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Bottom-up   prediction   of   cognitive   control   features   in   EEG   signals   
Linear   classification   of   pre-stimulus   stop-signal   task   response   inhibition   
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Abstract   
  

The  prediction  of  failures  in  response  inhibition  is  potentially  very  valuable  for                         
understanding  pathologies  as  well  as  for  the  support  of  critical  operations  carried  out  by                             
humans.  To  realize  this  aim,  Fisher’s  linear  discriminant  analysis  with  leave-one-out                       
cross-validation  has  been  performed  per  1  Hz  frequency  interval  on  the  1000  milliseconds                           
electroencephalogram  Fourier-transformed  periodograms  preceding  go-stimuli  that  were               
followed  by  a  stop-signal  in  an  auditory  stop-signal  task,  using  the  power  values  per                             
electrode  as  features.  Ocular  correction  was  applied,  while  no  other  artifacts  were                         
removed.  This  repeatedly  class-balanced  two-class  classification  resulted  in  significant                   
accuracies  for  21  of  the  29  participants.  It  was  hypothesized  that  both  theta  oscillations                             
originating  from  the  prefrontal  cortex  during  anticipation  as  well  as  a  balance  between                           
alpha  oscillations  over  visual  and  those  over  auditory  cortex  both  would  promote                         
successful  stopping.  The  results  translate  to  a  partial  validation  of  these  theories.  In  future                             
studies,  the  procedure  can  be  extended  and  this  intuitive  multivariate  pattern  analysis                         
machine  learning  method  may  continue  to  yield  insights  for  research  in  artificial                         
intelligence   and   human   computer   interaction.     

  
  
  

Introduction     
  

This  research  project  is  about  predicting  inhibitory  failures  from  pre-stimulus            
electroencephalography  brain  activity  and  is  continuing  on  theories  about  how  certain             
cortical  activation  patterns  implement  cognitive  control,  for  which  frontal  theta  is  a  compelling               
candidate  (Cavanagh  &  Frank,  2014).  We  can  define  or  theorize  cognitive  control  as  a                
resource  which  enables  an  individual  to  inhibit  responses  to  irrelevant  stimuli  and  focus  on                
relevant  information.  The  ability  to  suppress  unwanted  or  inappropriate  actions  and  impulses              
(‘response  inhibition’)  is  a  crucial  component  of  flexible  and  goal-directed  behavior.             
Response  inhibition  is  essential  for  navigating  everyday  life  and  its  derailment  is  considered               
integral  to  numerous  neurological  and  psychiatric  disorders,  and  more  generally,  to  a  wide               
range   of   behavioral   and   health   problems   (Verbruggen   et   al.,   2019).     
  

There  are  a  few  indications  that  behavior  which  has  not  yet  taken  place  can  be  predicted                  
from  EEG,  but  we  do  not  know  yet  to  what  extent  this  is  possible.  Specific  neural  signatures                  
of  attentional  lapses  are  registered  in  the  EEG  up  to  twenty  seconds  before  an  error                 
(O’Connell  et  al.,  2009).  In  a  Go-noGo  task,  elevated  occipital  alpha  and  sensorimotor  mu                
activity  just  prior  to  the  presentation  of  the  stimuli  predicted  an  upcoming  error,  wherein  an                 
error  resulted  in  increased  frontal  theta  activity  and  decreased  posterior  alpha  activity              
(Mazaheri  et  al.,  2009).  Elevated  alpha  power  in  parieto-occipital  brain  areas  and  elevated               
levels  of  theta  power  are  observed  in  frontal  brain  areas  when  auditory  attention  is  sustained                 
successfully   (Keller   et   al.,   2017).     
  

A  dataset  is  used  to  try  and  determine  the  predictability  of  failed  response  inhibition.  Herein,                 
EEG  is  recorded  when  subjects  perform  a  choice  task.  After  a  split-second  interval,  the                
visual  go-stimuli  are  occasionally  followed  by  an  auditory  signal  -  dictating  that  all  ongoing                
actions  are  stopped  or  suppressed.  This  split-second  interval  is  manipulated  to  induce  about               
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50%  failed  stops.  A  pilot  study  using  this  data  investigated  whether  the  above  alpha  and                 
theta  dynamics  also  apply  in  relation  to  response  inhibition  (Kandiah,  2020).  In  the  failed                
stop  condition  there  is  a  trend  towards  more  elevated  alpha  power  in  frontal  brain  areas  in                  
comparison  to  parieto-occipital  brain  areas.  Moreover,  pre-stimulus  theta  power  in  frontal             
brain  areas  is  significantly  higher  in  the  successful  stop  condition  compared  to  the  failed  stop                 
condition.  Consequently,  it  is  hypothesized  that  strong  proactive  cognitive  control  ('attend',             
'get  ready  to  go  or  stop')  during  anticipation  of  the  signals  promotes  successful  stopping,                
wherein  it  is  assumed  that  cognitive  control  manifests  as  theta  oscillations  originating  from               
the  prefrontal  cortex.  It  is  also  hypothesized  that  susceptibility  ('sensory  readiness')  to  either               
visual  or  auditory  signals  promotes  successful  stopping,  which  originates  in  the  balance              
between   EEG-alpha   oscillations   over   visual   and   those   over   auditory   cortex.     
  

A  recurring  question  of  methodological  origin  within  the  cognitive  sciences  is  to  what  degree                
one  has  to  test  a  (very)  specific  hypothesis  to  be  able  to  foresee  what  action  will  happen,  or                    
whether  a  bottom-up  approach  (of  pattern  recognition)  might  do  the  trick.  The  above               
hypotheses  will  be  tested  using  machine  learning  techniques,  using  the  data  prior  to  the                
stimulus  as  a  starting  point.  Our  main  operational  question  of  research  that  will  be  dealt  with                  
is:  what  are  the  predictors  of  performance  failures  from  a  perspective  that  goes  beyond  theta                 
and  alpha  in  terms  of  frequency  and  location?  Most  generally  put  we  thus  ask:  what  patterns                  
can  be  found  in  the  data?  We  can  expect  that  the  classifier  will  rely  on  the  theta  and  maybe                     
also   on   the   alpha   frequency   band.     
  

This  investigation  may  over  time  also  contribute  to  solutions  for  the  creation  of  external                
intelligence,  since  computational  architectures  are  inspired  by  contemporary  progress  in            
neuroscience  (Haber  et  al.,  2015;  Lieto  et  al.,  2018).  Research  in  machine  learning  and                
brain-computer  interaction  is  characterized  by  its  plurality  of  methods  and  approaches.             
These  scientific  fields  can  foster  the  validation  and  development  of  links  between  cognitive               
theory  and  neurophysiology  of  human  behaviour  (Vahid  et  al.,  2020),  proceeding  on  the               
conjecture  that  every  aspect  of  intelligence  can  in  principle  be  so  precisely  described  that  a                 
machine   can   simulate   it   and   hence   make   predictions   about   it.     

  
  

Method   
  

Participants   
  

The  data  of  29  participants  was  obtained  from  (Kenemans,  van  der  Heiden,  Van  Bijnen  &                 
Logemann,  in  preparation).  The  subjects  (age:  M  =  22.8,  SD  =  3.26)  were  all  healthy  and                  
studying  at  Utrecht  University,  having  normal  hearing  and  normal  vision.  Informed  consent             
(approved   by   the   ethics   committee   of   the   University   Medical   Centre   Utrecht)   was   signed.   
  

EEG   data   acquisition     
  

For  recording,  the  ActiveTwo  Biosemi  system  with  64  Ag-AgCl  electrodes  has  been  used.               
The  electrodes  were  placed  following  the  10/10  system.  EOG  electrodes  were  positioned              
below  and  above  the  left  eye  as  well  as  at  the  outer  canthi  of  both  eyes.  The  signals  were                     
sampled  at  2048  Hz  and  online  referenced  to  the  Common  Mode  Sense/Driven  Right  Leg                
electrode   and   low   pass   filtered   at   DC   to   400   Hz.     
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Procedure   of   the   stop-signal   task     
  

After  placing  the  EEG  cap,  the  participants  took  place  in  a  dark  sound-attenuated  chamber,                
sitting  at  a  distance  of  approximately  90  centimeters  from  the  computer  screen.  The               
participants  were  asked  to  respond  as  fast  as  possible  to  the  visual  go-stimuli  and  to  refrain                  
from  responding  when  a  stop-signal  was  presented  after  the  go-stimulus.  During  the  task,               
participants  had  to  discriminate  between  “X”  and  “O”  by  pressing  with  either  the  left  or  right                  
index  finger.  These  visual  go-stimuli  were  presented  on  the  screen  for  150  milliseconds,               
slightly  above  a  central  fixation  cross.  For  preventing  expectation-effects  and  making  the              
onset  of  the  visual  go-stimuli  unpredictable,  the  trial-to-trial  interval  changed  between  1.5  to               
1.8  seconds.  The  stop-signal  task  had  25  blocks  in  total.  The  first  block  consisted  of  126                  
go-trials,  which  were  used  for  practice  and  to  determine  a  reaction-time  baseline.  Hereafter,               
two  visual  stop-signal  conditions  and  one  auditory  stop-signal  condition  were  presented,  in  a               
counterbalanced  order  across  participants.  Note  that  in  our  investigation  only  the  data  of  the                
auditory  stop-signal  condition  is  used.  This  stopping  tone  of  1000hz  and  72dB  was               
presented  binaurally  for  150  milliseconds  through  headphones.  Each  of  the  three  conditions              
started  with  a  base-block,  to  estimate  a  go-stop  interval:  the  stimulus-onset  asynchrony.  In               
each  base-block  the  SOA  value  was  fixed  at  250ms.  After  the  base-block,  three  more  blocks                 
would  follow,  each  consisting  of  128  trials,  wherein  the  interval  between  the  go  -  and  stop                  
stimulus  was  jittered  over  99ms  around  the  SOA  value.  After  completing  these  four  blocks,                
the  index  finger-assignment  was  switched  before  starting  with  another  base-block  and  three              
experimental  blocks.  The  SOA-value  of  subsequent  blocks  was  based  on  the  stop  rate  from                
previous  blocks  and  optimized  by  a  tracking  algorithm  (De  Jong  et  al.,  1995)  to  yield  an                  
approximate  stop  rate  of  50%.  A  comparison  between  the  mean  reaction  time  on  the                
go-stimuli  with  the  go-stimuli  of  the  initial  practice  block  was  made  after  each  experimental                
block.  Participants  were  asked  to  increase  their  speed  when  the  average  reaction  time  of  an                 
experimental  block  was  higher  than  one  and  a  half  times  the  average  of  the  practice  block.                  
They  were  told  to  slow  down  when  having  less  than  40  percent  successful  stops.  A  15                  
minute   break   was   given   halfway   through   the   experiment.     
  

