
Utrecht University
Faculty of Science

Graduate School of Natural Sciences
Supervisor: Frank Staals

Master Thesis

Visibility graphs of portalgons

Rens de Heer
4214080

July 2021



1 Introduction

We study a generalization of polygons, called portalgons. This structure was introduced by Löffler et al[8].
A portalgon is a set of simple polygons where pairs of same-length edges can be glued together by portals.
This results in a 2-dimensional orientable manifold induced with the Euclidean metric.

In this thesis we analyse the structure of portalgons using visibility graphs. These are graphs on the vertices
of a polygon, where two vertices are connected by an edge if there exists a straight line segment between
them that lies completely within the polygon. These graphs can be used to compute more complicated
queries like shortest path maps[6] and minimum-link paths[9].

There exists multiple algorithm for computing the visibility graph of a polygon. In the literature study
multiple of these algorithms are inspected for their adaptability in portalgons. In this thesis we adapt and
implement the algorithm by Lee[7]. First we describe the complete algorithm including degenerate cases.
After this we describe the implementation, the acquisition of a set of portalgons and finally we analyse the
visibility graphs of these portalgons computed by the algorithm.

1.1 Portalgons

Definition. A portalgon is a collection of simple polygons, called fragments. A pair of edges that have the
same length can form a portal. These edges are topologically glued together in such a way that the resulting
surface remains orientable. Edges of portal pair are called portaledges and do not have to be part of the
same fragment.

An example of a portalgon can be seen in figure 1a. A portal is sometimes drawn with an arrowhead to
indicate how the edges must be glued together. All fragments in a portalgon are simple, as each hole can be
removed by splitting the polygon in two pieces by two cuts from the outer boundary to the hole and adding
a portal at all the dividing segments, see figure 1b.

(a) A portalgon consisting of 2 fragments

(b) A non-simple fragment can always be
transformed into multiple simple fragments by

adding extra portals

Figure 1

1.2 Visibility graph

Definition. A visibility graph of a polygonal surface is a graph containing all the vertices of the surfaces
boundary as nodes with edges between nodes if there exists a straight line segment on the surface between
the two vertices.

Definition. A pair of vertices in a portalgon are joined by an edge in the visibility graph if there exist a
sequence of line segments in the portalgon that, when all portals are glued together, form a single straight
line segment over the resulting surface.

1



The visibility graph of a portalgon is quite different from a visibility graph of polygonal domain. If a
polygonal domain consists of multiple polygons, the visibility graph consists of multiple disjoint graphs and
can be computed separately. But a portalgon consisting of multiple fragments could have visibility edges
from one fragment to another.
In a normal polygon there exists only 1 straight line segment between two vertices, but in a portalgon two
vertices could see each other in multiple ways and the visibility graph could therefore best be viewed as a
multigraph. Another interesting property is the fact that a single vertex could see itself through a sequence
of portals, which introduces loops in the visibility graph.

1.3 Thesis structure

In section 2 we describe the work done on visibility algorithms, and explain why we choose the algorithm
by Lee for adaption on portalgons. In the next section 3, we define some useful structures that are used
in the algorithm. After this, in section 4, we describe the adapted algorithm and prove its correctness. A
short description of the implementation and the handling of degenerate case can be found in section 5. After
this we perform some experiments using the implementation. The experimental setup, like the acquisition of
portalgons, and the results of these experiments are described in section 6. Then we discuss some intresting
phenomena, like self-seeing vertices, that happen in portalgons in section 7. We conclude in section 8.

2 Related work

There exists a number of algorithms that compute the visibility graph of a normal polygon. These algorithm
differ in computational complexity from O(n3) to O(E + n log n) time (where E is the number of visibility
egdes). The naive algorithm takes all pairs of vertices and checks if there exists an edge between them.
This only works because every visibility edge is a straight line segment, which is not the case for portalgons.
This algorithm takes O(n3) time. The algorithm by Lee[7] rotates a sweep line around each vertex and
reports each visible vertex. This algorithm was the most suitable and its adaption will be explained in this
thesis. This algorithm (on normal polygons) takes O(n2 log n) time. The algorithm by Welz[13] rotates a
sweep line for all vertices concurrently, and updates for each vertex what edge is visible in that direction.
In a portalgon this visible edge could be a portal, and an algorithm would need to extend the search for a
visible vertex after this edge. This algorithm takes O(n2) time. The algorithm by Welz and Overmars[10]
is slight adaption of the previous algorithm, which makes the runtime output-sensitive: O(E log n). Finally,
the algorithm by Ghosh and Mount[2] is a sweep line algorithm that iteratively adds vertices and builds the
visibility graph. It is unclear how an iterative algorithm could be adapted to portalgons. This algorithm
takes O(E + n log n) time.

Short summary of Lee’s algorithm

The algorithm by Lee takes every vertex v and rotates a sweep line around v, while maintaining a search
structure containing the edges intersected by the sweep line, sorted from the closest to v to the farthest.
Every other vertex than v is an event that changes the search structure. When a vertex is closer than the
closest edge, a visibility edge is reported.

In this thesis we have chosen the easiest algorithm for adaption, but this does not mean it is impossible to
adapt the other algorithms.

2



3 Preliminaries

The portalgon and visibility graph definition can be found in the introduction. The algorithm by Lee rotates
a sweep line around each vertex. The adaption for portalgons does something similar, but rotates a ray
around v. This ray could hit a portal and the straight line the ray follows is extended through the portal.
To describe this ray we use the following definition:

Definition. An extended ray is an ordered list of k (directed) line segments s0...sk−1, which form a straight
line when all portals of the portalgon are glued together. See figure 2b for an example.

During the algorithm there will be one extended ray which will be denoted by R. Instead of maintaining
each ray segment explicitly, we maintain a combinatorial representation called Extensions.

Notation. The counterpart of a portaledge e is denoted by portal(e).

Definition. An Extension E representing segment si maintains the following data describing the ray
segment:

• start(E): The edge on which si starts.

• end(E): The edge on which si ends.

• source(E): The point in R2 over which the segment rotates when the extended ray rotates.

• depth(E) = i.

• ET : The transformation matrix that transforms portal(start(E)) into start(E).

Definition. The Base B is the extension describing the first segment. The Base only stores end(B) and
source(B) and has no need for the other extension components.

See figure 2a for an illustration. In this figure the portal in B must be rotated by 90◦ and translated over(
6

−4

)
to coincide with the portal in E . And because E is the first extension, its depth is 1:

ET =

0 −1 6

1 0 −4

0 0 1

 and depth(E) = 1

Finally some other notations for convenience:

Notation. The leftedge(v) of a vertex v is the edge that lies on the left of v when looking towards the
interior of the fragment. And leftvertex (v) is the other endpoint of leftedge(v).
Similar for rightedge(v) and rightvertex (v).

Notation. For two points u, v, by −→uv we denote the direction of the vector from u to v.

3



(a) An extended ray R (blue) represented by the
base and an extension (b) An extended ray in a portalgon

Figure 2

4 Algorithm

As mentioned, the algorithm will be an adapted version of the algorithm by Lee[7]. This is a sweep line
algorithm where the sweep line is a ray that is rotated along a vertex v and the events are vertices which the
ray intersects. As in the original algorithm, not every event corresponds to a visible vertex. In the original
algorithm these invisible vertex events where used to update a binary search tree such that the next edge
after a corner vertex can easily be found, see figure 3.

