
Algorithms for Domination Problems on Temporal Graphs

Mees Verheije 4144805
Supervisor: Prof. dr. Hans Bodlaender

Second Supervisor: Dr. Johan van Rooij

Abstract

Temporal graphs are graphs whose edge set can change on a discrete set of τ ordered time steps.
We research temporal domination problems. We consider several static domination problems
which describe how a vertex can be dominated, and several temporal domination requirements
which describe when and how often a vertex should be dominated. By combining static domination
problems with temporal domination requirements, we obtain temporal domination problems.

For the Temporary Domination requirement, each vertex needs to be dominated in at least
one time step, while the Permanent Domination requirement requires them to be dominated
in all time steps. k-Fold Domination generalizes this: each vertex should be dominated on
at least k time steps. Periodic Domination requires each vertex to be dominated at least
once every θ time steps for some period θ. Evolving Domination instead asks for a separate
domination function for each time step. Marching Domination requires each vertex to be
dominated in every time step, but allows us to change the domination function in between time
steps, simulating the movements of armies protecting points of interest (vertices).

Each of these temporal domination requirements can be combined with static domination
problems. We apply these six temporal domination requirements to three static domination
problems: Dominating Set, Roman Domination and Weak Roman Domination to define
18 temporal domination problems. We provide exact exponential and parameterized algorithms
that solve all of these problems, except for the permanent, periodic and k-fold variants of Weak
Roman Domination.

Furthermore, we also give definitions for the family of static domination problems Defense-
Like Domination and their natural temporal counterpart: Temporal Defense-Like Domi-
nation.

Graduate School of Natural Sciences
Utrecht University

Netherlands

CONTENTS CONTENTS

Contents

1 Introduction 2

I Introduction to Temporal Graphs and Domination Problems 3

2 Preliminaries 4
2.1 Temporal Graphs . 4
2.2 Layers . 5
2.3 Neighbourhoods . 5
2.4 Tree Decompositions . 6

3 Domination Problems 7
3.1 Dominating Set . 7
3.2 Roman Domination . 9
3.3 Weak Roman Domination . 9
3.4 Defense-Like Domination . 10

4 Temporal Domination Requirements 13
4.1 Domination Rules . 14
4.2 Temporary Domination . 14
4.3 Permanent Domination . 15
4.4 Periodic Domination . 16
4.5 Evolving Domination . 16
4.6 k-Fold Domination . 17
4.7 Marching Domination . 18
4.8 Temporal Defense-Like Domination . 19

II Temporal Domination Algorithms 21

5 Temporary Domination 22

6 Permanent Domination 23
6.1 Parameterized Algorithm Structure . 23
6.2 Permanent Dominating Set . 32
6.3 Permanent Roman Domination . 39

7 Periodic Domination 43

8 Evolving Domination 44
8.1 Maintenance Algorithms . 44
8.2 Using the Trivial Solution . 47

9 k-Fold Domination 47
9.1 k-Fold Dominating Set . 47
9.2 k-Fold Roman Domination . 52

10 Marching Domination 54
10.1 Positive Instance Based Dynamic Programming . 56
10.2 Improvements for Practical Scenarios . 59

III Conclusion 65

11 Obtained Results 66

12 Future Work 67

1

1 INTRODUCTION

1 Introduction
Graphs are mathematical structures that capture the nature of networks. As simple as graphs are,
consisting only of a collection of vertices and edges or arcs connecting them, they are capable of
simulating many different kinds of networks, such as social networks or infrastructural networks
of roads and railways and many, many other types of networks. For some applications, however,
the bare “skeleton” (meaning the vertices and edges or arcs) of a graph is not enough, we instead
need to attach extra information to the vertices and edges or arcs. For a road network where arcs
represent roads between two locations (vertices), it might be necessary to attach information to the
arcs denoting the length of those roads for some applications. By adding this extra information we
make the graph suitable for solving certain problems. But graphs have one noticeable shortcoming:
they only represent one static situation. What if a road is demolished or a new road is built? What if
a friendship ends or a new one is established? Or what if certain roads are only open during certain
hours? For those situations, we can make multiple graphs, each one representing the network at
a different time. Such a structure consisting of an ordered collection of graphs sharing the same
vertices, is called a temporal graph.

Temporal graphs are graphs where edges can appear or disappear on every time step, in a given
set T = {1, · · · , τ} of time steps for some τ ∈ N. The term static graph will be used to refer to
traditional graphs that do not change. Temporal graphs can be used in practical applications to chart
spreading processes (for example disease or information) with changing connectivity. Despite their
applicability, temporal graphs are still a very little studied subject with much left to be discovered.
Many static graph problems that are very well studied, lack even a single exact algorithm for their
temporal variants. Temporal graphs will be defined properly in Section 2.1.

Temporal graphs can help to solve problems that, on static graphs, would be impossible. Most graph
theory problems on static graphs can be translated to problems on temporal graphs. In fact, one
static graph problem may have multiple temporal interpretations. A path, for example, can mean
many different things in a temporal graph. Generally we are talking about a path where each step
over an edge is taken in a different time step, thus stopping us from using certain edges at certain
times. It may also mean that we can take multiple steps at once, allowing us to stay in one time
step as long as needed before proceeding to the next time step. Going back in time is, of course, not
possible. Whatever definition we choose for a path, a shortest path can also mean many different
things. Do we mean a path that gets from the start vertex to the end vertex in the least amount
of edges, or in the least amount of time steps? In the latter case: can we start at any time step t
(whichever t allows us to make the path with the least amount of time steps starting from t), or do
we have to start from time step 1? Simply put: for (almost) every static graph problem, there are
multiple temporal graph problems. In most cases, these temporal problems have not been explored
much in literature, even when their static counterparts are some of the most well known problems in
graph theory.

In this computing science master’s thesis, we are going to explore domination problems in temporal
graphs. In particular, we are going to focus on Dominating Set, Roman Domination, a problem
closely related to Dominating Set and Weak Roman Domination. Like the shortest path
problem, these problems do not have an obvious single catchall temporal interpretation. The static
variant of Dominating Set asks, given a graph G = (v,E), for a vertex set D ⊂ V that “dominates”
each vertex. This means that each vertex v ∈ V of the graph has to be in that vertex set: v ∈ D,
or must have a neighbour u in it: u ∈ D. How can we translate this to a temporal graph problem?
What does it mean to “dominate” vertices in a temporal graph. One interpretation is this: Find a
vertex set that dominates every vertex on every time step. Another possibility is to ask for a vertex
set that dominates every vertex on at least one time step.

The thesis consists of three parts. The first part will focus on introducing temporal graphs, the
static domination problems, and the ways in which we can translate these problems to the temporal
setting. The definitions needed for temporal graphs are presented in Section 2. The static problems
Dominating Set, Roman Domination and Weak Roman Domination will be explained in
detail in Section 3, along with another static domination problem called Defense-Like Domination.
Section 4 will present several ways to translate static domination problems to the temporal case.
The second part of the thesis will focus on designing algorithms that solve some of these temporal
domination problems. The final part concludes the thesis by reflecting on obtained results in Section
11 and provides suggestions for future work in Section 12.

2

Part I

Introduction to Temporal Graphs and
Domination Problems

The first part of the thesis is meant to provide the knowledge which is required for the second part.
Specifically: the principles of temporal graphs, the domination problems Dominating Set, Roman
Domination, Weak Roman Domination and Defense-Like Domination and finally how one
can turn these static problems into temporal problems. The goal of this part is to introduce several
temporal domination problems, while the second part will focus on finding solutions for them.

3

2 PRELIMINARIES

2 Preliminaries

Let N and N0 be the natural numbers without and with 0 respectively. We denote subsets with ⊂
and do not use strict subsets. Whenever we are talking about a graph G = (V,E) we generally use
m to denote |E| and n to denote |V |.

2.1 Temporal Graphs
A temporal graph is, in essence, a graph that can change. For a given vertex set, edge set and a
set of time steps, a temporal graph defines when each edge exists and when it does not. To avoid
confusion between temporal graphs and non-temporal graphs, we will use the word static whenever
we wish to specify that we are in fact talking about a non-temporal graph. We will also use the
terms temporal problem and static problem when referring to a problem on a temporal graph, or a
static graph respectively.

Definition 2.1. A temporal graph G = (V,E, τ, λ) is the combination of a vertex set V , an edge
set E on those vertices, a lifetime τ ∈ N and a function λ : E → P(Tτ)/ {∅} where Tτ = {1, · · · , τ}
is called the timeline.

Figure 2.1: A temporal graph G with lifetime τ = 4. Each picture shows a different layer of G as explained in
Definition 2.3.

We write T instead of Tτ whenever it is clear which τ we are referring to. A temporal graph induces
a graph that exists on the time steps given by T . The vertices of this graph are the same for each
time step. However, on each time step t, the set of edges can be different. The function λ maps each
edge e to a set λ(e) ⊂ T of time steps on which e “exists”, or is “available”. On all other time steps,
e does not exist, or is “unavailable”. The empty set is excluded from λ’s codomain, since λ(e) = ∅
would imply that an edge never exists, in which case we need not have included it in E in the first
place. At the base of each temporal graph G = (V,E, τ, λ) is a static graph (V,E) which defines the
underlying structure. This graph is called the underlying graph.

Definition 2.2. Let G = (V,E, τ, λ) be a temporal graph. The underlying graph of G is the static
graph G↓ = (V,E).

4

2.2 Layers 2 PRELIMINARIES

Figure 2.2: The underlying graph corresponding to the temporal graph in Figure 2.1.

2.2 Layers
It can be useful to refer to a specific instance in time. A temporal graph is described as a changing
graph. To visualize these changes, we use layers.

Definition 2.3. Let G = (V,E, τ, λ) be a temporal graph and t ∈ T a time step. Et := {e ∈ E : t ∈ λ(e)}
is the timed edge set of edges available at time step t ∈ T . Then Gt := (V,Et) is the layer of G at
time step t.

The layers allow us to visualize what G looks like on a specific time step. A layer Gt is simply G↓
limited to the edges available on time step t. The vertices and edges in Gt are not unique to that
layer. They can also appear in other layers. Sometimes, however, it is useful to regard each layer as
a completely separate graph instead of a subgraph of G↓. We can make time stamped copies of the
vertices and edges called vertex appearances and edge appearances.

Definition 2.4. Let G = (V,E, τ, λ) be a temporal graph and t ∈ T a time step. Let v ∈ V be
some vertex and e ∈ E be some edge such that t ∈ λ(e), then time stamped vertex vt is the vertex
appearance of v in time step t and time stamped edge et is the edge appearance of e in time step
t.

Using the notion of vertex and edge appearances, we can define, for each time step t, the vertex set
V t of vertex appearances and the edge set Et of edge appearances of edges that exist in that moment.
We can also use these sets to define an alternative type of layer that is independent of V and E.

Definition 2.5. Let G = (V,E, τ, λ) be a temporal graph and t ∈ T a time step. V t := {vt : v ∈ V }
is the vertex appearance set of time stamped vertices in time step t and Et := {et : e ∈ E, t ∈ λ(e)}
is the edge appearance set of time stamped edges available at time step t ∈ T .

We will sometimes denote the layers Gt as Gt and the underlying graph G↓ as G↓. The reason
for using regular letters instead of calligraphy here, is to emphasise that these graphs are static
graphs, not temporal graphs. Using the concept of layers, we can also denote a temporal graph as
G = (G1, · · · , Gτ).

2.3 Neighbourhoods
Let G = (V,E) be a static graph, then the open neighbourhood NG(v) = {u : {v, u} ∈ E} of v is
the set of neighbours of v in G. Let NG[v] = NG[v] ∪ {v} be the closed neighbourhood of v that
includes v and all its neighbours in G. We omit the subscript when it is clear what static graph we
refer to. When it is clear what temporal graph we are referring to, we will denote the open and
closed neighbourhoods of vertex v in layer Gt as Nt(v) and Nt[v] respectively. We will denote the
open and closed neighbourhoods of vertex v in the underlying graph G↓ as N(v) and N [v] without
any subscripts, unless it is unclear what graph we are referring to, in which case we will denote
them as NG↓(v) and NG↓ [v]. The open and closed neighbourhoods for a vertex appearance vt in
Gt := (V t, Et) are denoted as N(vt) and N [vt] respectively. The subscripts are left out since the
time stamp should make it clear what graph we are referring to.

5

2.4 Tree Decompositions 2 PRELIMINARIES

2.4 Tree Decompositions
A useful tool for dynamic programming on graphs that we will be using, is the concept of tree
decompositions. This is a tree associated with a static graph, that helps us understand the structure
of a graph better. In particular it shows how vertices in the graph are connected to each other.

Definition 2.6. Let G = (V,E) be a graph. A tree decomposition T = (I, T) for G is a tree
where each node i ∈ I is associated with a bag Xi ⊂ V such that the following conditions are satisfied:

-
⋃
i∈I Xi = V .

- For every edge {v, u} ∈ E there is an index i ∈ I such that {v, u} ⊂ Xi.

- Let v ∈ V , i, j ∈ I such that v ∈ Xi and v ∈ Xj. Then for every index k on a path from i to j
on the tree T we have that v ∈ Xk.

The width of T is maxi∈I |Xi|−1. The minimum width over all possible tree decompositions is called
the treewidth of G, denoted tw(G).

Figure 2.3: The left picture shows a static graph G. The right picture shows a tree decomposition T for G of width 2.

Tree decompositions, and even minimum tree decompositions, are not unique. There can be many
different for one graph. To make it easier to perform dynamic programming on tree decompositions,
we can limit our algorithms to a specific type of tree decomposition with some desirable properties.
These nicer tree decompositions are, fittingly, called nice tree decompositions [24].

Definition 2.7. A nice tree decomposition of G is a tree decomposition T such that T is a rooted
tree with only the following types of nodes:

- Leaf nodes i have one vertex |Xi| = 1.

- Introduce nodes i have one child node j, and Xi = Xj ∪ {v} for some vertex v ∈ V .

- Forget nodes i have one child j, and Xi = Xj/ {v} for some vertex v ∈ V .

- Join nodes i have two children j and k, and Xi = Xj = Xk.

Furthermore, the root node r is always a forget node or join node with bag Xr = ∅.

Nice tree decompositions are easier to use because the difference between two neighbouring bags are
very small. This makes them easier to work with. For example it can be very useful to use dynamic
programming algorithms on a nice tree decomposition. We use such techniques in Sections 6 and 9.

6

3 DOMINATION PROBLEMS

Figure 2.4: A nice tree decomposition of the graph from Figure 2.3 with the same width. A natural way to expand
the tree decomposition from that figure to a nice tree decomposition.

3 Domination Problems

Domination in graphs refers to some structure (a vertex set, or a labelling function in most cases)
that “covers” or “dominates” all the vertices (or in some cases all edges) in some way. For example:
we may choose certain vertices that dominate their neighbours, or the edges connected to them.
Domination problems ask for a a specific type of domination structure that dominates all vertices or
all edges, and it has to be of minimum size. In this section we will introduce static problems first,
and then discuss how they can be adapted to the temporal setting.

3.1 Dominating Set
Perhaps the most well-known domination problem is Dominating Set. This problem asks us to
choose a subset of vertices that cover themselves and their neighbours. We want to choose this subset
in such a way that it covers all vertices of the graph, and we want it to be of minimum size.

Definition 3.1. Let G = (V,E) be a static graph. A dominating set on G is a subset D ⊂ V of
vertices such that each vertex v ∈ V is either in D or has a neighbour in D.

7

3.1 Dominating Set 3 DOMINATION PROBLEMS

Figure 3.1: The blue vertices form a dominating set of size 3 on a static graph G with n = 7.

Using the definition for a dominating set, we can now define the first problem.

Problem 3.1. Dominating Set: For a given static graph G = (V,E), find the size of a minimum
dominating set.

Two other static domination problems that we discuss in this thesis, are the Roman Domination
problem and the Weak Roman Domination problem. These problems are similar to Dominating
Set, but they make use of a domination function instead of a dominating vertex set. A domination
function is a labelling function that assigns a label (a non-negative integer) to each vertex.

Definition 3.2. Let G be a graph (it can be static or temporal) with vertex set V . A domination
function on G is a function f : V → N0. The size of f is the sum of the labels |f | =

∑
v∈V f(v).

To create unity in the way we refer to domination problems, we propose an alternative definition for
the Dominating Set problem that is more in line with the definitions for the Roman Domination
problem and the Weak Roman Domination problem. This alternative definition will make use of
a domination function instead of a dominating vertex set. We first define a domination function that
is the equivalent of the dominating set.

Definition 3.3. Let G = (V,E) be a static graph. A standard domination function (sdf) is a
domination function f : V → {0, 1} such that for each vertex v ∈ V there is a vertex u ∈ N [v] in the
closed neighbourhood of v such that f(u) = 1. In this case we say that u dominates v.

An sdf and a dominating set are essentially two different ways of the same construction. For some
vertex v ∈ V , being included in a dominating set D is the same as being given label f(v) = 1 in some
sdf f . For any sdf f , we can define the corresponding dominating set Df = {v ∈ V : f(v) = 1}. For
some dominating set D, we can also define the corresponding sdf

fD(v) =

{
1 if v ∈ D
0 otherwise .

Figure 3.2: The same dominating set as in Figure 3.1 but presented as an sdf.

Using the notion of an sdf, we can give an alternative definition for Dominating Set.

Problem 3.2. Dominating Set: For a given static graph G = (V,E), find the size of a minimum
sdf.

8

3.2 Roman Domination 3 DOMINATION PROBLEMS

3.2 Roman Domination
In the article “Defend the Roman Empire!” [29], Stewart describes an old military strategy from
the Roman empire in the time of emperor Constantine: Not every city needs to have its own army.
Instead, we can have cities without armies as long as they have at least one neighbouring city with
two armies and thus an army to spare. He made a mathematical model based on this strategy. In
this problem, vertices represent cities and edges represent roads between the cities. The concept was
formalized further by Cockayne et al. [11], who studied the graph theoretic properties of the Roman
domination function. The labels of a Roman domination function represent the number of armies
present in a city.

Definition 3.4. Let G = (V,E) be a static graph. A Roman domination function (rdf) on G
is a domination function f : V → {0, 1, 2} such that for each vertex v ∈ V we have: f(v) > 0 or v
has a neighbour u ∈ N(v) with f(u) = 2. In this case we say u dominates v.

An rdf gives a specific role to each vertex v. Some dominate only themselves (f(v) = 1), some
dominate themselves and all their neighbours (f(v) = 2) and some have to be dominated by other
vertices (f(v) = 0).

Figure 3.3: An rdf on the graph from Figure 3.1 of size 5. If we simply took the sdf from Figure 3.2 and set the
labels to 2 instead of 1, we would get an rdf of size 6. By smartly using the properties of a Roman domination, we can
sometimes obtain results that are better than twice the size of a minimum sdf.

Using the notion of an rdf, we can now define the next problem:

Problem 3.3. Roman Domination: For a given static graph G = (V,E), find the size of a
minimum rdf.

3.3 Weak Roman Domination
Elaborating further on the concept of Roman Domination, Henning [20] introduced the problem
Weak Roman Domination, a version of Roman Domination with fewer restrictions. We use
terminology from [10].

Definition 3.5. Let G = (V,E) be a static graph and let f : V → N0 be a domination function.
A vertex v is secured by f if f(v) > 0 and is defended by f if there is a vertex u ∈ N [v] with
f(u) > 0, in which case we say that u defends v, and undefended otherwise.

We can take the idea behind Roman domination even further by considering the following situation:
City A, that does not have its own army, can be defended even by a neighbouring city B that has
only one army, as long as moving that army from B to A would not leave other cities undefended.
That is why a vertex is considered defended if it has a neighbour u with f(u) = 1. But as stated,
moving an army from one city to another may leave other cities undefended as per Definition 3.5. To
formalize this, we need the following notion. Let fu→v be the domination function that we obtain by
taking f and moving an army from u to v.

fu→v(w) =

 f(w) + 1 if w = v 6= u
f(w)− 1 if w = u 6= v
f(w) otherwise

Note that u and v can be the same vertex, in which case f = fu→v.

9

3.4 Defense-Like Domination 3 DOMINATION PROBLEMS

Definition 3.6. Let G = (V,E) be a static graph and f : V → {0, 1, 2} a domination function. A
vertex v ∈ V is safely defended by f if there is a vertex u ∈ N [v] with f(u) ≥ 1 and all vertices that
are defended by f are also defended by fu→v. In this case we also say that u safely defends v. A
domination function f that safely defends all vertices v ∈ V is called a weak Roman domination
function (wdf).

When vertex u safely defends vertex v, we also say that u dominates v.

Figure 3.4: A wdf on the graph from Figure 3.1 of size 5. The sdf from Figure 3.2 defends all vertices, but does not
safely defend a, e and g, so it is not a wdf. However, taking the rdf from Figure 3.3 and changing the label of c from
2 to 1 allows us to safely defend all vertices while still decreasing the size compared to taking a minimum sdf and
changing the labels to 2.

Definition 3.7. Let G = (V,E) be a static graph, v ∈ V a vertex and f : V → {0, 1, 2} a domination
function. If f defends v but does not safely defend v, we say f unsafely defends v. In this case
f(v) = 0 and for every secured neighbour u of v we have f(u) = 1 and fu→v leaves some neighbour
w ∈ N(u) undefended. We say w is weakly defended by u and due to v.

