368
nodes, one for each possible tuple of two squares that could serve as an origin and
destination for a move. Note that this isn’t every pair of two squares; it is not pos-
sible to move across a lake or over diagonals for example. Only the pairs between
which a piece can move are included (specifically a scout, as they can move consid-
erably further than other pieces). Note that this output vector uses softmax, e.g. the
output vector predicts the likelihood that a specific move is picked next.

The network has five hidden layers of 300 nodes each. Each of these layers is
fully connected. This was largely done for simplicity and as a proof of concept,
and also to compare a little bit with Smith [Smi15], who opted to use convolutional
neural networks instead.

For training, a α of 0.001 was used. After approximately 11 hours of training,
cross-entropy loss had decreased from the starting value of 5.56 to 2.91, and the
accuracy had increased from a mere 0.022 to 0.246, or roughly ∼ 24%. This accuracy
is surprisingly high, meaning that given a random state from the game the network
can accurately predict the next move in more than one in five cases. Note that this
not merely means that the network has figured out which moves are valid moves
given a state, as on average a player can make just over 20 different moves per turn.
The network has in fact learned to estimate which move will be made next.

There are some limitations however. Most notably there is some considerable
data imbalance. In historical Stratego games, it appears that moves made in the
opposing corners appear much less frequently than moves made in the center. This
means that corner moves are considered “less likely” than other moves simply based
on the location. Because the neural network will not recommend these moves very
often, the agent may play considerably worse when the game has important pieces
in corners.

Another important limitation is performance. The selection methods discussed
so far have been relatively cheap to compute. However, using a neural network as
a prediction function requires that once we try to look up the predicted value for
a child node, we need to convert the parent node to the input representation, run
it through the network, retrieve the output and apply softmax to it. This process
would take far too long when done through regular Tensorflow. This is because
Tensorflow is not optimised for single network calls, but instead prefers batched
calls, e.g. applying a vector of thousands of inputs to the network simultaneously.
To optimise for single calls, the network has been converted to the TF.Lite format,
which is more optimised for this scenario. Nonetheless, compared to UCB the pUCT
agent takes roughly 10 times longer to compute a move.

Chapter 6. Dynamic Evaluation Problem 43

Tuning c1 and c2

There are two constants that are used to tune how important the confidence and
predicted values are compared to the discovered value, c1 and c2. In the original
paper, the authors find that values of 1.25 and 19652 respectively work well and
produce good results. From initial testing, I found very similar results. Because test
results from this kind of tuning can be quite noisy and radical changes in values for
these two constants produced worse results, I opted to select c1 = 1.25 and c2 =
19000 as default values, as this seemed to produce good results from observational
testing. A full test has not been performed, as the pUCT agent is a fair bit slower
than the other agents tested so far. This means that a test which would usually take
a couple hours would now take a full day or more to process, which is too long for
me to execute.

Comparison to UCB

The pUCT agent behaves noticeably different from the UCB agent. Compared to the
UCB agent, this agent appears to behave more aggressively. It is more willing to
move multiple pieces forward at the same time, and move them deeper into enemy
territory. The UCB agent in contrast acts a bit more defensively, preferring to inter-
cept enemy pieces rather than go on the offensive. This is likely because of the added
direction pUCT brings to the search. UCB initially has to explore all moves equally,
both offensive and defensive ones, as well as ‘nonsensical’ moves (e.g. moves that
make little sense to make regardless of the strategy employed). pUCT provides more
direction towards the offensive moves and a bit towards the defensive moves, but
is much better at hinting that the ‘nonsensical’ moves should not be searched too
much.

The predicted problem with the corner moves is also visible. It appears that the
prediction function is in general less likely to recommend moves that move a piece
into the corners. It also appears that moves that move a piece onto the back row are
a bit more rare. This may initially seem odd, as flags are usually placed in the back
row. But typically they aren’t captured from there; it is more likely that a bomb in
front of it is discovered, hinting at the location of the flag, rather than discovering it
from the side.

To determine its exact effectiveness, the pUCT agent was pitched directly against
the UCB-agent (c = 0.15) in 100 games. Both used the Naive RvH estimator (see
7.2.5), the NUC evaluator (see 8.1.1) with 10000 evaluations and a Gravon setup (see
5.1.4). pUCT managed to achieve a winrate of 41.4%, which is not enough to be
superior to UCB, though it is not too far off either.

In theory, pUCT should be stronger than UCB. The prediction function should,
assuming it is correct enough, guide the UCB search so that it can more effectively
search the game tree. As the test results show, pUCT has not beaten UCB yet, which
means that the prediction function is not good enough.

There are multiple potential reasons for this.

• Lack in data quality: The data fed to the move prediction function is based en-
tirely on human data. This involves players from all skill levels, including
beginning players who may not be playing optimally. There is also the issue
that nearly half of the players who played of course lost the game, meaning
their moves made may not have been the best.

• Lack in data spread: The data is compiled from a lot of games played, but not
all scenario’s that could happen appear often enough in those games. This

Chapter 6. Dynamic Evaluation Problem 44

is exemplified by the move prediction function rarely predicting moves that
move a piece into the opposing player’s corner or back row. There are only
the situations that are apparent when observing games, though there may be
other deficiencies in this regard.

• Overfitting on parts of the data: The lack in data spread makes it so that cer-
tain parts of the board are much more rarely visited. There are however also
places on the board, particularly in the center, that may be overrepresented
instead. This makes the move prediction function naturally biased towards
these moves, meaning it overfits on these positions and moves and recom-
mends them far too often.

It should be noted that pUCT also manages to do a little bit better than UCB
(and ε-greedy) in certain aspects. Most notable is the search depth; with only 10000
evaluations it can reach a depth of 11, and with 100000 simulations it reaches a depth
of 14. In some rarer occasions it can go even deeper, down to 16. This is deeper than
both UCB and even ε-greedy, making it more likely that if the prediction function
were to improve, pUCT could beat both UCB as well as ε-greedy.

In addition it appears that pUCT does aggression, particularly in the center of the
board, particularly well. This makes sense in that this scenario is likely overrepre-
sented in the Gravon database. It only starts failing when it reaches more unknown
territory, at which point it misses some more obvious plays. This could in theory
also be compensated a little bit by giving each move a base chance in the prediction
function, so that no move is entirely ‘filtered out’ when it should not be.

6.3 The effect of information

From testing it appears that UCB is better able to search through a slightly wider
scope of moves, through setting the c-constant at the right level. UCB can also be
made more specific by setting c even lower, but from the testing that does not appear
beneficial. Searching in more specific directions seems to be more suited to ε-greedy
and pUCT. This suggests that if more information is known about the opponent’s
pieces, ε-greedy and pUCT could be more effective.

To test this hypothesis, we run a new experiment where we let the ε-greedy-
agent and the pUCT-agent play against the UCB-agent, all with the optimal settings
found before (e.g. c = 0.15 and ε = 0.65). However, this time we use the Database
estimator (see 7.2.4) and a Gravon setup (see 5.1.4), which means the agents are much
more capable at discovering the opponent’s piece ranks. ε-greedy now achieves a
winrate of 55.7% against UCB, and pUCT achieves a winrate of 46.4% against UCB.
pUCT may only see a slight improvement, but the advantage that ε-greedy gets from
having more information appears to be considerable compared to the performance
when there is less accurate information available. However, that advantage does
require the ε-greedy-agent to actually be able to obtain this information, which in
this specific setting it may be able to but might remain out of reach for more realistic
settings.

6.4 Discussion

It appears that Monte-Carlo Tree Search, regardless of selection strategy, poses a
strong and viable alternative to Minimax. It manages to fairly efficiently search the
game tree. Most mistakes that can be observed are not due to MCTS or the specific

Chapter 6. Dynamic Evaluation Problem 45

selection method, but rather mistakes in the used simulation method or piece rank
estimator.

The strongest selection method appears to be UCB. This is especially notable, as
it is the method that searches least deep of the three. It is very well possible that
the lack of depth works out as a strength due to the lack of information in the game.
Piece ranks have to be guessed, and it makes sense that pieces that are further be-
hind enemy lines have less information revealed about them, whereas the frontline
pieces are likely already known or have some information known about them. This
makes the outcome of any encounters that appear at lower depths in the tree search
more likely to be accurate, whereas outcomes of encounters at greater depths are
less certain. Any large changes in the simulated value may thus be misleading if it
happens after many moves in the tree search.

ε-greedy also seems to be a surprisingly good method, despite its simplicity. Spe-
cific to this case, the implemented version is also the least complex one, with no
tricks to reduce the value for ε if necessary or other ideas to make ε-greedy more
effective. There may still be more to gain here, which could push it beyond what
UCB achieves now.

The pUCT method still needs considerable work. It definitely shows good po-
tential, but it is hampered by imbalanced training data. If data were to be generated
using a strong agent in more kinds of scenarios, the move prediction function may
improve enough to begin beating UCB consistently. The neural network for pUCT
already seems to be fairly good at predicting human moves in many common sce-
narios, but there are still plenty more less common scenario’s that it has not trained
on sufficiently yet. Additionally, it would be good if a better measure of a ‘good
move’ than ‘human move’ could be used.

6.5 Conclusion

The goal of this chapter is to explore different ways to solve the Dynamic Evalua-
tion Problem. In particular, we have looked at three different selection methods for
Monte-Carlo Tree Search.

From the experiments, it appears UCB is the best selection method overall. It
is stronger in the early- and midgame, but it can lack the necessary depth for the
later stages of the game. It can handle lack of information or poor piece rank estima-
tions best out of the three methods tested. If more information is available or can be
accurately guessed, then it appears UCB is less optimal and ε-greedy appears a bit
stronger. This is likely due to its ability to search deeper, making it more viable for
the later stages of the game than UCB.

The potential for a hybrid method definitely exists. In such a hybrid UCB would
handle the earlier stages of the game and once the board is sparse enough, informa-
tion is plenty enough or the confidence in the piece rank estimations is high enough
it may be beneficial to have ε-greedy take over for the final stages of the game.

The third method, pUCT, also exhibits great potential. It can search to even
greater depths than ε-greedy can, though the fact that the move prediction function
is not good enough severely hampers its ability to direct its search more accurately.
To make pUCT more viable, more work is definitely needed.

46

Chapter 7

Information Problem

The main property of Stratego that sets it apart from other board games is the fact
that the ranks of the enemy’s pieces are hidden from view. The only way to find out
what rank a piece has is to either try to capture it or have it attempt to capture one of
your pieces. Of course this has drawbacks; you may have to reveal one of your own
unrevealed pieces and more importantly you may lose a piece if the enemy piece has
a higher rank than yours.

Because of these drawbacks it would be much more preferable if it was somehow
possible to guess the rank of an enemy piece before interacting with it. Unfortunately
this is very difficult to do. The reality is that for many pieces there is very little
information, and the information that is revealed can be intentionally deceiving. For
example, an enemy piece that is rapidly advancing towards your own pieces could
be a high ranking piece that you need to be careful of, requiring the attention of your
own high ranking pieces. Alternatively, your opponent could be trying to deceive
you and it could instead be a low ranking piece, with the goal of revealing your high
ranking pieces.

Having correct information, particularly in a tree search-based AI agent is critical
to the quality of the agent. The effect of making an incorrect guess of an enemy
piece’s rank has an obvious immediate effect. Making the wrong guess could easily
see you lose a piece because you incorrectly believe an attempted capture would go
your way. But for a tree search-based AI agent, there are additional negative effects.
The first ‘layer’ of the search tree only shows the moves an agent can make at that
point. But the next layer contains all the moves that the opponent might make.
Depending on what the agent believes the opponent’s pieces to be, the moves that
the agent will explore on the opponent’s behalf also change. This can have a big
impact on the rest of the search tree and what values are ultimately assigned to each
move, as we may be incorrectly guessing what the opponent would do.

7.1 Specifying the problem

There are a number of ways that an AI agent could potentially use to work with the
hidden information in Stratego. It is therefore important that we first specify exactly
how we intend to work with it in this thesis, as this has an impact on what methods
we can use. We can do this by exploring when exactly an AI agent would encounter
hidden information, and how we at those points would like to deal with it. In this
thesis we focus primarily on Monte-Carlo Tree Search (see 6.2), so we will look at
where an MCTS-agent encounters hidden information and how dealing with it in
specific ways would impact the tree search.

Recall that the MCTS-agent repeats four steps an X number of times: selection,
expansion, simulation and backpropagation. For convenience, we will assume that the

Chapter 7. Information Problem 47

MCTS agent has already explored a little bit so that a part of the tree structure al-
ready exists.

1. Selection - Start node: The MCTS-agent starts its selection step in the starting
node. At this point the agent only has to deal with the moves it can make by
itself. The agent knows which of its pieces are where, so it knows what moves
we can make. So far there is no problem, and the agent can select some move
m to go down.

2. Selection - Leaf node (opponent): Suppose m takes the agent to a node that it has
not previously explored, e.g. a leaf node. Here the agent is already potentially
faced with hidden information. If the selected move m moved a piece into
an empty square or attempts to capture a previously seen enemy piece, we
know exactly what the new state looks like and there is no issue. However,
if m were to be an attempted capture of an unseen enemy piece, the agent
faces hidden information. This is the first problem: How do we resolve an
attempted capture of an unknown enemy piece?

3. Expansion - Opponent’s turn: If the agent runs into a leaf node, it needs to be able
to expand the node. This means the agent needs to know what state transitions
can happen from the current state, e.g. what moves the opponent can make.
Unfortunately this presents the agent with a mountain of hidden information,
as it needs to know the ranks of all enemy pieces that could feasibly move.
This results in the following problem: How can we figure out what moves an
opponent can make?

4. Selection - Opponent’s turn: Suppose m takes the agent to a node that it has
previously explored. That means that we have already done an expansion
here, and know what moves the opponent could make. This means that at this
point, we do not face a new problem concerning hidden information. We select
an opponent’s move o to explore.

5. Selection - Leaf node (agent): Similarly to what is described in 2, the agent needs
to decide how the opponent would decide what the current state looks like, as
the agent is potentially faced with information hidden not from itself but from
the opponent. This gives us a new problem: How do we resolve an attempted
capture of a piece unknown to the opponent? This may seem like it has an
obvious answer as the agent knows what the truth is, but the opponent does
not and this can alter its decision making (e.g. it may believe that its Spy is
attacking a Marshal, which would be very beneficial, but it may in reality be
attacking something else which would be detrimental instead).

6. Expansion - Agent’s turn: At this point the agent needs to decide what the oppo-
nent believes to be its potential moves. However, this introduces a divergence:
the opponent may believe it is capturing a piece in move o that leads to this
state, but we may know in reality that this is not true and it loses its piece in-
stead. This means that the agent not only has to find out what the opponent
believes the agent can do, but also consider what moves it can actually make.
This causes a split: there is a branch that the opponent considers correct or
probable, and there is a branch that the agent considers correct. How do we
deal with the search tree splitting based on what either side believes to be
correct?

Chapter 7. Information Problem 48

7. Selection - Agent’s turn: The agent has to select which moves it wants to explore.
It knows what moves it can make as this has been decided in the expansion
step, so there is no issue here.

