
Utrecht University

Department of Information and Computing Sciences

Master Thesis Game and Media Technology

ICA-4087658

Performance and effectiveness of Linkage Tree Gene-pool
Optimal Mixing Evolutionary Algorithm on Tree

Decomposition Mk Landscapes

Author:
Tobias van Driessel, BSc

Supervisor:
dr. ir. D. Thierens

July 9, 2021

Abstract

Whitley et al.[23] recently introduced Mk Landscapes and Tree Decomposition (TD) Mk Land-
scapes, which are generalizations of NK Landscapes and Adjacent NK Landscapes, respectively.
TD Mk Landscapes are convenient for benchmarking optimization algorithms, as the global op-
timum can be found in polynomial time using the problem structure, but could be difficult to
find for a black-box optimization algorithm. Contrary to Whitley et al., who tested gray box
algorithms (algorithms with problem structure knowledge), we test a black box linkage learning
(LL) algorithm, namely Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm (LT-
GOMEA), on TD Mk Landscapes. We test the performance and effectiveness of LT-GOMEA on
various subclasses of TD Mk Landscapes with specific codomain and topological properties, and
use the results to quantify the effects of certain subclasses and landscape features. In particular,
we are interested in the effects of an increase of overlap between the cliques in the clique tree (=
TD) and an increase in the branching factor of the clique tree, on TD Mk Landscapes with the
deceptive trap codomain. To generate the TD Mk Landscapes for our experiments, we use the
recently introduced CliqueTreeMk algorithm by Thierens et al.[20]. Interestingly, our results show
that the performance and effectiveness of LT-GOMEA does not solely decrease with increasing
overlap on the deceptive trap codomain. Instead, the performance and effectiveness decrease prior
to increasing. Furthermore, our results indicate that both the overlap and branching increase the
interference between the subfunctions, possibly leading to decreased deceptiveness and decreased
importance of learning the (exact) linkage. Finally, the branching factor of the clique tree has a
great effect on the number of global optima of the TD Mk Landscape and should therefore be
further researched. In conclusion, our results suggest that the TD Mk Landscapes is a promising
and convenient benchmark for black box genetic algorithms.

2

Contents

1 Introduction 5

2 Research Questions 7

3 Pseudo-Boolean optimization problem 8

4 NK Landscapes 9

4.1 Dynamic Programming for Adjacent NK Landscapes 9

4.1.1 Hammer . 10

4.1.2 Weinberger . 10

4.1.3 Wright . 10

4.1.4 Pelikan . 11

5 Mk Landscapes 12

5.1 Background knowledge . 12

5.1.1 Variable Interaction Graph . 12

5.1.2 Tree Decomposition / Clique Tree . 12

5.2 Localized and TD Mk Landscape . 14

5.3 TD Mk Landscape Algorithms . 14

5.3.1 Construction Whitley . 14

5.3.2 CliqueTreeMk Introduction . 14

5.3.3 CliqueTreeMk Construction . 16

5.3.4 CliqueTreeMk Global Optimum Dynamic Programming Algorithm 16

5.3.5 CliqueTreeMk Discussion . 18

6 LT-GOMEA 19

6.1 EA . 19

6.2 FOS . 19

6.3 EDAs . 20

6.4 GOMEA . 20

6.5 LT-GOMEA . 20

6.6 Population Sizing-Free Scheme . 21

7 Experiment: Increasing Overlap 23

7.1 Experimental setup . 23

7.1.1 Benchmark problems . 23

7.1.2 Evaluation . 24

7.1.3 LT-GOMEA configuration . 24

7.2 Results . 25

7.3 Conclusions . 25

8 Experiment: Branching / Global Optima 27

8.1 Experimental setup . 27

8.2 Results . 27

8.3 Conclusions . 28

3

4 CONTENTS

9 Experiment: Global Optima 29
9.1 Experimental setup . 29

9.1.1 Benchmark problems . 29
9.2 Results . 29

9.2.1 LT-GOMEA . 29
9.2.2 # of Global Optima Distribution . 30
9.2.3 Hamming Distance Between Global Optima 31
9.2.4 Short Discussion . 32

9.3 Conclusions . 32

10 Experiment: Increasing Overlap and Branching 33
10.1 Experimental Setup . 33
10.2 Results . 33

10.2.1 Random Linkage LT-GOMEA & U-GOMEA 34
10.2.2 # Cliques per Variable . 41

10.3 Conclusions . 42
10.3.1 General . 42
10.3.2 LT-GOMEA . 44
10.3.3 Random linkage LT-GOMEA & U-GOMEA 44
10.3.4 Branching . 44

11 Experiment: Random vs. Deceptive Trap Codomain 46
11.1 Experimental Setup . 46
11.2 Results . 46

11.2.1 LT-GOMEA . 46
11.2.2 Random Linkage LT-GOMEA . 50

11.3 Conclusions . 50

12 Conclusions 52
12.1 Summary . 52

12.1.1 Increasing Overlap . 52
12.1.2 Branching / Global Optima . 53
12.1.3 Global Optima . 53
12.1.4 Increasing Overlap and Branching . 53
12.1.5 Random vs. Deceptive Trap Codomain . 54

12.2 Takeaways . 54
12.3 Future work . 55

12.3.1 Global optima & cliques per variable . 55
12.3.2 Other . 56

A Additional Tables & Figures 59
A.1 Global Optima . 59
A.2 Increasing Overlap and Branching . 60

A.2.1 Random Linkage LT-GOMEA . 60
A.2.2 U-GOMEA . 60

B GECCO ’21 Workshop Paper 62

Chapter 1

Introduction

For some problems, we do not know the underlying problem structure, but still want to find
a (reasonably) good solution. Algorithms that solve these kinds of problems are called black
box optimizers, whereas algorithms that make use of the problem structure are called gray box
optimizers. An example black box problem is a computationally expensive simulation for which we
can get a fitness score for a given solution, but we do not know the underlying mechanisms of the
simulation, or it is prohibitively expensive to use this problem structure. For this example problem,
we have no knowledge of the underlying problem structure, so we can not use gray box optimizers.
Because more such black box problems exist, it is interesting to study black box optimizers and
their performance in various scenarios, to identify the strong and weak points of each.

A black-box algorithm that achieved state-of-the-art performance for discrete, Cartesian-space
optimization problems[3] is the Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm
(LT-GOMEA) by Thierens et al.[18]. It is a population-based search algorithm that mixes genes
of solutions in the population to generate offspring, and every generation it tries to learn the
problem structure from the solutions in the population. This learned problem structure is then
used during the mixing to prevent good partial solutions from being disrupted during the mixing.
Since its conception in 2010, it has been improved and has been tested on various problems, such
as (Adjacent) NK Landscapes, 2D spin glasses, Deceptive Trap problems and MAXCUT. Adjacent
NK Landscapes was often used, as its global optimum can be calculated in polynomial time using
dynamic programming, while being a non-trivial black box problem for LT-GOMEA and other
black box optimizers. Ideally, the structure of a benchmark should be completely known and
importantly, its global optimum. A known global optimum allows for the measurement of the
overall performance and effectiveness, and is therefore an important property of benchmarks. This
possibility to calculate the global optimum explains the popularity of Adjacent NK Landscapes.

Although (Adjacent) NK Landscapes are popular as a benchmark for optimization algorithms,
its constraints (M = N , k = K + 1, and variable xi must appear in subfunction fi) are unnec-
essary for most benchmark purposes, as they turn out not to be important for most fundamental
theoretical properties of NK Landscapes [22]. Whitley et al.[23] therefore recently introduced the
term Mk Landscapes to refer to any k-bounded pseudo-Boolean optimization problem, thus a gen-
eralization of NK Landscapes without these constraints. Additionally, they introduced the term
Tree Decomposition Mk Landscapes to refer to any Mk Landscape with a known and bounded
tree-width of k. This is a generalization of Adjacent NK Landscapes, as Adjacent NK Landscapes
control tree-width by only considering adjacent variables for the subfunctions, but this constraint
can be loosened to allow for any Mk Landscape that still has a bounded tree-width. Ultimately,
this bounded tree-width is the key to calculate the global optimum (or optima) in polynomial time.

Conveniently, the overall performance and effectiveness of algorithms can be evaluated due
to this polynomial time global optimum calculation. And although the global optimum is known,
black box algorithms do not know the problem structure and global optimum, and therefore linkage
learning will be necessary for particular codomains to find the global optimum reliably and effi-
ciently. The possibility of evaluating the performance and effectiveness of algorithms, together with
the difficulty of Tree Decomposition (TD) Mk Landscapes for particular codomains (for blackbox
algorithms), make TD Mk Landscapes well suited as a benchmark function for blackbox Genetic
Algorithms. As the global optimum can be calculated efficiently by a dynamic programming al-
gorithm, TD Mk Landscapes are not suitable in the context of graybox algorithms, however, as

5

6

these do know the problem structure.
In their work, Whitley et al.[23] introduced a construction algorithm to construct TD Mk Land-

scapes, however, it only constructs TD Mk Landscapes for which the subfunctions form a chain,
much like an Adjacent NK Landscape. Recently, Thierens et al.[20] introduced an algorithm, Cli-
queTreeMk, to construct any TD Mk Landscape and calculate its global optimum (or optima)
efficiently using dynamic programming when its codomain values are known. In this work, we in-
troduce CliqueTreeMk in more detail and use the implementation by van Driessel et al.[6](included
in Appendix B) to generate TD Mk Landscapes. Note that the algorithm was implemented as a
part of this master thesis research, but has already been published.

Furthermore, to the best of our knowledge, there has not been a comparative study to the perfor-
mance and effectiveness of LT-GOMEA for different subclasses of TD Mk Landscapes. Therefore,
in this work, we try to find the performance and effectiveness of LT-GOMEA on various subclasses
of TD Mk Landscapes, to identify properties of subclasses and their landscapes that influence the
performance and effectiveness of LT-GOMEA. Importantly, this will also provide us with insights
into TD Mk Landscapes, their subclasses and their landscapes. Therefore, our work contributes
to the understanding of TD Mk Landscapes, and lays the foundation for future research and
application of TD Mk Landscapes for benchmarking black box algorithms.

In summary, our contributions include 1) a detailed introduction of the CliqueTreeMk algorithm
(construction and global optimum calculation) for TD Mk Landscapes, and 2) an experimental
study into the performance and effectiveness of LT-GOMEA on certain subclasses of TD Mk
Landscapes, which are defined by their codomain and topological properties.

We will introduce our research questions in Chapter 2, any necessary background knowledge in
Chapters 3 to 6, the experiments with their results and discussion in Chapters 7 to 11, and finally
the conclusion and future work in Chapter 12.

Chapter 2

Research Questions

For our research, we are interested in the effects of certain subclasses of TD Mk Landscapes
on the performance and effectiveness of LT-GOMEA, to enhance our understanding of both TD
Mk Landscapes and of LT-GOMEA. As we are curious to the results for LT-GOMEA, a linkage
learning algorithm, the used codomain should not be trivial to solve. Therefore, we selected
the deceptive trap function as the codomain for the subfunctions, and compare with a random
codomain to see the differences in effect between the codomains. Furthermore, we vary two of
the TD Mk Landscape’s parameters: the overlap between the subfunctions o and the branching
factor of the clique tree b. As the performance of various algorithms is already known for non-
overlapping deceptive trap problems, it is interesting to look at the performance and effectiveness
of LT-GOMEA for increasing overlap. Note that although Adjacent NK Landscapes do overlap
(although it is fixed at o = k − 1 = K), and there are even Adjacent NK Landscapes variants
with a different overlap setting, they do not use the deceptive trap codomain. Finally, the new
TD Mk Landscapes offer a branching factor setting, which certainly is interesting to look into. In
summary, our research questions are:

1. What is the performance and effectiveness of LT-GOMEA on certain subclasses of TD Mk
Landscapes?

(a) How does an increasing overlap affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

(b) How does an increasing branching factor affect the performance and effectiveness of
LT-GOMEA for TD Mk Landscapes problems with the deceptive trap codomain?

(c) How does an increasing overlap affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the random codomain?

7

Chapter 3

Pseudo-Boolean optimization
problem

In this work, NK Landscapes will be discussed briefly and Mk Landscapes will be discussed in
more detail, both of which are (k-bounded) pseudo-Boolean optimization problems.

Pseudo-Boolean optimization problems correspond to a class of functions f : Bn → R that
map a boolean vector to a real value. Boolean functions are a special class of pseudo-Boolean
functions where the codomain is also Boolean. k-bounded pseudo-Boolean optimization problems
refers to the class of pseudo-Boolean optimization problems with a bounded nonlinearity of order
k. In other words, k bounds the nonlinearity of the subfunctions; every subfunction has at most k
terms. k-bounded pseudo-Boolean optimization problems can be expressed by

f(x) =

M∑
i=1

fi(x,maski)

[23], where x ∈ X, X represents the set of solutions over a bit string with length N , M is the
number of subfunctions, and fi is the subfunction that uses a maski to select k bits from the bit
string x; these k bits are then used to evaluate fi.

In the following chapters, we will discuss NK Landscapes and dynamic programming algorithms
for NK Landscapes, after which we will discuss Tree Decomposition Mk Landscapes in more detail.

8

Chapter 4

NK Landscapes

NK Landscapes were introduced by Kauffman[13][12] to model fitness landscapes of problems found
in biology. An NK Landscape refers to any k-bounded pseudo-Boolean optimization problem with
3 constraints: 1) The number of subfunctions M is equal to the problem size N , 2) k = K + 1,
where K is the number of neighbours, and 3) variable xi must appear in subfunction fi. This can
be expressed by

f(x) =

N∑
i=1

fi(Si)

where Si is a subset of variables in x, which includes xi and K random other variables.
Although Kauffman et al. considered multiple options for the choice of neighbours, Weinberger

et al.[21] first introduced a more formal definition of the Adjacent NK Landscapes. Adjacent
NK Landscapes introduce an additional constraint: the K neighbours must be restricted to the
following K bits; subfunction fi takes as input variables xi to x(i+K) mod N . This can be expressed
by

f(x) =

N∑
i=1

fi(xi, xi+1, ..., x(i+K) mod N)

Note the wrap around in the definition, which makes the original definition cyclic. Whitley et al.[23]
therefore use the terms Cyclic Adjacent NK Landscape and Acyclic Adjacent NK Landscapes, for
the wrapping around and non-wrapping around variants, respectively. Additionally, they intro-
duce an algorithm to convert any Cyclic Adjacent NK Landscape into an Acyclic Adjacent NK
Landscape with Nacyclic = Ncyclic and Kacyclic = 2Kcyclic[23].

4.1 Dynamic Programming for Adjacent NK Landscapes

The complexity of optimizing NK Landscapes depends on its parameters, with the value of K
being the most important: for K = 0, the NK Landscape is unimodal and the global optimum can
be found in linear time. For K = 1, the global optimum can be obtained in polynomial time, but
for K > 1, the problem is NP-complete[21][24]. However, it is polynomially solvable if the variable
interaction graph of the NK Landscape has a bounded tree width [5][4], e.g. when the neighbours
are restricted to adjacent positions (Adjacent NK Landscapes) [4][21][24], or if generated according
to a certain distribution[7]. Finally, there exists a polynomial-time approximation algorithm for
K > 1, with approximation threshold 1− 1/2K+1[24].

For benchmarking purposes, being able to calculate the global optimum of Adjacent NK Land-
scapes in polynomial time is very convenient, as one can determine whether a tested black-box
optimization algorithm has found the global optimum. It is then possible to report the effectiveness
and overall performance of an algorithm. Multiple dynamic programming algorithms have been
proposed to find the global optimum of Adjacent NK Landscapes; in the following subsections we
introduce the algorithms by Hammer[9], Weinberger[21], Wright[24], and Pelikan[17].

It is important to note that all these algorithms require knowledge of the underlying fitness
structure to calculate the global optimum in polynomial time. The evolutionary algorithms we will
introduce in Chapter 6 do not have such knowledge of the underlying fitness structure and thus we
call these black box optimizers. There are many cases in which one does not know the underlying

9

10 4.1. DYNAMIC PROGRAMMING FOR ADJACENT NK LANDSCAPES

fitness structure of the problem at hand, but can only calculate a resulting fitness, and for these
cases the black box optimizers offer a way to calculate a (reasonably) good solution.

4.1.1 Hammer

Hammer et al. [9] introduced a dynamic programming algorithm to calculate the global optimum
of pseudo-Boolean functions, of which a simpler version was later introduced by Hammer et al.[11].
Crama et al.[4] then showed that the algorithm runs in polynomial time (O(N · 22K)) when the
variable interaction graph of the NK Landscape has a bounded tree width. Additionally, they
introduced a branch-and-bound version of the algorithm to improve the run time and considered
some implementation details to decrease memory usage.
The basic idea of Hammer’s algorithm is to recursively decrease the problem size to (N − 1) by
introducing a function that has the same optimum as the previous one, but eliminates one variable.

Let f1 be the function to be maximized and write:

f1(x1, x2, ..., xN) = x1g1(x2, x3, ..., xN) + h1(x2, x3, ..., xN),

where g1 and h1 do not depend on x1. As f1 needs to be maximized, x1 should be 1 if
g1(x2, x3, ..., xN) > 0 and 0 if g1(x2, x3, ..., xN) ≤ 0. Define ψ1 such that ψ1 = g1(x2, x3, ..., xN) if
g1(x2, x3, ..., xN) > 0 and ψ1 = 0 if g1(x2, x3, ..., xN) ≤ 0. Assume that a polynomial expression
of ψ1 has been obtained. Let f2 = ψ1 + h1, now the problem size is reduced by 1, as f2 is not
dependent on x1. If we iteratively apply this procedure until fN , we have reduced the problem to
size 1, as it is then only dependent on xN . We can use fN to set xN to its maximizing value, x∗N .
Finally, we can construct the global optimum by iterating in the reversed order and setting xi = 1
if ψi(x

∗
i+1, x

∗
i+2, ..., x

∗
N) > 0, for (i = 1, 2, ..., N − 1).

4.1.2 Weinberger

Weinberger [21] introduced a polynomial dynamic programming algorithm (O(2kN)) to calculate
the global optimum for cyclic Adjacent NK Landscapes. It calculates the best achievable score
for all variables up to a certain variable, and iteratively adds all variables to end up with a best
achievable score for the whole variable string. We consider K = 1, with bi ∈ Σ and Σ ∈ (0, 1) for i =

(1, 2, ..., N). f
bi−1bibi+1

i is the subfunction for variable i, and F
bNb1|bi+1bi+2

i is the maximum value of

the sum
∑i+1

j=1 f
bj−1bjbj+1

j , over the variables b2, b3, ..., bi, given the values of variables bN , b1, bi+1,

and bi+2. The algorithm first calculates F
bNb1|b2b3
1 = f bNb1b2

1 +f b1b2b32 . Then every F
bNb1|bi+1bi+2

i is

calculated for all 2 ≤ i ≤ N−1, which is defined as F
bNb1|bi+1bi+2

i = max
bi

(F
bNb1|bibi+1

i−1 +f
bibi+1bi+2

i+1).

So, we are adding variables iteratively and finally F
bNb1|bNb1
N stores the maximum scores for the

whole string, for the given bN and b1 values. If we then iterate over all possible bN and b1 values
and choose the ones with the maximum score, we have calculated the maximum score for the

problem: FMAX = max
bNb1

(F
bNb1|bNb1
N−1).

4.1.3 Wright

Wright et al.[24] introduced a polynomial dynamic programming algorithm (O(N · 23K/K)) to
calculate the global optimum for cyclic Adjacent NK Landscapes. Given an example problem
with size N = 4; (a0, a1, a2, a3), we first consider K = 1, with again ai ∈ Σ and Σ ∈ (0, 1) for
i = (0, 1, ..., N − 1). The idea is to reduce the problem to size N − 1 by eliminating one problem
variable and its fitness function (a3), which is done by storing in a matrix the best fitness achievable
for the given values of the two surrounding variables (a2, a0). We can then use this stored value
to calculate the best fitness achievable while eliminating the next variable, and so on, until we
reach N = 2. Then we iterate over all 2K+1 possible instances for the last remaining variables, to
calculate the global optimum.
Now we shortly consider K > 1: Wright et al. handle N mod K = 0 and N mod K 6= 0 separately.
Here we highlight the N mod K = 0 case and reference the reader to their work for the other,
as it follows the same general idea with some tweaks, and thus does not add any value. A string
of length N over Σ can be considered as a string of length N/K over ΣK . The evaluation of the
subfunction fi needs access to K + 1 variables, which are contained in just two positions in the

CHAPTER 4. NK LANDSCAPES 11

string over alphabet ΣK . If f̃i =
∑K·i+K−1

j=K·i fj , then f̃i only depends on ãi and ãi+1 of the string

over alphabet ΣK . Therefore, the same algorithm as for K = 1 can be used.