Figure 3: First step in the
algorithm by Lee

This method could be used in a portalgon, but there is a simpler method
with an equal running time. Instead of maintaining a binary search tree,
we can instead shoot a ray each time we get a corner vertex. The expla-
nation of why this results in an equal (theoretical) running time is given
in section 4.8.

The sweep line for the portalgon algorithm is not a simple ray, but an
extended ray. To maintain this sweep line, we need to handle how the
ray is extended through a portal. To move the sweep line we need to
know what the minimum angle is the ray has to rotate in order hit a
vertex somewhere along the sweep line. Because the sweep line consists
of multiple ray segments which all rotate around their own point on the
plane, the minimum angle for the complete ray is the minimum over all segments, see figure 4. In Lee’s
algorithm, the next vertex around v is easily found by just looking in the sorted list of vertices around v.
But this is not sufficient for portalgons as the segments of the ray rotate around points in R2 that are not
known beforehand.

So in order to adjust the original algorithm to work for portalgons, we need a correct way to extend the ray,
and a way to determine the next vertex around an arbitrary point on the plane.

In the next sections I will explain how the complete algorithm works, starting at the top and working my
down to the details.

4



Figure 4: The next vertex around v is z

4.1 Preprocessing

Before the algorithm loops over all vertices to rotate a ray for each one, it first does a few preprocessing
steps.
As in the original algorithm, it sorts for each vertex v, the vertices in the same fragment around v. In
addition it computes for each fragment an arrangement of lines where the lines are the dual of the vertices
in the fragment.

4.2 Rotating around vertex

The algorithm performs the same steps for each vertex and reports each vertex that is visible from that
vertex.

Let v be the vertex that the algorithm rotates around.
First determine which edge is visible from v when looking in the direction along leftedge(v). This is done by
shooting a ray R from leftvertex (v) with direction

−−−−−−−→
leftedge(v) away from v, see figure 5.

Figure 5: Finding the first visible edge

R becomes the first segment of R. Then we rotate R clockwise
by a minimum angle to a next vertex w. If w is visible we
report (v, w). If R ends on a portal, we extend it through the
portal. Repeat this process until R is rotated to the direction
of rightedge(v).

During the rotation, R consists of multiple segments each de-
scribed by an extension. When R rotates around v, the first
segment s0 simply rotates around v, but the other segments si
each rotate around their own specific point on the plane.

Extending through a portal and finding the minimum angle are
the main problems that we will explain in the next sections.

5



Figure 6: The portal ab is transformed to portal a′b′ by ET

4.3 Extending through a portal

When the extended ray R ends on a portal e, R is extended through the portal and we build an extension Ei.
To compute source(Ei) we need to find a point such that source(Ei) is relative to portal(e) as source(Ei−1)

is relative to e. To find this point, we construct a transformation matrix that transforms e to portal(e) in
a rigid transformation, which we call ET . We use ET to compute source(Ei). This matrix can be found
using a system of linear equations. The two vertices a, b of e must be transformed to the vertices a′, b′ of
portal(e). To make the transformation rigid, we need a two points c, c′ that are not collinear to a, b and a′, b′

such that ∠bac = ∠b′a′c′, see figure 6. These points can be constructed by taking c =

(
ax + (ay − by)

ay + (bx − ax)

)

and c′ =

(
a′x + (a′y − b′y)

a′y + (b′x − a′x)

)
. These points c, c′ satisfy the condition because −→ac ·

−→
ab = 0 =

−→
a′c′ ·

−→
a′b′ and

−→ac ×
−→
ab =

−→
a′c′ ×

−→
a′b′. This gives the following system of linear equations:ax bx cx

ay by cy

1 1 1

 ET =

a
′
x b′x c′x

a′y b′y c′y

1 1 1


Therefore:

ET =

ax bx cx

ay by cy

1 1 1


−1a

′
x b′x c′x

a′y b′y c′y

1 1 1


To find end(Ei) we compute the point p where si exits the portal by transforming the point where si−1 enters
the portal by ET . From p we shoot a ray in the same direction as

−−−−−−−−→
source(Ei), p. We set end(E) to the edge

that the ray hits. The depth is increased by 1: depth(Ei) = i and we set start(E) to portal(e). When si ends
on another portal, R is extended again.

6



4.4 Finding the next minimum angle

To compute the minimum angle R has to rotate we take the minimum over all extensions and the base. The
minimum angle in the base is simply computed by searching in the sorted list of vertices around v. Because
the rotation point in an extension is not a vertex or a point we know beforehand, we can not use a sorted
list around this point as in the base. Instead we perform a search query involving the dual to find the next
vertex, which is explained in the next section.

After computing the minimum angle over which R has to rotate to hit the next vertex w, the subroutine
returns w, the direction to w, and the extension w is found in.

4.4.1 Minimum angle of an extension

To find the next vertex that a segment si hits when rotating the ray around v, we rotate a line around
s := source(Ei) and stop a the first vertex. To solve this problem we use duality.

We use the standard duality transform ∆ where vertices become lines and lines become points:

∆((a, b)) 7→ y = ax− b

∆(y = ax+ b) 7→ (a,−b)

During the preprocessing phase of the algorithm, all vertices are transformed to lines and added to the dual
into an arrangement of lines.

Let s′ be the line dual of source(E) and l′ be the dual of the supporting line of si.

Lemma 1. The dual of all lines through source(E) form a line in the dual coinciding with s′.

Proof. Denote the coordinates of source(E) by (xs, ys) and denote a line k through source(E) by k : y = ax+b.
Then ∆(source(E)) = s′ 7→ y = xsx− ys, and ∆(k) 7→ (a,−b). ∆(k) lies on s′ iff −b = xsa− ys. Because k
goes through source(E), we know that ys = xsx+ b which completes the proof.

Rotating a line around source(E) is therefore equivalent to moving a point along s′.

Lemma 2. Let w′ be the dual of vertex w, then the primal of the intersection between s′ and w′ is the line
going through source(E) and w.

Proof. Using lemma 1, we know that points on the line w′ maps to lines going through w and points on s′

maps to lines going through source(E). So a point on both lines must map to a line going through both
source(E) and w.

Theorem 1. The first line in the dual intersected by s′ starting from l′ is the dual of the first vertex hit
by rotating a line around source(E) starting from the supporting line of si. Walking towards x → −∞ is
rotating clockwise.

Proof. Because of lemma 2, an intersection of the line going though source(E) with a vertex w dualizes to
an intersection between s′ and ∆(w). Rotating a line clockwise lowers its slope, which translates to lowering
the x-coordinate of its primal point.

7



Figure 7: Traversing the red boundary will return w′

Using theorem 1 we can construct an algorithm to quickly find the next vertex si will hit. During the
preprocessing phase after adding the dual of all the vertices, a trapezoidal decomposition is constructed to
allow fast point location queries.

The main idea of the algorithm is finding the face F where l′ is located, and then traversing the boundary
of F and finding the line w′ that s′ intersects, see figure 7 and algorithm 1.

Algorithm 1 DUAL_VERTEX_HIT(si,D): The next vertex
the supporting line of si will hit.

s′ ← ∆(source(si))
l′ ← ∆(support(si))
r ← RAY (source = l′, support = s′, direction = x→ −∞)
F ← Locate(l′,D)
E ← INTERSECTION (Boundary(F ), r)
if E is not NULL then
return ∆−1(E)

else
return NULL

end if

To find the intersection of F and r we use
a binary search performed on the bound-
ary. This is possible because the bound-
ary of F is convex.