EEG   preprocessing     
  

EEG  data  is  noisy,  picking  up  electrical  activity  from  a  variety  of  non-brain  sources  such  as                  
muscle  activity,  eye  movements  and  the  environment.  There  are  many  preprocessing             
procedures  to  increase  the  signal-to-noise  ratio,  such  as  filtering,  resampling  and  artefact              
rejection.  The  plethora  of  methods  does  make  it  difficult  to  keep  an  overview  (Chaumon  et                 
al,  2015).  Preprocessing  is  by  no  means  standardized,  which  is  an  issue  for  the               
reproducibility  of  neuroimaging  research.  To  ensure  the  results  are  robust  one  needs  to               
balance   maximizing   the   SNR   with   minimizing   preprocessing   steps   (Carlson   et   al.,   2019).     
  

BrainVision  Analyzer  2.1  was  used  for  preprocessing.  Spline  interpolation  has  been  applied,              
but  no  channels  were  interpolated.  The  EXG5  channel  was  used  for  re-referencing  all  the                
other  channels.  A  low  cutoff  at  0.5  Hz  and  a  high  cutoff  at  28.8  Hz  with  zero  phase  shift                     
Butterworth  filters  of  order  2  were  applied.  The  sampling  rate  was  reduced  to  64  Hz.  There  is                   
no  reason  to  presume  that  such  a  downsampling  after  including  a  low-pass  filter  at  28.8  Hz                  
will  affect  the  frequencies  up  until  20  Hz.  The  first  segmentation  had  a  segment  position                 
relative  to  go-stimuli  reference  markers  of  -1000.00  ms  to  1500.00  ms,  in  which  overlapping                
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segments  were  allowed.  Eye  blinks  were  removed  with  the  Gratton  and  Coles  method.  No                
other  artifact  rejection  has  been  done,  since  this  may  cause  unnecessary  data  loss,  after                
which  the  remaining  data  may  still  be  containing  artifacts.  Also,  multivariate  pattern  decoding               
(and  specifically  linear  discriminant  analysis)  is  assumedly  more  robust  to  artefacts  than  the               
established  or  traditional  preprocessing  methods  used  in  univariate  ERP/ERF  research            
(Carlson  et  al.,  2019).  The  second  segmentation  selected  all  the  1000  ms  intervals               
preceding  go-stimuli  followed  by  an  (auditory)  stop-signal  and  separated  these  (for  failed  and               
successful  inhibition).  A  fast  fourier  transformation  using  the  half-spectrum  with  a  resolution              
of  1  Hz  and  a  periodic  Hanning  data  window  of  10%  length  (with  variance  correction)                 
resulted  in  non-complex  power  values,  for  every  second  before  the  go-stimulus  was              
presented,  divided  into  the  two  classes.  In  the  appendix  the  total  BrainVision  Analyzer               
history   tree   can   be   found.     
  

Feature   selection   and   algorithm   sketch     
  

Once  we  have  (minimalistically)  dealt  with  artifacts,  a  decision  to  make  is  what  features  of                 
the  EEG  are  going  to  be  used.  For  modelling  a  cognitive  system,  our  strategy  depends  on                  
how  much  is  already  known  about  the  data  at  hand.  By  taking  more  knowledge  of  the  data                   
into  account,  more  constraints  on  the  learning  model  are  to  be  expected.  There  is  a  wide                  
variety  of  linear  (and  nonlinear)  methods  to  extract  features  from  EEG  signals,  such  as                
eigenvector  methods,  wavelet  transformations  and  auto  regressive  methods  (Vaid  et  al.             
2015).  In  comparison  with  other  methods  of  feature  extraction  in  the  frequency  domain,  one                
disadvantage  of  the  fast  fourier  transform  feature  extraction  methods  is  its  relative  weakness               
in  analyzing  nonstationary  signals.  Another  weakness  is  that  it  suffers  from  large  noise               
sensitivity.  Nonetheless,  this  method  still  is  an  appropriate  choice  for  narrowband  signals              
and  it  has  an  enhanced  speed  of  calculation  over  virtually  all  other  methods  in  real-time                 
applications  (Al-Fahoum  et  al.,  2014).  The  usage  of  very  rigid  and  rough  bandwidths               
substantially  limits  the  capabilities  when  analyzing  a  complex  signal.  To  improve  accuracy,              
Buettner  et  al.  (2020)  present  the  idea  to  unfold  the  EEG  standard  bandwidths  (0-100  Hz)  in                  
a  more  fine-graded  equidistant  99-point  spectrum.  Therefore,  the  width  of  a  frequency  band               
(or  ‘component’)  is  taken  to  be  1  Hz.  With  our  hypotheses  in  mind,  only  the  frequency  range                   
of  0-20  Hz  is  used.  The  combination  of  the  components  and  (64)  electrodes  thus  yields  1280                  
power   values,   for   each   trial.     
  

We  attempt  to  express  one  categorical  dependent  variable  as  a  linear  combination  of               
continuous  independent  variables.  Linear  discriminant  analysis  is  a  method  used  to  find  a               
linear  combination  of  features  that  characterizes  or  separates  labeled  data  in  two  or  more                
classes  (see  figure  1).  This  resulting  combination  can  be  used  as  a  (linear)  classifier  as  well                  
as  for  dimensionality  reduction  before  other  successive  classification  methods.  There  are             
several  comparable  techniques  which  differ  in  requirements  on  the  sample,  that  fall  under               
the  name   linear  discriminant  analysis .  We  will  perform  “leave-one-out”  Fisher’s  linear             
discriminant  analysis,  for  which  it  is  not  necessarily  assumed  that  the  classes  are  normally                
distributed  nor  to  have  equal  covariances  (the  “homoscedasticity”  assumption)  -  which  would              
have  to  be  assumed  for  general  linear  discriminant  analysis.  When  these  assumptions  are               
satisfied,   our   outcome   will   be   the   same   as   the   generalized   linear   discriminant   analysis.     
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Figure   1:   illustration   of   Fisher’s   linear   discriminant   analysis   (Bishop,   2006)   

  
The  high-dimensional  data  will  be  mapped  along  the  axis  of  the  projection  vector   w   onto  the                  
one-dimensional  line  orthogonal  to   w ,  where  classification  can  be  carried  out.  To  find   w,   we                 
first  sum  all  the  power  values  of  the  trials    per  class  and  divide  by  the  number  of  trials           X i           

  ,   which   results   in   two   (vertical)   vectors   of   means   per   electrode:   , nn1  2   

       and        (equation   1)  f )M = ( 1
n1

∑
 

X ∈ Ci f

X i s )M = ( 1
n2

∑
 

X ∈ Ci s

X i  

Using   ,    these   means   can   also   be   projected   (by   in-product)   to   one-dimensional   values:  w  
  

      (eq.   2)  f  w f  ,     ms w s m =  T · M  =  T · M  
This  suggests  that  we  want  to  find  a    that  maximizes  the  distance   ,  called  the          w      mf  ms)( −  2    
between-group  variance.  We  can  enlarge  this  expression  arbitrarily  by  enlarging   ,  which            w   
does  not  yield  the  optimal  separation.  As  can  be  seen  in  figure  1,  the  groups  are  best                   
separated  when  each  class  has  a  minimum  within-group  variance  while  the  between-group              
variance   is   maximized.   The   within-class   variance   is   defined   as:   
  

      (eq.   3).  ( Xi k )( X k ) ) (w k)s2
k = wT · ( ∑

 

X ∈ Ci k

− M i − M T · w = ∑
 

X ∈Ci k

T · X i − m 2  

  
Fisher  proposed  a  function  that  minimizes  the  overlap  of  the  projected  classes  by  having  the                 
largest  separation  between  the  projected  class  means  while  at  the  same  time  having  the                
smallest  projected  within-class  variances  at  its  maximum.  Thus,  he  defined  this  criterion  for               
the  separation  between  the  two  distributions  as  the  ratio  of  the  variance  between  the  classes                 
to   the   variance   within   the   classes,   which   is   formulated   as:     
    

      (eq.   4).  (w) (mf  ms)  (s )  J =  −  2 / f
2 + ss2  

  
So,   how   we   maximize    ?     Here,   the   numerator   can   be   rewritten   to   (w)J   
  

     (eq.   5).  mf  ms) w Mf  Ms)  (Mf  Ms)(Mf  s)  w S  w( −  2 = ( T − wT 2 = wT −  − M T = wT
B  

  
This    n    by    n    matrix     is   called   the    between-class   covariance    matrix.   SB   
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For   the   denominator   we   have:     

