
AUTOMATIC MAINTENANCE OF COVID-19 RELATED KNOWLEDGE

GRAPHS BASED ON LARGE-SCALE INFORMATION EXTRACTION IN

SCIENTIFIC LITERATURE

Author:

Argyro (Iro) Sfoungari 6528015

Prof. Yannnis Velegrakis - Project Supervisor

Dr. Mel Chekol - Second Supervisor

Dr. Theodore Dalamagas - External Supervisor

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

in

Computing Science

Department of Information and Computing Sciences

Utrecht University

July 2021

Abstract

The continuous and ongoing enrichment of publications related to new scientific find-

ings is inspiring, however, it generates new challenges for the scientific community.

At any given time, researchers have to evaluate manually a plethora of publications

so it is not uncommon for them to spend time reading documents that are irrelevant

or inaccurate. The official form of scientific representation is document-based and

therefore cannot be processed automatically. Consequently, it is necessary to find

innovative ways to process and evaluate scientific text automatically. An approach

which has recently been adopted by the scientific community for dealing with the

above is the production of Knowledge Graphs (KGs) from scientific text. Aiming to

contribute to the necessity for machine-actionable scientific representation, we create

the UA-Graph 1. The UA-Graph is a scientific KG produced in order to assist re-

searchers in finding papers relevant to their interests. Along with the UA-Graph, we

present the graph production process. We propose a methodology that processes data

and extracts structured scientific information in order to be inserted in the KG. We

then design a data model that is general enough to be considered domain-independent

and yet precise at the same time. Finally, we implement the data model in a graph

DBMS and prove that the produced graph can answer complex queries so as to facil-

itate scientific research.

1UA in an abbreviation for Utrecht University and Athena Research Center

i

Acknowledgements

With the hope that this thesis will be of use to the members of the research community

in their future endeavors.

This project would not have been possible without the participation, support and

guidance of Prof. dr. Yannis Velegrakis, to whom I wish to extend my sincere thanks.

I would like to thank ATHENA Research Center and especially Dr. Theodore Dalam-

agas, Research Director at ATHENA Research Center, whose support was particularly

valuable. Furthermore, it should be noted that this project was undertaken during a

global pandemic under difficult circumstances. My supervisors showed great under-

standing and provided systematic assistance and communication on a weekly basis.

Moreover, I would like to thank Dr. Mel Chekol for his critical commentary regarding

the project.

I am also grateful for the invaluable support provided by my family and friends

during the last years of studying at Utrecht University. Throughout the master’s

application process, I promised to bring all my hard work and enthusiasm to Utrecht

in case I was accepted. I am really happy that I did as promised.

Argyro (Iro) Sfoungari

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 5

1.1 Background . 6

1.2 Motivation . 6

1.3 Challenges & Objectives . 6

1.4 Contributions . 7

1.5 Thesis Outline . 8

2 Related Work 9

2.1 Steps Leading to KG Generation . 9

2.2 Scientific Text Information Extraction 10

2.2.1 Named Entity Recognition and Semantic Annotations 10

2.2.2 NLP . 11

2.2.3 “Innovative” Methods . 12

2.2.4 Manual Enhancement . 12

2.2.5 KGs from Structured Data . 12

2.3 Related Work Summary . 14

2.4 Open Science Graphs . 15

3 Problem Statement 16

4 UA-Graph Production 17

4.1 Data Processing . 17

4.1.1 Text Preprocessing . 18

4.1.2 Named Entity Recognition . 21

4.1.3 Topic Extraction . 23

4.2 Model Design . 25

4.2.1 Domain Concepts . 26

4.2.2 Classes . 27

iii

CONTENTS 1

4.2.3 Instances . 30

4.2.4 Relationships . 31

4.3 Knowledge Graph Implementation . 33

4.3.1 Challenges . 34

4.3.2 Classes and Instances in Neo4j 37

4.3.3 UA-Graph Implementation in Neo4j 39

4.3.4 Querying Hierarchies in Neo4j 43

5 UA-Graph evaluation 46

5.1 KG Production using Real-World Data 46

5.1.1 The CORD-19 Dataset . 46

5.1.2 KG Production using the CORD-19 46

5.2 Querying the UA-Graph . 49

5.2.1 Indicative Queries . 49

5.2.2 Exploratory Data Analysis . 52

6 Conclusions and Future work 56

6.1 Future Work . 56

A Scripts for text processing 58

B Cypher scripts 59

Bibliography 63

List of Figures

1.1 Overview of thesis outline . 8

2.1 The four steps that typically lead to KG production 11

4.1 The three main aspects which are related to the UA-Graph production 18

4.2 The steps that process unstructured text and publication metadata for

DB insertion . 19

4.3 A sentence given as input in text preprocessing workflow and the equiv-

alent output . 21

4.4 Cell Line entities, grouped by article’s id 23

4.5 The UA-data model, designed to cover the main concepts of the scien-

tific domain . 26

4.6 The UA-data model and an example of class instances 27

4.7 An example of a small hierarchical model that consists of class A, B,

and instance C. Class B is a subclass of A and C is an instance of class

B . 39

4.8 A Neo4j example that shows all the nodes with label Sci Domain that

represent the model classes . 42

5.1 A small part of the UA-Graph. The Journal Article (Blue node), is

connected to Biomedical Concepts (Beige nodes). The article has Au-

thors (Red nodes), is published in a Journal (Light blue node) and is

an instance of Journal Article Class (Purple node). 48

5.2 A small part of the UA-Graph. The Journal Article (Blue node), is con-

nected to Biomedical Concepts (Beige nodes). The article has 5 possible

topics (Pink nodes) and is an instance of Journal Article Class (Pur-

ple node). The relationship type: Probability connects a specific concept

with a topic. This relationship shows that the concept is included among

the topic keywords. 49

5.3 Articles (Blue nodes) that contain the term “myocarditis” in their title

and are all connected to the concept “Enzyme” (Beige node). 53

2

LIST OF FIGURES 3

A.1 A Neo4j example that shows all the nodes with label Sci Domain that

represent the model classes . 58

List of Tables

2.1 Related work summarized information 14

4.1 Scispacy models and Entity types . 22

4.2 Med 7 model and Entity types . 22

4.3 Stanza model and Entity types . 23

4.4 Example of three potential topics describing a specific document . . . 25

4.5 The main classes of the model along with their attributes as presented

hierarchically from highest to lowest level 30

4.6 Classes to nodes correspondence . 43

4.7 Articles returned by the procedure n10s.inference.nodesInCategory . . 44

4.8 Journal returned by the procedure n10s.inference.inCategory 45

5.1 All nodes of the UA-Graph . 47

5.2 All the UA-Graph relationship types 47

4

Chapter 1

Introduction

Every year a plethora of scientific papers becomes publicly available to present

the latest progress in every scientific discipline. Papers are published in conference

proceedings and journals and their official representation form is document-based.

This means that researchers present their accomplishments in documents that involve

unstructured text, illustrations and tables. These text documents are stored digitally,

usually in PDF format, and can be found in online and offline scientific search engines.

The basic assumption before conducting any type of research is that the researchers

involved are up to date with developments in their particular field. Then, they need

to be aware of the recent progress on a global level, as a result of the related studies

of their colleagues. The remarkable pace of advancement in science requires the

involvement and vigilance of experienced researchers who will at the same time be in

constant communication with one another for the benefit of all. It is often difficult

to examine carefully the limitless amount of information and it is not uncommon for

researchers to be disoriented reading research findings that are irrelevant or inaccurate.

The document-based form of scientific representation seems to be the source of the

above-mentioned concern.

Document-based scientific literature cannot be processed automatically, therefore

it is difficult for researchers to quickly retrieve targeted information. The process

of finding relevant literature is supported by scientific search engines (eg. Google

Scholar [1]). These search engines, however, support keyword search and usually re-

turn a plethora of potentially useful results. Other existing systems (eg. Microsoft

Academic Graph [2], Crossref [3] and others), use publication metadata and do not

include information regarding the actual content of the text. When researchers use

these search engines to find some interesting papers, they then have to evaluate and

process each paper individually and subsequently create a literature overview. This

procedure is very time-consuming and usually has to be repeated several times. The

scientific community is, therefore, looking for automatic solutions to facilitate scien-

5

Chapter 1. Introduction 6

tific text analysis, a difficult task indeed since the form of scientific literature contains

terminology, large sentences, many abbreviations, and formulas.

1.1 Background

The need to identify ways to represent scientific text in a machine-readable form is a

requirement that will grow over time. An innovative idea that can supply scientific

literature with structure is its representation using Knowledge Graphs (KGs). KGs

have been a source of great interest, in recent years, for many researchers working

both in academia and industry [4]. Until 2012, the term KG was not particularly pop-

ular outside of scientific circles. The popularization of KGs is principally attributed

to Google [5]. The momentum of Google’s idea to represent general knowledge using

KGs was so powerful that the term since then has been widely used while lacking

a clear definition [4]. An indicative definition according to Paulheim [6] is that a

Knowledge Graph: (i) mainly describes real-world entities and their interrelations,

organized in a graph (ii) defines possible classes and relations of entities in a schema

(iii) allows for potentially interrelating arbitrary entities with each other (iv) covers

various topical domains. Since 2012, many companies that dominate the specific mar-

ket use data represented by and processed as graphs. KGs in collaboration with other

cutting-edge fields have generated numerous interesting and innovative applications.

Regarding the scientific domain, KGs are efficient means to represent scientific find-

ings in a structured way. Furthermore, KGs allow information acquisition, curation

and evaluation simply and efficiently for the benefit of researchers.

1.2 Motivation

Our motivation is to contribute to the necessity for machine-actionable scientific rep-

resentation through KGs and subsequently to assist researchers in finding papers rele-

vant to their field of interest. According to related research, many projects are engaged

to scientific KGs. The majority of them, however, produce KGs based on pre-existing

data models. Our project intends to prove that a KG can be implemented based on

a data model which is so general that it can be considered domain-independent and

very specific at the same time.

1.3 Challenges & Objectives

Our objective is to produce a scientific KG which is a rather demanding process as

it requires the fulfillment of many individual steps. The KG production process typi-

Chapter 1. Introduction 7

cally involves a) a methodology that processes the data and extracts information that

will be inserted in the graph, b) the design of a data model and c) the actual KG im-

plementation. Each of these steps demands a lot of commitment and experimentation

over many different research approaches.

The first challenge related to the KG production concerns data collection and

processing. The creation of a semi-automatic method that receives data and produces

structured information requires a lot of research mostly over the Natural language

processing (NLP) and Information Extraction (IE) techniques that will be used. Data

processing is itself a difficult task, let alone in the case of scientific text which contains

large sentences, terminology, abbreviations, and formulas. Even the order that the

selected techniques will be applied on the available corpus is very important and

requires a lot of experimentation.

The second research challenge concerns the design of a flexible data model. We

envisioned the design of a general and domain-independent data model which at the

same time represents efficiently all the concepts of the scientific domain. Furthermore,

the model consists of classes and allows class hierarchies and inheritance. The design

of such an innovative data model requires a lot of research regarding the pre-existing

data models and the limitations arising from them. Additionally, through the model

design process, many alternative models are expected to occur until we reach the

optimal result.

The third research challenge concerns the data model implementation using a

graph DBMS. This task requires extensive research regarding the available graph

DBMS and their capabilities in order to select the one that will best support our

model. The final KG will be produced after several attempts and compromises.

1.4 Contributions

Our main contribution is the production of the UA-Graph1, which is a scientific KG

that will assist researchers in finding papers relevant to their research. The produc-

tion of the graph is based on three individual phases and therefore three individual

contributions.

C1 → We propose a semi-automatic methodology that receives scientific data

(publication metadata and unstructured text) and extracts structured information

ready for use as input to the KG. Our methodology applies NLP, Topic and Informa-

tion Extraction techniques to produce meaningful results from scientific text.

C2 → Additionally, we design the UA-data model, a flexible and interoperable

data model which is domain-independent and consists of classes, instances and rela-

1UA in an abbreviation for Utrecht University and Athena Research Center

Chapter 1. Introduction 8

tionships between them. Moreover, the model allows class hierarchies and inheritance.

C3→ We implement the UA-data model in Neo4j2, which is a graph DBMS and

finally produce the UA-Graph a scientific and hierarchical KG. In addition, we present

a methodology that allows querying this graph top-down.

In order to evaluate both our methodology and the produced KG, we used the

COVID-19 Open Research Dataset (CORD-19) [7]. The COVID-19 pandemic3 is

today’s major global health concern. Since the pandemic began to spread, a plethora

of related publications have appeared. Consequently, research towards a cure will be

significant globally for some time to come. Aiming to support pandemic researchers

and research workers we use the biomedical domain as our paradigm although, the

project design, is domain-independent and can be used in any other scientific field.