Lemma 3. A face in an arrangement of
lines is convex.

Proof. Assume the opposite, then there
exists a face in the arrangement where
there exist two points such that the line
segment between them is intersected by
an edge. This edge must be a line and therefore separates the two points from each other and can not be in
the same face, contradiction.

To illustrate the workings of INTERSECTION , we look to figure 8. We take the first stored vertex u1 on
the boundary of F . Then we perform a binary search on the rest of the vertices ui by comparing if r lies
clockwise in between l′u1 and l′ui. This results in two vertices ui and ui+1 such that r lies clockwise in

8



Figure 8: We compare ui to r by which one comes first after u1

between l′ui and l′ui+1 and r intersects the edge uiui+1.

It could happen that F is unbounded and that r will not intersect any edge of F . In this case, the binary
search will not return an edge of F . To deal with this issue we look at what is primal equivalent of this
situation. When a point along r can move indefinitely towards x → −∞, the primal line will have an
increasingly downwards slope all the way to infinity.

Rotating over the vertical line x = c is problematic as our dual does not have a representation for this line.
But if we rotate the polygon 90◦ and construct a second dual, we transformed our problem to rotating over
the line y = c which has a simple representation in the dual.

It could happen that the second dual also does not return an edge. In that case, we can prove the following:

Lemma 4. If both queries in the dual do not return an edge, the primal line has to rotate at least 90◦ to
encounter a vertex.

Proof. Move the ray to the origin. If the ray points towards quadrant I (top right) or quadrant III (bottom
left), then the ray can rotate at least 90◦ before rotating over x = 0. If the ray points toward quadrant II
(top left) or quadrant IV (bottom right), the ray points towards quadrant I or III after rotating it 90◦ for the
rotated dual, and can therefore rotate 90◦ before rotating over y = 0. So when both queries fail to return
an edge, the ray can rotate 90◦ without encountering a vertex.

The complete query is described in pseudocode in algorithm 2

Lemma 5. Algorithm 2 returns an edge.

Proof. If the first two steps don’t return an edge, the ray rotates 90◦. If the next two steps don’t return
an edge, the rotates could rotate another 90◦. But then the ray has rotated 180◦ without encountering a

9



vertex. But the ray goes through a portal which bounds the angle the ray can rotate over by 180◦. So the
fourth step has to return an edge.

Algorithm 2 EXTENSION_NEXT_VERTEX(Ei)
D := Normal Dual
D̃ := Rotated Dual
w ← DUAL_VERTEX_HIT(si,D)
if w ! = NULL then
return w

end if
s̃i ← Rotate si 90◦ around source(Ei)
w ← DUAL_VERTEX_HIT(si,D̃)
if w ! = NULL then
return w

end if
w ← DUAL_VERTEX_HIT(s̃i,D)
if w ! = NULL then
return w

end if
w ← DUAL_VERTEX_HIT(s̃i,D̃)
return w

After finding w, we can easily compute the angle
the ray has to rotate to hit w. But there is one
small caveat in this calculation. Because we rotate
a line around source(Ei) and not a ray, we could
encounter a vertex that lies in the opposite direction
of the ray, see figure 9a. This vertex will certainly
not be visible but we can not immediately discard it
and just return a vertex of another extension. This
problem also arises when a vertex lies behind an
edge.

In figure 9b, we see a situation where this results
in a problem. In this figure we see that vertex w

is the next vertex found, but is not visible. If we
discard this vertex and just rotate the ray to the
next vertex x in another extension, we rotate the
ray further than v and we will never report it. To
solve this problem, we need to rotate the line to vertex w, and than recompute the next vertex.

Checking that a vertex lies on the opposite site of the ray can be done by checking if the rotation angle
towards this vertex is more than 180◦. When this is the case, we subtract 180◦ from this angle. In this way
we rotate the ray until the supporting line hits this vertex.

(a) Rotating the line around v′ will hit u before w
(b) Ignoring vertex w would result in missing the

visibility edge (v, u)

Figure 9

10



Theorem 2. Algorithm EXTENSION_NEXT_V ERTEX(Ei) returns the first vertex that the support-
ing line of segment si will hit when rotating around source(Ei).

Proof. Combining lemma 4 and lemma 5 we know that algorithm 2 returns an edge that is dual to the closest
vertex around v that si will hit, according to lemma 1.

4.5 Handling the vertex

The subroutine returns the next vertex w around v, the direction δ towards w, and the extension Ei in which
w is found. To handle this event, we first check if w is visible from start(E). w is visible from start(E) if there
is no edge between start(E) and w. Because we know that there is no edge between start(E) and end(E)

When w is found in the base, the check only consist of checking whether w lies in front (or on) end(E).
When w is found in one of the extensions, the check consists of the following:

• δ is within 180◦ clockwise of the current direction of R.

• the interior of (source) intersects start(E).

• The end(E) is is either attached to or lies further away than w.

Figure 10: After rotating to w, the ray is
extended further around the corner

The first check is to ignore all vertices that are hit by the back
end of the rotating line (see 4.4). The second and third check
is to ensure that the found vertex lies between the start portal
and the end of the ray.

If all these criteria are met w is visible and (v, w) is reported,
possibly with extra data describing the visibility path. Because
R now ends on w, all extensions Ek with k > i are no longer
relevant and are deleted.

To prepare for the next iteration, we need to update end(Ei).
Either the left edge is visible from v, or we shoot a ray from
p in the same direction as

−−−−−−−−−→
(source(E), p), see figure 10. If w

is not visible, nothing happens. The direction of R is set to δ
and the algorithm looks for the next vertex around v.

4.6 Ray shooting

Figure 11: Ray shooting in a simple
polygon

Because fragments in a portalgon are always simple polygons,
we can use a technique by Hershberger[5] to shoot a ray in
O(log n) time. This technique computes a Steiner triangulation
of the polygon and then just iterates over the triangles until
an edge is reached. Any triangulation would work, but the one
presented in the paper guarantees a O(log n) query time. See
figure 11 for an example.

11



4.7 Proof of correctness

A problem

Before we prove that the algorithm is correct, we first need to address a problem. When a ray is extended
the extension could hit another portal and the ray must be extended again. In some situations this could
happen indefinitely and the algorithm would not terminate. The implementation has a workaround by just
limiting the depth of the extensions. To completely solve this problem, we would need to examine when and
how a ray can extend indefinitely. More on this in section 7.1.

Proof of correctness

Because the algorithm is bounded by a certain depth, the visibility graph it returns is a subgraph of the
complete graph:

Theorem 3. Given a portalgon P, and an integer c. The algorithm computes all visibility edges (v, u)

which all consist of at most c segments each.

To prove this we first observe the following fact about visibility edges:

Observation. A visibility edge (v, u) corresponds to a ray shot from v in some direction δ that ends on u.

The algorithm rotates a ray around each vertex v and reports whenever it ends on a vertex u. As the
algorithm is the same for each vertex, we only need to prove that for a vertex v, the algorithm computes all
visibility edges (v, u).

Notation. Rδ denotes the ray shot from v in direction δ.

When the algorithm rotates to a visible vertex, it changes the representation of the ray to represent the ray
right after the vertex. For this reason we introduce the following notation:

Notation. R+
δ denotes the ray Rδ rotated infinitesimally further clockwise.