4.1.4 Pelikan

Pelikan et al. [17] introduced a dynamic programming algorithm to calculate the global optimum
of an acyclic Adjacent NK Landscape in O(N · 2K), and thus a cyclic Adjacent NK Landscape
in O(N · 22K). They consider an Adjacent NK Landscape variant with a variable number of
overlapping bits o between subfunctions.

For i = (0, 1, ...,M − 1) and j ∈ {0, 1, ..., 2o − 1}, the maximum fitness of the first i + 1 sub-
functions for integer value j of the overlapping bits shall be stored in a matrix G. For the first
subfunction (i = 0), iterate over all 2K+1 instances and calculate their fitness. Record for each
value j of the o overlapping bits the maximum fitness of all 2K−o instances of the remaining K− o
bits, and store this fitness in gi,j . Then, for the ith subfunction (i = (1, ...,M − 1)), go over all
2K+1 instances and calculate what the maximum fitness would be for the first i+ 1 subfunctions
combined: sum the stored maximum fitness for i−1 for the overlapping bits (gi−1,j) and the fitness
for this subfunction. Just as for i = 0, we store the maximum (summed) fitness in gi,j for each
value j of the o overlapping bits. Finally, the global optimum can be retrieved by choosing the
maximum fitness in gM−1,j for j ∈ {0, 1, ..., 2o− 1}. To get the resulting bit string, backtrack over
the decisions made for each subfunction.

Chapter 5

Mk Landscapes

Although (Adjacent) NK Landscapes are popular as a benchmark for optimization algorithms, its
constraints (M = N , k = K + 1, and variable xi must appear in subfunction fi) are unneces-
sary for most benchmark purposes, as they turn out not to be important for most fundamental
theoretical properties of NK Landscapes, according to Whitley[22]. Whitley et al. therefore re-
cently introduced the term Mk Landscapes to refer to any k-bounded pseudo-Boolean optimization
problem, thus a generalization of NK Landscapes without these constraints. M is the number of
subfunctions and k is a constant that provides an upper bound on the interaction order size of
the subfunctions, with M being polynomial in N . Note that this is a new term for an old con-
cept, as spin glass problems (originated in physics) are general enough to refer to any k-bounded
pseudo-Boolean optimization problem as well. According to Whitley et al., “None of the require-
ments of NK Landscapes turn out to be important to most fundamental theoretical properties of
NK Landscapes. [...] By transferring what we know about NK Landscapes to Mk Landscapes, we
remove unnecessary restrictions and create new connections to problems such as MAX-kSAT and
spin glass problems.”[23].

We now introduce some background knowledge, before introducing some specific variants of
Mk Landscapes that allow dynamic programming algorithms to calculate the global optimum in
polynomial time. Again, note that these dynamic programming algorithms use the underlying
problem structure to calculate the global optimum in polynomial time.

5.1 Background knowledge

5.1.1 Variable Interaction Graph

Definition 1 ([23]). A Variable Interaction Graph is a graph G(V,E) where the vertex set V =
x1, ..., xN corresponds to the set of variables in the Mk Landscape and edge (xi, xj) ∈ E if and only
if variables xi and xj have a nonlinear interaction.

We will, just as Whitley et al. did, use the following subfunctions to illustrate the variable
interaction graph concept. N = 12 and k = 3. The subfunctions are:

f1(x1, x4, x8), f2(x2, x3, x5),f3(x3, x2, x10),

f4(x4, x2, x1), f5(x5, x7, x4),f6(x6, x8, x1),

f7(x7, x3, x5), f8(x8, x9, x11),f9(x9, x7, x8),

f10(x10, x6, x2), f11(x11, x7, x3),f12(x12, x1, x6).

This set of subfunctions results in the Variable Interaction Graph as shown in Figure 5.1. It is
assumed that the subfunctions induce nonlinearity on all variables in the subfunction.

5.1.2 Tree Decomposition / Clique Tree

Before introducing the Tree Decomposition / Clique Tree definition, we need to introduce some
additional definitions:

12

CHAPTER 5. MK LANDSCAPES 13

Figure 5.1: “The Variable Interaction Graph (VIG) tracks sources of nonlinearity.”[23]

Definition 2. A clique is a set of vertices such that every pair of vertices in that set is adjacent;
the subgraph induced by the clique is complete.

Definition 3. A maximal clique is a clique that can not be extended by adding one more adjacent
vertex.

Definition 4 ([14]). Let G be a connected undirected graph, and let C1, ..., CM be the set of maximal
cliques in G. Let T be any tree-structured graph whose nodes correspond to the maximal cliques
C1, ..., CM . Let Ci, Cj be two cliques in the tree that are directly connected by an edge; we define
Si,j = Ci ∩ Cj to be a separator between Ci and Cj. Let W<(i,j) (W<(j,i)) be all of the variables
that appear in any clique on the Ci (Cj) side of the edge. We say that a tree T is a clique tree for
G if:

1. each node corresponds to a clique in G, and each maximal clique in G is a node in T

2. each separator Si,j separates W<(i,j) and W<(j,i) in G.

Note that a clique tree is just a different term for the same concept as a tree decomposition or
a junction tree. We will use ‘tree decomposition’ and ‘clique tree’ interchangeably, depending on
what suits the context.

As mentioned in the NK Landscape chapter, Hammer’s algorithm calculates the global optimum
in O(N ·22K) for Adjacent NK Landscapes. This can be explained by Hammer’s reported run time
of O(N ·2t), where t is the tree-width of the Tree Decomposition of the Variable Interaction Graph.
For an acyclic Adjacent NK Landscape, the Tree Decomposition is a chain with node i consisting of
the variables in subfunction i (fi). Therefore, acyclic Adjacent NK Landscapes have a tree-width
of K, as the tree-width is the maximum node size −1 and every subfunction has K + 1 variables,
resulting in O(N · 2K) for Hammer’s algorithm. However, as mentioned in the introduction for
NK Landscapes, Whitley et al. have shown that every Cyclic Adjacent NK Landscape can be
converted into an Acyclic Adjacent NK Landscape with N ′ = N and K ′ = 2K. Therefore, any
Adjacent NK Landscape can be optimized in O(N · 22K) using Hammer’s algorithm.

We illustrate a Tree Decomposition for an Acyclic Adjacent NK Landscape with N = 7 and
K = 2 in Figure 5.2 below:

Figure 5.2: “Example of Tree Decomposition for an Acyclic Adjacent NK Landscape. The tree-
width is 2.”[23]

14 5.2. LOCALIZED AND TD MK LANDSCAPE

5.2 Localized and TD Mk Landscape

The fact that Adjacent NK Landscapes allow for their global optimum to be calculated in polyno-
mial time raises the question whether general Mk Landscapes do as well. Computing the tree-width
is NP-hard[4], but an upper bound on the tree-width would be enough to calculate the global op-
timum in polynomial time (using Hammer’s algorithm). This upper bound for the tree-width can
be found using greedy algorithms [23]. In short, polynomial optimization is dependent on whether
a polynomial upper bound can be found for the tree-width.

Adjacent NK Landscapes control tree-width by only considering adjacent variables for the
subfunctions, Whitley et al. used this idea to create Localized Mk Landscapes (analogous to
Adjacent NK Landscapes) which can be generalized to create Tree Decomposition Mk Landscapes.
Both control the tree-width, thereby allowing for optimization in polynomial time, if k ∈ O(logN).

Definition 5 ([22]). A Localized Mk Landscape is an Mk Landscape where each subfunction fi
is defined over a window of variables from xi to x((i+K) mod N), however, the number of variables
used in each subfunction can be less than K + 1.

Whitley et al. illustrate Localized Mk Landscapes using the following example:

f(x) = f1(x1, x3, x4) + f2(x4, x5) + f3(x5, x6).

The function is not an Adjacent NK Landscape, as the subfunctions’ variables are not adjacent.
However, dummy variables can be introduced to make these subfunctions adjacent:

f(x) = f1(x1, x2, x3, x4) + f2(x2, x3, x4, x5) + f3(x3, x4, x5, x6).

Localized Mk Landscapes can be optimized in polynomial time [22], while allowing for a greater
variety in functions than Adjacent NK Landscapes. They propose a more general result in their
later work, as not this adjacency, but the bounded tree-width is of importance:

Definition 6 ([23]). A Tree Decomposition Mk Landscape (TD Mk Landscape) is any Mk Land-
scape which has a known and bounded tree-width of k.

It is easy to see that Tree Decomposition Mk Landscapes can be optimized in polynomial time
if k ∈ O(logN), given that a known and bounded tree-width is required to optimize in polynomial
time (O(N · 22k)). TD Mk Landscapes allow for more problems to be used as part of a benchmark
and real-world problems can be transformed into a TD Mk Landscape if a tree decomposition of
some fixed width is already known.

Next, we will introduce two construction algorithms and one dynamic programming algorithm
for TD Mk Landscapes. First, the construction algorithm by Whitley et al.[23] is introduced,
then the novel construction algorithm and global optimum dynamic programming algorithm by
Thierens et al.[20] are introduced.

5.3 TD Mk Landscape Algorithms

5.3.1 Construction Whitley

Whitley et al.[23] introduced a construction algorithm for TD Mk Landscapes, however, it is
important to note that it limits the construction to TD Mk Landscapes with a tree decomposition
of a chain, just like Adjacent NK Landscapes. It is therefore still limited and can not construct all
TD Mk Landscapes.

An M × k matrix is constructed, where the rows correspond with the subfunctions and their
variables. The variables must appear in contiguous rows and all N variables must appear in at least
one row. If constructed in this way, a tree decomposition can be made with tree-width k−1, where
every row of the matrix is represented by a node in the tree. They illustrated the construction
with a figure as depicted in Figure 5.3, where N = 23, M = 10, and k = 6.

5.3.2 CliqueTreeMk Introduction

We introduce Thierens’s CliqueTreeMk construction and global optimum calculation algorithms[20],
as the CliqueTreeMk algorithm consists of these two phases. The construction algorithm allows for

CHAPTER 5. MK LANDSCAPES 15

Figure 5.3: “Example of M × k lookup table of variables of a TD Mk Landscape. In the example
N = 23, M = 10, and k = 6. Each row of the table can become a subfunction in an Mk Landscape,
with variables V1 to V6. The table also corresponds to a Tree Decomposition of that same set of
functions.”[23]

the construction of any TD Mk Landscape, as, contrary to Whitley’s algorithm, a branching factor
b can be passed, which determines the branching factor in the constructed Tree Decomposition
of the Variable Interaction Graph. Essentially, Thierens’s algorithm can construct TD Mk Land-
scapes with an actual tree decomposition, whereas Whitley’s algorithm is limited to landscapes
with a chain decomposition, due to the implicit use of a branching factor of 1.

In the context of CliqueTreeMk, the term clique tree is more suitable than tree decomposition,
as we use the terms clique and separator intensively. Whitley’s algorithm output could then be
regarded as a clique chain instead of a clique tree. We use the term clique to represent the
variables in a subfunction, and the term separator to represent the overlapping variables between
two cliques/subfunctions, as these terms reflect their properties in a tree decomposition/clique tree
in a succinct manner.

The idea behind CliqueTreeMk’s construction algorithm is to construct the TD Mk Landscape
by directly generating a clique tree with the exact properties as required by the parameters, in
order to ensure that a clique tree with the required properties can be constructed. Its input
topology parameters are the number of subfunctions/cliques M , number of variables per subfunc-
tion/clique k, number of overlapping bits between subfunctions/cliques o, and branching factor b.
The branching factor represents the number of branches in the clique tree. The problem length N
can be represented by N = (M − 1) · (k − o) + k, as the first clique/subfunction takes k variables,
and every other clique/subfunction overlaps o variables with another clique/subfunction and adds
k − o unused variables to get to length k.

The general idea of CliqueTreeMk’s construction algorithm is to first construct clique C0 as
the root of the clique tree by assigning the first k variables from the shuffled variable list, and then
generate b children cliques (Cj∈childreni

) for every clique Ci until we have constructed M cliques.
Each child Cj overlaps with its parent Ci for o variables, described by the separator Sj between
Ci and Cj , and the remaining k − o variables are taken from the shuffled variable list to complete
Cj .

The global optimum dynamic programming algorithm then uses this clique tree structure with its
cliques and separators to calculate the global optimum. It is comparable to Pelikan’s[17] dynamic
programming approach in the way it stores the k − o remaining variables’s maximizing values for
the values of the o overlapping variables (separator variables). Starting at the leaves of the tree,
for each separator Sj we store for each of the instances of the separator variables the maximizing
variable values for its child clique Cj and the resulting score. Then, we can iterate in the reverse
direction and assign values to the clique variables in Cj based on the maximizing values for its
variables stored in its parent separator Sj .

We illustrate the CliqueTreeMk algorithm during these phases using an example instance with
number of subfunctions/cliques M = 7, subfunction/clique size k = 3, and overlap o = 2. Together,
these define length N = 9. Furthermore, we choose a branching factor b = 2. The construction
algorithm uses fixed values for k, o, and b, but the algorithm can be extended to allow for non-fixed

16 5.3. TD MK LANDSCAPE ALGORITHMS

values during construction. Likewise for the dynamic programming algorithm. The variables are
randomly ordered: (x4, x2, x7, x5, x1, x9, x3, x8, x6).

5.3.3 CliqueTreeMk Construction

The algorithm is described in a textual version below and a pseudocode version in Algorithm 1.

1. Initially, take the first k variables as the root clique C0. Otherwise, take the next clique Ci

to expand.

2. Choose o random variables from parent clique Ci, assign to separator Sj

3. Take next (k−o) not chosen variables and add the variables from Sj to construct child clique
Cj

4. Go to step 2 until b branches have been built

5. Go to 1 to expand the next clique

Algorithm 1: CliqueTreeMk Construction

Input: M , k, N , b, o, shuffled list of variables
Result: Clique tree
C0 ← first k variables;
count← 1;
for i← 0 to M − 2 do

for j ← 0 to b− 1 do
Scount ← o random variables from clique Ci;
x← next (k − o) unused variables;
Ccount ← Scount ∪ x;
count← count+ 1;
if count == M then

return clique tree;

end

end

Following the algorithm with the given example instance could result in the following list of
cliques: (x4, x2, x7), (x4, x7, x5), (x4, x2, x1), (x7, x5, x9), (x4, x7, x3), (x4, x1, x8), (x2, x1, x6)
In Figure 5.4 we illustrate the constructed clique tree with its separators.

Essentially, the algorithm creates a clique tree / tree decomposition that adheres to the given
constraints, defined by the input topology parameters. Importantly, it adheres to the running
intersection property, as problem variables are either part of a single clique Ci or part of multiple
cliques that are directly connected by separators. This follows from steps 2 and 3 of the textual
version: during construction of a clique Cj , each variable is either taken from the unused problem
variables list or copied from the parent clique Ci (and added to the separator Sj), with Cj being a
child of Ci. The dynamic programming algorithm that calculates the global optimum requires this
running intersection property to select the best value for variables in isolation: for k − o variables
at every clique and for o variables at every separator. It is able to calculate the global optimum in
polynomial time due to the bounded (and known) tree-width.

5.3.4 CliqueTreeMk Global Optimum Dynamic Programming Algorithm

To explain the dynamic programming algorithm, we first introduce it in a textual form, and then
we introduce it in more detail using some formulas.

The CliqueTreeMk global optimum solver follows very similar steps to the dynamic program-
ming algorithm by Pelikan et al.[17]. The CliqueTreeMk global optimum solver traverses the clique
tree from the leaves to the root, storing for each instance of separator Si (o overlapping bits) the
maximizing values for the k−o variables in Ci \Si with its score. The maximizing values for Ci \Si

are stored in Ki and the accompanying score is stored in hi. Then, for each possible instance of the
clique root C0, the best achievable score g0 is calculated using its children separators Sj and the

CHAPTER 5. MK LANDSCAPES 17

x4 x2 x7

x4 x7 x5 x4 x2 x1

x7 x5 x9 x4 x7 x3 x4 x1 x8 x2 x1 x6

x4 x7 x4 x2

x7 x5 x4 x7 x4 x1 x2 x1

S1 S2

S3
S4 S5 S6

C0

C1 C2

C3 C4 C5 C6

Figure 5.4: Example clique tree with cliques C0 to C6 and separators S1 to S6.

stored best achievable score in hj for that instance of the separator variables. The highest score of
these possible instances is the global optimum (or global optima). To assemble the global optimum
solution, C0’s maximizing instance is written to the solution and the clique tree is traversed from
the root to the leaves, storing the maximizing values for the k− o variables from each Ki into the
solution.

If there are multiple global optima, then there are multiple maximizing instances for one or
more separators Si. Each of these maximizing instances for Si is stored in Ki. When one of these
cases of multiple maximizing instances is encountered during the assembly of the global optima,
the current global optimum is copied a number of times, according to the number of maximizing
instances in Ki (minus one). Finally, each of these copies is assigned one of the maximizing
instances and the traversal of the clique tree is continued. Each of these global optima solutions is
now considered at every remaining separator in the clique tree. More specifically, we can define ∀
separators Si:
hi(a1, ..., ao) = gi(a1, ..., ao, a

∗
o+1, ..., a

∗
k) with

a1, ..., ao ∈ Si, ao+1, ..., ak ∈ Ci \ Si and a∗o+1, ..., a
∗
k maximizing gi for values a1, ..., ao.

Ki(a1, ..., ao) = {a∗o+1, ..., a
∗
k}

And ∀ cliques Ci:
gi(a1, ..., ak) = fi(a1, ..., ak) +

∑
j∈childreni

hj(b1, ..., bo)
To illustrate these, we can define the previous specifically for our example instance. We define

∀ separators Si:
hi(xa, xb) = gi(xa, xb, x

∗
c) with xa, xb ∈ Si and xc ∈ Ci \ Si and x∗c maximizing gi for xa and xb

values.
Ki(xa, xb) = {x∗c}
And ∀ cliques Ci: gi(xp, xq, xr) = fi(xp, xq, xr) + hchild1(xp, xq) + hchild2(xp, xr)

Using the above formulas, we can write a shorter version of the algorithm: For every possible
instance of the problem variables in C0, calculate g0. Calculating g0 will recursively calculate all
the gi, hi, and Ki values for i > 0. The maximum of these g0 values is the global optimum of the
TD Mk Landscape and can be used to retrieve the bit string that achieves this fitness. This is
done by acquiring the stored maximizing values for each separator Si from Ki and assigning their
values to the global optimum solution. Or in a more pseudo code way:

1. For each possible instance of problem variables in C0, calculate g0

2. Maximum g0 is global optimum

3. Take next separator, starting with S1

4. Take maximizing values from Ki, for problem variable values already in global optimum
solution, and put them in global optimum solution

5. Go to step 3 to assign all problem variable values

We illustrate the algorithm using the example used in the previous subsection. We use the
following deceptive trap function for each subfunction:

18 5.3. TD MK LANDSCAPE ALGORITHMS

fi(xa, xb, xc) : 111 => 4

000 => 2

otherwise => 2− c(xa, xb, xc)

where c returns the number of ones in the passed variable values.

We show the calculated hi and Ki values for S6 and S1, as i ∈ {3, 4, 5, 6} have the same hi and
Ki values and likewise for i ∈ {1, 2}. Then we show the construction of the global optimum using
the calculation of g0 for C0.

C6 = {x2, x1, x6}, S6 = {x2, x1}
g6(x2, x1, x6) = f6(x2, x1, x6)

S6 = x2x1 00 01 10 11
h6(x2, x1) 2 1 1 4
K6 = x∗6 0 0 0 1

In the above table, we list the possible instances of the separator variables x2 and x1, the
maximizing values of the remaining variable x6 in C6 for these instances (K6), and the resulting
scores for these maximizing values (h6). Because C6 is one of the leaves, g6 is equal to f6. We can
see the deceptive attractor at work here, attracting any instance of the separator variables that
does not contain a part of the local optimum.

C1 = {x4, x7, x5}, S1 = {x4, x7}
g1(x4, x7, x5) = f1(x4, x7, x5) + h4(x4, x7) + h3(x7, x5)

S1 = x4x7 00 01 10 11

h1(x4, x7)
2 + 2 + 2 0 + 4 + 1 0 + 1 + 4 4 + 4 + 4

= 6 = 5 = 5 = 12
K1 = x∗5 0 1 1 1

Because C1 does have children cliques, the calculation of h1 and thus of g1 does involve the hi
values of its children, h4 and h3.