1.5 Thesis Outline

The rest of this thesis is structured as follows. In section 2 we present a review of the

related work. In this section, we inform the readers about similar projects and also

introduce the steps that are usually followed to produce a KG from scientific text. In

section 3 we address the actual problem and explain the concepts that we will use for

the KG production. In section 4 present all the steps we followed in order to produce

the UA-Graph. In section 5 we evaluate our methodology and the produced graph.

Finally, in section 6 we discuss future extensions and conclusions. In Appendix A we

guide the readers for the reproduction of the semi-automatic text processing method-

ology. In Appendix B we present the Cypher scripts that have been used to implement

the UA-Graph. The thesis outline is illustrated in Figure: 1.1.

Figure 1.1: Overview of thesis outline

2https://neo4j.com/
3In December 2019, the first cases of the novel coronavirus disease (COVID-19) appeared in

Wuhan City, Hubei Province, China [8]. Coronavirus, which causes severe acute respiratory syn-
drome, had such strength that very quickly spread beyond Hubei province, to all of China at first
and eventually to the entire world. Both mortality rates and rapid transmission speed were so alarm-
ing that on March 11, 2020, the World Health Organization characterized the situation as a global
pandemic [9].

https://neo4j.com/
https://neo4j.com/

Chapter 2

Related Work

In recent years, generating KGs from unstructured text attracts significant at-

tention within the research community. Information Extraction (IE) techniques are

intended to produce a structured version of the information presented in the text so

as to make it computer-understandable. Text representation through KGs provides

opportunities for simple and easy content navigation and surpasses conventional key-

word search, enabling the production of direct answers to complex queries.

2.1 Steps Leading to KG Generation

Typically, KG generation from unstructured text is a 4-step process and consists of:

Text Preprocessing, Named Entity Recognition (NER), Relationship Identification

(RI) and Enrichment as illustrated in Figure 2.1. NER and RI are necessary, whereas

Preprocessing and Enrichment are optional.

Step 1: Text preprocessing is a widely used NLP task and is mainly applied to

simplify text for future use. Tasks such as co-reference resolution, abbreviation res-

olution, sentence simplification, tokenization, stop words removal, etc. may differ

depending on the data quality and the nature of the project concerned. Even though

text preprocessing is a crucial step, it is frequently omitted. This happens either be-

cause scientists rely on usual datasets that have been already preprocessed, or because

there are advanced tools using ultra-modern technologies (e.g. neural networks) that

have decreased the necessity for preprocessing [10].

Step 2: Named Entity Recognition follows preprocessing and is still another impor-

tant NLP task. NER identifies named entities (i.e. natural world objects) mentioned

in the text and then classifies these entities into predetermined categories.

Step 3: Relationship Identification. Once NER step has been completed, the

next step is to identify relationships between these entities and describe them as

9

Chapter 2. Related Work 10

triples. Relation triples represent text in the sequence of subject, predicate, and

object. Subject and object represent the extracted entities of Step 2, while predicate

is the relation that connects these entities. Triple extraction can be achieved through

multiple information extraction techniques.

Step 4: Enrichment. A KG can either be enriched or rely on preexisting semantic

data models, that represent knowledge about a specific domain i.e. ontologies. There

exist many standard definitions about ontologies [11], [12], a more descriptive is that

an Ontology:

• Is a formal representation of a domain

• It uses a standard vocabulary to describe the main concepts of a domain as well

as the relations among the concepts

• It can be shared between various applications and can be enhanced

• Shared vocabularies eliminate the problem of integration, which arises when two

ontologies model the same concept differently

• It supports inferencing and reasoning

The need to develop a universal vocabulary shared by a community is crucial as it

promotes interoperability, which is the main idea for KG development. Although some

projects do not include an already existing ontology, others use it either to enhance

relation and triple extraction or to enrich the KG.

What follows is a presentation of related projects that have been categorized ac-

cording to the methods Steps 2 and 3 are performed but are also according to other

parameters.

2.2 Scientific Text Information Extraction

2.2.1 Named Entity Recognition and Semantic Annotations

Named Entity Recognition (NER), is considered a fundamental process in KG gener-

ation, as it identifies and disambiguates name entities from unstructured text, which

then can be linked to relevant concepts or in other words, can be semantically anno-

tated [13]. DepressionKG [14] is a disease-centric knowledge graph generated by the

integration of multiple heterogeneous resources, whose content has been semantically

annotated with medical terminologies using Xerox’s NLP tool XMedlan. Following

the same line of reasoning, COVID-KG [15] designers use CORD-NER [16] annota-

tion system, which combines NER methods from four different sources and promotes

comprehensive name entity annotation. In the CORD-19 Named Entities Knowledge

Chapter 2. Related Work 11

Figure 2.1: The four steps that typically lead to KG production

Graph (NEKG) part of the Covid-on-the-Web [17] project, NEs are identified and

then used as a method to build relevant links between articles in the CORD-19 [18]

corpus and knowledge bases with entity description such as DBpedia, Wikidata and

Bioportal ontologies. Annotation tasks are considered very challenging due to ambi-

guity, therefore there are tools (e.g. DBpedia Spotlight [19]), aiming to disambiguate

natural language references in particular resources.

2.2.2 NLP

Notwithstanding the above, KGs can be generated using NLP or NLP along with

another technique. KGen designers [20] do not assume that NER should be completed

before RI, so they perform both steps at the same time. The first step in the KGen

generation method is the preprocessing of the unstructured text. In so doing, the

scientific text is simplified for future use. Then, the preprocessed text undergoes

Semantic Role Labeling (SRL) to extract triples in the form of subject, predicate,

and object. SRL is a technique that identifies the verb in a sentence as well as the

semantic role of the remaining words (agent, patient). For each triple, the verb is

assigned to the predicate, while subject and object are assigned to the agent and

patient respectively. Concurrently, concepts and entities from the preprocessed text

are extracted through tokenization and PoS tagging, which then are mapped to an

ontology. The product of the above-mentioned steps is a final set of triples.

Chapter 2. Related Work 12

2.2.3 “Innovative” Methods

As research over KGs is evolving, new projects that do not fall under the aforemen-

tioned categories are constantly presented. COVID-19 knowledge Graph (CKG) [21]

is an inventive KG that combines scientific metadata (papers, authors, institutions)

and information derived from the scientific text (concept, topics). CKG generation is

based upon Comprehend Medical (CM) Detect Entities V2, an Amazon Web Service

[22] that combines NLP and Machine Learning (ML) and extracts NEs and rela-

tionships between them. CM also classifies the extracted entities into entity types

or categories and entity attributes. Concerning the topic detection, Latent Dirichlet

Allocation (LDA) along with multi-label classification are applied towards assigning

topic labels (provided by professionals) to topic models. Argumentative Knowledge

Graph (AKG), part of the Covid-on-the-Web project [17] is another exceptional KG.

AKG designers employ ACTA [23], a platform that automatically analyzes clinical

studies, to generate an argumentative KG. ACTA is based on argumentative mining

methods, which identify the argumentative elements inside text (i.e. claims, premises),

followed by their relations (i.e. support, attack), resulting in a graph containing the

former as nodes and the latter as edges.

2.2.4 Manual Enhancement

As indicated above there are many automatic techniques that lead to a KG generation

including metadata and topics extracted from scientific text. However, automation

falls short when semantic representation deals with more complex structures. KG

based on SemSur ontology [24] is a KG generated with less automation compared

to other projects, which however, offers a much more complex structure to represent

survey articles descriptively. Experts extract instances manually based on the ontol-

ogy classes. They then import those instances to the ontology and finally the KG is

generated including the community’s contribution.

2.2.5 KGs from Structured Data

There are cases, however, where none of the preceding steps are needed, as data

are already in a structured form like RDF, CSV etc. In such cases, there are still

obstacles either during data acquisition or during schema mapping. SCM-KG [25]

project contains a KG generated from scientific metadata and is based on the idea

of a functional framework, which combines data of different structured formats. In

such cases converting data in a common model i.e. RDF and mapping them to an

ontology, is very challenging as direct mapping is not always possible. Dealing with

this issue, SCM-KG pipeline uses Sparqlify-CSV, to map CSV files to an ontology.

Chapter 2. Related Work 13

When this is not feasible ETL component shapes the data in the required format.

Chapter 2. Related Work 14

2.3 Related Work Summary

Project Data Preprocessing NER and RI Ontology

DepressionKG
[14]

Medical Data from
multiple heterogeneous
resources: PubMed,
ClinicalTrial, Medical
Guidelines, DrugBank,
DrugBook, DrugBook,
Wikipedia Antide-
pressant side effects,
SIDER, SNOMED CT
and Patient Data

Direct entity and concept iden-
tification when is feasible, but
in case of unstructured text
NER and RI are performed us-
ing, a semantic annotation tool
(XMedlan).

Multimedia
COVID-KG [15]

CORD-19 [18] i) Text knowledge extraction
(NER and entity linking based
on the ontology defined in the
CTD). ii) Highly detailed en-
tity extraction and semantic
annotation using CORD-NER
[16]. iii) Additional step: Im-
age processing to extract visual
information

Entity linking step is based
on the ontology defined in the
Comparative Toxicogenomics
Database(CTD) [26].

NEKG Covid-on-
the-Web [17]

CORD-19 [18] NER and RI through seman-
tic annotation using DBpedia,
Wikidata and Bioportal.

DCMI, Bibliographic Ontology
(FaBiO), Bibliographic Ontol-
ogy, FOAF, Schema.organd
Web Annotation Vocabulary
have been used to enrich the
KG.

KGen [20] Unstructured text in
plain-text format (e.g.,
a *.txt file)

NLP to simplify sen-
tences: Sentence split-
ter, Abbreviation re-
solver, Sentence simpli-
fication

i) SRL extracts triples in the
form of subject, predicate, ob-
ject. ii) Entity and con-
cept identification (Tokeniza-
tion and PoS Tagger), which
then are mapped to the on-
tology recommended by the
NCBO bioportal. iii) Combi-
nation of the above-mentioned
steps (i,ii) to produce the final
set of triples.

Step ii: Performs entity identi-
fication from sentenses to ob-
tain links to the domain on-
tology that is recommended by
the NCBO bioportal. In this
case the ontology is used to en-
force entity linking.

AKG Covid-on-
the-Web [17]

CORD-19 [18] Argumentative element identi-
fication (i.e. claims, premises)
and relationship identification
(i.e. support, attack) have
been established automatically
using ACTA [23], a clinical text
analysis tool.

Argument Model Ontology
(AMO), the SIOC Argumenta-
tion Module (SIOCA) and the
Argument Interchange Format
have been used to enrich the
KG.

CKG [21] CORD-19 [18] In this project NER and re-
lationship extraction are per-
formed together using Amazon
Comprehend Medical (CM)
[22]. For topic detection LDA
and multi-label classification
have been used.

KG based on
SemSur ontology
[24]

Specific research arti-
cles (surveys) and the
respective surveyed ar-
ticles

i) SemSur ontology is created,
ii) Instances from text are
extracted manually based on
SemSur ontology, iii) SemSur
Ontology + Instances + Com-
munity : build the KG

This project is built on the
top of SemSur ontology, which
uses substes of other existing
vocabularies i.e. DC, SWRC,
FOAF, MLS, DCMI, DEO,
LSC, DOAP.

SCM-KG [25] Heterogeneous data
in different structured
formats such as CSV,
RDF, web pages etc.

Dealing with structured data
from heterogeneous resources
→ No NER AND RI. i) Data
acquisition ii) Creation of an
integration ontology (see next
column) iii) Data conversion in
a common model and ontology
mapping. This may be feasible
when dealing with RDF data.
Though, there are cases where
direct mapping of e.g. CSV is
not possible. → ETL compo-
nent to shape the data etc. iv)
similarity measures to prevent
multiple instances referring to
same things.

KG generation is based on its
core ontology, which is cre-
ated using subsets of: SWRC,
Dublin Core, and FOAF vo-
cabularies. It is instantiated
with data from the sources,
and every time a concept is
missing, a new relation type is
defined.

Table 2.1: Related work summarized information

Chapter 2. Related Work 15

2.4 Open Science Graphs

Open Science Graphs (OSGs) [27] are scientific KGs that support free and open access

to graph representations of scientific metadata, but also promote FAIRness of science,

as they can be easily accessed by anyone interested in sharing or using academic infor-

mation. In other words, OSGs, are metadata graphs that are continuously updated

by researchers whose studies are stored in global repositories. OpenAIRE, is a Eu-

ropean project aligned with OSGs. OpenAIRE Research Graph represents metadata

and links arising from more than 13,000 data sources globally [27]. After collection,

data from heterogeneous sources are subjected to some processing, deduplication, and

harmonization with a standard format. The OpenAIRE Research Graph data model

[28] is simplified with the intention of promoting universal participation and collab-

oration. Synergic contribution and collaboration is considered necessary, in order to

facilitate the ultimate goal of creating a Global Research KG. At this time, there are

many projects like The Open Research Knowledge Graph [29], Research Graph1 and

The OpenCitations2 graph that share the same principles and exchange metadata and

links with the OpenAIRE Research Graph.