Lemma 6. When the ray consists of k segments s0..sk−1, the algorithm returns the next vertex around v
that is hit by the supporting line of one of the segments.

Proof. For a single segment si, the algorithm returns the next vertex the supporting line of si will hit
according to lemma 2. Then the algorithm takes the minimum angle over all segments and return this
vertex.

We assume that the vertices are in general position, degenerate cases will be dealt with in section 5.2.

Theorem 4. For each vertex v, the algorithm rotates a ray R starting from v towards each direction such
that R ends in a vertex w and consists of at most c segments.

Proof. Let γ0, ..., γk be the ordered set of directions around v such that a ray shot from v in direction γi

ends in a vertex and consists of at most c segments. The ordering ≺ follows the clockwise ordering around
v on the interval

[−−−−−−−→
leftedge(v),

−−−−−−−−→
rightedge(v)

]
Let δ0, .., δm be the ordered set of directions around v the algorithm rotates to during execution. δ0 is the
direction the algorithm start with, which is

−−−−−−−→
leftedge(v). δm is the last direction

−−−−−−−−→
rightedge(v). We need to

prove that every γj is equal to some δl.

12



We use induction. For each i, we prove for each δi, the algorithm has the correct representation of R+
δi
, and

that every for all γj � δi, there exists a l ≤ i such that γj = δl.

Base case: At the start of the algorithm, the ray is shot in the direction of
−−−−−−−→
leftedge(v) and is extended

when it hits a portal until is has reached the maximum depth of c. This ray is a correct representation of
R+
δ0
, and there is no γj � δ0.

Induction step: The algorithm has rotated the ray to δi and has reported every γj � δi. The algorithm
now rotates to δi+1. Now suppose that γj+1 ≺ δi+1, and therefore γj+1 ∈ (δi, δi+1). Then let x be the vertex
on the end of Rγj+1 .
Because the representation of R+

δi
is correct and according to lemma 6, the algorithm stop at any vertex that

changes the representation. But the algorithm returned δi+1, and therefore there is no vertex that changes
the representation between δi and δi+1. So x is not between δi and δi+1 So γj+1 ⊀ δi+1.
Therefore γj+1 is either equal to δi+1 or δi+1 ≺ γj+1.
If γj+1 = δi+1, then the ray is cut off after x and is possibly extended after rotating to R+

δi+1
. If δi+1 ≺ γj+1,

then the representation of the ray does not change because only a visible vertex changes the representation.
In either case, the representation stays correct and for all γj′ � δi+1, there exists a l ≤ i+ 1 such that
γj′ = δl. This proves the induction step.
Because γk ≺ δm, there must exist a δl for all γj such that γj = δl. This concludes the proof.

4.8 Computational complexity

We analyze the runtime of the algorithm that computes the visibility graph where all edges consist of at
most c segments. A portalgon can consist of multiple fragments, each with their own preprocessed dual and
sorted lists of vertices. To simplify the runtime analysis, we first consider portalgons consisting of a single
fragment.

Preprocessing

Let’s call the number of vertices in the fragment n. Sorting a list of n vertices takes O(n log n) time. This is
done for each vertex, so this takes in total O(n2 log n) time. The construction of the dual consists of adding
n lines to an arrangement, which takes O(n2) time in total. After the construction phase, a trapezoidal
decomposition of the arrangement is made to facilitate the point location queries. Making a trapezoidal
decomposition of an arrangement with m complexity takes O(m logm) time. So it takes O(n2 log n) time to
construct a trapezoidal decomposition of the dual.

Rotating the ray

The compute the visibility of a single vertex, we first shoot a ray and then rotate it multiple times to the
next vertex. Shooting a ray in a simple polygon takes O(log n) time using Hershbergers technique[5]. Before
each rotation we perform a query on each ray segment to find the next vertex the ray segment will hit. This
query consists of a point location, followed by a binary search on the boundary of a face in the dual. A
point location query using a trapezoidal decomposition takes O(log n) time, and a binary search on binary
search also takes O(log n) time. So each query takes O(log n) time per extension. In each step we do not
need to recompute the next vertex for each extension, only for the one that returned the closest vertex in

13



(1)

(2)

Figure 12: The further s lies from the portal, the smaller the visible area becomes

the previous step. This means that each step takes O(log n) time.

To calculate the number of steps the algorithm performs for each vertex, we need to calculate how many
vertices the ray could rotate to. We can calculate an upper bound for this, but this bound is probably not
very tight. In the worst case, the portalgon consists of only portals and the ray always extends to c segments.
Take the first segment which rotates around the starting vertex and sees O(n) portaledges. Then all the
O(n) second segments could also see O(n) portaledges, and so on. This would result in O(nc) events while
rotating the ray around a single vertex and therefore in a total runtime of O(nc+1 log n).

This upper bound assumes that the second, third... segments all see O(n) portaledges. But as the ray
extends further, the source(Ei) for each segment si moves further away from start(Ei) and the angle over
which si rotates decreases and therefore decreases the chance the ray will hit a vertex, see figure 12.

Also the sum of these angles for each si with the same depth is upper bounded by 180◦. These observations
lead to the suspicion that the number of events is more tightly bound than O(nc).

The implementation described in the following sections could provide a useful insight in this bound.

4.9 Multiple fragments

Suppose the portalgon consists of k fragments Fi, 0 < i ≤ k. Denote ni as the number of vertices in fragment
Fi. The preprocessing time for these fragments is then O(

∑k
i=1 n

2
i log ni). Because the ray can extend into

every fragment, the number of events and the query time is bounded by the fragment with the most vertices.
Let Fm be the fragment with the most vertices. Each query can take O(log(nm)) time. And the number of
events is bounded by O(ncm). This brings the total runtime to O(n(ncm log(nm)).

14



5 Implementation

The algorithm from section 4 is implemented for exploratory analysis. The implementation is written in
c++17 and uses the CGAL[11] library (version 5.3) and the Eigen[3] library (version 3). To prevent floating
point errors, CGAL provides multiple exact kernels. The implementation uses the Exact Rational kernel
(see [4]). This kernel represents the results of division (and other operations) as a fraction represented by an
integer numerator and denominator. But this kernel does not provide an exact representation for results of
the sine and cosine functions, which complicates the calculation for extending the ray through a portal. To
deal with this problem, the implementation uses a rigid matrix transformation which translates and rotates
a portaledge e1 onto portal(e1). Calculating this matrix can be done by solving a set of linear equations,
defined by the translation from the start and end of e1 to the start respectively end of portal(e1) and a third
point to retain a rigid transformation. To solve these equations, we use the Eigen library.

Furthermore, the implementation uses multiple other CGAL modules and functions to represent the polygon,
the dual and the triangulation:

• The arrangement module [12] for representing the polygon and the dual. Each with extra annota-
tions to vertices, edges or faces. This module also allows point location queries using a trapezoidal
decomposition.

• The triangulation module [14], which computes the constrained Delaunay triangulation of a fragment
to represent the ray shooting data structure.

• Small functions to handle transformations, compute intersections, etc.

5.1 Achieved complexity

The theoretical runtime for the ray shooting query is O(log n) time, but this requires a triangulation as
described in ’Shoot a ray, take a walk’[5]. During the implementation we choose to just use a simple trian-
gulation. In the worst case, a ray shooting query could now take O(n) time. To improve the implementation
the triangulation method needs to be replaced by Hershbergers triangulation, and the ray shooting method
needs to be adjusted to deal with the steiner points.