The definition for a wdf induces the next problem:

Problem 3.4. Weak Roman Domination: For a given static graph G = (V,E), find the size
of a minimum wdf.

3.4 Defense-Like Domination
We can take the idea of Weak Roman Domination one step further. In his master’s thesis [32],
Veldhuizen gives a definition for Defense-Like Domination which is a generalized family of
problems based on Weak Roman Domination. We will use much of the same terminology from [32]
and from [10].

We have this notion of a vertex u “defending” another vertex v because we could move an army from
u to v in case of an attack. These attacks however, are completely theoretical. We could instead
imagine a problem where the attacks are real. This does not lead to a single new problem but rather
to a family of problems that are called Defense-Like Domination problems. Defense-Like
Domination (DefDom) problems are best described as a sort of board game where the game board
is represented by a static graph G = (V,E). Before we define the problem, we first need to introduce
a few parameters:

k: The number of turns.

a: The number of attacked vertices per turn.

h: The number of armies that can move in one turn.

c: The “capacity” of the vertices: the maximum number of armies per vertex.

s: The maximum number of steps an army can take.

These parameters are part of what defines the problem at hand, and are thus chosen before the
“game” begins. In the game, a number of turns are played on the game board which is a static graph

10

3.4 Defense-Like Domination 3 DOMINATION PROBLEMS

G = (V,E). This game has two players, the defender and the attacker. The defender gets to pick
a domination function that describes where the defending armies are stationed at the start of the
game and the attacker gets to pick vertices that will be attacked on every turn. Each turn starts
with the attacker revealing what vertices they are going to attack. Then, the defender gets to make
their move. The defender can move their armies, and has to do so in such a way that each vertex
that is under attack contains at least one army. The movement of these armies has to conform to the
rules imposed by the parameters.

To formalize the movements of armies, we need to understand what a single movement looks like,
and how we can chain such movements together. In that regard, we introduce the notion of an
intermediate domination function or simply an intermediate function. Such a function g : V → N2

0

maps any vertex to a vector with two coordinates which reflect what the distribution of armies looks
like after a particular move has been made. For some vertex v ∈ V , the first coordinate, g(v).x
represents the number of armies present on v, like a the value f(v) for some domination function
f : V → N0. The second coordinate g(v).y of g(v) represents the number of incoming armies: the
number of armies that will arrive on the vertex by the end of the defenders move.

Definition 3.8. Let G = (V,E) be a static graph, g : V → N2
0 an intermediate function on G and

k, a, h, c and s the parameters. If the minimum number of edges on a path from u to v (the distance
between u and v) in G is du,v ≤ s and f(u).x > 0, then the intermediate function gu→v defined as

gu→v(w) =

 (g(w).x , g(w).y + 1) if w = v 6= u
(g(w).x− 1 , g(w).y) if w = u 6= v
(g(w).x , g(w).y) otherwise

is called a partial move for g.

A partial move represents the defensive player moving a single army from one vertex u to another
vertex v, crossing a maximum of s edges. The army does not immediately arrive on v: the x
coordinate remains the same for now. Instead, the number of incoming armies for v increases. The
reason for using this construction instead of simply calling the domination function fu→v (as defined
in Section 3.3) a partial move, is that the latter option omits the information of which armies have
already been moved this turn. This would allow the defender to move an army multiple times in
the same turn. To make a valid move, we perform a number of partial moves consecutively before
finalizing it by making all incoming armies arrive, all while obeying the capacity restriction.

Definition 3.9. Let G = (V,E) be a static graph, f : V → N0 a domination function on G and
k, a, h, c and s the parameters. Let g0, g1, · · · , gh be a sequence of intermediate functions such that
g0(v) = (f(v), 0) for each vertex v ∈ V and gi is a partial move for gi−1 for 1 ≤ i ≤ h. Let
f ′ : V → N0 be the domination function such that f ′(v) = gh(v).x+ gh(v).y for all vertices v ∈ V . If
f ′(v) ≤ c for all vertices v ∈ V , then f ′ is a valid move for f .

On each turn i, the attacker reveals a set of vertices A′ that is going to be attacked. This set is
simply referred as an attack. The defender has to protect all vertices that are under attack by making
a valid move for the current domination function f such that each vertex that is under attack has at
least one army. Such a valid move defends against the attack.

Definition 3.10. Let G = (V,E) be a static graph, f a domination function, A′ an attack and
k, a, h, c and s the parameters. f defends against attack A′ if f(a) > 0 for each vertex a ∈ A′.

Let us explain the game once more, this time by using the mathematical terms we have just introduced.
The game board is a static graph G = (V,E), on which k turns are played by the two players: the
defender and the attacker. At the start of the game, the defender chooses an initial domination
function f such that f(v) ≤ c for every vertex v ∈ V . The attacker gets to pick an attack sequence
A = (A1, · · · , Ak), a sequence of vertex subsets Ai ⊂ V that represent the vertices that will be
attacked at turn i, with |Ai| ≤ a for 1 ≤ i ≤ k. Each turn i starts with the attacker revealing
attack Ai. Then, the defender has to make a new domination function fi that is a valid move for
the previous domination function fi−1 such that fi defends against Ai. If this is not possible, the
attacker wins. If, at the end of turn k, the attacker has not yet won, the defender wins. In this case,
the initial domination function f defends against attack sequence A.

Definition 3.11. Let G = (V,E) be a static graph, f : V → N0 a domination function, A =
(A1, · · · , Ak) an attack sequence and k, a, h, c and s the parameters. Initial domination function f

11

3.4 Defense-Like Domination 3 DOMINATION PROBLEMS

defends against attack sequence A if there exists a sequence f0, f1, · · · , fk of domination functions
such that f0 = f and fi is a valid move for fi−1 that defends against Ai for every 1 ≤ i ≤ k.

The attack sequence is hidden from the defender and only revealed bit by bit. Since they cannot
know what vertices are going to be attacked before the domination function is chosen, a defender
needs to choose an initial domination function that can defend against any attack sequence in order
to guarantee their victory.

Definition 3.12. Let G = (V,E) be a static graph and k, a, h, c and s the parameters. A domination
function f : V → N0 that defends against any attack sequence is called a defense-like domination
(dld). The size of a dld f is the sum of the values

∑
v∈V f(v).

Figure 3.5: An example of a defense-like domination game being played with k = 2, a = 1, h = 1, c =∞ and s = 1.
The defender uses the set up as in the sdf from Figure 3.2, an attempted solution of size 3. The game is won by the
attacker because the defending armies can be forced to move away, leaving another vertex undefended. It is impossible
for the defender to win this game with 3 armies.

Note that for the parameters chosen in Figures 3.5 and 3.6, a dld is equivalent to a wdr. Both a
dld with these parameters and a wdr have to be capable of defending against a first attack without
leaving another vertex open for a second one.

12

4 TEMPORAL DOMINATION REQUIREMENTS

Figure 3.6: An example using the same graph and parameters as Figure 3.5, but with a different strategy by the
defensive player. By adding a fourth army and placing the armies like the wdf from Figure 3.4, it becomes impossible
for the attacker to win, if the defender uses the following strategy: always keep an army on c, and use three other
armies to each guard two neighbouring vertices, one army for a and b, one army for d and e and one army for f and g.
If a vertex is attacked, there is always an army that can defend it without leaving another vertex unguarded.

Of course, the defender could just create a dld by placing a single army on every vertex and sit back
while every attack is foiled. This would not make for an interesting problem of course.

Problem 3.5. Defense-Like Domination: Given a graph G = (V,E) and parameters k, a, h, c
and s, find a dld of minimum size that satisfies the constraints imposed by the parameters.

4 Temporal Domination Requirements

Every static problem can be considered in a temporal setting. One simple way to do this, is by
simply applying the static problem to a certain layer, or to the underlying graph. But the way in
which a static problem can be applied to a temporal graph is not unique, and most of the time there
is no obvious “best” way to do it. Consider the example of the shortest path problem given in the
introduction of the thesis. On a static graph, a shortest path is simply a path with the least number
of edges. The concept of a shortest path is connected to time. A shortest path after all, is a path
that takes the least amount of time to travel. But in a temporal graph, where time becomes part of
the problem itself, a path with the least number of edges and a path that takes the least amount
of time to travel are no longer necessarily the same thing. Since edges are not always available in
a temporal graph, taking a path with a minimum number of edges may require us to wait several
time steps for a specific edge to become available, while a longer path where each edge is available
immediately could have brought us to our destination faster.

The goal of this thesis is to introduce a number of temporal domination problems derived from
static domination problems, and to find efficient exact algorithms that solve these problems. The
time complexity of these algorithms is prioritized over the space complexity. In this section we will

13

4.1 Domination Rules 4 TEMPORAL DOMINATION REQUIREMENTS

derive a number of temporal counterparts to the static domination problems we have introduced
so far. Each of the temporal graph problems (except for Temporal-Defense Like Domination)
is obtained by combining a static graph problem such as Dominating Set, Roman Domination
and Weak Roman Domination, which describes how a vertex can be dominated, with a temporal
domination requirement which describes when and how often a vertex should be dominated.

To formalize this, we will first define the notion of domination rules : a description of how a vertex is
dominated in a static graph. Then we will define six different temporal domination requirements.
Finally, we will also describe a natural way of adapting Defense-Like Domination to temporal
graphs.

To help visualize the different temporal domination variants, we provide an example graph on which
all Dominating Set variants are handled differently. We will solve the Dominating Set variant of
each problem on this graph to give an intuitive understand of how each problem differs from the
others.

Figure 4.1: A temporal graph G with lifetime τ = 4 and n = 7. We will solve every temporal domination variant on
this graph.

4.1 Domination Rules
In each of the definitions for the sdf (3.3), rdf (3.4) and wdf (3.6), it is stated how a vertex u
dominates another vertex v. We call a description for how a vertex can dominate another vertex
a domination rule. There are three rules, RDom, RRom and RWeak, relating to the corresponding
problems Dominating Set, Roman Domination and Weak Roman Domination respectively.

Definition 4.1. Let G = (V,E) be a static graph, v ∈ V a vertex and f : V → N0 a domination
function. A vertex u ∈ V dominates v in f according to domination rule

RDom if u ∈ N [v] and f(u) ≥ 1.

RRom if u = v and f(v) > 0 or u ∈ N(v) and f(u) ≥ 2.

RWeak if u ∈ N [v] and f(u) > 0 and all vertices defended by f are also defended by fu→v.

Let R be that domination rule. We then also say that f dominates v according to R. If f
dominates every vertex v ∈ V according to R, then f is an R-domination function for G.

A domination rule describes how a vertex can be dominated in a static graph. We will use them to
describe how vertex appearances can be dominated. We will sometimes refer to Dominating Set,
Roman Domination and Weak Roman Domination as RDom-Domination, RRom-Domination
and RWeak-Domination respectively.

Casteigts and Flocchini suggest three ways Dominating Set can be translated to a temporal variant
[8]. Akrida et al. [1] suggest another way to do this. These ways of translating Dominating Set to
the temporal case can also be applied to Roman Domination and Weak Roman Domination.
Instead of giving each possible temporal problem, we will describe some temporal domination
requirements that can be applied to any domination rule R.

4.2 Temporary Domination
We will avoid using the name given by Casteigts and Flocchini to the first temporal domination
requirement (which was specifically applied to Dominating Set), which they called Temporal
Dominating Set [8]. Instead, we will use the name Temporary Domination to avoid confusion
with other temporal variants.

14

4.3 Permanent Domination 4 TEMPORAL DOMINATION REQUIREMENTS

Definition 4.2. Let G = (V,E, τ, λ) be a temporal graph, v ∈ V a vertex, f : V → N0 a domination
function and R a domination rule. f temporarily dominates v according to R if f dominates
v according to R in Gt for some time step t ∈ T . If f temporarily dominates every vertex u ∈ V
according to R, we call f an R-temporary function.

A domination function f needs to dominate each vertex at least once (in at least one time step) in
order to qualify as an R-temporary function. When R is equal to RDom, RRom or RWeak we call f a
temporary sdf, rdf or wdf respectively.

Figure 4.2: RDom-Temporary Domination solved on G. We only need one vertex, since every vertex becomes the
neighbour of b at least once.

Unsurprisingly, the corresponding Temporary Domination problems revolve around finding such
a domination function of minimum size.

Problem 4.1. Temporary Domination: Given a temporal graph G = (V,E, τ, λ) and a
domination rule R find the size of a minimum R-temporary function.

These temporary problems are equivalent to solving the corresponding static problem on the underlying
graph G↓ of the temporal graph G = (V,E, τ, λ), as we will show in Section 5. For example,
Temporary Dominating Set (TempDom) on G is equivalent to solving Dominating Set on G↓.

4.3 Permanent Domination
The next temporal domination requirement, Permanent Domination [8], is a more “strict” variant
than Temporary Domination. Instead of dominating each vertex on at least one time step, we
need to dominate it on every time step. This requirement requires us to define another type of
domination.

Definition 4.3. Let G = (V,E, τ, λ) be a temporal graph, v ∈ V a vertex, f : V → N0 a domination
function and R a domination rule. f permanently dominates v according to R if f dominates
v according to R in Gt for every time step t ∈ T . If f permanently dominates every vertex u ∈ V
according to R, we call f an R-permanent function.

A domination function needs to dominate each vertex on every time step in order to qualify as an
R-permanent function, a “stricter” requirement than the temporary variant. We will also use the
term permanent sdf, rdf or wdf depending on R.

Figure 4.3: When we solve the permanent variant, we need at least 5 vertices because many of these vertices become
isolated from all others at some point in the lifetime of G.

Problem 4.2. Permanent Domination: Given a temporal graph G = (V,E, τ, λ) and a
domination rule R, find the size of a minimum R-permanent function.

We solve the permanent variants of Dominating Set, Roman Domination and Weak Roman
Domination in Section 6 by creating dynamic programming algorithms based on algorithms for the
static problems.

15

4.4 Periodic Domination 4 TEMPORAL DOMINATION REQUIREMENTS

4.4 Periodic Domination
Akrida et al. suggest a more general temporal domination requirement called Periodic Domination
[1] (PerDom). It asks us to dominate a vertex at least once every θ time steps, for some parameter
θ. To formalize what this means, we need the concept of windows.

Definition 4.4. Let G = (V,E, τ, λ) be a temporal graph and θ ∈ T an integer called the period.
For 1 ≤ t ≤ τ − θ + 1, let Gθt := (V,Et ∪ Et+1 ∪ · · · ∪ Et+θ−1) be the t-th window of G. Let Nθ

t (v)
and Nθ

t [v] be the open and closed neighbourhood of v respectively in the graph Gθt .

Each window contains all the edges that exist at some point during the θ time steps that make up
that window. To dominate a vertex in Periodic Dominating Set, it has to be dominated in each
window.

Definition 4.5. Let G = (V,E, τ, λ) be a temporal graph, v ∈ V a vertex, f : V → N0 a domination
function, R a domination rule and θ ∈ T the period of G. f periodically dominates v according
to R if f dominates v according to R in Gθt for every window 1 ≤ t ≤ τ − θ + 1. If f periodically
dominates every vertex u ∈ V according to R, we call f an R-periodic function.

We also refer to an R-periodic function as a periodic sdf, rdf or wdf depending on R.

Figure 4.4: When the period is 2, the periodic variant requires each vertex to be dominated at least once every two
time steps. On this graph, that means each vertex must be dominated once among G1 and G2, once among G2 and
G3 and once among G3 and G4. We can do this using only 2 vertices.

This allows us to finally define Periodic Domination.

Problem 4.3. Periodic Domination: Given a temporal graph G = (V,E, τ, λ), a domination
rule R and a period θ, find the size of a minimum R-periodic function.

Both the temporary and permanent requirements are actually instances of the periodic variant. If
θ = 1, then the time windows are the same as the layers, and thus every vertex has to be dominated
in every time step. This is equivalent to Permanent Domination. If θ = τ , then there is only
one time window encompassing all the layers in which each vertex needs to be dominated. This is
equivalent to Temporary Domination. Whenever 1 < θ < τ the order of the time steps becomes
relevant to the solution of the problem, something that is not true for the former two variants. Some
might say this makes periodic variants “more temporal” than the other problems, meaning that they
use more of the properties of temporal graphs.

As it turns out, we can reduce any instance of Periodic Domination into an instance of Permanent
Domination, allowing us to use the algorithms from Section 6 for these problems as well. Periodic
variants will be discussed in Section 7.

4.5 Evolving Domination
The previous three temporal domination requirements have revolved around a single domination
function that affects all the layers simultaneously. The next requirement, Evolving Domination [8],
asks us to provide a domination function for each layer separately.

Problem 4.4. Evolving Domination: Given a temporal graph G = (V,E, τ, λ) and a domina-
tion rule R, find the total size

∑
t∈T |ft| of a sequence of domination functions (f1, · · · , fτ) such that

ft dominates v according to R in Gt for every vertex v ∈ V and every ft is of minimum size.

16

4.6 k-Fold Domination 4 TEMPORAL DOMINATION REQUIREMENTS

Figure 4.5: A separate minimum sdf for each layer, together forming an evolving domination.. The total number of
vertex appearances we use, is 12.

All of the problems so far, except the evolving variants require a single domination function that
dominates the entire temporal graph, according to the corresponding domination rule. Evolving
variants stick out because these problems require a separate domination function for each layer. It
turns out that we cannot solve evolving problems faster than simply performing a static Dominating
Set, Roman Domination or Weak Roman Domination algorithm on each layer separately. We
will discuss the evolving variants in Section 8.

4.6 k-Fold Domination
While the previous four requirements were from existing literature, the rest of this section will
focus on requirements that, to the best of our knowledge, have not been studied before. k-Fold
Domination is a new temporal domination requirement inspired by the temporary and permanent
requirements. Much like the periodic requirement, k-Fold Domination is a generalisation of the
former two. It asks for every vertex to be dominated in at least k layers. If k = 1, then k-Fold
Domination is equivalent to Temporary Domination and if k = τ then it is equivalent to
Permanent Domination.

Let G = (V,E, τ, λ) be a temporal graph. For any vertex v, domination function f : V → N0 and
domination rule R, let DvfR = {t ∈ T : v is dominated by f according to R in Gt} be the set of
time steps in which v is dominated by f according to R.

Definition 4.6. Let G = (V,E, τ, λ) be a temporal graph, v ∈ V a vertex, f : V → N0 a domination
function, R a domination rule and k ≤ τ a positive integer. f dominates v k-fold according to
R if |DvfR| ≥ k. If f dominates every vertex u ∈ V k-fold according to R, we call f an R, k-fold
function.

We also refer to an R, k-fold function as a k-fold sdf, rdf or wdf depending on R.

Figure 4.6: In RDom,3-Fold Domination, each vertex must be dominated in at least 3 time steps. We achieve this
by using 3 vertices.

This allows us to define the next problem.

Problem 4.5. k-Fold Domination: Given a temporal graph G = (V,E, τ, λ), a domination
rule R and a positive integer k ≤ τ , find the size of a minimum R, k-fold function.

The methods used to solve the permanent variants of Dominating Set and Roman Domination
can be applied to the k-fold variants of these problems as well. These solutions will be covered in
Section 9.

Note that this requirement does not ask for any vertex to be dominated by k vertices, like the k-Tuple
Dominating Set problem [18] [21]. That problem could be used to create another domination rule
that can be combined with a temporal domination requirement, however.

17

4.7 Marching Domination 4 TEMPORAL DOMINATION REQUIREMENTS

4.7 Marching Domination
The military strategy that Roman Domination is based on revolves around the notion that armies
are able to march to neighbouring cities to protect them in case of an attack. Marching Domination
is based on that notion. In this problem, armies are capable of moving to other vertices during the
transition between two time steps. By moving to different vertices, an army can defend a different
part of the graph.

In the Marching Domination requirement we do not ask for a domination function. Instead, a
solution to this problem is called a strategy and is represented by a list of marches.

Definition 4.7. Let G = (V,E, τ, λ) be a temporal graph. A march is a sequence a = (a1, · · · , aτ)
of τ vertices in V such that for each pair of consecutive vertices at, at+1 in the sequence, we have that
at+1 ∈ Nt[at]. A strategy s = {a1, · · · , ak} is a multiset (a special type of set that allows duplicates:
ai and aj are allowed to be equal even if i 6= j) of marches. The size of a strategy is the number |s|
of marches in s.

Each march in a solution to Marching Domination represents the movements of one army.
Therefore, the size of a strategy equals the number of armies used. A strategy is a multiset
rather than a set because two armies could potentially walk the same route. The requirement that
at+1 ∈ Nt[at] for each pair of consecutive vertices at, at+1 in a march represents the fact that on each
time step t, an army can either remain on the same vertex, or march over an edge e ∈ Et that exists
on that time step.

For a strategy to be a valid solution to Marching Domination, each layer must be dominated by
the armies. Let s = {a1, · · · , ak} be a strategy, then, on time step t, army i is stationed on vertex ati.
We can use this to deduce a domination function. First, for each vertex v ∈ V , let Iv be the indicator
function such that

Iv(u) =

{
1 if u = v
0 otherwise .