1https://opencitations.net/
2https://opencitations.net/

https://opencitations.net/
https://opencitations.net/
https://opencitations.net/
https://opencitations.net/

Chapter 3

Problem Statement

Given a collection of scientific publications P and publication metadata Pm, we in-

tend to create a scientific KG. P are documents that present scientific findings using

sequences of words, illustrations, and tables. Pm are supplementary bibliographic

information to P . Possible Pm are publication authors, ids, publishers, and other

structured information related to P .

Initially, we intend to create a methodology that employs NLP and IE techniques

in order to produce structured information from P . Subsequently, we will use Pm and

structured information extracted from P to create a scientific KG.

In particular:

Given a large set of scientific publications P = {p1, p2, p3..., pn} and publication

metadata for each document:

Pm = {p1mA
, p1mJ

, p1mPub
..., pnmA

, pnmJl
, pnmPub

...}, we create a methodology:

γ : P →

T

E

that extracts T and E from text where T is a set of topics identified in the scientific

text and E are real-words objects described by single words and phrases. Each T =

{keyword 1 ∗ prob + keyword 2 ∗ prob + ... + keyword n ∗ prob} is presented as a

distribution of keywords that occur frequently in the scientific text and their respective

probabilities. T and E should be associated with the publication they have been

extracted from. Additionally, Pm should also be connected with the publication they

belong to.

The way that T ,E and Pm will be associated with P is determined by a data

model that consists of classes, instances and relationships.

The produced graph will be a scientific KG capable of supporting any scientific

domain.

16

Chapter 4

UA-Graph Production

We describe the methodologies we developed in order to produce the UA-Graph,

which is a scientific KG. The production of the UA-Graph is based on the design of a

flexible data model and then on the KG implementation. Therefore we discuss three

aspects related to the UA-Graph production as illustrated in Figure: 4.1.

1. Data Processing: The first aspect concerns a methodology which processes

data in order to extract structured information. Structured information can

then be inserted into the KG.

2. Model design: The second aspect concerns the design of a flexible data model

which represents the main concepts of the scientific domain through class hier-

archies. The proposed model is general enough and therefore can be considered

domain-independent.

3. KG implementation: The third aspect concerns the data model implemen-

tation using a graph DBMS (Neo4j1).

Below we discuss in detail the three aspects, which are related to the UA-Graph

production.

4.1 Data Processing

Given a collection of scientific data, the data should be processed to produce struc-

tured information that can be inserted into the KG. We, therefore, propose a method-

ology which applies NLP and Information Extraction techniques in order to extract

structured information from text. Our methodology as illustrated in Figure: 4.2

consists of three main tasks Text preprocessing, NER and Topic Extraction.

1https://neo4j.com/

17

https://neo4j.com/
https://neo4j.com/

Chapter 4. UA-Graph Production 18

Figure 4.1: The three main aspects which are related to the UA-Graph production

4.1.1 Text Preprocessing

Text Preprocessing is the first task of our proposed methodology and involves the

processing of unstructured text so that it can be used as input for the tasks that follow

(NER and Topic Extraction). According to our methodology, the unstructured text

should be subjected to 5 NLP techniques: Language Detection, Tokenization,

Stopword removal, Unnecessary character removal, Lemmatization and N-

gram identification. The result of text preprocessing is tokenized, lemmatized and

clean text freed from unnecessary symbols and characters. Here we discuss the 5

NLP techniques in detail along with tools we used for their implementation and the

resulting output of each one individually.

Before text preprocessing, our system separates records providing text (i.e. ab-

stract) from those providing only publication metadata. Records providing only pub-

lication metadata can be inserted into the KG directly.

Language Detection

The UA-Graph supports only the representation of English publications. Therefore

this step identifies the language that each scientific publication is written to and

maintains only English documents. The language detection step is implemented us-

ing python’s library langdetect2.

Tokenization

Tokenization is an NLP task concerning the process of splitting text into smaller seg-

ments which are called tokens. A token can be a single word, a term, or even an

entire sentence. Depending on the language and the desired format, tokens can be

distinguished from the spaces between words or punctuation marks. Concerning the

English text for example, a space between two words distinguishes the word and a full

stop determines the boundaries of a sentence. Every language uses different methods

2https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/

Chapter 4. UA-Graph Production 19

Figure 4.2: The steps that process unstructured text and publication metadata for DB
insertion

to extract tokens. Tokenization’s importance derives from the fact that smaller pieces

of information presented in a document can be analyzed straightforwardly and can

provide more accurate results about the meaning of the document as a whole. We

implemented tokenization using spaCy’s [30] tokenizer3. SpaCy is a free open-source

python library for advanced NLP.

Stopword removal

Stopword removal is the process of removing stopwords identified in the text. As stop-

words, we consider all words that do not supplement text with valuable information.

Stopwords usually include prepositions, articles and other uninflected parts of speech.

Stopword removal is implemented adjacent to tokenization using SpaCy.

Unnecessary character removal

Using Gensim’s4 simple preprocess() library in this step, tokens are subjected to fur-

ther cleaning so as to reduce “noise” which arises from neglected punctuation and

unnecessary characters.

3https://spacy.io/api/tokenizer
4https://pypi.org/project/gensim/

https://spacy.io/api/tokenizer
https://pypi.org/project/gensim/
https://spacy.io/api/tokenizer
https://pypi.org/project/gensim/

Chapter 4. UA-Graph Production 20

Lemmatization

Lemmatization is the process which groups together different forms of the same to-

ken and replaces them all with the base root form of the word. The concept behind

lemmatization is that the lemma, which is the root word without its specific suf-

fix (third person or past and future tenses) can displace all the different forms of the

word, without distorting the meaning of the text. All these different forms of the same

word can then be analyzed as a single entity. Lemmatization is particularly important

before topic extraction. If we extract topics neglecting lemmatization, different forms

of the same word might be included among the representative topic keywords such

as words covering the topic meaning (eg. test and tested). In doing so, forms of the

same token would end up on the same subject, bypassing other important words for

the topic formulation. After lemmatization, the already processed text can be used

as input for NER. However, text for Topic Extraction needs to be subjected to one

further step of preprocessing which is bigram and trigram identification. Lemmatiza-

tion is implemented using spaCy’s lemmatizer5.

N-gram identification

N -gram identification is the process of identifying N -grams. As N -gram we consider

a sequence of tokens that usually occur together in the text. In our case, we consider

sequences of two words (bigrams) and three words (trigrams). After Bigram/trigram

identification, bigrams and trigrams are converted into single tokens and their indi-

vidual words are separated by an underscore (nitric oxide, lactic acid bacterium). In

topic extraction, bigrams and trigrams are considered interrelated so are represented

as a single token and therefore should appear together in case they are included in

the topic keywords. In the case of the entity recognition step, Bigram/Trigram iden-

tification can be overlooked. In entity recognition, words should appear together in

case they have specific meanings based on the respective NER model. This is unre-

lated to the concept of sequences that occur together in the text. Bigram/Trigram

identification is implemented using Gensim6 library.

In Figure: 4.3 we present an example of a sentence which has been given as input in

text preprocessing workflow. After text preprocessing, we see the equivalent output of

this sentence. Within the output sentence, each token is enclosed by quotation marks.

The lemmatizer turned the tokens: viruses, infection, humans, and rodents into their

basic root form. Finally, the bigram/trigram identification model considered the

words family, paramyxoviridae and mice, pvm as bigrams and therefore joined them

using the underscore (family paramyxoviridae, mice pvm). In addition we see that

articles and linking words are missing.

5https://spacy.io/api/lemmatizer
6https://pypi.org/project/gensim/

https://spacy.io/api/lemmatizer
https://pypi.org/project/gensim/
https://spacy.io/api/lemmatizer
https://pypi.org/project/gensim/

Chapter 4. UA-Graph Production 21

Figure 4.3: A sentence given as input in text preprocessing workflow and the equivalent
output

4.1.2 Named Entity Recognition

The second task in our methodology is NER. NER identifies and disambiguates en-

tities from unstructured or semi-structured text. These entities are classified into

predefined categories. As already mentioned in this project our case-study involves

the Biomedical field, therefore we focus on biomedical named entity recognition (Bio-

NER). Bio-NER is a NER task used to extract information from articles of biomedical,

scientific, or clinical fields. Bio-NER is trained on scientific text and therefore it recog-

nizes concepts of scientific content. Our methodology involves the use of three distinct

packages which offer models for processing biomedical text: Scispacy [31], Med 7 [32]

and Stanza [33].

ScispaCy is an open-source python NLP package which aims to assist NLP imple-

mentanion in biomedical text. ScispaCy is based upon spaCy [30], which has been

retrained based on data from a variety of biomedical sources. ScispaCy7 offers differ-

ent Bio NER models built on different entity categories. In our proposed methodology,

NER task uses all the four ScispaCy models and identifies 28 entity types. The Scis-

paCy models along with the available Entity types can be seen in Table: 4.1.

7https://allenai.github.io/scispacy/

https://allenai.github.io/scispacy/
https://allenai.github.io/scispacy/

Chapter 4. UA-Graph Production 22

Scispacy Models
Model Description Entity type
en ner craft md A spaCy NER model

trained on the CRAFT
corpus.

GGP, SO, TAXON,
CHEBI, GO, CL

en ner jnlpba md A spaCy NER model
trained on the JNLPBA
corpus.

DNA, RNA,
CELL TYPE,
CELL LINE, PRO-
TEIN

en ner bc5cdr md A spaCy NER model
trained on the BC5CDR
corpus.

DISEASE, CHEMICAL

en ner bionlp13cg md A spaCy NER
model trained on
the BIONLP13CG
corpus

ANATOMICAL SYSTEM,
TISSUE, CAN-
CER, CELLU-
LAR COMPONENT,
SIMPLE CHEMICAL,
AMINO ACID, CELL,
ORGAN, ORGANISM*

Table 4.1: Scispacy models and Entity types

Med 7 Models
Model Description Entity type
en core med7 lg model is trained on

MIMIC-III free-text
electronic health records

DOSAGE, DRUG,
DURATION, FORM,
FREQUENCY, ROUTE,
STRENGTH

Table 4.2: Med 7 model and Entity types

*DEVELOPING ANATOMICAL STRUCTURE, IMMATERIAL ANATOMICAL ENTITY,

MULTITISSUE STRUCTURE, GENE OR GENE PRODUCT, PATHOLOGICAL FORMATION,

ORGANISM SUBDIVISION, ORGANISM SUBSTANCE

Med 78 is a transferable clinical NLP model trained on the MIMIC-III corpora

and can recognize 7 drug-related entities. It can be installed and used as a part of

ScispaCy. In our proposed methodology NER task identifies 7 drug-related entity

types: dosage, drug, duration, form, frequency, route and strength. Med7 along with

its available entity types can be seen in Table: 4.2.

Stanza9 is a Python natural language analysis package which also contains Biomed-

8https://github.com/kormilitzin/med7
9https://stanfordnlp.github.io/stanza/available_biomed_models.html

https://github.com/kormilitzin/med7
https://stanfordnlp.github.io/stanza/available_biomed_models.html
https://github.com/kormilitzin/med7
https://stanfordnlp.github.io/stanza/available_biomed_models.html

Chapter 4. UA-Graph Production 23

Stanza Models
Model Description Entity type
i2b2 All types of MIMIC-III

clinical notes, general En-
glish Web Treebank.

TEST, PROBLEM,
TREATMENT

Table 4.3: Stanza model and Entity types

ical Models for Clinical NER and other tasks. The language models are pretrained on

publicly available data-sources. BioNER models are pretrained on PubMed abstracts

whereas clinical NER models are pretrained on the clinical notes from MIMIC-III

database. From Stanza our proposed methodology task uses the i2b2 model and

identifies three entity types: test, problem and treatment, as can be seen in Table:

4.3.

An additional and optional NER-subtask is entity categorization. As NER models

usually export a plethora of entity types, our system allows users to categorize the

extracted entities in case they need to. In Figure: 4.4 we see an example of categorized

Cell Line entities grouped by article’s id.

The output of NER is very important as it supports the domain model population.

Figure 4.4: Cell Line entities, grouped by article’s id

4.1.3 Topic Extraction

Topic extraction is a Machine Learning (ML) technique which is used to identify the

conceptual topics that may be discussed in a collection of documents. In our proposed

Chapter 4. UA-Graph Production 24

methodology, topics are extracted through Latent Dirichlet Allocation (LDA) [34]

which is an unsupervised machine learning model. In LDA topics are produced based

on the words that occur frequently in every document. Each topic is presented as a

list of representative words (keywords) along with their probability.

Before we explain how the LDA algorithm works, we briefly present three principal

LDA input parameters k, alpha and beta. Parameter k indicates the number of topics

that the corpus is likely to include. The k estimation can be done either empirically or

by measuring topic coherence. Topic coherence indicates the relative distance between

two words that are included in a topic. To find the optimal topic value, we have to

train many LDA models with different k. The optimal k is the one that gives the best

coherence score. The parameter alpha determines the number of topics expected in

a document. Respectively, beta determines the word distribution that is expected in

a topic.