C0 = {x4, x2, x7}, S0 = ∅
g0(x4, x2, x7) = f0(x4, x2, x7) + h2(x4, x2) + h1(x4, x7)

x4x2x7 000
...

111

g0(x4, x2, x7)
2 + 6 + 6 4 + 12 + 12

= 14 = 28

Finally, we calculate the g0 values for all possible instances of the problem variables in C0.
Here we have illustrated just two cases, instances 000 and 111 for x4x2x7. Note that this table
differs from the two before in the things we calculate; here we don’t calculate hi values, as there
is no separator. Instead, we calculate all g0 values and record the maximum value as the global
optimum (or global optima).

For this example, the global optimum value is 28. The maximizing instance for C0, while
considering the rest of the clique tree using dynamic programming, is x∗4x

∗
2x
∗
7 = 111. We can now

traverse the clique tree to assign the other bits of the global optimum solution. First, S1 = {x4, x7},
as is shown in the table for C6 / S6, so we insert the values of x4 and x7 from our global optimum
solution, which are 1 and 1. For instance x4x7 = 11, K1 = x∗5 = 1, so we assign value 1 to x5 in
our global optimum solution. After doing this for all separators, our global optimum solution is
111111111.

5.3.5 CliqueTreeMk Discussion

The construction and global optimum algorithms of CliqueTreeMk are shown for TD Mk Land-
scapes with fixed subfunction size k, overlap o, and branching factor b, but CliqueTreeMk allows
for these parameters to be non-fixed, although the algorithms need to be adjusted for this to be
possible.

Chapter 6

LT-GOMEA

In this chapter we introduce Evolutionary Algorithms and specifically Linkage Tree Gene-pool
Optimal Mixing Evolutionary Algorithm (LT-GOMEA), as in our experiment we will test LT-
GOMEA’s performance and effectiveness on the previously introduced TD Mk Landscapes. These
Evolutionary Algorithms are black box optimizers, and hence have no knowledge of the underlying
problem structure, contrary to the dynamic programming algorithms seen for the Adjacent NK
Landscapes and TD Mk Landscapes.

6.1 EA

Evolutionary Algorithms are inspired by evolutionary biology and apply some of its principles,
such as ‘survival of the fittest’ / selection, recombination, and mutation. It applies these on a
population of solutions to optimize problems without knowing the underlying problem structure.
Important for the quality of the results are the choices for these aspects; when in accordance
with the underlying problem structure, the performance will be better. Often Problem-Specific
Knowledge (PSK) is used to improve the quality of the solutions or the run time required to find
the global optimum. For an EA, convergence speed and diversity are two key aspects, which are
both essential to find a solution within reasonable time and of high enough quality. If, for example,
selection pressure is too high, convergence will be too great and we speak of premature convergence;
the algorithm has not had enough time to diverge sufficiently in order to find the global optimum.
Another important aspect of EAs are building blocks, low-order high-performance subsets of the
variables when considered and recombined together. Good recombination operators will recombine
these building blocks without disturbing/destroying them.

Every EA has the following aspects: initialization, selection, recombination, and mutation. An
EA often initializes the population by drawing random samples from the solution space, however,
heuristics and problem-specific knowledge can be used to improve initialization of the population.
Then, a selection of the population is made to apply recombination and generate offspring. During
recombination, mutation can be used to increase diversity. Finally, a selection from the parent and
offspring pools is made to arrive at a new generation of the population, which will be used in the
next iteration.

In the following sections, we will discuss evolutionary algorithms that try to explicitly learn
the structure of the problem and use this knowledge to generate new solutions. We will consider
LT-GOMEA in more detail at the end of this chapter.

6.2 FOS

There are various choices for the considered structure of a problem, which are all instances of the
Family of Subsets (FOS) model[18]. The FOS model describes, as the name suggests, the structure
of a problem as a family of subsets. Let L be the set of all variable indices, L = {0, 1, ..., N−1}, with
N the problem size. A FOS F is a set of subsets of L, or in other words, F is a subset of the powerset
of L, F ⊆ P(L) and can be written as F = {F0,F1, ...,F|F|−1}, where Fi ⊆ {0, 1, ..., N−1}. Subset
Fi is also called a linkage set, a term that better reflects the dependent nature of the variables in
Fi.

19

20 6.3. EDAS

Various FOS model instances exist, of which we’ll shortly consider univariate, marginal and
linkage tree. The univariate FOS model is the set of subsets where every subset exists of just
1 variable index: F = {F0,F1, ...,FN−1}, with Fi = {i}, ∀i ∈ {0, 1, ..., N − 1}. This is a very
limited model that doesn’t consider any dependencies between variables. The marginal model does
consider dependencies between variables, but every variable must be contained in just 1 subset: F =
{F0,F1, ...,F|F|−1}, with Fi∩Fj = ∅, for ∀i, j ∈ {0, 1, ..., |F|−1} and i 6= j. Whereas the marginal
model considers variables thus as dependent or independent, the linkage tree model considers the
variables to be both dependent and independent, but at different levels in a hierarchy: F =
{F0,F1, ...,F|F|−1}, with Fi ⊆ {0, 1, ..., N − 1}, ∀i ∈ {0, 1, ..., |F| − 1}. This allows for the linkage
tree to capture both low-order and higher-order dependencies[2]. An example linkage tree instance
of L = {0, 1, 2, 3, 4} is F = {{0}, {1}, {2}, {3}, {4}, {5}, {0, 1}, {2, 3}, {0, 1, 4}, {0, 1, 2, 3, 4}}.

Importantly, these FOS models can be used by linkage-learning EAs to learn the structure
of the problem and then to generate new solutions using this knowledge of the structure. This
way, highly correlated problem variables will be considered together (as a linkage set), thereby
preventing disruption during recombination and mixing building blocks effectively.

6.3 EDAs

One such linkage-learning EA is the Estimation-of-Distribution Algorithm (EDA) by Pelikan et
al.[16], which learns the problem structure by building a probabilistic model of the current popula-
tion. It uses an estimation of the distribution of the variable values in the current population to do
so, and draws samples from the constructed distribution to create the offspring for the next gen-
eration. It uses an appropriate FOS model while estimating the distribution to learn the problem
structure.

6.4 GOMEA

Different from EDAs, the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) uses the
constructed FOS model to recombine parts of the parents to generate offspring. It applies the
Gene-pool Optimal Mixing (GOM) operator to every parent p, first creating the first offspring
solution by copying the parent (o ← p), then iterating over all linkage sets Fi in the FOS model
in random order and for each linkage set Fi doing the following: select a random donor solution d
and select the linkage set (Fi) bits from that donor. Write a copy of the current offspring o to o′

and replace the linkage set bits in o′ by the donor d’s linkage set bits. If o′’s fitness is equal to or
higher than o’s fitness, o← o′, otherwise simply discard o′. Continue to the next linkage set with
this new o.

Although applying the GOM operator over all linkage sets requires more fitness evaluations per
generation compared to GA and EDA, it explicitly exchanges building blocks (the linkage sets Fi

in the FOS model) to increase the fitness. For problems efficiently solvable with correctly detected
linkage, this leads to requiring much smaller population sizing and far fewer generations, resulting
in a more efficient overall performance[19][15].

A very successful GOMEA variant with the Linkage Tree FOS model, Linkage Tree Gene-pool
Optimal Mixing (LT-GOMEA), is discussed in the following section.

6.5 LT-GOMEA

The Linkage Tree Genetic Algorithm was introduced by Thierens[18] and has since been successful,
showing state-of-the-art performance for discrete, Cartesian-space optimization problems[3]. The
Linkage Tree FOS model offers a powerful linkage model at a low computation cost[2], and mixes
well with the GOM operator: the operator can exchange both low-order and higher-order building
blocks due to the hierarchy in the LT model. There have been some revisions of the Linkage Tree
Gene-pool Optimal Mixing Evolutionary Algorithm (LT-GOMEA), in this paper we will use the
latest[2], but with some rollbacks so that it can be used on Cartesian-space problems instead of
the permutation problems the referred version is made for. The latest version of LT-GOMEA uses
Forced Improvements (FI)[1] and the Linkage Tree (LT) construction uses Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) and the reciprocal nearest-neighbour chain technique[8].

CHAPTER 6. LT-GOMEA 21

Starting with the latter, we shortly illustrate the construction of the Linkage Tree, and then
continue with an introduction of the Forced Improvements phase. In short, the LT is constructed
bottom-up by merging the two most dependent linkage sets until a merged linkage set has been
added with all variable indices (= L). First, all singleton linkage sets Fi = {i} are added to
F . Then we iteratively merge the two most dependent linkage sets, Fi = Fj ∪ Fk, and add the
newly constructed linkage set Fi to F , excluding the merged linkage sets (Fj and Fk) from further
merging.

To determine which linkage sets are the most dependent, mutual information (I) is used to
calculate the degree of dependency. The Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) is used to extend the notion of pairwise dependency to linkage sets of length > 1 [3]:

IUPGMA(Fi,Fj) =
1

|Fi||Fj |
∑
X∈Fi

∑
Y ∈Fj

I(X,Y)

with
I(X,Y) = H(X) +H(Y)−H(X,Y)

where H(X) and H(X,Y) are the marginal and joint entropies, respectively. Using the reciprocal
nearest-neighbour chain technique by Gronau and Moran[8], the computational complexity of
building the linkage tree is O(N2p), where p = |P | is the population size, with P being the
population.

As explained in the GOMEA subsection, the GOM operator iterates over all linkage sets in
random order, chooses a random donor for each linkage set, and continues the iteration with the
modifications when the generated offspring has an equal or better fitness. This can be termed
phase 1 of the GOM. Phase 2 is introduced to move off fitness plateaus and make sure the fitness
is increased: when a parent wasn’t changed in phase 1, or the best solution hasn’t improved for a
number of generations (the no-improvement-stretch), Forced Improvement[1] (phase 2) is entered.
The no-improvement-stretch (NIS) is required to move off fitness plateaus, which can occur because
phase 1 allows equal fitness changes. If the NIS is bigger than 1+blog10(N)c[3], phase 2 is entered.

Forced Improvement (phase 2) again iterates over all linkage sets, but now chooses the best
solution in the population as the donor and only allows strict improvements in the fitness. As soon
as an improvement is found, Forced Improvement is exited. If no offspring with higher fitness was
generated, the parent’s offspring is set to a copy of the best solution.

Importantly, the LT linkage set consisting of all variable indices (L) is ignored during GOM,
as it would simply replace the whole parent with the donor, introducing unnecessary additional
selection pressure[3].

6.6 Population Sizing-Free Scheme

The population size is crucial for the performance of an EA: if too small, premature convergence
will occur, if too big, the algorithm will take overly long. Furthermore, although in theory it’s
interesting to determine the optimal population size, in practice it’s convenient to run a black-box
optimizer on a problem without needing to determine the appropriate population size. For these
reasons, Bosman et al.[2] introduced the population sizing-free scheme by Harik and Lobo[10] in
their latest revision of LT-GOMEA. In essence, it interleaves generations of the EA for different
population sizes, allowing smaller instances more generations than bigger instances. Specifically,
for every d generations of instance Pi, instance Pi+1 is run for 1 generation, with pi = pbase · 2i
for Pi, i ≥ 0, d ≥ 1, and where pbase is the population size of the starting population. When the
instance of a bigger population size has a higher average fitness than a smaller population size,
the smaller population instance and all instances with an even smaller population size are halted,
as the bigger population size instance is more efficiently spending the evaluation budget. In their
work, Bosman et al. use d = 4 and pbase = 1, so for every 4 generations of Pi, 1 generation of Pi+1

is run. This value of d ensures that the smaller populations converge faster, as they are allowed
twice as many evaluations.

For LT-GOMEA, Bosman et al. use the best solution accros all different population size
instances as the donor in phase 2 (FI). The no-improvement-stretch to determine whether to
enter phase 2, however, is still calculated for the best solution in the current instance. As in
previous versions of LT-GOMEA, an instance is also stopped when there is no more diversity in
the population (all equal solutions). They note an increase in the number of evaluations of a factor

22 6.6. POPULATION SIZING-FREE SCHEME

1 to 4 because of the use of the Harik-Lobo scheme, for GOMEA to solve various benchmark
problems.

Chapter 7

Experiment: Increasing Overlap

To get a first intuition for the performance and effectiveness of LT-GOMEA on deceptive trap
problems, we conducted a simple experiment: we generated deceptive trap problems with increasing
problem size N and overlap o, and ran the Linkage Tree Gene-pool Optimal Mixing Evolutionary
Algorithm (LT-GOMEA) on these generated problems to quantify the effect of this increase in o
for the difficulty of the problem. LT-GOMEA has shown state-of-the-art performance for discrete,
Cartesian-space optimization problems[3], and should therefore show just how difficult and non-
trivial TD Mk Landscapes can be. Because we know the global optimum (or optima) of the
generated problems, we can evaluate the overall performance and effectiveness of LT-GOMEA.

In short, we want to answer the following question in this experiment:

How does an increasing overlap affect the performance and effectiveness of LT-GOMEA for TD
Mk Landscapes problems with the deceptive trap codomain?

We expect to see an increase in the required number of evaluations (first hitting time) and a
decrease in effectiveness, as the problem size N increases. With a bigger problem size, LT-GOMEA
needs a bigger population size to have sufficient diversity in the initial population to have all the
required bits of the global optimum appear at least once in the population and to be able to learn
the problem structure.

Additionally, we expect to see an increase in difficulty when the number of overlapping bits o
is increased. When we speak of a strict increase of difficulty, the number of required evaluations
increases and the effectiveness decreases. Increasing overlap should increase the difficulty, as the
Linkage Tree can only represent the problem structure exactly when there is no overlap and every
increase in overlap decreases the accuracy of the Linkage Tree. If the Linkage Tree can not represent
the problem structure well, the mixing will be less effective. These effects should be especially
visible with the deceptive trap codomain, as it requires knowledge of the problem structure to
overcome the deceptiveness of the problem and thus not being able to represent the structure well
will result in being less able to overcome the deceptiveness of the problems.

7.1 Experimental setup

7.1.1 Benchmark problems

Configuration input: M ∈ {m |N ≤ 150}, k = 5, o ∈ {0, 1, ..., 4}, b = 2. Where problem size
N = (m− 1) · (k − o) + k.

The codomain used for the experiment is the deceptive trap function, where we generate for
each subfunction a random bit string of length k to be the local optimum and its inverse to be the
deceptive attractor. The local optimum has a score of 1.0, the deceptive attractor has a score of
0.9 and any other bit string has score 0.9 − d · 0.9k , where d is the hamming distance to the local
deceptive attractor.

To generate the TD Mk Landscape problems, we use the implementation of the CliqueTreeMk
algorithms by van Driessel et al.[6].

23

24 7.1. EXPERIMENTAL SETUP

7.1.2 Evaluation

Per configuration instance we generated 25 problems, and for each of these problems, we ran LT-
GOMEA 3 times. For the runs where LT-GOMEA manages to find the global optimum, we record
the first hitting time. The first hitting time is the number of function evaluations until the global
optimum or one of the global optima was found by the algorithm. To record the first hitting times,
we need to ignore any unsuccessful LT-GOMEA runs, as these did not find the global optimum.
So, for the 3 runs of LT-GOMEA, we filter out any runs that did not find the global optimum
and take the median first hitting time for the remaining successful runs. Then we take the median
value from the median first hitting times for the 25 generated problems, where again any runs that
did not find the global optimum were filtered out. This median value is recorded together with
the problem size of the configuration. Besides this first hitting time, we record the effectiveness
of LT-GOMEA for every configuration. We measure the effectiveness by counting the number of
problems out of 25 (for the current configuration) for which at least 1 LT-GOMEA run found the
global optimum, or one of the global optima in case the fitness function has multiple global optima
(note that LT-GOMEA is not designed to be a multi-modal EA, so one should not expect it to
return all global optima simultaneously). Also note that when we filter out unsuccessful runs in
the first hitting time calculation, we still record these unsuccessful runs in the effectiveness for that
configuration instance.

To check our results for statistical significance, we test the difference in evaluations between
different configurations by comparing the difference in mean values for shared problem sizes. For
example, if we compare overlap configurations o ∈ {3, 4}, the different configurations have different
problem sizes when we increase the number of subfunctions M (recall N = (M − 1) · (k − o) + k).
To do a fair comparison, we need to compare at equal problem sizes. For the equal problem
sizes, we compare the mean first hitting times and report the number of times the difference was
significant. When the difference is statistically significant for >= 70% of the compared problem
sizes, we regard the results for the two configurations as statistically significant. An example result
is that the difference in first hitting time for 4/12 (4 out of 12) problem sizes was statistically
significant, another is that 11/13 were significantly different. Importantly, we do not compare
problem sizes for which one of the configurations has a number of subfunctions M ≤ 5, as the
differences between the configurations only really show for bigger subfunction numbers. This is
due to the first subfunction being completely identical in everything, apart from the difference
in codomain value order. Furthermore, we do not compare problem sizes for which one of the
configurations has an effectiveness of < 50%, as we do not consider these samples as being reliable.
Finally, for the actual statistical significance test, we assume normal distribution for the first
hitting time results and therefore run independent student’s t-tests. We use α = 0.05 and do not
assume (in)equal variance, but calculate whether the variance is equal using the Levene test for
equal variances.

7.1.3 LT-GOMEA configuration

We use LT-GOMEA with the population sizing-free scheme as introduced by Bosman et al.[2],
but we use its discrete Cartesian version. LT-GOMEA instance i with population size Pi is run 4
times for every run of instance i + 1, with P0 = 1 and Pi+1 = 2 · Pi. The maximum number of
running LT-GOMEA instances is 25. We set the No Improvement Stretch (NIS) to 1 + log10(Pi),
where Pi is the population size of LT-GOMEA instance i. Forced Improvement (FI)[1] is run if the
best fitness in a population did not improve for more generations than this NIS. We use premature
stopping to stop any LT-GOMEA instance when a LT-GOMEA instance with a bigger population
size has a higher average fitness. A LT-GOMEA instance is also stopped when the fitness variance
in the population of a LT-GOMEA instance is equal to or smaller than 0.00001. When the global
optimum score is found, we stop execution (of all LT-GOMEA instances) and record the current
number of evaluations as the first hitting time. Finally, we use a computation budget of 300,000
evaluations, with every partial evaluation counting as an evaluation as well. When the computation
budget is spent, we stop execution.

CHAPTER 7. EXPERIMENT: INCREASING OVERLAP 25

o 1 2 3 4
0 5/5 5/5 11/11 5/24
1 X 0/8 0/14 0/29
2 X X 1/16 0/32
3 X X X 0/66

(a) o ∈ {0, 1, 2, 3} vs o ∈ {1, 2, 3, 4}, H1: in-
creasing overlap o increases first hitting time.

o 3 4
2 7/16 29/32
3 X 38/66

(b) o ∈ {2, 3} vs o ∈ {3, 4}, H1: increasing
overlap o decreases first hitting time.

Table 7.1: Statistical results for the differences in mean values between first hitting times for
different overlap values, for LT-GOMEA and b = 2. First hitting time is the number of required
evaluations to find the global optimum. Printed is the number of times the difference was significant
out of the total number of times a difference was compared. For example, in Figure 7.1a, 5/5
comparisons were statistically significant for o = 0 vs o = 1, with the alternative hypothesis that
o = 1 has a higher first hitting time than o = 0.

7.2 Results

The results are shown in Figure 7.1 and Tables 7.1a & 7.1b. The tables show the statistical
significance for different alternative hypotheses, with per comparison the number of significant
comparisons and the number of comparisons. The figure shows in the upper graph the first hitting
time for increasing values of the problem size N , with a line per overlap o setting, and the lower
graph shows the effectiveness. When the effectiveness of an overlap configuration decreases below
50%, it is not considered reliable anymore and therefore its performance is not plotted anymore in
the upper graph. To emphasize this decision, we have highlighted the 50% effectiveness mark in
the lower graph with a horizontal line.

We hypothesized that the problems would become more difficult to solve for LT-GOMEA with
increasing overlap o, however, the results paint a different picture. As expected, problems with
overlap 1 and 2 do require more evaluations and have a lower effectiveness than problems without
any overlap. However, we already see a change here with respect to the increase of overlap from 0
to 1: although the effectiveness does decrease when increasing the overlap from 1 to 2, the required
number of evaluations does not increase significantly. If we increase the overlap further, we see this
change continuing: problems with overlap setting 3 have a (insignificantly) lower number of required
evaluations and a higher effectiveness than overlap settings 1 and 2, so one could regard problems
with overlap 3 as easier. Likewise, problems with an overlap of 4 variables require (insignificantly)
fewer evaluations and have a higher effectiveness than problems with overlap setting 3. However,
the difference between overlap values 2 and 4 in required number of evaluations is significant,
with a clear difference in the effectiveness. Finally, and perhaps most surprising of all, the results
show that problems with overlap 4 are solved using a similar number of evaluations compared
to problems with overlap 0. Importantly, however, problems with overlap 0 are always solved,
whereas problems with overlap 4 are not.