The implementation is also not using the caching technique described in section 4.8 that would reduce the
query time over all extensions. The achieved runtime for each step is therefore O(c log n) time instead of
O(log n) time.

5.2 Collinearity and degeneracies

As with all geometric algorithms, collinearity and degeneracies is a problem that the algorithm needs to
handle. We will discuss the problematic cases that could happen in the dual query and the cases outside of
the dual separately.

5.2.1 Degeneracies in the primal

A degenerate case in the primal arises when the extended ray goes through two vertices at the same time. This
happens when there are three vertices of the polygon that lie on the same line, but could also happen when the
source of an extension lies on the same line as two vertices of the polygon. Before we handle this case, we need

15



to choose how we define visibility. In figure 13 we see two vertices that lie on the same line as the ray. Vertex
w lies behind vertex v, and to make the algorithm easier, we choose that only the first vertex v is visible.

Figure 13: v, u and w are collinear, but v does not
see w

When 3 vertices lie on one line we need to ensure
that we only handle the first vertex and discard the
rest. To achieve this, the sorted list around a vertex
puts the closest vertex before the others, so that only
this vertex would be returned in the search query
for the base extension, see section 4.4. The cor-
rectly deal with this problem in an extension, the
dual query is adjusted, see section 5.2.3.

When the algorithm performs a ray shooting query
and the result is a vertex v (instead of an edge), we
check if leftedge(v) lies on the right of the ray. In
this case, we just return leftedge(v), otherwise we
continue the ray shooting query from v.
When the ray extends through a portal from a
vertex of the portaledge, we need to check if
the ray could extend through the portal, and is
not blocked by the adjacent edge, see figure 14.
In this case, no ray shooting query is performed and
leftedge(v) is set as end(E), where v is the left vertex of the portal. When leftedge(v) is parallel to the ray,
the ray extend alongside leftedge(v) and a ray shooting query is performed from the left vertex of leftedge(v).

5.2.2 Non-zero measure events in the dual

Figure 14: The ray extension directly hits leftedge(v)
and no ray shooting is needed

Even when the vertices are in general position, there
are still some cases for which one would expect to
happen only with measure 0, but the algorithm in-
herently constructs these cases.

As mentioned, a query in the dual start by locating
a point in the arrangement of lines. The algorithm
describes the case in which the point is located on
a face. But it could happen that it is located on an
edge or a vertex. First let’s look at what that means
in the primal.

The point in the dual is equivalent to the initial ray
in the primal. An edge in the dual is a vertex of
the polygon in the primal. So when the point is
located on an edge in the dual, the initial ray (or
the opposite) goes through the vertex in the primal. This seems like an event that happens with measure 0,
but during the algorithm the ray is rotated to the next vertex around v and the initial ray in the next step
goes through this vertex. So this event happens even when the vertices are in general position, so we need
to be able to handle these events even in the most basic implementation.

16



(1) (2) (3)

(4) (5) (6)

Figure 15: Possible cases in a dual query

5.2.3 Degeneracies in the dual

When the vertices are not in general position, there are multiple scenarios for the query in the dual.
Let r be the ray the dual, with s being the source of r. The query can lie on a face, edge or vertex and have
a certain direction. We distinguish 6 cases:

1. s lies in the interior of a face, and r hits an edge.

2. s lies in the interior of a face, and r hits a vertex.

3. s lies on an edge, and r points towards an incident face.

4. s lies on an edge, and r points in the same direction as the edge.

5. s lies on a vertex, and r points towards an incident face.

6. s lies in the interior of a face, and r points in the same direction as an incident edge.

Case 1: The query lies on the interior of a face and hits an edge. This is the base case and is explained in
section 4.

Case 2: The query lies on the interior of a face and hits a vertex. Because the vertex is an intersection
point of 2 or more edges this is equivalent to hitting 2 (or more) vertices with the rotating line in the primal
at the same time. Because we want to handle the closest visible vertex, we need to determine which of these
vertices are visible and which is the closest. Determining if a vertex w is visible can be done as described
in section 4.5. Finding the closest visible vertex can be done by simply looping over all these vertices. The
theoretical runtime mentioned in section 4.8 is dependant on the number of vertices that cause an event.
Because only vertex is the closest, only one event is triggered and a loop over these vertices does not increase
the theoretical runtime.

17



Case 3: The query starts on an edge, and is directed towards the interior of an incident face. This happens
when the primal ray starts in a direction in which it already hits a vertex before moving. This case can easily
be dealt with by just performing the normal binary search on the face that the query walks into. This could
then result in Case 1 or 2. As mentioned in 5.2.2, this case also happens when the vertices are in general
position.

Case 4: The query lies entirely on an edge in the dual. This happens when the primal ray rotates around
a point that coincides with a vertex of the polygon. Because we will ignore this vertex (it is not visible),
we want to find the first edge in the dual that the ray properly intersects. A possible solution would be to
find the combined boundary of the two incident faces and perform binary search on that. Another solution
is just to find the vertex at the end of the edge in the dual, and perform the same trick as in case 2.

Case 5: The query start on a vertex and moves inwards to the interior of a face. This is a variant of case 3,
and the solution is the same. We just find the face the query walks into, and perform binary search on this
face.

Case 6: The query starts on a vertex and lies entirely on an edge incident to this vertex. This is a variant
of case 4, and the solution is the same, just find the next vertex incident to the edge and perform the same
trick as case 2.

6 Explorative data analysis

Using the implementation of the visibility graph algorithm, we can explore the algebraic surface described
by the portalgon. Because the concept of portalgons is very new there are not many portalgons to explore.
First we need to generate portalgons and then we can explore the surfaces.

6.1 Experimental setup

We use two ways of obtaining portalgons. First we use already generated polygons from the Salzburg
Database of Geometric Inputs[1] and transform those into portalgons.

Second is a basic generation technique using a Delaunay triangulation of random generated points. This
method also generates polygons that are then transformed into portalgons. The problem of transforming
polygons to portalgons lies in the fact that portals are pairs of edges of the same length. Not every polygon
can be transformed into an interesting portalgon, because portals are pairs of edges of the same length. Some
polygons have all different length edges, and therefore no edges can become a portal.

After generating the portalgons, we run the algorithm and report multiple metrics. Interesting metrics
include:

• The number of visibility edges.

• The depth of visibility edges (the number of ray segments).

• The length of visibility edges.

• The total angle βi over which the ray has depth i.

18



6.2 Generating portalgons

6.2.1 Salzburg database

As mentioned, the first method uses pre-generated polygons from a database. The problem with these
polygons is that the vertices have floating point coordinates. This results in almost all unique edge lengths,
and are therefore not suitable for forming a portal pair. A possible solution to this would be to split an
edge into two two collinear edges such that one part is the same length as another edge. But this would
results in an inexact representation of the new vertex. And an inexact representation could in turn result in
unexpected errors in the implementation.

Another solution is to round all vertices to the nearest integer coordinate. All edge length would then be
the square root of an integer and the possibility of two same-length edges increases. It could happen that
snapping to grid points results in a non-simple polygon. This could happen by snapping two vertices to
the same point, or by snapping in such a way that the polygon overlaps itself. Scaling the vertices before
snapping reduces this problem, but it also decreases the chance of same length edges.