Given a collection of documents, we describe how LDA identifies topics and topic

distributions. Initially, the algorithm assigns randomly all the document words to one

of the k topics. It then passes every word and every topic assignment to calculate a)

how frequently a topic occurs in each document and b) how frequently a word occurs

in a topic. Based on this information, LDA assigns again all the document words to a

new topic. This process is repeated several times until the topics start making sense.

Consequently, LDA extracts topics and then describes each document as a probability

distribution of these topics.

After topic extraction, our system corresponds topic keywords to real-world en-

tities that have been extracted from NER and already exist in the database. Topic

keywords that match an already existing entity, are then removed along with their

probability and replaced with a relationship (See paragraph 5.2.4 relationship Prob-

ability) between topic and entity.

In Table: 4.4 we present an example of topic extraction. In the example we see

that a scientific publication with title: “Clinical features of culture-proven Mycoplasma

pneumoniae infections at King Abdulaziz University Hospital, Jeddah, Saudi Arabia.”

can be described as a distribution of three potential topics:

0.06570756 ∗ Topic 1 + 0.82845414 ∗ Topic 2 + 0.029987121 ∗ Topic 3

Topic keywords are descriptive enough to understand the main topic subject. Accord-

ing to the first topic keywords (sample, test, positive, pcr) we understand that Topic 1

concerns the process of virus detection. Respectively, the second topic (child, respira-

tory, severe, symptom, infection) discusses respiratory infections and their symptoms

in children. Finally, the third topic (pandemic disease, countries, outbreak, measures)

concerns the pandemic outbreak. According to the topic probabilities, we assume the

publication mainly addresses the problem of respiratory infections and their symp-

Chapter 4. UA-Graph Production 25

Title: Clinical features of culture-proven Mycoplasma pneumoniae infections at King

Abdulaziz University Hospital, Jeddah, Saudi Arabia

Topic Probability

0.022 ∗ sample + 0.020 ∗ positive + 0.019 ∗ detection + 0.018 ∗
results+ 0.017∗ study+ 0.016∗ testing+ 0.014∗ test+ 0.013∗
pcr + 0.012 ∗methods + 0.011 ∗ rt pcr

0.06570756

0.098∗patient+0.022∗hospital+0.019∗child+0.016∗clinical+
0.015 ∗ respiratory + 0.015 ∗ severe + 0.014 ∗ care + 0.011 ∗
symptom + 0.011 ∗ day + 0.010 ∗ infection

0.82845414

0.121∗covid+0.019∗cases+0.016∗pandemic+0.014∗disease+
0.011 ∗ number + 0.010 ∗ country + 0.010 ∗ outbreak + 0.009 ∗
measures + 0.009 ∗ epidemic + 0.009 ∗ health

0.029987121

Table 4.4: Example of three potential topics describing a specific document

toms (with probability 0.82845414). It also discusses the topics of virus testing and

pandemic measures.

4.2 Model Design

Graph data modeling is the process of describing a specific domain as a graph consist-

ing of nodes and relationships. In order to design a data model, we need a domain,

nodes to represent the domain concepts, and relationships to describe the interaction

between these concepts. How each concept will be represented in graphs can vary

depending on the designer’s aim10. For example, someone may decide to model a

concept as a property of a node or as a relationship to another node depending on

the queries which will run.

Instead of reusing subsets of already existing vocabularies, we designed a data

model that meets the needs of the academic field as a whole. Our main purpose

was to design a general model in such a way as to support either general or very

specific information. This way we overcome potential limitations that would have

occurred in the case of using pre-existing ontologies. Limitations regarding the use of

pre-existing ontologies usually concern the specific nature of these ontologies or the

inconsistency between the available data and the ontology structure. We therefore

propose the UA-data model which is illustrated in Figure: 4.5. The UA-data model

has been designed to incorporate the fundamental concepts of the scientific domain

and as can be seen in Figure: 4.6 consists of classes, instances and relationships.

Additionally, the model supports class hierarchies, is flexible for future enhancement

and is domain-independent.

10https://neo4j.com/developer/modeling-designs/

https://neo4j.com/developer/modeling-designs/
https://neo4j.com/developer/modeling-designs/

Chapter 4. UA-Graph Production 26

Figure 4.5: The UA-data model, designed to cover the main concepts of the scientific
domain

4.2.1 Domain Concepts

The UA-data model has been designed to satisfy the requirements of the scientific

domain as a whole. We briefly explain the main concepts of the scientific domain

upon which we have based the design of the UA-model classes. Scientific publications

are the main components of the scientific domain. Through publications, researchers

can communicate the latest accomplishments in their field. Furthermore, research

results are publicly available in such an authoritative way that their validity is not

contestable. The scientific community can then evaluate each papers’ quality and

build upon the given work. Each scientific publication is written by qualified authors

who are connected with an academic institution or a research center. Therefore,

authors and academic institutions are two more important components of the scientific

field.

In academia, there are various types of publications of which the academic jour-

nal is the most common. In this model, we include published information from both

journals and conference articles. Each publication refers to a specific scientific dis-

cipline or a combination of several disciplines from humanities to natural sciences

and others. Between the main scientific components, we also introduce the respective

scientific discipline, though without limiting the model potentials. This is why we

Chapter 4. UA-Graph Production 27

Figure 4.6: The UA-data model and an example of class instances

state that our model is domain-independent. For each publication, we add topics and

concept entities described within its text. Based on the main concepts of the scientific

domain, we present the primitive concepts of the UA-data model which are classes,

instances and relationships.

4.2.2 Classes

Our graph data model corresponds the main components of the scientific domain (see

par. 4.2.1) to classes. We use nodes and directed relationships to represent the model

in a property graph. Each node represents a class, which may have attributes and

can also be associated with other classes. The UA-data model is a hierarchical model

that consists of four levels. The main class represents the Object, while its two sub-

classes (Topic, Entity) are created so as to provide supplementary information.

In turn, these two subclasses have subclasses of their own (Publication, Per-

son, Organization, Series, Biomedical Concept) and so on until we

Chapter 4. UA-Graph Production 28

reach the lowest level (Publisher, Author, Journal Article, Confer-

ence Article, Proceedings, Journal, Institution). The classes of the

UA-data model inherit their attributes and properties to their subclasses. The hier-

archical relationship between a class and its subclass is described by way of the isA

relationship, which is a directed relationship. This means that the parent-child hier-

archy is shown by a directional arrow that starts from the child Class and ends in the

parent Class. The model contains 15 main classes overall as shown in the Table: 4.5.

Below we present a detailed description of the UA-model classes and their respective

attributes.

Metamodel Classes

Object : Class Object is the superclass. Object models any concept that may ex-

ist in the database. In a sense it represents the “microcosm” of the database and

whatever is there is subject to it.

Entity : Class Entity is a subclass of Object and models all the individual units

that may exist in the real world. It could be a person, a location, or anything else

that has real-world substance.

Topic: Class Topic is a subclass of Object which models all the possible topics

described in each scientific publication. The attribute of this class is a string contain-

ing all of the important topic keywords, along with their probability.

Model Classes

Publication : Class Publication is a subclass of Entity and includes all the scien-

tific articles’ instances. The attributes of Class Publication are id, title, publication

date, DOI.

Journal Article : Journal Article is a subclass of Class Publication. This Class

models all the Publications published in journals.

Conference Article : Class Conference Article is a subclass of Publication. This

Class models all the Publications presented at conferences.

Person : Class Person is a subclass of the Class Entity and includes all the instances

of people who may be referred to in the dataset. The attribute of this Class is the

person’s name.

Chapter 4. UA-Graph Production 29

Author : Class Author is a subclass of Person. This Class models all the people

who have authored scientific articles in Class Publication.

Organisation : Class Organisation is a subclass of Entity. Organization models

all the organizations involved in scientific article production. The attribute of this

Class is the organization’s name.

Publisher : Publisher is a subclass of Organisation. This Class models all the publish-

ing companies which have distributed scientific articles that exist in Class Publication.

Institution : Class Institution is a subclass of Class Organisation. This Class mod-

els all the institutions where the research for a specific scientific publication was

conducted.

Series : Class Series is a subclass of Class Entity and contains all the information

regarding the publication of research findings.

Proceedings: Class Proceedings is a subclass of Class Series and models all the

academic conferences where the research behind the publications was presented.

Journal : Class Journal is a subclass of Class Series. This Class contains all the

instances of academic journals that present scientific accomplishments.

Domain Classes

Domain Classes are all those classes that model the concepts of a specific scientific

discipline. As our paradigm we use the Biomedical domain, therefore in this model,

the main domain class is the Biomedical Concept Class. This model however can

be adjusted according to future needs. We further add auxiliary classes, in order to

categorize the available entity types. For example, the class Disease contains all the

entities extracted from NER, with entity type Disease.

Biomedical Concept : This Class is a subclass of Entity Class, represents a specific

domain and contains all the entity categories that have been extracted from the data

during NER. Our paradigm is the biomedical domain, therefore, Biomedical Concept

models all the biomedical entity types identified in NER.

Disease : Disease is an example class. This Class models a particular entity type

and includes all the entities of this specific entity type that have been extracted from

Chapter 4. UA-Graph Production 30

NER.

Model Classes
Object{type: Class}

Topic{
type: Class
isA: Concept
dim*: Entity
dim*: String}

Entity{
type: Class
isA: Object }

Publication {
type: Class
isA: Entity
title: String
author*: Person
affiliations*:Org
in: Series
publisher: Pub
year: Int
month: Int}

Person{
type: Class
isA: Entity
name: String}

Organization{
type: Class
isA: Entity
name: String}

Series{
type: Class
isA: Entity
name:String}

Institute{
type: Class
isA: Organization}

Bio Concept{
type: Class
isA: Entity
name:String}

Publisher{
type: Class
isA: Org}

Author{
type: Class
isA: Person}

Journal Article
type: Class
isA: Publication
series*: Series

Conference Article{
type: Class
isA: Publication
series: Series}

Proceedings{
type: Class
isA: Series}

Journal{
type: Class
isA: Series}

Table 4.5: The main classes of the model along with their attributes as presented
hierarchically from highest to lowest level

4.2.3 Instances

The classes of the UA-data model may have individual objects called instances. When

classes have instances, they assign all their attributes to instances. The relationship

between Class and Instance is described through the instanceOf relationship. In

this directed relationship, the arrow starts from the instance of the Class and ends in

Chapter 4. UA-Graph Production 31

the Class. Instances can also have relationships with other instances. An example of

class instances is shown in Figure: 4.6.

4.2.4 Relationships

A significant problem was whether to model a concept as a class attribute or as

a relationship to another class. Given the proposed model, we see that the class

Publication has attributes: id, title, DOI and Publication date. The authors of an

individual publication instance are included in the class Author and are connected

through a relationship that shows authorship. However, author names could have

been included in the attributes of the class Publication. The decision of whether to

model a concept as an attribute or relationship depends on the nature of the queries

as well as their complexity. For example, by modeling authors as attributes of class

Publication we can run a simple query like the following:

• Return all the authors of publication with id = “ug7v899j”

We however, would like to answer queries like:

• Return the authors working in a specific institution

• Return all the authors who have researched Ovarian cancer

Based on this reasoning we modeled as relationships all the concepts presented below.

Again these are directed relationships and the arrow direction depends on the case.

Authored by : This relationship connects each scientific publication of Class Publi-

cation with the instances of Class Author and indicates authorship.

Published by : This relationship connects each scientific publication of Class Pub-

lication with the publishers meaning that the respective paper was published by a

specific publisher.

Has topic: This relationship connects each scientific publication of Class Publi-

cation with the topics included in the Class Topic indicating all the possible topics

described in each publication.

Probability : This relationship connects each instance of Class Topic with a spe-

cific Entity. It is an optional relationship and exists only in cases where keywords

describing the topic have been already detected in the current biomedical concepts.

Affiliation : This relationship connects authors with institutions.

Chapter 4. UA-Graph Production 32

Referred : This relationship connects each scientific publication of Class Publica-

tion with a Biomedical concept. Referred relationship indicates that a publication

refers to a specific concept within its text.

Published In : This relationship connects each scientific publication of Class Publi-

cation with a specific journal, instance of Class Journal.

Chapter 4. UA-Graph Production 33

4.3 Knowledge Graph Implementation

Neo4j11 is an open-source, NoSQL graph database that is based on the labeled prop-

erty graph model [35]. This means that data are organized as nodes, relationships

and properties. Moreover, the property graph representation approach is flexible for

future enhancement and modification by allowing users to add new nodes and rela-

tionships over time. We designed the UA-data model in such a way that is flexible

for future enhancement. Therefore, we believe that Neo4j is the ideal graph DBMS

to implement our model.

Neo4j Main Concepts

In order to structure and store data Neo4j uses four basic structures12 [35]: nodes,

relationships and relationship types, properties, and labels as explained below.