8. Simulation: Suppose we have found a state that we wish to evaluate. The out-
come of the simulation step heavily depends on what we have decided that
the current state looks like. Although a lot of hidden information may be con-
sidered here, what we believe the state looks like has already been partially
decided in the preceding steps where a number of decisions have already been
made. Nonetheless, not all hidden information may have necessarily been
dealt with. How do we deal with undecided hidden information in the sim-
ulation step?

9. Backpropagation: Once a state has been simulated and been assigned a value,
that value must be backpropagated back to the root or starting node. The agent
does not encounter any new hidden information here, so this step goes without
issues.

We are thus left with five important questions that need an answer to define what
the MCTS tree looks like and how it is explored. They are:

1. How do we resolve an attempted capture of an unknown enemy piece?

2. How can we figure out what moves an opponent can make?

3. How do we resolve an attempted capture of a piece unknown to the opponent?

4. How do we deal with the search tree splitting based on what either side be-
lieves to be correct?

5. How do we deal with undecided hidden information in the simulation step?

Unfortunately there are few, if any options that could answer all these questions
in a way that is truly accurate without also increasing the branching factor beyond
a level that makes the tree so large that it becomes effectively unsearchable. We
thus have to look at ways that we can still be somewhat accurate, but without also
increasing the branching factor too much (which in Stratego is unfortunately already
quite large). This is the primary goal that we try to answer in this chapter.

We leave question 5 to be answered by the simulation method, as it does not impact
our ability to search the tree. It only impacts the eventual value assigned to states
and it may alter how we direct our search, but the structure of the search tree is
the same regardless of our answer to this question. The agent would provide the
simulation method with the information that it knows and what hidden information
it has already decided on, and the simulation method has to decide what to do with
that information. It is thus out of scope for this chapter.

There are two potential methods of dealing with with the remaining four ques-
tions: introducing chance nodes to the tree, or making a single estimate of the truth.

7.1.1 Chance nodes

Chance nodes are the traditional answer to chance-based events in tree search prob-
lems. They effectively act as a new intermediate layer between two states that are
separated by some stochastic event. Each chance node in this layer represents an
outcome of the stochastic event and has the probability of that outcome associated

Chapter 7. Information Problem 49

with it. In the selection and backpropagation steps, this probability would be used
to determine which branch to select and how to weigh the values backpropagated
from the branches, providing little weight to very rare outcomes and much weight
to very probable outcomes.

We will look at how chance nodes could be used to answer each of the four
questions.

1. How do we resolve an attempted capture of an unknown enemy piece?

When attempting to capture an enemy piece, we need to decide which outcomes
are possible. One might initially guess that there are three different outcomes: a
successful capture, a draw or a failed capture. Unfortunately that is not enough;
depending on which piece is captured or successfully evades capture, probabilities
and hidden information for the rest of the board also changes.

Suppose a Marshal attempts to capture an enemy piece. The draw and failed
capture outcomes are very well-defined here: a draw can only happen if it encoun-
ters another Marshal, and a failed capture can only happen if it encounters a Bomb.
A successful capture however is not that simple. If the Marshal captured a General,
of which the opponent has only one, then the hidden information changes for all
other pieces as well, as they can no longer potentially be a General. Even if the Mar-
shal were to capture a different piece of which the opponent still has multiple, the
hidden information is affected by altering the probabilities that each piece has for
each rank.

This means that a capture of an unknown piece necessarily introduces at most
12 chance nodes, one for each rank that is potentially captured. This creates a new
layer with a branching factor of 12 every time there is a capture, which makes the
search tree considerably larger.

2. How can we figure out what moves an opponent can make?

When working with chance nodes, dealing with figuring out what moves the oppo-
nent can make is difficult, though not impossible. The biggest issue is that it is not
really possible to determine the list of moves the opponent could make, e.g. decid-
ing on all moves that are possible at once. To do so, for each piece we would have
to determine if it could be a Scout, a regular piece or an unmovable piece (Bomb
and Flag). To find out what list of moves are possible, we would need to know
which pieces have been assigned what kind of rank, as that determines their pos-
sible moves. Unfortunately, this would create far too many chance nodes, as for
each combination of pieces we would have to create a new chance node and assign a
probability. With hundreds of possible combinations, this would create far too many
chance nodes to effectively deal with.

A better alternative would be to only create chance nodes based on the specific
move that is selected instead of the entire list. A chance node would be created for
every possible move, no matter what rank a piece might have. This creates a more
manageable number of chance nodes, even though it would still be large due to the
large number of potential Scout moves. The downside here is that the chance nodes
need a probability assigned to it, which may be a bit difficult to calculate as it would
have to take the likelihood of the move as well as the likelihood of the rank into
account.

It is important to note that this extra layer of chance nodes would be larger when
the tree is not very deep yet. In greater depths, more hidden information would have

Chapter 7. Information Problem 50

already been decided on, which means that there are far less possible combinations
to consider at this step.

3. How do we resolve an attempted capture of a piece unknown to the opponent?

When an opponent in the search tree attempts to capture a piece, the outcome is
unknown to them. To be completely accurate, they would have to do the same thing
that we do; estimate the probability that the captured piece has a specific rank and
change the state accordingly. They would use the predicted outcome to decide what
move they would make themselves, which is exactly what we are trying to find
out. However, we want to decide what we would do based on what would actually
happen, e.g. resolving the capture by simply using the rank that we know our piece
has.

This would create a divergence, e.g. we would both have to explore a tree where
the opponent uses chance nodes to determine their move, and a tree where we use
the true rank to determine our next move. The alternative option is leaving out the
tree that the opponent uses to determine their next move and only use the true rank
to determine the outcome of enemy attempted captures. Of course, this impacts
accuracy to some degree; we are suddenly far more pessimistic about the strength of
our opponent. By assuming the opponent can accurately simulate the captures they
try with absolute certainty, we likely vastly overestimate their capabilities.

This impacts our playstyle in a fairly large way. Most importantly, it is not really
possible to bluff anymore, as we assume the opponent can see through any decep-
tion thrown at them. This seems like a large price to pay, but it comes with the
very notable advantage that this approach would not require any additional chance
nodes or layers, which simplifies the tree structure considerably.

4. How do we deal with the search tree splitting based on what either side believes
to be correct?

As mentioned before, to be completely accurate we would need to occasionally split
the tree based on what we know to be true and what we believe the opponent be-
lieves to be true. This would only need to happen when the opponent has just made
a move, as for our own moves we simply do not have the absolute truth available
and have to work with what we do know.

How these alternate branches are best dealt with is hard to determine. Assuming
that we are most interested in what moves we are going to make and only want to
know a rough estimate of the value the opponent would predict for its own moves,
it may be possible to do a shallow tree search on the tree that the opponent uses for
its own move selection, up to a limited depth. This approximation could then be
enough to give a rough estimate of which moves the opponent would consider, and
afterwards we could focus exclusively on the part of the tree that uses the true rank.

Conclusion

The use of chance nodes in the search tree for Stratego adds a great deal of complex-
ity to the structure of the tree, making it require much more effort to traverse suffi-
ciently. Additionally, there are important problems to consider, for example how to
exactly deal with problem 2. This makes the use of chance nodes largely impractical,
and it would probably be better to search for alternatives.

Chapter 7. Information Problem 51

7.1.2 Making a single estimation

An alternative to using chance nodes was proposed by Mets [Met08]. He suggested
a method he called “strooien” or “scattering” in English. This means that at various
points all pieces that did not have their rank known would get a randomly assigned
rank (‘scattering’ the possible ranks on the unknown pieces), after which every piece
would now be ‘known’ to have a rank. This in effect turns Stratego in a perfect
information game. All piece ranks are known to either player, even if for one player
those ranks are not entirely correct. In this thesis we call the assignment of ranks to
all unknown pieces an estimation.

If we pretend Stratego is a perfect information game, the problems with hidden
information effectively disappear. The MCTS can simply be done without any issues
or additional layers or nodes. This is a huge improvement to how efficiently the tree
can be searched, although it comes at a significant cost to accuracy.

The cost to accuracy

Making an estimation of what the board looks like and subsequently treating Strat-
ego as a perfect information game means that there is an implicit ‘truth’ in the search
tree. For example, attempting to capture an unknown piece suddenly becomes cap-
turing a known piece, which has a set outcome. Because of this, certain moves that
may be very uncertain and have risky consequences are treated as completely cer-
tain, risk-free moves.

This can not only trick the AI agent into making very risky moves, which could
cause significant blunders. It also has consequences for what we believe the oppo-
nent is likely to do. Because we assume that Stratego is suddenly a perfect infor-
mation game, we also assume that our opponent can and will play optimally. This
makes the AI agent a bit more defensive, as it assumes that the opponent is likely to
make any capturing moves that will go their way.

Making a single estimation and strictly using it as the truth also completely elim-
inates the aspect of bluffing from the game, at least as far as the search tree is con-
cerned. Because we no longer consider the possibility of being wrong, we also do
not have to concern ourselves with attempts to deceive us. There is no probability of
pieces being certain ranks to minimise or maximise, as we do not need probabilities
in the tree anymore. The only place where they could be necessary is the simulation
method or when we actually create the single estimation used in the search tree.

The impact of all these issues appears to hinge on a single factor; how good
are the estimations that are made? If we can completely accurately guess what the
enemy piece ranks are, or even just the ones that are on or close to the front line,
then most capture moves will play out accurately in the tree search. At that point
it may no longer matter much if there are a few mistakes in the estimation, or if we
overestimate what the opponent knows. The tree search would be able to find a
course of action that is perhaps a bit conservative but also effective.

Conclusion

Making a single estimation of enemy piece ranks heavily simplifies the tree struc-
ture, compared to the alternative of using chance nodes. This comes at a cost to
accuracy, although if the estimation is good enough this may not be too impactful
on the quality of the agent. Although Mets has used a similar method with some
success [Met08], it seems there is a lot of unexplored potential to this method, which
Mets also acknowledges.

Chapter 7. Information Problem 52

In this thesis we will focus on this estimation strategy rather than chance nodes
for dealing with hidden information, as it appears that there is enough to improve
here. We will look at a few estimation methods, e.g. methods that provide an as-
signment of ranks to all enemy pieces, to see which method works well and if the
estimation strategy has merit.

7.2 Estimation methods

When using the single estimation method to solve the problem of having hidden
information complicating the structure of the search tree, the accuracy of the esti-
mation becomes critically important to the quality of the AI agent. After all, if the
estimation is good and pieces are assigned the ranks that they actually have (or per-
haps a rank close to it), the tree search will become more accurate and the resulting
move will work out better in the actual game.

Though various rank-guessing methods have been proposed in literature, it ap-
pears most of these are focused on predicting single pieces instead of predicting all
pieces at once. Moreover, most methods are not very well described and lack a lot of
implementation details. Additionally, it is very hard to determine the effectiveness
of the proposed methods. There is no real standard, and if any figures are cited it
is often unclear if those figures are consistent throughout the entire game or only
applicable to certain phases of the game.

7.2.1 Setup Reconstruction

The general approach employed for all estimation methods (where applicable) is
called setup reconstruction. This is a novel way of making piece rank estimations.
Whereas previous attempts have largely focused on predicting single pieces at a
time, we will focus on methods that attempt to reconstruct what the original setup
looked like, and extrapolate the piece ranks from there. This is done by only taking
into account what information has been revealed about each of the pieces so far. It
does not use the current position of the pieces on the board but rather the position
where the pieces originally started.

By focusing purely on reconstructing the original setup, this method is far less
prone to fall to bluffing attempts by the opponent, e.g. by aggressively moving low-
ranked pieces towards a high-ranked piece to ‘threaten’ it. This can be very advan-
tageous to the AI agent, as the tree search itself is unable to deal with these kinds of
bluffs.

Another advantage is that when the setup was created, no information about
how the game would progress is available yet. The creation of the setup was thus
entirely isolated from the rest of the game. This means that information from during
the game, such as the position of pieces or moves made may be deceiving rather than
helpful. Of course information about the piece ranks is useful, as that helps filling in
the blanks in the setup. This also includes whether or not pieces have moved at all
or if they have moved multiple squares in one move, as this can reveal whether or
not they are movable (e.g. not a Bomb or Flag) or a Scout.

In this chapter we will focus on five estimation methods or estimators. Three of
these explicitly use the setup reconstruction strategy, whereas the other two are
mostly used as a comparison method.

Chapter 7. Information Problem 53

7.2.2 Omniscient Estimator

The first estimation method is not meant for a serious agent. The Omniscient Estima-
tor simply cheats and provides a 100% accurate estimation, where all piece ranks are
correctly ‘guessed’. It is however possible to use this estimator as a kind of bench-
mark, or to see how well an agent would do given perfect information. Typically,
we expect an agent that does well with perfect information to also do well with a
reasonably accurate estimator.

7.2.3 Random Estimator

The simplest estimation method would be one that simply makes all decisions at
random. However, in Stratego this is not entirely trivial. Suppose there are four
pieces, of which two have moved. We know these to be a Marshal, a General, a
Bomb and the Flag, but we do not know exactly which is which. If we were to fully
randomly assign the ranks, we could assign the General or Marshal to one of the
unmoved pieces, which would be a correct placement for that single piece, but is
not valid if we then try to assign the Bomb and the Flag somewhere.

To avoid this, we use an algorithm that randomly assigns the ranks in a way that
always produces an estimation that is valid. Realise that there are only three types
of pieces on the board; unmoved pieces, moved pieces and known pieces. A piece
can only move from the unmoved group to the moved or known group, but never
in the other direction. For example, a Scout starts as an unmoved piece, can become
a moved piece by moving once or can become a known piece by moving more than
one square in a single turn. Because this can only go in one direction, we can order
the assignments such that the end result is always valid.

1. Place all the pieces in a list and randomly order the list.

2. Loop over the list once to assign ranks to all known pieces keeping track of
which ranks still need to be assigned somewhere.

3. Loop over the list a second time, now assigning the Flag and the Bombs to the
first valid piece found in the list.

4. Loop over the list a third and final time, assigning all other ranks to the re-
maining pieces.

After this you end up with a random assignment of the piece ranks that must
be valid given the current information. However, a random assignment is not a
very good assignment. To illustrate this, an experiment is done where two ε-greedy-
agents (ε = 0.65), a Gravon setup (see 5.1.4) and a NUC evaluator (see 8.1.1) with
10000 evaluations play against each other, one using the Random Estimator and the
other using the Omniscient Estimator (see 7.2.2). After 100 games, the agent using the
Random Estimator only manages a measly winrate of 5%, which is incredibly low.
It would thus be better to use an estimator that is more accurate.

7.2.4 Database Estimator

Making better estimations requires some knowledge about what typical setups look
like. The simplest way to use that knowledge is by putting it in a database and
searching it. This is what the Database Estimator is at its core. It has all 100000+
setups from the Gravon database [Jun15] sorted by frequency (highest frequency

Chapter 7. Information Problem 54

first) in a long array of setups. It finds a setup by simply starting at the beginning
of the array and iterating over it, taking the first setup in the array that matches the
given information (which is by extension also the most frequently used setup that
matches the given information).