Using these criteria, there was only one type of polygons in the Salzburg Database[1] that resulted in
portalgons with a large number of same length edges, namely polygons created by the Super Random
Polygon Generator.

After snapping the vertices, we can match each two edges with the same length into a portal pair. This
matching resulted in portalgons where up to 90% of the edges where portals. Scaling the vertices before
snapping lowered the number of portals, to almost none.

For the experiments we used the polygons with less than 400 vertices. Larger polygons resulted in an
unfeasable runtime. Using different scales, we obtained many portalgons with a wide range in the number
of portals. Portalgons where more than 90% of the boundary is a portal were more sporadic, but using a
low scale we obtained at least 10 portalgons with this property.

(a) A portalgon with a few portals
(b) A portalgon with many portals

Figure 16: Two portalgons from the Salzburg database

19



6.2.2 Delaunay Triangulation method

Because of the lack of random polygons suitable for the generation of portalgons we decided to design our
own algorithm to create polygons with integer coordinates.

Start with a set of n randomly generated points with integer coordinates and compute the Delaunay trian-
gulation of these points. The convex hull of these points is the start of the polygon.

Then we repeatedly take an edge of the polygon and include/exclude one of the two triangles incident to this
edge. We can either include the triangle that is not inside of the polygon, or exclude the triangle that is inside.

(a) Removing the triangle
would reduce the number of

vertices

(b) Removing the triangle
would increase the number

of vertices

(c) Removing the triangle
would make the polygon

non-simple

Figure 17

In some cases such a step can decrease the number of vertices of the
polygon (figure 17a), which is sometimes not desirable. As the polygon
starts out as only the convex hull of all the vertices we need to add more
vertices than remove them.

To tweak the algorithm we need 3 binomial parameters:

• pin : The chance we exclude the inner triangle.

• p−: The chance we decrease the number of vertices of the polygon
(when we encounter such a case).

• p+: The chance we increase the number of vertices of the polygon
(when we encounter such a case).

In algorithm 3 we can read the pseudocode for this algorithm: Using this
algorithm we can generate random polygons, but there are some restric-
tions on these polygons. First, edges are not very long (in comparison to
the whole polygon) because the edges of the polygon are also edges on the
constrained Delaunay triangulation.

Tweaking the parameters to create an interesting set of polygon in a task
on its own. A particular set of parameters that created polygon containing
a sufficient number of vertices and an interesting boundary can be found
in table 1.

This set of parameters generates portalgons like figure 18. These por-
talgons have around 300 vertices and a boundary where up to 40% is a
portal. Further tweaking of the parameters could generate different sized
portalgons, but tweaking is a hard task on its own.

n 500
gridsize 500x500
#steps 2000
pin 0.8
p− 0.2
p+ 1

Table 1: Parameters used for figure 18

20



Algorithm 3 Generate random polygon using a Delaunay triangulation
Generate n random points
Compute Delaunay Triangulation
P ← CH (points)
for i = 0 to #steps do
e← RandomEdge()
if rand(0 , 1 ) < pin then
t← InnerVertex (e)

else
t← OuterVertex (e)

end if
if t ∈ P and t is not incident to e then
continue

end if
if t ∈ P then
if rand(0 , 1 ) < p− then
e1 ← Vertex of e adjacent to t
e2 ← Vertex of e not adjacent to t
Replace {e and Edge(e1 , t)} by Edge(e2 , t) in P

end if
else
if rand(0 , 1 ) < p+ then
e1, e2 ← Vertices of e
Replace e by {Edge(e1 , t) and Edge(e2 , t)} in P

end if
end if

end for

Figure 18: Portalgon generated using algorithm 3

21



6.3 Observations

The constructed polygon differ mostly in the portion of portaledges, portalgons generated by the Salzburg
database can have a percentage of portals ranging from 0% to 95%, where as the Delaunay generated
portalgons have a percentage of portals of 0% up to 45%. Especially the portalgons created by the Salzburg
database are interesting for analysing the upper bound of events as mentioned in 4.8 due to their high
percentage of portals. In the following sections we plot multiple metrics to the depth of a visibility edge. To
ease the analysis of the portalgons we introduce three new definitions for metrics:

The first is the depth of a visibility edge, which is defined as the number of segments minus 1. For example,
a visibility edge that does not cross a portal has a depth of 0. This definition corresponds to the depth of
an extension.

The second is called the portalfraction of a portalgon which is the portion of the boundary length that is
a portal.

The third is based on the interior angle. Define Γi(v) as set of rays shot from v that can extend at least i
times. And define r0 as the first ray segment of r. Then we take the set {−→r0 |r ∈ Γi(v)}, which is a set of
intervals of directions. Then we define βi(v) as the sum over these intervals using the measure operator µ:
βi(v) = µ({−→r0 |r ∈ Γi(v)}).

Then define βi as the sum of βi(v) over all vertices v. We call βi the Visible angle of depth i.

The total interior angle is the sum of the interior angle for all vertices. In a single polygon of n vertices the
interior is thus (n− 2) ∗ 180◦. So β0 = (n− 2) ∗ 180◦ in a polygon of n vertices.

6.3.1 Comparison between Salzburg portalgons and Delauny Portalgons

In figure 19 we plot the distribution of visibility edges compared to the depth of the edge for 50 portalgons
created by the Delaunay triangulation method. Because the total number of visibility edges are very differ-
ent across multiple portalgons, we have decided to normalize the number of edges. We take the maximum
number of edges that have the same depth, and then divide all numbers of edges by this maximum. This
results in graphs that have a maximum of 1. In this way we can plot multiple portalgons in the same figure,
and compare the distributions.

The color of a line indicates the portalfraction for each portalgon. A red line indicates a very low (< 10%)
portalfraction, and a blue line a very high (> 90%) portalfraction. Because the Delaunay method only
generates portalgons with a portalfraction up to 40%, there are no blue lines.
In figure 20 we see a similar graph or portalgons created by the Salzburg database. The main difference to
figure 19 is the number of blue lines that are present. These lines seem to follow different distributions. In
figure 21 we see another graph of the Salzburg database, but this time the portalgons all have a portalfraction
less than 45% so we can compare the two methods.

22



Figure 19: 50 portalgons generated using the Delaunay method

Figure 20: 50 portalgons from the Salzburg database

23



Figure 21: 50 portalgons from the Salzburg database with a maximum portalfraction of 45%

The two graphs rapidly decrease, and show almost no visibility edges with a depth of 6 or more. The
distributions that are skewed to the right are the same color in both figures, meaning that they have a
comparable portalfraction. So we can assume that there is no big difference in the visibility graphs of both
types of portalgons. Because the Salzburg database also generates portalgons with a higher portalfraction,
the rest of the analysis is done on those portalgons.

6.3.2 Number of visibility edges

To truly analyze the correlation between visibility edges and the depth of these edges, we need the Salzburg
database, so that we can analyze what happens with a higher portalfraction. In the following sections all
portalgons are created from the Salzburg database. From figure 20 we see that portalgons with a higher
portalfraction have a very different distribution than the ones with a lower portalfraction.

In some cases, the distribution is so skewed that the top of the distribution does not lie at depth 0, some
distributions even have their maximum at depth 12. This increase in visible vertices was somewhat expected
in section 4.8, but a more precise explanation could be given combining two other metrics, the length of
these edges and the extend depth.