Then, the domination function st : V → N0 for strategy s on time step t is defined as

st(v) =
∑
a∈s

Iv(at).

Definition 4.8. Let G = (V,E, τ, λ) be a temporal graph and R a domination rule. A strategy s
is an R-marching domination for G if for every time step t we have that st is an R-domination
function for Gt. If the value of R is implicit, we simply call s a marching domination.

Figure 4.7: To achieve a minimum solution for the marching domination, we are required to station at least two
armies to vertex e on the third turn, in order to get it to vertex d on the last time step, which is necessary because
otherwise, d is not defended.

his allows us to finally define the Marching Domination problem.

Problem 4.6. Marching Domination: Given a temporal graph G = (V,E, τ, λ) and a domi-
nation rule R, find the size of a minimum R-marching domination.

Like with Periodic Domination, the solution to Marching Domination depends on the order of
the time steps, making it more temporal than problems where the order does not matter. We cover
Marching Domination in Section 10.

18

4.8 Temporal Defense-Like Domination4 TEMPORAL DOMINATION REQUIREMENTS

4.8 Temporal Defense-Like Domination
Finally, to adapt Defense-Like Domination to the temporal case, we will not use the temporary,
permanent, periodic, evolving, k-fold and marching requirements used for Dominating Set, Roman
Domination and Weak Roman Domination. Instead, we will organically convert it to the
temporal case by making the number of turns k equal to the number of time steps τ and having each
attack At take place on time step t. On turn t, the armies moved by the defender to protect against
attack At can only use edges in Gt.

To bring back the analogy of a board game, in this temporal variant the game board is a temporal
graph instead of a static one. The parameters retain the same meaning as before, though we drop
the k and simply use τ to refer to the number of turns/time steps. Since τ is given by the temporal
graph, we do not need to provide it again to define the problem. The rules are largely the same. The
only difference is that on turn i, the defender can only move armies over edges that exist in layer Gt.
This changes the definition of a partial, and valid move.

Definition 4.9. Let G = (V,E, τ, λ) be a temporal graph, t a time step, f : V → N0 a domination
function on Gt and a, h, c and s the parameters. Let g : V → N2

0 be an intermediate function on Gt.
If the minimum number of edges on a path from u to v in Gt is dtu,v ≤ s and g(u).x > 0, then the
intermediate function gu→v is called a partial move for g on time step t. Now let g0, · · · , gh be a
sequence of intermediate functions on Gt such that g0(v).x = f(v) for every vertex v ∈ V and gi is
a partial move for gi−1 on time step t for 1 ≤ i ≤ h. Let f ′(v) = gh(v).x+ gh(v).y for all vertices
v ∈ V . If f ′(v) ≤ c for all vertices v ∈ V , then f ′ is a valid move for f on time step t.

The definition of defending against an attack remains the same as for the non-temporal variant of
this problem. For an initial domination function to defend against an attack sequence, there must be
a sequence of τ valid moves starting with the initial domination function that each defend against
the attack of the corresponding time step.

Definition 4.10. Let G = (V,E, τ, λ) be a temporal graph, f : V → N0 a domination function,
A = (A1, · · · , Aτ) an attack sequence and a, h, c and s the parameters. Initial domination function
f defends against attack sequence A if there exists a sequence f0, · · · , fτ of domination functions
such that f0 = f and ft is a valid move for ft−1 on time step t that defends against attack At for
every time step t.

With that, the temporal defense-like domination follows naturally:

Definition 4.11. Let G = (V,E, τ, λ) be a temporal graph, and a, h, c and s the parameters. A
domination function f : V → N0 that defends against any attack sequence is called a temporal
defense-like domination (tdld). The size of a tdld is the sum of the labels

∑
v∈V f(v).

Figure 4.8: For a = 1, h = 1, c =∞ and s = 1, we need to put an army on every vertex, with one exception: since a
and b are always connected, we only need one army between the two of them. The attacker will not be able to win,
because if they attack a vertex without an army, the army can always protect the attacked vertex without leaving the
other vertex defenseless. c and f start as isolated vertices, forcing the defender to put armies on them, since leaving
them without an army would allow the attacker to win immediately by attacking one of them. d, g and e also need to
have armies, because on the first time step, we can only defend them using the army on b, and if that army moves, a
can be attacked in time step 2. Note that a tdld is not a sequence of domination functions, only the initial domination
function matters. It must be able to defend against any attack sequence through a sequence of valid moves.

19

4.8 Temporal Defense-Like Domination4 TEMPORAL DOMINATION REQUIREMENTS

Figure 4.9: If we use h =∞ (we may move any number of armies on one turn, instead of just one), but otherwise
keep the same parameters, four armies are not enough. On the third time step, the set {d, e, g} must contain three
armies in total. If at least two are not present on {d, e, g} by time step 3, there is no way for d and e to each have an
army on time step 4. The third army is needed because if g is attacked on time step 3, we are forced to send an army
to it, which means that d and e cannot both have an army by time step 4. In addition, at the start of third time step,
there must be an army on b, otherwise either a, c or f can be attacked without an army being close enough to defend
it. Therefore, we know that if we use four armies, then on time step 3 a, c and f do not have an army, allowing the
attacker to force the defender to send an army away from b, which in turn allows the attacker to win by attacking
whichever neighbour of b is undefended by time step 4.

Figure 4.10: With h =∞, 5 armies is enough to dominate the graph. Whatever the attacker does, we can make sure
to have one vertex on b, three vertices on {d, e, g} and one vertex somewhere on {a, b, c, f} by time step 3. That is
enough to guarantee a victory for the defensive player.

This finally leads us to the temporal variant of Defense-Like Domination.

Problem 4.7. Temporal Defense-Like Domination: Given a temporal graph G = (V,E, τ, λ)
and parameters a, h, c and s, find a tdld of minimum size that satisfies the constraints imposed by the
parameters.

It is also possible to define temporary, permanent, periodic, evolving, k-fold and marching variants
for Defense-Like Domination. The permanent variant, for example, would ask for a domination
function that is a dld on every layer. In that problem, the “game” does not take place over the given
time steps 1, · · · , τ , with each attack happening on a different time step. Rather, every time step
t sees its own complete game played out on the static graph that is the layer Gt. This is a rather
convoluted way to approach Defense-Like Domination, especially since the static problem so
naturally lends itself to a temporal application. Our temporal interpretation of the problem also
highly relies on the order that the layers appear in, like in Periodic Domination and Marching
Domination.

20

Part II

Temporal Domination Algorithms

Now that the theory of temporal graphs and domination problems has been provided, and several
temporal domination requirements have been defined in the first part, this second part of the thesis
will focus on providing algorithms that solve some of these temporal domination problems. Speed is
our priority in finding these algorithms. Therefore our algorithms may require exponential space. We
use a variety of methods depending on what is necessary to solve the problem at hand. For example,
we use parameterized algorithms parameterized by the treewidth of the underlying graph to solve
the permanent, periodic and k-fold variants of Dominating Set and Roman Domination, but we
use exponential time algorithms for the marching variants.

Whenever a solution depends almost entirely on an existing algorithm, we will only provide the
running time as well as a reference to that algorithm. Whenever a solution is original or requires large
portions of the existing algorithm to be changed, we will provide the entire algorithm in pseudocode.

A summarized list of the running times that we achieve in this part will be provided in the third
part of the thesis.

21

5 TEMPORARY DOMINATION

5 Temporary Domination

In this section we view Temporary Domination as defined in Section 4.2. Depending on the
domination rule, there are three different variants of the problem that we will cover. We will redefine
the problem for each domination rule.

Problem 5.1. Temporary Dominating Set: Given a temporal graph G = (V,E, τ, λ), find
the size of a minimum temporary sdf.

Problem 5.2. Temporary Roman Domination: Given a temporal graph G = (V,E, τ, λ),
find the size of a minimum temporary rdf.

Problem 5.3. Temporary Weak Roman Domination: Given a temporal graph G =
(V,E, τ, λ), find the size of a minimum temporary wdf.

Temporary domination problems ask for a domination function that dominates each vertex at least
once in the lifetime of a temporal graph. These problems are actually quite trivial if we have an
algorithm that solves the static version of the domination problem in question.

Theorem 5.1. TempDom, TempRom and TempWeak on a temporal graph G = (V,E, τ, λ) are
equivalent to Dominating Set, Roman Domination and Weak Roman Domination on G↓
respectively.

We will now prove this theorem for Temporary Dominating Set only. The proofs for Temporary
Roman Domination and Temporary Weak Roman Domination are almost identical to this
proof and only need a slight change in wording. Therefore these proofs will be left to the reader.

Proof of Theorem 5.1. Let G = (V,E, τ, λ) be a temporal graph, let v ∈ V be a vertex in G and
let f : V → N0 be a domination function. If f(v) = 1, then f dominates v in G↓ and temporarily
dominates v in G. If f(v) = 0, then v is temporarily dominated by f if there is at least one edge
appearance et ∈ Et that connects vt to a vertex appearance ut with f(u) = 1. Every edge of the
underlying graph appears at least once in G and any edge that appears in G is also an edge in G↓.
Therefore v is temporarily dominated by f in G if and only if v is dominated by u in G↓. Therefore
a domination function f is a temporary sdf on G if and only if it is an sdf on G↓. Since the collection
of temporary sdf’s on G is equal to the collection of sdf’s on G↓, the minimum size of an sdf on G↓
is also the minimum size of a temporary sdf on G and vice versa. Therefore solving one of those
problems is enough to solve both of them.

�

Figure 5.1: The temporary domination used in Figure 4.2 corresponds to this sdf on the underlying graph G↓ of G.

Since the problems are equivalent to the static problems on which they are based on a static graph of
the same size, we can solve this problem using any algorithm A for the corresponding static problem.

To get optimal running times for our three temporal problems, we will use the currently fastest
algorithms for Dominating Set and (Weak) Roman Domination. For Dominating Set, this
is the algorithm by Iwata [23] that uses a method called the potential method . He provides two
algorithms in this paper. The first runs in O (1.4864n) time and uses polynomial space. The second
requires O (1.4689n) time and space. Since we are focusing on speed alone in this thesis, we will use
the second algorithm.

Theorem 5.2. Temporary Dominating Set can be solved in O (1.4689n) and space.

22

6 PERMANENT DOMINATION

For Roman Domination, this is the algorithm by Shi and Koh [28]. They provide two algorithms.
The first runs in O (1.5673n) and polynomial space and the second runs in O (1.5014n) and exponential
space. Again, for this example, we will use the faster algorithm.

Theorem 5.3. Temporary Roman Domination can be solved in O (1.5014n) and exponential
space.

For Weak Roman Domination, this is the algorithm by Chapelle et al. [10]. They provide two
algorithms. The first runs in O∗(2.2279n) time and polynomial space and the second runs in O∗(2n)
time and exponential space. Again, we use the faster algorithm.

Theorem 5.4. Temporary Weak Roman Domination can be solved in O∗(2n) and exponential
space.1

6 Permanent Domination

Permanent domination problems ask for domination of each vertex on every time step. The technique
that we used to solve Temporary Domination by applying a static algorithm to the underlying
graph, does not work for Permanent Domination. The reason for this is that the underlying graph
loses information about when a vertex is not dominated, which is not important in the temporary
variants, but is crucial in solving the permanent ones. Instead, the problems have to be solved in
more complicated ways. In the algorithms we found, τ plays a role in the time complexity, as it will
in all other temporal domination problems from this point forward.

6.1 Parameterized Algorithm Structure
The algorithms for Permanent Dominating Set and Permanent Roman Domination are very
similar. The algorithms are closely related to the algorithm given in the proof of Theorem 13 in [2],
the algorithm given in Section 11.3 of [31] and the algorithm in Section 6 of [32]. We will use much
of the same terminology used in those sources. The algorithms share the same structure, which will
be explained here, and they differ only in how certain calculations are made.

Let G = (V,E, τ, λ) be a temporal graph with timeline T and X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓ of width `. For each node i of X , we will define the
history vertex set Vi. This is the set of all vertices that have appeared so far in Xi and all bags of
the decendants of i.

Definition 6.1. Let G = (V,E, τ, λ) be a temporal graph, X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓ and i a node of X with children Ki. The history vertex
set of node i is a vertex set Vi :=

(⋃
j∈Ki Vj

)
∪Xi.

1The O∗ notation here means that there may be another polynomial factor.

23

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Figure 6.1: The nice tree decomposition of the graph from Figures 2.3 and 2.4, now showing the forgotten vertices
underneath each node in gray. The history vertex set of each node is the union of the vertices shown in black and
those shown in gray.

Note that for the root node r, we have that Vr = V . Every node i in X contains a table Ai. We
will use the table Ai to count the number of partial solutions on node i for each possible temporal
colouring of the vertices in Xi and each possible solution size κ. To understand how exactly the
table entries will be used, we need to explain what partial solutions and temporal colourings are.

6.1.1 Partial Solutions

Whenever we refer to the domination of a vertex or a vertex set in this section, we will mention
what domination rule we are using only if this matters in the current context. In many instances,
the domination rule can be any of the three mentioned. In other moments, it will be clear from the
context which domination rule we use, for example, in Section 6.2 we only talk about the domination
rule RDom.

A partial solution is a domination function on Vi. It is not necessary for a partial solution to dominate
all vertices in Vi but it has to dominate Vi/Xi. In other words, the vertices in Xi are the only ones
that do not have to be dominated.

Definition 6.2. Let G = (V,E, τ, λ) be a temporal graph, X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓ and i a node of X . A partial solution of node i is a
domination function f : Vi → N0 such that f permanently dominates every vertex v ∈ Vi/Xi in G[Vi].

A partial solution is similar, but not necessarily equal to a permanent domination function as
described in Section 4.3. It has to permanently dominate all vertices of G[Vi] that are in Vi/Xi and
can also use vertices from Xi to do so, but is not required to dominate the vertices in Xi itself.

Consider the following temporal graph G .

24

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Figure 6.2: A temporal graph G with τ = 2. Its underlying graph, shown in the leftmost picture, is the static graph
from Figure 2.3. The middle picture displays the first layer, and the final picture the second.

We can use the same nice tree decomposition from Figure 6.1. To illustrate partial solutions for
RRom-Permanent Domination, we provide an example on two nodes in particular.

Figure 6.3: We focus on a forget node and its child, a join node.

A partial solution on the join node may look like this.

Figure 6.4: The subgraph induced by the history vertex of the join node with the forgotten vertices and the
corresponding edges in grey. The domination function displayed is a valid partial solution for this node. All grey
vertices are dominated. The black vertices are not, because they do not have to be.

25

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Once we forget d in the next node, it also needs to be dominated.

Figure 6.5: The domination function from Figure 6.4 is no longer a valid partial solution, because d is not permanently
dominated.

Figure 6.6: The domination function shown here is a valid partial solution for both this node and the previous node.

6.1.2 Temporal Colourings

A temporal colouring for bag Xi assigns a “colour” to each vertex in Xi for each time step. There
are five colours: 2, 1, ?, 0 and 0̂.

Definition 6.3. Let G = (V,E, τ, λ) be a temporal graph, X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓ and i a node of X . Let Xi = (xi1 , · · · , xini). A temporal
colour for vertex xij is a vector cj =

(
c1j , · · · , cτj

)
∈ {2}τ ∪ {1}τ ∪

{
?, 0, 0̂

}τ
that assigns a colour

ctj to each vertex appearance xtij . A temporal colouring of bag Xi = (xi1 , · · · , xini) is a vector

c = (c1, · · · , cni) ∈
(
{2}τ ∪ {1}τ ∪

{
?, 0, 0̂

}τ)ni
that assigns a temporal colour cj to each vertex

xij ∈ Xi.

A temporal colouring c for bag Xi assigns to every vertex xij ∈ Xi a temporal colour cj which, in
turn, is a vector that assigns colour ctjt to vertex appearance xtij of vertex xij at time step t. A vertex
xij can be coloured differently on two different time steps. However, a vertex can not be partially
coloured 2 or 1, since f is a function that remains the same every time step. Either cj = (2, · · · , 2) (a
vector with τ coordinates that are all equal to 2), cj = (1, · · · , 1) or cj ∈

{
?, 0, 0̂

}τ
. If all coordinates

of cj are equal to the same colour C ∈
{

2, 1, ?, 0, 0̂
}
, we simply write cj = C.

Definition 6.4. Let G = (V,E, τ, λ) be a temporal graph, X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓, f a partial solution for node i of X and R ∈ {RDom, RRom}
a domination rule. f satisfies temporal colouring c if for each vertex xij ∈ Xi we have that:

f(xij) =

2 if cj = 2
1 if cj = 1

0 if cj ∈
{

?, 0, 0̂
}τ

and for each vertex xij ∈ Xi and time step t ∈ T we have:

if ctj = 0̂, then for every neighbouring vertex y ∈ Nt(xij) ∩ Vi we have f(y) 6= 1 if R = RDom
and f(y) 6= 2 if R = RRom.

if ctj = 0, then there is a neighbouring vertex y ∈ Nt(xij) ∩ Vi such that f(y) = 1 if R = RDom
and f(y) = 2 if R = RRom.

26

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

For any partial solution f that satisfies c, the colour given to vertex appearance vt represent the
following options:

2: f(v) = 2.

1: f(v) = 1.

?: f(v) = 0 and we do not know whether v is dominated in Gt[Vi].

0: f(v) = 0 and v is dominated in Gt[Vi].

0̂: f(v) = 0 and v is not dominated in Gt[Vi].

Figure 6.7: The partial solution from Figure 6.4 satisfies this colouring.

Figure 6.8: The partial solution from Figure 6.6 satisfies this colouring.

The colours ?, 0 and 0̂ for vertex appearance vt all correspond with f(v) = 0, but they have different
meanings. Vertex appearances xij in Xi with cj =? might be dominated by f in Vi. We pretend we do
not know this for certain, even if we can clearly see they have a neighbouring vertex appearance in Xi

that is coloured 1 in the Permanent Dominating Set problem, or 2 in the Permanent Roman
Domination problem. Vertex appearances xij in Xi with f(xij) = 0 represent vertex appearances
that are already dominated by f . Even if they do not have a neighbour in Xi that dominates it,
they might be dominated by vertices in Vi/Xi, i.e. vertices that have already been forgotten. Vertex
appearances xij in Xi with f(xij) = 0̂ are not yet dominated. However it is possible that they have
a neighbouring vertex appearance in Xi that is coloured in such a way that any partial solution that
satisfies this temporal colouring would dominate it. In this case, we call c locally invalid.

Definition 6.5. Let G = (V,E, τ, λ) be a temporal graph, R a domination rule, X = ({X1, · · · , Xk} , X)
a nice tree decomposition of the underlying graph G↓, i a node of X and Xi = (xi1 , · · · , xini) the bag

of node i. A temporal colouring c = (c1, · · · , cni) ∈
(
{2}τ ∪ {1}τ ∪

{
?, 0, 0̂

}τ)ni
is locally invalid

if, for some pair of neighbouring vertex appearances
{
xtij , x

t
ik

}
∈ Et, we have that ctj = 0̂ and ctk = 1

in case R = RDom and ctk = 2 in the case R = RRom.

It is trivial to see that for any locally invalid temporal colouring c, there can be no partial solution f
that satisfies c. It is important we understand how and where locally invalid temporal colourings
can occur, so that we can make sure our algorithm handles them correctly. Leaf nodes cannot have
locally invalid temporal colourings, and when we handle forget nodes and join nodes, we can easily
avoid locally invalid temporal colourings by only building on the valid temporal colourings of the
children of these nodes.

Lemma 6.1. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of the underlying
graph G↓ and i a leaf node of X . Then any temporal coloring c on i is not locally invalid.

27

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Proof of Lemma 6.1. Since i only contains one vertex x, it cannot have a neighbour, thus the
situation where a coloring is locally invalid cannot occur.

Lemma 6.2. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of the underlying
graph G↓, i a forget node of X with child j and c a temporal coloring on j that is not locally invalid.
Let the temporal coloring c′ on i be c limited to vertices in Xi. Then c′ is not locally invalid.

Proof of Lemma 6.2. Since c is not locally invalid, we know that for each pair of neighbouring
vertex appearances

{
xtja , x

t
jb

}
∈ Et for xja , xjb ∈ Xj , we have that if cta = 1 or cta = 2 then ctb 6= 0̂.

Since Xi only contains vertices that are also in Xj , and c′ gives the same color to them in Xi as c
does in Xj , no local invalidity can occur.

Figure 6.9: A temporal colouring on the join node highlighted in Figure 6.3. This temporal colouring satisfies the
partial solution in Figure 6.4. The temporal colouring that naturally follows from this by removing d is displayed in
Figure 6.8. Both temporal colourings are not locally invalid.

Lemma 6.3. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of the underlying
graph G↓, i a join node of X with children j and k and c a temporal coloring on both j and k that is
not locally invalid on either of them. Then c is not locally invalid on i.

Proof of Lemma 6.3. Since c is not locally invalid on either j or k, it can not be locally invalid
on i, because Xi = Xj = Xk.

These three lemmas together imply that, because the way our algorithms handle these nodes, locally
invalid temporal colourings only have to be taken into account when handling introduce nodes.

Going back to the previous example, consider the following introduce node, whose child is the forget
node we previously covered.