If an opponent uses a setup from the Gravon database, this method works flaw-
lessly and will eventually find the exact setup that the opponent is using. It finds the
setup incredibly quickly as well; tests show that typically it only requires 5-9 pieces
to be fully revealed for the estimator to pinpoint the exact setup, which in several
test games happens after a mere 15-30 moves (depending on the aggression of the
players). As Stratego takes on average 381 moves to finish, this means that this esti-
mator can reveal the entire enemy board after less than 10% of the game has passed.
Even before this point is reached the estimator can be fairly accurate sometimes, as
plenty of setups share similarities with each other.

Fallback method

If an opponent does not use a setup from the Gravon database, this method would
eventually run out of setups to try and thus fail to produce an estimation. There
needs to be some fallback method that the estimator can use so that it can provide a
valid estimation even if the used setup is not exactly in its database. That way the
method can still provide an estimation that is hopefully somewhat close.

The fallback method works as follows: during the iteration over the database,
we keep track of the setup that matches most so far. Specifically, the setup that has
most individual pieces in common, consistent with the currently known informa-
tion. Every ‘violation’ of the given information, e.g. a piece that in a database setup
can not move but on the board has moved, or a piece that in a database setup is a
Scout which on the board is a Miner all count as a piece not in common or consistent
with the currently known information.

After iterating over the database where no perfect match was found, we instead
find a match that is not perfect but as close as there is in the database. The next step
is to change that match into a valid estimation. This is not entirely trivial, as we need
to assign the ranks such that it is completely consistent with the known information
while also being as close as possible to the closest match.

We make the assignment by stating that the estimation that we need is effectively
a minimum-cost perfect bipartite matching, with the 40 ranks on one side and the 40
pieces on the other. The sides are fully connected, e.g. every rank has an edge to
every piece. The costs for the edges between a rank r and a piece p are as follows:

• Cost 0: Edges between r and p get cost 0 if p has r assigned in the closest match
and is consistent with the known information.

• Cost 100: Edges between r and p get cost 100 if p does not have r assigned in
the closest match, but is consistent with the known information.

• Cost 10000000: Edges between r and p get cost 10000000 if such an assignment
is inconsistent with the known information (e.g. assignment would produce
an invalid estimation).

By setting the cost for an invalid assignment extremely high, we prevent the
minimum-cost matching from ever being inconsistent with the known information.
Additionally, by setting the cost for an assignment consistent with a match at 0, we
maximise the number of assignments that are also found in the closest match. To
find the actual matching, we use the Hungarian Algorithm [RVD20].

Chapter 7. Information Problem 55

The final estimation after using the fallback method is not always a good esti-
mation, as the fallback method does not really care which pieces have their ranks
swapped from the closest found setup. An initial attempt was made to favour keep-
ing certain ranks in the same places, but these did not seem to improve the estima-
tions. Because the estimations are not great if the opponent is using a setup not seen
before, the quality of an agent using is expected to drop.

To verify this, an experiment was done where two UCB-agents (c = 0.15) (see
6.2.3) using the Database Estimator and the NUC Evaluator (see 8.1.1) with 10000
evaluations played 100 games against each other. One agent uses the Gravon Setup
Provider (see 5.1.4, the other uses the Naive RvH Setup Provider (see 5.2.2). Typi-
cally, we would expect the agent using the Gravon Setup to do slightly better as the
setups tend to be of a higher quality, but in this case the agent using the Naive RvH
Setup Provider wins instead, with a winrate of 61.4%. This is fairly high considering
the only difference between the agents is the setup.

To see how well this method does in general, an experiment was done to compare
it to the Random Estimator and the Omniscient Estimator. Once again each agent is a
UCB-agent with c = 0.15 using the NUC Evaluator with 10000 evaluations and the
Gravon Setup Provider. The agent using the Database Estimator plays against an
agent using the Random Estimator and an agent using the Omniscient estimator
for 100 games each. Against the Random Estimator, a winrate of 86.5% was reached,
whereas against the Omniscient Estimator a winrate of 38.6% was reached. These are
fairly good results, as this method seems to convincingly beat the Random Estimator
and has fairly decent results against the agent that is cheating to know all ranks right
from the start.

7.2.5 Naive RvH Neural Network Estimator

Recall that with the setup reconstruction strategy, we try to estimate the setup orig-
inally used by the opponent as accurately as possible. Unfortunately, it is often the
case that little information is available, thus it becomes difficult to determine the
setup accurately, particularly if we assume that a database approach will not work
(for example because the opponent likes to create new setups). In theory, we could
assume that the opponent knows what they are doing and has made a good setup,
and instead try to make a good setup that matches the known information.

Unfortunately, what determines if a setup is ‘good’ is not entirely clear. We can
assume however that human players tend to make better setups, and that random
setups in general are worse. If we can then somehow make a setup that matches
the information given and looks human enough, we could use that setup as our
estimation.

Thankfully, a method to distinguish a human setup from a random one was al-
ready developed as part of the Naive RvH Setup Provider (see 5.2.2). This neural
network is capable of estimating how human a certain setup looks. We can also use
this network to help make a good estimation.

The neural network is not capable of directly producing estimations, but it can
rate a setup. To produce an estimation using the neural network, we first need some
setups to be rated by it, and then we can pick the highest-rated one. We thus use
a different estimator, the Random Estimator (see 7.2.3), to generate estimations that
are consistent with the currently known information. This is a somewhat naive ap-
proach, but it should allow us to use the neural network to make estimations.

The estimation thus works as follows: the Random Estimator generates 1000 esti-
mations, all valid considering the currently known information. The neural network

Chapter 7. Information Problem 56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t/

R
e
v
e
a
le

d

Move

Revealed Correct Imm. Revealed

Imm. Correct Trend (Correct) Trend (Imm. Correct)

FIGURE 7.1: An example game measuring the performance of the
Naive RvH Neural Network Estimator. This graph shows the per-
spective of the Red player. The trendlines are 6th order polynomials.

then evaluates them one by one, estimating how ‘human’ they look (a confidence
value between 0 and 1), remembering the highest-rated setup. After all 1000 have
been evaluated, or if a setup is rated as 0.99 human, the highest-rated setup is re-
turned.

To illustrate how effective this method is, an experiment was done whereby two
identical agents, both an ε-greedy-agent (ε = 0.65) with the Naive RvH Neural Net-
work Estimator, NUC Evaluator (see 8.1.1) with 10000 evaluations and a Gravon
Setup Provider (see 5.1.4), play a game against one another. During this game we
measure the following:

• Revealed: The percentage of enemy pieces that had their rank fully revealed.

• Correct: The percentage of enemy pieces that had not yet had their rank re-
vealed, but which the estimator guessed correctly.

• Immobile Revealed: Same as Revealed, but only for the immobile pieces (e.g.
Flag and Bomb).

• Immobile Correct: Same as Correct, but only for the immobile pieces (e.g. Flag
and Bomb).

The game was ultimately won by Blue and lasted 684 turns. By plotting the
measurements we get a rough idea of the effectiveness of the method. These results
can be found in figures 7.1 and 7.2.

The graphs both show that the performance of the estimator can be very noisy.
There are estimations where it does not get a single rank correct, yet also estimations
where it suddenly gets over half of the pieces correct. This is because the estimator
generates completely new setups every turn, rather than keep using its prediction

Chapter 7. Information Problem 57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t/

R
e
v
e
a
le

d

Move

Revealed Correct Imm. Revealed

Imm. Correct Trend (Correct) Trend (Imm. Correct)

FIGURE 7.2: An example game measuring the performance of the
Naive RvH Neural Network Estimator. This graph shows the per-
spective of the Blue player. The trendlines are 6th order polynomials.

until it is invalidated (or potentially improved upon). It may be interesting to see if
keeping the estimations more consistent is beneficial because the agent tends to be
able to stick to its plan better, or if this causes the agent to stick to a bad guess and
lose important pieces because of it.

It seems that Blue had an easier time predicting the setup of Red, particularly the
positions of the immobile pieces which were consistently guessed correctly in the
second half of the game. Red has a harder time, getting stuck at guessing roughly
half the remaining pieces correctly once more than 75% of the pieces have been re-
vealed. This may be because Blue discovered the opponents immobile pieces much
sooner, whereas Red for most of the game only saw 1 immobile Blue piece, only dis-
covering a second after making its 274th move. It is possible that the positions of the
immobile pieces is important for estimating where the other pieces could be located.

To see how well the method does overall, an experiment was done to compare
it to the Random Estimator and the Omniscient Estimator. Once again each agent is
a UCB-agent (c = 0.15) using the NUC Evaluator with 10000 evaluations and the
Gravon Setup Provider. The agent using the Naive RvH Neural Network Estimator
played 100 games against each opponent. It managed to obtain a winrate of 68.5%
against the agent using the Random Estimator and only got a winrate of 6.4% against
the agent using the Omniscient Estimator. The winrate against the Random Estima-
tor is fairly good, at least convincingly enough to conclude this method is much
better than random. However, the winrate against the Omniscient Estimator leaves
much to be desired. From observing several games, the reason appears to be that
the agent using the Omniscient Estimator plays much more aggressively, whereas
the other is much more defensive or even hesitant at times. This is likely because the
Omniscient agent can see all the risks and use some high-ranking pieces to capture
large amounts of pieces. This puts the agent using the Naive RvH Neural Network

Chapter 7. Information Problem 58

Estimator at a considerable disadvantage, particularly because the opponent reveals
very few pieces by using this tactic. It may therefore not have enough clues to go on
to accurately estimate the rest of the pieces on the board, leading to the disappoint-
ing winrate.

7.2.6 Direct Rank Estimator

One downside of the Naive RvH Neural Network Estimator (see 7.2.5) is that the neural
network used is not very well suited to making estimations. It essentially requires us
to generate a lot of random estimations and then helps pick the best one. However,
these estimations are still randomly generated; there is no real thought that goes
into generating them and as such certain structures appearing happens entirely by
coincidence.

A different approach would be to have the neural network actually try to help
generate estimations, rather than merely evaluate them. The Direct Rank Estimator
uses a neural network that outputs probabilities for each tuple of piece and rank, and
then converts those probabilities to an estimation that should be the ‘most probable’
estimation.

The neural network used is slightly special, in that it has multiple output layers.
There are 40 output layers, one for each piece, with 12 different neurons each, one
for every rank. These output layers are activated with Softmax, e.g. each neuron
represents a probability, and all probabilities together sum to 1. The network has
480 input nodes for a one-hot encoding of the known information; each piece has 12
input nodes that are active if that piece could potentially have one of the 12 different
associated ranks.

After the input layer, the network immediately splits into 40 different branches.
Each branch contains 4 hidden layers containing 240 neurons each using a ReLu
activation function, after which an output layer of 12 nodes follows. Each piece thus
has its own branch in the network.

The dataset for this network is extracted from the Gravon database [Jun15]. From
each game, we extract every board state. From these board states, we then extract
the set of known information about the enemy pieces to function as the input data,
along with the correct ranks to function as labels. These sets of information are
then aggregated into a single dataset of more than 1.7 million information sets and
associated correct ranks.

The training results for this network were not great, despite having tried many
variations of this network, either with differently sized layers or a shared core be-
tween the branches and the input layer. The final combined cross-entropy loss ap-
pears to hover between 32 and 40, or 0.8-1 per branch. This is not amazingly low,
but not horribly high either. The achieved accuracy however leaves something to be
desired; while the accuracy is initially low, it quickly rises to about 25%. After this
the accuracy starts dropping again as the loss decreases further, eventually settling
on about 18%.

Although the training results are not very promising, the development on this
estimator was continued. The accuracy in particular was worrying, but the loss
could be considered somewhat low which held some promise.

To convert the produced probabilities by the neural network into an actual esti-
mation, we use the Hungarian Algorithm [RVD20]. This algorithm finds a minimum-
cost perfect bipartite matching. We make the assignment by stating that the estimation
that we need is effectively such a matching, with the 40 ranks on one side and the
40 pieces on the other. The sides are fully connected, e.g. every rank has an edge to

Chapter 7. Information Problem 59

every piece. The costs for the edges are the probabilities as given by the neural net-
work, but inverted so that a high probability of a piece being a certain rank leads to
an edge between that piece and a rank with a low cost. After running the Hungarian
Algorithm we obtain a matching, which is then returned as the estimation.

To see how well the method does, despite its poor training results, an experiment
was done to compare it to the Random Estimator and the Omniscient Estimator. Each
agent is a UCB-agent (c = 0.15) (see 6.2.3) using a NUC Evaluator (see 8.1.1) with
10000 evaluations and the Gravon Setup Provider (see 5.1.4). The agent with the
Direct Rank Estimator played 100 games against each opponent. The results are
fairly disappointing; it achieved a winrate of only 34.2% against the agent using
random estimations, and a winrate of 9.6% against the omniscient agent.

These results are, to be blunt, quite poor. Investigating the debug logs appears
to reveal why: the estimations are typically of a low quality, only getting between 2
and 5 pieces correct, less than half of what the Naive RvH Neural Network Estimator
typically does. Because this estimator always produces the same estimation given
the same information, these poor estimations are kept over multiple turns. However,
there is the occasional ‘stroke of genius’, where the estimator suddenly makes an
estimation that gets up to 60% of the remaining pieces correct, even when there are
over 20 pieces still completely unrevealed. As long as that estimation is kept, agent
quality noticeably improves. Unfortunately, it seems that these sudden high-quality
estimations are too rare for it to impact the overall agent quality much, causing the
agent to lose frequently due to making too many mistakes.

It seems that this approach has some merit, but needs considerable refinement
in order to truly pose a threat to a human player (or even other AI agents). There
is an advantage to be gained from providing consistent estimations given the same
information, but this can only be utilised effectively if the estimations are also con-
sistently good. That is not yet the case for this estimator unfortunately, so estimation
quality is lacking.

7.3 Estimators’ “Home advantage”

It is fairly obvious why the Database Estimator has an advantage when the oppo-
nent is using the Gravon Setup Provider. However, the Naive RvH Neural Network
Estimator is effectively based on the same neural network that is used for the Naive
RvH Setup Provider. An interesting question here is if the estimator then also has an
advantage when playing against an opponent that uses this setup provider. To test
this, an experiment was done where two UCB-agents using a NUC Evaluator with
10000 evaluations play against each other. One agent uses the Database Estimator,
the other uses the Naive RvH Neural Network Estimator. They played 300 games
against each other, 100 where both agents use the Gravon Setup Provider, 100 where
both agents use the Naive RvH Setup Provider and 100 where both agents use the
setup provider that the other agent has an advantage against, e.g. the Database Es-
timator is combined with the Naive RvH Setup Provider and the Naive RvH Neural
Network Estimator is paired with the Gravon Setup Provider.