     (eq.   6) ,   ( (X f )(X f ) (X s)(X s) ) w S  wsf
2 + ss2 = wT ∑

 

X ∈ Ci f
i − M i − M T + ∑

 

X ∈ Ci s
i − M i − M T = wT

W   

where     is   the    within-class   covariance    matrix.   This   results   in   the   following   equation:   SW  
  

     (eq.   7).  (w) S w  w S w  J = wT
B / T

w  
  

The   ratio   of   quadratic   forms   can   be   maximized   by   differentiating   and   equating   it   to   0:   
  

      (eq.   8).  2S w w S w) w S w (w S w) )2S w  ( B / T
W − ( T

B / T
W

2
W = 0  

  
Since  and   are  scalars,  we  can  write   f or  some   S w wT

W  w (w S w)   SB / T
W

2      w S wSW = λ B    

constant   .    Hence   we   are   dealing   with   an   eigenvalue   problem:   .    Furthermore:  λ S S ww = λ W
1−

B  
  

      (eq.   9).  w (Mf s)(Mf s) w Mf s)SB =  − M − M T = ( − M * k  
  

Since   we   are   only   interested   in   the   direction   of   ,   we   leave   both   the   scalers      out   to   find:  w , kλ   
  

      (eq.   10),   (Mf s)w = SW
1− − M   

  
which  is  the  direction  that  maximizes  the  separation  between  the  projections  of  the  two                
classes  of  data.  This  proves  how  the  optimal  projection  vector    is  found  by  subtracting  the            w       
vector  of  means  (the  mean  per  electrode  of  the  successful  trials)  from  the  other  (the  mean                  
per  electrode  of  the  failed  trials)  and  then  taking  the  dot  product  with  the  inverse  of  the                   
within-class  scatter  matrix.  Lastly,  the  decision  criterion    is  found  by  projecting  the  average         c        
of   the   two   vectors   of   means   using    w :   
  

      (eq.   11).  ( (Mf s)  2 )  c = wT ·  − M /  
  

In  summary,  given  the  power  values  of  the  fourier-transformed  periodograms  of  the              
successful  (S)  and  failed  (F)  of  the  second  preceding  the  go-stimulus  followed  by  a                
stop-stimulus,   the   following   steps   are   taken   for   each   participant   separately:   
  

● Leave   one   trial   out   
● Compute  the  mean  and  within-class  covariance  matrix  across  the  remaining  trials  for              

all   features   (e.g.   64   sensors),   per   frequency   (e.g.   0-20   Hz),   separately   per   class     
● Subtract   the   vector   of   means   (  )   from   the   other   (  )   and   take   the   dot   product   with  sM fM  

the   inverse   of   the   within-class   scatter   matrix,   which   yields   the   weight   vector    w   
● Now   project    w    on   the   average   of   the   2   vectors   of   means   to   find    c   
● Then    classify :   if    w    projected   on   left-out   feature   vector   is   

■ larger   than    c    →   classify   as   successful   
■ smaller   than    c    →   classify   as   failed   

● Repeat   for   all   the   other   trials   
● Count   correct   classifications   for   all   trials,   per   frequency     
● Finally,   conduct   statistical   evaluation   
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With  smaller  sample  sizes,  the  chance  increases  that  the  performance  level  is  high  by                
chance.  This  is  true  for  LDA,  naive-Bayes  and  support  vector  machines  alike,  regardless  of                
the  type  of  cross-validation  performed  (Combrisson  &  Jerbi,  2015).  Their  solution  is  to               
evaluate  machine  learning  results  for  statistical  significance  against  sample-size  specific            
thresholds  instead  of  theoretical  chance  performance.  They  provided  a  "look-up  table"             
revealing   the   minimum   performance   that   is   needed   to   significantly   exceed   chance   (figure   2).     

Figure   2:   minimum   accuracies   
  
  

Results   

  
Figure   3:   averaged   accuracies   of   the   5-times   repeated   class-balancing   LOO-procedure    
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Figure   4:   (in)significant   combinations   of   averaged-5-times-balanced   procedure,   p<0,05   

  
The  described  procedure  is  repeated  five  times.  Each  time  we  randomly  select  a  subset  of                 
the  majority  class  to  balance  the  sets  of  the  trials.  The  balanced  amounts  of  trials  are  listed                   
in  the  third  row  of  table  1.  Hereafter,  the  resulting  accuracies  were  averaged  and  are                 
depicted   in   figure   3.   A   customary   statistical   test   for   significance   is   added   in   the   appendix.     
  

Table   1:   participant,   number   of   trials,   n.o.   trials   when   balanced,   majority   class   and   its   percentage   
  

There  are  multiple  participants  for  which  significant  classification  has  been  possible,  in  line               
with  the  given  sample-size  specific  thresholds  (figure  4).  The  light-green  scores  are              
almost-significant   accuracies   for   participants   who   did   not   have   a   significant   classification.   
  

The  procedure  can  also  be  applied  without  balancing  the  classes  (figure  5).  To  clarify  the                 
problems  of  imbalanced  classes  we  can  make  use  of  different  metrics.  Let   positives   denote                
trials  that  were  originally  labeled  as  successful  inhibitions  and   negatives   as  failed  ones  and                
write  TruePositives,  TrueNegatives,  FalsePositives  (type  I  errors)  and  FalseNegatives  (type            
II)  accordingly.  The  metrics   precision  TP/(TP+FP),   recall/sensitivity  TP/(TP+FN),   specificity           
TN/(TN+FP),   negative  predictive  value   TN/(TN+FN)  and   F1-score  2TP/(2*TP+FP+FN)  may           
all  give  different  insights,  for  example  revealing  how  the  model  was  not  capable  of                
classifying  successful  inhibition  because  it  trained  almost  entirely  on  classifying  the  failed              
inhibitions.   
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Figure   5:   accuracies   for   the   Leave-One-Out   procedure   (no   classes   are   balanced)   
  

Thus,  class  imbalance  may  compromise  the  process  of  learning  when  the  model  will  learn  to                 
correctly  classify  the  prevalent  class  while  ignoring  the  less  occurring  events.  In  other  words,                
a  model  can  be  accurate  while  still  not  being  valuable  at  all.  Moreover,   Matthews  Correlation                 
Coefficient   (TP*TN-FP*FP)  /  sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))  is  an  acclaimed         
metric  for  when  positive  and  negative  cases  are  of  equal  importance,  to  summarize  the                
performance  in  a  single  value  (Chicco  &  Jurman,  2020).  It  depends  on  the  applicative  goal                 
which  of  the  metrics  deserves  preference.  For  the  class-balanced  procedure,  the  outcomes              
of   all   the   mentioned   metrics   for   the   4-12   Hz   range   are   listed   in   the   appendix.     
  

Our  solution  for  dealing  with  this  skewness  was  thus  to  equalize  the  number  of  trials  used.                  
After  the  repeated  class-balancing  procedure,  we  can  determine  which  electrodes  were  most              
discriminative  by  having  received  the  highest  weights.  Including  irrelevant  predictors  can             
worsen  performance  on  new  data,  because  one  would  end  up  fitting  to  noise.  To  find  more                  
specific  explanations  and  to  improve  accuracy  scores  at  the  same  time,  the  feature  space                
can  be  limited  while  trying  to  optimize  for  a  subset  of  electrodes.  The  resulting                
weight-vectors  are  averaged,  for  every  participant  and  frequency  separately.  Note  that  an              
alternative  strategy  would  be  to  start  with  taking  the  absolute  values  of  the  resulting  weights                 
vectors   before   averaging  them,  which  has  not  been  done.  Next,  when  taking  the  absolute                
values  of  the  averaged  weight-vectors,  the  weights  in  these  vectors  are  ordered.  The               
corresponding  electrodes  can  be  counted  to  find  an  ordering  of  occurence.  For  a  first                
indication  of  importance,  we  sum  the  top-15  most  important  electrodes  for  the  theta  and                
alpha  band  and  all  participants  together  (15*8*29  electrodes)  and  take  the  top-20  of  that                
ordering,   showing   how   the   parietal   area   is   of   strong   influence   in   our   calculations   (figure   6).   
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Figure   6:   cross-subject   top-20   of   the   top-15   discriminating   electrodes   in   theta   +   alpha   band   

Using  a  specific  subset  of  electrodes  for  every  1  Hz  frequency  interval  and  every  participant                 
(29*20  =  580  subsets)  would  result  in  the  highest  accuracy  scores.  Since  there  are  2^64                 
possible  subsets,  a  more  (computationally)  feasible  strategy  is  to  find  one  subset  of               
electrodes  per  frequency,  across  participants.  This  has  been  done  by  putting  the  top-32  most                
informative  electrodes  of  the   averaged  5-times  repeated  class-balancing  LOO-procedure  for            
every  participant  (for  one  frequency  at  a  time)  in  a  list.  Then,  the  occurrences  were  counted                  
and  ordered  based  on  this  summation.  Next,  we  execute  the  same  procedure  with  an                
increasing  number  of  electrodes  from  that  ordered  list,  starting  with  the  single  most  occuring                
electrode  and  finishing  with  all.  After  each  time  of  running  the  procedure  with  one  set  of                  
electrodes,  the  accuracies  are  summed.  The  subset  of  electrodes  corresponding  to  the              
highest  cross-participant  sum  is  returned.  The  8  resulting  subsets  can  be  found  in  the                
appendix.   This   optimization   yields   the   following   accuracy-scores   for   the   4-12   Hz   range:     

  