Although we have now seen what the effect of the overlap is on the performance and effectiveness
of LT-GOMEA, we need to dive deeper into the mechanisms behind the behavior we observe in the
results. In the next sections we try to answer the question: Why does the difficulty first increase
with increasing overlap, before decreasing for o > 2?.

Due to an issue with the number of global optima while calculating the global optima for some
problems, we suspect a role for the number of global optima on the difficulty of a problem. For
this reason, the next chapter investigates this further.

7.3 Conclusions

� The difficulty of TD Mk Landscape problems with the deceptive trap codomain does not
strictly increase with increasing overlap. Instead, the difficulty increases prior to decreasing.

26 7.3. CONCLUSIONS

Figure 7.1: Performance and effectiveness of LT-GOMEA for different overlap values

Chapter 8

Experiment: Branching / Global
Optima

During preliminary experiments for the previous experiment, we discovered that the number of
global optima exploded after N = 120 for o = 4, b = 1, and the deceptive trap codomain. Do
note that the same issue may arise for o = 3 with b = 1 and much higher problem sizes, or a
different codomain. It is not immediately clear why there are so many global optima for b = 1, nor
is it immediately clear why the number of global optima changes significantly between branching
factors.

For the mentioned setting, if we enlarge the problem size beyond 120, we encounter problems
with (for example) an incredible number of ≈ 600.000 global optima (when N ≈ 130). To see if this
number of global optima is the reason deceptive problems get easier when the overlap is increased
beyond 2 (as we saw in the previous experiment), we benchmark LT-GOMEA with problems that
differ only in their branching factor and thus in their number of global optima. We expect to see
that the difficulty increases significantly between b = 1 and b = 2, due to the significantly smaller
number of global optima. This could then potentially explain why a larger overlap makes problems
easier from o = 3 onwards, as we see a higher number of global optima with increasing overlap.

In short, in this experiment we try to answer the question:

How does the number of global optima affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

8.1 Experimental setup

We use many of the same configuration settings as in the previous experiment, but generate
problems with a different configuration and expand the graph to show the median number of
global optima for each configuration instance. For the problems, we use configuration input:
M ∈ {m |N ≤ 120}, k = 5, o = 4, b ∈ {1, 2}. Where problem size N = (m− 1) · (k− o) + k. Again
we use the deceptive trap function as codomain.

8.2 Results

The results are plotted in Figure 8.1 and the statistical (in)significance is shown in Tables 8.1a
and 8.1b. We can see that the number of global optima does differ greatly; at some points an up
to 10 times difference. The effectiveness of b = 1 is higher, as expected, but the difference is less
pronounced than what we expected. Surprisingly, the number of required evaluations is higher for
b = 1 than for b = 2, but not significantly so.

This can be explained by a different factor affecting the results here, unbeknownst to us at the
moment. So the effect of more global optima might still be significant, but it could be overshadowed
by another factor with an even greater effect. To be able to say more about the different factors at
play and the magnitude of their effect, we need to isolate the factors at play here. We hypothesize
that the two factors are: 1) The number of global optima, and 2) The branching factor. In the
next chapters, we will look at each in more detail. It should be noted that these two factors

27

28 8.3. CONCLUSIONS

Figure 8.1: Performance and effectiveness of LT-GOMEA for different branching factor values:
b ∈ {1, 2}

b 2
1 0/110

(a) H1: increasing branching increases first
hitting time.

b 2
1 28/110

(b) H1: increasing branching decreases first
hitting time.

Table 8.1: Statistical results for the differences in mean values between different branching values
(b = 1 vs b = 2), for LT-GOMEA and o = 4. See section 7.1.2 and the common caption of Tables
7.1a and 7.1b for more details.

aren’t the only two factors, but we will look into this further in a later chapter. It is still unclear
what underlying mechanisms of an increasing branching factor could affect the performance of LT-
GOMEA, but it will be related to the increased overlap for some cliques/variables. Importantly,
we have not answered the question we set out to answer with this experiment and will try to do
so with our next experiment.

8.3 Conclusions

� The branching factor does not just change the number of global optima, but introduces a dif-
ferent effect as well, which is probably related to the increased overlap for some cliques/variables.
However, what this effect is exactly, is still unclear.

Chapter 9

Experiment: Global Optima

In the previous experiment, we encountered mixed results. To identify the effect of the number
of global optima on the performance and effectiveness of LT-GOMEA, we isolate the number of
global optima as the only difference between two problem sets: a set of problems with a high
number of global optima and a set of problems with a low number of global optima. We expect to
see that the difficulty is decreased significantly when there is a greater number of global optima,
potentially explaining half of the effect we saw in the previous experiment. The lower difficulty
could be explained by the presence of multiple global optima, while LT-GOMEA only needs to
find one global optimum.

In this experiment we again try to answer the question:

How does the number of global optima affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

9.1 Experimental setup

9.1.1 Benchmark problems

To stay as close to our implementation of the problem generation as possible, we generate 8 ·
25 problems and choose either the 1

8 problems with highest or lowest number of global optima,
depending on what problem set we are generating. We do this for both problem sets, so in total
we generate 2 · 8 · 25 problems, and use 2 · 25 problems for the two sets of problems.

Again, we use the deceptive trap function as described in the previous experiments and run
LT-GOMEA on the generated problems. We set N ≤ 120, k = 5, o = 4, b = 1.

9.2 Results

9.2.1 LT-GOMEA

The results are shown in Table 9.1 and Figure 9.1. As can be observed from the bottom chart in
the figure, the dark blue line represents the set of problems with a high number of global optima
and the light blue line the set of problems with a low number of global optima. The median number
of global optima differs between the two sets up to a factor of 100, and there is a visible difference
in the required number of evaluations and effectiveness. The table tells us the difference in the
required number of evaluations is significant.

The results show that a greater number of global optima does have a positive impact on the
performance and effectiveness of LT-GOMEA. To verify this result, we plotted the results for
random linkage LT-GOMEA as well, in Appendix Figure A.1. The observed positive effect could
be explained simply by the greater set of correct solutions leading to an easier landscape to traverse
for LT-GOMEA, however, it might not be as simple as that. The results do not show the effect
one would expect from a hundredfold increase in number of global optima, so the high number of
global optima does not decrease the difficulty just because of their sheer number. There seems
to be a limiting factor here, we suspect it is the fact that solutions can be quite far apart and
therefore have a negative effect on the mixing of LT-GOMEA; mixing two solutions that are close
to a global optimum could only improve the solutions for the identical parts of the global optima.

29

30 9.2. RESULTS

Figure 9.1: Performance and effectiveness of LT-GOMEA for high/low number of global optima

#opt. high
low 78/110

Table 9.1: Statistical results for the differences in mean values between problems with either a
low or high number of global optima, for LT-GOMEA, o = 4, b = 1. H1: Problems with a high
number of global optima have a lower first hitting time than problems with a low number of global
optima, for an otherwise equal configuration.

To test this hypothesis, we will now look into the global optima: first we will take a look at the
distribution of the number of global optima, and then we will take a look at the hamming distance
between global optima.

9.2.2 # of Global Optima Distribution

To gain an insight into the occurences of the different number of global optima and especially for
problems with a lot of global optima, we draw the distribution of the number of global optima for
1000 generated problems with N = 100, o = 4 and b = 1. The results are plotted in Figure 9.2:
as a distribution in Figure 9.2a and a cumulative distribution in Figure 9.2b. Note that there are
problem instances with a number of global optima higher than 1000, but we limited the range of
the figures for the sake of clarity.

Interestingly, the number of global optima is not distributed normally. Instead, we see spikes
at x = 2a and x = 2a + 2b, where a, b ∈ {0, 1, ...} and a 6= b. For example, we can clearly see that
the number of global optima with the most occurences are x ∈ {16, 32, 64}, but we also see spikes
at x ∈ {192, 386, 768}.

This could be caused by just a variables/bits being different for the global optima. x = 2a

could then be explained by every one of the a variables/bits leading to an equal score for both its
possible values, for the global optima solutions constructed so far in the global optimum calculation

CHAPTER 9. EXPERIMENT: GLOBAL OPTIMA 31

(a) Distribution (b) Cumulative distribution

Figure 9.2: Distribution of number of global optima for 1000 generated problems with N = 100,
o = 4, b = 1. On the x-axis is the number of global optima, on the y-axis is the number of problems
that have this many global optima.

process. x = 2a + 2b could be similarly explained. One example leading to this number of global
optima would be when again all a variables/bits lead to equal scores for both its possible values,
for the global optima solutions constructed so far. However, the second bit now only leads to
the same score for both its values for half of the global optima solutions constructed so far. To
illustrate this, consider the following example:

Problem with M = 2, k = 2, o = 1, and b = 1. Our cliques are: C0 = {x1, x2} and
C1 = {x2, x3}. Then we have one separator S1 = {x2}. For clique C0, the codomain of the
subfunction is such that there are two local optima, for x1 = 1 and x2 ∈ {0, 1}. For clique C1 we
consider two cases, case A in which all possible instances of C1 have the same (highest) score, and
case B in which x2 = 1, x3 ∈ {0, 1} and x2 = 0, x3 ∈ {1} have the highest score. In case A, there
are 1 · 2 + 1 · 2 = 4 global optima, as there are 2 possible instances of x2 that have the highest
score in C0 and 2 possible instances of x3 that have the highest score in C1 for each of these 2 x2
instances. In case B, there are 1 · 1 + 1 · 2 = 3 global optima, as there are 2 possible instances of x2
that have the highest score in C0, and there are 2 possible instances of x3 that have the highest
score in C1 for x2 = 1 and 1 instance of x3 that has the highest score in C1 for x2 = 0.

To test our hypothesis of spikes being caused by x = 2a, we will look into the hamming distance
between the global optima next.

9.2.3 Hamming Distance Between Global Optima

As is described in the previous experiment, we expect a small average hamming distance between
the global optima, contrary to what we hypothesized using the results for LT-GOMEA on the high
and low number of global optima problem sets. At the time, we expected the hamming distance to
be big so that the small difference in performance and effectiveness between o = 4, b = 1 with low
and high number of global optima could be explained. Here, we take a look at all the problems from
our previous experiment with a number of global optima equal to 512 and record the hamming
distances between the global optima. We then calculate the average hamming distance Dh avg

and the min and max hamming distances. The results are listed in Table 9.2, with the number of
occurences of a specific average, minimum and maximum hamming distance aggregated.

Our expectation of a small average hamming distance Dh avg turns out to be correct; the
average hamming distance is indeed small for most of the problems that have 512 global optima.
In fact, the explanation we suggested in the previous experiment seems to be confirmed by the big
number of problems with a maximum hamming distance of 9. If the maximum hamming distance
is 9, then all global optima are equal except for these 9 variables/bits that take all possible 29 = 512
values. Therefore, we can conclude that for these cases there are a few variables that have the
same score for the possible values for all separator instances in the current partial global optima
solutions.

This result changes the way we view the results of the low vs high number of global optima
problems for LT-GOMEA. We hypothesized that the small effect of the number of global optima

32 9.3. CONCLUSIONS

num avg min max
33 4.51 1 9
3 5.01 1 10
1 5.26 1 11
2 5.51 1 11
2 6.01 1 12
1 6.51 1 13
1 8.77 1 18
1 11.40 1 24
1 13.78 1 29

Table 9.2: The hamming distances between the global optima in the problems with 512 global
optima. Problems with the same average, min, and max aggregated using a counter in the first
column. In total there are 45 problems considered here.

was due to the fact that the hamming distance between the global optima was high, therefore
making the mixing less effective. The result showing a low hamming distance means that the
gain from having many global optima is very limited; the global optima are very close in terms of
hamming distance, so LT-GOMEA will not find a global optimum much quicker, as it must already
be close to one of the global optima to find the others.

Finally, this results also shows that TD Mk Landscapes with the deceptive trap codomain,
o = 4, b = 1, and a lot of global optima are not interesting for benchmarking niching algorithms,
as the global optima are too close together to really test their capabilities.

9.2.4 Short Discussion

We hypothesize it is the interference of the deceptive subfunctions (due to the increased overlap
o) that decreases the deceptiveness of the problem. This interference and decreased deceptiveness
is then also the cause of the high number of global optima. In other words, the high number of
global optima is not the cause of the decreased difficulty, but is a consequence of the cause behind
this decreased difficulty. Here, the cause of the decreased difficulty is the increasing overlap, which
causes interference and a decreased deceptiveness.

Furthermore, we hypothesize that the increased interference between the subfunctions decreases
the importance of learning the (exact) linkage, as the variables become increasingly interconnected.

9.3 Conclusions

� In this chapter, we have seen that the number of global optima does have an effect on the first
hitting time, but that it is smaller than we hypothesized. We think this is due to the small
hamming distance between the global optima; it must already be close to one of the global
optima to find the others, therefore there is only a small gain in the number of evaluations
and effectiveness.

� Furthermore, we think the high number of global optima is caused by interference of decep-
tive subfunctions, which also lead to decreased deceptiveness. The interference of deceptive
subfunctions is caused by an increase in overlap between the subfunctions. This could be
further increased with a larger branching factor.

� We think the increased interference between the subfunctions also decreases the importance
of learning the (exact) linkage, as the variables become increasingly interconnected.

� The number of global optima for problems with N = 100 are often a power of 2 (2a) or a
sum of two powers of 2 (2a + 2b).

Chapter 10

Experiment: Increasing Overlap
and Branching

In the previous chapter we have taken a closer look at the effect of the number of global optima on
the performance and effectiveness of LT-GOMEA. Here we take a closer look at the effect of the
branching factor b. Together, these experiments should enable us to understand the mechanisms
at play when we increase the branching factor and thus understand exactly what happened in the
experiment where we only looked at branching factor values b ∈ {1, 2}. In this chapter we try to
answer the question:

How does an increasing branching factor affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

To do so, we increase the branching factor up to a value of 6 and evaluate the performance and
effectiveness of LT-GOMEA. As mentioned before, we think we saw two effects colliding between
b = 1 and b = 2: the number of global optima and the increased overlap for some cliques/variables.
As the number of global optima already decreased significantly when the branching factor in-
creased from 1 to 2, and we saw little effects for a 100x increase of number of global optima, we
expect the number of global optima to have an insignificant effect on the performance and effec-
tiveness of LT-GOMEA with increasing branching value. However, the increased overlap for some
cliques/variables will increase further with increasing b, so we expect that the first hitting time
and effectiveness will improve.

10.1 Experimental Setup

We use many of the same configuration settings as in the experiment in Chapter 8, where we
looked at branching factors b ∈ {1, 2}, but increase the range of the branching factor to 6. So,
for the problems, we use configuration input: M ∈ {m |N ≤ 120}, k = 5, o ∈ {0, 1, 2, 3, 4},
b ∈ {1, 2, 3, 4, 5, 6}. Where problem size N = (m− 1) · (k− o) +k. Again we use the deceptive trap
function as codomain.

10.2 Results

In Figures 10.1a and 10.1b we show the results for b = 1 and b = 6, respectively. As the biggest
changes occur for o = 4, we highlight the results for o = 4 and b ∈ {2, 3} in Figure 10.2a and for
o = 4 and b ∈ {4, 5, 6} in Figure 10.2b. We do not print the results for b = 1 in Figure 10.2a, as
they make the graph harder to read due to the effectiveness being higher than for b = 2, which
decreases the clear overview. See Figure 8.1 for the clutter we get when plotting b ∈ {1, 2}.

In Figures 10.1a and 10.1b we can see that the results for o = 0 don’t change, as expected.
If the lines for o ∈ {1, 2} change at all, it is barely visible. However, the lines for o ∈ {3, 4}
do change visibly, with o = 4 most noticeably. They indeed seem to get easier with increasing
branching factor b. For o = 3, the change between sequential b values is barely noticeable, but
for o = 4, the effects are clearly visible. For this reason, we have plotted the results for o = 4
separately in Figures 10.2a and 10.2b. In these figures we can clearly see that the first hitting time

33

34 10.2. RESULTS

o 1 2 3 4
3/24 6/30 19/53 106/110

Table 10.1: Statistical results for the differences in mean values between b = 1 vs b = 6, for
LT-GOMEA, o ∈ {1, 2, 3, 4}. H1: First hitting time decreases with increasing branching factor b.

o 3 4
2 8/17 34/34
3 X 52/53

(a) o ∈ {2, 3} vs o ∈ {3, 4}, H1: Increasing
overlap decreases first hitting time.

o 3 4
0 2/9 18/18

(b) o = 0 vs o ∈ {3, 4}, H1: Different first
hitting time.

Table 10.2: Statistical results for the differences in mean values between different overlap values,
for LT-GOMEA, b = 6. Statistics for Figure 10.1b.

(required number of evaluations) decreases with increasing b. If we look carefully, one can see that
the effectiveness increases with increasing b. The decreased number of evaluations is statistically
significant for o = 4, as can be seen in Table 10.1. This is supported by Table 10.3.

Interestingly, as is visible in 10.1b, the first hitting time of o = 4 is well below the first hitting
time of o = 0, which is supported by the statistical significance in Table 10.2b. However, the
effectiveness is still lower than for o = 0, so it’s not strictly easier. Clearly, the effectiveness of
o = 0 is 100% everywhere (this is better visible in 10.1a), whereas the effectiveness of o = 4 is not.
In Figures 10.2a and 10.2b we can see the effectiveness of o = 4 for N ≤ 120 creeps closer and
closer to the y = 100% line.

The statistically significant difference between o = 0 and o = 3 for b = 1 is not present for
b = 6, which is also visible in Figure 10.1b. The first hitting times for these configurations are
closer for b = 6.

Furthermore, we can see in Figures 10.1a and 10.1b that the difference between o = 3 and o = 4
is increased by increasing the branching factor from b = 1 to b = 6, which is supported by Tables
7.1b and 10.2a: in Table 7.1b, the difference between o = 3 and o = 4 is not significant for b = 1,
but in Table 10.2a, for b = 6, the difference is significant.

The median number of evaluations required for o = 3 with a branching factor b = 6 is similar
to that of o = 4 with a branching factor of b = 1. However, the effectiveness of overlap setting
o = 3 is still lower, so o = 4 with b = 1 can still be regarded as being less difficult for LT-GOMEA
than o = 3 with b = 6.

Now that we have observed the decrease of difficulty with increasing b (for b > 1, as the number
of global optima improves the performance and effectiveness of b = 1), we have identified the factors
at play in the difference between b = 1 and b = 2: the number of global optima and the other
effects of the branching factor. We will come back to this at the end of this chapter, after we have
taken a closer look at the mechanisms behind the branching factor’s effect.

How do we explain these observations? The branching increases the overlap between the cliques
further; some cliques/variables will overlap with even more cliques/variables for b = 6 than for
b = 1. We hypothesize, just as in the discussion of the previous chapter, that this increases the
interference of the deceptive cliques/subfunctions, leading to decreased deceptiveness and decreased
importance of linkage learning. To test this hypothesis, we will now look at the performance and
effectiveness of GOMEA with a Univariate Family of Subsets, U-GOMEA, and of LT-GOMEA
with random linkage.

10.2.1 Random Linkage LT-GOMEA & U-GOMEA

To test the hypothesis that increasing the branching factor increases the interference of the decep-
tive subfunctions, leading to decreased deceptiveness and decreased importance of linkage learning,
we test LT-GOMEA with random linkage (linkage is not learned, but randomly initialized) and U-
GOMEA (GOMEA with the univariate FOS). If these manage to perform well, then this suggests
that the problems have lost a significant part of their deceptiveness and the requirement to perform
linkage learning, as these will not perform well at all when the problems are fully deceptive due to
them being unable to learn/represent the structure and therefore not effectively mixing solutions.

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 35

(a) b = 1

(b) b = 6

Figure 10.1: Performance and effectiveness of LT-GOMEA for different overlap values with different
branching values: a) b = 1 and b) b = 6.

36 10.2. RESULTS

(a) b ∈ {2, 3}

(b) b ∈ {4, 5, 6}

Figure 10.2: Performance and effectiveness of LT-GOMEA for overlap value o = 4 with different
branching values: a) b ∈ {2, 3} and b) b ∈ {4, 5, 6}.