In the games where both agents use a Gravon Setup Provider, we find that the
agent using the Database Estimator has a winrate of 91.8%, meaning it can consis-
tently and convincingly win against its opponent. However, in the games where the
Naive RvH Setup Provider is used the agent using the Naive RvH Neural Network
Estimator has an edge, getting a winrate of 64.8%. This is not as convincing, but
still a strong result. In the games where both agents use a setup that is weak against

Chapter 7. Information Problem 60

the opponents estimator, the agent with the Database Estimator has a slight edge,
getting a winrate of 58.9%.

This experiment shows that there is a home advantage for certain estimators.
However, it is hard to exactly quantify this advantage, as we only have a single
setup provider that creates completely original setups available.

7.4 Discussion

Solving the Information Problem efficiently and accurately is a major challenge and
is key to creating an AI agent that can perform well, both against other agents but
also against human players. Even a poorer agent sees remarkable improvements in
gameplay when given better estimations, and a strong agent does very poorly if it
only has bad information to go on.

The strategy of Setup Reconstruction appears to work quite well, especially given
the limited amount of information that is required for it to work. Considering the
fact that the positions of the pieces on the board are completely disregarded and only
their positions in the original setup are used, estimation methods using this strategy
can get surprisingly good results.

The Database Estimator in particular is extremely strong, provided that the oppo-
nent is using a setup it has seen before. When this is not the case performance does
decrease, but not to the point where the entire method becomes unusable. It is by far
the best option to use against a player who reuses their setups, as this method can
achieve effective omniscience in the early game already. It would be a particularly
interesting method to use in an online setting that would collect the setups that play-
ers try to use against it, so that it ‘learns’ from the opponents. The estimator could
however do with a better fallback method, so that if a setup is not in its database it
has a better way of dealing with that issue.

The experiment in section 7.3 shows that from the estimation methods described,
there is no single ‘best one’. The effectiveness of any estimation method is highly de-
pendent on the setup provider that the opponent uses. If this is known beforehand,
we could make an educated guess as to which estimation method should be used,
though this is not always clear.

7.5 Conclusion

In this chapter we have considered multiple ways to solve the Information Problem.
In particular, we have looked at the setup reconstruction method, which tries to re-
build the original setup that the opponent uses and mostly focuses on that in favour
of considering the current positions of the pieces. By doing so we have developed
three new estimations methods.

However, there is still a long way to go when it comes to estimation methods.
The best methods described in this thesis are the Database Estimator and the Naive
RvH Neural Network Estimator. Both of these have different use cases, as well as
agents that they do particularly well against. There are still improvements to be
made to these estimation methods, for example a better fallback method for the
Database Estimator and a better setup generator for the Naive RvH Neural Network
Estimator.

The Direct Rank Estimator still needs a fair amount of work before it becomes truly
viable. It seems the general approach has some merit, but either the implementation

Chapter 7. Information Problem 61

or the training data is flawed in some way. In general it is probably better to use one
of the other two methods.

It is however clearly evident that the Information Problem is still mostly an open
problem, with a lot of potential improvements to be made that can significantly im-
prove the performance of AI agents playing Stratego.

62

Chapter 8

Static Evaluation Problem

Any AI agent playing any game needs to have a general sense of what to do, oth-
erwise playing against it would not be much of a challenge. That ‘general sense’
typically comes in the form of some evaluation function, that takes the current state
of the game and assigns it some value. That value represents the desirability of the
state, and gives the agent an idea of what kind of states it should try to reach (or
avoid, for that matter).

An AI agent could simply look at the potential moves it has and evaluate the
states that follow them, and pick the move that leads to the highest-valued state.
Provided that the evaluation function is perfect, e.g. a function that can perfectly
order all possible states based on likelihood of victory, such an agent would be com-
pletely unbeatable. After all, the agent would always take the move that improves
its situation most, until it reaches a state of victory.

For small and simple games, such as Tic-Tac-Toe, these functions may exist and
be feasible to use. However, in larger and more complex games these functions
are often far from perfect. For games like Chess, Go and Stratego, if such a perfect
function existed it would be far too complex to design or learn via machine learning
algorithms. What we do instead for these games is create evaluation functions that
approximate how desirable a state is. These approximations may give a general idea
on the desirability of a state, but can often be quite imprecise. They are better suited
for comparing states that are further away from each other, rather than states that
only have a single state transition between them.

To make using these approximate evaluation functions practical, we employ Dy-
namic Evaluation, e.g. we use some kind of algorithm to search a large number of
states, and rely on the evaluation function being broadly accurate. Examples in-
clude Minimax and Monte-Carlo Tree Search, although it should be noted that in
the context of MCTS we often speak of a simulation method. Because these algorithms
can search deeper than just a single state transition, we can reach states that are more
distanced from the current state. While the evaluation function may not perfect, it
can approximate the truth closely enough to see if these farther states are desirable
to move towards. The algorithm then works out which state transitions need to be
followed to reach it.

Clearly, the choice of search algorithm has a large impact on agent quality. How-
ever, the evaluation function itself is also incredibly important; a good function can
guide the AI agent towards victory, but a bad function could deceive it into mov-
ing towards less than desirable states and thus a defeat. For Chess and Go, a lot
of research has been put into finding good evaluation functions and using these as
optimally as possible. For Stratego, several attempts have been made but so far it
seems that none have truly found a strong evaluation function.

Having a good evaluation function is vital to the AI agent quality. However,
developing such a function is not trivial. For Stratego, many elements factor into

Chapter 8. Static Evaluation Problem 63

how desirable a certain state is, such as the pieces on the board, their specific ranks,
their exact locations, what pieces have been revealed, etc... The importance of these
also changes over time, e.g. the Spy is important as long as the opponent still has
their Marshal. If they lose their Marshal, the Spy becomes almost useless.

The evaluation function does not have to be perfect, but it does need to be a good
enough approximation so that the agent can play the game properly. The evaluation
function is one of the factors that also affects the playstyle of the agent most. Creating
a good evaluation function is the core of the Static Evaluation Problem.

8.1 Evaluation Functions

Although several people in literature have attempted to make evaluation functions,
results so far have been limited, and some methods have not been described in de-
tail. We thus do not focus on these methods much and focus more on newly devel-
oped methods. Nonetheless, we include two evaluation functions that also feature
in the work by Mets [Met08]. These are the Random Rollouts method and what I have
named the Jeroen Mets Evaluator, which features points values for discovering and
capturing certain pieces. The other evaluation functions are new.

To standardise the usage of these evaluation functions, they must all abide by
some rules. Most notably, the values output by the Evaluator must be a floating
point value between 0 and 1. A state that is a defeat must return a 0, and a victorious
state must return a 1.

The Evaluator receives a board state, from which it can read any and all infor-
mation, including hidden information. The reason for this is that the given board
state is not an actual board state, but a state where the hidden information has been
estimated. Because the hidden information in the given state is fabricated and not
based on the actual hidden information, using it is not considered cheating.

8.1.1 Naive Unit Count (NUC) Evaluator

As de Boer stated [Boe07], there are a number of factors important to the desirability
of a certain board state. One of the most important factors is the pieces that are
still on the board. It is hard to quantify exactly how much each individual piece
contributes, but perhaps it is possible to make a naive approximation by simply
stating that every piece is equally important. This is the core idea behind the first
new evaluation function introduced in this thesis.

The Naive Unit Count or NUC Evaluator is very simple. It counts the number
of friendly pieces, or friendlies, and the number of enemy pieces, or enemies. Every
piece is counted equally, so a Marshal is counted equal to a Sergeant. The number of
friendly and enemy pieces is then converted to a score value by using the following
formula:

score = 1 −
(

1 − f riendlies/enemies
40

)8

(8.1)

The division by 40 is to make sure the value of the formula is always between 0
and 1. Raising the value to a power of 8 is done to make the values where the agent
is ahead of its opponent more spaced out, meaning it should prefer capturing enemy
pieces over protecting friendly pieces. This makes an agent using this evaluator a
bit more aggressive.

Chapter 8. Static Evaluation Problem 64

Despite the apparent simplicity of this method, the effectiveness is surprisingly
high. Even though the consideration of many factors are left entirely to the tree
search, such as the exact positions of the pieces, agents using the NUC Evaluator
achieve remarkably good results. For example, when a UCB-agent (see 6.2.3) with
the Database Estimator (see 7.2.4) and the NUC Evaluator with 10000 evaluations
played 100 games against a Random Agent, both using the Gravon Setup Provider
(see 5.1.4), the achieved winrate was 100%. When playing against a Peter N. Lewis-
agent using a Gravon Setup for 100 games, the winrate was 87.8%, which confirms
the strength of the evaluator.

The NUC Evaluator was designed at the start of the thesis as a function that is
‘good enough’ to use while testing solutions to the Dynamic Evaluation Problem
and the Information Problem. However, each time the subject of evaluation func-
tions was revisited to try out new things, the new ideas were surprisingly never
quite able to consistently beat the NUC Evaluator. It has therefore stayed as the
benchmark to test other evaluation functions against. The evaluator is also pleas-
antly computationally inexpensive, meaning it is possible to for example scale up
to 500000 evaluations per turn without the agent becoming so slow that it takes too
long before a move is made. An ε-greedy-agent with that many evaluations takes be-
tween 3.5 and 4 seconds to make a move on an i7-4790k, which is not bad especially
considering that the agent is single-threaded.

8.1.2 Random Rollouts Evaluator

A common way of simulating how good a certain state is in any game, is by ran-
domly executing state transitions until a terminal state is reached. The type of ter-
minal state then determines the value for the initial state. The process of executing
random state transitions is called a Random Rollout. The idea is that if we do many
random rollouts, the average value will converge to the true value. If the random
rollout ends in a victory, a value of 1 is returned, and if a rollout ends in defeat a
value of 0 is returned. By averaging a lot of these values over the course of the entire
tree search, we can roughly estimate the desirability of a state.

For Stratego however, this method is incredibly inefficient. The first issue is that
Stratego games are quite long; games can take hundreds or even more than a thou-
sand moves before reaching a conclusion, not to mention that with randomly exe-
cuted moves games may take even longer. Doing a random rollout thus takes a lot
of time.

The second issue is that in general there are a lot of moves possible each turn,
more than 21 on average [Art10]. Yet the moves considered by Stratego players is
usually much lower, as many moves are simply not promising enough to even con-
sider. A random rollout will still execute those moves equally often. As an example,
take a situation where a player has a piece right next to the enemy flag. In a typ-
ical random rollout, the winning move is only selected immediately less than 5%
of the time. It is of course possible that the move is selected after other moves, but
then there is the risk that the piece has already moved away or been captured by
the opponent. The random rollouts are thus not incredibly indicative of the actual
desirability of a state.

The weakness of random rollouts can be experimentally verified. We pitched an
ε-greedy-agent (ε = 0.65) (see 6.2.2) with the Omniscient Estimator (see 7.2.2) and the
Random Rollouts Evaluator with 100 rollouts against a Random Agent, both using a
Gravon Setup (see 5.1.4) for 100 games. The achieved winrate was 83.8%. This does

Chapter 8. Static Evaluation Problem 65

Rank Moved Discovered Captured
Bomb - 100 750
Marshal 100 100 500
General 100 50 250
Colonel 100 25 100
Major 100 20 50
Captain 100 15 20
Lieutenant 100 10 10
Sergeant 100 5 5
Miner 100 20 50
Scout 100 - 2
Spy 100 - 100
Flag - - 1000

TABLE 8.1: The points assigned to each piece of a certain rank, based
on having moved, being discovered and being captured.

not seem to bad, but if we swap out the Random Rollouts Evaluator for a NUC Eval-
uator (see 8.1.1), the winrate jumps to 97.9%. Not only is this winrate considerably
better, but the test was also completed nearly one hundred times faster, displaying
the incredible inefficiency of using random rollouts in the context of Stratego.

8.1.3 Jeroen Mets Evaluator

Mets describes an alternative method to Random Rollouts in his work [Met08]. As
the method does not have a specific name, it will be referred to as the Jeroen Mets
Evaluator. The method is fairly simple: every piece rank has a specific value based
on it having moved, being discovered and it being captured. These values can be
found in table 8.1.

If we sum all the points together, we find that each side could have 11087 points
at most. The points are thus summed for each side to find the values for redPoints
and bluePoints, and then we use the following formula to determine a score value:

score =
redPoints/BluePoints

11087
(8.2)

The found score value is then returned as the value to be assigned to the given
board state.

A surprising value is the high value for capturing a Bomb, which is even higher
than the value for capturing a Marshal. Mets argues that as Bombs are typically close
to the Flag, losing one is indicative of an impending defeat. Other interesting val-
ues include the low value for the Scout and the lack of a value for discovering one.
This is done so that Scouts can effectively discover enemy pieces without harming
the agent’s score too much, thus seeing a net positive which should promote scout-
ing. Miners receive a slightly higher capture value, due to their utility in capturing
Bombs.

To see the effectiveness of this method, an experiment was done to compare it
to the NUC Evaluator (see 8.1.1). Two ε-greedy-agents (ε = 0.65) (see 6.2.2) using a
Database Estimator (see 7.2.4) and a Gravon Setup (see 5.1.4) have played 100 games
against each other, each using either the Jeroen Mets Evaluator or the NUC Evaluator
(see 8.1.1), both with 10000 evaluations. The Jeroen Mets Evaluator only achieved a

Chapter 8. Static Evaluation Problem 66

winrate of 14.3%, showing with high confidence that it is considerably worse than
the NUC Evaluator.

8.1.4 Flat NUC Evaluator

The Naive Unit Count Evaluator (see 8.1.1) has seen considerable success in the ex-
periments it has been used in. However, it was originally intended just to be a place-
holder. It is possible that variations of this method could feasibly be a bit better than
the NUC Evaluator.

Recall that the NUC Evaluator uses a formula to determine the score value based
on the total number of pieces for each side. In said formula, the count for Red is di-
vided by the count for Blue. This has an interesting property, where the situations
where Red is ahead spans a larger part of the range of possible values than the situ-
ation where Blue is ahead. In the case where Red is most favoured, they would have
40 pieces to 1, which after division becomes 40. If Blue is most favoured, it is 1 to 40,
which after division is 0.025. In the case where they are equal, the division becomes
1. This means that the range 0.025-1 is used for when Blue is ahead, and 1 − 40 is
used for when Red is ahead, which is a much greater range.

To see if this has a large impact, we will look at a version that ‘flattens’ this dif-
ference, hence the name Flat NUC Evaluator. In this version, the formula to calculate
the score value based on the number of friendlies (friendly pieces) and enemies (enemy
pieces) becomes

score =
(f riendlies − enemies)

80
+ 0.5 (8.3)

In this formula the situation where both players are tied in the number of pieces
is exactly in the middle of the 0-1 range, at 0.5. The rest of the situations are equally
divided over the range.

To check if this version is more or less effective than the NUC Evaluator, an ex-
periment is done with two ε-greedy-agents (ε = 0.65) (see 6.2.2), both using the
Database Estimator (see 7.2.4) and the Gravon Setup Provider (see 5.1.4). One agent
uses the regular NUC Evaluator, the other the Flat NUC Evaluator, with 10000 eval-
uations per turn each. After playing 200 games, the Flat NUC Evaluator achieved a
winrate of 42.3%. This is certainly not a poor result, but it does show that the Flat
NUC Evaluator is not better than the original NUC Evaluator.