Figure   7:   4-12   Hz   accuracies,   using   semi-optimized   subsets   of   electrodes   per   frequency   
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For  testing  the  hypothesis  of  frontal  theta  yielding  predictability,  the   averaged  5-times              
repeated  class-balancing  LOO-procedure  was  executed  with  the  (fixed)  subset  of  electrodes             
[Fp1,  AF7,  AF3,  F1,  F3,  F5,  F7,  FT7,  FC5,  FC3,  FC1,  Fpz,  Fp2,  AF8,  AF4,  AFz,  Fz,  F2,  F4,                     
F6,   F8,   FCz,   FC2,   FC4,   FC6,   FT8],   which   resulted   in   the   following   accuracies:   
  

  
Figure   8:   frontal   electrodes   on   4-8   Hz   

  
  

Discussion   
  

The  question  ‘what  are  the  predictors  of  performance  failures  from  a  perspective  that  goes                
beyond  theta  and  alpha  in  terms  of  frequency  and  location?’  can  now  be  dealt  with.  Based                  
on  the  cross-participants  summation  of  the  5  times  repeated  class-balanced  procedure  using              
all  electrodes,  the  11  to  12  Hz  frequency  interval  turns  out  to  yield  the  most  predictability                  
(sum  =  15,23),  followed  by  13-14  Hz  (sum  =  15,1)  and  14-15  Hz  (sum  =  15,07).  With  this                    
procedure,  significant  accuracies  are  found  for  21  of  the  29  participants.  Also,  with  the  use  of                  
a  semi-optimized  unique  subset  of  the  electrodes  per  frequency  interval  (on  the  4-12  Hz                
range),  the  same  frequency  interval  (11  to  12  Hz)  has  resulted  in  the  highest  predictability.                 
Here,  the  decision  to  start  from  the  top-32  most  informative  electrodes  is  not  well-founded.                
Since  the  ordering  of  these  tops  already  matter,  there  are  other  subsets  of  electrodes  that                 
are  likely  to  give  more  legitimate  representations  of  importance.  Better  explanations  can  be              
found  when  starting  with  the  top-1  of  cross-participant  most-informative  electrodes  and             
executing  the  procedure  with  an  increasing  number  of  electrodes  from  that  top  -  which  is  a                  
very  intensive  calculation.  Upon  this,  one  more  possibility  is  to  optimize  for  finding  a  subset                 
of   electrodes   per   participant   instead   of   for   a   cross-participant   1   Hz   frequency   interval.   
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Another  aspect  to  consider  is  that  one  of  the  main  prevailing  challenges  is  the  low                 
signal-to-noise  ratio.  Our  ratio  is  presumably  imperfect  because  of  technical  glitches  and              
other  artifacts.  Blind-source-separation  techniques  such  as  Independent  -  and  Principal            
Component  Analysis  could  have  been  deployed  to  decompose  the  signal,  to  improve  the               
signal  to  noise  ratio  by  removing  certain  artifactual  components.  Because  all  rejection  would               
require  some  level  of  supervision,  Chaumon  et  al.  (2015)  recommend  a  semi-automatic              
approach,  in  which  (informed)  decisions  can  be  made  about  which  components  to  reject,               
based  on  a  number  of  statistical  measures.  Urigüen  and  Garcia-Zapirain  (2015)  argue  that               
the  best  method  is  to  be  found  in  combining  more  than  one  algorithm  and  removing  one  type                   
of  artifact  at  a  time.  Also,  Pion-Tonachini  et  al.,  (2019)  made  available  an  automated                
independent  component  classifier  method.  Jiang  et.  al  (2019)  reviewed  (a  selection  of)              
contemporary  practices  and  concluded  that  dealing  with  artifacts  continues  to  be  an  open               
problem.  In  addition  to  this  view,  Grootswagers  et  al.  (2017)  suggest  that  even  the  sole                 
removal  of  trials  with  eye-blink  artefacts  is  a  preprocessing  step  that  potentially  could  be  left                 
out  from  their  decoding  analysis  preprocessing  pipeline,  because  classifiers  (such  as  ours)              
possibly  have  the  capacity  to  learn  to  suppress  noise  during  training  (when  neither  over-  nor                 
underfitting).  Still,  these  artefacts  can  be  potential  source  of  discrimination  when             
confounding  with  a  condition.  If  this  were  to  happen,  it  may  be  hard  to  determine  whether  the                   
classifier  was  actually  decoding  the  experimental  condition  or  just  the  correlating  difference              
in   artefacts.     
  

Of  course,  a  good  predictor  is  not  necessarily  a  true  cause.  To  go  beyond  correlation,                 
intervention  (for  example  with  transcranial  magnetic  stimulation)  would  have  to  take  place,              
since  no  causality  has  yet  been  shown.  By  investigating  how  much  change  in  one  variable                 
affects  the  outcome  given  all  other  feature  values  remain  fixed,  causal  inference  is  possible                
as  well.  For  future  research  it  would  be  also  interesting  to  use  different  time  windows  on  the                   
dataset.  Although  both  alpha  and  theta  oscillations  are  associated  with  the  allocation  of               
attention  to  sensory  stimuli,  these  oscillations  may  operate  through  very  different             
mechanisms  (Keller  et  al.  2017).  Ouyang  et  al.  (2015)  reason  that  there  are  three  types  of                  
events  occurring  in  a  typical  psychological  EEG  experiment:  events  that  are  strictly              
time-locked  to  the  stimulus,  events  that  are  strictly  time-locked  to  the  response,  and  events                
that  occur  at  variable  latencies  between  the  two  others.  Therefore,  implementing  the  model               
as  a  continuous  application  would  be  of  help  discovering  more  fine-grained  interplay.  The               
traditional  stop-signal  task  itself  (and  the  used  dataset)  may  still  be  highly  valuable  to  provide                 
insights  in  both  ‘higher’  (e.g.,  proactive  top-down)  and  lower-level  (reactive,  more  bottom-up              
driven)  mechanisms  of  inhibition  and  motor  inhibition,  and  be  a  useful  tool  for  understanding                
pathologies   as   well   as   inspiring   new   treatments   (Kenemans,   2015).   
  

Decisions  made  at  both  preprocessing  (e.g.  dimensionality  reduction,  subsampling,  trial            
averaging)  and  decoding  (e.g.  classifier  selection,  cross-validation  design)  stages  of  the             
analysis  can  significantly  affect  the  results  (Grootswagers  et  al.,  2017).  For  future  research,               
the  current  procedure  can  be  expanded  by  further  developing  and  optimizing  the              
subset-selection  of  the  most  informative  electrodes.  Still,  there  is  the  chance  of  missing  out                
on  important  information  when  we  leave  out  certain  features.  Clearly,  it  is  to  be  assumed  that                  
there  are  many  more  patterns  left  to  unravel  in  this  data.  Finding  rare  events  is  a  type  of                    
prediction   in   itself   and   the   scarcest   ones   are   the   hardest   to   find   (Haixiang   et   al.,   2017).     
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Although  in  EEG  analysis  linear  methods  are  often  used,  the  usage  of  nonlinear  approaches                
has  increased  in  their  presence  because  they  reveal  aspects  that  cannot  be  measured  with                
linear  approaches  (Rodriguez-Bermudez  &  García-Laencina,  2015).  Beyond  its  usage  as  a             
demonstrably  powerful  classifier,  fisher’s  linear  discriminant  analysis  method  can  also  be             
used  as  a  preprocessing  tool  for  dimensionality  reduction,  to  first  determine  which  features               
are  most  important  and  thereafter  feed  those  to  more  refined  algorithms.  Within  this  wide                
variety  of  (deep)  neural  network  architectures,  classification  has  already  been  applied  to              
many  EEG  tasks  (Lotte  et  al.,  2018);  Craik  et  al.,  2019;  Roy  et  al.,  2019).  Herein,  further                   
research  to  compare  how  these  (ideally  hybrid)  networks  interpret  raw  versus  denoised  EEG               
is  encouraged  as  well.  There  are  methods  to  use  more  state-of-the-art  (deep  learning)               
algorithms  while  at  the  same  time  warranting  interpretability  (Ribeiro  et  al.,  2016;  Guidotti  et                
al.,  2018).  Nonetheless,  such  classifiers  may  still  be  considered  to  be  less  transparent.               
Models  should  also  be  interpretable,  even  when  the  actual  task  of  interpretation  appears  to                
be  underspecified  (Lipton,  2018).  Since  the  definition  of  what  constitutes  a  viable  explanation               
is  unclear,  even  strong  regulations  such  as  ‘right  to  explanation’  can  be  undermined  with                
less-than-satisfactory  explanations  (Rudin,  2019).  Because  prediction  is  not  the  main  goal  of             
decoding  in  neuroscience  and  the  choice  of  classifier  favours  simplicity  and  interpretability              
over  optimizing  prediction  accuracies,  linear  classifiers  are  generally  preferred  for  brain             
decoding   studies   (Grootswagers   et   al.,   2017).     
  
  

Conclusion     
  

The  extent  to  which  changes  in  brain  activity  can  foreshadow  human  error  remains  uncertain                
yet  has  important  theoretical  and  practical  implications  (O’Connell  et  al,  2009).  The  study  of                
response  inhibition  has  the  advantage  of  dealing  with  a  relatively  straightforward  process,              
namely  the  overriding  of  a  planned  or  already  initiated  action  (Bari  &  Robbins,  2013).  In                 
many  circumstances,  alternative  courses  of  action  and  thoughts  have  to  be  inhibited  to  allow                
the  emergence  of  goal-directed  behavior.  Among  the  many  ways  in  which  our  brain  controls                
its  own  activity,  inhibitory  processes  are  important  both  in  everyday  life  as  well  as  during                 
emergency  situations.  Ursin  (2005)  noted  how  inhibition  is  important  for  our  abilities  to  make                
choices,   as   well   as   for   our   freedom   of   choice.     
  