28

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Figure 6.10: The highlighted introduce node introduces a to the bag.

Figure 6.11: If we extend the temporal colouring on the child of the introduce node from Figure 6.8, to a temporal
colouring on the introduce node which includes a, there is a possibility that we get a locally invalid temporal colouring,
since the colors for a and c create a conflict in time step 2.

6.1.3 Dynamic Programming

Each node i of the nice tree decomposition X contains a table Ai. Table entry Ai(c, κ) stores the
number of partial solutions of size κ on i that satisfy temporal colouring c. We visit the nodes of
X from the leaves to the root in a BFS manner, filling in the tables of the nodes as we encounter
them. Since X is a nice tree decomposition, we only have to take four types of nodes into account,
the leaf nodes (which each contain only one vertex), forget nodes, introduce nodes and join nodes.
We fill the table of each introduce, forget or join node by referring to table entries of the child nodes.
The way these nodes are handled differs between the problems Permanent Dominating Set and
Permanent Roman Domination.

In each introduce node, we need to make sure that any locally invalid temporal colourings are not
taken into account. In each forget node, we need to make sure that we only take into account the
temporal colours 2 (though only in the Permanent Roman Domination problem), 1 and 0 for the
forgotten vertex. These three temporal colours are the only temporal colours for the forgotten vertex
that will lead to an acceptable final solution, as they represent the situations where the vertex is
permanently dominated.

29

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Once we reach the root node r of X and filled its table Ar, we can terminate the algorithm. The
root node has an empty bag, thus we do not need to check any temporal colourings. We look for the
minimum value of κ for which Ar(∅, κ) > 0. This is the minimum size of an R-permanent domination
function.

6.1.4 Reducing the Table

We can make the algorithm faster by ignoring the colour 0. We can fill the table entries for the
temporal colourings that use only the colours 2, 1, ? and 0̂, which saves time over also using the
colour 0. Then, when we reach a forget node where vertex x is forgotten, we can calculate the table
entries where x is coloured 0 by using techniques based on fast subset convolution and the covering
product [3] [30] [31]. Our treatment is along the lines of state changes as inspired by van Rooij [31].

Let us define a partial ordering ≺ on the colours. Let C ≺ C for every colour C ∈
{

2, 1, ?, 0, 0̂
}
and

let 0 ≺? and 0̂ ≺?. This partial ordering can then be extended to temporal colours. Let i be a node
of X and cj =

(
c1j , · · · , cτj

)
and ĉj =

(
ĉ1j , · · · , ĉτj

)
two temporal colours for some vertex xij ∈ Xi. We

say that ĉj ≺ cj if ĉtj ≺ ctj for all time steps t ∈ T . This can once again be extended to temporal
colourings. Let c = (c1, · · · , cn) and ĉ = (ĉ1, · · · , ĉn) be two temporal colourings on i, then ĉ ≺ c if
ĉj ≺ cj for all 1 ≤ j ≤ n. This ordening represents the fact that partial solutions that satisfy ĉ also
satisfy c.

Lemma 6.4. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition for G↓, i a node
of X and R ∈ {RDom, RRom}. Let c = (c1, · · · , cn) and ĉ = (ĉ1, · · · , ĉn) be two temporal colourings
on i such that ĉ ≺ c and f a partial solution on i that satisfies ĉ. Then f also satisfies c.

Proof of Lemma 6.4. We will prove this using contraposition. Assume f is a partial solution
that does not satisfy c, then we will prove it does not satisfy ĉ either.

Case 1: There is a vertex x ∈ Xi which is assigned temporal colour cx in c such that:

f(x) 6=

2 if cx = 2
1 if cx = 1

0 if cx ∈
{

?, 0, 0̂
}τ

In this case f does not satisfy ĉ either.

Case 2: There is a vertex appearance xt ∈ V t for x ∈ Xi which is assigned colour ctx = 0̂ in c, and
there is a neighbouring vertex y ∈ Nt(xij) ∩ Vi such that f(y) = 1 in the case where R = RDom and
f(y) = 2 in the case where R = RRom. In this case f does not satisfy ĉ either since ĉ ≺ c implies
that ĉtx = 0̂ too.

Case 3: There is a vertex appearance xt ∈ V t for x ∈ Xi which is assigned colour ctx = 0 in c, and
for every neighbouring vertex y ∈ Nt(xij) ∩ Vi we have f(y) 6= 1 in the case where R = RDom and
f(y) 6= 2 in the case where R = RRom. In this case f does not satisfy ĉ either since ĉ ≺ c implies
that ĉtx = 0 too.

Therefore any partial solution f on i that satisfies ĉ must also satisfy c.

Let Bj(c, κ) be the set of partial solutions of size κ that satisfy temporal colouring c. Then ĉ ≺ c
implies that Bi(ĉ, κ) ⊂ Bi(c, κ). This allows us to find the number of partial solutions where a
forgotten vertex x is coloured 0 by performing some calculations on the number of solutions where x
is coloured as a combination of ? and 0̂.

Lemma 6.5. Let G = (V,E, τ, λ) be a temporal graph and X a nice tree decomposition of G↓. Let
i be a node of X and x ∈ Xi some vertex in the bag of i. For any temporal colour cx, let us use
c × {cx} to indicate a temporal colouring on i where c gives the temporal colours assigned to the
vertices xij ∈ Xi/ {x} and cx the temporal colour assigned to x. Then:

30

6.1 Parameterized Algorithm Structure 6 PERMANENT DOMINATION

Bi(c× {0} , κ) = Bi(c× {?} , κ)/

 ⋃
C∈{?,0̂}τ/{?}

Bi(c× {C} , κ)

 .

Proof of Lemma 6.5. We know that c× {0} ≺ c× {?} and c× {C} ≺ c× {?} for any temporal
colour C ∈

{
?, 0̂
}τ
/ {?}. Therefore, Lemma 6.4 implies that Bi(c × {0} , κ) ⊂ Bi(c × {?} , κ) and⋃

C∈{?,0̂}τ/{?}Bi(c × {C} , κ) ⊂ Bi(c × {?} , κ). We now have to show that Bi(c × {0} , κ) and⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ) form a partition of Bi(c× {?} , κ).

First, let us prove that Bi(c× {0} , κ) ∪
⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ) = Bi(c× {?} , κ). Let f be a

partial solution of size κ that satisfies c× {?}. If for every time step t ∈ T there is a neighbouring
vertex y ∈ Nt(x) ∩ Vi such that f(y) = 1 (R = RDom) or f(y) = 2 (R = RRom), then f satisfies
c×{0} and f ∈ Bi(c×{0} , κ). If there is a time step t ∈ T such that there is no neighbouring vertex
y ∈ Nt(x) ∩ Vi such that f(y) = 1 (R = RDom) or f(y) = 2 (R = RRom), then f satisfies c × {cx}
where ctx = 0̂ and csx =? for every time step s 6= t and f ∈

⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ). Therefore

Bi(c× {0} , κ) ∪
⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ) = Bi(c× {?} , κ).

Now, we have to prove that Bi(c×{0} , κ)∩
⋃
C∈{?,0̂}τ/{?}Bi(c×{C} , κ) = ∅. Let cx ∈

{
?, 0̂
}τ
/ {?}

be a temporal colour. Let f ∈ Bi(c × {0} , κ). We know that there must be a time step t ∈ T
such that ctx = 0̂. We also know that, since f satisfies c × {0}, there is a y ∈ Nt(x) ∩ Vi such
that f(y) = 1 (R = RDom) or f(y) = 2 (R = RRom). Therefore f does not satisfy c × {cx} and
f 6∈

⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ). Therefore Bi(c× {0} , κ) ∩

⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ) = ∅.

Since Bi(c×{0} , κ) and
⋃
C∈{?,0̂}τ/{?}Bi(c×{C} , κ) form a partition of Bi(c×{?} , κ), the lemma

must hold.

Assume that i is a forget node of X with child j where x is the forgotten vertex and let c be some
temporal colouring on i. To find the partial solutions on j that satisfy c× {0}, (x is permanently
dominated) by taking the solutions where it is coloured ? (possibly dominated) and removing the
solutions where it has at least one vertex appearance that is coloured 0̂ (not dominated). The
corresponding table entry is then Aj(c× {0} , κ) = |Bj(c× {0} , κ)|.

However, the algorithm does not have access to Bj , only to Aj . We can find the same result by using
an inclusion exclusion formula:

Lemma 6.6. Let G = (V,E, τ, λ) be a temporal graph and X a nice tree decomposition of G↓. Let i
be a node of X and x ∈ Xi a vertex in the bag of i. For any temporal colour cx, let us use c× {cx}
to indicate a temporal colouring on i where c gives the temporal colours assigned to the vertices
xij ∈ Xi/ {x} and cx the temporal colour assigned to x. Then:

Ai(c× {0} , κ) =
∑

C∈{?,0̂}τ
(−1)#0̂(C)Ai(c× {C} , κ)

where #0̂(C) is the number of vertex appearances xt ∈ V t of x that are given colour 0̂ by temporal
colour C.

Proof of Lemma 6.6. For each time step t ∈ T , let Ct be the temporal colour such that

coordinate t has value 0̂ and all other coordinates have value ?. Cst =

{
0̂ if s = t
? otherwise . Now let

Bti = Bi(c× {Ct} , κ). Let f be a partial solution in
⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ), then there is a

time step t such that there is no vertex y ∈ Nt(x) ∩ Vi such that f(y) = 1 (R = RDom) or f(y) = 2
(R = RRom). Then f ∈ Bti . Therefore

⋃
C∈{?,0̂}τ/{?}Bi(c× {C} , κ) ⊂

⋃
t∈T Bt. It is now trivial to

see that ⋃
C∈{?,0̂}τ/{?}

Bi(c× {C} , κ) =
⋃
t∈T

Bti .

31

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

Also note that, for any positive integer k ≤ τ , a partial solution f that is included in Bt1i ∩ · · · ∩B
tk
i

with ta 6= tb for each pair of distinct indices a 6= b also satisfies the temporal colouring c× {C} where
coordinates t1, · · · , tk of C have colour 0̂ and all the others have colour ?. Conversely, a partial
solution f that satisfies temporal colouring c× {C} where coordinates t1, · · · , tk of C have colour 0̂
and the others have colour ?, must be included in Bt1i ∩ · · · ∩B

tk
i . Therefore for any positive integer

k ≤ τ , we have that ∑
1≤t1<···<tk≤τ

|Bt1i ∩ · · · ∩B
tk
i | =

∑
C∈{?,0̂}τ ,#0̂(C)=k

|Bi(c× {C} , κ)|.

Now we will complete the proof by solving the following equation.

Ai(c× {0} , κ) = |Bi(c× {0} , κ)|

= |Bi(c× {?} , κ)/

 ⋃
C∈{?,0̂}τ/{?}

Bi(c× {C} , κ)

 | (By Lemma 6.5.)

= |Bi(c× {?} , κ)| − |
⋃

C∈{?,0̂}τ/{?}
Bi(c× {C} , κ)|

= |Bi(c× {?} , κ)| − |
τ⋃

1≤t≤τ

Bti |

= |Bi(c× {?} , κ)| −
∑

1≤t≤τ

|Bti | (By the inclusion-exclusion principle.)

+
∑

1≤t<s≤τ

|Bti ∩Bsi |

−
∑

1≤t<s<r≤τ

|Bti ∩Bsi ∩Bri |

+ · · ·
+ (−1)τ |B1

i ∩ · · · ∩Bτi |

=
∑

C∈{?,0̂}τ
(−1)#0̂(C)|Bi(c× {C} , κ)|

=
∑

C∈{?,0̂}τ
(−1)#0̂(C)Ai(c× {C} , κ)

We add the number of partial solutions where the number of vertex appearances that are coloured
0̂ is even (this includes the number of partial solutions where none of them are) and subtract the
number of partial solutions where the number of vertex appearances that are coloured 0̂ is odd. The
inclusion-exclusion formula guarantees that each partial solution where x is coloured ? is counted,
but every partial solution where x is coloured 0̂ in at least one time step is dismissed, while also
ensuring we do not dismiss partial solution multiple times.

6.2 Permanent Dominating Set
In this section we will cover the Dominating Set variant of Permanent Domination. The
algorithm we present uses the concepts introduced in Section 6.1, as will the algorithm for the Roman
Domination variant that we will cover in Section 6.3.

Problem 6.1. Permanent Dominating Set: Given a temporal graph G = (V,E, τ, λ), find
the size of a minimum permanent sdf.

Permanent Dominating Set is equivalent to Simultaneous Domination, sometimes known by
the names Global Domination and Factor Domination. These names are not used consistency
throughout literature and furthermore the definitions also differ between articles.

32

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

The problem known as Factor Domination was first introduced in [4]. In this paper, a t-factoring
of a graph H = (V,E) into factors G1, · · · , Gt is defined as a set of graphs Gi = (V,Ei) such that
E1, · · · , Et form a partition of edge set E. The problem asks for a minimum size vertex set that
is a dominating set on all factors at the same time. Of course, in Permanent Dominating Set,
instead of factors, we have the layers of the temporal graph, and the edge sets do not necessarily
form a partition. Therefore the original factor domination problem is not equivalent to Permanent
Dominating Set.

Later papers have defined the problem in a similar way, but without requiring E1 · · · , Et to be a
partition of E. In [6], the problem is defined as Simultaneous Domination and does not require
the partition property. Permanent Dominating Set is indeed equivalent to this problem. Since
the order of the time steps in Permanent Dominating Set does not influence the solution of the
problem we can simply view the layers as factors.

Other papers that discuss these problems include [5], [7], [12], [13] and [19]. As far we know, no
algorithm for the problem has been presented before. A task we will take upon ourselves.

We will now use the ground work of the previous subsection to create our first permanent domination
algorithm. We use the dynamic programming approach that we desribed before. We visit the nodes
of X from the leaves to the root in a BFS manner. When filling our table, we only use the colours 1,
? and 0̂. In an sdf, the label 2 is not used, and the colour 0 can be left out, because the only moment
where we need to find the number of partial solutions that satisfy a temporal colouring that includes
this colour 0, we can calculate the number by using the techniques from Section 6.1.4. There are
2τ + 1 possible temporal colours and thus (2τ + 1)ni possible temporal colourings for each node i.

Any domination function f : V → {0, 1} with f(v) = 1 for every vertex v is a valid permanent sdf of
size n. Therefore, we can place an upper bound of n on the value of κ.

33

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

Algorithm 1: Permanent Dominating Set

PermDom(temporal graph G, nice tree decomposition X of G↓):
foreach node i of X in BFS manner from the leaves to the root r do

Let Ai be a table with an entry for each colouring c of Xi and value 1 ≤ κ ≤ n;
if i is a leaf node then

foreach colouring c of Xi do
for κ = 1 to n do

if c = (1) and κ = 1 then
Ai(c, κ) = 1;

else if c 6= (1) and κ = 0 then
Ai(c, κ) = 1;

else
Ai(c, κ) = 0;

else if i is a forget node then
Let j be the child of i;
Let x be the forgotten vertex;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) = Aj(c× {1} , κ) +

∑
cx∈{?,0̂}τ

(−1)#0̂(cx)Aj(c× {cx} , κ);

else if i is an introduce node then
Let j be the child of i;
Let x be the introduced vertex;
foreach colouring c of Xj do

for κ = 1 to n do
foreach temporal colour cx do

if cx = 1 then
if κ = 0 then

Ai(c× {cx} , κ) = 0;

else if there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂ then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ− 1);

else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 1
then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ);

else
Let j and k be the children of i;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) =

∑
κl+κr=κ+#1(c)

Aj (c, κl) ·Ak (c, κr);

for κ = 1 to n do
if A(∅, κ) > 0 then

return κ;

Each node of X is either a leaf node, forget node, introduce node or join node. Those nodes will each
be handled in the following way:

34

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

Leaf Nodes For each leaf node i in X , we have a bag Xi = (x) with only one element. We initialize
the table Ai for temporal colouring c = (cx) and size κ:

Ai(c, κ) =

 1 if cx = 1 and κ = 1
1 if cx 6= 1 and κ = 0
0 otherwise

Lemma 6.7. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
leaf node of X . Then Algorithm 1 correctly calculates the table Ai in O (n) time.

Proof of Lemma 6.7. By Definition 2.7, the bag Xi of i has one vertex x. Let c = (cx) where cx
is the temporal colour for x. Let f : Vi → {0, 1} be a partial solution satisfying c. If cx = 1, then
we must have that f(x) = 1, and x contributes 1 to the value of κ. Moreover, f is the only partial
solution that satisfies c. Therefore Ai((1), 1) = 1. Since there are no other vertices, the only κ value
for which Ai((1), κ) = 1 is κ = 1.

If cx 6= 1, then f(x) = 0, and x contributes 0 to the value of κ. f is the only partial solution that
satisfies c. Therefore Ai(c, 0) = 1. Since there are no other vertices, the only κ value for which
Ai(c, κ) = 1 is κ = 0. Since x does not have neighbours, c cannot be locally invalid.

There are n values for κ that we need to process. For each value of κ, we need to check whether
cx = 1 or not, which takes O (1) time.

Therefore Algorithm 1 correctly calculates Ai in O (n) time.

Forget Nodes Forgotten vertices still impact the tables of nodes yet to come, higher up in X . It
is essential that when we forget a vertex x, we build the table of the forget node in a way that only
takes into account cases where x was permanently dominated: where x is coloured 1 or 0. Otherwise
we cannot guarantee that in the final solution all vertices are dominated.

Let Xi =
(
xi1 , · · · , xini

)
be the bag of a forget node with child Xj =

(
xi1 , · · · , xini , x

)
, x being the

forgotten vertex. Let

Ai(c, κ) = Aj(c× {1} , κ) +
∑

cx∈{?,0̂}τ
(−1)#0̂(cx)Aj(c× {cx} , κ)

We use the technique of fast subset convolutions from Section 6.1.4 to calculate the number of partial
solutions that satisfy a colouring for x where x is coloured 0.

Lemma 6.8. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
forget node of X with child j. Assume that Aj is correct. Then Algorithm 1 correctly calculates the
table Ai in O (n (2τ + 1)

nj) time.

Proof of Lemma 6.8. By Definition 6.2, any domination function f : V → {0, 1} such that
f(x) = 0 and there is a time step such that x has no neighbour with label 1 on that time step, is not
a partial solution on i. Since Vi = Vj , any partial solution f on j that satisfies c× {0} or c× {1} is
also a partial solution on i that satisfies c, since we know for sure that x is permanently dominated
by f . Any partial solution on j that satisfies c× {C} such that #0̂(C) > 0 is not a partial solution
on i. Therefore we know that

Ai(c, κ) = Aj(c× {1} , κ) +Aj(c× {0} , κ)

= Aj(c× {1} , κ) +
∑

cx∈{?,0̂}τ
(−1)#0̂(cx)Aj(c× {cx} , κ) (Follows from Lemma 6.6).

35

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

This proves that Ai is calculated correctly if Aj is correct.

As for the complexity, there are (2τ + 1)
ni temporal colourings for Xi and n values for κ. For each

temporal colouring c, we first take the value of Ai(c× {2} , κ) which takes constant time. Finding
the value of

∑
cx∈{?,0̂}τ (−1)#0̂(cx)Aj(c× {cx} , κ) requires us to access 2τ table entries. This brings

the total required time to O
(
n (2τ + 1)

ni+1
)

= O (n (2τ + 1)
nj).

Introduce Nodes When introducing a new vertex, we have to be careful that we do not include
locally invalid temporal colourings. Whenever we process a locally invalid temporal colouring we
must make sure to make its table entry equal to 0.

Let Xi =
(
xi1 , · · · , xinj , x

)
be the bag of an introduce node that introduces vertex x. Let Xj =(

xj1 , · · · , xjnj
)
be its child. Let c× {cx} be the temporal colouring for Xi, where cx is the temporal

colour assigned to new vertex x. Let

Ai(c×{cx} , κ) =

0 if cx = 1 and κ = 0

0 else if cx = 1 and there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂

0 else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 1
Aj(c, κ− 1) else if cx = 1 and κ > 0
Aj(c, κ) otherwise

If cx = 1, then vertex x contributes 1 to the value of κ. This means that no partial solution satisfying
c× {cx} is possible where κ = 0. If κ > 0, we have to look in the table of j in the entries for c and
κ− 1 since x cannot contribute to the size yet in node j. We also need to check whether x has any
neighbouring vertex appearances that are coloured 0̂. If it does, this colouring is locally invalid. In
the same vein, when x itself has an appearance that is coloured 0̂, we should check if that vertex
appearance has a neighbour that is coloured 1, in which case this is also locally invalid. Otherwise, if
cx 6= 1, then we simply take the table entry for c and κ on node j. Any partial solution on j of size κ
that satisfies c can be transformed into a partial solution on i of the same size that satisfies c× {cx}
by adding x to the domain and setting f(x) = 0. in fact, these partial solutions are the only partial
solutions on i that satisfy this temporal colouring.

Lemma 6.9. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
introduce node of X with child j. Assume that Aj is correct. Then Algorithm 1 correctly calculates
the table Ai in O (n (2τ + 1)

ni) time.