8.1.5 NUC Without Flag Evaluator

At the start of this chapter, we stated that any evaluator should return 1 in a winning
state, and 0 in a losing state. After all, if you capture the Flag the game immediately
ends in victory, so there is no real reason to consider the nuances of what the rest
of the board might look like. There is however a slight issue with this assumption,
namely that we are not working with perfect information but with hidden informa-
tion. The location of the Flag also happens to be the most hidden information, as the
location can only be revealed by discovering the locations of any remaining Bombs,
as well as discovering that any of the other pieces are movable. In other words,
we are very rarely certain of the location of the Flag before actually attempting to
capture it.

This has consequences for an AI agent that does not realise these nuances. After
all, it considers whatever the estimator that it is using provides as the absolute truth
in its tree search. And because in most cases the value assigned to the other states

Chapter 8. Static Evaluation Problem 67

is not close to 1, accidentally guessing the position of the Flag wrong can severely
skew the search in a single direction. If an agent is convinced the Flag is right next
to it, it will always try to capture it regardless of how certain the estimator actually
is. This can lead to the agent making a blunder and losing an important piece.

The NUC Without Flag Evaluator loses this assumption, and does not consider
capturing the Flag a victory. It does however consider losing its Flag a defeat, as
it is of course certain of the position of its own Flag. The rest of the evaluator is
completely identical to the NUC Evaluator.

To see if losing the assumption regarding capturing the opponents Flag improves
the agent, we run an experiment where two ε-greedy-agents (ε = 0.65) (see 6.2.2)
play 100 games against each other, both using the Gravon Setup Provider (see 5.1.4).
They both use the Naive RvH Neural Network Estimator (see 7.2.5), as this estima-
tor is not capable of correctly estimating the entire board and will thus frequently
misplace the Flag in various positions. One agent uses the NUC Without Flag Eval-
uator and the other uses the regular NUC Evaluator, with 10000 evaluations each.
The agent using the NUC Without Flag Evaluator achieved a winrate of 61%, in fact
defeating the regular NUC Evaluator.

While this is a good result, it is only valid if we are using an estimator that is not
always capable of correctly finding the Flag. If we replace the Naive RvH Neural
Network Estimator with the Database Estimator (see 7.2.4), we find that the agent
with the NUC Without Flag Evaluator only manages a winrate of 48.9%, slightly
worse than the NUC Evaluator. Because this value is so close to the 50% mark,
the experiment was repeated with 200 games instead. This found a new winrate of
47.2%, slightly lower. The lower winrate makes sense; although the agents mostly
tend to win by eliminating all enemy pieces, the occasional win by Flag capture may
not be as attractive to the agent using this version than the agent with the regular
NUC Evaluator.

We thus conclude that the NUC Without Flag Evaluator may be a bit better than
the regular NUC Evaluator when used in situations where finding the Flag may be
harder than usual, e.g. when playing against an unpredictable opponent. However,
in cases where the estimation of the flag location is more reliable, the regular NUC
Evaluator seems like the slightly better option.

8.1.6 Naive Unit Value Count (NUVC) Evaluator

It may seem obvious that not every piece is equal; some pieces simply have much
more utility than others. Take the Marshal for example: capable of capturing any
enemy piece that is not a Bomb or another Marshal, it is an extremely useful and
dangerous piece. It would not require much thinking to conclude that it is more
valuable than a simple Sergeant. However, as de Boer demonstrates [Boe07], the
value of these pieces can change over time. The Spy is an excellent example of this;
if the opponent loses their Marshal, the Spy loses most of their value as it can now
only capture the Flag and draw against another Spy, which almost every other piece
on the board can do as well.

Nonetheless, the idea of assigning a value to specific pieces is not new. Plenty of
attempts have been made to assign ranks to pieces to find a good evaluation func-
tion. The Naive Unit Value Count Evaluator is another one of those attempts. Each
rank has an assigned value, and the total value for each side is calculated by mul-
tiplying the value for each rank by the number of respective pieces of that rank are
still on the board. The values assigned are as follows:

Chapter 8. Static Evaluation Problem 68

• Flag: 0.

• Spy: If the enemy has a Marshal, 10. Otherwise, 1.

• Scout: 1.

• Miner: If the enemy has 2 or more Bombs, 6. Otherwise, 3.

• Sergeant: 4.

• Lieutenant: 5.

• Captain: 12.

• Major: 14.

• Colonel: 16.

• General: 18.

• Marshal: If the enemy has a Spy, 20. Otherwise, 40.

• Bomb: 10.

The evaluator then calculates the value for both sides, and calculates the score
using the following simple formula:

score =
redValue/blueValue

324
(8.4)

The division by 324 ensures that the output values are always between 0 and 1.
To find out if the NUVC Evaluator works better than the regular NUC Evaluator,

we run an experiment where two ε-greedy-agents (ε = 0.65) (see 6.2.2) play against
one another. Both are using the Database Estimator (see 7.2.4) and the Gravon Setup
Provider (see 5.1.4). One agent is using the new NUVC Evaluator and the other is
using the regular NUC Evaluator, both with 10000 evaluations. After 100 games, the
agent using the NUVC Evaluator achieved a winrate of 57.2%, suggesting that the
NUVC Evaluator is slightly better than the NUC Evaluator. However, as we have
seen with the NUC Without Flag Evaluator (see 8.1.5), there is a chance that in a
situation where the estimator can not provide information that is as accurate, this
evaluator will perform more poorly.

To verify this, we take the same setup but swap out the Database Estimators for
the Naive RvH Neural Network Estimator (see 7.2.5). After 200 games, the NUVC
Evaluator now reaches a winrate of 52.8%. Once again this is slightly better than the
results for the NUC Evaluator, but unfortunately they are not significant. If we check
for P ≤ 0.05, we find that the actual winrate is likely between 45.9% and 59.7%. So
while there is a good chance that the NUVC Evaluator is slightly better, it is not
entirely certain in this case.

8.1.7 Neural Network (NN) Evaluator

In existing literature, the use of neural networks to solve (parts of) Stratego has not
been explored much. The only case appears to be Smith [Smi15], who used convolu-
tional neural networks to predict moves and evaluate states. Smith however seems
to have used a poor input representation, as well as flawed training data that ham-
pered the resulting agents. The results were still not bad, but they did not seem to
be as good as they could potentially be.

Chapter 8. Static Evaluation Problem 69

One of the goals of this thesis is to try to apply neural networks to the problem
of playing Stratego. Here, we will consider the application of a neural network to
the Static Evaluation Problem, by using one as an evaluation function.

Ideally, a neural network learning to evaluate states is training using a self-
training loop, where a good agent using the neural network uses the MCTS algo-
rithm to find the correct labels for each state while playing games against an iden-
tical agent, as is for example done by Silver et al. [Sil+16]. However, due to time
constraints we will have to limit ourselves and instead use data extracted from the
Gravon Database [Jun15]. From this database we extract all board states that appear
and attach a label that states whether or not the state eventually led to a victory.
States from games that led to a draw are discarded.

Naturally, this is not a perfect labelling. Preferably, we would attach labels with
a bit more granularity; if a game happens to swing from being in favour of Red to
being in favour of Blue, all states where Red was ahead would still be marked as
‘leads to defeat’. Additionally, states very early in the game where the outcome is by
no means clear are also labelled as if the outcome is already clear. Nonetheless, the
hope is that because there are over 1.7 million states, these ‘mistakes’ cancel out and
the network is still able to learn a general sense of what a desirable state looks like.

Network architecture

The neural network itself has an input layer of 3312 neurons. This corresponds to
three channels of 92 × 12, e.g. for every square on the board we can one-hot encode
each of the 12 ranks. The three channels are used for the following:

1. A channel marking the ranks and locations of all friendly pieces.

2. A channel marking the information that the opponent knows of all friendly
pieces. If a piece on square B4 could only be a Bomb or a Flag for example, two
neurons would be activated for that location.

3. A channel marking the information that the agent knows about all enemy
pieces, marked similarly as in the second channel.

Following the input layer are five hidden layers of 300 neurons each, using the
ReLu activation function. The network ends in a Softmax output layer of two neu-
rons, one to mark winning states and the other to mark losing states.

The training process went surprisingly well, with the cross-entropy loss decreas-
ing from ∼ 0.7 to ∼ 0.18, and accuracy increasing to ∼ 93%. This means that the
network is fairly capable at learning the given training data, and should be able to
give a rough estimate of the desirability of a certain state.

The Neural Network (NN) Evaluator takes the resulting neural network and uses it
as an evaluation function. It converts the given board state to the correct input rep-
resentation and feeds it to the neural network. It then takes the resulting confidence
in the state being a winning state as the score value, and returns it.

In order to find the effectiveness of this agent, we run an experiment where two
ε-greedy-agents (ε = 0.65), both using a Database Estimator (see 7.2.4) and a Gravon
Setup Provider (see 5.1.4). One agent uses the NN Evaluator, the other uses the NUC
Evaluator (see 8.1.1). They both only get 1000 evaluations, as the NN Evaluator takes
much longer to execute due to the neural network calls and the experiment would
otherwise take too long to execute. After 100 games, we find that the agent using the
NN Evaluator achieves a winrate of only 8.2%, which is very poor.

Chapter 8. Static Evaluation Problem 70

When observing the agent using the NN Evaluator play and viewing debugging
logs, it becomes clear why the agent is not doing well. In general, the agent appears
to be very defensive, rarely initiating a capture attempt. In addition, it seems that
the data is not good enough and has some issues with regards to balance, e.g. certain
positions are overrepresented in the data, which causes the neural network to learn
the wrong thing. This manifests itself in two main ways: First, there are certain
positions on the board that the agent really likes to place certain pieces on. Getting
a piece there seems to increase the perceived chance of winning to nigh-certainty.
Second, it seems that positions where pieces are in the opponent’s corners are fairly
rare, which means the agent generally tends to avoid them. The same goes for the
back row in general, as human players typically tend to not touch the back row much
until they are certain that the Flag is there. This means that positions where there
are friendly pieces on the enemy back row are also very rare.

Nonetheless, there are some upsides. The agent does seem to have a general sense
of how good its position is, e.g. when it appears to be ahead it does generally also
perceive itself to be ahead, and when it begins losing it does actually perceive itself
as such. This suggests that with better training data, this approach could work much
better.

8.1.8 Double NN Evaluator

Unfortunately, the Neural Network Evaluator (see 8.1.7) does not seem to work very
well. However, there are some things that can potentially be done to improve the
evaluator without changing the neural network.

One of the major ways in which the NN Evaluator blunders is by considering
certain positions to be much stronger than others, for no apparent reason. This is
likely due to seeing certain positions too often compared to others, an imbalance in
the training data. One way to potentially mitigate this is by using the neural network
twice instead of only once per evaluation.

Of course, using it twice with the same input would lead to the same output.
But what can be done is inverting the board state and feeding that to the neural
network. We are thus not only interesting in the chance of winning for Red, but also
the chance of losing from Blue’s perspective. The neural network is not symmetrical
in that regard, meaning the confidence that Red will win is not necessarily equal to
the chance that Blue thinks it has of losing.

The Double NN Evaluator uses the neural network twice, once to determine Red’s
chance of winning rWin and then again to determine Blue’s chance of losing bLose.
We then put these values in the following formula to take the average:

score =
(rWin + bLose)

2
(8.5)

The idea is that this should make the situations where the neural network is over-
confident in certain positions less impactful, as it can be averaged out. Of course,
this comes at a significant cost to performance, as doubling the amount of neural
network calls also doubles the execution time required to evaluate a state. For ref-
erence, making 10000 evaluations per turn using the regular NN Evaluator takes
approximately 3-5 seconds on an i7-4790k, whereas the Double NN Evaluator takes
6-10 seconds. Taking an average game length of 381 moves [Art10], this means the
agent takes between 30 and 45 minutes to play the average game. This is not too bad
if the agent were to play against a human, but it is not great either.

Chapter 8. Static Evaluation Problem 71

The most important part however is how well this method performs. We run an
experiment with two ε-greedy-agents (ε = 0.65) (see 6.2.2), both using a Database
Estimator (see 7.2.4) and the Gravon Setup Provider (see 5.1.4). The first agent uses
the Double NN Evaluator, the second uses the NUC Evaluator (see 8.1.1). Again,
they both only get 1000 evaluations, as the experiment would otherwise take too
long to do. After 100 games, the agent using the Double NN Evaluator has achieved
a winrate of 12%, which is an improvement over the regular NN Evaluator, but still
rather bad.

Despite seeing a slight improvement, the evaluator is still pretty bad. Doubling
the number of calls to the neural network seems to have helped with the problem
where the network was overconfident in certain positions. The largest issue now
appears to be the defensive attitude that the agent seems to get from using it. Nor-
mally a defensive attitude would not be necessarily a poor idea, but it is typically
bad against AI agents, where more offensive agents seem to be much stronger.

8.1.9 Double NN NUC Evaluator

The issue with both the Neural Network (NN) Evaluator (see 8.1.7) and the Double
NN Evaluator (see 8.1.8) appears to be its extremely defensive strategy. In general,
defensive strategies seem to work somewhat poorly against other AI agents. One
reason for this seems to be the fact that they usually rely heavily on the given starting
setup, which may be completely unsuitable for a strong defense. Another problem is
that tree search algorithms have a limited range beyond which they have a hard time
seeing advantageous moves. Defensive agents typically lose a considerable portion
of their front before an enemy attack loses steam, at which point they may no longer
be able to see far enough to realise that certain potential avenues of attack exist.

The NUC Evaluator (see 8.1.1) makes an agent much more aggressive. It sees
states where the opponent has less pieces as more desirable, which makes it aggres-
sively go after the opponents pieces, even if it in the long term could make it lose
pieces of its own. A downside of the NUC Evaluator is that it does not have much
positional awareness, e.g. the positions of the pieces on the board do not matter to
it, it only cares about the number of pieces. This contrasts with the NN Evaluator,
which seems to do a bit better on positional awareness, but does not like capturing
enemy pieces all that much and prefers to play defensively.

Because of these contrasting qualities, it may be worth it to try combining both
evaluators into one. The NN Evaluator would provide it with positional awareness,
whereas the NUC Evaluator would give it aggressive impulses to move its pieces
forward and begin capturing enemy pieces. This is the idea behind the Double NN
NUC Evaluator; two evaluators working as complements to one another.

In practice it works as follows: both evaluators calculate the score values for the
state they are given. Then, the average of the two is taken and returned as the score
value for the state. The formula thus looks like this:

score =
1 −

(
1 − f riendlies/enemies

40

)8
+ (rWin+bLose)

2

2
(8.6)

In this formula friendlies is the number of friendly pieces on the board, enemies is
the number of enemy pieces on the board, rWin is the perceived chance of victory
that Red has and rBlue is the perceived chance of defeat that Blue has.