Nodes

Nodes are used as a means to store entity information. Given a data model which

represents a field of the scientific domain, possible examples of nodes could be pub-

lications, authors, and institutions. The simplest form of a graph is a single node

graph. Conversely, a complex graph does not necessarily consist of many nodes, how-

ever these nodes present high complexity between their relationships.

Relationships

Relationships connect nodes between them and determine the complexity of the graph.

Additionally they represent the main way to attribute structure to entities. A rela-

tionship can be self-referencing/looping, but should always start and finish at a node.

Relationship Types

Each relationship should have only one relationship type. Based on the scientific

domain example, two possible relationship types are written by, work in :

Publication−written by → Author

Author −worked in → Institution

Relationships should always have a direction. The node where the relationship starts

is called the source node while the one which received the action is called the target

node. The reversal of a relationship is unnecessary unless it is required for a specific

reason.

11https://neo4j.com/developer/graph-database/
12https://neo4j.com/docs/getting-started/current/graphdb-concepts/

https://neo4j.com/developer/graph-database/
https://neo4j.com/docs/getting-started/current/graphdb-concepts/
https://neo4j.com/developer/graph-database/
https://neo4j.com/docs/getting-started/current/graphdb-concepts/

Chapter 4. UA-Graph Production 34

Properties

Nodes and relationships may have properties. Properties are pairs of values< attr, value >

used to add characteristics to nodes and their relationships respectively. In our ex-

ample publication may have:

< title, value >,< doi, value >

and the relationship:

−written by→ may have < date, value >

A property value can either be a number, a string or a boolean.

Labels

Labels are used as a means for categorizing nodes. All nodes sharing the same label

belong to the same category. This means that when Neo4j needs to perform transac-

tions over a specific group of nodes, it can perform them directly by requesting the

particular category that the nodes belong to.

Possible labels for the scientific domain example could be:

: Authors, : Publications, : Institutions

In such a case we can easily request all the nodes with the label, for example :

Authors that share a specific characteristic. After the introduction of labels, new

potentialities were revealed for Neo4j, as operations difficult to perform in the past

can be achieved in a much more straightforward way. By using labels, subgraphs can

be quickly created and the type property has been replaced. Furthermore, there is

no need to connect nodes to definition nodes which were regularly used to provide

supplementary information. Nodes can have zero to multiple labels depending on the

way one may want to structure the graph. In a simpler structure nodes can have one

label, but when dealing with many different dimensions, attributing multiple labels to

the nodes is admittedly an effective suggestion. Lastly, as labels can be easily added

and removed at anytime, they can be used temporarily to show the current state of

the nodes. Relations have only one label.

4.3.1 Challenges

The process of implementing the UA-data model using Neo4j was quite challenging

and went through various stages of testing. During this process, we had to corre-

spond the data model primitive components (class instances and relationships) to

Neo4j structures and capabilities. Below we present all the challenges we had to han-

dle during the UA-data model implementation in Neo4j and the approaches that we

Chapter 4. UA-Graph Production 35

finally followed in order to produce the UA-Graph.

Challenge 1: Hierarchical class representation and querying in Neo4j

The first challenge concerns the hierarchical class representation and querying. Neo4j

does not propose a particular way to structure hierarchies nor does it understand

the meaning behind classes and instances. Classes and instances can be represented

by nodes and relationship types, however, querying such a structure from the top

(superclass) to the bottom (instance) is impossible.

An example of an idea that was implemented but finally rejected was to create

a label for every class. Then we rendered multiple labels at each node based on the

classes that the node belongs to (based on Figure: 4.5, for example, a node with the

label :Author, should also have the label :Person, :Entity, and :Object). However, the

UA-Graph needs to support many hierarchy levels. This implies the need to attribute

multiple labels at each node. Such a modeling approach made querying very difficult.

By using multiple labels we can easily search for all the nodes that indeed belong to

a specific category, but the reverse is impossible. A query like this: Return all the

nodes with label :Person that are NOT authors returns nothing. This query

cannot be answered because the database recognizes only the nodes that belong to

a specific category. We, therefore, concluded that a multi-labeling suggestion would

be better suited to a model that supports fewer hierarchy levels or answers simpler

queries and so we focused on a different approach.

An indicative way to represent hierarchies, proposed by Neo4j manual is to base

our model on Neosemantics13 (n10s). Neosemantics is a Neo4j plugin that supports

the use of Resource Description Framework (RDF) and among many other tasks also

promotes basic inferencing and reasoning. RDF is a general approach used to repre-

sent both data and data models to a computer understandable form. Neosemantics

allows users to insert and export RDF data without losing information in the process.

Furthermore, it allows the import and export of ontologies and taxonomies in different

vocabularies.

Concerning the inferencing-reasoning part, this plug-in allows Neo4j to understand

information that is not intentionally stored. More precisely, in our case, we need to

create nodes that represent classes, subclasses and instances and connect them with

relationships showing hierarchies. However, the meaning behind this hierarchical

structure is unknown to Neo4j. The main idea is to let the tool distinguish the nodes

classes from the nodes instances. We, therefore, expect that Neo4j will be able to

recognize the hierarchical model and return both classes, subclasses, and instances

when it is asked, even though the instances are not directly connected with their

superclasses. Hence Neosemantics recommends a method to represent a model in a

13https://neo4j.com/labs/neosemantics/4.0/inference/

https://neo4j.com/labs/neosemantics/4.0/inference/
https://neo4j.com/labs/neosemantics/4.0/inference/

Chapter 4. UA-Graph Production 36

way that the graph DB can understand even though some concepts are not explicitly

described.

Following the Neosemantics manual, we modeled class hierarchies as follows. To

model a hierarchy of classes (or categories as referred to in Neosemantics manual)

nodes are used to represent the classes, which are then connected through a relation-

ship that shows the hierarchy. We considered the word isA a representative word in

order to show the class and subclass hierarchy. After declaring the class hierarchy,

we had to add the instances of each class. For instances Neosemantics proposes two

options. The first can be implemented by adding an additional label to the instance

node showing the class it belongs to. The second can be implemented by linking node

instances with the class they belong to using a relationship. Finally, Neosemantics

proposes specific commands to query the graph built upon the above-mentioned con-

vention (see section 4.3.4).

Challenge 2: Superclass - Subclass Inheritance in Neo4j

In the UA-data model, all the attributes and properties of the superclass are inherited

to its subclasses. Neo4j, however, does not recognize the superclass-subclass concept

and therefore cannot inherit class attributes to other classes.

As the superclass-subclass concept is not recognized by Neo4j, we had to proceed

to the following agreement. Every class of the UA-data model is represented by a

unique Neo4j node. Therefore, each node’s purpose is to “imitate” a model class.

The nodes representing classes in Neo4j, however, do not have actual class attributes.

We agreed that the actual class attributes are assigned to the nodes that represent

the instances of the respective class.

Challenge 3: Superclass - Subclass Relationships in Neo4j

In the UA-data model, all the superclass relationships are inherited to its subclasses.

For example, in Figure: 4.5 we see that a publication is published by a publisher.

This information passes to the subclass journal article. This means that the instances

of the class journal article are published by a publisher even though their class is not

directly connected with the class publisher.

As the superclass-subclass concept is not recognized by Neo4j, we had to proceed

to the following compromise. We, therefore, decided that every class of the UA-data

model is represented by a unique node in Neo4j. The class nodes in Neo4j do not

include the actual class attributes neither are connected with other classes (except

their hierarchical classes). The actual class attributes and relationships are assigned

to the nodes that represent the instances of the respective class.

Chapter 4. UA-Graph Production 37

4.3.2 Classes and Instances in Neo4j

In this section, we show how we can implement a hierarchical structure in Neo4j based

on the proposed model and Neosemantics’ principles. Nodes that represent classes

and subclasses are connected through the relationship type isA. After declaring the

class hierarchy, we add the instances of each class. According to Neosemantics we link

the nodes-instances with their classes through the relationship type instanceOf.

Below we implement a small hierarchical model in Neo4j which consists of two classes

A, B and an instance C as presented in Figure: 4.7. In this model, class B is a subclass

of A and C is an instance of class B. The example is written in Neo4j’s graph query

language, cypher14.

Preliminaries:

We create two types of nodes (or labels: Classes and Instances). We need to create a

unique node property constraint.

CREATE CONSTRAINT ON (c:Class) ASSERT c.id IS UNIQUE;

CREATE CONSTRAINT ON (i:Instance) ASSERT i.id IS UNIQUE;

Creating Class A:

To create a class A we create a node that represents the class (using the label :Class)

with the name A and a unique id that we provide. This can be done with the following

command:

CREATE (a:Class {name: "A", id :"1"})

Class A Properties:

A property of a class is modeled in Neo4j as a node property. This means that

the command that is defining the class A could also contain the specification of the

property < attr, value >. The command would be:

CREATE (a:Class { name: "A", id: "1" , attr: "value "})

Creating Class B, subclass of A:

An isA hierarchy is created by considering a special relationship type (isA) between

14https://neo4j.com/developer/cypher/

https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/

Chapter 4. UA-Graph Production 38

the nodes that represent the classes. As we have already created the class A, this

time we create only the class B and the isA relationship type.

MATCH (a:Class{name: "A", id: "1"})

CREATE (b:Class{name: "B", id :"2"})

CREATE (b)-[:isA]->(a)

Creating C an instance of B:

To create an instance of a class B we create a node with label :Instance and then

we connect this node with the class B using the special (instanceOf) relationship. In

particular, the command will be:

MATCH (b:Class{name:B})

CREATE (i:Instance { name: "C", id: "3" })

CREATE (i)-[: instanceOf]->(b)

Instance properties:

If an instance needs to have some properties < attr, value > this is declared during

its creation time. For example, the creation of the instance C will be:

CREATE (i:Instance { name: "C", id: "3", attr: "value" })

A relationship type between classes A and B:

To create the relationship type P between classes A and B, we do so by adding

a directed edge [P] between the node of A and the node of B. The edge direction

depends on the case.

MATCH (a:Class{name: "A"})

MATCH (d:Class{name: "D"})

CREATE (b)-[:P]->(a)

A relationship type between instances:

A relationship type between instances is defined in the same way it is defined in the

case of classes. For example, to define the relationship type [P] from the instance

node i to the instance node i2, the command would be:

MATCH (i:Instance{name: "C"})

Chapter 4. UA-Graph Production 39

CREATE (i2:Instance{name: "i2"})

CREATE (i1)-[:P]->(i2)

Figure 4.7: An example of a small hierarchical model that consists of class A, B, and
instance C. Class B is a subclass of A and C is an instance of class B

4.3.3 UA-Graph Implementation in Neo4j

The UA-data model implementation in Neo4j required a lot of experimentation and

went through various stages of testing. Despite Neo4j’s potentialities, we had to pro-

ceed to many compromises in order to produce a graph true to the model. These

compromises concern structural components of the graph and should always be fol-

lowed in the case of the UA-Graph reproduction. We implement the UA-Graph using

Cypher, Neo4j’s graph query language according to the following conventions:

• Every class corresponds to a unique node. We use the nodes-classes in order

to create a structure that follows the UA-data model. Every unique node that

represents a class, has a specific label

:Sci Domain (Scientific Domain abbreviation)

All the nodes with label :Sci Domain have two attributes: {name, id}. The

hierarchy of classes is established according to Neosemantics. Nodes that rep-

resent the model classes are connected through a relationship that shows their

hierarchy. We selected isA as a representative relationship type in order to

Chapter 4. UA-Graph Production 40

show the class and subclass hierarchy. In Table 4.6 we present all the nodes

that correspond to the model classes along with their attributes. Further in

Figure: 4.8 we present a Neo4j example that includes all the nodes-classes and

their hierarchies.

• What follows is the need to create the instances of each class. Class instances

are nodes that contain the actual data. We attribute to the instances of each

class a label related to the name of the class (For eg. to label the instances we

used the name of the class in plural: Class author → has instances with label

Authors, Class publisher → has instances with label Publishers, etc.). Instance

- class relationship is shown by the instanceOf relationship type.

• Currently, Neo4j does not support inheritance between Classes. This means

that a node defined as a superclass does not inherit attributes and properties

to its subclasses. Therefore, the actual data are represented by nodes defined

as instances at the lower hierarchical level. The relationship types exist only in

the case of instances, as relationship types between classes do not add valuable

information.

Below we present all the labels used to categorize the nodes instances (i.e. the actual

data):

Labels

:Journal Articles: We attribute this label to all the nodes that represent the actual

Journal articles included in our dataset.

All nodes with label :Journal Articles are connected with with the node :Sci Domain

{name: Journal Article} thought the instanceOf relationship type.

:Conference Articles: We attribute this label to all the nodes that represent the

actual Conference articles included in our dataset. All nodes with label :Confer-

ence Articles are connected with with the node :Sci Domain {name: Confer-

ence Article} thought the instanceOf relationship type.

:Authors: We attribute this label to all the nodes that represent the actual Au-

thors included in our dataset. All nodes with label :Authors are connected with

with the node :Sci Domain {name: Author} thought the instanceOf relationship

type.