24



6.3.3 Length of visibility edges

In figure 22 we plotted for 50 portalgons the average length for visibility edges of a certain depth. The
color-coding (red-blue) is the same as in figure 20. Because different portalgons can have a different scale,
we normalized the length to the length of the total boundary.

Figure 22: Length distribution of portalgons

Most lines seem to have a very linear correlation to the depth of the edge. This could be explained as follows:
The visibility edge consists of multiple ray segments which are all segments from boundary to boundary.
And so visibility edges of depth δ will have an average length of δ times the average distance from some
point on the boundary to a point on the overlying boundary.

The graph also shows some lines which do not adhere to the linear pattern, but are instead alternating
between a higher and a lower length around a certain slope. Further investigating these portalgons leads to
an interesting phenomenon which will be discussed in section 7.1

25



6.3.4 Visible angle per depth

To plot the visible angles of a portalgon, we use a log-plot. In figure 23 we see the visible angle βi for each
depth i for 50 portalgons, again with the same color coding.

Figure 23: Level set size per depth level

The straight lines clearly indicate an exponential decrease in the visibility angle per depth. This correlation
is most noticeable in portalgons with a high portalfraction. The portalgons with a higher portalfraction also
have a lower decrease in angle measure than those with a lower portalfraction.

The visible angle for seem to decrease by some factor c per depth level, which could be explained as follows:
A constant portion of the boundary is a portal, and the ray only extends when it hits a portal. Suppose
that the ray has a uniform possibility for hitting each part of boundary. Then it has a chance equal to
the portalfraction of extending. This results in an exponential decrease with a rate of chance equal to the
portalfraction.

It is therefore reasonable to assume that the angle measure has a rate of change c < 1, which is closely
related to the portalfraction.

6.3.5 Correlation between depth and visibility edges

Combining these two metrics could explain the correlation between depth and visibility edges. Take for
example a collection of uniformly distributed points and a point p in the middle from which we measure the
number of points x in a sector for which a · ε < d(x, p) < (a+ 1) · ε for some a and a small ε. This number
is linear related to a and the angle of the sector.
This is similar to visibility edges from a single vertex, where a is the depth and ε is the average width of the
portalgon. The angle over which the ray rotates where the ray is at least a deep, is the extend depth. This

26



would mean that the number of visible vertices is correlated to the length times the extend depth, which
could be described using the following formula:

#Vis(δ) = O
(
(aδ + b)cδ

)
Where δ is the depth, aδ + b is the trend line for the length of the edges and c is the portalfraction (see the
above section). Note that the trend line for the length has an intercept term b, which probably is very small.

In figure 24, we can see the distributions formed by the above formula where a = 0.015, and b = 0.02,
which are the parameters for the average trend line for the length of visibility edges. These plots are also
normalized to their maximum.

Figure 24: Distribution of (0.015δ + 0.02)cδ

The distribution seem similar to figure 20, which gives reason to believe that the number of visible vertices
is linearly dependant on the depth when the portalfraction is 1. But to truly analyze the runtime mentioned
in 4.8 we need to count the number of events, as this metric determines the runtime.

6.3.6 Number of events

To analyze the runtime as mentioned in 4.8, we need to count the number of events for each depth and see
if there exists an exponential correlation. In figure 25 we can see a similar graph to the number of visible
vertices, with some differences. But these differences do not indicate an exponential correlation, as was to
be expected according to section 4.8.

27



Figure 25: Distribution of events for 50 portalgons

In figure 26, we see the number of events plotted against the size of the portalgon. As expected, the number
of events is higher for portalgons with a high portalfraction. Section 4.8 suggests that the number of events
is proportional to O(nc) when the portalfraction is 1. The experiments are done with c = 2, which would
results in O(n20). This is clearly not the case. The low number of portalgons with a high portalfraction
makes it difficult to see what the relation truly is.

The black line is the formula 7.5n2 (where n is the number of vertices), which fits the portalgons with
a portalfraction of around 70%, this correlation is also visible in figure 27, which only shows the portalgons
with a portalfraction lower than 40%. In this figure, the black line is the formula n2. This line fits the
portalgons with a portalfraction of around 20%. Both lines indicate that the number of events is quadratic
in the number of vertices, and that the portalfraction plays a minor role.

28



Figure 26: Number of events per portalgon

Figure 27: Number of events per portalgon with portalfraction < 40%

29



7 Interesting phenomena

As mentioned in the introduction, portalgons have some interesting properties. The first being the fact that
vertices sometimes can see itself, see figure 28a. Which means that the visibility graph may contain loops.
Another interesting property is that pairs of vertices may see each other in multiple ways, see figure 28b,
which makes the graph a multigraph. Where in normal polygons there exists only one straight line between
two points u, v, there can be multiple in a portalgon, making use of portals. These straight lines do however
have a limitation:

Lemma 7. All straight lines between two points in a portalgon have a unique sequence of portals that the
line goes through.

Proof. Given a pair of vertices u,w and a sequence of portals such that u and w can see each other. If we
glue this sequence of portals to each other, then there exist a single straight line between u and w which is
the only visibility edge.

(a) Vertex v can see itself through a portal
(b) Vertices v and w can see each other in

multiple ways

Figure 28: Two interesting properties of portalgons

7.1 Infinite visibility edges

In some portalgons the distribution of visibility edges showed a constant number of visibility edges for depths
greater than some δ. In most cases this constant number was 4, but sometimes 8 or 2. By examining the
visibility graph of these portalgons, we discovered that this happens in portalgons where a pair of portals
are parallel and can see each other, see figure 29.

Figure 29: Parallel portals can
create unbounded visibility

edges

When this happens, for any arbitrary depth a visibility edge exists be-
tween two opposing endpoints of the portals. There are two pairs of
opposing endpoints, and each visibility edge (u, v) has an opposite edge
(v, u), so for each pair of parallel portals results in 4 visibility edges per
depth.
This could also be complicated by performing a cut between the two
portals and replacing it with a portal, see figure 30. This process can
be done multiple times, resulting in visibility edges with a depth of
n(k + 1), ∀n ∈ N, where k is the number of portals between the two
vertices.

30



Figure 30: Constructing of a pair of non-parallel portals that create unbounded visibility edges

The zig-zag pattern in length mentioned in 22 is a result of this complication. The portalgon that inhibited
this pattern has a pair of parallel portals with a substantial distance between them. It also has a pair of
’parallel’ portals with a portal in the middle. The segment length of the visibility edges between these two
portals was much smaller than the other pair. This resulted in 4 long visibility edges for every depth, and
4 short visibility edges for every even depth. The average length for the visibility edges is therefore shorter
on every even depth.

Figure 31: A vertex within the parallelogram
spanned by two parallel portals may also leads to

unbounded visibility edges

When the parallel portals only see each other par-
tially as in figure 31, we see something similar.
The two non-opposing vertices (u, v) have an infi-
nite number of visibility edges to the vertex in the
middle w. This also results in 4 visibility edges per
depth. When we add a portal in between as before,
the distribution is slightly altered. Instead of just
doubling the depth of every visibility edge, a visi-
bility edge coming from u needs 1 more passing of
portal to reach w, see figure 32. So visibility edges
from u to w have an odd depth. This results in a
distribution of 2 visibility edges per depth.