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 37

b 2 3 4 5 6
1 28/110 72/110 99/110 103/110 106/110
2 X 32/110 73/110 91/110 99/110
3 X X 28/110 51/110 71/110
4 X X X 18/110 26/110
5 X X X X 19/110

Table 10.3: Statistical results for the differences in mean values between different branching values,
for b ∈ {1, 2, 3, 4, 5} vs b ∈ {2, 3, 4, 5, 6}, o = 4, LT-GOMEA. H1: Increasing branching b decreases
first hitting time. Statistics for Figure 10.2.

o 1 2 3 4
1/1 0/6 8/19 51/58

Table 10.4: Statistical results for the differences in mean values between b = 1 vs b = 6, for
random linkage LT-GOMEA, o ∈ {1, 2, 3, 4}. H1: First hitting time decreases with increasing
branching factor b. Statistics for Figure 10.3.

In other words, these would be lucky to find the global optimum when there is no overlap.
More specifically, U-GOMEA can only find the global optimum for separated / non-overlapping

/ fully-deceptive problems when its subfunctions are hamming distance 0 or 1 away from the local
optimum and it manages to mix the remaining bits (that are not equal to the global optimum
yet) with the correct value. If any of the subfunctions flip / mix one of the bits that are already
correctly set, it will not reach the local optimum anymore and neither will it reach the global
optimum anymore, due to the fully deceptiveness. For LT-GOMEA with random linkage, the
chance of finding the global optimum is higher, as it is not just reliant on single bit-flips, but can
mix multiple bits and therefore reach the local optimum from hamming distances bigger than 1
as well. However, due to the random linkage, the mixing will still not be very effective, but more
effective than doing single bit-flips.

Now, in this experiment there is overlap (o > 0), and we again expect the random linkage
LT-GOMEA to perform better than U-GOMEA, because the subfunctions still contain 5 variables
and not all of these variables overlap. Therefore, we expect there to be an advantage in the
exchange of building blocks, even when the deceptiveness decreases due to the interference between
subfunctions. However, the difference between the two algorithms might get smaller and smaller
with increasing overlap if there really is increased interference between the deceptive subfunctions,
therefore decreasing the advantage of mixing with building blocks. Furthermore, we expect them
both to perform better with increasing overlap, due to the decrease in deceptiveness and decrease in
importance of linkage learning as a result of the interference. And finally, we expect the difference
in performance and effectiveness between LT-GOMEA on the one hand and random linkage LT-
GOMEA and U-GOMEA on the other hand to become smaller with increasing overlap.

In this experiment we also increase the branching factor up to a value of 6, just as in the
previous experiment. As mentioned before, we think that this will further increase the interference
between the deceptive subfunctions, so we expect the effects mentioned in the last paragraph to
be increased. In other words, we expect that with increasing branching factor 1) the difference
in performance and effectiveness between LT-GOMEA and U-GOMEA to get even smaller, 2)
their performance and effectiveness to improve even further, and 3) the difference in performance
and effectiveness between LT-GOMEA on the one hand and random linkage LT-GOMEA and
U-GOMEA on the other hand to become even smaller.

We use the same problems as were generated in the previous experiment, to be able to make a
fair comparison.

The results are plotted in Figures 10.3 and 10.4, for random linkage LT-GOMEA and U-
GOMEA respectively.

In the Figures, we can see that for all algorithms (LT-GOMEA, random linkage LT-GOMEA,
and U-GOMEA) the performance and effectiveness are equal or increase with increasing b, except
for the case of LT-GOMEA between b = 1 and b = 2, as mentioned before when we discussed
the possible explanations. However, only for o = 4 is the change significant for the first hitting

38 10.2. RESULTS

(a) b = 1

(b) b = 6

Figure 10.3: Performance and effectiveness of Random Linkage LT-GOMEA for different overlap
values with different branching values: a) b = 1 and b) b = 6.

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 39

o 1 2 3 4
0 0/0 0/0 0/0 0/0
1 X 0/0 0/0 1/1
2 X X 3/3 6/6
3 X X X 10/19

(a) b = 1, for Figure 10.3a.

o 1 2 3 4
0 0/0 0/0 0/0 0/0
1 X 0/0 0/0 1/1
2 X X 3/3 7/7
3 X X X 27/28

(b) b = 6, for Figure 10.3b.

Table 10.5: Statistical results for the differences in mean values between different overlap values,
for o ∈ {0, 1, 2, 3} vs o ∈ {1, 2, 3, 4}, random linkage LT-GOMEA, b ∈ {1, 6}. H1: Increasing
overlap decreases first hitting time. Statistics for Figure 10.3.

o 1 2 3 4
0/1 1/5 6/15 41/48

Table 10.6: Statistical results for the differences in mean values between b = 1 vs b = 6, for
U-GOMEA, o ∈ {1, 2, 3, 4}. H1: First hitting time decreases with increasing branching factor b.
Statistics for Figure 10.4.

o 1 2 3 4
0 0/0 0/0 0/0 0/0
1 X 0/0 0/0 1/1
2 X X 3/3 5/5
3 X X X 5/15

(a) b = 1, for Figure 10.4a.

o 1 2 3 4
0 0/0 0/0 0/0 0/0
1 X 0/0 0/0 1/1
2 X X 1/4 6/6
3 X X X 16/17

(b) b = 6, for Figure 10.4b.

Table 10.7: Statistical results for the differences in mean values between different overlap values,
for o ∈ {0, 1, 2, 3} vs o ∈ {1, 2, 3, 4}, U-GOMEA, b ∈ {1, 6}. H1: Increasing overlap decreases
first hitting time. Statistics for Figure 10.4.

o 0 1 2 3 4
0/0 1/1 6/6 16/19 41/58

(a) b = 1

o 0 1 2 3 4
0/0 1/1 7/7 19/28 45/110

(b) b = 6

Table 10.8: LT-GOMEA vs random linkage LT-GOMEA, H1: LT-GOMEA has a lower first
hitting time than U-GOMEA.

o 0 1 2 3 4
0/0 1/1 5/5 11/15 34/48

(a) b = 1

o 0 1 2 3 4
0/0 1/1 6/6 14/17 71/110

(b) b = 6

Table 10.9: LT-GOMEA vs U-GOMEA, H1: LT-GOMEA has a lower first hitting time than
U-GOMEA.

o 0 1 2 3 4
0/0 0/1 0/5 0/15 3/48

(a) b = 1

o 0 1 2 3 4
0/0 0/1 0/5 1/17 32/110

(b) b = 6

Table 10.10: random linkage LT-GOMEA vs U-GOMEA, H1: Different first hitting time.

40 10.2. RESULTS

(a) b = 1

(b) b = 6

Figure 10.4: Performance and effectiveness of U-GOMEA for different overlap values with different
branching values: a) b = 1 and b) b = 6.

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 41

time, as can be read from Tables 10.1, 10.4, and 10.6. This equal or increase in performance
and effectiveness hints at the possibility of a higher branching factor leading to a lower difficulty
in the general case. Furthermore, we can see that with increasing overlap, the performance and
effectiveness of random linkage LT-GOMEA and U-GOMEA increase. This is supported by Tables
10.5a, 10.5b, 10.7a, and 10.7b. This might support our hypothesis that increasing overlap increases
interference between subfunctions, leading to decreased deceptiveness and decreased importance
of linkage learning, thus to easier problems. We can also see that random linkage LT-GOMEA
and U-GOMEA are closer to the performance and effectiveness of LT-GOMEA with increasing b,
especially for o = 4. See Tables 10.8a, 10.8b, 10.9a, and 10.9b. This again hints at the possibility
of the increasing overlap and branching factor, especially together, increasing the interference
between deceptive subfunctions. This would then lead to a decreased deceptiveness and decreased
importance of linkage learning of the problem. If the importance of linkage learning would indeed
decrease, the advantage from having the linkage learning to learn the deceptive trap structure would
be decreased and the disadvantage of not knowing the deceptive trap structure would be decreased
as well. This would then definitely explain the relatively smaller difference in performance and
effectiveness between LT-GOMEA and random linkage LT-GOMEA and U-GOMEA.

We see that the difference in first hitting times between random linkage LT-GOMEA and U-
GOMEA for equal overlap values is insignificant, however, random linkage LT-GOMEA does have
a higher effectiveness than U-GOMEA, most noticeably so for the random codomain. This is as
we hypothesized, so the mixing with blocks of size > 1 does give an advantage. Interestingly,
the difference between the three gets very small with o = 4 and b = 6. This supports our claim
that the increasing overlap and branching decreases deceptiveness and the importance of linkage
learning, as U-GOMEA really does not perform well when there is deceptiveness, so a lot of the
deceptiveness must have been removed. This applies in part to random linkage LT-GOMEA as
well. Another way of looking at this is that learning the structure is not essential to find a global
optimum for o = 4 and b = 6, but there still is a big difference in performance.

The relatively close scores for o = 4 and b = 6 for the three algorithms begs the question what
kind of structure the problems have, if the deceptive trap structure really is decreased. Given the
fact that random linkage LT-GOMEA performs better than U-GOMEA, it is clear that the problem
is not represented best by a univariate FOS, so there must still be some higher-level structure. This
is supported by the fact that LT-GOMEA still performs better than random linkage LT-GOMEA,
which tells us there is still benefit in linkage learning.

Interesting is also the difference of increasing the overlap for on the one hand LT-GOMEA and
on the other hand random linkage LT-GOMEA and U-GOMEA. For LT-GOMEA, the difficulty
first increases, before decreasing from o = 3 onwards. But for random linkage LT-GOMEA and U-
GOMEA, any increase in overlap means a decrease in difficulty. As mentioned before, we think this
is caused by the effects of the increase in interference between the subfunctions: 1) The decreased
deceptiveness decreases the difficulty for random linkage LT-GOMEA, but for LT-GOMEA it was
not a problem in the first place due to the linkage learning (and block mixing) and therefore its
decrease does not really increase the performance for LT-GOMEA. 2) The decreased importance
of linkage learning decreases the difficulty for random linkage LT-GOMEA, but for LT-GOMEA
it does not initially decrease the difficulty, as it is able to learn the linkage.

In fact, when increasing the overlap initially, the Linkage Tree can not represent the overlapping
structure fully, so the mixing will be less effective. However, with increasing overlap, the decep-
tiveness and the importance of learning the (exact) linkage decreases, overshadowing the inability
to represent and learn the problem structure fully, and decreasing the difficulty.

Interestingly, as can be seen in Appendix Figures A.2 and A.3, we do not see the conflicted
results between b = 1 and b = 2 for random linkage LT-GOMEA and U-GOMEA, which we do see
for LT-GOMEA. As we have seen that the number of global optima does affect the performance
of random linkage LT-GOMEA (and therefore possibly also of U-GOMEA), we assume that this
is due to the bigger difference in performance and effectiveness we see with increasing branching
factor b, which must then be greater than the effect of a higher number of global optima.

10.2.2 # Cliques per Variable

To give us a better sense of how the higher branching factor b could influence the topography and
the overlap of the problem, we will take a look at the number of cliques each variable is in. We
expect the number of cliques per variable to strongly increase due to the higher branching and

42 10.3. CONCLUSIONS

think this could be a reason for the observation that problems with high overlap and branching
values are easier.

To test this, we generate 25 problems for N = 100, k = 5, o = 4, b ∈ {1, 2, 3, 4, 5, 6} and note
the number of cliques each variable is in. For these values, we calculate the statistics and draw the
distribution. For 3 of these problems we show the statistics in Table 10.11 and for the first two of
these problems in the table (with b ∈ {1, 2, 6}) we show the distributions in Figure 10.5.

The results show that with the increase of the branching factor, the distribution is pushed to
the extremes. The change between b = 1 and b = 2 is the most dramatic, with a big increase in
the variance, visible in the figure with an almost double the amount of occurrences for 1 clique
and a much higher maximum value of ≈ 70 cliques per variable compared to ≈ 20 − 35. For
increasing b beyond 2, a higher b increases the variance further, with more occurrences for 1 clique
and more occurrences having a number of cliques per variable of > 50. These changes are caused
by the increasing shallowness of the clique tree; more and more cliques end up as leafs, so their
non-overlapping variable will occur in just 1 clique, and more and more cliques overlap with the
same clique, leading to higher maxima and/or more variables that are in a lot of cliques.

So how does this explain the lower difficulty of problems with a higher branching factor? We
hypothesized that it is due to the increased overlap between cliques, but we now additionally
hypothesize that it is partly due to the number of occurrences of 1 clique per variable. In other
words, we hypothesize/think that a higher branching factor changes the overlap to be less evenly
divided over the cliques, which decreases the difficulty. The overlap is shifted to some variables
that occur in a high number of cliques and a lot of variables that occur in just 1 clique. We consider
two possible explanations of the results:

In explanation 1, the value of the variables that are in so many cliques does not matter, as they
are in so many cliques and in each there is a random local optimum. Therefore, there is a 50/50
chance per clique what the best value for this variable is; 0 or 1. Because of this, the deceptive
trap structure is still quite intact as the value of these high-profile variables does not have a big
impact on the problem as a whole, but it does on the current clique. The lower difficulty of the
higher branching value problems should then be totally explained by the high number of variables
that are in just 1 clique. The only impact we can think of that this could have is that maybe
the problems become more separated, as the high-profile variables can take either value and are
therefore independent? Then it’s just solving the cliques separately, as the variables in it that
occur only once are also independent. However, the high-profile variables can of course only be set
to one value in the end, so we expect that it’s actually the case that the high-profile variables are
supposed to be set to one variable in order to find the global optimum:

In explanation 2, the value of the high-profile variables does matter in order to find the global
optimum or optima. Then the resulting difference in fitness when flipping the high-profile variables’
bits must be big. Additionally, the cliques that contain these high-profile variables have lost some
of their deceptive trap structure, as some of their variables already have a set value. Solving the
problems is then a matter of first finding the best value for these variables and then finding the
best value for the remaining variables in the clique.

We have answered our question of what the effects are of an increasing branching factor, and
have looked shortly at what might be the reason for that. Now, in the following chapter we
will further investigate the hypothesis that we put forth on the effects of the increase overlap, to
answer the question of How does an increasing overlap affect the performance and effectiveness of
LT-GOMEA?. We do this by taking a closer look at another codomain to test our hypothesis.

10.3 Conclusions

10.3.1 General

� The difficulty of the problems (in terms of first hitting time and effectiveness) decreases with
increasing branching factor (b = 1→ 6), for all algorithms considered (LT-GOMEA, random
linkage LT-GOMEA, and U-GOMEA) and o = 4.

� Factors at play between b ∈ {1, 2} for o = 4 are 1) the number of global optima and 2) a
further decrease of deceptiveness and importance of linkage learning. The second factor is
caused by the distribution of cliques per variable shifting to the extremes: there are some
variables that appear in a lot of cliques and a lot of variables that appear in just 1 clique.
This increases the interference between the subfunctions.

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 43

(a) b = 1 (b) b = 1

(c) b = 2 (d) b = 2

(e) b = 6 (f) b = 6

Figure 10.5: Distribution of number of cliques per variable. On the x-axis is the number of cliques
a variable is in, on the y-axis is the number of occurrences for that number of cliques per variable.
For deceptive trap codomain, with N = 100, k = 5, o = 4, so M = 96 and thus there are 96 cliques
in total. Per b setting, we plotted the distribution for 2 problem instances.

44 10.3. CONCLUSIONS

b min max std dev var median p25 p75

1
1 35.00 5.89 34.69 3 1 5.00
1 18.00 4.18 17.43 3 2 7.00
1 22.00 4.05 16.40 3 2 7.00

2
1 68.00 9.54 91.01 1.5 1 3.00
1 72.00 10.26 105.17 1.5 1 4.00
1 57.00 8.77 76.99 1.5 1 4.00

3
1 71.00 11.21 125.74 1 1 3.00
1 64.00 10.91 118.99 1 1 4.00
1 75.00 11.65 135.64 1 1 3.00

4
1 76.00 12.67 160.65 1 1 3.00
1 73.00 12.16 147.82 1 1 3.58
1 76.00 12.36 152.85 1 1 3.00

5
1 73.00 12.01 144.30 1 1 1.00
1 75.00 12.95 167.66 1 1 1.00
1 67.00 12.31 151.45 1 1 1.00

6
1 70.00 12.78 163.43 1 1 1.00
1 84.00 13.64 185.96 1 1 1.00
1 69.00 12.59 158.40 1 1 1.00

Table 10.11: The statistics for the number of cliques per problem variable. For each b value, we
show the statistics for 3 problems. The average is always 4.8. For deceptive trap codomain, with
N = 100, k = 5, o = 4, so M = 96 and thus there are 96 cliques in total.

� Thus, we hypothesize that increasing overlap and branching both increase the interference
between the subfunctions, which leads to a decrease in the deceptiveness and importance
of (exact) linkage learning. This makes the problems easier in all cases for random linkage
LT-GOMEA and U-GOMEA, and easier in some cases for LT-GOMEA.

10.3.2 LT-GOMEA

� For LT-GOMEA, the first hitting time of o = 4 is significantly lower than the first hitting
time of o = 0 for b = 6 and N ≤ 120, however the effectiveness is still lower. The first hitting
time of o = 3 is no longer significantly higher than the first hitting time of o = 0 for b = 6,
whereas it was for b = 1. Unsurprisingly then, o = 3 has a significantly higher first hitting
time than o = 4 for b = 6.

� For LT-GOMEA, the performance is first decreased with increasing overlap, due to its in-
ability to represent the structure fully and the resulting less efficient mixing. The decreasing
deceptiveness a) does not initially increase the performance of LT-GOMEA, as this was not a
problem, or b) it does increase the performance, but the effect of the inability to represent the
problem structure is stronger. At o = 3, the inability to represent the problem structure fully
is overshadowed by the interference between subfunctions, leading to decreased deceptiveness
and importance of (exact) linkage learning.

10.3.3 Random linkage LT-GOMEA & U-GOMEA

� Although there is no significant difference in first hitting time, random linkage LT-GOMEA
does have a higher effectiveness than U-GOMEA, so mixing with blocks of size ≥ 1 is advan-
tageous.

� Learning the linkage is not essential to find the global optimum for problems with o = 4 and
b = 6, but there still is a big difference in performance.

10.3.4 Branching

� The distribution of the number of cliques a variable is in, is pushed to the extremes with
increasing b; there are some variables that appear in a lot of cliques and a lot of variables

CHAPTER 10. EXPERIMENT: INCREASING OVERLAP AND BRANCHING 45

that appear in just 1 clique. The biggest change is for b = 1 → 2, but the distribution
changes further with increasing b. This change in the distribution is caused by the increasing
shallowness of the clique tree; an increasing number of cliques are leafs in the clique tree.

� This means that some variables occur in a big number of cliques (≈ 60) and we hypothesize
that it is very important to get the value of these variables right to find a global optimum.
After setting these variables’ values, most of the remaining variables’ values can be set by just
checking which value is higher (0 or 1). This would also partly explain the further decrease
in deceptiveness.

Chapter 11

Experiment: Random vs.
Deceptive Trap Codomain

In the previous experiments, we used the deceptive trap codomain as described in section 7.1.1,
for which we saw the behavior as listed in the previous chapters. In this chapter, we perform some
experiments to see how much of this behavior is due to the used codomain, by comparing the
results of the deceptive trap codomain with the random codomain. We test using both the regular
LT-GOMEA, that we have used in most experiments, and the random linkage LT-GOMEA, to
identify any differences in the results due to the differences in the algorithms.

In this experiment, we try to answer the question:

How does an increasing overlap affect the performance and effectiveness of LT-GOMEA for TD
Mk Landscapes problems with the random codomain?

In the very first experiment, we saw the pattern that the difficulty first increased with increasing
overlap, before decreasing when the overlap is increased further. The difficulty first increasing
before decreasing was, as explained in the results section in the previous chapter, due to the
combination of 1) LT-GOMEA getting worse at representing the structure and 2) the deceptiveness
and importance of (exact) linkage learning decreasing. For the random codomain, there is no
deceptiveness to decrease, but the importance of linkage learning will decrease with increasing
overlap o. The latter should counter the increasing inability of the Linkage Tree to represent the
problem structure, but it is yet unclear how these will interact exactly. We hypothesize that we
see a similar pattern here as for the deceptive trap codomain. For random linkage LT-GOMEA,
which does not learn the linkage, the only active factor is the decreasing importance of the linkage
learning. Therefore, we expect the performance and effectiveness to improve with increasing overlap
o.