:Journals : We attribute this label to all the nodes that represent the actual Jour-

nals included in our dataset. All nodes with label :Journals are connected with with

Chapter 4. UA-Graph Production 41

the node :Sci Domain {name: Journal} thought the instanceOf relationship type.

:Publishers : We attribute this label to all the nodes that represent the actual Pub-

lishers included in our dataset. All nodes with label :Publishers are connected with

with the node :Sci Domain {name: Publisher} thought the instanceOf relation-

ship type.

:Conferences : We attribute this label to all the nodes that represent the actual

Conferences included in our dataset. All nodes with label :Conferences are con-

nected with with the node :Sci Domain {name: Proceedings} thought the in-

stanceOf relationship type.

:Institutions: We attribute this label to all the nodes that represent the actual In-

stitutions included in our dataset. All nodes with label :Institutions are connected

with with the node :Sci Domain { name: Institution} thought the instanceOf

relationship type.

Relationship Types

Relationship Types correspond to the UA-model relationships as described in para-

graph 5.4.2.

Authored by : This relationship type connects each scientific publication node with

the nodes that represent its authors.

Published by : This relationship type connects each scientific publication node with

the node that represents the respective company that has published this paper.

Has topic: This relationship type connects each scientific publication node with

the nodes that represent all the possible topics described in each publication.

Probability : This relationship type connects each topic node with a specific biomed-

ical concept node. It is an optional relationship and exists only in the case that

keywords describing the topic have been already detected in the current biomedical

entities.

Affiliation : This relationship type connects nodes representing authors with the

institutions they collaborate.

Referred : This relationship type connects each publication node to the biomedi-

Chapter 4. UA-Graph Production 42

cal entity node indicating that this concept is referred in this specific document.

Published In : This relationship connects each publication node with the node rep-

resenting the journal that published the respective publication.

Figure 4.8: A Neo4j example that shows all the nodes with label Sci Domain that
represent the model classes

Chapter 4. UA-Graph Production 43

Nodes with label Sci Domain

Node Description Properties

Object Represents the Supercalss Object <name: Object, id: ObjectId>

Topic Represents the Class Topic <name: Topic, id: TopicId>

Entity Represents the Class Entity <name: Entity, id: EntityId>

Publication Represents the Class Publication <name: Publication, id: PublicationId>

Person Represents the Class Person <name: Person, id: PersonId>

Organisation Represents the Class Organisa-
tion

<name: Organisation, id: OrganisationId>

Conference Article Represents the Class Confer-
ence Article

<name: Conf Article, id: Conf ArticleId>

Journal Article Represents the Class Jour-
nal Article

<name:Journal Article, id:Journal ArticleId>

Biomedical Concept Represents the Class Biomedi-
cal Concept

<name:Bio Concept, id:Bio ConceptId>

Author Represents the Class Author <name:Author, id: AuthorId>

Series Represents the Class Series <name:Series, id: SeriesId>

Journal Represents the Class Journal <name:Journal, id: JournalId>

Proceedings Represents the Class Proceedings <name:Proceedings, id: ProceedingsId>

Institution Represents the Class Institution <name:Institution, id: InstitutionId>

Publisher Represents the Class Publisher <name:Publisher, id: PublisherId>

Table 4.6: Classes to nodes correspondence

4.3.4 Querying Hierarchies in Neo4j

This section analyzes the UA-Graph hierarchy querying process. Neo4j at this point

encounters the graph as a set of nodes that have labels and relationships. In the

example described in paragraph 5.3.4 Class B isA Class A and C instance Of class

B. The main challenge is to access the instance C, not only from B but also from its

superclass A. Querying a graph that consists of three nodes may seem straightforward,

however, considering the UA-model top-down querying is impossible. The superclass

cannot communicate with its subclasses so a simple query that is asking for instance

categories like:

• Which are the categories of publications?

cannot be answered.

To alleviate this problem we query the graph using Neosemantics as explained in

par 4.3.1. To query the graph hierarchically we use two main Neosemantics proce-

dures n10s.inference.nodesInCategory and n10s.inference.inCategory. These proce-

dures take as input two parameters:

• subCatRel: Which requests information about the class hierarchy (in our case:

Chapter 4. UA-Graph Production 44

subCatRel=isA).

• inCatRel: Which requests information about the way instances are connected

to the class (in our case: inCatRel=instanceOf).

Below we present two indicative examples to better explain querying with Neose-

mantics.

Preliminaries:

Neosemantics15 (n10s) plug-in needs to be installed in Neo4j.

Query 1: Get the nodes in a particular category:

Use n10s.inference.nodesInCategory to get the nodes in a particular category.

MATCH (cat:Sci_Domain { name: "Entity "})

CALL n10s.inference.nodesInCategory(cat ,

{ inCatRel: "instanceOf", subCatRel: "isA"})

yield node

return node.title as title , labels(node) as categories;

The Cypher query returns a list of articles as shown in Table: 4.7. The query returns

articles even though they are not directly connected to the node Entity.

Title Categories
“Factors affecting translation at the programmed 1 ribosomal
frameshifting site of Cocksfoot mottle virus RNA in vivo”

[“Articles”]

“ Protein secretion in Lactococcus lactis : an efficient way to
increase the overall heterologous protein production”

[“ Articles”]

Table 4.7: Articles returned by the procedure n10s.inference.nodesInCategory

Query 2: Verify whether a node belongs to a particular category:

Create inference parameters

:param inferenceParams =>

({ inCatRel: "instanceOf", subCatRel: "isA "});

Querying using n10s.inference.inCategory()

15https://neo4j.com/labs/neosemantics/installation/

https://neo4j.com/labs/neosemantics/installation/
https://neo4j.com/labs/neosemantics/installation/

Chapter 4. UA-Graph Production 45

MATCH (cat:Sci_Domain {name: "Object "})

MATCH (: Articles { id : "t35n7bk9 "})-[:In]->(b:Journals)

WHERE n10s.inference.inCategory(b,cat ,$inferenceParams)

RETURN b.name as name;

In Query 2, we requested the journal that published the Article with id: t35n7bk9,

as a subcategory of Object. In Table 5.2 we see that journal “Retrovirology” is the

returned result, even though :Journals are not directly connected to Object.

Name
“Retrovirology”

Table 4.8: Journal returned by the procedure n10s.inference.inCategory

Chapter 5

UA-Graph evaluation

In this section, we evaluate the quality of the produced KG. The evaluation method

consists of two parts. The first part concerns the KG production using real-world

data. In the second part, we prove that the produced graph can indeed answer

queries which in a different data model would be more difficult to answer. Moreover,

through a concise exploratory data analysis, we show that querying the UA-graph can

inspire users towards further exploration.

5.1 KG Production using Real-World Data

5.1.1 The CORD-19 Dataset

To evaluate the produced KG, we used abstracts and metadata from Cord-19 [7], the

Covid open research dataset. Cord-19 is created by the Allen Institute for AI and

offers a plethora of scientific publications related to corona viruses in general. Since

December 2019, the literature has mostly focused on Covid-19. Data are collected

from four different sources (Pubmed, World Health Organisation, bioRxiv, medRxiv)

and usually include abstracts, full-text content, authors, journals, unique identifiers,

and other fields.

5.1.2 KG Production using the CORD-19

To produce the UA-graph we used abstracts and metadata from 381817 Cord-19 scien-

tific publications. Of these, only 269232 have available English abstracts. Concerning

the NER part, we extracted all the available Scispacy and Stanza entity types pre-

sented in section 4. From med 7 we extracted six drug-related entities (drug, dosage,

duration, form, frequency, route). The entity type strength was not detected in the

Cord-19 abstracts. Regarding Topic extraction, we had to find the optimal topic num-

ber k. Following the directions presented in par.4.1.3 we trained 30 LDA models and

46

Chapter 5. UA-Graph evaluation 47

examined the coherence score for every model individually. We then used PyLDAvis

library [36]. PyLDAvis is a python library that allows the LDA model examination

in a two-dimensional plane. Each topic is presented as a circle in the plane. A good

topic model gives us similar, non-overlapping circles which are spread over the four

quadrants of the plane. By combining the above-mentioned approaches we concluded

that k = 17 is the optimal topic number for the Cord-19 corpus. Information and code

regarding the UA-graph production are stored in the UA-Graph project repository1.

The initial dataset along with the extracted information (topics, entities) are stored in

the UA-Graph data. Quantitative information about the nodes and the relationship

types of the UA-Graph are presented in the Table: 5.1 and Table: 5.2.

Nodes Count

Journal Articles 360861

Authors 1035838

Journals 29325

Biomedical Concepts 590322

Topics 494

Classes 52

Table 5.1: All nodes of the UA-Graph

Relationship Type Count

Published In 339974

Authored by 2035608

Refers 2522752

Has Topic 1600808

instanceOf 2122134

isA 51

Table 5.2: All the UA-Graph relationship types

In Figure 5.1 we present a small subgraph part of the UA-Graph. As it can be

seen from the illustration, the scientific publication (Blue node) with title “Increased

expression of CD8 marker on T-cells in COVID-19 patients” covers several Biomed-

ical Concepts (Beige nodes). To show the correspondence between scientific text and

the extracted entities, we cite below a part of the publication’s abstract. We highlight

the entities that have been extracted from the text and are presented in the graph.

“BACKGROUND: Cell-mediated immunity including T-cells (T helper and cytotoxic)

plays an essential role in efficient antiviral responses against coronavirus disease-2019

(COVID-19). Therefore, in this study, we evaluated the ratio and expression of CD4

and CD8 markers in COVID-19 patients to clarify the immune characterizations of

1https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph

https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph
https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph

Chapter 5. UA-Graph evaluation 48

CD4 and CD8 T-cells in COVID-19 patients. METHODS: Peripheral blood sam-

ples of 25 COVID-19 patients and 25 normal individuals with similar age and sex as

the control group were collected. White blood cells, platelets, and lymphocytes were

counted and CD4 and CD8 T lymphocytes were evaluated by flow cytometry.”

Figure 5.1: A small part of the UA-Graph. The Journal Article (Blue node), is
connected to Biomedical Concepts (Beige nodes). The article has Authors (Red nodes),
is published in a Journal (Light blue node) and is an instance of Journal Article Class
(Purple node).

Respectively, in Figure 5.2 we present another small subgraph part of the UA-

Graph. As it can be seen from the illustration, the scientific publication (Blue node)

with title “Clinical features of culture-proven Mycoplasma pneumoniae infections at

King Abdulaziz University Hospital, Jeddah, Saudi Arabia” discusses five possible top-

ics (Pink nodes). As explained in section 4.1.3, our system corresponds topic keywords

to domain (biomedical) concepts that already exist in the database. In the example

below, we see that the node Patient (Beige node - label :Biomedical Concepts) is

connected with two topic nodes. This means that the concept patient used to be a

topic keyword but finally removed as it was already in the database. The keyword’s

probability became a property of the relationship type Probability.

Chapter 5. UA-Graph evaluation 49

Figure 5.2: A small part of the UA-Graph. The Journal Article (Blue node), is con-
nected to Biomedical Concepts (Beige nodes). The article has 5 possible topics (Pink
nodes) and is an instance of Journal Article Class (Purple node). The relationship
type: Probability connects a specific concept with a topic. This relationship shows that
the concept is included among the topic keywords.

5.2 Querying the UA-Graph

5.2.1 Indicative Queries

The flexible data model of the UA-Graph facilitates querying in cases where a dif-

ferent model would not. To prove this, we present a sequence of queries that can be

answered efficiently by the UA-Graph. An interesting idea would be to search for the

most popular Journals in publishing scientific articles. Such a question can be easily

answered by the UA-Graph using simple Cypher commands as can be seen in Query:

1. This query returned three journals. The “bioRxiv” comes first with 3621 articles.

Chapter 5. UA-Graph evaluation 50

Query 1: Return the Journals that have published the majority of the articles in the

DB.

MATCH (a:Articles)-[r:In]->(j:Journals)-

[: instanceOf]->(j2:Sci_Domain {name:" Journal "})

RETURN j,j2 , count(DISTINCT r) AS num

ORDER BY num DESC limit 3

Journals Counts

bioRxiv 3621

BMJ 3254

PLoS One 3133

Let us assume that we want to identify the most popular concept of a specific biomed-

ical category (anatomical system). This can be answered easily by the following

query. The biomedical concept “cardiovascular” seems to be the most popular part

of anatomical system in the knowledge base.

Query 2: Return the most popular instance of Anatomical System.

MATCH (a:Articles)-[r:refers]->(b1:Biomedical_Concepts)-

[: instanceOf]->(b2:Sci_Domain {name:" Anatomical_System "})

RETURN b1,b2 , count(DISTINCT r) AS num

ORDER BY num DESC limit 1

BC: Anatomical System Counts

cardiovascular 3161

In the same concept, we can identify the two most discussed diseases. According to

the result, covid surpasses infection which comes second in a row. This is an expected

result as the graph mostly concerns covid-related literature.