Proof of Lemma 6.9. Whenever c × {cx} is locally invalid, no partial solution can satisfy it.
Therefore Ai(c×{cx} , κ) should be 0 for any κ. It is easy to see that the formula used by Algorithm
1 satisfies this condition. We know by Definition 2.7 that x cannot have neighbours outside Xi,
therefore if c×{cx} is not locally invalid, any partial solution f on j that satisfies c can be transformed
into a partial solution f ′ on i that satisfies c× {cx} if we make f ′ identical to f on Vj and add x to
the domain and set f ′(x) = 1 if cx = 1 and f ′(x) = 0 if cx ∈

{
?, 0̂
}τ

. A domination function that
was not constructed in this way, does not satisfy c× {cx} and thus need not be taken into account.
In the case where cx = 1, such a partial solution f on j must be of size κ− 1, since adding x to the
domain with f(x) would increase the size of f by 1, making its size |f |+ 1 = κ− 1 + 1 = κ. This
proves that Algorithm 1 calculates Ai correctly if Aj is correct.

As for the complexity, for each temporal colouring and value of κ, we have to perform a simple check
and we possibly access a single table entry. Therefore, the required time is O (n (2τ + 1)

ni).

36

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

Join Nodes Let Xi =
(
xi1 , · · · , xini

)
be the bag of a join node with children j, k with Xi = Xj =

Xk. Let

Ai(c, κ) =
∑

κl+κr=κ+#1(c)

Aj (c, κl) ·Ak (c, κr)

where #1(c) := | {ca ∈ c : ca = 1} |. Each child of the join node has the same bag, but their history
vertex sets can differ. If we want our partial solution to be of size κ, then we have a partial solution
for each combination of a partial solution on j of size κl and a partial solution on k of size κr all
satisfying colouring c, such that κl + κr = κ+ #1(c). We add #1 to the right side of the equation
because each vertex that is coloured 1 adds 1 to the value of κ, and otherwise we would count the
vertices from Xi that are coloured 1 twice.

Lemma 6.10. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i
a join node of X with children j and k. Assume that Aj and Ak are correct. Then Algorithm 1
correctly calculates the table Ai in O

(
n2 (2τ + 1)

ni
)
time.

Proof of Lemma 6.10. Let c be a temporal colouring on Xi and let fl and fr be partial solutions
on j and k respectively that both satisfy c. Then let the domination function fl ⊕ fr : Vi → {0, 1}
be defined as:

fl ⊕ fr(x) =

{
fl(x) if x ∈ Vj
fr(x) otherwise.

Since fl and fr both satisfy c, they both assign the same value to each vertex in Xi. Definition 2.6
implies that Vj ∩ Vk = Xi. For any vertex x ∈ Vj/Xi, fl ⊕ fr assigns the value given to x by fl and
for any vertex x ∈ Vk/Xi, fl ⊕ fr assigns the value given to x by fr. We know that every vertex
x ∈ Vi/Xi is dominated by fl ⊕ fr because they are dominated in their respective history vertex
set by the partial solution associated with that node. Therefore we know that fl ⊕ fr is a partial
solution on i that satisfies c. The size of fl ⊕ fr is |fl ⊕ fr| = |fl|+ |fr| −#1(c). We subtract #1(c)
since each label for vertices outside Xi is counted once in |fl|+ |fr| and each label for vertices in Xi

is counted twice. If |fl ⊕ fr| = κ, then fl ⊕ fr ∈ Bi(c, κ).

For any temporal colouring c of Xi and non-negative integers κl and κr, let Bj(c, κl)⊕Bk(c, κr) =
{fl ⊕ fr : fl ∈ Bj(c, κl), fr ∈ Bk(c, κr)} (let Bj(c, κl)⊕Bk(c, κr) = ∅ if one of the two sets is empty).
Then we know that for any κl and κr such that κl + κr = κ+ 2#2(c), we must have that Bj(c, κl)⊕
Bk(c, κr) ⊂ Bi(c, κ).

Now let f : Vi → {0, 1} be a partial solution on i that satisfies c. Let fl : Vj → {0, 1} be f limited to
the domain Vj and let fr : Vk → {0, 1} be f limited to the domain Vk. Then fl and fr are partial
solutions on j and k respectively that satisfy c and f = fl ⊕ fr. Therefore

Bi(c, κ) ⊂
⋃

κl+κr=κ+#1(c)

Bj(c, κl)⊕Bk(c, κr)

and since we have also proven that Bj(c, κl)⊕Bk(c, κr) ⊂ Bi(c, κ) for each Bj(c, κl)⊕Bk(c, κr) with
κl + κr = κ+ #1(c), we now have that

Bi(c, κ) =
⋃

κl+κr=κ+#1(c)

Bj(c, κl)⊕Bk(c, κr).

Next, note that Bj(c, κl)⊕Bk(c, κr) has a unique element for each pair of unique elements fl and
fr of Bj(c, κl) and Bk(c, κr) respectively. Therefore |Bj(c, κl) ⊕ Bk(c, κr)| = Aj(c, κl) · Ak(c, κr).
Finally, note that Bj(c, κl1)⊕Bk(c, κr1)∩Bj(c, κl2)⊕Bk(c, κr2) = ∅ if κl1 6= κl2 and κr1 6= κr2 . This
allows us to prove the lemma with the following equation.

37

6.2 Permanent Dominating Set 6 PERMANENT DOMINATION

Ai(c, κ) = |Bi(c, κ)|

= |
⋃

κl+κr=κ+#1(c)

Bj(c, κl)⊕Bk(c, κr)|

=
∑

κl+κr=κ+#1(c)

|Bj(c, κl)⊕Bk(c, κr)|

=
∑

κl+κr=κ+#1(c)

Aj (c, κl) ·Ak (c, κr)

We have now proven that Algorithm 1 calculates Ai correctly if Aj and Ak are correct.

As for the complexity, for each value of c and κ, we perform O (n) multiplications. Therefore this
step can be performed in O

(
n2 (2τ + 1)

ni
)
time.

Termination Let r be the root node of X . Its bag Xr = ∅ is empty. Once the table of r has been
filled, we have explored the entire tree decomposition. We now return the minimum κ for which
Ar(∅, κ) > 0. This can be done in O (n) time.

Theorem 6.1. Algorithm 1 solves Permanent Dominating Set correctly.

Proof of Theorem 6.1. Let L1 be the set of leaf nodes of X . For any integer l > 1, let Ll be the
set of nodes of X such that that have at least one child in Ll−1. We will refer to nodes in Ll to level
i nodes. Note that a join node can be part of multiple levels. For simplicity, let a join node i with
children in La and Lb only appear in level max(a, b) + 1.

We will prove that the table Ai of any node i of X is correct for the considered colourings (igoring the
colours 1 and 0). We will prove this by induction on the level l. If l = 1, then Lemma 6.7 shows that
the tables of all nodes in Ll are correct. Now we show that if the tables of all nodes in L1 ∪ · · · ∪Lk−1
are correct, then the tables of all nodes in Lk are correct. Let i be a node in Lk. i must either be a
forget node, an introduce node or a join node. Lemmas 6.8, 6.9 and 6.10 show that in all three cases,
Ai must be correct.

This means that the table Ar for the root node r is also correct. Algorithm 1 returns the κ for which
Ar(∅, κ) > 0. By Definition 2.7 we have that Vr = V and furthermore we have Xr = ∅. Therefore,
by Definition 6.2, any partial solution f on r must permanently dominate every vertex in Vr and is,
thus, a permanent sdf on G. Therefore Algorithm 1 correctly solves Permanent Dominating Set.

Now that we have proven the correctness of Algorithm 1, the only thing left to prove is the complexity
of the algorithm.

Theorem 6.2. Permanent Dominating Set can be solved in O
(
n3 (2τ + 1)

`+1
)

time and

O
(
n (2τ + 1)

`+1
)
space, where ` is the treewidth of the underlying graph.

Proof of Theorem 6.2. The join nodes are the bottleneck of this algorithm. There are at most
O (n) nodes in X [24]. The total runtime of this algorithm therefore is O

(
n3 (2τ + 1)

`+1
)
.

For each node i, there can be (2τ + 1)
ni temporal colourings and n values for κ. Since there are at

moast O (n) nodes in X , the algorithm requires O
(
n (2τ + 1)

`+1
)
space.

38

6.3 Permanent Roman Domination 6 PERMANENT DOMINATION

6.3 Permanent Roman Domination
This section will cover the Roman Domination variant of Permanent Domination. The algorithm
we present uses the same concepts from Section 6.1 that we used for the algorithm in Section 6.2.

Problem 6.2. Permanent Roman Domination: Given a temporal graph G = (V,E, τ, λ),
find the size of a minimum permanent rdf.

The algorithm for Permanent Roman Domination is very similar to the one for Permanent
Dominating Set. The main difference is that vertices can now be assigned label 1 or 2 by a partial
solution. The label 2 takes the role previously filled by label 1, while label 1 now signifies a vertex
that dominates only itself. By using techniques from [30] and [32], we can ignore the label 1 for the
most part. Only when we forget a vertex, we will take into account the partial solutions that label
this vertex 1. If the forgotten vertex x is assigned any temporal colour C ∈

{
?, 0̂
}τ

, we could replace
that temporal colour by 1, ensuring that x is permanently dominated.

When introducing a vertex appearance vt ∈ V t that is coloured C ∈
{

?, 0̂
}τ

, we pretend as if f(v) = 0
and as if it does not contribute anything to κ. However, when forgetting a vertex v that is not
coloured 2, we do take into account the possibility that f(v) = 1.

Since assigning label 1 to each vertex v ∈ V is enough to permanently dominate G, we can put an
upper bound on the value of κ again.

39

6.3 Permanent Roman Domination 6 PERMANENT DOMINATION

Algorithm 2: Permanent Roman Domination

PermRom(temporal graph G, nice tree decomposition X of G↓):
foreach node i of X in BFS manner from the leaves to the root r do

Let Ai be a table with an entry for each colouring c of Xi and value 1 ≤ κ ≤ n;
if i is a leaf node then

foreach colouring c of Xi do
for κ = 1 to n do

if c = (2) and κ = 2 then
Ai(c, κ) = 1;

else if c 6= (2) and κ = 0 then
Ai(c, κ) = 1

else
Ai(c, κ) = 0;

else if i is a forget node then
Let j be the child of i;
Let x be the forgotten vertex;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) =
Aj(c×{2} , κ) +

∑
cx∈{?,0̂}τ (−1)#0̂(cx)Aj(c×{cx} , κ) +Aj(c×{?} , κ−1);

else if i is an introduce node then
Let j be the child of i;
Let x be the introduced vertex;
foreach colouring c of Xj do

for κ = 1 to n do
foreach temporal colour cx do

if cx = 2 then
if κ < 2 then

Ai(c× {cx} , κ) = 0;

else if there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂ then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ− 2);

else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 2
then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ);

else
Let j and k be the children of i;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) =

∑
κl+κr=κ+2#2(c)

Aj (c, κl) ·Ak (c, κr);

for κ = 1 to n do
if A(∅, κ) > 0 then

return κ;

40

6.3 Permanent Roman Domination 6 PERMANENT DOMINATION

Leaf Nodes For each leaf node i in X , we have a bag Xi = (x) with only one element. Since we
ignore the label 1 for now, we initialize the table Ai for temporal colouring c = (cx) and size κ:

Ai(c, κ) =

 1 if cx = 2 and κ = 2
1 if cx 6= 2 and κ = 0
0 otherwise

Lemma 6.11. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
leaf node of X . Then Algorithm 2 correctly calculates the table Ai in O (n) time.

Proof of Lemma 6.11. We do not use the label 1 in leaf nodes in this problem. The label 2 takes
the role that label 1 took in the Permanent Dominating Set problem. Therefore it is trivial to
see that the proof for Lemma 6.7 also works for this lemma, if we replace the mentions of the label 1
by the label 2, and consider that if f(x) = 2, then x contributes 2 to the value of κ.

Forget Nodes LetXi =
(
xi1 , · · · , xini

)
be the bag of a forget node with childXj =

(
xi1 , · · · , xini , x

)
,

x being the forgotten vertex. Let

Ai(c, κ) = Aj(c× {2} , κ) +
∑

cx∈{?,0̂}τ
(−1)#0̂(cx)Aj(c× {cx} , κ) +Aj(c× {?} , κ− 1)

The first addent takes into account the temporal colourings where x is coloured 2, the second
addent takes into account the temporal colourings where x is coloured 0, and the final addent
takes into account the number of partial solutions f on j where x gets label f(x) = 0 of size
κ − 1, which is equivalent to the temporal colourings where x is coloured 1. These represent the
partial solutions f ′ on i where f ′(x) = 1 and f ′(v) = f(v) for all vertices v 6= x. We look up table
entries of size κ− 1 instead of κ, because x should contribute 1 to the size of the partial solution
if it is going to receive label 1, but does not do so yet in Aj , since it is regarded as a vertex with label 0.

Lemma 6.12. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
forget node of X with child j. Assume that Aj is correct. Then Algorithm 2 correctly calculates the
table Ai in O (n (2τ + 1)

nj) time.

Proof of Lemma 6.12. Let i be a forget node with child j, and let x be the vertex that is forgotten.
Let c be a temporal colouring on Xi and let 0 ≤ κ ≤ n. Replacing the label 1 by the label 2, Lemma
6.8 shows that any partial solution of size κ on j that satisfies c× {2} or c× {0}, is also a partial
solution on i. Furthermore, any partial solution of size κ on j that satisfies c× {1} is also a partial
solution on i, since then we also know that x is permanently dominated (by itself). However, the
algorithm does not have access to Aj(c× {1} , κ) since we do not use the colour 1. There is another
way to calculate this value.

We introduce the transformation λ : Bj(c× {?} , κ− 1)→ Bj(c× {1} , κ). For any partial solution f
on j of size κ− 1 that satisfies c× {?}, let λf : Vi → {0, 1, 2} be a domination function defined as:

λf(v) =

{
1 if v = x
f(v) otherwise.

We know that all vertices v ∈ Xi other than x receive the label λf(v) = f(v) assigned to them by
c. Any vertex v ∈ Vj/Xj is permanently dominated by λf since it is also permanently dominated
by f , and x does not dominate any other vertex in either f or λf . Since x now contributes 1
to the value of |λf |, increasing it by 1 compared to |f |, we have that |λf | = κ. Therefore, if
f ∈ Bj(c × {?} , κ − 1) then λf ∈ Bj(c × {1} , κ). Also, it is clear that if for two partial solutions
f, g ∈ Bj(c× {?} , κ− 1) we have f 6= g, then also λf 6= λg since they must differ on a vertex other
than x and thus Aj(c× {?} , κ− 1) ≤ Aj(c× {1} , κ).

41

6.3 Permanent Roman Domination 6 PERMANENT DOMINATION

It is easy to see that this same argument on the inverse transformation λ−1 : Bj(c×{1} , κ)→ Bj(c×
{?} , κ−1) implies that Aj(c×{?} , κ−1) ≥ Aj(c×{1} , κ) and thus Aj(c×{?} , κ−1) = Aj(c×{1} , κ).
Therefore we now have:

Ai(c, κ) = Aj(c× {2} , κ) +Aj(c× {1} , κ) +Aj(c× {0} , κ)

= Aj(c× {2} , κ) +Aj(c× {?} , κ− 1) +
∑

cx∈{?,0̂}τ
(−1)#0̂(cx)Aj(c× {cx} , κ)

This means that Ai is correctly calculated by Algorithm 2 if Aj is correct.

Compared to Algorithm 1, we only consider one extra table entry of Aj per table entry of Ai in a
forget node. Therefore the time complexity remains the same as for forget nodes in that algorithm.

Introduce Nodes Let Xi =
(
xi1 , · · · , xinj , x

)
be the bag of an introduce node that introduces

vertex x. Let Xj =
(
xj1 , · · · , xjnj

)
be its child. Again, we ignore the label 1. Let c× {cx} be the

temporal colouring for Xi, where cx is the temporal colour assigned to new vertex x. Let

Ai(c×{cx} , κ) =

0 if cx = 2 and κ < 2

0 else if cx = 2 and there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂

0 else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 2
Aj(c, κ− 2) else if cx = 2 and κ > 0
Aj(c, κ) otherwise

Lemma 6.13. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i a
introduce node of X with child j. Assume that Aj is correct. Then Algorithm 2 correctly calculates
the table Ai in O (n (2τ + 1)

ni) time.

Proof of Lemma 6.13. The proof of Lemma 6.9 also works here, if we replace mentions of label 1
with label 2, and consider that any vertex x with f(x) = 2 contributes 2 to the size of κ.

Join Nodes Let Xi =
(
xi1 , · · · , xini

)
be the bag of a join node with children j, k with Xi = Xj =

Xk. Let

Ai(c, κ) =
∑

κl+κr=κ+2#2(c)

Aj (c, κl) ·Ak (c, κr)

where #2(c) := | {ca ∈ c : ca = 2} |. We add 2#2 to the right side of the equation because each vertex
that is coloured 2 adds 2 to the value of κ, and otherwise we would count the vertices from Xi that
are coloured 2 twice.

Lemma 6.14. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓ and i
a join node of X with children j and k. Assume that Aj and Ak are correct. Then Algorithm 2
correctly calculates the table Ai in O

(
n2 (2τ + 1)

ni
)
time.

Proof of Lemma 6.14. The proof of Lemma 6.10 also works here, if we replace mentions of label
1 with label 2, and consider that any vertex x with f(x) = 2 contributes 2 to the size of κ.

42

7 PERIODIC DOMINATION

Termination This happens in the same way as in Algorithm 1.

Theorem 6.3. Algorithm 2 solves Permanent Roman Domination correctly.

Proof of Theorem 6.3. The proof of Theorem 6.1 in combination with the proofs for Lemmas
6.11, 6.12, 6.13 and 6.14 imply that the partial solutions on the root node are permanent rdf’s.
Therefore Algorithm 2 correctly solves Permanent Roman Domination.

Theorem 6.4. Permanent Roman Domination can be solved in O
(
n3 (2τ + 1)

`+1
)
time and

O
(
n (2τ + 1)

`+1
)
space, where ` is the treewidth of the temporal graph.

Proof of Theorem 6.4. All nodes are handled with the same time and space complexity as in
Algorithm 1.

7 Periodic Domination

This section covers the Periodic Domination requirement, applied to Dominating Set and
Roman Domination. The problems are as follows:

Problem 7.1. Periodic Dominating Set: Given a temporal graph G = (V,E, τ, λ), find the
size of a minimum periodic sdf.

Problem 7.2. Periodic Roman Domination: Given a temporal graph G = (V,E, τ, λ), find
the size of a minimum periodic rdf.

Though the problems that we have analyzed so far are indeed problems on temporal graphs, one might
argue that they are not “temporal” in the true definition of the word. We have defined these problems
using the set of layers and their appropriate edge sets, but we do not need all the information in
temporal graphs to do so. We could have simply used a set of factors instead of layers: graphs
sharing the same vertex set that appear in no particular order. The order of the time steps has no
consequence of the solution of any of those problems. Permanent Dominating Set has already
been studied previously in this way under the name Simultaneous Domination. If the order of
the layers is of no consequence, are we truly dealing with a temporal problem? The word “temporal”,
after all, relates to time specifically. Not just the events but also the order in which they occur are
essential when talking about time.

The reason why the order of the time steps is important for the solution to Periodic Domination,
is that the order of the time steps defines the time windows defined in Definition 4.4. The order
of time windows themselves, however is not important. This allows us to solve these problem by
transforming G into a new temporal graph.

Definition 7.1. Let G = (V,E, τ, λ) be a temporal graph, θ a period and Gθ1, · · · , Gθτ+1−θ the windows
of G. Then the temporal graph Gθ =

(
Gθ1, · · · , Gθτ+1−θ

)
is called the θ-collapsed time window

graph, or simply the θ-collapsed graph of G.

Gθ is a temporal graph where each layer is one of the windows. We can solve Permanent Dominating
Set, Permanent Roman Domination on Gθ to get solutions to Periodic Dominating Set and
Periodic Roman Domination respectively.

Lemma 7.1. Let G = (V,E, τ, λ) be a temporal graph, R a domination rule, θ a period and
Gθ1, · · · , Gθτ+1−θ the windows of G. Then solving Periodic Domination for G and R is equivalent
to solving Permanent Domination for Gθ and R.

43

8 EVOLVING DOMINATION

Proof of Lemma 7.1. It is easy to see from Definitions 4.3 and 4.5 that any R-periodic function
for G is also an R-permanent function for Gθ and vice versa. Therefore any minimum R-permanent
function on Gθ is also a minimum R-periodic function for G.

Figure 7.1: The collapsed graph corresponding to the temporal graph from Figure 4.1 and θ = 2. The solution
to RDom-Permanent Domination on the collapsed graph also solves RDom-Periodic Domination on the original
graph.

Theorem 7.1. Periodic Dominating Set and Periodic Roman Domination can be solved
in O

(
n3
(
2τ+1−θ + 1

)`+1
)
time and O

(
n
(
2τ+1−θ + 1

)`+1
)
space, where ` is the treewidth of the

underlying graph G↓.