To see if this combination of evaluators actually works better, we run an exper-
iment with two ε-greedy-agents (ε = 0.65) (see 6.2.2) using the Database Estimator

Chapter 8. Static Evaluation Problem 72

(see 7.2.4) and the Gravon Setup Provider (see 5.1.4). One of the agents uses the Dou-
ble NN NUC Evaluator, the other uses the regular NUC Evaluator. Each agent only
gets 1000 evaluations, as the experiment would otherwise take too much time to
run. After 100 games, the agent using the Double NN NUC Evaluator has achieved
a winrate of 16%. We see an improvement over both the NN Evaluator as well as the
Double NN Evaluator, though the agent still performs fairly poorly.

It seems that combining the evaluators in this way is not performing very well.
Judging by the debug logs, it seems that the Double NN Evaluator tends to return
values within a greater range than the NUC Evaluator generally does. That means
that the NUC Evaluator is often ‘overshadowed’ by the Double NN Evaluator. The
idea for this evaluator might work better if the NUC Evaluator was given a larger
weight than the Double NN Evaluator. The risk to doing that is of course that the
Double NN Evaluator no longer really matters and could just be left out for a mini-
mal loss in evaluation quality. At the same time, an agent could then simply use far
more evaluations to make up for this issue.

It seems that the neural network developed so far is not good enough for it to
be worth the hit to performance. It seems more efficient to use a simpler evaluator,
like the NUC Evaluator, more often instead. This leads to a higher agent quality
compared to using the neural network. With improvements to the neural network,
perhaps via self-play in some kind of training loop, the difference in evaluation qual-
ity can be overcome as the neural network certainly shows some potential.

8.2 Discussion

From the experiments done we find that the Naive Unit Count (NUC) Evaluator
(see 8.1.1) and the Naive Unit Value Count (NUVC) Evaluator (see 8.1.6) do best
out of the tested evaluators. An agent using them typically uses a more aggres-
sive playstyle, typically preferring to capture enemy pieces rather than protecting
its own. There is some merit to the NUC Without Flag Evaluator (see 8.1.5) as well,
which seems to perform better than NUC in situations where it is harder to make
accurate estimations.

From this it seems that we can conclude that there is an important connection be-
tween estimation quality and evaluation quality. It appears that in situations where
the estimation quality is high, evaluators with a high quality also do better. How-
ever, in situations where estimation quality is lower, these same evaluators may not
perform as well as before. In particular, evaluators that make large changes to the
estimated value of a board state based on specific features of that state are vulner-
able to this, such as setting the value of a state to 1 if the Flag is captured. Such
values make sense when viewing the evaluation of a state in a vacuum, but when
we consider that many things about the state can be very uncertain this may not be
such a good idea. After all, if the real board state does not share the same features,
then the evaluations will be considerably off, whereas if an evaluator ignores such
specific features an AI agent may improve in quality.

Assigning specific values to specific ranks is a difficult thing to do, as can be seen
when looking at the poor results that the Jeroen Mets Evaluator (see 8.1.3) obtained.
Many things impact what value a rank should have, so keeping the values the exact
same over the course of an entire game may not be the best way to do it. The values
from the NUVC Evaluator seem to do fairly well, although it may be that there is
more potential to be realised here with a better tuning of the values. However, there
is of course the risk that an evaluator could run into the same pitfall described before,

Chapter 8. Static Evaluation Problem 73

where a disproportionate assignment of values to specific ranks could mislead an
agent working with poor estimations.

The neural networks developed so far are not quite ready to perform. The largest
issue here seems to be a lack of well-balanced training data, as well as poor labelling.
The largest constraint was time, as with a proper self-training loop this could theo-
retically be improved much. In their current state however, they cost far too much
processing time for too little reward. There is a sense of positional awareness in
there, but it is too flawed to be of any practical use at this point.

Whatever the best approach exactly is, it appears that random rollouts is not it.
Stratego games simply take too long for a random rollout to be performant enough,
and because there are so many possible moves the results are often not very indica-
tive of the desirability of a state. Considering that simple methods like NUC perform
so much better for far less processing power and that there are little to no avenues
to significantly improve the performance and quality of the Random Rollouts Eval-
uator (see 8.1.2), it seems that the method of random rollouts applied to Stratego is
little more than a dead end.

8.3 Conclusion

We have considered multiple ways of solving the Static Evaluation Problem. In this
chapter a number of evaluation methods have been described that have different ap-
proaches to assigning a specific value to a state and which have their own strengths
and weaknesses based on how it does that.

The best evaluators to use are the Naive Unit Count (NUC) Evaluator (see 8.1.1)
and the Naive Unit Value Count NUVC Evaluator (see 8.1.6). Both of these evalua-
tors perform well, whether estimation quality is high or low. These evaluators are
also highly performant and can thus be used at scale, doing hundreds of thousands
of evaluations per move without taking too much time. This makes these evaluators
excellent for use against humans, who would prefer not to have the opponent take
minutes per move.

There is still significant potential in the neural network approach. With a better
training process, much better results should be achievable. This will however take
considerable time and processing power to do. A limiting factor of using neural
networks is the relatively poor performance, however with a good multithreading
approach this should be more manageable.

74

Chapter 9

Human Testing

The primary purpose of any AI Stratego agent is of course playing the game against a
human. A good Stratego agent should be able to occasionally win against a human
of course, as otherwise the human player may not feel challenged enough. Few
AI agents for Stratego have ever cleared this bar, and so far no agent can actually
consistently beat humans. The best agent described in literature appears to be de
Boer’s Invincible [Boe07], which in his tests of the AI against a few people managed
to win a couple games.

In this chapter we will be looking at four games played against two people by
slightly different AI agents each time. Because the experiments so far have not indi-
cated that a single agent is the best in all situations, a few different AI agents have
played against the humans in different scenarios. Specifically, both players played
two games each; one game in which they had to pick a setup from the Gravon Setup
Provider (see 5.1.4) and one in which they were free to create their own setup. When
picking from the Gravon setups, they were shown a random setup and were allowed
change to another if it was not to their liking. They were allowed to keep changing
until they found a setup that they sufficiently liked.

The point of playing against an agent with a Gravon Setup is to test the effec-
tiveness of the Database Estimator (see 7.2.4) specifically, as that estimator can often
pinpoint the exact setup used in only a few moves. From that point on, the AI agent
would know the ranks of every piece, and it would be interesting to see if that is
enough to beat a human player.

9.1 The players

I convinced two close friends to play two games against the AI agents: Tom and Gijs.
Tom is a friend I have known since elementary school and went to high school with.
We often played strategy games together and have played Stratego together when
we were younger. While he definitely has experience in playing the game, he did
mention that ‘it had been a while’ but he would give it his best.

Gijs is a friend I met in high school. He is very proficient in many strategy games
such as Chess, Diplomacy, Catan and also Stratego, which he until fairly recently of-
ten played online against another mutual friend. Although Tom is definitely a good
player, Gijs is almost certainly a much stronger player when it comes to Stratego.

Their AI opponents are the following agents:

• Tom w. Gravon setup: ε-greedy-agent (ε = 0.65) with a Database Estimator,
NUC Evaluator with 100000 evaluations and a Gravon Setup

• Tom w. Custom setup: UCB-agent (c = 0.15) with a Database Estimator, NUC
Evaluator with 100000 evaluations and a Gravon Setup

Chapter 9. Human Testing 75

• Gijs w. Gravon Setup: ε-greedy-agent (ε = 0.65) with a Database Estimator,
NUC Evaluator with 500000 evaluations and a Gravon Setup

• Gijs w. Custom Setup: UCB-agent (c = 0.15) with a Direct Rank Estimator, NUC
Evaluator with 150000 evaluations and a Naive RvH Setup

Because Gijs is the expected stronger player, I gave his AI opponents more eval-
uations (e.g. ‘time to think’) than the AI opponents for Tom. In the games where
the players are allowed to create their own setup, I changed the ε-greedy method
(see 6.2.2) for the UCB method (see 6.2.3), as that seems to perform better when the
estimation quality is likely to be a bit lower.

For the second game of Gijs, he asked if the AI could also create unique setups,
which prompted me to have him play against an agent using a Naive RvH Setup
Provider (see 5.2.2). I also let him play against an agent using the Direct Rank Es-
timator (see 7.2.6), which in hindsight was not a good idea. The hope was that the
fact that this estimator produces more consistent estimations would lead to it acting
more decisively against Gijs, even if the moves chosen were not always ideal. This
turned out to be a bad idea, and I should have used the Naive RvH Neural Network
Estimator (see 7.2.5) instead.

All games were played using the Naive Unit Count (NUC) Evaluator (see 8.1.1),
as that appears to be the evaluator that is able to well most consistently.

9.2 The games

The four games were played in the StrAItego program. As the program tracks all in-
formation for every AI agent, it also displays this information to the human players.
Both players had a graveyard, which shows them which pieces are still on the board
and which have been captured. Additionally, they can see which ranks a piece on
the board could still have. Naturally, this includes whether or not a piece has moved.
They can also see the same from their opponent’s perspective, e.g. if the opponent
knows if a piece has moved or seen its rank. In a normal real-life game players
are expected to remember this information themselves, meaning they have an ad-
vantage that they would normally not have. Nonetheless, this ‘advantage’ may be
considered fair as it can be more difficult to remember what exactly happened on
the board if you do not have it physically in front of you.

9.2.1 Tom with Gravon Setup vs. AI agent - AI Victory

For the first game, Tom played against an ε-greedy-agent (ε = 0.65) with a Database
Estimator, NUC Evaluator with 100000 evaluations and a Gravon Setup. He selected
the second setup from the Gravon database that we was presented, which can be
seen in figure 9.1.

In the opening phase of the game, both Tom and the AI agent aggressively moved
their Majors forward into their opponents center. However, upon realising that the
Blue Major would be able to take a considerable amount of pieces in his center, Tom
pulled his Major back a bit. This did not help much, as the Major was already too
deep in his center and his own Major would not be able to catch up. After taking
six pieces Tom decided to capture the Major with the only piece nearby that could
capture it, revealing his General. In figure 9.2 is the situation before Tom captured
the Major with his General.

Losing a Major early can be a considerable blow, however in this case the AI
traded it for the reveal of Tom’s General. The location of the General was enough for

Chapter 9. Human Testing 76

FIGURE 9.1: The Gravon setup Tom used in his first game.

the Database Estimator to do what it does best: pinpoint the exact setup Tom was
using. After only 19 moves in total, the AI agent is working with effectively perfect
information.

The AI uses this information to move its Marshal forward through the center,
where it decides to capture Tom’s Major. However, Tom had moved his Spy for-
ward, and manages to capture the Blue Marshal, a major blow to the AI. The NUC
Evaluator thus shows a weakness, in that it considers trading a Marshal for a Major
an advantageous trade, whereas a human player would likely not consider that a
good trade at all.

From this point on the AI becomes noticeably less aggressive, occasionally mov-
ing a piece forward through the center but preferring to shift pieces around on its
own side of the board. This is likely because Tom has both his Marshal and his Gen-
eral positioned behind the lakes, making it easy to catch most incoming pieces. This
means attacking looks unattractive to the agent. Tom takes initiate and moves a few
pieces, including his General, up through the left lane, where he encounters a num-
ber of Bombs blocking the left side of the board. This also explains why the AI was
not moving down the left lane; the Bombs were blocking the entry there. Tom brings
up a Miner to clear one of the Bombs (see figure 9.3), but after clearing a single mine
it gets captured by a Sergeant, preventing him from clearing any other Bombs.

After losing his Miner, Tom pulls his General back. This appears to be just in time
as the AI agent moves a Colonel down the center, capturing a second Major before
losing it to the Red General. Because a large number of pieces have moved in the
center, Tom decides to take his General up through the center and begins capturing
as many pieces as possible, frequently checking if pieces have moved yet.

What is perhaps the most interesting moment of the game happens during this
offensive. Tom’s General on D8 has Blue pieces above it and to its right. On D10 is
the Blue Flag, which Tom did not know for certain yet but was considering as a po-
tential location for the Flag. At this point, the AI agent attempted to capture the Red
General with a Blue Lieutenant on D9. Because the General had already revealed its
rank, this may seem like a complete misplay, but from the AIs perspective it made
sense.

The reason for this is that the AI agent considers Toms reasoning to be the same
as its own. In other words, Tom should like capturing pieces. If the AI does not
attempt to do D9 to D8, then Tom could consider doing D8 to D9, which would
place him next to the flag at D10, an incredibly dangerous position. So it decided to
sacrifice a piece to Tom in order to coerce him to move right instead, which Tom did,

Chapter 9. Human Testing 77

FIGURE 9.2: The Blue Major takes six pieces, prompting Tom to reveal
his General

stating that he did not think an AI would sacrifice a piece like that if the Flag was
behind it. From the logs we can also conclude that this was not a fluke; the move
E8 to D8, sacrificing the Scout, was the second-lowest valued move, meaning the AI
considered it detrimental to its position.

Tom using his General to clear out pieces works well until he attempts to capture
the Blue General, stopping his offensive (see figure 9.4).

After the loss of his General, Tom decided to take the Colonel that was in front
of the Flag up the right flank, to begin capturing more moved pieces. However, by
capturing a piece above the right lake he exposes his Flag to an unseen Blue Scout at
the very top of the board, allowing the AI to capture his Flag and win the game, as
seen in figure 9.5. In total the game took 190 moves, which is well under average for
a Stratego game.

9.2.2 Tom with Custom Setup vs. AI agent - AI Defeat

In Tom’s second game he played against a UCB-agent (c = 0.15) with a Database
Estimator, NUC Evaluator with 100000 evaluations and a Gravon Setup. He was
allowed to create his own setup this time, which can be found in figure 9.6.

In the initial opening phase, a few pieces are traded back and forth. A notable
exchange happens when the AI once again gets its General deep into enemy territory,
even capturing the Red Spy before being traded against the Red General. This can be
seen in figure 9.7. So far, the AI is playing pretty similarly to the first game. A notable
difference however is that the Database Estimator is having a much harder time
coming up with quality estimations. It seems that the revealed pieces are slightly

Chapter 9. Human Testing 78

FIGURE 9.3: Tom moves up with a Miner and his General in the left
lane, encountering a number of Bombs.

misleading, making it believe that Tom’s setup is based on a setup that is otherwise
very different from what Tom is actually using.

Tom decides to go on the offensive, bringing his Colonel further up the center,
but loses it to a Blue Colonel before he can do too much damage. He then decides
to do a slightly more coordinated assault, using a Major and the remaining Colonel
to move up in the center. The AI tries to meet them in the center with a Captain, not
knowing that the Colonel is there, which gets promptly captured. The Red Major
moves further forward, but gets captured by a Blue Colonel. The resulting situation
can be seen in figure 9.8.

After the loss of his Major, Tom initially advances with his Marshal all the way to
the back row, before retreating back to defend his right flank where the AI has been
posturing with one of its pieces. This gives the AI an opening to use its Marshal to
come down the left flank and begin capturing some pieces. The Marshal even gets
to C2, merely two moves away from the Flag with no pieces that could oppose him,
but the AI decides to move right instead to capture a Captain (see figure 9.9), and
afterwards blunders its Marshal away to the Bomb on D1.