It  is  imaginable  how  interventions  can  be  devised  for  critical  operations.  New  technologies               
might  focus  on  lowering  errors  or  increasing  successful  response  inhibition,  but  it  is               
necessary  to  question  how  the  individual  might  benefit  from  such  monitoring  towards              
increased  goal-directed  action.  Active  monitoring  may  pose  risks  for  the  autonomy  of  the               
involved  actors  through  the  making  of  increasingly  strong  generalizations  about  ongoing             
(and  upcoming)  cognitive  processes  and  states.  There  is  a  substantive  divergence  of              
interpretation  and  implementation  of  ethical  AI  principles  (Jobin  et  al.,  2019),  because  of               
which   the   importance   of   guideline   development   efforts   persists.     
  

Response  inhibition  can  be  predicted  before  it  takes  place.  Cross-participant  resemblances             
of  predictors  have  been  found.  Our  group  of  participants  is  nevertheless  nowhere  near  a  true                 
societal  representation  (Henrich  et  al.,  2010).  The  strength  of  classification  can  be  increased               
with  more  sophisticated  learning  algorithms  and  with  the  use  of  Fisher’s  method  as  a                
preprocessor   for   dimensionality   reduction.     
  

14   



Tjalle   Galama   6936385   -   Utrecht   University   2021   -   supervisors   prof.   dr.   J.L.   Kenemans,   dr.   C.P.   Janssen     
  

References   
  

Al-Fahoum,   A.   S.,   &   Al-Fraihat,   A.   A.   (2014).   Methods   of   EEG   signal   features   extraction   using   linear   
analysis   in   frequency   and   time-frequency   domains.   International   Scholarly   Research   Notices,   2014.   
  

Aron,   A.   R.,   Robbins,   T.   W.,   &   Poldrack,   R.   A.   (2014).   Inhibition   and   the   right   inferior   frontal   cortex:   
one   decade   on.   Trends   in   cognitive   sciences,   18(4),   177-185.   
  

Bari,   A.,   &   Robbins,   T.   W.   (2013).   Inhibition   and   impulsivity:   behavioral   and   neural   basis   of   response   
control.   Progress   in   neurobiology,   108,   44-79.   
  

Bekkar,   M.,   Djemaa,   H.   K.,   &   Alitouche,   T.   A.   (2013).   Evaluation   measures   for   models   assessment   
over   imbalanced   data   sets.   J   Inf   Eng   Appl,   3(10).   
  

Bishop,   C.   M.   (2006).   Pattern   recognition   and   machine   learning.   springer.   
  

Buettner,   R.,   Rieg,   T.,   &   Frick,   J.   (2020).   Machine   Learning   based   Diagnosis   of   Diseases   Using   the   
Unfolded   EEG   Spectra:   Towards   an   Intelligent   Software   Sensor.   In   Information   Systems   and   
Neuroscience   (pp.   165-172).   Springer,   Cham.   
  

Carlson,   T.   A.,   Grootswagers,   T.,   &   Robinson,   A.   K.   (2019).   An   introduction   to   time-resolved   decoding   
analysis   for   M/EEG.   arXiv   preprint   arXiv:1905.04820.     
  

Cavanagh,   J.   F.,   &   Frank,   M.   J.   (2014).   Frontal   theta   as   a   mechanism   for   cognitive   control.   Trends   in   
cognitive   sciences,   18(8),   414-421.   
  

Chaumon,   M.,   Bishop,   D.   V.,   &   Busch,   N.   A.   (2015).   A   practical   guide   to   the   selection   of   independent   
components   of   the   electroencephalogram   for   artifact   correction.    Journal   of   neuroscience   methods ,   
250 ,   47-63.   
  

Chaumon,   M.,   Crouzet,   S.   M.,   &   Busch,   N.   A.   (2015).   Cutting-edge   methods   for   EEG   research   on   
cognition.    Journal   of   neuroscience   methods ,    250 ,   1-2.   
  

Chicco,   D.,   &   Jurman,   G.   (2020).   The   advantages   of   the   Matthews   correlation   coefficient   (MCC)   over   
F1   score   and   accuracy   in   binary   classification   evaluation.   BMC   genomics,   21(1),   1-13.   
  

Combrisson,   E.,   &   Jerbi,   K.   (2015).   Exceeding   chance   level   by   chance:   The   caveat   of   theoretical   
chance   levels   in   brain   signal   classification   and   statistical   assessment   of   decoding   accuracy.   Journal   of   
neuroscience   methods,   250,   126-136.   
  

Craik,   A.,   He,   Y.,   &   Contreras-Vidal,   J.   L.   (2019).   Deep   learning   for   electroencephalogram   (EEG)   
classification   tasks:   a   review.   Journal   of   neural   engineering,   16(3),   031001.   
  

De   Jong,   R.,   Coles,   M.   G.,   &   Logan,   G.   D.   (1995).   Strategies   and   mechanisms   in   nonselective   and   
selective   inhibitory   motor   control.   Journal   of   experimental   psychology:   Human   perception   and   
performance,   21(3),   498.   
  

Esch,   L.,   Dinh,   C.,   Larson,   E.,   Engemann,   D.,   Jas,   M.,   Khan,   S.,   ...   &   Hämäläinen,   M.   S.   (2019).   MNE:   
Software   for   Acquiring,   Processing,   and   Visualizing   MEG/EEG   Data.   Magnetoencephalography:   From   
Signals   to   Dynamic   Cortical   Networks,   355-371.   
  

15   



Tjalle   Galama   6936385   -   Utrecht   University   2021   -   supervisors   prof.   dr.   J.L.   Kenemans,   dr.   C.P.   Janssen     
  

Grootswagers,   T.,   Wardle,   S.   G.,   &   Carlson,   T.   A.   (2017).   Decoding   dynamic   brain   patterns   from   
evoked   responses:   A   tutorial   on   multivariate   pattern   analysis   applied   to   time   series   neuroimaging   
data.   Journal   of   cognitive   neuroscience,   29(4),   677-697.   
  

Guidotti,   R.,   Monreale,   A.,   Ruggieri,   S.,   Turini,   F.,   Giannotti,   F.,   &   Pedreschi,   D.   (2018).   A   survey   of   
methods   for   explaining   black   box   models.   ACM   computing   surveys   (CSUR),   51(5),   1-42.   
  

Haixiang,   G.,   Yijing,   L.,   Shang,   J.,   Mingyun,   G.,   Yuanyue,   H.,   &   Bing,   G.   (2017).   Learning   from   
class-imbalanced   data:   Review   of   methods   and   applications.   Expert   Systems   with   Applications,   73,   
220-239.   
  

Haber,   R.   E.,   Juanes,   C.,   del   Toro,   R.,   &   Beruvides,   G.   (2015).   Artificial   cognitive   control   with   self-x   
capabilities:   A   case   study   of   a   micro-manufacturing   process.   Computers   in   Industry,   74,   135-150.   
  

Henrich,   J.,   Heine,   S.   J.,   &   Norenzayan,   A.   (2010).   Most   people   are   not   WEIRD.   Nature,   466(7302),   
29-29.   
  

Jobin,   A.,   Ienca,   M.,   &   Vayena,   E.   (2019).   The   global   landscape   of   AI   ethics   guidelines.   Nature   
Machine   Intelligence,   1(9),   389-399.   
  

Kandiah,   S.   (2020).   Theta-   and   alpha-power   dynamics   related   to   response   inhibition   
  

Kane,   N.,   Acharya,   J.,   Beniczky,   S.,   Caboclo,   L.,   Finnigan,   S.,   Kaplan,   P.   W.,   ...   &   van   Putten,   M.   J.   
(2017).   A   revised   glossary   of   terms   most   commonly   used   by   clinical   electroencephalographers   and   
updated   proposal   for   the   report   format   of   the   EEG   findings.   Revision   2017.   Clinical   neurophysiology   
practice,   2,   170.  
  

Keller,   A.   S.,   Payne,   L.,   &   Sekuler,   R.   (2017).   Characterizing   the   roles   of   alpha   and   theta   oscillations   
in   multisensory   attention.   Neuropsychologia,   99,   48-63.   
  

Kenemans,   J.   L.   (2015).   Specific   proactive   and   generic   reactive   inhibition.   Neuroscience   &   
Biobehavioral   Reviews,   56,   115-126.   
  

Lieto,   A.,   Bhatt,   M.,   Oltramari,   A.,   &   Vernon,   D.   (2018).   The   role   of   cognitive   architectures   in   general   
artificial   intelligence.   
  

Linear   discriminant   analysis   -   Wikipedia.   (2021).   Retrieved   26   June   2021,   from   
https://en.wikipedia.org/wiki/Linear_discriminant_analysis   
  

Lipton,   Z.   C.   (2018).   The   Mythos   of   Model   Interpretability:   In   machine   learning,   the   concept   of   
interpretability   is   both   important   and   slippery.   Queue,   16(3),   31-57.   
  

Lotte,   F.,   Bougrain,   L.,   Cichocki,   A.,   Clerc,   M.,   Congedo,   M.,   Rakotomamonjy,   A.,   &   Yger,   F.   (2018).   A   
review   of   classification   algorithms   for   EEG-based   brain–computer   interfaces:   a   10   year   update.   
Journal   of   neural   engineering,   15(3),   031005.   
  

Mazaheri,   A.,   Nieuwenhuis,   I.   L.,   Van   Dijk,   H.,   &   Jensen,   O.   (2009).   Prestimulus   alpha   and   mu   activity   
predicts   failure   to   inhibit   motor   responses.   Human   brain   mapping,   30(6),   1791-1800.   
  