Proof of Theorem 7.1. Transforming G into Gθ takes O (τθ) time, since we need to gather θ
edge sets and unify them τ + 1− θ times. The lifetime of Gθ is τ + 1− θ. Furthermore, Gθ↓ = G↓
because they have the same vertex and edge set. Let X be a nice tree decomposition of G↓ of width
`. Then solving Permanent Dominating Set or Permanent Roman Domination on Gθ takes
O
(
n3
(
2τ+1−θ + 1

)`) time by Theorems 6.2 and 6.4. By Lemma 7.1, the solutions to these problems
are the same as for Periodic Dominating Set and Periodic Roman Domination on G.

8 Evolving Domination

This section covers Evolving Domination. For specific domination rules, the problems are as
follows:

Problem 8.1. Evolving Dominating Set: Given a temporal graph G = (V,E, τ, λ), find the
total size

∑
t∈T |ft| of a sequence of domination functions (f1, · · · , fτ) such that ft is a minimum

sdf for Gt.

Problem 8.2. Evolving Roman Domination: Given a temporal graph G = (V,E, τ, λ), find
the total size

∑
t∈T |ft| of a sequence of domination functions (f1, · · · , fτ) such that ft is a minimum

rdf for Gt.

Problem 8.3. Evolving Weak Roman Domination: Given a temporal graph G = (V,E, τ, λ),
find the total size

∑
t∈T |ft| of a sequence of domination functions (f1, · · · , fτ) such that ft is a

minimum wdf for Gt.

8.1 Maintenance Algorithms
Up until now all problems we have covered ask for a single domination function that dominates all
vertices in some way. Evolving Domination is quite different. It asks for a separate domination
function for each time step. In essence it asks us to solve τ static problems. There is an obvious way
to solve this problem.

44

8.1 Maintenance Algorithms 8 EVOLVING DOMINATION

Theorem 8.1. Let h be some computable function and R ∈ {RDom, RRom, RWeak} a domination
rule. Let AR be an algorithm that solves R-Domination and let TR be a function such that the
required running time for AR for input X is O (TR(X)). Then Evolving Domination for R can be
solved in O (τTR(X)) time where X is the input corresponding to the layer that takes the largest
amount of time for AR.

The proof for this theorem is trivial. We simply apply AR to each layer to get the size of a minimum
domination function. Then we return the sum of thoses sizes. This method of solving Evolving
Domination will be referred to as the trivial solution. The main question regarding Evolving
Domination is if it is possible to do it faster. Casteigts and Flocchini [8] proposed a question
regarding Evolving Domination. After rephrasing for generality, this question becomes:

“Given any temporal graph G and a minimum R-domination function for layer Gi, is it possible to
compute a minimum R-domination function for layer Gi+1 more quickly than computing it from

scratch?”

By “computing it from scratch”, we specifically mean computing it with the current fastest algorithm
A′R that does so with running time O (T ′R(X)) for input X. If we can beat the running time of A′R
by using the solution to the previous layer, we can improve the required time of O (τT ′R(X)) required
for Evolving Domination. There is no guarantee, however, that the layers of a temporal graph are
similar in any way, except for the fact that they all have the same number of vertices. Therefore this
question is equivalent to:

“Given any two static graphs G and H with the same number of vertices and a minimum
R-domination function for H, is it possible to compute a minimum R-domination function for G

more quickly than computing it from scratch?”

The answer to this last question is obviously “No.” It may be true in some cases, but if it were true for
any two static graphs of the same size then, in particular, for any algorithm AR for R-Domination
that runs in O (TR(X)) time, we can solve R-Domination on any graph G = (V,E) faster than in
O (TR(X)) time by taking a minimum R-domination function (trivial) for H = (V, ∅) and applying
some black box algorithm to it. The obtained running time could then, again, be improved in the
same way, and so on.

Casteigts and Flocchini then specificially pose the question for temporal graphs where the layers are
neighbour graphs.

Definition 8.1. Let G = (V,E) be a static graph and e ∈ E some edge. Then G and H = (V,E/ {e})
are each other’s neighbour graphs. In addition, any static graph is its own neighbour graph.

An algorithm that solves a problem on some static graph G by using a known solution to the same
problem on a neighbour graph, is called a maintenance algorithm.

Definition 8.2. Let R be a domination rule. A maintenance algorithm is an algorithm that
computes a minimum R-domination function for any static graph G given a minimum R-domination
function on any neighbour graph H of G.

To use a maintenance algorithm on a temporal graph, we require all the layers to be neighbour graphs
of their predecessor and successor. Such a graph will be called a cozy temporal graph.

Definition 8.3. Let G = (G1, · · · , Gτ) be a temporal graph. If Gt and Gt+1 are neighbour graphs
for each t < τ , then we call G a cozy temporal graph2.

Once again, let A′R be the current fastest constructive algorithm that solves R-domination, and let
O (T ′R(X)) be its running time for input X. Let BR be a maintenance algorithm that finds a minimum
R-domination function on a static graph G given a minimum R-domination function on a neighbour
graph H in O (SR(X)) time for input X and assume that this is faster than O (T ′R(X)). On a cozy
temporal graph G = (G1, · · · , Gτ) we could then use A′R to find a minimum R-domination function for
G1 and use BR for every other layer. The required running time would then be O (T ′R(X1) + τSR(X))
time where X1 is the input corresponding to layer G1 and X is the input corresponding to the layer
that takes the largest amount of time for BR. X includes the corresponding layer graph and a
minimum R-domination function for the previous layer.

2Hjuler et al. [22] use the term dynamic graph instead of cozy graph, though other articles use that term to refer to
temporal graphs in general, or to a graph structure not only the edges but also the vertices can appear and disappear
each time step. To avoid confusion, we have decided to use a new name.

45

8.1 Maintenance Algorithms 8 EVOLVING DOMINATION

Note that our definition of a maintenance algorithm involves finding an actual minimum R-domination
function, not just the size of one. In other words, it has to be constructive. In the above example
we also require A′R to be constructive. We include these requirement because in order to use a
maintenance algorithm, we need a solution to the previous layer.

As Casteigts et al. [9] show, any NP-hard problem Π cannot have a polynomial maintenance algorithm
unless P = NP . Indeed, if Π did have such an algorithm then we could find a solution on any static
graph G = (V,E) by first finding trivial solution S0 on G0 = (V, ∅) and add the edges in E step by
step to obtain Gi = (V,Ei) where E = {e1, · · · , em} and Ei = {e1, · · · , ei} and maintain the solution
Si for every step using this maintenance algorithm until we find solution Sm for Gm = G. This would
take polynomial time. Furthermore, they show that any problem Π that is W [1]−hard for parameter
k cannot have an O (f(k)p(n)) time maintenance algorithm where f is any computable function and
p is a polynomial, unless W [1] = FPT . Therefore, to improve Evolving Domination for cozy
temporal graphs beyond the trivial solution, we will need to find exponential time maintenance
algorithms that still beat the best current static algorithms. Then again, this can only be succesful if
the fastest current algorithm for the corresponding problem is constructive, since our maintenance
algorithm needs to be assisted by a constructive algorithm in the first step.

Even if this is possible, we will only have a solution for cozy temporal graphs. Temporal graphs are
not always cozy, but we can transform a temporal graph into a cozy temporal graph.

Definition 8.4. Let G = (G1, · · · , Gτ) be a temporal graph and t < τ a time step. Let H1
t , · · · , Hk

t

be a sequence of ordered neighbour graphs such that H1
t = Gt and such that Hk

t is a neighbour graph
of Gt+1. Then H1

t , · · · , Hk
t is a bridge for Gt and Gt+1.

A bridge is called minimum if it contains the minimum number of layers required to create a bridge
between Gt and Gt+1. If Gt and Gt+1 are already neighbours, a minimum bridge will only consist of
Gt. Using bridges, we can transform any temporal graph into a cozy one.

Definition 8.5. Let G = (G1, · · · , Gτ) be a temporal graph. For every time step t < τ , let
H1
t , · · · , H

kt
t be a minimum bridge for Gt and Gt+1. Then

G′ = (H1
1 , · · · , H

k1
1 , H1

2 , · · · , H
k2
2 , · · · · · · , H1

τ−1, · · · , H
kτ−1

τ−1 , Gτ)

is a cozy transformation for G.
Solving Evolving Domination on a cozy transformation of G will also solve it on G. Of course, the
lifetime of a cozy transformation may be much longer than τ , so if we used a maintenance algorithm
on a cozy transformation, we may be required to perform the maintenance algorithm many times. To
remedy this, it would be possible to first change the order of the layers in G such that the sum of the
lengths of the minimum bridges between the layers would be minimized to obtain G′ before creating
a cozy transformation G′′ of that. Solving Evolving Domination on G′′ will also solve it on G. For
simplicity, assume that the layers of any temporal graph mentioned in this section are already in
such an optimal order. Let us use σ to denote the lifetime of a cozy transformation of G. Even if we
did find a maintenance algorithm BR that takes O (SR(X)) time for R-Domination, and is faster
than the fastest current algorithm A′R, which solves it in O (T ′R(X)) time, and assuming that A′R is
indeed constructive, it would take O (T ′R(X1) + σSR(X)) time to solve Evolving Domination in
this way. However, there is another way to do it, without needing A′R to kickstart our algorithm.

Definition 8.6. Let G = (G1, · · · , Gτ) be a temporal graph with vertex set V and let G∅ = (V, ∅).
Let G∅ be a temporal graph that includes G∅ as a layer in addition to all the layers of G and these
layers are in an order such that a cozy transformation of G∅ has a minimum lifetime. The cozy
transformation of G∅ is called a nice cozy transformation of G.
A nice cozy transformation includes a layer without edges. Computing a solution to R-Domination
on this layer is trivial. We can use this solution as input for the maintenance algorithm. This
allows us to start at layer G∅ and use the maintenance algorithm to compute solutions for the
neighbours of G∅ in the nice cozy transformation and so on. Let ρ denote the lifetime of a nice
cozy transformation of G, and let BR be a maintenance algorithm that takes O (SR(X)) time for
input X, then we can solve Evolving Domination on G in O (ρSR(X)) time where X is the input
corresponding to the layer that takes the longest for BR to process. The size of a bridge can not be
larger than m, since there are m edges at most that have to be changed to transform a layer Gt into
its successor Gt+1. Therefore we know that ρ ≤ m(τ + 1). This makes the required running time
of our method O (mτSR(X)). Therefore, this method is an improvement over the trival solution if
mSR(X) < T ′R(X).

46

8.2 Using the Trivial Solution 9 K-FOLD DOMINATION

Theorem 8.2. Let BR be a maintenance algorithm for R-Domination that runs in O (SR(X))
time for input X, then we can solve R-Domination in O (mSR(X)) time.

Proof of Theorem 8.2 Let G = (V,E) be a static graph, e1, · · · , em the edges of E and let
G0, · · · , Gm be a sequence of neighbour graphs such that Gi = (V, {e1, · · · , ei}). The solution to
R-Domination on G0 is trivial. Now, by using BR m times, we can create a solution to G. Therefore,
we can solve R-Domination on G in O (mSR(X)) time.

This is no proof that such a maintenance algorithm can not exist, rather it shows that finding one
would mean finding an algorithm that solves R-Domination faster than the current fastest algorithm.
This is beyond the scope of this thesis.

8.2 Using the Trivial Solution
Leaving maintenance algorithms behind (for now), we are back to using the trivial solution. We
will once again refer back to the fastest algorithms for Dominating Set and (Weak) Roman
Domination, which are stated in Section 5. Using the algorithm by Iwata [23] for Dominating
Set, the one by Shi and Koh [28] for Roman Domination and the one by Chapelle et al. [10] for
Weak Roman Domination, we obtain the following results.

Theorem 8.3. Evolving Dominating Set can be solved in O (τ1.4689n) and space.
Theorem 8.4. Evolving Roman Domination can be solved in O (τ1.5014n) and exponential
space.
Theorem 8.5. Evolving Weak Roman Domination can be solved in O∗(τ2n) and exponential
space.3

9 k-Fold Domination

k-Fold Domination is a problem that is a natural follow up to Temporary Domination and
Permanent Domination. To our knowledge, the problem has not been covered previously.

9.1 k-Fold Dominating Set
In this section we will cover the Dominating Set variant of k-Fold Domination. The algorithm
we present will be very similar to 1. The algorithm for the Roman Domination variant will use the
same concepts introduced here.

Problem 9.1. k-Fold Dominating Set: Given a temporal graph G = (V,E, τ, λ) and a positive
integer k ≤ τ , find the size of minimum k-fold sdf.

To solve k-Fold Domination for the Dominating Set and Roman Domination domination
rules, we can adapt the parameterized algorithm from Section 6. We only need to change Algorithm
1 in the following ways:

- The definition for a partial solution f needs to be changed such that f dominates every vertex
v ∈ Vi/Xi k-fold in G[Vi], instead of permanently dominating them.

- In the forget nodes, we should allow partial solutions that staisfy temporal colourings c such
that the forgotten vertex x is coloured 0 on at least k time steps.

The definition for (satisfying) temporal colourings remains the same as in Section 6.1. The table
entry Ai(c, κ) for node i of X still stores the number of partial solutions of size κ on i that satisfy
temporal colouring c, although the definition of partial solution is now different. Nodes i of other
types will be processed in the same way as in Algorithm 1, and we will show that this will always
result in a correct table Ai. The new formal definition for partial solutions is as follows:

3The O∗ notation here means that there may be another polynomial factor in n.

47

9.1 k-Fold Dominating Set 9 K-FOLD DOMINATION

Definition 9.1. Let G = (V,E, τ, λ) be a temporal graph, X = ({X1, · · · , Xk} , X) a nice tree
decomposition of the underlying graph G↓, i a node of X and k ≤ τ a positive integer. A partial
solution of node i is a domination function f : Vi → N0 such that f dominates every vertex
v ∈ Vi/Xi in G[Vi] k-fold.

To handle the forget nodes, we need to define the indicator function Ik :
{

?, 0̂
}τ → {1, 0} such that:

Ik(cx) =

{
1 if #0̂(cx) > τ − k
0 otherwise. .

48

9.1 k-Fold Dominating Set 9 K-FOLD DOMINATION

Algorithm 3: k-Fold Dominating Set

FoldDom(temporal graph G, nice tree decomposition X of G↓, positive integer k ≤ τ):
foreach node i of X in BFS manner from the leaves to the root r do

Let Ai be a table with an entry for each colouring c of Xi and value 1 ≤ κ ≤ n;
if i is a leaf node then

foreach colouring c of Xi do
for κ = 1 to n do

if c = (1) and κ = 1 then
Ai(c, κ) = 1;

else
Ai(c, κ) = 0;

else if i is a forget node then
Let j be the child of i;
Let x be the forgotten vertex;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) = Aj(c× {1}, κ) +Aj(c× {?}, κ)−∑

cx∈{?,0̂}τ Ik(cx)(−1)#0̂(cx)+τ−kAj (c× {cx} , κ);

else if i is an introduce node then
Let j be the child of i;
Let x be the introduced vertex;
foreach colouring c of Xj do

for κ = 1 to n do
foreach temporal colour cx do

if cx = 1 then
if κ = 0 then

Ai(c× {cx} , κ) = 0;

else if there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂ then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ− 1);

else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 1
then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ);

else
Let j and k be the children of i;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) =

∑
κl+κr=κ+#1(c)

Aj (c, κl) ·Ak (c, κr);

for κ = 1 to n do
if A(∅, κ) > 0 then

return κ;

Leaf Nodes Leaf nodes are handled in the same way as in Algorithm 1. The proof given for
Lemma 6.7 still holds for leaf nodes i in Algorithm 3 because Xi only has one vertex that does
not need to be dominated by a partial solution. Therefore a partial solution on a leaf node for the
permanent variant is also a partial solution on a leaf node for the k-fold variant, and vice versa.

49

9.1 k-Fold Dominating Set 9 K-FOLD DOMINATION

Forget Nodes Let i be a forget node with bag Xi =
(
xi1 , · · · , xini

)
and whose child j has bag

Xj =
(
xi1 , · · · , xini , x

)
where x is the forgotten vertex. Then, for k-Fold Dominating Set, we let

Ai(c, κ) = Aj(c× {1}, κ) +Aj(c× {?}, κ)−
∑

cx∈{?,0̂}τ
Ik(cx)(−1)#0̂(cx)+τ−kAj (c× {cx} , κ) .

This formula ensures that we only disregard partial solutions for which x has less than k dominated
vertex appearances. We use the indicator function Ik to make sure only temporal colours cx that
correlate to such partial solutions are taken into account in the sum. We use the exponent #0̂(cx)+τ−k
for (−1) to make sure the partial solutions correlating to temporal colourings with exactly one instance
of 0̂ too many are subtracted. After all, for a temporal colour cx with #0̂(cx) = τ − k + 1 (there
is at least one 0̂ too many) we have that #0̂(cx) + τ − k = τ − k + 1 + τ − k = 2(τ − k) + 1 is an
odd number. We use the inclusion-exclusion formula to make sure we do not subtract certain partial
solutions too often.

Lemma 9.1. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓, k ≤ τ a
positive integer, and i a forget node of X with child j. Assume that Aj is correct. Then Algorithm 3
correctly calculates the table Ai in O (n(2τ + 1)nj) time.

Proof of Lemma 9.1. Let Xi =
(
xi1 , · · · , xini

)
and let Xj =

(
xi1 , · · · , xini , x

)
where x is the

forgotten vertex. It is clear that partial solutions f on j that satisfy c × {1} also satisfy c on i.
Partial solutions f on j that satisfy c × {cx} for some temporal colour cx ∈

{
0, 0̂
}τ

satisfy c on i
only if #0̂(cx) ≤ τ − k.

For any node k of X , let Bk be a table such that Bk(c, κ) is the set of partial solutions on k
that satisfy c of size κ. By arguments similar to those in the proof of Lemma 6.5, we know that
Bj(c×{?} , κ)/

⋃
#0̂(cx)>τ−k

Bj(c×{cx} , κ) is the set of partial solutions f with f(x) = 0 that satisfy
c on i.

For each time step t ∈ T , let Ct be the temporal colour for x such that coordinate t has value 0̂ and

all other coordinates have value ?. Cst =

{
0̂ if s = t
? otherwise . Now let Bti = Bi(c× {Ct} , κ). Note

that for any positive integer y ≤ τ , a partial solution f that is included in Bt1i ∩ · · · ∩B
ty
i with

ta 6= tb for each pair of distinct indices a 6= b also satisfies the temporal colouring c× {C} where
coordinates t1, · · · , ty of C have value 0̂ and all the others have value ?. Conversely, a partial solution
f that satisfies temporal colouring c× {C} where coordinates t1, · · · , ty of C have colour 0̂ and the
others have colour ?, must be included in Bt1i ∩ · · · ∩B

ty
i . Therefore for any positive integer y ≤ τ ,

we have that ∑
1≤t1<···<ty≤τ

|Bt1i ∩ · · · ∩B
ty
i | =

∑
C∈{?,0̂}τ ,#0̂(C)=y

|Bi(c× {C} , κ)|.

Finally, if #0̂(cx) = τ − k + 1, then #0̂ (cx) + τ − k is an odd number. This allows us to use the
following equation.

50

9.1 k-Fold Dominating Set 9 K-FOLD DOMINATION

Ai(c, κ) = Aj(c× {1} , κ) + |Bj(c× {?} , κ)/
⋃

#0̂(cx)>τ−k

Bj(c× {cx} , κ)|

= Aj(c× {1} , κ) + |Bj(c× {?} , κ)| − |
⋃

#0̂(cx)>τ−k

Bj(c× {cx} , κ)|

= Aj(c× {1} , κ) +Aj(c× {?} , κ)− |
⋃

#0̂(cx)>τ−k

Bj(c× {cx} , κ)|

= Aj(c× {1} , κ) +Aj(c× {?} , κ)− |
⋃

#0̂(cx)=τ−k+1

Bj(c× {cx} , κ)| (By Lemma 6.4.)

= Aj(c× {1} , κ) +Aj(c× {?} , κ)− |
⋃

1≤t1<···<tτ−k+1≤τ

Bt1j ∩ · · · ∩B
tτ−k+1

j |

= Aj(c× {1} , κ) +Aj(c× {?} , κ)−
∑

1≤t1<···<tτ−k+1≤τ

|Bt1j ∩ · · · ∩B
tτ−k+1

j | (By the inclusion-exclusion principle.)

+
∑

1≤t1<···<tτ−k+2≤τ

|Bt1j ∩ · · · ∩B
tτ−k+2

j |

− · · ·
+ (−1)τ |B1

j ∩ · · · ∩Bτj |

= Aj(c× {1} , κ) +Aj(c× {?} , κ) +
∑

cx∈{?,0̂}τ
Ik(cx)(−1)#0̂(cx)+τ−k|Bj (c× {cx} , κ) |.

= Aj(c× {1} , κ) +Aj(c× {?} , κ) +
∑

cx∈{?,0̂}τ
Ik(cx)(−1)#0̂(cx)+τ−kAj (c× {cx} , κ) .

To calculate Ai, we need to look up n(2τ + 1)nj table entries, so the required time is O (n(2τ + 1)nj).