Tom now realises that only one piece can still realistically threaten his Flag, the
Blue Colonel. He moves his Marshal to the left flank to defend and moves his own
Colonel up through the center. Tom trades Majors on the right flank. After clearing
out some moving pieces, Tom realises that the Blue Flag is in the top-left corner
surrounded by Bombs. He brings up a Miner on the right flank to move via the back
to the Flag, but he fails to defend against a Blue Lieutenant and after a long chase
the Miner gets trapped between two Red Bombs on J4, where it gets captured.

Chapter 9. Human Testing 79

FIGURE 9.4: Tom starts clearing out pieces on the opponent’s side,
right before losing his General to the opponent’s General to his right.

Once more Tom returns to the strategy of clearing pieces that have moved. How-
ever, the AI agent moves a Captain down through the center, to which Tom responds
too late with his Marshal. The Blue Captain takes a Scout and a Sergeant before it is
right next to the last Red Miner that Tom has left (see figure 9.10). At this point the
AI could force a draw by capturing the Miner, but it instead opts to move right and
loses its Captain to a Bomb. Looking at the logs reveals why: the estimator believed
that the Bomb was the Flag instead, which means the agent thought it could win the
game.

After this the game is virtually decided. Tom uses his Marshal to move up the
center and scare the movable pieces away, which are two Miners and a Colonel.
After having done this he moves his last Miner up the left flank, which is now de-
fenceless, and effortlessly captures the Flag. The game lasted much longer than the
first, taking 449 moves, which is slightly over the average game length for Stratego.

This game was an excellent example of why having correct information is vital
to the AI agent’s decision making. It was incredibly close to victory, before losing its
Marshal to a Bomb, and again incredibly close to forcing a draw, before losing the
Captain that could take the last Miner to another Bomb.

9.2.3 Gijs with Gravon Setup vs. AI agent - AI Defeat

Gijs’ first game was against an ε-greedy-agent (ε = 0.65) with a Database Estimator,
NUC Evaluator with 500000 evaluations and a Gravon Setup. This is the same agent
that Tom initially faced, but with five times as many evaluations in an attempt to
scale up the difficulty as Gijs is a stronger player. The setup Gijs decided to use can
be seen in figure 9.11.

Chapter 9. Human Testing 80

FIGURE 9.5: Tom starts clearing out pieces on the opponent’s side,
right before losing his General to the opponent’s General to his right.

The AI agent immediately used the same strategy that it had used against Tom
as well: use a General to move forward and start taking as many pieces as possible.
Gijs initially did not anticipate this and thought the AI would move back, which
caused him to lose a few lower-ranked pieces, his Spy and his General which the AI
agent traded his General for. At this point Gijs remarked that a human player would
probably not be this aggressive.

After discovering a Blue Bomb in the center lane, the AI began moving a piece
down through the right flank. Because Gijs used a Scout to find the Blue Bomb, it
gave the Database Estimator enough information to once again determine the ex-
act setup that Gijs was using, meaning that after move 15 the AI was playing with
perfect information.

Gijs did not trust the piece moving down on the right flank after the very aggres-
sive opening from the Blue General, and began moving his Marshal over to the right.
This ended up being a good idea, as shortly after it was revealed that the piece mov-
ing down was indeed the Blue Marshal. The Marshal cleared out most of the right
flank, evading the Bombs that are there, forcing Gijs to trade his Marshal against the
AI’s to prevent further captures (see figure 9.11).

At this point, Gijs was severely behind in pieces. Both players had lost their
General and Marshal at this point, but in addition to those Gijs had also lost his Spy,
6 Scouts, 2 Miners, 2 Sergeants and 2 Lieutenants. In contrast, the AI had not lost any
pieces besides the General and the Marshal, and had only revealed a single Bomb
and a Miner. Gijs was extremely lucky that the AI had most of its high-ranking pieces
on the right flank, whereas Gijs had most of his in the middle and the left flank. Had
either of these positions been swapped, Gijs could have lost a lot of high-ranking

Chapter 9. Human Testing 81

FIGURE 9.6: The Custom setup Tom used in his second game.

pieces very early in the game.
At this point Gijs decided to be more aggressive. He moved his Colonel up

the center and began carving a path through the AI’s pieces, claiming two Cap-
tains. However, on the left flank the AI once again pushed forward, this time with a
Colonel. Opting not to trade and lose his own Colonel, Gijs moved his piece out of
harms way, leaving the Blue Colonel to claim his last three Miners (see figure 9.13).

Because Gijs knew that he now had to either find a Flag not protected by Bombs
or capture all movable Blue pieces, he moved his Colonel up to join his other Colonel
on the AI’s side of the board. This left the Blue Colonel to capture even more pieces,
including another Captain and the second Major.

Up until this point, the AI had been playing very well and had mostly dominated
its opposition, capturing all but 6 movable Red pieces. Unfortunately, the last piece
it captured was a Sergeant on the back row that on two sides is flanked by Bombs.
This means that the Blue Colonel is now in a little ‘nook’ and it appears that due
to the Red Colonels on its own half of the board, it was unable to actually see far
enough ahead to begin moving its Colonel to other pieces. This suddenly made the
agent play much more defensively as it could no longer see a good offensive option
(see figure 9.14).

This gave Gijs the opportunity to start clearing out any pieces that had moved
on the AI’s side of the board. He eventually traded one of the Colonels to the other
Blue Colonel. The agent now realised that it could potentially capture a Red Captain
with one of its Majors, promptly chasing it around for a while on Gijs’ side of the
board. Eventually, Gijs moved the Captain back up through the center and placed it
next to the remaining Colonel, letting it get captured in order to capture the Major
in return.

A human at this point would have been able to win as Blue. Gijs did not really
have enough pieces to cover all avenues of attack, and a human would have easily
realised where his Flag was located and capture it with a Miner. However, for the
AI agent this was a difficult task, as it would take far too many moves for a Miner to
reach the Flag. Gijs continued clearing out any pieces that moved with his Colonel.

After clearing out enough pieces, the AI could once again reconsider moving its
own Colonel out of the little ‘nook’ it was stuck in. This prompted Gijs to chase it
around with his Colonel. He had also captured enough enemy pieces to realise that
the Flag was unprotected by Bombs, which prompted him to move his remaining
Sergeant and Captain up to the enemy side of the board (see figure 9.15).

After chasing the Colonel around for a bit, Gijs sacrificed his Captain so that

Chapter 9. Human Testing 82

FIGURE 9.7: After the initial opening the Blue General captures the
Red Spy, before being traded against the Red General.

he could get the Colonel in a position where he could trade it for his own Colonel,
winning the game. Gijs’ only remaining movable piece was a Sergeant.

Gijs could have attempted to take any of the unmoved pieces in the hope that it
was a Flag, and was at times close to doing so. However, there were five unmoved
pieces that were also undiscovered, so he would have to get a bit lucky. As Gijs is
a somewhat conservative player who prefers to be certain of his victory, he opted
instead to try and take the last Colonel.

The AI agent played very well and quickly had Gijs in a bad position. However,
it failed to actually capitalise on its very advantageous position, and ultimately lost
due to it being unable to see enough moves ahead. The game ultimately lasted 335
moves, resulting in a very narrow victory for Gijs.

9.2.4 Gijs with Custom Setup vs. AI agent - AI Defeat

For his second game, Gijs was pitched against a UCB-agent (c = 0.15) with a Direct
Rank Estimator, NUC Evaluator with 150000 evaluations and a Naive RvH Setup.
In hindsight, this was a very weak agent due to the poor estimator, but I wanted to
observe its performance against a human player. It led to a fairly one-sided game
with few interesting things happening, so it will be described more briefly than the
other games.

The custom setup Gijs used can be seen in figure 9.16. He blocked off the left
flank with Bombs, and focused most of his high-ranking pieces around the center
lane, creating a very offensively focused setup. This may in part be a reaction to
the AI agent being very offensive early on in his first game, which this setup would
counteract fairly well.

Chapter 9. Human Testing 83

FIGURE 9.8: After a brief assault the Red Major gets captured by the
Blue Colonel on D8.

Interestingly, Gijs found that the Naive RvH Setup Provider that the agent used
had blocked of the right lane of the board. Gijs moved a few pieces including a Miner
up to the Bombs, so that he could begin an offensive there at any time. Similarly, the
AI agent moved a few pieces down the left lane, including a Miner, which captured
both Bombs on the left side of the board. After capturing the Blue Spy early, Gijs
moved his Marshal up through the center and his General up through the left lane,
backed up by his own Spy. He cleared out a large number of moving pieces, includ-
ing a Colonel, a Major, most Lieutenants and all but one Miner, before losing his
Marshal by attempting to capture the enemy Marshal (see figure 9.17).

At this point, the AI agent sees no possible avenues for offense, and only tries
to evade the pieces that have been discovered. It manages to trade its General for
Gijs’ General, but this leaves Gijs with both his Colonels and all three of his Majors,
whereas the highest-ranked pieces that the AI agent has left are its three Captains.

Gijs thus decides to open up the right flank and captures one of the Bombs. This
gives him opportunity to march a Major directly into the right flank of the AI agent’s
side of the board. Gijs decides to play it safe and moves his Colonels up through the
left flank and the center, effectively pinning all Blue pieces in the top-right side of
the board (see figure 9.18).

At this point Gijs can easily capture the remaining Blue pieces. Eventually he
realises that he only has to capture a Scout, but he decides that he would rather win
by capturing the Flag. He uses a Scout to test the first undiscovered piece, which
ends up being a Bomb. He then captures an undiscovered piece on G8 with his
Colonel, which would be risky if it were not for the fact that no Blue pieces can
effectively threaten him anymore. This piece turns out to be the Flag, and Gijs wins

Chapter 9. Human Testing 84

FIGURE 9.9: The Blue Marshal gets incredibly close to the Red Flag,
but the AI loses the piece to the Bomb on D1.

the game after 289 moves, which is roughly 100 moves faster than the average game
takes.

Gijs clearly was the dominant player this game, leaving nothing to chance. The
AI agent was also working with a bad setup for its typically aggressive playstyle,
having both the Marshal and the General on the back row and blocking one of the
lanes with Bombs, leaving virtually no good avenues of attack for it to exploit. This
led to a very one-sided game, where Gijs had ample opportunity to give himself an
advantage and take as many pieces as possible.

9.3 Discussion

The AI agents managed to win only one of the four games, but it was only truly
outclassed in one game, where it was using a poor estimator. In the other three
games, it repeatedly managed to get very close to victory or enforcing a draw, but a
single mistake often kept it from realising these potential outcomes.

In the first game, Tom was quickly behind on pieces, but he kept his high-ranking
pieces around. This allowed Tom to reestablish himself and go on the offensive.
He eventually only lost because he moved a piece out of the Scout’s way which
could then capture the Flag. Had this not happened, the AI could probably not have
prevented a defeat.

The AI’s major limiting factor in this game appeared to be the limited search
depth, which caused it to lose sight of potential offensives in the second half of the
game. Its main strength was the quick pinpointing of the exact setup Tom was using,
which provided it with a lot of useful information for the rest of the game. This

Chapter 9. Human Testing 85

FIGURE 9.10: A chance to force a draw: the Captain must choose to
take the Miner or the Bomb, but unfortunately not knowing which is

which decides to take the Bomb.

also highlights the incredible importance of using a somewhat unexpected setup,
particularly against AI agents.

In Tom’s second game, the AI got very close to victory with its Marshal, but
made a mistake by attempting to capture a Bomb. Here, the fact that the AI could
not exactly pinpoint the used setup was its main limiting factor, causing it to lose a
number of important pieces. Otherwise the AI played fairly well, countering Tom’s
assaults pretty effectively until it ran out of pieces to defend with, allowing Tom to
capture the Flag.

In Gijs’ first game, the AI initially played very well and established a very good
position for itself, capturing a large amount of Gijs’ lower ranked pieces, which
would otherwise be used to scout with. Had either of the players used the same
setup but mirrored, the AI would have likely won this game decisively. However,
a bit of luck allowed Gijs to become more aggressive. Initially the AI could handle
this, but then essentially ‘lost’ a Colonel because it could not see a way to use it
within the search depth that it could explore. Had it been able to do so, it could have
countered Gijs’ advance and potentially brought a Miner down to capture his Flag.
Once again, the limited search depth proves to be the main reason the AI could not
bring this game to a good end.

Gijs’ second game was very easy for him. The AI was not using a setup that it
was suited for, and was also using a poor estimator. When it comes to gameplay
there are not many things that we can conclude, other than the fact that selecting the
right estimator and setup can be vitally important to the quality of the AI agent.

Chapter 9. Human Testing 86

FIGURE 9.11: The Gravon Setup Gijs used for his first game.

9.4 Conclusion

We reviewed a number of games where various AI agents were tested against a
human player. These games were played to test the effectiveness of the AI agents
against human players, as well as to try to find their major strengths and weaknesses.

The major strength for the agents was definitely the use of the Database Estima-
tor (see 7.2.4) in conjunction with the opponent using a Gravon Setup (see 5.1.4),
although even when Tom used a custom setup the AI agent could have won the
game. Even when playing against a stronger player like Gijs, the AI agent could,
given the correct information, fairly easily win the early game.

In the mid- and endgame, the AI agent begins to falter. This is mostly due to
the fact that the distance between friendly and enemy pieces begins to increase on
average, and the human players typically begin to bring high-ranking pieces closer,
which the AI agents have a harder time dealing with. Due to the increased distance,
the AI agent finds it difficult to begin new offensives and keep its momentum going.
It loses initiative, and relies on a mistake by the opponent to regain it. If that mistake
does not come, it simply loses the game.

In conclusion, we find that the tested AI agents are very capable of playing the
opening phase against human players, especially if it can determine the exact setup
that the opponent is using. However, the endgame is still very weak. This is con-
sistent with what others have found in existing literature. It would require either a
larger search depth or a better evaluator to improve.

Chapter 9. Human Testing 87

FIGURE 9.12: Gijs is forced to trade his Marshal against the AI’s Mar-
shal to prevent further captures.

FIGURE 9.13: After letting the Blue Colonel pass, the AI captures Gijs’
last three Miners.

Chapter 9. Human Testing 88

FIGURE 9.14: The AI’s offensive loses steam, as its Colonel gets
‘stuck’ with no clear path to further offensive action.

FIGURE 9.15: Gijs begins chasing the last Blue Colonel around.

Chapter 9. Human Testing 89

FIGURE 9.16: The Custom Setup Gijs used for his first game.

FIGURE 9.17: Gijs’ offensive goes well and he manages to capture a
large number of pieces, before losing his Marshal to the Blue Marshal

on A10.

Chapter 9. Human Testing 90

FIGURE 9.18: Gijs plays it safe and traps all Blue pieces in the top-
right corner of the board, pinning them with his Colonels and a Major.

91

Chapter 10

Discussion

During the course of this thesis we have looked at creating an AI agent for Stratego
by dividing Stratego up into four different subproblems, the Setup Problem, the In-
formation Problem, the Dynamic Evaluation Problem and the Static Evaluation Problem.
Each of these problems are difficult to solve and we discovered that the exact solu-
tions found for each can impact the effectiveness of solutions to other problems as
well.