11.1 Experimental Setup

We use many of the same configuration settings as in the experiment in the previous chapter,
where we looked at branching factors b ∈ {1, 2, 3, 4, 5, 6}, but limit the branching factor here to a
value of b = 2 to eliminate the high number of global optima problem. As the number of global
optima is not an issue then anymore, we use a maximum problem size of 250. So, for the problems,
we use configuration input: M ∈ {m |N ≤ 250}, k = 5, o ∈ {0, 1, 2, 3, 4}, b = 2. Where problem
size N = (m − 1) · (k − o) + k. We test on the random and deceptive trap codomains, and use
LT-GOMEA and random linkage LT-GOMEA.

11.2 Results

11.2.1 LT-GOMEA

The results for LT-GOMEA are plotted in Figures 11.1a and 11.1b, for the deceptive trap and
random codomains respectively.

46

CHAPTER 11. EXPERIMENT: RANDOM VS. DECEPTIVE TRAP CODOMAIN 47

(a) deceptive trap

(b) random

Figure 11.1: Performance and effectiveness of LT-GOMEA for different overlap values on a) de-
ceptive trap and b) random codomain.

48 11.2. RESULTS

o 1 2 3 4
0 6/6 8/8 12/12 21/24
1 X 4/10 6/15 5/31
2 X X 2/20 32/43
3 X X X 30/65

Table 11.1: Statistical results for the differences in mean values between different overlap values,
for o ∈ {0, 1, 2, 3} vs o ∈ {1, 2, 3, 4}, LT-GOMEA, random codomain, b = 2. H1: Increasing overlap
results in a different first hitting time.

o 0 1 2 3 4
20/44 11/31 13/38 34/64 88/139

Table 11.2: Statistical results for the differences in mean values between the deceptive trap and
random codomain, for o ∈ {0, 1, 2, 3, 4}, LT-GOMEA, b = 2. H1: Deceptive trap has a different
first hitting time than random codomain.

First, we discuss the results for the random codomain. Something that stands out is the sudden
drop in the effectiveness around a problem size of 140, this is due to our configured maximum
number of evaluations for LT-GOMEA of 300,000. After this maximum number of evaluations is
spent, LT-GOMEA is stopped. If the median first hitting time approaches 300,000, then many
runs exceed this number and are therefore stopped. This decreases the effectiveness quickly.

Furthermore, we indeed see a pattern similar to the one we saw for the deceptive trap codomain.
For increasing overlap o, the difficulty first increases in both effectiveness and first hitting time
for o = 0 → 1 and in the effectiveness for o = 1 → 2. Then, the difficulty decreases between
o = 2 → 4 in the first hitting time. See Table 11.1 for the statistical data. Our hypothesis
correlates with the results, so it could be right. The difficulty could indeed first increase due to
the increasing inability to represent the problem structure, before decreasing due to the linkage
learning importance decreasing and having a greater effect than the inability to represent the
structure.

So now that we understand why the results of LT-GOMEA on TD Mk Landscapes with random
codomain are the way they are, we can compare the results for the deceptive trap and random
codomain. Table 11.2 shows that any difference in the first hitting time is insignificant. This
is an unexpected result, as the Linkage Tree is harder to learn for LT-GOMEA when a random
codomain is used, so we expected a significant difference for at least o = 0. Although the differences
in first hitting times are insignificant, in the figure it is clearly visible that o = 1 has a higher
effectiveness for the random codomain, until the number of evaluations reach the maximum we set
for the experiment. The reason for this is unclear, but one explanation could be that deceptive
trap codomain is more difficult due to the deceptiveness and the inability to fully represent the
structure, whereas for the random codomain not completely being able to represent the structure
has less of an effect.

o 1 2 3 4
0 0/0 1/1 2/2 4/4
1 X 0/2 2/2 5/5
2 X X 2/4 9/10
3 X X X 19/23

Table 11.3: Statistical results for the differences in mean values between different overlap values,
for o ∈ {0, 1, 2, 3} vs o ∈ {1, 2, 3, 4}, random linkage LT-GOMEA, random codomain, b = 2. H1:
Increasing overlap decreases first hitting time.

CHAPTER 11. EXPERIMENT: RANDOM VS. DECEPTIVE TRAP CODOMAIN 49

(a) deceptive trap

(b) random

Figure 11.2: Performance and effectiveness of random linkage LT-GOMEA for different overlap
values on a) deceptive trap and b) random codomain.

50 11.3. CONCLUSIONS

o 0 1 2 3 4
0/0 1/1 3/6 4/19 16/70

Table 11.4: Statistical results for the differences in mean values between the deceptive trap and
random codomain, for o ∈ {0, 1, 2, 3, 4}, random linkage LT-GOMEA, b = 2. H1: Deceptive trap
has a different first hitting time than random codomain.

o 0 1 2 3 4
4/4 5/5 9/10 19/23 44/70

Table 11.5: LT-GOMEA vs random linkage LT-GOMEA. H1: LT-GOMEA has a lower first
hitting time than random linkage LT-GOMEA.

11.2.2 Random Linkage LT-GOMEA

The results for random linkage LT-GOMEA are plotted in Figures 11.2a and 11.2b, for the deceptive
trap and random codomains respectively.

As per our hypothesis, the difficulty decreases with increasing overlap. However, as can be seen
in Table 11.3, any differences in first hitting time between o ∈ {0, 1, 2} are not significant. For the
increase in overlap from 0 to 1, there is no significant difference, as there are not enough problem
sizes for M > 5 that can be compared. From 1 to 2, there is a difference, but it is not significant.
However, from o = 2 onwards, the increase in overlap decreases the difficulty. From o = 2 to
o = 3, this is only the case in terms of effectiveness, but for o = 3 to o = 4 both the first hitting
time and the effectiveness improve. We suggested that the decrease in importance of the linkage
learning could be an explanation, this can indeed be the case. Noteworthy is the equal difficulty
for o ∈ {0, 1, 2}, therefore possibly suggesting that the importance of linkage learning only begins
to decrease when o is increased beyond 2.

From Table 11.4, we can draw the conclusion that there is no significant difference in the first
hitting time between the deceptive trap and random codomain, for equal overlap settings and the
random linkage LT-GOMEA algorithm. Note that, although there is a significant difference in the
first hitting time for overlap setting 1, it is recorded for just one problem size, so it is not enough to
reliably conclude that there is a significant difference. However, the effectiveness does differ quite a
bit between the two codomains for o ∈ {0, 1, 2}. For o = 0, this could be explained by the fact that
the random linkage LT-GOMEA does not learn any linkage, so it will not be affected by the higher
difficulty of learning of the random codomain’s structure and is thus only affected by the lower
difficulty codomain (for algorithms that do not learn linkage) as it is not necessarily deceptive. This
would extend to overlap settings o ∈ {1, 2} as well. Furthermore, for the deceptive trap codomain,
the deceptiveness decreases with increasing overlap, so this could explain the bigger differences in
difficulty between overlap settings for the deceptive trap codomain in comparison with the random
codomain.

From Table 11.5 we can conclude that the difference in first hitting time between LT-GOMEA
and random linkage LT-GOMEA for the random codomain is significant for o ∈ {0, 1, 2, 3}. For
these overlap values, LT-GOMEA performs better. Interestingly, for the deceptive trap codomain,
the difference was significant for o ∈ {2, 3, 4}, as we saw in Table 10.8a. Importantly, LT-GOMEA
has a higher effectiveness than random linkage LT-GOMEA in all tested configurations with b = 2
(both deceptive trap en random codomains).

11.3 Conclusions

� As we hypothesized, the first hitting time of LT-GOMEA follows a similar pattern for the
random codomain as for the deceptive trap codomain. We think the difficulty first increases
due to the increasing inability to represent the problem structure, before decreasing due to
the linkage learning importance decreasing and having a greater effect than the inability to
represent the structure.

� Furthermore, as we hypothesized, the first hitting time of random linkage LT-GOMEA for
the random codomain does decrease with increasing overlap. However, the first hitting time

CHAPTER 11. EXPERIMENT: RANDOM VS. DECEPTIVE TRAP CODOMAIN 51

is similar for overlap values o ∈ {0, 1, 2}. We suggested that the first hitting time would
decrease due to the decreasing importance of linkage learning, and still agree, but the results
suggest that the importance of the linkage learning only starts to decrease from o = 2 → 3
onwards.

� Interestingly, for random linkage LT-GOMEA, the first hitting time and effectiveness between
overlap values o ∈ {0, 1, 2} is very similar for the random codomain, as mentioned above, but
different for the deceptive trap codomain. Above we tried to explain this result for the random
codomain, here we just add a comment about the difference we see here between the overlap
values for deceptive trap: contrarily to the random codomain, deceptiveness does decrease for
the deceptive trap codomain with increasing overlap and this explains the relatively bigger
differences in difficulty between the overlap values. In other words, the effect of the overlap
o on the difficulty of the problems is greater for the deceptive trap codomain than for the
random codomain, due to not just the importance of the linkage learning decreasing, but the
deceptiveness decreasing as well. Finally, the effectiveness for o = 0 differs between the two
codomains, this could be explained by the easier subfunctions of the random codomain (as
it is not necessarily deceptive).

� For both LT-GOMEA and random linkage LT-GOMEA, there is no significant difference in
the first hitting time between the deceptive trap and random codomains, for o ∈ {0, 1, 2, 3, 4}.

� LT-GOMEA has a similar or better first hitting time and a better effectiveness than random
linkage LT-GOMEA for all tested configurations. Thus, this suggests that linkage learning
is recommended for the tested configurations.

Chapter 12

Conclusions

In this work, we have answered the research question ‘What is the performance and effectiveness
of LT-GOMEA on certain subclasses of TD Mk Landscapes?’ for the subclasses considered in this
work: codomains = {deceptive trap, random}, and topological properties = {overlap, branching}.
For these subclasses, we have looked at the interaction between the above subclasses of TD Mk
Landscapes and the landscape features = {number of global optima, deceptiveness}. Furthermore,
we have reported the effect of changes in the subclasses and the landscape features on the perfor-
mance and effectiveness of LT-GOMEA. This hopefully contributes to a better understanding of
the TD Mk Landscape benchmark and its parameters.

In this chapter, we summarize the context and results of this work, offer an overview of the
takeaway points, and list opportunities for future work.

12.1 Summary

Whitley et al.[23] recently introduced the TD Mk Landscape to generalize the Adjacent NK Land-
scape, by removing its unnecessary constraints (for benchmarking) and by focusing on the key
property to allow for a polynomial global optimum calculation: the tree-width of the Mk Land-
scape (or k-bounded pseudo-Boolean optimization problem) should be known and bounded by k.
We think the TD Mk Landscape is very suitable to benchmark black box optimization algorithms,
due to 1) the fact that linkage learning will be required for black box algorithms to reliably and
efficiently find the global optimum for some codomains, and 2) this polynomial global optimum
calculation, allowing to report on the effectiveness and overall performance of an algorithm.

Thierens et al.[20] recently introduced the CliqueTreeMk algorithm to generate TD Mk Land-
scapes and find their global optimum (or optima). We introduced it in more detail in this work,
and use the implementation by van Driessel et al.[6] to generate the TD Mk Landscapes for our
experiments.

For our experiments, we use a linkage learning genetic algorithm called Linkage Tree Gene-pool
Optimal Mixing Evolutionary Algorithm (LT-GOMEA) to show the difficulty of the problems. The
LT-GOMEA algorithm has shown state-of-the-art performance for some discrete, Cartesian-space
optimization problems[3].

In our experiments, we have tried to answer the question: What is the performance and ef-
fectiveness of LT-GOMEA on certain subclasses of TD Mk Landscapes? In the remainder of this
summary, we summarize our experiments by listing the specific research questions and the results.

12.1.1 Increasing Overlap

We started off with our first question to get a first intuition: How does an increasing overlap
affect the performance and effectiveness of LT-GOMEA for TD Mk Landscapes problems with the
deceptive trap codomain?

Although this initial experiment does not allow for firm conclusions, we observed a pattern of
the difficulty first increasing prior to decreasing with increasing overlap, which served as a starting
point for our research. To begin answering our initial question, we therefore asked ourselves the
question:

Why does the difficulty first increase with increasing overlap, before decreasing for o > 2?

52

CHAPTER 12. CONCLUSIONS 53

12.1.2 Branching / Global Optima

Our first idea was to look into the effect of the number of global optima, therefore asking the
following question:

How does the number of global optima affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

Then, we discovered that the number of global optima is not the only change when we increase
the branching factor. Therefore, we zoomed in on the global optima and on the other effects of
increasing the branching factor.

12.1.3 Global Optima

First, as our previous question was already considering the number of global optima, we again tried
to answer it, now by really only having the number of global optima differ between two problem
sets:

How does the number of global optima affect the performance and effectiveness of LT-GOMEA
for TD Mk Landscapes problems with the deceptive trap codomain?

We concluded that the number of global optima does have an effect on the first hitting time
and effectiveness, but it is smaller than we expected. We think the difference is so small, because
the hamming distance between the global optima is small; LT-GOMEA must already be close to
one of the global optima to find the others.

Furthermore, we put forth our hypothesis that the interference of the deceptive subfunctions,
caused by the increasing overlap, causes 1) the high number of global optima, 2) a decrease in
deceptiveness of the problem, and 3) a decrease in importance of learning the (exact) linkage. It
could be the case this interference is further increased by increasing the branching factor.

12.1.4 Increasing Overlap and Branching

Now we turned to the other effects of increasing the branching factor; we tried to answer the
question: How does an increasing branching factor affect the performance and effectiveness of
LT-GOMEA for TD Mk Landscapes problems with the deceptive trap codomain?

As per our hypothesis, the first hitting time and effectiveness was equal or improved with
increasing branching (b = 1 → 6) for all algorithms (LT-GOMEA, random linkage LT-GOMEA,
and U-GOMEA), but just for o = 4. The only exception was for LT-GOMEA and b = 1→ 2.

When the branching is increased for o = 4, 1) the number of global optima decreases and 2)
the deceptiveness and importance of linkage learning decrease. The second factor is caused by the
further increased interference between subfunctions, which is due to the distribution of cliques per
variables shifting to some variables appearing in a lot of cliques and many variables appearing in
just 1 clique.

We hypothesize that the variables that appear in a big number of cliques (≈ 60), due to this
shifted distribution, are very important to finding a global optimum. If these variables are set to
the right value, most of the remaining variables can be set by checking what value is higher. If
this hypothesis is right, this would partly explain the further decrease in deceptiveness.

So, increasing overlap and branching both increase the interference between the subfunctions,
therefore decreasing the deceptiveness and importance of learning the (exact) linkage. This de-
creases the difficulty in all cases for random linkage LT-GOMEA and U-GOMEA, and in some
cases for LT-GOMEA.

Our contemporary understanding then led us to hypothesize that the following happens when
the overlap is increased for LT-GOMEA: Due to its inability to represent the problem structure
fully, the mixing is less efficient and the performance and effectiveness is decreased. The decreasing
deceptiveness either does not initially increase the performance and effectiveness of LT-GOMEA,
as this was not a problem, or it does increase the performance and effectiveness, but the effect of
the inability to represent the problem structure is stronger. At o = 3, the inability to represent the
problem structure is overshadowed by the interference between subfunctions, leading to decreased
deceptiveness and importance of (exact) linkage learning, and thus to increased performance and
effectiveness.

54 12.2. TAKEAWAYS

12.1.5 Random vs. Deceptive Trap Codomain

Now that we answered the question on the effects of increased branching and looked shortly into the
mechanism behind it, we turn our attention to testing our hypothesis on the effects of increasing
overlap. We do so by answering the question:

How does an increasing overlap affect the performance and effectiveness of LT-GOMEA for TD
Mk Landscapes problems with the random codomain?

Just as we expected, the first hitting time of LT-GOMEA for the random codomain follows a
pattern similar to the one visible for the deceptive trap codomain, with increasing overlap. We
think this is due to just the decreasing deceptiveness missing: the difficulty first increases due to
the increasing inability to represent the problem structure, before decreasing due to the linkage
learning importance decreasing and having a greater effect than the inability to represent the
problem structure.

Furthermore, the first hitting time of random linkage LT-GOMEA for the random codomain
decreases with increasing overlap, also as we expected based on our hypothesis. Again, this is
similar to the pattern we saw for deceptive trap, but now with a smaller effect due to the decreasing
deceptiveness missing. The results suggest that the importance of the linkage learning only starts
to decrease from o = 2→ 3 onwards.

To rephrase part of what was noted above: the effect of the overlap o on the difficulty of the
problems is greater for the deceptive trap codomain than for the random codomain, due to the
deceptiveness decreasing as well.

This now has answered our research questions, but of course leaves room for future research to
confirm or deny our hypotheses and results.

Finally, it should be noted that LT-GOMEA has a similar or better first hitting time and
a better effectiveness than random linkage LT-GOMEA for all tested configurations (different
codomains, o, b). Thus, this suggests that linkage learning is beneficial, even when the Linkage
Tree FOS can not represent the problem structure fully due to overlap between the subfunctions.

12.2 Takeaways

� With increasing overlap

– the Linkage Tree’s ability to (learn/) represent the structure decreases

– being able to learn or represent the structure becomes less important (perhaps only
from o = 2→ 3 onwards for k = 5) due to interference between subfunctions

– (deceptive trap codomain) the deceptiveness decreases due to interference between de-
ceptive trap subfunctions

– (b = 1) the number of global optima increases

� With high overlap and increasing branching

– the distribution of the cliques per variable in the clique tree shifts to one that has a
few variables that occur in a lot of cliques and many that occur in just 1 clique. These
variables that appear in a lot of cliques might be important to find a global optimum.

– being able to learn or represent the structure becomes even less important due to a
further increased interference between deceptive trap subfunctions (due to the shifted
distribution)

– (deceptive trap codomain) deceptiveness is further reduced due to an increased inter-
ference between deceptive trap subfunctions(due to the shifted distribution)

– The number of global optima is reduced, with the biggest reduction from branching
value 1 → 2. This increases the difficulty of the problems, but only by a little, due to
the small hamming distance between the global optima.

� Linkage learning with the LT FOS is beneficial in our experiments.

� For the algorithms:

CHAPTER 12. CONCLUSIONS 55

– For LT-GOMEA, the difficulty of the TD Mk Landscape problems do not strictly
increase with increasing overlap. Instead, we see it increase prior to decreasing. Using
the above observations, we can explain these results:

The Linkage Tree’s ability to represent the structure decreases with increasing overlap,
so this makes the mixing less effective, this is why the difficulty is increased initially.
With increasing overlap, the ability to learn or represent the structure becomes less
important, decreasing the negative effect of not being able to represent or learn the
structure. For deceptive trap codomain problems, the deceptiveness also decreases due
to the interference of the deceptive trap subfunctions.

When the branching factor is increased in combination with a high overlap, the difficulty
is further decreased for the deceptive trap codomain (random codomain was not tested).
However, the exact value of b at which the difficulty decreases is dependent on the
number of global optima for the different branching factors. For N ≤ 120 and o = 4,
the difficulty starts to decrease when the branching factor is increased to a value > 2,
but this is specific to the experiment configuration. This is due to a big increase in the
number of global optima decreasing the difficulty. As for the other factor at play when
increasing the branching factor: the increased branching factor causes the distribution
of cliques per variable to be concentrated at a handful of variables that occur in a
high number of cliques, leaving a lot of variables in just 1 clique. This increases the
interference between the subfunctions further and therefore decreases deceptiveness (in
the case of deceptive trap codomain) and the importance of linkage learning.

– For random linkage LT-GOMEA, we see a different picture in the results due to this
random linkage. Any increase in overlap for the tested codomains (deceptive trap and
random) results in a decrease in difficulty (in terms of first hitting time and effective-
ness). Any increase in branching does so as well for the deceptive trap codomain, for
high overlap settings. Due to its random linkage, it does not learn the structure of the
problems and therefore mixes less effectively then normal LT-GOMEA. This absence
of learning does mean, however, that the effect of not being able to learn or represent
the structure is not a factor affecting the results with increasing overlap. Therefore, the
fact that being able to learn or represent the structure becomes less important and the
deceptiveness decreasing make the problems easier with increasing overlap.

Random linkage LT-GOMEA performs worse than LT-GOMEA in all tests, unsurpris-
ingly, due to the linkage learning leading to more effective mixing for LT-GOMEA.

– For univariate FOS GOMEA, U-GOMEA, the differences between overlap values and
branching factor values are very similar to that of random linkage LT-GOMEA. U-
GOMEA performs equal to or worse than Random linkage LT-GOMEA in our tests,
due to the mixing with blocks of size > 1 leading to more effective mixing.