Query 3: Return the two most popular diseases.

MATCH (a:Articles)-[r:refers]->(b1:Biomedical_Concepts)-

[: instanceOf]->(b2:Sci_Domain {name:" Disease "})

RETURN b1,b2 , count(DISTINCT r) AS num

ORDER BY num DESC limit 2

Disease Counts

covid 102050

infection 40701

Chapter 5. UA-Graph evaluation 51

Another interesting idea would be to search for the subject that a specific re-

searcher usually writes about. For example, Weissbrich Benedikt is mostly interested

in viruses and patients.

Query 4: Return a Biomedical Concept that a specific researcher usually writes about.

MATCH (a1:Authors{name:" Weissbrich Benedikt "})

<-[r1:Authored_by]-(a2:Articles)-[r2:refers]->

(b1:Biomedical_Concepts)-[: instanceOf]->(b2:Sci_Domain)

RETURN a1,b1 , count(DISTINCT r2) AS num

ORDER BY num DESC limit 2

Biomedical Concept Counts

virus 6

patient 4

Respectively, the graph allows users to find researchers who have written about a

specific topic. In the following example authors: Htun N. N. and Turski Lechoslaw in

their articles (see table below), mention the concept of “thromboembolism”.

Query 5: The name of the researchers who are interested in thromboembolism along

with the respective publication.

MATCH (a1:Authors)<-[r1:Authored_by]-(a2:Articles)

-[r2:refers]- (b1:Biomedical_Concepts{name:" thromboemboism "})

RETURN a1.name as Author ,a2.title as Title ,b1.name as Concept

Author Title

Htun N. N. “Diabetic Ketoacidosis in Coronavirus Dis-

ease Patients With Type 2 Diabetes Melli-

tus”

Turski Lechoslaw “AhR and IDO1 in pathogenesis of Covid-

19 and the ”Systemic AhR Activation Syn-

drome:” a translational review and therapeu-

tic perspectives”

Another interesting idea, would be to find a concept that is usually included in the

articles published in a specific journal. For example journal “PLoS Pathog” uses to

publish articles dealing with viruses and cells.

Query 6: Which is the most popular Biomedical concept published in PLoS Pathog.

MATCH (a1:Journals{name:"PLoS Pathog "})<-[r1:In]-(a2:Articles)

Chapter 5. UA-Graph evaluation 52

-[r2:refers]->(b1:Biomedical_Concepts)

-[: instanceOf]->(b2:Sci_Domain)

RETURN a1,b1 , count(DISTINCT r2) AS num

ORDER BY num DESC limit 2

Biomedical Concept Counts

virus 323

cell 219

Finally, it is straightforward to find articles that include a specific term in their title

and dealing with specific concepts. In the following example, we are looking for

articles the include the term “myocarditis” in their title but also mention the concept

of death inside their text content.

Query 7: Which articles include the word “myocarditis” in their title and are related

to the concept “death”.

MATCH (n:Articles)-[: refers]->(b1:Biomedical_Concepts{name:"death "})

MATCH (n)-[Authored_by]->(a:Authors)

WHERE n.title =~ ’.* myocarditis .*’

RETURN n,b1 AS num

Article

“Management perspectives from the 2019 Wuhan interna-

tional workshop on fulminant myocarditis”

“Case report: high-grade atrioventricular block in sus-

pected COVID-19 myocarditis”

“First report on fatal myocarditis associated with aden-

ovirus infection in Cuba”

5.2.2 Exploratory Data Analysis

The exploratory data analysis in the case of the UA-Graph aims to highlight the

capacities of the generated graph instead of providing statistics about the KG entities.

The proposed analysis is based on the user’s needs and the queries used to produce

an interesting result. Therefore, we asked a professional clinician to explore the UA-

Graph. Along with the clinician we created a query scenario in which each subsequent

query is guided by the result of the previous one. We show that the UA-Graph allows

easy content navigation and gives direct answers to complex queries.

Below we present all the Cypher queries that have been used for this concise

exploratory analysis.

Chapter 5. UA-Graph evaluation 53

Query scenario: Corona virus related myocarditis

An interesting topic for research could be Corona virus-related myocarditis. With

the following cypher query we receive all the journal articles that include the word

“myocarditis” in their title. Within the UA-Graph there may be publications that

do not include abstracts. In the following query we request all those articles that are

connected to biomedical concepts. If an article is connected to biomedical concepts,

this usually means that this article has a publicly available abstract.

Query 1: Return all the articles that are connected with biomedical entities and contain

the word myocarditis in their title

MATCH (a:Articles)-[: refers]-(b:Biomedical_Concepts)

WHERE a.title =~ ’.* myocarditis .*’

RETURN a.title as Title ,b.name as Entity

Figure 5.3: Articles (Blue nodes) that contain the term “myocarditis” in their title
and are all connected to the concept “Enzyme” (Beige node).

The query returned a plethora of scientific publications that include the word

“myocarditis” in their title. We selected only 5 of them and explored the biomedical

concepts that each publication is related to. As can be seen in Figure: 5.3, among the

biomedical concepts, the “Enzyme” had a dominant presence. The following step was

to check the entity type of the concept Enzyme. Therefore, we ran the following query.

Chapter 5. UA-Graph evaluation 54

Query 2: Which is the entity type of the biomedical concept enzyme

MATCH (b1:Biomedical_Concepts{name:" enzyme "}) -[: instanceOf]->

(b2:Sci_Domain)

RETURN b1,b2

According to the KG enzymes are proteins. Therefore, the next step is to find the most

“popular” biomedical concepts that belong to Proteins (instances of Protein). In the

UA-Graph the entities are categorized by the entity type they belong to. Therefore

it is very easy to find the biomedical concepts of a specific category.

Query 3: Return the two most popular Proteins

MATCH (a:Articles)-[r:refers]->(b1:Biomedical_Concepts)-

[: instanceOf]->(b2:Sci_Domain {name:" Protein "})

RETURN b1, count(DISTINCT r) AS num

ORDER BY num DESC limit 2

According to the KG, enzyme is the second most popular protein. The proteins

troponin and cardiac troponin were also included into the 40 most discussed Proteins

that are included in the graph. Troponin concept is referred by 325 publications.

Query 4: How many connections does the biomedical concept Troponin has.

MATCH (b1:Biomedical_Concepts{name:" troponin "})

WITH b1, SIZE (() -[: refers]->(b1)) as authorCnt

ORDER BY authorCnt DESC LIMIT 10

MATCH (a)-[: refers]->(b1)

RETURN count(a)

According to the professional, the role of troponin seems to be significant in corona

virus. Patients with high troponin are tend to be more severe Covid-19 cases. Finally,

we decided to look for articles that include the word “myocarditis” in their title and

also include the concepts “troponin” and “death” in their content. The KG returned

only one publication.

Query 5: Return all the publications that refer troponin and death.

MATCH (n:Articles)-[: refers]->

(b1:Biomedical_Concepts{name:" troponin "})

MATCH (n:Articles)-[: refers]->

(b2:Biomedical_Concepts{name:"death "})

MATCH (n)-[Authored_by]->(a:Authors)

WHERE n.title =~ ’.* myocarditis .*’

Chapter 5. UA-Graph evaluation 55

RETURN n,b1 ,b2,a

Title Authors

“Case report: high-grade atrioventricular

block in suspected COVID-19 myocardi-

tis”

Loke Wei Ian,

Ashok Vishnu

Chapter 6

Conclusions and Future work

In this project, we presented all the steps leading to the UA-Graph production. The

UA-Graph is a scientific KG, which has been created to represent publication meta-

data and information extracted from scientific text. The UA-Graph production con-

sists of three individual steps: i) the production of a methodology that processes data

and extracts information that can be used as input to the graph ii) the design of a

data model that represents the concept of scientific domain and iii) the implementa-

tion of the data model using a graph DBMS. We, therefore, propose a semi-automatic

methodology that processes data using several NLP techniques. It then detects enti-

ties using NER models and finally uses LDA to identify possible topics discussed in the

corpus. Furthermore, we propose a flexible data model that uses classes and instances

to model the concepts of the scientific domain. We then insert each publication in

the graph, along with its metadata and other relevant information extracted from the

proposed methodology. Our model and methodology are domain-independent. This

means that both are designed to cover the needs of any scientific field.

To evaluate our methodology and graph we used abstracts and metadata from

the CORD-19 dataset. We show that taking advantage of its flexible model, the UA-

Graph allows easy content navigation and can answer complex scientific questions.

6.1 Future Work

In conclusion, we believe that UA-Graph can motivate future research.

Regarding the NER part:

• Professionals can annotate scientific text in order to extract entity types that

are not included in the existing models.

• After NER, Professionals can check the extracted entities for possible errors.

Given the errors, the NER models can be retrained according to the corpus

needs.

56

Chapter 6. Conclusions and Future work 57

Regarding the data model implementation:

• Implement the UA-data model according to the actual data - model.

Appendix A

Scripts for text processing

Information and code regarding the UA-graph production are stored in the UA-Graph

project repository1.

The following Figure:A.1 shows all the steps that produce the semi-automatics method-

ology which processes text and extracts structured information. Each individual step

corresponds to a python script.

Figure A.1: A Neo4j example that shows all the nodes with label Sci Domain that
represent the model classes

1https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph

58

https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph
https://github.com/Irosfouggari/RM-THESIS---The-UA-Graph

Appendix B

Cypher scripts

Below we present all the cypher scripts used to produce the UA-Graph.

Unique property constraints ensure that property values are unique for all nodes with

a specific label.

CREATE CONSTRAINT ON (sd : Sci Domain) ASSERT sd . id IS UNIQUE;

CREATE CONSTRAINT ON (j a s : A r t i c l e s) ASSERT j a s . id IS UNIQUE;

CREATE CONSTRAINT ON (j o u r n a l s : Journa l s) ASSERT j o u r n a l s . id IS UNIQUE;

CREATE CONSTRAINT ON (authors : Authors) ASSERT authors . name IS UNIQUE;

CREATE CONSTRAINT ON (t o p i c s : Topics) ASSERT t o p i c s . t i d IS UNIQUE;

Then we have to create all the nodes that represent the classes based on the instruc-

tions presented in section 4.3.3.

CREATE (o : Sci Domain { name : ” Object ” , id : ” ObjectId ” })

CREATE (t : Sci Domain { name : ” to p i c ” , id : ” TopicId ” })

CREATE (e : Sci Domain { name : ” Entity ” , id : ” Ent i tyId ” })

CREATE (p : Sci Domain { name : ” Pub l i ca t i on ” , id : ” Pub l i ca t i on Id ” })

CREATE (per : Sci Domain { name : ” Person ” , id : ” PersonId ” })

CREATE (org : Sci Domain { name : ” Organ i sat ion ” , id : ” Organ i sat ionId ” })

CREATE (bc : Sci Domain {name : ” Biomedical Concept ” , id : ” Biomedical ConceptId ” })

CREATE (ca : Sci Domain {name : ” C o n f e r e n c e A r t i c l e ” , id : ” C o n f e r e n c e A r t i c l e I d ” })

CREATE (ja : Sci Domain {name : ” J o u r n a l A r t i c l e ” , id : ” J o u r n a l A r t i c l e I d ” })

CREATE (a : Sci Domain { name : ”Author ” , id : ”AuthorId” })

CREATE (pub : Sci Domain { name : ” Pub l i sher ” , id : ” Pub l i she r Id ” })

CREATE (uni : Sci Domain { name : ” Un ive r s i ty ” , id : ” Un ive r s i ty Id ” })

CREATE (s e r : Sci Domain { name : ” S e r i e s ” , id : ” S e r i e s I d ” })

CREATE (j : Sci Domain { name : ” Journal ” , id : ” Journa l Id ” })

CREATE (pro : Sci Domain { name : ” Proceedings ” , id : ” Proceed ings Id ” })

59

Appendix B. Cypher scripts 60

Create the class hierarchies.

CREATE (t)− [: isA]−>(o)

CREATE (e)− [: isA]−>(o)

CREATE (p)− [: isA]−>(e)

CREATE (per)− [: isA]−>(e)

CREATE (org)− [: isA]−>(e)

CREATE (bc)− [: isA]−>(e)

CREATE (ca)− [: isA]−>(p)

CREATE (ja)− [: isA]−>(p)

CREATE (a)− [: isA]−>(per)

CREATE (pub)− [: isA]−>(org)

CREATE (uni)− [: isA]−>(org)

CREATE (s e r)− [: isA]−>(e)

CREATE (j)− [: isA]−>(s e r)

CREATE (pro)− [: isA]−>(s e r)

Create all the journal article nodes. Data are stored in a csv file. Then connect all

the articles with the Journal they have been published in and finally with their parent

class “:Sci Domain Journal Article”.