For the Setup Problem, we found that in general picking a setup from the Gravon
database [Jun15] using the Gravon Setup Provider (see 5.1.4) works fairly well. It
seems clear that human players do have a decent sense of what makes a good setup.
The neural network approach to creating new setups using the Naive RvH Setup
Provider (see 5.2.2) also worked fairly well, and there are still potential improve-
ments to be made there. This method is largely limited by the fact it selects the ‘best’
setup out of a number of random setups, meaning it still relies on a little luck that
there is a good setup between them.

Therefore, the use of a Gravon Setup seems to work well, unless the opponent
has decided to solve the Information Problem using the Database Estimator (see 7.2.4),
which can often pinpoint the exact used setup within the first 20 moves as it did in
the games played against humans. Having perfect information is incredibly power-
ful, as the agent quality for most agent types gets a very large boost, regardless of
the exact details of the agent. Of course, this relies on the opponent using a Gravon
setup, which is definitely not always a given. When this is not the case, it seems to
be more efficient to use the Naive RvH Neural Network Estimator (see 7.2.5). This
estimator does not assume that the opponent is using a setup that it has seen before.
One limitation here however is that this was tested against setups that were gener-
ated using the same neural network that the estimator uses to determine what setup
was used, which could have boosted the estimation quality for this estimator.

When it comes to the Dynamic Evaluation Problem, much seems to depend on the
quality of the available estimations. The pUCT method (see 6.2.4) does not seem
quite ready for proper usage yet, even though it shows great potential. If the agent
can be expected to quickly obtain perfect information, the ε-greedy method (see
6.2.2) seems to do slightly better than the Upper-Confidence Bound method (see
6.2.3). However, if it may be difficult to make high-quality estimations, using the
UCB method seems to be slightly more advantageous. This may simply be because
the UCB method searches less deep than the ε-greedy method, which means that
it searches more in the areas close to its own pieces, which are more likely to have
some information revealed, whereas the ε-greedy method can search much deeper
towards entirely undiscovered pieces. If these were estimated accurately, then ε-
greedy can use this property to its advantage, but otherwise it can become a limiting
factor.

Chapter 10. Discussion 92

Poor estimation quality can also be a limiting factor when it comes to solving
the Static Evaluation Problem. Here we found that if the estimation quality is low, the
NUC Without Flag Evaluator (see 8.1.5) does well whereas if estimation quality is
high, Naive Unit Value Count Evaluator (see 8.1.6) can do slightly better than the
regular Naive Unit Count Evaluator (see 8.1.1). Although the difference is not very
large, it does show that very complex evaluation functions can become a risk factor
if they rely on specific features of the board state. If those features are misidentified
by the estimator, the evaluator can overestimate the desirability of a state, causing
the agent to make mistakes. In situations where estimation quality was worse, we
found that the NUC Evaluator is the most consistent performer.

The human testing has gone well, and an AI agent even managed to win one
of the games and got close in two others. A weak endgame is its largest weakness,
where the limits of the Monte-Carlo Tree Search become apparent as the agent is not
able to search deep enough to find good moves. These limits could be overcome
with a more directed search or a better evaluator.

In hindsight it was unfortunate that the Naive RvH Neural Network Estimator
was not tested against a human player. It would be interesting to see if an agent
using that method could do well. Instead, we found that the Direct Rank Estimator
(see 7.2.6) performed poorly against a human player, although the poor setup also
played a part.

93

Chapter 11

Conclusion

During this thesis we set out to find a good AI agent for Stratego. We considered
various solutions to a number of different problems, either through the usage of
neural networks or via more traditional means. This has paid off; we have seen that
certain AI agents are capable of playing against human players and giving them a
hard time beating them, although there is still much to improve.

The best setup providers appear to be the Gravon Setup Provider (see 5.1.4) and
the Naive RvH Setup Provider (see 5.2.2), the latter best used if a new original setup
is needed.

When it comes to making good estimations, the Database Estimator (see 7.2.4)
is unrivalled, provided that the opponent is using a Gravon setup. If this is not the
case, then the Naive RvH Neural Network Estimator (see 7.2.5) is a viable replace-
ment that can provide fairly decent estimations.

As far as selection methods go, what is best depends on the quality of the esti-
mations. If the estimation quality is high, then the ε-greedy method (see 6.2.2) is the
superior option. However, if the estimation quality is expected to be lower, it is wise
to select the Upper-Confidence Bound method (see 6.2.3) instead. The pUCT method
is a promising candidate, but requires more work before it can really compete with
the other methods.

For evaluating states, the best overall method is the Naive Unit Count Evaluator
(see 8.1.1). If estimation quality is low, it may also be a good idea to try the NUC
Without Flag Evaluator (see 8.1.5), as this is less prone to making mistakes when
estimating that the Flag is in an incorrect position. If estimation quality is high how-
ever, the Naive Unit Value Count Evaluator (see 8.1.6) becomes a good alternative to
the regular NUC Evaluator.

When playing against humans, AI agents still have much to improve upon before
they can become truly competitive. Their weak endgame hampers their gameplay
a lot and can often cause them to lose, despite doing very well in the early game.
Nonetheless, the agents do pose at least some challenge to a human player, and can
on occasion even win against one.

94

Chapter 12

Future Work

There is still plenty to improve when it comes to creating AI agents for Stratego.
Although we have AI agents that can occasionally beat a human player, we would of
course much prefer an agent that can consistently beat a human player. Already we
have seen a number of shortcomings to the solutions presented to the four problems,
all of which provide possible avenues of new research to improve these solutions
and thus improve the AI agents using them. We will review the most important
ones here.

When it comes to generating setups, we have introduced a way to generate com-
pletely original setups using a neural network. However, this works by generating
random setups and rating them using the network, which means that the final setup
may have some obvious flaws due to the random generation. This could be im-
proved by using certain heuristics to make changes to randomly generated setups,
or a new method that creates new setups that is perhaps based on known frequent
structures of pieces, e.g. a placement of Bombs surrounding the Flag or the place-
ment of the Marshal on one side of the board and the General on the other. Addi-
tionally, it could be interesting to see if a neural network can be made to distinguish
between good and bad setups, instead of relying only on the assumption that what
a human would do is necessarily good.

There are plenty of options to look at when improving the solutions to the In-
formation Problem. Although our efforts have mostly been focused on setup re-
construction, it could be interesting to incorporate positional information into the
method as well. The given methods for setup reconstruction could be easily im-
proved too, for example by providing a larger database for the Database Estimator
or creating a better fallback function for when a setup is not in the database. Ad-
ditionally, the Naive RvH Neural Network Estimator could be improved by either
using a better neural network or by providing a better method to generate setups
that fit the given information.

In dealing with the Information Problem, we have decided to focus on the strat-
egy of making single estimations in favour of chance nodes. That approach could
potentially be improved, for example by no longer assuming that the opponent has
perfect information. This assumption essentially eliminates the concept of bluffing,
which is otherwise frequently used in Stratego. Chance nodes themselves may also
be something to look into again to use in perhaps a more limited way, to prevent
them from overcomplicating the structure of the search tree.

The selection methods for the MCTS algorithm work pretty well, and it might
be difficult to improve them. However, there are variations of ε-greedy that could
easily be tried out. Additionally, the pUCT method could still do with a lot of work,
and probably holds the most potential. With better training data and potentially
a better network architecture, this method could be good enough to overtake both
Upper-Confidence Bound and ε-greedy in terms of agent quality, as it would enable

Chapter 12. Future Work 95

a far more directed search that focuses on the correct moves. It may also be possible
to use more traditional methods to prune certain moves out of the tree, for example
by focusing on pieces that are close to the last-moved piece, or on capture moves as
suggested by Schadd and Winands [SW09].

Improving the evaluation functions could be very difficult, if the solutions for
the other problems are not also improved. Nonetheless, it could be interesting to see
what evaluation functions are optimal if perfect information is guaranteed. Perhaps
it is possible to find out how pieces of different ranks should be valued compared
to one another. The evaluators using neural networks are also potential points of
improvement, as they should also be able to improve given better balanced training
data and better defined labels. The input representation could also potentially be
changed; instead of only one-hot encoding all the different ranks, it might be an idea
to also encode if a square is empty with a dedicated neuron, instead of just keeping
all other neurons deactivated. The input representation also does not take the two-
squares rule into account, which in high-level Stratego is often used to trap pieces
and then capture them.

96

Appendix A

Source Code

The source code for all agents, evaluators, estimators and setup providers are pub-
lished online on Github: https://github.com/Moranic/StrAItego.

The source code is published under the GNU GPLv3 license. Permissions of this
strong copyleft license are conditioned on making available complete source code
of licensed works and modifications, which include larger works using a licensed
work, under the same license. Copyright and license notices must be preserved.
Contributors provide an express grant of patent rights.

https://github.com/Moranic/StrAItego
https://www.gnu.org/licenses/gpl-3.0.en.html

97

Bibliography

[Alb03] R. Albarelli. Optimizing Stratego Heuristics with Genetic Algorithms. Dec.
2003.

[Art10] A.F.C. Arts. “Competitive Play in Stratego”. Master’s Thesis. Maastricht
University, Mar. 2010.

[Bal82] B.W. Ballard. The *-Minimax Search Procedure for Trees Containing Chance
Nodes. 1982.

[Boe07] V. de Boer. “Invincible, A Stratego Bot”. Master’s Thesis. Nov. 2007.

[Boe12] R.M. de Boer. “Reachable Level of Stratego Using Genetic Algorithms”.
Bachelor’s Thesis. Utrecht University, Feb. 2012.

[Boo97] B. Boonstra. “Column: Programmer’s Challenge”. In: MacTech 13.11 (Nov.
1997). Peter N. Lewis winning solution to the Stratego Challenge. URL:
http://preserve.mactech.com/articles/mactech/Vol.13/13.11/
Nov97Challenge/index.html.

[Fed10] International Stratego Federation. ISF Game Rules. 2010.

[Ism04] M. Ismail. “Multi-agent Stratego”. Bachelor’s Thesis. University of Rot-
terdam, Aug. 2004.

[Jun15] T. Jungblut. Gravon Database. [Online; accessed 08-February-2021]. 2015.
URL: https://www.gravon.de/english/stratego/strados2.php.

[Met08] J. Mets. Monte Carlo Stratego. June 2008.

[Moh09] J. Mohnen. Using Domain-Dependent Knowledge in Stratego. June 2009.

[PT09] J. Petkun and J. Tan. Senior Design Project: Stratego. 2009.

[RG18] S. Redeca and A. Groza. Designing agents for the Stratego Game. 2018.

[RVD20] Alex Regueiro, Michael Vivet, and Pavlo Datsiuk. Hungarian Algorithm.
Nov. 2020. URL: https://github.com/vivet/HungarianAlgorithm.

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural Net-
works and Tree Search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. ISSN:
0028-0836. DOI: 10.1038/nature16961.

[Smi15] S. Smith. Learning to Play Stratego with Convolutional Neural Networks. 2015.

[Sta09] J.A. Stankiewicz. Opponent Modeling in Stratego. June 2009.

[SW09] M.P.D. Schadd and M.H.M. Winands. Quiescence Search for Stratego. 2009.

[Tre00] C. Treijtel. “Multi-agent Stratego”. Master’s Thesis. Delft University of
Technology, Oct. 2000.

[Tun12] V. Tunru. “Feasibility of Applying a Genetic Algorithm to Playing Strat-
ego”. Bachelor’s Thesis. Utrecht University, Feb. 2012.

[Ult] Classic Piece Setups from Accolade. Part of a strategy guide for Stratego
by an unknown author. URL: https : / / www . ultraboardgames . com /
stratego/accolade_setups.php.

http://preserve.mactech.com/articles/mactech/Vol.13/13.11/Nov97Challenge/index.html
http://preserve.mactech.com/articles/mactech/Vol.13/13.11/Nov97Challenge/index.html
https://www.gravon.de/english/stratego/strados2.php
https://github.com/vivet/HungarianAlgorithm
https://doi.org/10.1038/nature16961
https://www.ultraboardgames.com/stratego/accolade_setups.php
https://www.ultraboardgames.com/stratego/accolade_setups.php

Bibliography 98

[Wol18] H. Wolf. Starting points for improvement in Stratego programming. Sept. 2018.

	Abstract
	Acknowledgements
	Introduction and background
	Introduction
	Stratego
	Rules for play
	Two-squares rule
	Victory conditions

	Basic strategies
	Setup
	During play

	Difficulties for computer agents
	Difficulties with static lookahead analysis
	Difficulties with dynamic lookahead analysis

	Literature Study
	A note on Stratego literature
	AI agents designed using expert domain knowledge
	Multi-Agent Stratego
	Monte Carlo Stratego
	Invincible, A Stratego Bot
	Stratego Senior Design Report
	Using Domain-Dependent Knowledge in Stratego
	Opponent Modelling in Stratego
	Quiescence Search for Stratego
	Competitive Play in Stratego
	Designing Agents for the Stratego Game

	AI agents designed without using expert domain knowledge
	Optimizing Stratego Heuristics With Genetic Algorithms
	Feasibility of Applying a Genetic Algorithm to Playing Stratego & Reachable Level of Stratego Using Genetic Algorithms
	Learning to Play Stratego with Convolutional Neural Networks

	Research Question
	Relevance of research question

	Methodology
	StrAItego
	The Gravon database
	Determining agent quality
	Peter N. Lewis Agent

	Setup Problem
	Setup providers using a dataset
	Peter N. Lewis Setup Provider
	Accolade Setup Provider
	Vincent de Boer Setup Provider
	Gravon Setup Provider

	Setup providers that create original setups
	Random Setup Provider
	Naive RvH Setup Provider

	Conclusion

	Dynamic Evaluation Problem
	Minimax
	Monte-Carlo Tree Search
	Hidden information
	-greedy
	Upper-Confidence Bound
	pUCT

	The effect of information
	Discussion
	Conclusion

	Information Problem
	Specifying the problem
	Chance nodes
	Making a single estimation

	Estimation methods
	Setup Reconstruction
	Omniscient Estimator
	Random Estimator
	Database Estimator
	Naive RvH Neural Network Estimator
	Direct Rank Estimator

	Estimators' ``Home advantage''
	Discussion
	Conclusion

	Static Evaluation Problem
	Evaluation Functions
	Naive Unit Count (NUC) Evaluator
	Random Rollouts Evaluator
	Jeroen Mets Evaluator
	Flat NUC Evaluator
	NUC Without Flag Evaluator
	Naive Unit Value Count (NUVC) Evaluator
	Neural Network (NN) Evaluator
	Double NN Evaluator
	Double NN NUC Evaluator

	Discussion
	Conclusion

	Human Testing
	The players
	The games
	Tom with Gravon Setup vs. AI agent - AI Victory
	Tom with Custom Setup vs. AI agent - AI Defeat
	Gijs with Gravon Setup vs. AI agent - AI Defeat
	Gijs with Custom Setup vs. AI agent - AI Defeat

	Discussion
	Conclusion

	Discussion
	Conclusion
	Future Work
	Source Code