Introduce Nodes Introduce nodes i are handled by extending a partial solution on the child node
j by adding a single vertex x to the domain. This new vertex cannot have neighbours outside Xi.
Therefore the value the extended partial solution assigns to this new vertex cannot cause a vertex
outside Xi to become dominated. Moreover, the new vertex does not need to be dominated itself,
therefore the different definition for partial solutions brings no complications for the way we handle
introduce nodes, so Lemma 6.9 still holds.

Join Nodes Finally, join nodes i are handled by taking pairs of partial solutions for the two
children j and k that both satisfy the same colouring, and creating a new fused partial solution.
Since the vertices in Vj/Xi do not interact in any way with the vertices in Vk/Xi and we assume
they are both already dominated, Lemma 6.10 still holds.

Termination The root node is handled in the same way as in Algorithm 1.

Theorem 9.1. Algorithm 3 solves k-Fold Dominating Set correctly.

Proof of Theorem 9.1. This is easily proven by repeating the proof of Theorem 6.1, although we
have to replace the use of Lemma 6.8 with Lemma 9.1.

Theorem 9.2. k-Fold Dominating Set can be solved in O
(
n3 (2τ + 1)

`+1
)
time and O

(
n (2τ + 1)

`+1
)

space.

51

9.2 k-Fold Roman Domination 9 K-FOLD DOMINATION

Proof of Theorem 9.2. Since the bottleneck for the running time of this algorithm is still the
processing of the join nodes, the proof for this theorem is the same as for Theorem 6.2.

9.2 k-Fold Roman Domination
k-Fold Roman Domination can be solved by combining the new techniques introduced in the
previous subsection with the technique from Section 6.3.

Problem 9.2. k-Fold Roman Domination: Given a temporal graph G = (V,E, τ, λ) and a
positive integer k ≤ τ , find the size of minimum k-fold rdf.

To take into account the vertices that get label 1, we use the technique introduced in Section 6.3. For
any node i of X , we ignore the colour 1 for any vertex in Xi and only start taking this possibility

52

9.2 k-Fold Roman Domination 9 K-FOLD DOMINATION

into account when we forget the vertex.

Algorithm 4: k-Fold Roman Domination

FoldRom(temporal graph G, nice tree decomposition X of G↓, positive integer k ≤ τ):
foreach node i of X in BFS manner from the leaves to the root r do

Let Ai be a table with an entry for each colouring c of Xi and value 1 ≤ κ ≤ n;
if i is a leaf node then

foreach colouring c of Xi do
for κ = 1 to n do

if c = (2) and κ = 2 then
Ai(c, κ) = 1;

else
Ai(c, κ) = 0;

else if i is a forget node then
Let j be the child of i;
Let x be the forgotten vertex;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) = Aj(c× {2}, κ) +Aj(c× {?}, κ)−∑

cx∈{?,0̂}τ Ik(cx)(−1)#0̂(cx)+τ−kAj (c× {cx} , κ) +Aj(c× {?} , κ− 1);

else if i is an introduce node then
Let j be the child of i;
Let x be the introduced vertex;
foreach colouring c of Xj do

for κ = 1 to n do
foreach temporal colour cx do

if cx = 2 then
if κ < 2 then

Ai(c× {cx} , κ) = 0;

else if there is a vertex xik ∈ Nt(x) ∩Xi such that ctk = 0̂ then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ− 2);

else if ctx = 0̂ and there is a vertex xik ∈ Nt(x) ∩Xi such that ck = 2
then
Ai(c× {cx} , κ) = 0;

else
Ai(c× {cx} , κ) = Aj(c, κ);

else
Let j and k be the children of i;
foreach colouring c of Xi do

for κ = 1 to n do
Ai(c, κ) =

∑
κl+κr=κ+2#2(c)

Aj (c, κl) ·Ak (c, κr);

for κ = 1 to n do
if A(∅, κ) > 0 then

return κ;

Leaf Nodes, Introduce Nodes and Join Nodes

Lemma 9.2. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓, k ≤ τ a
positive integer, and i a leaf node, introduce node or forget node of X with child j (and k in case of a

53

10 MARCHING DOMINATION

join node). Assume that Aj (and Ak) is correct. Then Algorithm 4 correctly calculates the table Ai.

Proof of Lemma 9.2. Leaf, introduce and join nodes are handled in the same way as in Algorithm
2, since it does not matter in how many time steps they are dominated in such nodes. Therefore,
the proofs for Lemmas 6.11, 6.13 and 6.14 are sufficient to prove that these nodes are also handled
correctly here. Therefore, if i is any of those types of nodes, and its children (if they have any) have
correct tables, then Ai will be calculated correctly by Algorithm 4.

Forget Nodes Let i be a forget node with bag Xi =
(
xi1 , · · · , xini

)
and whose child j has bag

Xj =
(
xi1 , · · · , xini , x

)
where x is the forgotten vertex. Then the table is calculated as follows:

Ai(c, κ) = Aj(c×{2}, κ)+Aj(c×{?}, κ)−
∑

cx∈{?,0̂}τ
Ik(cx)(−1)#0̂(cx)+τ−k+2Aj (c× {cx} , κ)+Aj(c×{?} , κ−1).

Lemma 9.3. Let G = (V,E, τ, λ) be a temporal graph, X a nice tree decomposition of G↓, k ≤ τ a
positive integer, and i a forget node of X with child j. Assume that Aj is correct. Then Algorithm 4
correctly calculates the table Ai.

Proof of Lemma 9.3. Let i be a forget node of X with child j. We know that

Ai(c, κ) = Aj(c× {2} , κ) +Aj(c× {1} , κ) +Aj(c× {0} , κ).

In the proofs of Lemma 9.1 and Theorem 6.3 we have already shown that the way Algorithm 4
calculates Aj(c× {0} , κ) and Aj(c× {1} , κ) respectively are correct. Therefore we know that the
forget nodes are calculated correctly by Algorithm 4 if the child node j of i already has a correct
table.

Theorem 9.3. Algorithm 4 solves k-Fold Roman Domination correctly.

Proof of Theorem 9.3. Lemmas 9.2 and 9.3 show that all nodes are calculated correctly. This,
in combination with the proof for Theorem 9.1 is enough to proof this theorem.

Theorem 9.4. k-Fold Roman Domination can be solved in O
(
n3 (2τ + 1)

`+1
)
time and O

(
n (2τ + 1)

`+1
)

space.

Proof of Theorem 9.4. All node types take the same amount of time as in Algorithm 3. Since
the bottleneck for the running time of this algorithm is still the processing of the join nodes, the
proof for this theorem is the same as for Theorem 6.2.

10 Marching Domination

The Marching Domination problem is similar to Permanent Domination in the sense that
every vertex needs to be dominated on every time step. However in this problem, the “armies” are
allowed to move every at the end of each time step t. They are, however, limited to using only edges

54

10 MARCHING DOMINATION

that exist in layer Gt. Of course, they do not have to move. A solution where every vertex receives
one army which does not move during the entire lifetime of the graph is a valid solution for all three
variants of the problem, therefore we can put an upper bound of n on the number of armies k.

In order to solve the minimization problem which minimizes the number of armies used, we first
solve the decision problem k-Marching Domination where the desired number of armies k is
already set and we need to figure out whether or not a marching domination of the given size k exists.
We will provide an algorithm which uses a combination of branching and dynamic programming
techniques. Rather than providing three separate algorithms for the three problems, our algorithm
works for all three variants of k-Marching Domination. This algorithm can then be used to solve
the minimization problems.

Problem 10.1. k-Marching Dominating Set: Given a temporal graph G = (V,E, τ, λ) and
a positive integer k, decide whether an RDom-marching domination of size k exists.

Problem 10.2. k-Marching Roman Domination: Given a temporal graph G = (V,E, τ, λ)
and a positive integer k, decide whether an RRom-marching domination of size k exists.

Problem 10.3. k-Marching Weak Roman Domination: Given a temporal graph G =
(V,E, τ, λ) and a positive integer k, decide whether an RWeak-marching domination of size k exists.

The dynamic programming part of our algorithm relies on the following: If we know that there is a
strategy s of size k that dominates the first t− 1 layers, we know the position of the armies on time
step t− 1 and we know that moving the armies in a certain way will allow s to dominate layer Gt,
then we know there is a strategy of size k that dominates the first t layers. To formalize this, we
introduce the notion of a t-partial solution.

Definition 10.1. Let G = (V,E, τ, λ) be a temporal graph and t a time step. A t-partial solution
is a marching domination on the temporal graph Gt = (G1, · · · , Gt).

In each step of the algorithm, we will attempt to move the armies around the graph. We will use
the notion of intermediate functions from Section 4.8. We will also use a slightly altered version of
partial and valid moves from that section.

Definition 10.2. Let G = (V,E, τ, λ) be a temporal graph, t a time step and f : V → N0 a
domination function on Gt using k armies. Let g : V → N2

0 be an intermediate function on Gt. If
{u, v} ∈ Et and g(u).x > 0, or if u = v, then the intermediate function gu→v is called a partial
move for g on time step t. Now let g0, · · · , gk be a sequence of k intermediate functions on Gt
such that g0(v).x = f(v) for every vertex v ∈ V and gi is a partial move for gi−1 on time step t for
1 ≤ i ≤ k. Let f ′(v) = gk(v).x+ gk(v).y for all vertices v ∈ V . Then f ′ is a valid move for f on
time step t.

Figure 10.1: A temporal graph with τ = 2. Each individual arrow in the first picture each represents a partial move.
Together, they form a valid move. The second picture shows the result of the valid move for the next time step.

A valid move is a possible way to move the armies using the edges of layer Gt. Note that a sequence
of k intermediate functions such as in Definition 10.2 can move any army at most once, since gu→v
decreases the x coordinate of its label for u compared to g, and increases only the y coordinate of its
label for v compared to g. Since k movements are performed, every army can either move over one
edge, or remain on its current vertex.

55

10.1 Positive Instance Based Dynamic Programming 10 MARCHING DOMINATION

10.1 Positive Instance Based Dynamic Programming
We create a table A. Let f : V → N0 be some domination function and t some time step. Then
table entry A(f, t) contains the value true if there exists a t-partial solution s on G such that st = f
which still has a chance to lead to a solution. It contains the value false if no t-partial solution s
exists such that st = f , or if all such t-partial solutions have been confirmed not to lead to a solution.
Finally, it contains the value unexplored if the algorithm has not tried this domination function yet
on this time step. This type of algorithm is called a positive instance based dynamic programming
algorithm because we use dynamic programming, but only explore table entries which can still lead
to a correct solution.

The input of the algorithm is the temporal graph, the value of k and a domination rule R. The
algorithm starts by exploring the first unexplored entry A(f, 1) in the first column relating to time
step 1. Whenever we explore a previously unexplored table entry A(f, t), we first check if f is an
R-domination function on layer Gt. If f is an R-domination function on layer Gt, the value of A(f, t)
is changed to true, and we can continue exploring this possibility. We will then choose a valid move
f ′ for f and start exploring A(f ′, t+ 1). If f is not an R-domination function on layer Gt, the value
of A(f, t) is changed to false. If A(f, t) = true but we have A(f ′, t+ 1) = false for every possible
valid move f ′ for f , then we know that this possibility can never lead to a solution, and thus the
value of A(f, t) is changed to false.

Whenever we set a table entry to false, or whenever we start exploring a valid move that leads to a
table entry that is already set to false, we stop exploring this table entry and return to the last
table entry that we encountered with the value true or, if no such table entry exists, to the next
unexplored entry in the first column of the table. Therefore the algorithms order of exploring table
entries is reminiscent of depth-first search.

If all entries in the first column of the table are set to false, the algorithm returns false, meaning
that no marching domination of size k exists on G. If we encounter a table entry A(f, τ) which is set
to true, the algorithm returns true, meaning that there exists a marching domination of size k on G.

56

10.1 Positive Instance Based Dynamic Programming 10 MARCHING DOMINATION

Algorithm 5: Marching Domination

March(temporal graph G, domination rule R):
for integer k = 1 to n do

if Exists(k) then
return k;

;
;
Exists(integer k):

foreach domination function f on G1 of size k do
Explore(f, 1);
if A(f, 1)==true;
then

return true;

return false;
;
;
Explore(domination function f, time step t):

if f is an R-domination function on Gt then
if t==τ then

A(f, τ) = true;
return;

else
foreach valid move f ′ for f on Gt do

if A(f ′, t+ 1)==unexplored then
Explore(f ′, t+ 1);
if A(f ′, t+ 1)==true then

A(f, t) = true;
return;

A(f, t) = false;
return;

Theorem 10.1. Algorithm 5 correctly solves the Marching Domination problem.

Proof of Theorem 10.1. Let us first prove that the Exists algorithm is correct. Let G =
(V,E, τ, λ) be a temporal graph, R a domination rule and k ≤ n a positive integer. We have to
prove that if there is an R-marching domination of size k on G, then Exists(k) returns true, and it
returns false otherwise.

First, let us assume that such a marching domination s = {a1, · · · , ak} exists. We know that for each
time step t, the domination function st is an R-domination function on layer Gt. Therefore, if the
algorithm reaches the entry A(s1, 1), it will find that s1 is an R-domination function on G1, and will
start exploring valid moves for s1 on time step 1.

Let t < τ be some time step. Assume the algorithm is exploring all valid moves for st on some time
step t < τ . The algorithm may terminate before exploring A(st+1, t+ 1), in which case it will return
true. If it does reach A(st+1, t+ 1), it will find that st+1 is an R-domination function on time step
t+ 1 and thus either terminates (if t+ 1 = τ) or starts exploring all valid moves for st+1 on time
step t+ 1. Through induction, we find that Exists(k) will eventually terminate with value true:
either by finding A(sτ , τ), or by some route it finds earlier.

Now assume that such a marching domination does not exist. For contradiction, assume that
Exists(k) returns true. For that to happen, there must be a domination function sτ such that
A(sτ , τ) = true. If the algorithm explores a table entry A(st, t) for some time step t > 1, st must be
a valid move for some domination function st−1 on time step t, which is an R-domination function for

57

10.1 Positive Instance Based Dynamic Programming 10 MARCHING DOMINATION

Gt. Through induction we then know there must be a sequence (s1, · · · , sτ) of domination functions
such that A(st, t) = true for every time step t and st+1 is a valid move for st on time step t for every
time step t < τ . Then there must be an R-marching domination s = {a1, · · · , ak} which induces the
domination functions s1, · · · , sτ , which is a contradiction. Therefore, we know that Exists correctly
solves the k-Marching Domination Problem.

We perform Exists(k) for each k ∈ {1, · · · , n}. We know that March will eventually terminate,
because putting one army on each vertex and leaving them there on each time step induces a correct
solution of size n. Therefore we know that Algorithm 5 correctly solves Marching Domination.

Theorem 10.2. The k-Marching Domination decision problem can be solved using O
((
n+k−1

k

)
ndk+1τ

)
time for RDom and RRom, and O

((
n+k−1

k

)
ndk+3τ

)
for RWeak, and O

((
n+k−1

k

)
τ
)
space.

Proof of Theorem 10.2. A worst-case scenario is one where every table entry is processed. This
happens when every table entry results in a true, except those corresponding to the last time step,
since setting any one of these entries to true could terminate the algorithm before all table entries
are processed. A graph that is a clique on every time step except for the last time step, where all
edges suddenly disappear would lead to this scenario, as long as k < n.

There are k armies and n vertices. A domination function places each of these k armies on another
vertex. The armies become indistinguishable as it does not matter which armies are placed on vertex
v, only how many. The vertices remain distinguishable. Therefore the number of possible domination
functions and therefore the number of table entries in one column is equal to the number of ways we
can distribute k indistinguishable objects over n boxes, which is equal to

(
n+k−1

k

)
[27]. Therefore,

there are
(
n+k−1

k

)
τ table entries in the table. This proves the claimed space requirement.

Every table entry is processed in this worst-case scenario, which means we check for each domination
function if it is an R-domination function. For R ∈ {RDom, RRom}, this means checking the closed
neighbourhood of every vertex, taking O (nd) time, d being the maximum degree over all layers. For
R = RWeak, it is a bit more complicated. If some vertex v has no army stationed on itself and does
not have neighbours with two or more armies, but does have at least one neighbour u with one army,
then we have to check if v is safely or unsafely defended by u. To check this, we also have to check,
for each unsecured neighbour w of u, whether w is only defended by u or if it has multiple defenders.
If it is only defended by u, and does not neighbour v itself (otherwise v defends w after the army
moves there) then w is weakly defended by u and thus u unsafely defends v. Since we have to check
all neighbours of v, u and w in this scenario, this takes O

(
nd3
)
time. Therefore, in this scenario, we

spend O
((
n+k−1

k

)
ndτ

)
time on processing table entries for RDom and RRom, and O

((
n+k−1

k

)
nd3τ

)
time for RWeak.

In addition to processing the validity of each table entry, we also need to generate all valid moves
for each table entry. Many of the domination functions generated in this way, are duplicates of
domination functions associated with table entries which have already been checked, and will not be
processed again. Nevertheless, generating them is mandatory, and takes time as well. For each of the
k armies in a domination function, there are d+ 1 possible moves: one for each neighbour and one
for not moving. This means that each domination function has (d+ 1)k possible valid moves that
need to be checked. This leads to a running time of O

((
n+k−1

k

)
ndk+1τ

)
for RDom and RRom, and

O
((
n+k−1

k

)
ndk+3τ

)
for RWeak.

Theorem 10.3. The Marching Domination problem can be solved using O
((

2n−1
n

)
ndn+1τ

)
time

for RDom and RRom, and O
((

2n−1
n

)
ndn+3τ

)
for RWeak, and O

((
2n−1
n

)
τ
)
space.

58

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

Proof of Theorem 10.3. In a worst-case scenario, the answer to k-Marching Domination is
n. In that case, Exists is ran n times. The last time it is ran contributes the largest part of the
total running time, and since the big O notation only takes the largest summant into account, the
proposed running time complexity is achieved.

10.2 Improvements for Practical Scenarios
In this section, we will introduce ideas and techniques to reduce the number of table entries that
will be processed. Though the techniques proposed in this section do not improve the theoretical
complexity of the algorithm, they are expected to improve the speed of the algorithm in a practical
environment.

If we can prove for some domination function property X that, if at least one R-marching domination
of size k exists on G, then there must also be at least one R-marching domination of the same size
with property X, then we would only have to consider those table entries corresponding with that
property. This allows us to skip a (hopefully large) portion of the table entries, thus reducing the
required time of the algorithm.

In particular, one area in which our solution can be improved is the number of table entries that
have to be considered in the first column. We will prove that if an R-marching domination of size k
exists on G, then there must also be an R-marching domination of the same size such that on the
first time step, there are no vertices with more than 1 army in the case R = RDom or more than 2
armies in the other two cases. To prove this, we will first introduce some definitions.

Definition 10.3. Let G = (V,E, τ, λ) be a temporal graph, t a time step, v ∈ V some vertex, s an
R-marching domination for some domination rule R and a ∈ s some army from s. If, in s\ {a},
vertex v is not defended on time step t, then army a is necessary for v on time step t. Otherwise
a is redundant for v on time step t. If a is not necessary for any vertex on time step t, then a is
redundant on time step t. If a is redundant for every time step t′ ≥ t, then a is totally redundant
on time step t.

Some armies are redundant on some time steps and necessary on others. If an army is redundant for
one or more consecutive time steps but will be necessary later, then one might say that that army is
waiting for its time to become useful. The next time step that the army will become necessary is
called the army’s current goal time, and the vertex that it will occupy on that time step is called its
current goal.

Definition 10.4. Let G = (V,E, τ, λ) be a temporal graph, t a time step, s a strategy and a ∈ s an
army. If a is not totally redundant on time step t, let t′ ≥ t be the first time step starting from t on
which a is necessary. Then t′ is the goal time of army a at time step t. In this case, vertex at

′
is

the goal of army a at time step t.

While “waiting” for its goal time, an army might be travelling on some route that leads to its goal. Or
it might be that it is already present on its goal and simply sitting still until its goal time. Whatever
the case, during this waiting time, an army is not needed to fully dominate the graph, although
removing all redundant armies on a certain time step could lead to vertices not being dominated
anymore. After all, removing an army could cause another redundant army to suddenly become
necessary. Some armies, however, could be removed entirely without losing the marching domination
property, as long as we only remove a single army at a time.

Lemma 10.1. Let G = (V,E, τ, λ) be a temporal graph, s an R-marching domination for some
domination rule R and a ∈ s an army. If army a is totally redundant on time step 1, then the strategy
s′ = s\ {a} is also an R-marching domination.

Proof of Lemma 10.1. As per Definition 10.3, removing a will not cause any vertex appearance
vt ∈ V t to become undefended, otherwise a would be necessary for v on time step t and would thus
not be totally redundant.

59

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

In the same vein, armies that are not necessary yet at time step 1, can be moved around without
losing the marching domination property. Since it does not matter what an army does between the
time steps where it is necessary (as long as it reaches its goals at the right time steps) we could move
an army to start at its first goal without any danger of ruining our solution.

Lemma 10.2. Let G = (V,E, τ, λ) be a temporal graph, s an R-marching domination for some
domination rule R and a ∈ s an army. Let v 6= a1 be the goal of army a on time step 1 and let the
corresponding goal time be ta. Let â be a new army such that

ât =

{
v if t ≤ ta
at otherwise .

Then the strategy s′ = s ∪ {â} \ {a} is also an R-marching domination.