: auto us ing p e r i o d i c commit 100000

load csv with headers from \\ f i l e as l i n e

with l i n e where l i n e . j o u r n a l i s not n u l l

match (p : Sci Domain {name : ” Pub l i ca t i on ” , id : ” Pub l i ca t i on Id ” })

match (j : Sci Domain { name : ” Journal ” , id : ” Journa l Id ” })

merge (j s : Journa l s {name : l i n e . j o u r n a l })

merge (a : A r t i c l e s { id : l i n e . co rd u id })

on c r e a t e s e t

a . t i t l e =l i n e . t i t l e ,

a . do i = l i n e . doi ,

a . pub l i sh t ime=l i n e . pub l i sh t ime

merge (a)− [: In]−>(j s)

merge (a)− [: in s tanceOf]−>(p)

merge (j s)− [: in s tanceOf]−>(j)

Create all authors. Connect them with their articles and their parent class.

: auto us ing p e r i o d i c commit

load csv with headers from // f i l e . . . as l i n e

merge (a r t i c l e s : A r t i c l e s { id : l i n e . co rd u id })

on c r e a t e s e t

a r t i c l e s . t i t l e =l i n e . t i t l e ,

Appendix B. Cypher scripts 61

a r t i c l e s . do i = l i n e . doi ,

a r t i c l e s . pub l i sh t ime=l i n e . pub l i sh t ime

with a r t i c l e s , l i n e , s p l i t (l i n e . authors , ’ , ’) AS authors

match (a : Sci Domain { name : ”Author ” , id : ”AuthorId” })

f o r each (f in authors |merge (author : Authors {name : f })

merge (a r t i c l e s)− [: Authored by]−>(author))

f o r each (f in authors |merge (author : Authors {name : f })

merge (author)− [: in s tanceOf]−>(a))

Create all the biomedical concepts. Connect them with the articles and with their

entity type. This script is specifically for biomedical concept: chemical. This should

be done individually for every category.

: auto us ing p e r i o d i c commit

load csv with headers from // f i l e . . . as l i n e

match (bc : Sci Domain { name : ” Biomedical Concept ” ,

id : ” Biomedical ConceptId ” })

merge (a r t i c l e s : A r t i c l e s { id : l i n e . co rd u id })

merge (d i s e a s e : Sci Domain {name : ”Chemical ” , id : ” ChemicalId ” })

merge (d i s e a s e)− [: isA]−>(bc)

with a r t i c l e s , l i n e , s p l i t (l i n e . Entity , ’ , ’) AS e n t i t i e s

match (d i s e a s e : Sci Domain {name : ”Chemical ” , id : ” ChemicalId ” })

f o r each (f in e n t i t i e s |merge (e n t i t y : Ent ity {name : f })

merge (e n t i t y)− [: I d e n t i f i e d I n]−>(a r t i c l e s))

f o r each (f in e n t i t i e s |merge (e n t i t y : Ent ity {name : f })

merge (e n t i t y)− [: in s tanceOf]−>(d i s e a s e))

re turn count (e n t i t i e s)

Create all the topics. Connect them with the articles and with their parent class.

: auto us ing p e r i o d i c commit

load csv with headers from // f i l e . . . as l i n e

match (t o p i c : Sci Domain { name : ” to p i c ” , id : ” TopicId ” }) ,

(a r t i c l e s : A r t i c l e s { id : l i n e . co rd u id })

merge (t : Topics { t i d : l i n e . r e c i d })

merge (a r t i c l e s)−[r : Has Topic{P r o ba b i l i t y : l i n e . P r o b a b i l i t y }]−>(t)

merge (t)− [: in s tanceOf]−>(t o p i c)

with t , SPLIT(l i n e . Final Topic Keywords , ’ , ’) AS word

s e t t . k1 = word [0] , t . k2= word [1] , t . k3 = word [2] , t . k4= word [3] ,

t . k5 = word [4] , t . k6= word [5] , t . k7 = word [6] ,

t . k8= word [7] , t . k9 = word [8] , t . k10= word [9]

r e turn count (t)

Appendix B. Cypher scripts 62

This scrip creates relationships between topics and biomedical concepts.

: auto us ing p e r i o d i c commit

load csv with headers from // f i l e . . . AS l i n e

merge (t : Topics { t i d : l i n e . r e c i d })

merge (e : Biomedical Concepts {name : l i n e . Word})

merge (t)− [:K{P r o ba b i l i t y : l i n e . P r o b a b i l i t y }]−>(e)

Bibliography

[1] E. M. L. Bergman, “Finding citations to social work literature: The relative ben-

efits of using web of science, scopus, or google scholar,” The journal of academic

librarianship, vol. 38, no. 6, pp. 370–379, 2012.

[2] K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, and A. Kanakia, “Microsoft

academic graph: When experts are not enough,” Quantitative Science Studies,

vol. 1, no. 1, pp. 396–413, 2020.

[3] G. Hendricks, D. Tkaczyk, J. Lin, and P. Feeney, “Crossref: The sustainable

source of community-owned scholarly metadata,” Quantitative Science Studies,

vol. 1, no. 1, pp. 414–427, 2020.

[4] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.,” SEMAN-

TiCS (Posters, Demos, SuCCESS), vol. 48, pp. 1–4, 2016.

[5] A. Singhal, “Introducing the knowledge graph: things, not strings,” Official

google blog, vol. 5, 2012.

[6] H. Paulheim, “Knowledge graph refinement: A survey of approaches and evalu-

ation methods,” Semantic web, vol. 8, no. 3, pp. 489–508, 2017.

[7] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk,

R. M. Kinney, Z. Liu, W. Merrill, P. Mooney, D. Murdick, D. Rishi, J. Sheehan,

Z. Shen, B. B. S. Stilson, A. D. Wade, K. Wang, C. Wilhelm, B. Xie, D. A.

Raymond, D. S. Weld, O. Etzioni, and S. Kohlmeier, “Cord-19: The covid-19

open research dataset,” ArXiv, 2020.

[8] H. Harapan, N. Itoh, A. Yufika, W. Winardi, S. Keam, H. Te, D. Megawati,

Z. Hayati, A. L. Wagner, and M. Mudatsir, “Coronavirus disease 2019 (covid-

19): A literature review,” Journal of Infection and Public Health, 2020.

[9] M. L. Ranney, V. Griffeth, and A. K. Jha, “Critical supply shortages—the need

for ventilators and personal protective equipment during the covid-19 pandemic,”

New England Journal of Medicine, vol. 382, no. 18, p. e41, 2020.

63

Bibliography 64

[10] T. Al-Moslmi, M. G. Ocaña, A. L. Opdahl, and C. Veres, “Named entity ex-

traction for knowledge graphs: A literature overview,” IEEE Access, vol. 8,

pp. 32862–32881, 2020.

[11] C. Welty, “Ontology research,” AI magazine, vol. 24, no. 3, pp. 11–11, 2003.

[12] N. F. Noy, “Semantic integration: a survey of ontology-based approaches,” ACM

Sigmod Record, vol. 33, no. 4, pp. 65–70, 2004.

[13] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic

annotation, indexing, and retrieval,” Journal of Web Semantics, vol. 2, no. 1,

pp. 49–79, 2004.

[14] Z. Huang, J. Yang, F. van Harmelen, and Q. Hu, “Constructing knowledge

graphs of depression,” in International Conference on Health Information Sci-

ence, pp. 149–161, Springer, 2017.

[15] Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, J. Tu, Y. Lin, H. Zhang,

W. Liu, et al., “Covid-19 literature knowledge graph construction and drug re-

purposing report generation,” arXiv preprint arXiv:2007.00576, 2020.

[16] X. Wang, X. Song, Y. Guan, B. Li, and J. Han, “Comprehensive named en-

tity recognition on cord-19 with distant or weak supervision,” arXiv preprint

arXiv:2003.12218, 2020.

[17] F. Michel, F. Gandon, V. Ah-Kane, A. Bobasheva, E. Cabrio, O. Corby, R. Gaz-

zotti, A. Giboin, S. Marro, T. Mayer, et al., “Covid-on-the-web: Knowledge

graph and services to advance covid-19 research,” in International Semantic Web

Conference, 2020.

[18] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk,

R. Kinney, Z. Liu, W. Merrill, et al., “Cord-19: The covid-19 open research

dataset,” ArXiv, 2020.

[19] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer, “Dbpedia spotlight:

shedding light on the web of documents,” in Proceedings of the 7th international

conference on semantic systems, pp. 1–8, 2011.

[20] A. Rossanez and J. C. dos Reis, “Generating knowledge graphs from scientific

literature of degenerative diseases.,” in SEPDA@ ISWC, pp. 12–23, 2019.

[21] C. Wise, V. N. Ioannidis, M. R. Calvo, X. Song, G. Price, N. Kulkarni, R. Brand,

P. Bhatia, and G. Karypis, “Covid-19 knowledge graph: Accelerating information

retrieval and discovery for scientific literature,” arXiv preprint arXiv:2007.12731,

2020.

Bibliography 65

[22] “Amazon Comprehend Medical.” https://aws.amazon.com/comprehend/

medical/.

[23] T. Mayer, E. Cabrio, and S. Villata, “Acta: a tool for argumentative clinical trial

analysis,” 2019.

[24] S. Fathalla, S. Vahdati, S. Auer, and C. Lange, “Towards a knowledge graph

representing research findings by semantifying survey articles,” in International

Conference on Theory and Practice of Digital Libraries, pp. 315–327, Springer,

2017.

[25] A. Sadeghi, C. Lange, M.-E. Vidal, and S. Auer, “Integration of scholarly com-

munication metadata using knowledge graphs,” in International Conference on

Theory and Practice of Digital Libraries, pp. 328–341, Springer, 2017.

[26] A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, B. L. King, R. McMorran,

J. Wiegers, T. C. Wiegers, and C. J. Mattingly, “The comparative toxicogenomics

database: update 2017,” Nucleic acids research, vol. 45, no. D1, pp. D972–D978,

2017.

[27] A. Aryani, M. Fenner, P. Manghi, A. Mannocci, and M. Stocker, “Open science

graphs must interoperate!,” in ADBIS, TPDL and EDA 2020 Common Work-

shops and Doctoral Consortium, pp. 195–206, Springer, 2020.

[28] P. Manghi, A. Bardi, C. Atzori, M. Baglioni, N. Manola, J. Schirrwagen, and

P. Principe, “The openaire research graph data model,” Apr. 2019.

[29] M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D’Souza, G. Kismihók,

M. Stocker, and S. Auer, “Open research knowledge graph: next generation

infrastructure for semantic scholarly knowledge,” in Proceedings of the 10th In-

ternational Conference on Knowledge Capture, pp. 243–246, 2019.

[30] M. Honnibal and I. Montani, “spacy 2: Natural language understanding with

bloom embeddings, convolutional neural networks and incremental parsing,” To

appear, vol. 7, no. 1, pp. 411–420, 2017.

[31] M. Neumann, D. King, I. Beltagy, and W. Ammar, “Scispacy: Fast and

robust models for biomedical natural language processing,” arXiv preprint

arXiv:1902.07669, 2019.

[32] A. Kormilitzin, N. Vaci, Q. Liu, and A. Nevado-Holgado, “Med7: a transferable

clinical natural language processing model for electronic health records,” arXiv

preprint arXiv:2003.01271, 2020.

https://aws.amazon.com/comprehend/medical/
https://aws.amazon.com/comprehend/medical/

Bibliography 66

[33] Y. Zhang, Y. Zhang, P. Qi, C. D. Manning, and C. P. Langlotz, “Biomedical and

clinical english model packages in the stanza python nlp library,” arXiv preprint

arXiv:2007.14640, 2020.

[34] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal

of machine Learning research, vol. 3, pp. 993–1022, 2003.

[35] M. Needham and A. E. Hodler, Graph Algorithms: Practical Examples in Apache

Spark and Neo4j. O’Reilly Media, 2019.

[36] C. Sievert and K. Shirley, “Ldavis: A method for visualizing and interpreting

topics,” in Proceedings of the workshop on interactive language learning, visual-

ization, and interfaces, pp. 63–70, 2014.

	Abstract
	Acknowledgements
	Introduction
	Background
	Motivation
	Challenges & Objectives
	Contributions
	Thesis Outline

	Related Work
	Steps Leading to KG Generation
	Scientific Text Information Extraction
	Named Entity Recognition and Semantic Annotations
	NLP
	“Innovative” Methods
	Manual Enhancement
	KGs from Structured Data

	Related Work Summary
	Open Science Graphs

	Problem Statement
	UA-Graph Production
	Data Processing
	Text Preprocessing
	Named Entity Recognition
	Topic Extraction

	Model Design
	Domain Concepts
	Classes
	Instances
	Relationships

	Knowledge Graph Implementation
	Challenges
	Classes and Instances in Neo4j
	UA-Graph Implementation in Neo4j
	Querying Hierarchies in Neo4j

	UA-Graph evaluation
	KG Production using Real-World Data
	The CORD-19 Dataset
	KG Production using the CORD-19

	Querying the UA-Graph
	Indicative Queries
	Exploratory Data Analysis

	Conclusions and Future work
	Future Work

	Scripts for text processing
	Cypher scripts
	Bibliography