� The effect of the overlap o on the difficulty of the problems is greater for the deceptive trap
codomain than for the random codomain, due to the deceptiveness decreasing as well.

12.3 Future work

We think our results show that the TD Mk Landscape certainly is an interesting benchmark, due
to its many unexplored properties, while our background knowledge chapters show its convenience.
We hope our work has provided ample opportunities to continue the research, and we provide a
non-exhaustive list of possible future work areas below:

12.3.1 Global optima & cliques per variable

� We plotted the number of cliques per variable for our experiment on the increasing branching
factor, and with increasing branching factor (for o = 4), the number of variables that appeared
in a lot of variables increased. It is possible that these ‘high-profile’ variables are essential
for finding a global optimum, and could then be regarded as a backbone. Therefore, it would
be interesting to first check if these backbone variables are indeed essential for the global
optima and thus have a specific value they have for all global optima. If this is the case,
then we could test this hypothesis by passing LT-GOMEA these global optima values for the

56 12.3. FUTURE WORK

backbone variables from the start and seeing if this improves the performance of LT-GOMEA
by much. If the backbone is indeed essential to find a global optimum, and if the problem
is easily solved when the backbone is correctly set, then the landscape might have lost a lot
of its deceptiveness. Additionally, it would be interesting to report for the problems with a
lot of global optima, in how many cliques the variables appear that differ between the global
optima. Especially for problems that have a number of global optima equal to a power of
2 (most of them), and a max hamming distance between the global optima equal to log2 of
the number of global optima (also most of them), as the variables that differ between the
global optima then all have two maximizing values for all global optima constructed so far.
This could provide a start for the analysis of why it is possible that there are so many global
optima.

� As mentioned in the previous item, it would be interesting to analyze what exactly causes
the difference in the number of global optima for the deceptive trap codomain and how one
can make a high number of global optima appear. This is relevant for codomains such as
deceptive trap that even for b = 2 start to have a high number of global optima for o = 4
and N > 200 (see Figure 11.1). It would furthermore be of interest to analyze the problems
with a lot of global optima further to measure exactly how often the number of problems is
a power of 2.

� To provide an insight into (part of) the mechanisms under the hood when the overlap is
increased, the distribution of cliques per variable for overlap value o 6= 4 could be plotted, as
an extension to our current o = 4. This could provide an insight especially in combination
with the previously mentioned option to investigate the presence of a backbone. Additionally,
the relation between the distribution and the number of global optima could be studied.

� Very closely related to the previous suggestions, one could look into the overlap settings 0
and 4 to see which is more difficult in terms of performance and effectiveness with b = 6
and N > 250. The previous suggestions could help explain what causes the difference in
performance and effectiveness.

12.3.2 Other

� Currently, we have hypothesized that the deceptiveness of the deceptive trap problems de-
creases due to interference between the subfunctions when the overlap and branching is
increased, but an analysis of the deceptiveness is still missing. It would certainly put our hy-
potheses to the test when the actual deceptiveness of the problems is analyzed with increasing
overlap and branching.

� We did just two experiments on the random codomain, and it would certainly be interesting to
perform many of the same experiments as we did for the deceptive trap codomain. Therefore,
one could test U-GOMEA as well to test our hypotheses on random linkage LT-GOMEA’s
results. Furthermore, one could increase the branching factor b to compare our hypotheses
on the effect of increasing o and b with the actual results.

� Our experiments used the population sizing-free scheme for LT-GOMEA to get rid of the
population size parameter, however, it remains of interest to analyze the scaling of the min-
imum required population size with increasing N . Therefore, one future work opportunity
would be to use a fixed population size for LT-GOMEA during each run.

� The current CliqueTreeMk algorithms are designed to use fixed k, o, b values, however, the
definition of TD Mk Landscape does not require fixed values, so one could extend the algo-
rithm to allow for more possible problems. Then, the algorithms would allow for truly any
Tree Decomposition Mk Landscape to be generated.

Bibliography

[1] Peter A N Bosman and Dirk Thierens. “Linkage Neighbors , Optimal Mixing and Forced
Improvements in Genetic Algorithms Categories and Subject Descriptors”. In: Gecco 2012
(x 2012), pp. 585–592.

[2] Peter A.N. Bosman, Ngoc Hoang Luong, and Dirk Thierens. “Expanding from discrete carte-
sian to permutation Gene-Pool Optimal Mixing Evolutionary Algorithms”. In: GECCO 2016
- Proceedings of the 2016 Genetic and Evolutionary Computation Conference (2016), pp. 637–
644. doi: 10.1145/2908812.2908917.

[3] Peter A.N. Bosman and Dirk Thierens. “More concise and robust linkage learning by filtering
and combining linkage hierarchies”. In: GECCO 2013 - Proceedings of the 2013 Genetic
and Evolutionary Computation Conference (2013), pp. 359–366. doi: 10.1145/2463372.
2463420.

[4] Yves Crama, Pierre Hansen, and Brigitte Jaumard. “The basic algorithm for pseudo-Boolean
programming revisited”. In: Discrete Applied Mathematics 29 (2-3 1990), pp. 171–185. issn:
0166218X. doi: 10.1016/0166-218X(90)90142-Y.

[5] Andreas WM Dress. “On the computational complexity of composite systems”. In: Fluctua-
tions and Stochastic Phenomena in Condensed Matter. Springer, 1987, pp. 377–388.

[6] Tobias van Driessel and Dirk Thierens. “Benchmark Generator for TD Mk Landscapes”. In:
2021 Genetic and Evolutionary Computation Conference Companion. GECCO ’21. Associa-
tion for Computing Machinery, 2021, pp. 1227–1233.

[7] Yong Gao and Joseph Culberson. “An analysis of phase transition in NK landscapes”. In:
Journal of Artificial Intelligence Research 17 (2002), pp. 309–332.

[8] Ilan Gronau and Shlomo Moran. “Optimal implementations of UPGMA and other common
clustering algorithms”. In: Information Processing Letters 104.6 (2007), pp. 205–210.

[9] PL Hammer, I Rosenberg, and S Rudeanu. “Application of discrete linear programming to
the minimization of Boolean functions”. In: Rev. Mat. Pures Appl 8 (1963), pp. 459–475.

[10] Georges R Harik and Fernando G Lobo. “A parameter-less genetic algorithm.” In: GECCO.
Vol. 99. 1999, pp. 258–267.

[11] Petru L Ivanescu, Sergiu Rudeanu, and Peter L Hammer. Boolean methods in operations
research and related areas. 1968.

[12] Stuart A Kauffman et al. The origins of order: Self-organization and selection in evolution.
Oxford University Press, USA, 1993.

[13] Stuart A Kauffman and Edward D Weinberger. “The NK model of rugged fitness landscapes
and its application to maturation of the immune response”. In: Journal of theoretical biology
141.2 (1989), pp. 211–245.

[14] Daphne Koller and Nir Friedman. “Structured Probabilistic Models: Principles and Tech-
niques”. In: MIT Press. To appear 48 (2009), pp. 54–61.

[15] Ngoc Hoang Luong, Han La Poutré, and Peter AN Bosman. “Exploiting linkage information
and problem-specific knowledge in evolutionary distribution network expansion planning”.
In: Evolutionary computation 26.3 (2018), pp. 471–505.

[16] Martin Pelikan, David E Goldberg, and Fernando G Lobo. “A survey of optimization by
building and using probabilistic models”. In: Computational optimization and applications
21.1 (2002), pp. 5–20.

57

https://doi.org/10.1145/2908812.2908917
https://doi.org/10.1145/2463372.2463420
https://doi.org/10.1145/2463372.2463420
https://doi.org/10.1016/0166-218X(90)90142-Y

58 BIBLIOGRAPHY

[17] Martin Pelikan et al. “Performance of evolutionary algorithms on NK landscapes with nearest
neighbor interactions and tunable overlap”. In: Proceedings of the 11th Annual Genetic and
Evolutionary Computation Conference, GECCO-2009 (May 2014 2009), pp. 851–858. doi:
10.1145/1569901.1570018.

[18] Dirk Thierens. “The linkage tree genetic algorithm”. In: Lecture Notes in Computer Science
6238 LNCS (PART 1 2010), pp. 264–273. issn: 03029743. doi: 10.1007/978-3-642-15844-
5_27.

[19] Dirk Thierens and Peter AN Bosman. “Optimal mixing evolutionary algorithms”. In: Proceed-
ings of the 13th annual conference on Genetic and evolutionary computation. 2011, pp. 617–
624.

[20] Dirk Thierens and Tobias van Driessel. “A Benchmark Generator of Tree Decomposition
Mk Landscapes”. In: Proceedings of the Genetic and Evolutionary Computation Conference
2021. GECCO ’21. Association for Computing Machinery, 2021, pp. 229–230.

[21] Edward D. Weinberger. “NP Completeness of Kauffman’s N-k Model, A Tuneable Rugged
Fitness Landscape”. In: Santa Fe Institute Working Papers 96-02-003 (Feb. 1996).

[22] Darrell Whitley. “Mk landscapes, NK landscapes, MAX-kSAT: A proof that the only chal-
lenging problems are deceptive”. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. 2015, pp. 927–934.

[23] L Darrell Whitley, Francisco Chicano, and Brian W Goldman. “Gray box optimization for
Mk landscapes (NK landscapes and MAX-kSAT)”. In: Evolutionary computation 24.3 (2016),
pp. 491–519.

[24] Alden H Wright, Richard K Thompson, and Jian Zhang. “The computational complexity
of NK fitness functions”. In: IEEE Transactions on Evolutionary Computation 4.4 (2000),
pp. 373–379.

https://doi.org/10.1145/1569901.1570018
https://doi.org/10.1007/978-3-642-15844-5_27
https://doi.org/10.1007/978-3-642-15844-5_27

Appendix A

Additional Tables & Figures

A.1 Global Optima

Figure A.1: Performance and effectiveness of random linkage LT-GOMEA for high/low number of
global optima

#opt. high
low 38/50

Table A.1: Statistical results for the differences in mean values between problems with either a
low or high number of global optima, for random linkage LT-GOMEA, o = 4, b = 1. H1: Problems
with a high number of global optima have a lower first hitting time than problems with a low
number of global optima, for an otherwise equal configuration.

59

60 A.2. INCREASING OVERLAP AND BRANCHING

A.2 Increasing Overlap and Branching

A.2.1 Random Linkage LT-GOMEA

Figure A.2: Performance and effectiveness of random linkage LT-GOMEA for overlap value o = 4
with different branching values: b ∈ {1, 2}.

A.2.2 U-GOMEA

APPENDIX A. ADDITIONAL TABLES & FIGURES 61

Figure A.3: Performance and effectiveness of U-GOMEA for overlap value o = 4 with different
branching values: b ∈ {1, 2}.

Appendix B

GECCO ’21 Workshop Paper

Workshop paper ‘Benchmark Generator for TD Mk Landscapes’ @ Analysing Algorithmic Be-
haviour of Optimisation Heuristics [6].

62

Benchmark Generator for TD Mk Landscapes
Tobias van Driessel
Utrecht University
Utrecht, Netherlands

tobiasvandriessel@startmail.com

Dirk Thierens
Utrecht University
Utrecht, Netherlands
d.thierens@uu.nl

ABSTRACT
We introduce a publicly available benchmark generator for Tree
Decomposition (TD) Mk Landscapes. TD Mk Landscapes were in-
troduced by Whitley et al. to get rid of unnecessary restrictions of
Adjacent NK Landscapes while still allowing for the calculation of
the global optimum in polynomial time. This makes TD Mk Land-
scapes more lenient while still being as convenient as Adjacent
NK Landscapes. Together, these properties make it very suitable
for benchmarking blackbox algorithms. Whitley et al., however,
introduced a construction algorithm that only constructs Adjacent
NK Landscapes. Recently, Thierens et al. introduced an algorithm,
CliqueTreeMk, to construct any TD Mk Landscape and find its op-
timum. In this work, we introduce CliqueTreeMk in more detail,
implement it for public use, and show some results for LT-GOMEA
on an example TD Mk Landscape problem. The results show that
deceptive trap problems with higher overlap do not necessarily
decrease performance and effectiveness for LT-GOMEA.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion.

KEYWORDS
Benchmarking, Decomposable Landscapes, Dynamic Programming,

ACM Reference Format:
Tobias van Driessel and Dirk Thierens. 2021. Benchmark Generator for TD
Mk Landscapes. In 2021 Genetic and Evolutionary Computation Conference-
Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3449726.3463177

1 INTRODUCTION
Suitable benchmark functions are vital to test the effectiveness and
performance of evolutionary algorithms. Ideally, these benchmark
functions should be completely understood in the sense that we
know their structure and, importantly, their global optimum (or op-
tima) so that we can check if a given EA has actually found the best
possible solution. A problem with designing benchmark functions
is that for many interesting problem classes it is not possible to com-
pute the global optimum efficiently. Not knowing whether an EA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21 Companion, July 10–14,2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463177

has found the best solution limits the practical use of the benchmark
and only allows relative comparisons between different algorithms
- or different parameter settings of a given algorithm - but it does
not allow to evaluate the overall performance and effectiveness. For
example, [6] propose an interesting class of benchmark functions,
but unfortunately there is no way to efficiently compute the global
optimum. Similarly, the well known NK Landscapes does not allow
to compute the global optimum. For this reason, EA researchers of-
ten use the Adjacent NK Landscapes where the interaction between
the variables is limited to adjacent problem variables, allowing the
use of dynamic programming to compute the global optimum.

NK Landscapes form a subset of 𝑘-bounded pseudo-Boolean op-
timization problems due to its additional constraints: the number of
subfunctions is equal to the number of variables 𝑁 (= problem size),
and every subfunction 𝑓𝑖 contains variable 𝑥𝑖 and 𝐾 neighbours,
thus setting the subfunction size 𝑘 to 𝑘 = 𝐾 + 1. For NK Landscapes,
these neighbours are 𝐾 random variables, and for Adjacent NK
Landscapes, these neighbours are the subsequent 𝐾 variables.

Although (Adjacent) NK Landscapes are popular as a bench-
mark for optimization algorithms, its constraints are unnecessary
for most benchmark purposes, as they turn out not to be impor-
tant for most fundamental theoretical properties of NK Landscapes
[9]. Whitley et al.[10] therefore recently introduced the term Mk
Landscapes to refer to any 𝑘-bounded pseudo-Boolean optimization
problem, thus a generalization of NK Landscapes without these
constraints. Additionally, they introduced the term Tree Decompo-
sition Mk Landscapes to refer to any Mk Landscape with a known
and bounded tree-width of 𝑘 . This is a generalization of Adjacent
NK Landscapes, as Adjacent NK Landscapes control tree-width by
only considering adjacent variables for the subfunctions, but this
constraint can be loosened to allow for any Mk Landscape that still
has a bounded tree-width. Ultimately, this bounded tree-width is
the key to calculate the global optimum (or optima) in polynomial
time.

Conveniently, the overall performance and effectiveness of al-
gorithms can be evaluated due to this polynomial time global op-
timum calculation. And although the global optimum is known,
black box algorithms do not know the problem structure and global
optimum, and therefore linkage learning will be necessary for par-
ticular codomains to find the global optimum reliably and efficiently.
The possibility of evaluating the performance and effectiveness of
algorithms, together with the difficulty of Tree Decomposition (TD)
Mk Landscapes for particular codomains (for blackbox algorithms),
make TD Mk Landscapes well suited as a benchmark function for
blackbox Genetic Algorithms. As the global optimum can be cal-
culated efficiently by a dynamic programming algorithm, TD Mk
Landscapes are not suitable in the context of graybox algorithms,
however, as these do know the problem structure.

https://doi.org/10.1145/3449726.3463177
https://doi.org/10.1145/3449726.3463177

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

In their work, Whitley et al.[10] introduced a construction algo-
rithm to construct TD Mk Landscapes, however, it only constructs
TD Mk Landscapes for which the subfunctions form a chain, much
like an Adjacent NK Landscape. Recently, Thierens et al.[8] in-
troduced an algorithm, CliqueTreeMk, to construct any TD Mk
Landscape and calculate its global optimum (or optima) using dy-
namic programming when its codomain values are known. In this
work, we introduce CliqueTreeMk in more detail, introduce a bench-
mark generator that implements the algorithm and is available on
GitHub, and show indicative results for the Linkage Tree Gene-pool
Optimal Mixing Evolutionary Algorithm (LT-GOMEA)[3][1], a link-
age learning blackbox evolutionary algorithm. These contributions
aim to provide a better understanding of the CliqueTreeMk algo-
rithm, let researchers use our implementation to generate TD Mk
Landscapes and benchmark their algorithms, and show that TD Mk
Landscapes could be of interest to benchmark blackbox algorithms.

2 TREE DECOMPOSITION MK LANDSCAPES
Whitley et al.[9] recently introduced the term Mk Landscapes to re-
fer to any 𝑘-bounded pseudo-Boolean optimization problem, a gen-
eralization of NK Landscapes without the unnecessary constraints
(𝑀 = 𝑁 , 𝑘 = 𝐾+1, and variable 𝑥𝑖 must appear in subfunction 𝑓𝑖).𝑀
is the number of subfunctions and 𝑘 is a constant that provides an
upper bound on the interaction order size of the subfunctions, with
𝑀 polynomial in 𝑁 . In a later work, Whitley et al.[10] introduced
Tree Decomposition Mk Landscapes, a generalization of Adjacent
NK Landscapes: Tree Decomposition Mk Landscapes refer to any
Mk Landscape with a known and bounded tree-width of 𝑘 . Tree
Decomposition (TD) Mk Landscapes focus on the key property
to allow for the global optimum be calculated in polynomial time
(𝑂 (𝑁 · 22𝐾) with Hammer’s algorithm[5][4]); a tree decomposi-
tion with bounded and known tree-width 𝑘 must be constructable
from (the Variable Interaction Graph of) the Mk Landscape, with
𝑘 ∈ 𝑂 (log𝑁). TD Mk Landscapes can be expressed by

𝑓 (𝑥) =
𝑀∑
𝑖=1

𝑓𝑖 (𝑥,𝐶𝑖)

where 𝑥 ∈ 𝑋 ,𝑋 represents the set of solutions over a bit string with
length 𝑁 ,𝑀 is the number of subfunctions, 𝑓𝑖 is the 𝑖th subfunction,
and 𝐶𝑖 is the 𝑖th subset of problem variables that form the input of
𝑓𝑖 .

Whitley et al.[10] introduced a construction algorithm to con-
struct TD Mk Landscapes, however, it limits the output to TD Mk
Landscapes with a chain-like tree decomposition, similar to the
structure of Adjacent NK Landscapes. It is therefore still limited
and can not construct all TD Mk Landscapes.

It constructs a 𝑀 × 𝑘 matrix, where the rows correspond with
the subfunctions and their variables. The variables must appear in
contiguous rows and all 𝑁 variables must appear in at least one
row. If constructed in this way, a tree decomposition can be made
with tree-width 𝑘 − 1, where every row of the matrix is represented
by a node in the tree.

3 CLIQUE TREE MK
To construct any TD Mk Landscape and calculate its global opti-
mum, Thierens et al.[8] introduced the CliqueTreeMk algorithm.

First it constructs a TDMk Landscape and then uses the structure of
the generated landscape to calculate its global optimum (or optima)
efficiently.

In the context of this algorithm, we use the term clique tree rather
than tree decomposition, as it makes heavily use of the concepts of
cliques and separators. The output of Whitley’s construction algo-
rithm could then be regarded as a clique chain rather than a clique
tree. We use the term clique to represent the set of problem vari-
ables in a subfunction, and the term separator to represent the set of
overlapping problem variables between two cliques/subfunctions,
as these terms reflect their properties in a clique tree/tree decom-
position in a succinct manner.

The idea behind CliqueTreeMk’s construction algorithm is to
construct the TD Mk Landscape by directly generating a clique
tree with the exact properties as required by the input topology
parameters, in order to ensure that a clique tree with the required
properties can be constructed, which is required by the definition of
TDMk Landscapes. Its input topology parameters are the number of
subfunctions/cliques𝑀 , number of variables per subfunction/clique
𝑘 , number of overlapping bits between subfunctions/cliques 𝑜 , and
branching factor 𝑏. The branching factor represents the number
of branches in the clique tree. The problem length 𝑁 can be repre-
sented by 𝑁 = (𝑀 − 1) · (𝑘 − 𝑜) + 𝑘 , as the first clique/subfunction
takes 𝑘 variables, and every other clique/subfunction overlaps 𝑜
variables with another clique/subfunction and adds 𝑘 − 𝑜 unused
variables to get to length 𝑘 .