Figure 32: The depths of all visibility edges (u,w) are odd, and all visibility edges (v, w) are even

31



Proofs about infinite edges

The existence of rays that extend indefinitely complicates further development of algorithms. So it would
be useful if we can prove certain properties about these rays. During the theoretical constructing of infinite
rays we seem to notice a pattern concerning the starting point. This lead to the following conjecture:

Conjecture. A ray starting from v that can extend indefinitely intersects v infinitely many times.

Figure 33: This ray shot from
(0, 0) will extend infinitely

without hitting (0, 0) ever again

This conjecture is disproved by the following counterexample:

Counterexample. Take a square with width x. Make the both pairs of
opposing edges pairs of portals. Shoot a ray from the bottom left corner
(0, 0) in the direction towards (a, x). As the ray keeps extending the ray
segments keep shifting a to the right until they reach the right side and
continue from the left side. Each ray segment that start from the bottom
side now starts at some value c = k ·a mod x for k ∈ N. If we set a to be
an irrational number, and x ∈ N, c will never become 0 and the ray will
therefore never intersect (0, 0), see figure 33.

This constructed counterexample does show two things: First the ray
will come infinitely close to the starting point, and second the portalgon
is fully made up of portals. Maybe these properties are necessary for
infinite visibility edges, and we can prove the following conjecture:

Conjecture. A ray starting from v that can extend indefinitely either
intersects v infinitely many times or the portalgon only consists of portals.

8 Conclusion

The first conclusion we take from this research on portalgons is a rather dull one. The area of portalgons is
a very new one and therefore there are no datasets of portalgons to be used in experimental research. The
Salzburg database of generated polygons was very helpful. A more wide variety of polygons would be helpful
to examine how portalgons with a high portalfraction would behave in terms of visibility (and other fields),
as the only comparison with this database were self-generated polygons with a maximum portalfraction on
45%.

In terms of runtime, the theoretical upper bound of O(nc+1 log n) for running the algorithm is possibly not
a tight one. The number of events analysis suggests that the relation is quadratic in the number of vertices,
with an extra factor determined by the portalfraction, see figure 26. The upper bound of O(nc+1 log n)

assumes that for each level of depth, the number of events is multiplied by a factor n. This increment is not
visible, not even in portalgons with a high portalfraction. At most, the number of events increases linear
per level of depth, see figure 25.

The tests did lead to some interesting theoretical results about infinite visibility edges. First, parallel portals
lead to unbounded visibility edges. The number of segments in these unbounded edges can take on multiple
different values, as the complicated cases show, see section 7.1, making detecting these cases difficult.

32



8.1 Implementation improvements

The current implementation still has some inefficient procedures that increase the computational complexity.

The first being the triangulation structure mentioned in section 4.6. Implementing the triangulation pre-
sented in the paper by Hershberger[5] would guarantee a O(log n) time ray shooting query. furthermore,
the implementation recomputes the minimum angle for all extensions each time. Because only the extension
with the next vertex needs to be recomputed, this could be improved. This would improve the runtime per
query from O(c log n) to O(log n).
In hindsight, computing the next vertex around v in the base can also be done using a dual query, instead
of looking it up in the sorted list around v. Only the proof of lemma 5 would have to be adapted so it
uses the fact that a ray can not rotate 180◦ within a polygon without hitting a vertex, instead of using the
endpoints of the portal the ray enters from. This would not improve the computational complexity, but it
would remove the need for sorting the vertices.
The handling of the degenerate case of hitting a vertex x in the dual (Case 2 in section 5.2.3) could be
improved. In the implementation all vertices dual to the lines going through x are checked if they are visible
(lie between start(E) and end(E), see section 4.5). But all these vertices lie on the same line ∆−1(x) and
therefore some sort of binary search could be applied to quickly find the closest visible vertex.

8.2 Future work

Further (experimental) research on portalgons can benefit from a diverse data set of portalgons, containing
portalgons of different portalfractions, portalgons with multiple parallel portals and realistic portalgons.
Portalgons currently only exists as theoretical structure with no realistic application, and an application
would give the area of research a goal and direction. A diverse set of portalgons would allow to experiment
with running algorithm on portalgons that are split into multiple smaller fragments. This could improve the
runtime of algorithms, as this runtime usually is dependant on the number of vertices in a fragment, instead
of the total number of vertices.

Aside from the practical improvements that can be made to the implementation of the algorithm, there is
plenty of research that can be done on visibility algorithms on portalgons. For example, the algorithm by
Welz[13] which uses duality to maintain a ray for each vertex, can maybe be adjusted for use in portalgons,
by also maintaining extended rays. The problem of infinite and unbounded visibility edge mentioned in
section 7.1 also remains unsolved, and could be tackled by some early detecting mechanism.

33



References

[1] Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. Salzburg database
of polygonal data: Polygons and their generators. Data in Brief, 31:105984, 2020.

[2] Subir Kumar Ghosh and David M Mount. An output-sensitive algorithm for computing visibility graphs.
SIAM Journal on Computing, 20(5):888–910, 1991.

[3] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[4] Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra. Number types. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.3 edition, 2021.

[5] John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk.
Journal of Algorithms, 18(3):403–431, 1995.

[6] Sanjiv Kapoor, SN Maheshwari, and Joseph SB Mitchell. An efficient algorithm for euclidean shortest
paths among polygonal obstacles in the plane. Discrete & Computational Geometry, 18(4):377–383,
1997.

[7] Der-Tsai Lee. Proximity and reachability in the plane. Technical report, ILLINOIS UNIV AT URBANA-
CHAMPAIGN COORDINATED SCIENCE LAB, 1978.

[8] Frank Staals Maarten Löffler, Rodrigo I. Silveira. Shortest paths in portalgons. 37th European Workshop
on Computational Geometry (EuroCG), 2021.

[9] Joseph SB Mitchell, Günter Rote, and Gerhard Woeginger. Minimum-link paths among obstacles in
the plane. Algorithmica, 8(1):431–459, 1992.

[10] Mark H Overmars and Emo Welzl. New methods for computing visibility graphs. In Proceedings of the
fourth annual symposium on Computational geometry, pages 164–171, 1988.

[11] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.3 edition, 2021.

[12] Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and Baruch
Zukerman. 2D arrangements. In CGAL User and Reference Manual. CGAL Editorial Board, 5.3
edition, 2021.

[13] Emo Welzl. Constructing the visibility graph for n-line segments in o (n2) time. Information Processing
Letters, 20(4):167–171, 1985.

[14] Mariette Yvinec. 2D triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.3
edition, 2021.

34


	Introduction
	Portalgons
	Visibility graph
	Thesis structure

	Related work
	Preliminaries
	Algorithm
	Preprocessing
	Rotating around vertex
	Extending through a portal
	Finding the next minimum angle
	Minimum angle of an extension

	Handling the vertex
	Ray shooting
	Proof of correctness
	Computational complexity
	Multiple fragments

	Implementation
	Achieved complexity
	Collinearity and degeneracies
	Degeneracies in the primal
	Non-zero measure events in the dual
	Degeneracies in the dual


	Explorative data analysis
	Experimental setup
	Generating portalgons
	Salzburg database
	Delaunay Triangulation method

	Observations
	Comparison between Salzburg portalgons and Delauny Portalgons
	Number of visibility edges
	Length of visibility edges
	Visible angle per depth
	Correlation between depth and visibility edges
	Number of events


	Interesting phenomena
	Infinite visibility edges

	Conclusion
	Implementation improvements
	Future work