This lemma implies that if we change an R-marching domination by moving an army so it starts at
its first goal and stays there until its goal time, but behaves the same after that time, does not cause
the strategy to lose the R-marching domination property.

Proof of Lemma 10.2. Army a is redundant during the first ta − 1 time steps. Therefore, it does
not matter on which vertex it is stationed until time step ta. Any vertex appearance that is defended
by a during or after time step ta in s, is defended by â in s′, since â behaves the same as a and all
other armies behave the same in s′ as they did in s. Therefore, any vertex appearance defended in s
is also defended in s′.

Definition 10.5. Let G = (V,E, τ, λ) be a temporal graph, t a time step, v a vertex and s an
R-marching domination for some domination rule R. If R = RDom, then v overflows on time step
t if st(v) > 1. If R = RRom or R = RWeak, then v overflows on time step t if st(v) > 2.

A vertex overflows on time step t if there are more armies stationed on it than necessary. In particular,
for RDom, if on some time step t there are multiple armies stationed on vertex v, it will provide the
same coverage as a single army would. In some cases it can be necessary for a vertex to overflow, as
shown in Figure 4.7. It can even be necessary for dn/2e armies to be on the same vertex, as shown
in the following figure.

Figure 10.2: A temporal graph with τ = 4 containing 100 red vertices r1, · · · , r100, 100 blue vertices b1, · · · , b100
and one white vertex w. The red vertices all start connected to w and can thus be defended by placing a single army
on w. The blue vertices all start as isolated vertices and thus need to be defended by placing an army on every blue
vertex. On the second time step, the blue armies become connected to w, allowing us to move all the armies currently
on blue vertices to w, causing it to overflow. This, in turn, allows us to move 100 armies from w to the red vertices in
the third time step, which is necessary because the red vertices become isolated in the last time step.

We now have all definitions and lemmas needed to prove the claim made at the beginning of this
section. To do so, we provide an algorithm that changes any solution into another solution of the
same size with the required property.

60

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

Lemma 10.3. Let G = (V,E, τ, λ) be a temporal graph and k ≤ n a non-negative integer. If an
R-marching domination of size k exists on G, then an R-marching domination s of size k exists such
that on the first time step, no vertex overflows.

Proof of Lemma 10.3. To prove this, we will show that we can transform any R-marching
domination s of size k into one that satisfies the requirement. This can be done using an algorithm
that changes the strategy in each time step, without losing the property that it is a marching
domination.

For each vertex, we will define a property called the moment. The moment of a vertex v is 0 if
at time step 1 there are no armies stationed on v, or if every army on v at time step 1 will move
away from v before becoming necessary, or stay on v until the last time step without ever becoming
necessary. If at least one army a which is stationed on v at time step 1 will become necessary before
moving away from v (this also implies that v is its first goal), then the moment of v is equal to the
goal time of a. Note that there can only be one such army on v if R = RDom. If there were more
than one, for example armies a and b, then let ta be the goal time of a and tb be the goal time of
b, with ta ≤ tb, then at time step ta, a and b are both stationed on v, which means a can not be
necessary by definition. If R 6= RDom, then there can be at most two such armies on v, for similar
reasons. Our algorithm starts by calculating the moment of each vertex. This is phase 1.

Figure 10.3: A temporal graph with τ = 4 with an RDom-Marching Domination. In the first time step, each
vertex is labelled with its moment. a and d have moment 0 because they have no army on the first time step. b has
moment 1 because in the first time step, it contains an army that is necessary for a and d. c has moment 3 because it
contains an army that will stay on it until it becomes necessary for c itself in time step 3. e has moment 4 because it
contains an army that will stay there until it becomes necessary for e itself in time step 4. f has moment 0 because
the only army it contains, moves away from it before becoming necessary. g has moment 2 because it contains an army
that stays on it until it becomes necessary for g itself in the second time step.

In the second phase of the algorithm, we will process each army a once in the following way. If a
is totally redundant at time step 1, we change the solution s by removing a completely (though
we remember a for later). Lemma 10.1 proves this change does not cause the strategy to lose the
marching domination property. Removing a might cause another army to become necessary in time
steps where it was previously redundant. This is because a vertex appearance vt ∈ V t may have been
defended by a and some other army b (and no other armies), both being redundant. Removing a
would then cause b to become necessary for defending vt. Since removing a can cause this to happen,
we calculate the moments of all vertices in the graph again after removing a.

61

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

Figure 10.4: A temporal graph similar to the one from Figure 10.3, but with the edge {d, g} added in time step
1. In the first pictue, an army is stationed vertex a, which is totally redundant. The moment of b then becomes 3

because it is no longer necessary for a or d in the first two time steps. Removing the army on a results in the second
picture, and causes b to become necessary for vertex a in the first time step where it was previously redundant.

If a is not totally redundant, we change the solution s by replacing a by â as in Lemma 10.2. The
lemma also proves that doing this will not cause the strategy to lose the marching domination
property. Like when removing a, moving a to another location for a number of time steps may cause
another army to become necessary in time steps where it was previously redundant. In addition, by
moving a to some vertex v, the moment of v may increase. It can also stay the same, but only if
R = RRom or R = RWeak and another army was already stationed on v. In any other case, it will
increase, because if it did not, it would imply that the current goal of v is tb > ta for some other
army b that is already stationed on v and stays there until that time, where ta is the first goal time
of a and tb that of b. But this would imply that on time step ta, a would not become necessary since
b is defending the same vertices as a, which is a contradiction. Therefore, after moving a, we need to
calculate the moments of all vertices in the graph again.

Our goal is to create a strategy such that each army is either removed or stationed on its first goal
until its goal time is reached. Note that if we apply step 2 of the algorithm to such a strategy, nothing
would be changed. However, moving an army a may cause the first goal of another army b to change.
It may also make b redundant on certain time steps where it was previously necessary or even cause
it to become totally redundant. In other words, after performing step 2, we are not guaranteed to be
left with a desirable strategy s yet. Therefore we will repeat step 2 until we do have such a strategy.

62

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

Figure 10.5: Applying this algorithm to the first picture first processed the army on a which is removed since it is
totally redundant. This results in the second picture. It then processes the other armies, finding that they do not need
to be changed at the moment, until it reaches vertex f . The army on f does not become necessary until it reaches
vertex d in the final time step, so the algorithm moves it such that it starts there and stays there until the end of
the graph’s lifetime, resulting in the third picture. After this move, applying the algorithm again would not move
anything, thus the algorithm terminates.

We know that we will always reach such a strategy in a finite number of steps for the following reason:
The number of consecutive iterations of step 2 without increasing any moments is bounded by n

2 + k,
because if we assume at least one move or one removal takes place in each iteration of step 2, after
this number of iterations without increasing any moments, we may have had at most k removals.
After all, removing all k armies would cause the strategy to lose the marching domination property,
since nothing is dominated anymore. We also may have had n

2 moves where an army was moved to
a vertex where another army (which would also become necessary there before moving) is already
stationed if R = RRom or R = RWeak, since two armies may both be necessary to dominate a vertex.
After n

2 such moves, we must have n
2 vertices with at least 2 armies each, which means k ≥ n, in

which case there are no other armies left to move or remove. Therefore, after each n
2 + k iterations,

at least one moment must have increased. Since the moments are bounded by τ , and there are n
moments, the step 2 loop must terminate after a finite number of iterations.

Once we have a desirable strategy, no vertex can be overflowing. If a vertex v is overflowing in some
iteration of step 2, there must be an army a stationed there on time step 1, in addition to one or two
(depending on R) armies that will become necessary there and whose goal times define the moment
of v. In the next iteration of step 2, a would either have been moved to its first goal (which can not
be v) or removed. Step 2 only terminates if nothing changes during an iteration, so this situation
must have been resolved before the step terminated.

Since n ≥ k, there must be at least one empty vertex for each removed army. In step 3 of the
algorithm, we place each removed army back on the graph on an empty vertex and make it stay
there during the entire life time of the graph. Doing so can obviously not cause the strategy to lose
the marching domination property.

After performing all three steps of this algorithm, we have obtained a marching domination of size k
such that there are no overflowing vertices on the first time step.

63

10.2 Improvements for Practical Scenarios 10 MARCHING DOMINATION

Figure 10.6: A temporal graph with τ = 2 with an RDom-marching domination. In the first picture, vertex d is
overflowing in the first time step. Applying the algorithm to this graph moves one of the armies on d to vertex c on
the first time step, creating an RDom-marching domination of the same size without overflowing vertices on the first
time step, shown in the second picture.

Lemma 10.3 shows that Algorithm 5 only needs to consider domination functions that have no
overflowing vertices on time step 1. For RDom, this means that the number of table entries that need
to be processed for the first column can be reduced from

(
n+k−1

k

)
to
(
n
k

)
. It is trivial to see that this

is indeed a smaller number of table entries to process. For RRom and RWeak, the number of table
entries on the first column that need to be processed, is equal to the number of ways one can arrange
k indistinguishable objects into n distinguishable boxes with capacity 2. There are(

n+ k − 3i− 1

n− 1

)
possible ways to arrange k indistinguishable objects into n distinguishable boxes where at least the
first i boxes are overflowing. We obtain this number because at least i specified vertices already
have at least 3 armies, decreasing the number of armies to distribute by 3i, the formula then follows
from [27]. Note that

(
n+k−1

k

)
=
(
n+k−1
n−1

)
, so if i = 0, we have our original formula without capacity.

If we know that at least i vertices are overflowing but we do not specify which vertices, then there
are

(
n
i

)
ways to choose i vertices to overflow.

An inclusion-exclusion argument then gives us∑
i≥0

(−1)i
(
n

i

)(
n+ k − 3i− 1

n− 1

)
possible ways to arrange the armies without any overflowing vertices. Intuitively, it is obvious that
the number of table entries where each vertex has a capacity of 2 is smaller than if there is no capacity
constraint.

The number of possible table entries that need to be processed for the other time steps stays the
same, so theoretically, this improvement does not amount to much. However, since the number of
entries that are explored in the second time step depends on the number of entries that returned true
in the first, the number of entries that are explored in the third time step depends on the number of
entries that returned true in the second time step and so forth, this will reduce the required time in
many practical scenarios.

64

Part III

Conclusion

The third and final part of the thesis will summarize the results we have obtained in the second part
and reflect upon them. It will provide a table of required running times for the problems we have
covered and contemplate possible ways to improve them. In addition, we will provide an overview for
future research into the problems we did not solve and suggestions on how one might attempt to
solve them.

65

11 OBTAINED RESULTS

11 Obtained Results

In this computing science master’s thesis, we have introduced the notions of domination rules
and temporal domination requirements. By combining domination rules and temporal domination
requirements, we are able to define a myriad of temporal domination problems. By combining the
three static domination problems Dominating Set, Roman Domination and Weak Roman
Domination with the six temporal domination requirements Temporary Domination, Perma-
nent Domination, Periodic Domination, Evolving Domination, k-Fold Domination and
Marching Domination, we defined 18 temporal domination problems. In addition, we defined a
natural way to extend the Defense-Like Domination problem to temporal graphs.

For all of these temporal domination problems except the Weak Roman Domination variants of
the permanent, periodic and k-fold problems and for Temporal Defense-Like Domination, we
have provided exact algorithms. Of the algorithms provided, those for the permanent, periodic and
k-fold variants are parameterized using the treewidth ` as a parameter. Furthermore, all algorithms
other than those for the temporary variants use τ as a parameter as well as the number of vertices
n. The algorithms for all periodic variants also use the period θ as a parameter. We also provided
algorithms for the decision problems corresponding to the marching variants in addition to the
minimization problems. For the algorithms for the decision problems, the number of armies k is also
used as a parameter. The obtained results are summarized in the following table.

Problem Time Complexity Space Complexity

Temporary Dominating Set O (1.4689n) using [23] O (1.4689n)

Temporary Roman Domination O (1.5014n) using [28] exponential

Temporary Weak Roman Domination O∗(2n) using [10] exponential

Permanent Dominating Set O
(
n3(2τ + 1)`+1

)
O
(
n (2τ + 1)

`+1
)

Permanent Roman Domination O
(
n3(2τ + 1)`+1

)
O
(
n (2τ + 1)

`+1
)

Periodic Dominating Set O
(
n3
(
2τ+1−θ + 1

)`+1
)
O
(
n
(
2τ+1−θ + 1

)`+1
)

Periodic Roman Domination O
(
n3
(
2τ+1−θ + 1

)`+1
)
O
(
n
(
2τ+1−θ + 1

)`+1
)

Evolving Dominating Set O (τ1.4689n) using [23] O (τ1.4689n)

Evolving Roman Domination O (τ1.5014n) using [28] exponential

Evolving Weak Roman Domination O∗(τ2n) using [10] exponential

k-Fold Dominating Set O
(
n3 (2τ + 1)

`+1
)

O
(
n (2τ + 1)

`+1
)

k-Fold Roman Domination O
(
n3 (2τ + 1)

`+1
)

O
(
n (2τ + 1)

`+1
)

k-Marching Dominating Set O
((
n+k−1

k

)
ndk+1τ

)
O
((
n+k−1

k

)
τ
)

k-Marching Roman Domination O
((
n+k−1

k

)
ndk+1τ

)
O
((
n+k−1

k

)
τ
)

k-Marching Weak Roman Domination O
((
n+k−1

k

)
ndk+3τ

)
O
((
n+k−1

k

)
τ
)

Marching Dominating Set O
((

2n−1
n

)
ndn+1τ

)
O
((
n+n−1

n

)
τ
)

Marching Roman Domination O
((

2n−1
n

)
ndn+1τ

)
O
((
n+n−1

n

)
τ
)

Marching Weak Roman Domination O
((

2n−1
n

)
ndn+3τ

)
O
((
n+n−1

n

)
τ
)

66

REFERENCES

Here the parameters are as follows:

n : The number of vertices in a graph.

τ : The number of time steps in a temporal graph.

` : The width of some nice tree decomposition of the underlying graph.

θ : The period of a periodic domination problem.

k : The number of armies in a marching domination decision problem.

d : The maximum degree over all vertex appearances.

12 Future Work

In this section, a number of research directions are suggested as topics for future research. Some
of the problems introduced in this thesis remain unsolved, or can be improved. Algorithms are
still required for the Weak Roman Domination variants of the permanent, periodic and k-fold
domination requirements, and for and Temporal Defense-Like Domination. That last problem
can also be considered for specific parameter assignments.

The Weak Roman Domination variants of the aforementioned domination requirements may be
solved by using a dynamic programming approach using colors, like we did for the permanent variants
of Dominating Set and Roman Domination. Veldhuizen [32] provides a way to solve Weak
Roman Domination using such techniques. These techniques can likely be extended to the temporal
setting in a similar fashion as we did with the permanent and k-fold variants of Dominating Set
and Roman Domination, which, in turn, can be used to solve the periodic variant as well.

In addition, the methods used in this thesis to define temporal domination problems can be extended.
More domination rules can be defined by using other static domination problems. The k-Tuple
Domination problem mentioned in Section 4.6 requires each vertex to be dominated at least k
times. The Total Domination problem asks for a vertex set S such that each vertex in the graph
is adjacent to a vertex in S, in other words, vertices cannot dominate themselves. The Secure
Domination Problem is identical to Weak Roman Domination, with the exception that we can
only use the labels 0 and 1.

All of these static domination problems can be turned into new domination rules and we can apply
a temporal domination requirement to this. For example, the permanent variant of the k-Tuple
Domination problem would ask for each vertex to be dominated at least k times on every time step.

Finally, more temporal domination requirements can be designed. For example, temporal domination
requirements can be considered that require each vertex to be dominated in exactly k time steps
instead of at least k time steps. Other variants of Marching Domination can also be considered.
One example would be a variant of Marching Domination where the number of moves needs to
be minimized after minimizing the number of armies. We could also add parameters to the marching
domination requirement, allowing us to limit the number of armies that can be moved, or increase
the number of moves each army can make in a time step, like in Defense-Like Domination.

References

[1] Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123, 2020.

[2] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33:461–493, 2002.

67

REFERENCES REFERENCES

[3] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:
Fast subset convolution. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory
of Computing, STOC ’07, page 67–74. Association for Computing Machinery, 2007.

[4] Robert C. Brigham and Ronald D. Dutton. Factor domination in graphs. Discrete Mathematics,
86:127–136, 1990.

[5] Robert C. Brighanm and Julie R. Carrington. Global domination. In Domination in Graphs:
Advanced Topics, pages 301–320. 1998.

[6] Yair Caro and Michael A. Henning. Simultaneous domination in graphs. Graphs and Combina-
torics, 30:1399–1416, 2014.

[7] Yair Caro and Raphael Yuster. Dominating a family of graphs with small connected subgraphs.
Combinatorics, Probability and Computing, 9:309–313, 2000.

[8] Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks: Problems,
Analysis, and Algorithmic Tools, 2013. <hal-00865764 >.

[9] Arnaud Casteigts, Bernard Mans, and Luke Mathieson. On the feasibility of maintenance
algorithms in dynamic graphs. CoRR, abs/1107.2722, 2011.

[10] Mathieu Chapelle, Manfred Cochefert, Jean-Fran, cois Couturier, Dieter Kratsch, Romain Le-
tourneur, Mathieu Liedloff, and Anthony Perez. Exact algorithms for weak Roman domination.
Discrete Applied Mathematics, 248:79–92, 2018.

[11] Ernie J. Cockayne, Paul A. Dreyer, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Roman
domination in graphs. Discrete Mathematics, 278:11–22, 2004.

[12] Peter Dankelmann, Michael Henning, Wayne Goddard, and Renu Laskar. Simultaneous graph
parameters: Factor domination and factor total domination. Discrete Mathematics, 306:2229–
2233, 2006.

[13] Peter Dankelmann and Renu Laskar. Factor domination and minimum degree. Discrete
Mathematics, 262:113–119, 2003.

[14] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[15] Henning Fernau. Roman domination: a parameterized perspective. International Journal of
Computer Mathematics, 85:25–38, 2008.

[16] Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. As time
goes by: Reflections on treewidth for temporal graphs. In Treewidth, Kernels, and Algorithms.
Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, page 49–77. Springer, 2020.

[17] Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-width
and exponential speed-up. SIAM Journal on Computing, 36:281–309, 2006.

[18] Frank Harary and Teresa Haynes. Double domination in graphs. Ars Comb., 55, 2000.

[19] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of Domination in
Graphs, volume 208 of Pure and Applied Mathematics. Dekker, 1998.

[20] Michael A. Henning and Stephen T. Hedetniemi. Defending the roman empire: A new strategy.
Discrete Mathematics, 266:239–251, 2003.

[21] Michael A. Henning and Adel P. Kazemi. k-Tuple total domination in graphs. Discrete Applied
Mathematics, 158:1006–1011, 2010.

[22] Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. Dominating sets and
connected dominating sets in dynamic graphs. CoRR, abs/1901.09877, 2019.

[23] Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential method. In
Proceedings of the 6th International Conference on Parameterized and Exact Computation, page
41–54. Springer-Verlag, 2011.

68

REFERENCES REFERENCES

[24] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

[25] Hendrik Molter. Parameterized algorithmics for temporal graph problems. Parameterized
Complexity Newsletter, 16:4–5, 2020.

[26] Tim Nieberg and Johann L. Hurink. A PTAS for the Minimum Dominating Set Problem in
Unit Disk Graphs. In Approximation and Online Algorithms, volume 3879 of Lecture Notes in
Computer Science, pages 296–306. Springer, 2005.

[27] Fred Roberts and Barry Tesman. Applied Combinatorics (2. ed.). CRC Press, 2005.

[28] Zheng Shi and Khee Meng Koh. Counting the number of minimum Roman dominating functions
of a graph. CoRR, abs/1403.1019, 2014.

[29] Ian Stewart. Defend the Roman Empire! Scientific American, 281:136–138, 1999.

[30] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009.

[31] Johan M.M. van Rooij. Exact Exponential-Time Algorithms for Domination Problems in Graphs.
Phd thesis, Utrecht University, 2011.

[32] Mats Veldhuizen. Exact Exponential-Time and Treewidth-Based for Defense-like Domination
Problems. Master’s thesis, Utrecht University, 2020.

69

	Introduction
	I Introduction to Temporal Graphs and Domination Problems
	Preliminaries
	Temporal Graphs
	Layers
	Neighbourhoods
	Tree Decompositions

	Domination Problems
	Dominating Set
	Roman Domination
	Weak Roman Domination
	Defense-Like Domination

	Temporal Domination Requirements
	Domination Rules
	Temporary Domination
	Permanent Domination
	Periodic Domination
	Evolving Domination
	k-Fold Domination
	Marching Domination
	Temporal Defense-Like Domination

	II Temporal Domination Algorithms
	Temporary Domination
	Permanent Domination
	Parameterized Algorithm Structure
	Permanent Dominating Set
	Permanent Roman Domination

	Periodic Domination
	Evolving Domination
	Maintenance Algorithms
	Using the Trivial Solution

	k-Fold Domination
	k-Fold Dominating Set
	k-Fold Roman Domination

	Marching Domination
	Positive Instance Based Dynamic Programming
	Improvements for Practical Scenarios

	III Conclusion
	Obtained Results
	Future Work