O'Connell,   R.   G.,   Dockree,   P.   M.,   Robertson,   I.   H.,   Bellgrove,   M.   A.,   Foxe,   J.   J.,   &   Kelly,   S.   P.   (2009).   
Uncovering   the   neural   signature   of   lapsing   attention:   electrophysiological   signals   predict   errors   up   to   
20   s   before   they   occur.   Journal   of   Neuroscience,   29(26),   8604-8611.   

16   



Tjalle   Galama   6936385   -   Utrecht   University   2021   -   supervisors   prof.   dr.   J.L.   Kenemans,   dr.   C.P.   Janssen     
  

  
Ouyang,   G.,   Sommer,   W.,   &   Zhou,   C.   (2015).   A   toolbox   for   residue   iteration   decomposition   (RIDE)—A   
method   for   the   decomposition,   reconstruction,   and   single   trial   analysis   of   event   related   potentials.   
Journal   of   neuroscience   methods,   250,   7-21.   
  

Pion-Tonachini,   L.,   Kreutz-Delgado,   K.,   &   Makeig,   S.   (2019).   ICLabel:   An   automated   
electroencephalographic   independent   component   classifier,   dataset,   and   website.   NeuroImage,   198,   
181-197.   
  

Ribeiro,   M.   T.,   Singh,   S.,   &   Guestrin,   C.   (2016,   August).   "   Why   should   I   trust   you?"   Explaining   the   
predictions   of   any   classifier.   In   Proceedings   of   the   22nd   ACM   SIGKDD   international   conference   on   
knowledge   discovery   and   data   mining   (pp.   1135-1144).   
  

Rodriguez-Bermudez,   G.,   &   Garcia-Laencina,   P.   J.   (2015).   Analysis   of   EEG   signals   using   nonlinear   
dynamics   and   chaos:   a   review.   Applied   mathematics   &   information   sciences,   9(5),   2309.   
  

Roy,   Y.,   Banville,   H.,   Albuquerque,   I.,   Gramfort,   A.,   Falk,   T.   H.,   &   Faubert,   J.   (2019).   Deep   
learning-based   electroencephalography   analysis:   a   systematic   review.   Journal   of   neural   engineering,   
16(5),   051001.   
  

Rudin,   C.   (2019).   Stop   explaining   black   box   machine   learning   models   for   high   stakes   decisions   and   
use   interpretable   models   instead.   Nature   Machine   Intelligence,   1(5),   206-215.   
  

Urigüen,   J.   A.,   &   Garcia-Zapirain,   B.   (2015).   EEG   artifact   removal—state-of-the-art   and   guidelines.   
Journal   of   neural   engineering,   12(3),   031001.   
    
Ursin,   H.   (2005).   Press   stop   to   start:   the   role   of   inhibition   for   choice   and   health.   
Psychoneuroendocrinology,   30(10),   1059-1065.   
  

Vaid,   S.,   Singh,   P.,   &   Kaur,   C.   (2015,   February).   EEG   signal   analysis   for   BCI   interface:   A   review.   In   
2015   fifth   international   conference   on   advanced   computing   &   communication   technologies   (pp.   
143-147).   IEEE.  
  

Verbruggen,   F.,   Aron,   A.   R.,   Band,   G.   P.,   Beste,   C.,   Bissett,   P.   G.,   Brockett,   A.   T.,   ...   &   Boehler,   C.   N.   
(2019).   A   consensus   guide   to   capturing   the   ability   to   inhibit   actions   and   impulsive   behaviors   in   the   
stop-signal   task.   elife,   8,   e46323.   
  

Xue,   J.   H.,   &   Titterington,   D.   M.   (2008).   Do   unbalanced   data   have   a   negative   effect   on   LDA?.   Pattern   
Recognition,   41(5),   1558-1571.   
  
  
  
  
  
  
  
  
  
  
  
  
  

17   



Tjalle   Galama   6936385   -   Utrecht   University   2021   -   supervisors   prof.   dr.   J.L.   Kenemans,   dr.   C.P.   Janssen     
  

Appendix     
  

1.   BrainVision   Analyzer   complete   pre-processing   history   tree   
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2.   Statistical   evaluation   of   the    averaged   5-times   repeated   class-balancing   LOO-procedure   
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3.   Metrics   4-12   Hz   for   the    averaged   5-times   repeated   class-balancing   LOO-procedure   
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4.   Experimentally   optimized   subsets   of   used   electrodes     
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5.   Python   code   
  

"""   Utrecht   University   2021   -   Tjalle   Galama   6936385   :   This   tool   is   designed   for     
finding   the   most   informative   linear   discriminants   in   pre-processed   EEG   data   """   
  

import   os     
import   math  
import   random     
import   numpy   as   np     
import   pandas   as   pd   
import   time   
  

#   (   Practical   sidenote:   '   ;   '   was   used   as   a   delimiter   in   both   BVA   and   Excel   )     
  

#   set   this   string   to   where   the   folder   /script   is   located:     
wd   =   "C:/Users/tjall/Onedrive/Documents/studie/UU/thesis/script"   
  

#   changeable   parameters:   
used_freqc   =   list(range(0,20))   #   or   for   example   [4,5,6,7],   or   just   [11]   
run_FLDA_LOO   =   False   #   by   default   not   balancing   classes     
run_FLDA_LOO_k_times   =   True   ;   k   =   5   #   this   one   balances   
  

find_optimal_subset   =   False   #   for   given   used_freqc.   warning:   takes   a   long   time     
  

#   --------------------------------------------------------------------------   #   
#   The   folders   where   csv's   are   located   and   where   results   will   be   stored   
data_import   =   wd   +   "/import"   ;   results   =   wd   +   "/results/"     

    
freq   =   32   #   the   number   of   1   Hz   frequency   intervals,   as   in   the   used   csv   files     
used_electrodes   =   ['Fp1',   'AF7',   'AF3',   'F1',   'F3',   'F5',   'F7',   'FT7',   'FC5',     
        'FC3',   'FC1','C1',   'C3',   'C5',   'T7',   'TP7',   'CP5',   'CP3',   'CP1',   'P1',     
        'P3',   'P5','P7',   'P9',   'PO7',   'PO3',   'O1',   'Iz',   'Oz',   'POz',   'Pz',   
        'CPz',   'Fpz',   'Fp2',   'AF8',   'AF4',   'AFz',   'Fz',   'F2',   'F4',   'F6',   'F8',     
        'FT8',   'FC6','FC4',   'FC2',   'FCz',   'Cz',   'C2',   'C4',   'C6',   'T8',   'TP8',     
        'CP6',   'CP4','CP2',   'P2',   'P4',   'P6',   'P8',   'P10',   'PO8',   'PO4',   'O2']   
  

#   a   function   to   list   the   individual   csv   file   locations:     
def   list_file_locations(folder):   

    
     loc_failed   =   []   ;   loc_success   =   []     

    
     with   os.scandir(folder)   as   it:   
         for   entry   in   it:   
             if   entry.name.endswith(".csv")   and   entry.is_file():   
                 if   entry.name.startswith('failed'):   
                     loc_failed.append(entry.path)   

    
     with   os.scandir(folder)   as   it:   
         for   entry   in   it:   
             if   entry.name.endswith(".csv")   and   entry.is_file():   
                 if   entry.name.startswith('successful'):   
                     loc_success.append(entry.path)   

    
     participants_list   =   []     
     for   string_failed   in   loc_failed:   
         ptcp   =   string_failed[-7:-4]   
         participants_list.append(ptcp)   

    
     #   the   function   has   the   following   two   variables   as   output:     
     return   loc_failed,   loc_success,   participants_list   
  

#   this   function   is   now   executed   (as   follows):     
loc_failed,   loc_success,   participants_list   =   list_file_locations(data_import)   
  

#   The   second   function   imports   the   data   of   one   participant   into   a   dataframe:   
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def   import_one(string_failed,string_success,used_electrodes):   
    

     #   import   spectra   of   the   seconds   before   failed   responses   
     f   =   pd.read_csv(string_failed,sep=";",header=None,index_col=0,decimal=',')     
     #   transpose   the   dataframe   and   an   index   is   added     
     f   =   pd.DataFrame.transpose(f)     
     #   only   keep   the   columns   of   electrodes   that   we   have   initialized   
     f   =   f[f.columns.intersection(used_electrodes)]   
     #   add   a   column   with   the   class-label   
     f['class']   =   'f'     
     #   add   a   column   for   corresponding   frequencies   (0   means   0-1   Hz,   etcetera)   
     f['freqc']   =   np.tile(np.array(list(range(0,freq))),int(len(f)/freq))   
     #   add   a   column   for   the   trial-numbers     
     f['trial']   =   np.repeat(np.arange(0,len(f)/freq),freq)   

    
     #   likewise,   import   successful   
     s   =   pd.read_csv(string_success,sep=";",header=None,index_col=0,decimal=',')   
     s   =   pd.DataFrame.transpose(s)     
     s   =   s[s.columns.intersection(used_electrodes)]   
     s['class']   =   's'     
     s['freqc']   =   np.tile(np.array(list(range(0,freq))),int(len(s)/freq))   
     s['trial']   =   np.repeat(np.arange(0,len(s)/freq),freq)   
  

     #   Now   that   we   have   the   data,   we   can   balance   the   classes.   
     #   Whether   this   will   be   done,   depends   on   the   parameter   'balance_classes':   

    
     kept   =   pd.DataFrame([])   #   storing   which   trials   are   kept    
     ptcp   =   string_failed[-7:-4]   #   participant   number   (3-digit   before   '.csv')   
  

     if   balance_classes   ==   True:     
         #   first   define   how   many   trials   we   want   per   class   (taking   the   minimum):   
         trials_per_class   =   int(min(len(s),len(f))/freq)     
         if   len(s)>len(f):   
             #   transforming   an   integer-float   to   int   +   set   the   number   of   s   trials   
             trials   =   int(len(f)/freq)     
             #   sample   unique   indices     
             sample_indices   =   random.sample(range(0,trials),trials_per_class)   
             #   select   only   the   trials   with   the   corresponding   sampled   indices     
             s   =   s[s['trial'].isin(sample_indices)]    
             #   For   reproducibility,   save   which   trials   are   kept   
             kept['{0},   s'.format(ptcp)]   =   sorted(sample_indices)   
             print('For   ptcp   {0},   {1}   s-trials   are   kept.'.format(ptcp,trials))   
         elif   len(s)<len(f):   
             trials   =   int(len(s)/freq)   
             sample_indices   =   random.sample(range(0,trials),trials_per_class)     
             f   =   f[f['trial'].isin(sample_indices)]   
             kept['{0},   f'.format(ptcp)]   =   sorted(sample_indices)   
             print('For   ptcp   {0},   {1}   f-trials   are   kept.'.format(ptcp,trials))   
         elif   len(s)==len(f):   
             pass   

    
     #   paste   the   failed   and   successful   dataframes   under   each   other   
     dataset   =   pd.concat([f,s],   axis=0,   ignore_index=True)   
     #   add   a   column   for   the   participant   number   
     dataset['ptp']   =   ptcp   
     #   we   only   use   0-20   Hz,   but   can   also   give   another   subset   to   used_freqc   
     data   =   dataset[dataset['freqc'].isin(used_freqc)]   

    
     return   data,   kept     
  

#   A   function   to   import   the   data   of   all   the   participants:   
def   import_all(used_electrodes):     

    
     full_kept   =   pd.DataFrame([])   #   herein,   save   the   used   trials     
     full_data   =   pd.DataFrame([])   #   herein   we   store   all   the   data    
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     for   h   in   range(0,len(loc_failed)):     
    

         data,   kept   =   import_one(loc_failed[h],loc_success[h],used_electrodes)   
    

         full_kept   =   pd.concat([full_kept,kept],   axis=1)   #   add   column   wise   
         full_data   =   pd.concat([full_data,data],   axis=0)   #   add   row   wise     

    
     return   full_kept,   full_data   

    
#   This   function   performs   Fisher's   LDA   with   LeaveOneOut   cross-validation:   
def   find_weights_LOO(dataset,used_electrodes):     
  

     dataset   =   dataset.drop(['ptp'],   axis=1)   
    

     weights   =   []   ;   out   =   []     
    

     e   =   len(used_electrodes)   
    

     amount_of_trials   =   int(len(dataset)/len(used_freqc))     
    

     #   Add   a   column   with   a   new   enumeration   for   the   total   amount   of   trials,   which   
     #   is   needed   because   some   (or   many)   trial   numbers   are   doubled   (f   &   s)   
     dataset['tot']   =   np.repeat(np.arange(0,amount_of_trials),len(used_freqc))   

    
     for   h   in   range(0,amount_of_trials):   #   start   looping   through   the   trials   

    
         left_out   =   dataset.loc[dataset['tot']   ==   h]   #   leave   a   trial   out     
         label   =   left_out['class'].values[0]   #   &   save   its   class   ('label')   
         trial   =   left_out['trial'].values[0]   #   &   save   the   trial   

    
         #   drop   frequency,   class   and   trial   columns   for   the   upcoming   calculations   
         left_out   =   left_out.drop(['class','trial','tot'],   axis=1)   

    
         #   reset   index   of   left-out   trial   to   preserve   frequency   enumeration     
         left_out   =   left_out.reset_index(drop=True)   

    
         #   continue   with   all   the   other   trials     
         rest   =   dataset.loc[dataset['tot']   !=   h]     

    
         for   i   in   used_freqc:   #   start   looping   through   the   frequencies   

    
             #   only   take   the   row   with   the   specific   frequency     
             left_i   =   left_out.loc[left_out['freqc']   ==   i]   
             left_i   =   left_i.drop(['freqc'],   axis   =   1)   

    
             trials_of_freq_i   =   rest.loc[rest['freqc']   ==   i]   

    
             f_freq_i   =   trials_of_freq_i.loc[trials_of_freq_i['class']   ==   'f']   
             s_freq_i   =   trials_of_freq_i.loc[trials_of_freq_i['class']   ==   's']   

    
             f_freq_i   =   f_freq_i.drop(['freqc','class','trial','tot'],   axis   =   1)   
             s_freq_i   =   s_freq_i.drop(['freqc','class','trial','tot'],   axis   =   1)   

    
             #   take   means   over   electrodes   per   class     
             f_i_mean   =   f_freq_i.mean().values[0:e]   
             s_i_mean   =   s_freq_i.mean().values[0:e]   

    
             #   initialize   the   within-class   scatter   matrix   (as   an   empty   matrix)   
             S_W   =   np.zeros((e,e))   

    
             #   scatter   matrix   of   the   first   class   
             class_sc_mat_f   =   np.zeros((e,e))     
             for   row   in   f_freq_i.values:   

    
                 row   =   row.reshape(e,1)     
                 mv   =   f_i_mean.reshape(e,1)   
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                 class_sc_mat_f   +=   (row   -   mv).dot((row   -   mv).T)   

    
             #   scatter   matrix   for   the   next   class   
             class_sc_mat_s   =   np.zeros((e,e))     
             for   row   in   s_freq_i.values:   

    
                 row   =   row.reshape(e,1)   
                 mv   =   s_i_mean.reshape(e,1)   

    
                 class_sc_mat_s   +=   (row   -   mv).dot((row   -   mv).T)   

    
             #   sum   class   scatter   matrices   
             S_W   =   class_sc_mat_f   +   class_sc_mat_s   

    
             #   calculate   the   inverse   of   the   within-class   scatter   matrix     
             #   (using   pseudo-inv.   instead   of   inv   to   deal   with   singular   matrices     
             #   and   as   a   solution   for   participants   that   have   a   lower   sample   size   
             #   for   one   class   than   the   number   of   electrodes)   
             within_inversed   =   np.linalg.pinv(S_W)     

    
             w   =   np.dot(within_inversed,(f_i_mean   -   s_i_mean))   

    
             c   =   np.dot(w,(f_i_mean+s_i_mean))   /   2    

    
             if   np.dot(left_i,w)   >   c:     
                 prediction   =   'f'   #   classify   as   failed   
             elif   np.dot(left_i,w)   <   c:   
                 prediction   =   's'   #   classify   as   successful     

    
             out.append([i,trial,label,prediction])   
             w   =   w.round(5)   
             weights.append(w)     

    
     out   =   pd.DataFrame(out,columns=['freqc','trial','class','pred'])   

    
     weights   =   pd.DataFrame(weights,columns=used_electrodes)   

    
     #   count   correct   classifications   across   all   trials   (per   frequency,   per   ptcp)   
     acc_per_freq   =   []     

    
     for   j   in   used_freqc:   

    
         freq_j   =   out.loc[out['freqc']   ==   j]     

    
         P   =   freq_j[freq_j['class']   ==   's']   
         N   =   freq_j[freq_j['class']   ==   'f']   

    
         TP   =   len(P[P['pred']   ==   's'])    #   TruePositive   
         TN   =   len(N[N['pred']   ==   'f'])    #   TrueNegative   
         FP   =   len(N[N['pred']   ==   's'])    #   FalsePositive   
         FN   =   len(P[P['pred']   ==   'f'])    #   FalseNegative   

    
         prec   =   round((TP   /   (TP   +   FP)),   2)   #   precision     

    
         recall   =   round((TP   /   (TP   +   FN)),   2)   #   sensitivity  

    
         spec   =    round((TN   /   (TN   +   FP)),   2)   #   specificity   

    
         neg   =   round((TN   /   (TN   +   FN)),   2)   #   negative   predictive   value     

    
         F1   =   round((2*TP   /   (2*TP   +   FP   +   FN)),   2)   #   F1-score   

    
         CC   =   (math.sqrt((TP+FP)*(FP+FN)*(TN+FP)*(TN+FN)   ))     
         if   CC   ==   0:   CC   =   0.0001   #   because   we   cannot   divide   by   0     
         MathCC   =   (TP*TN   -   FP*FN)   /   CC   

27   



Tjalle   Galama   6936385   -   Utrecht   University   2021   -   supervisors   prof.   dr.   J.L.   Kenemans,   dr.   C.P.   Janssen     
  

         MathCC   =   round(MathCC,   3)     
    

         acc   =   round(   (   (TP+TN)   /   (TP+TN+FP+FN)   )   ,   2)     
    

         acc_per_freq.append([j,acc,prec,recall,spec,neg,F1,MathCC])   
    

     columns   =   ['freq','acc','prec','rec','spec','neg','F1','MathCC']   
     accuracy_per_freq   =   pd.DataFrame(acc_per_freq,columns=columns)   

    
     #   concat   the   weights   and   corresponding   ['freqc','trial','class','pred']     
     output   =   pd.concat([weights,   out],   axis=1)   

    
     return   accuracy_per_freq,   output     
  

#   A   function   to   run   the   FLDA   LOO   procedure   for   all   participants   at   once:     
def   find_weights_LOO_all(full_data,used_elec):   

    
     #   here   the   accuracies   and   weights   of   all   participants   are   stored     
     accuracies   =   pd.DataFrame()   
     total_output   =   pd.DataFrame()     

    
     start   =   time.time()   #   initiate   a   timer  

    
     for   ptcp   in   participants_list:   

    
         print('Processing   participant   {0}'.format(ptcp))   
         #   select   the   data   of   the   ptcp     
         participant   =   full_data[full_data['ptp']   ==   ptcp]     
         #   run   the   function   on   it     
         accuracy_per_freq,   output   =   find_weights_LOO(participant,used_elec)     
         #   give   the   received   outputs   the   participant   number   as   a   column   
         accuracy_per_freq['ptp']   =   ptcp   ;   output['ptp']   =   ptcp     
         #   add   the   retrieved   accuracies   to   the   dataframe   for   all   participants     
         accuracies   =   pd.concat([accuracies,accuracy_per_freq],   axis=0)  
         #   add   the   retrieved   weights   to   the   dataframe   for   all   participants     
         total_output   =   pd.concat([total_output,output],   axis=0)   

    
     end   =   time.time()   #   end   the   timer     
  

     print("Time   taken   for   this   single   LOO   workflow:   {0}".format(end   -   start))   
     print()   #   print   a   white   line     

    
     return   accuracies,   total_output   
  

if   run_FLDA_LOO   ==   True:     
    

     balance_classes   =   False   #   by   default,   because   the   next   function   balances   
    

     full_kept,   full_data   =   import_all()   #   load   the   data   of   all   the   participants   
     #   when   running   this,   full_kept   is   empty   because   we   do   not   do   any   balancing     
  

     accuracies,   total_output   =   find_weights_LOO_all(full_data,used_electrodes)   
    

     #   save   the   resulting   accuracies   and   all   the   unique   weights   vectors   
     accuracies.to_excel(results   +   "/accuracies.xlsx")   
     total_output.to_excel(results   +   "/total_output.xlsx")   
  

#   When   balancing   classes,   bias   may   occur.   A   possible   solution   is   to   run   the     
#   algorithm   k-times   and   to   average   the   weights   and   accuracies   afterwards.   
def   find_weights_LOO_k_times(k,used_electrodes):   

    
     averaged_accuracies   =   pd.DataFrame()   
     averaged_output   =   pd.DataFrame()   

    
     i   =   0   
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     while   i   <   k:     
    

         print('Running   LOO   round   {0}   to   unbias   class-imbalance.'.format(i+1))   
         full_kept,   full_data   =   import_all(used_electrodes)   #   'full-kept'   unused   

    
         #   getting   the   results   for   one   run   of   the   procedure:   
         accuracies,   output   =   find_weights_LOO_all(full_data,   used_electrodes)   

    
         #   all   the   accuracies   are   put   in   one   dataframe   
         averaged_accuracies   =   pd.concat([averaged_accuracies,accuracies])   

    
         #   all   the   weights   vectors   are   stored   together   as   well    
         averaged_output   =   pd.concat([averaged_output,output])   

    
         i   +=   1   

    
     #   taking   the   means   of   the   accuracies   per   frequency+participant   combination:   
     averaged_accuracies   =   averaged_accuracies.groupby(['freq','ptp']).mean()   

    
     #   dropping   the   columns   'class','pred','trial',   since   we   don't   average   these   
     averaged_output   =   averaged_output.drop(['class','pred','trial'],axis   =   1)  

    
     #   take   the   means   of   the   weights   per   frequency+participant   combination     
     averaged_output   =   averaged_output.groupby(['freqc','ptp']).mean()   
     #   Here,   for   optimal   subset   selection   purposes,   an   alternative   would   be   to     
     #   first   take   the   absolute   values   of   weight   vectors   before   averaging   them.   

    
     return   averaged_accuracies,   averaged_output   
  

if   run_FLDA_LOO_k_times   ==   True:     
    

     balance_classes   =   True     
    

     used_e   =   used_electrodes   
    

     averaged_accuracies,   averaged_output   =   find_weights_LOO_k_times(k,   used_e)   
    

     #   again,   store   the   results   
     averaged_accuracies.to_excel(results   +   "/averaged_accuracies.xlsx")   
     averaged_output.to_excel(results   +   "/averaged_output.xlsx")   

    
#   We   can   create   some   insight   by   counting   which   electrodes   were   used   most   with   
#   a   function   to   sort   the   electrodes   based   on   their   absolute   distance   to   0:     
def   sort_electrodes_by_weight(output):     

    
     #   beginning   with   some   empty   storage:   
     most_informative   =   pd.DataFrame()     

    
     i   =   0     

    
     while   i   <   len(output):   

    
         #   first   take   the   absolute   values   of   the   i-th   row   
         to_be_ordered   =   abs(output.iloc[[i]])   

    
         #   take   the   index   of   this   row.   index[0]   is   of   the   form   (freq,'ptcp')   
         index   =   to_be_ordered.index   

    
         #   now   order   the   row     
         ordered   =   to_be_ordered.sort_values(by=index[0],axis=1,ascending=False)   

    
         #   a   new   row   with   the   same   index   values   +   electrodes   names   ascending   
         #   (based   on   their   respective   weight   values,   which   are   now   omitted)   
         ordered   =   pd.Series(list(ordered.index[0])+list(ordered.columns))   
  

         #   adding   this   row   to   the   storage   
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         most_informative   =   most_informative.append(ordered,   ignore_index=True)   
    

         i   +=   1   
    

     #   after   transforming   all   weight   vectors   to   their   respective   ascending   
     #   names   of   electrodes,   we   rename   the   first   two   columns.   
     most_informative   =   most_informative.rename(columns={0:'freq',   1:'ptcp'})   

    
     return   most_informative   #   (open   the   variable   to   see   what   it   looks   like)   
  

#   given   the   sorted   electrodes,   we   can   try   to   find   the   optimal   subset   for   the     
#   complete   set   of   frequencies   that   was   entered   into   the   procedure   at   first.     
def   subset_finding(ordered_electrodes,   all_electrodes):   

    
     print('Starting   the   subset_finding   procedure')   

    
     m_i   =   pd.DataFrame()   

    
     for   ptp   in   participants_list:   

    
         #   select   the   ordered   electrodes   of   one   participant   
         e_participant   =   most_informative[most_informative['ptcp']   ==   ptp]   

    
         #   remove   the   'freq'   and   'ptcp'   column     
         e_participant   =   e_participant.drop(['freq','ptcp'],axis=1)   

    
         #   only   taking   the   first   32   most   informative   electrodes   per   participant   
         #   This   is   an   uninformed   choice   (!)   
         e_participant   =   e_participant.iloc[:,:32]   

    
         #   paste   all   the   ordered   rows   of   most   informative   frequencies   under   each   
         #   other   +   do   add   those   of   the   other   participants   to   this   dataframe   too     
         for   row   in   range(0,len(e_participant)):   
  

             m_i   =   pd.concat([m_i,e_participant.iloc[row,]],   axis=0)     
    

     m_i   =   m_i.reset_index(drop=True)   #   reset   the   index     
    

     #   count   the   occurences   of    29   *   32   *   len(used_freqc)   electrodes   in   total   
     m_i   =   m_i.iloc[:,0].value_counts()     

    
     #   the   initial   number   of   used   electrodes   (from   the   ordening   m_i)   
     i   =    1   

    
     #   total   accuracy   score   of   the   original   set,   for   comparisons     
     leading_accuracy_sum   =   sum(averaged_accuracies['acc'])     

    
     best_e   =   []     

    
     opt_av_accuracies   =   []     
     opt_av_out   =   []     

    
     while   i   <   len(all_electrodes):   

    
         print("The   number   of   used   electrodes   is   {0}".format(i))   
  

         #   the   top-i   of   the   top-32,   across   participants   (for   all   of   used_freqc)     
         used_e   =   np.array(m_i.iloc[:i].index)   

    
         #   sort   the   new   list   of   electrodes   according   to   the   original   sorting   
         #   (this   is   needed   for   assigning   column   names   in   the   FLDA   function)   
         used_e   =   list(filter(lambda   x:x   in   used_e,   all_electrodes))   

    
         #   run   the   repeated   balancing   function   with   the   new   subset   of   electrodes   
         av_accuracies,   av_output   =   find_weights_LOO_k_times(k,   used_e)   
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         #   the   sum   of   accuracies   of   all   used   frequencies,   of   all   participants:   
         freq_summed   =   sum(av_accuracies['acc'])     

    
         if   freq_summed   >   leading_accuracy_sum:   

    
             leading_accuracy_sum   =   freq_summed   

    
             best_e   =   used_e   

    
             opt_av_accuracies   =   av_accuracies   

    
             #   resulting   weight   vectors   of   the   best   solution   are   saved    
             opt_av_out   =   av_output  

    
         i   +=   1   

    
     #   give   the   result   the   same   original   ordering   as   the   initial   used_electrodes   
     best_e   =   list(filter(lambda   x:x   in   best_e,   all_electrodes))     

    
     opt_av_accuracies.to_excel(results   +   "/opt_averaged_accuracies.xlsx")   
     opt_av_out.to_excel(results   +   "/opt_averaged_output.xlsx")   
  

     #   return   the   best   set,   the   resulting   accuracies   as   well   as   the   counting   of   
     #   the   occurrences   of   electrodes   in   the   top   32   of   all   participants,   for   all   
     #   the   used_freqc   together:   

    
     return   best_e,   opt_av_accuracies,   opt_av_out,   m_i   
  

if   find_optimal_subset   ==   True   and   run_FLDA_LOO_k_times   ==   True:     
    

     #   apply   the   defined   function   sort_output     
     most_informative   =   sort_electrodes_by_weight(averaged_output)   

    
     all_e   =   used_electrodes   #   needed   for   naming   renaming   columns   to   electrodes     

    
     best_e,opt_av_acc,opt_av_out,m_i=   subset_finding(most_informative,   all_e)   
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