The general idea of CliqueTreeMk’s construction algorithm is to
first construct clique 𝐶0 as the root of the clique tree by assigning
the first 𝑘 variables from the shuffled variable list, and then generate
𝑏 children cliques (𝐶 𝑗 ∈children𝑖) for every clique 𝐶𝑖 until we have
constructed𝑀 cliques. Each child𝐶 𝑗 overlaps with its parent𝐶𝑖 for
𝑜 variables, described by the separator 𝑆 𝑗 between 𝐶𝑖 and 𝐶 𝑗 , and
the remaining 𝑘 − 𝑜 variables are taken from the shuffled variable
list to complete 𝐶 𝑗 .

The global optimum dynamic programming algorithm then uses
this clique tree structure with its cliques and separators to calcu-
late the global optimum. It is comparable to Pelikan’s[7] dynamic
programming approach in the way it stores the 𝑘 − 𝑜 remaining
variables’s maximizing values for the values of the 𝑜 overlapping
variables (separator variables). Starting at the leaves of the tree, for
each separator 𝑆 𝑗 we store for each of the instances of the separator
variables the maximizing variable values for its child clique 𝐶 𝑗 and
the resulting score. Then, we can iterate in the reverse direction and
assign values to the clique variables in𝐶 𝑗 based on the maximizing
values for its variables stored in its parent separator 𝑆 𝑗 .

We illustrate the CliqueTreeMk algorithm during these phases
using an example instance with number of subfunctions/cliques
𝑀 = 7, subfunction/clique size 𝑘 = 3, and overlap 𝑜 = 2. To-
gether, these define length 𝑁 = 9. Furthermore, we choose a
branching factor 𝑏 = 2. The construction algorithm uses fixed
values for 𝑘 , 𝑜 , and 𝑏, but the algorithm can be extended to al-
low for non-fixed values during construction. Likewise for the
dynamic programming algorithm. The variables are randomly or-
dered: (𝑥4, 𝑥2, 𝑥7, 𝑥5, 𝑥1, 𝑥9, 𝑥3, 𝑥8, 𝑥6).

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

3.1 Construction
The algorithm is described in a textual version below and a pseu-
docode version in Algorithm 1.

(1) Initially, take the first 𝑘 variables as the root clique 𝐶0. Oth-
erwise, take the next clique 𝐶𝑖 to expand.

(2) Choose 𝑜 random variables from parent clique 𝐶𝑖 , assign to
separator 𝑆 𝑗

(3) Take next (𝑘 − 𝑜) not chosen variables and add the variables
from 𝑆 𝑗 to construct child clique 𝐶 𝑗

(4) Go to step 2 until 𝑏 branches have been built
(5) Go to 1 to expand the next clique

Algorithm 1: CliqueTreeMk Construction
Input:𝑀 , 𝑘 , 𝑁 , 𝑏, 𝑜 , shuffled list of variables
Result: Clique tree
𝐶0 ← first 𝑘 variables;
𝑐𝑜𝑢𝑛𝑡 ← 1;
for 𝑖 ← 0 to𝑀 − 2 do

for 𝑗 ← 0 to 𝑏 − 1 do
𝑆𝑐𝑜𝑢𝑛𝑡 ← 𝑜 random variables from clique 𝐶𝑖 ;
𝑥 ← next (𝑘 − 𝑜) unused variables;
𝐶𝑐𝑜𝑢𝑛𝑡 ← 𝑆𝑐𝑜𝑢𝑛𝑡 ∪ 𝑥 ;
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
if count == 𝑀 then

return clique tree;
end

end

Following the algorithm with the given example instance could
result in the following list of cliques: (𝑥4, 𝑥2, 𝑥7), (𝑥4, 𝑥7, 𝑥5), (𝑥4, 𝑥2, 𝑥1),
(𝑥7, 𝑥5, 𝑥9), (𝑥4, 𝑥7, 𝑥3), (𝑥4, 𝑥1, 𝑥8), (𝑥2, 𝑥1, 𝑥6)
In Figure 1 we illustrate the constructed clique tree with its separa-
tors.

Essentially, the algorithm creates a clique tree / tree decompo-
sition that adheres to the given constraints, defined by the input
topology parameters. Importantly, it adheres to the running inter-
section property, as problem variables are either part of a single
clique 𝐶𝑖 or part of multiple cliques that are directly connected by
separators. This follows from steps 2 and 3 of the textual version:
During construction of a clique 𝐶 𝑗 , each variable is either taken
from the unused problem variables list or copied from the parent
clique 𝐶𝑖 (and added to the separator 𝑆 𝑗), with 𝐶 𝑗 being a child of
𝐶𝑖 . The dynamic programming algorithm that calculates the global
optimum requires this running intersection property to select the
best value for variables in isolation: for 𝑘 − 𝑜 variables at every
clique and for 𝑜 variables at every separator. It is able to calculate
the global optimum in polynomial time due to the bounded (and
known) tree-width.

3.2 Global Optimum Dynamic Programming
Algorithm

To explain the dynamic programming algorithm, we first introduce
it in a textual form and then we introduce it in more detail using
some formulas.

x4 x2 x7

x4 x7 x5 x4 x2 x1

x7 x5 x9 x4 x7 x3 x4 x1 x8 x2 x1 x6

x4 x7 x4 x2

x7 x5 x4 x7 x4 x1 x2 x1

S1 S2

S3
S4 S5 S6

C0

C1 C2

C3 C4 C5 C6

Figure 1: Example clique tree with cliques C0 to C6 and sep-
arators S1 to S6.

The CliqueTreeMk global optimum solver follows very similar
steps to the dynamic programming algorithm by Pelikan et al.[7].
The CliqueTreeMk global optimum solver traverses the clique tree
from the leaves to the root, storing for each instance of separator 𝑆𝑖
(𝑜 overlapping bits) the maximizing values for the 𝑘 −𝑜 variables in
𝐶𝑖 \ 𝑆𝑖 with its score. The maximizing values for 𝐶𝑖 \ 𝑆𝑖 are stored
in 𝐾𝑖 and the accompanying score is stored in ℎ𝑖 . Then, for each
possible instance of the clique root 𝐶0, the best achievable score
𝑔0 is calculated using its children separators 𝑆 𝑗 and the stored best
achievable score in ℎ 𝑗 for that instance of the separator variables.
The highest score of these possible instances is the global optimum
(or global optima). To assemble the global optimum solution, 𝐶0’s
maximizing instance is written to the solution and the clique tree
is traversed from the root to the leaves, storing the maximizing
values for the 𝑘 − 𝑜 variables from each 𝐾𝑖 into the solution.

If there are multiple global optima, then there are multiple maxi-
mizing instances for one or more separators 𝑆𝑖 . Each of these maxi-
mizing instances for 𝑆𝑖 is stored in 𝐾𝑖 . When one of these cases of
multiple maximizing instances is encountered during the assem-
bly of the global optima, the current global optimum is copied a
number of times, according to the number of maximizing instances
in 𝐾𝑖 (minus one). Finally, each of these copies is assigned one of
the maximizing instances and the traversal of the clique tree is
continued. Each of these global optima solutions is now considered
at every remaining separator in the clique tree.

More specifically, we can define ∀ separators 𝑆𝑖 :
ℎ𝑖 (𝑎1, ..., 𝑎𝑜) = 𝑔𝑖 (𝑎1, ..., 𝑎𝑜 , 𝑎∗𝑜+1, ..., 𝑎

∗
𝑘
) with

𝑎1, ..., 𝑎𝑜 ∈ 𝑆𝑖 , 𝑎𝑜+1, ..., 𝑎𝑘 ∈ 𝐶𝑖 \ 𝑆𝑖 and 𝑎∗𝑜+1, ..., 𝑎
∗
𝑘
maximizing 𝑔𝑖

for values 𝑎1, ..., 𝑎𝑜 .
𝐾𝑖 (𝑎1, ..., 𝑎𝑜) = {𝑎∗𝑜+1, ..., 𝑎

∗
𝑘
}

And ∀ cliques 𝐶𝑖 :
𝑔𝑖 (𝑎1, ..., 𝑎𝑘) = 𝑓𝑖 (𝑎1, ..., 𝑎𝑘) +

∑
𝑗 ∈children𝑖 ℎ 𝑗 (𝑏1, ..., 𝑏𝑜)

To illustrate these, we can define the previous specifically for
our example instance. We define ∀ separators 𝑆𝑖 :
ℎ𝑖 (𝑥𝑎, 𝑥𝑏) = 𝑔𝑖 (𝑥𝑎, 𝑥𝑏 , 𝑥∗𝑐) with 𝑥𝑎, 𝑥𝑏 ∈ 𝑆𝑖 and 𝑥𝑐 ∈ 𝐶𝑖 \ 𝑆𝑖 and 𝑥∗𝑐
maximizing 𝑔𝑖 for 𝑥𝑎 and 𝑥𝑏 values.
𝐾𝑖 (𝑥𝑎, 𝑥𝑏) = {𝑥∗𝑐 }
And ∀ cliques 𝐶𝑖 : 𝑔𝑖 (𝑥𝑝 , 𝑥𝑞, 𝑥𝑟) = 𝑓𝑖 (𝑥𝑝 , 𝑥𝑞, 𝑥𝑟) + ℎ𝑐ℎ𝑖𝑙𝑑1 (𝑥𝑝 , 𝑥𝑞) +
ℎ𝑐ℎ𝑖𝑙𝑑2 (𝑥𝑝 , 𝑥𝑟)

Using the above formulas, we can write a shorter version of the
algorithm: For every possible instance of the problem variables in
𝐶0, calculate 𝑔0. Calculating 𝑔0 will recursively calculate all the
𝑔𝑖 , ℎ𝑖 , and 𝐾𝑖 values for 𝑖 > 0. The maximum of these 𝑔0 values

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

is the global optimum of the TD Mk Landscape and can be used
to retrieve the bit string that achieves this fitness. This is done by
acquiring the stored maximizing values for each separator 𝑆𝑖 from
𝐾𝑖 and assigning their values to the global optimum solution. Or in
a more pseudo code way:

(1) For each possible instance of problem variables in 𝐶0, calcu-
late 𝑔0

(2) Maximum 𝑔0 is global optimum
(3) Take next separator, starting with 𝑆1
(4) Take maximizing values from𝐾𝑖 , for problem variable values

already in global optimum solution, and put them in global
optimum solution

(5) Go to step 3 to assign all problem variable values
We illustrate the algorithm using the example used in the previ-

ous subsection. We use the following deceptive trap function for
each subfunction:

𝑓𝑖 (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) : 111 => 4
000 => 2

otherwise => 2 − 𝑐 (𝑥𝑎, 𝑥𝑏 , 𝑥𝑐)
where 𝑐 returns the number of ones in the passed variable values.
We show the calculated ℎ𝑖 and 𝐾𝑖 values for 𝑆6 and 𝑆1, as 𝑖 ∈

{3, 4, 5, 6} have the same ℎ𝑖 and 𝐾𝑖 values and likewise for 𝑖 ∈ {1, 2}.
Then we show the construction of the global optimum using the
calculation of 𝑔0 for 𝐶0.

𝐶6 = {𝑥2, 𝑥1, 𝑥6}, 𝑆6 = {𝑥2, 𝑥1}
𝑔6 (𝑥2, 𝑥1, 𝑥6) = 𝑓6 (𝑥2, 𝑥1, 𝑥6)
𝑆6 = 𝑥2𝑥1 00 01 10 11
ℎ6 (𝑥2, 𝑥1) 2 1 1 4
𝐾6 = 𝑥∗6 0 0 0 1

In the above table, we list the possible instances of the separator
variables 𝑥2 and 𝑥1, the maximizing values of the remaining variable
𝑥6 in 𝐶6 for these instances (𝐾6), and the resulting scores for these
maximizing values (ℎ6). Because 𝐶6 is one of the leaves, 𝑔6 is equal
to 𝑓6. We can see the deceptive attractor at work here, attracting
any instance of the separator variables that does not contain a part
of the local optimum.

𝐶1 = {𝑥4, 𝑥7, 𝑥5}, 𝑆1 = {𝑥4, 𝑥7}
𝑔1 (𝑥4, 𝑥7, 𝑥5) = 𝑓1 (𝑥4, 𝑥7, 𝑥5) + ℎ4 (𝑥4, 𝑥7) + ℎ3 (𝑥7, 𝑥5)
𝑆1 = 𝑥4𝑥7 00 01 10 11

ℎ1 (𝑥4, 𝑥7)
2 + 2 + 2 0 + 4 + 1 0 + 1 + 4 4 + 4 + 4

= 6 = 5 = 5 = 12
𝐾1 = 𝑥∗5 0 1 1 1

Because 𝐶1 does have children cliques, the calculation of ℎ1 and
thus of 𝑔1 does involve the ℎ𝑖 values of its children, ℎ4 and ℎ3.

𝐶0 = {𝑥4, 𝑥2, 𝑥7}, 𝑆0 = ∅
𝑔0 (𝑥4, 𝑥2, 𝑥7) = 𝑓0 (𝑥4, 𝑥2, 𝑥7) + ℎ2 (𝑥4, 𝑥2) + ℎ1 (𝑥4, 𝑥7)

𝑥4𝑥2𝑥7 000
...

111

𝑔0 (𝑥4, 𝑥2, 𝑥7)
2 + 6 + 6 4 + 12 + 12
= 14 = 28

Finally, we calculate the 𝑔0 values for all possible instances of
the problem variables in𝐶0. Here we have illustrated just two cases,
instances 000 and 111 for 𝑥4𝑥2𝑥7. Note that this table differs from
the two before in the things we calculate; here we don’t calculate ℎ𝑖
values, as there is no separator. Instead, we calculate all 𝑔0 values
and record the maximum value as the global optimum (or global
optima).

For this example, the global optimum value is 28. Themaximizing
instance for 𝐶0, while considering the rest of the clique tree using
dynamic programming, is 𝑥∗4𝑥

∗
2𝑥
∗
7 = 111. We can now traverse the

clique tree to assign the other bits of the global optimum solution.
First, 𝑆1 = {𝑥4, 𝑥7}, as is shown in the table for𝐶6 / 𝑆6, so we insert
the values of 𝑥4 and 𝑥7 from our global optimum solution, which
are 1 and 1. For instance 𝑥4𝑥7 = 11, 𝐾1 = 𝑥∗5 = 1, so we assign
value 1 to 𝑥5 in our global optimum solution. After doing this for
all separators, our global optimum solution is 111111111.

4 EXAMPLE
Our implementation of the CliqueTreeMk algorithm can be found
on GitHub1, here we show some results with our benchmark gen-
erator implementation to illustrate its ease of use. Its main func-
tionality is the generation of problems and the calculation of these
problems’s global optimum, however, it can also generate some
input codomain files for the problem generation. The codomain
files generation should make it easy to generate a TDMk Landscape
problem from scratch and benchmark an algorithm with it.

4.1 Problem Generation
The problem generator can take as input a configuration folder, a
codomain folder, a configuration file, or a codomain file. Here, we
highlight how to use the generator with a configuration file and
codomain file, and refer the reader to the documentation for the in-
structions on how to run the generator with multiple configuration
files in a folder or multiple codomain files in a folder.

4.1.1 Configuration Input. We create a configuration file to gener-
ate deceptive trap problems with topology parameters in a range,
in this case we use𝑀 ∈ {1, ..., 49}, 𝑘 = 5, 𝑜 = 1, 𝑏 = 1:

M 1 50
k 5 6
o 1 2
b 1 2
deceptive-trap

As options for the codomain we currently offer: Random, Decep-
tive Trap, NKq, NKp, and Random Deceptive Trap (a combination of
the two). Here we have chosen the deceptive trap function.

Then we use the executable problem_generator to generate the
codomain files and the problems (25 for each configuration), and
find the global optimum for each problem:

problem_generator configuration_file -n 25 FILE
CODOMAIN_OUT PROBLEM_OUT

where CODOMAIN_OUT and PROBLEM_OUT are the (existing) output
codomain folder and output problem folder.

1https://github.com/tobiasvandriessel/problem-generator

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

4.1.2 Codomain Input. Instead of generating the codomain and
then generate a problem with this generated codomain, one can use
an existing codomain file to create a TD Mk Landscape problem.
The executable offers the following subcommand for this purpose:

problem_generator codomain_file CODOMAIN_FILE
PROBLEM_FILE_OUT

4.1.3 Codomain File Structure. The input codomain files should
have the following structure:

M K O B
CODOMAIN_VALUE_1
...
CODOMAIN_VALUE_LAST

where M, K, O, and B represent the to be inserted values of𝑀 , 𝑘 , 𝑜 and
𝑏, and CODOMAIN_VALUE_1 ... CODOMAIN_VALUE_LAST represent
the𝑀 · 2𝑘 decimal codomain values, each on a new line.

4.1.4 Problem File Structure. The output problem files have the
following structure:

M K O B
GLOB_OPT_VAL
NUM_GLOB_OPT
GLOB_OPT_1
...
GLOB_OPT_LAST
CLIQUE_INDICES_1
...
CLIQUE_INDICES_LAST

where GLOB_OPT_VAL represents the global optimum (optima) value,
NUM_GLOB_OPT represents the number of global optima, GLOB_OPT_1
... GLOB_OPT_LAST represent the global optima solutions, and
CLIQUE_INDICES_1 ... CLIQUE_INDICES_LAST represent the prob-
lem variables in each clique.

An example problem generated:

2 5 1 1
1.9
2
101000111
010111000
5 3 2 1 7
1 0 6 4 8

4.2 Experiment
To show the potential of the TD Mk Landscape benchmark, we
conducted a simple experiment: We generated deceptive trap prob-
lems with increasing problem size 𝑁 and overlap 𝑜 , and ran the
Linkage Tree Gene-pool Optimal Mixing Evolutionary Algorithm
(LT-GOMEA) on these generated problems to quantify the effect of
this increase in 𝑜 for the difficulty of the problem. LT-GOMEA is a
blackbox algorithm, and thus does not have any problem structure
information, that tries to learn the linkages between the problem
variables to learn the problem structure. LT-GOMEA has shown
state-of-the-art performance for discrete, Carthesian-space opti-
mization problems[2], and should therefore show just how difficult
and non-trivial TD Mk Landscapes can be. Because we know the

global optimum (or optima) of the generated problems, we can
evaluate the overall performance and effectiveness of LT-GOMEA.

Configuration input: 𝑀 ∈ {𝑚 | 𝑁 ≤ 150}, 𝑘 = 5, 𝑜 ∈ {0, 1, ..., 4},
𝑏 = 2. Where problem size 𝑁 = (𝑚 − 1) · (𝑘 − 𝑜) + 𝑘 . Note that
preliminary experiments indicate that the branching factor 𝑏 seems
to have a big impact on the number of global optima.

The codomain used for the experiment is the deceptive trap
function, where we generate for each subfunction a random bit
string of length 𝑘 to be the local optimum and its inverse to be
the deceptive attractor. The local optimum has a score of 1.0, the
deceptive attractor has a score of 0.9 and any other bit string has
score 0.9 − 𝑑 · 0.9

𝑘
, where 𝑑 is the hamming distance to the local

deceptive attractor.
Per configuration instance we generated 25 problems, and for

each of these problems, we ran LT-GOMEA 3 times. For the runs
where LT-GOMEA manages to find the global optimum, we record
the first hitting time. The first hitting time is the number of function
evaluations until the global optimum or one of the global optima
was found by the algorithm. To record the first hitting times, we
need to ignore any unsuccessful LT-GOMEA runs, as these did
not find the global optimum. So, for the 3 runs of LT-GOMEA,
we filter out any runs that did not find the global optimum and
take the median first hitting time for the remaining successful
runs. Then we take the median value from the median first hitting
times for the 25 generated problems, where again any runs that did
not find the global optimum were filtered out. This median value
is recorded together with the problem size of the configuration.
Besides this first hitting time, we record the effectiveness of LT-
GOMEA for every configuration. We measure the effectiveness
by counting the number of problems out of 25 (for the current
configuration) for which at least 1 LT-GOMEA run found the global
optimum, or one of the global optima in case the fitness function
has multiple global optima (note that LT-GOMEA is not designed
to be a multi-modal EA, so one should not expect it to return all
global optima simultaneously). Also note that when we filter out
unsuccessful runs in the first hitting time calculation, we still record
these unsuccessful runs in the effectiveness for that configuration
instance.

We use LT-GOMEA with the population sizing-free scheme as
introduced in [1], but we use its discrete cartesian version. LT-
GOMEA instance 𝑖 with population size 𝑃𝑖 is run 4 times for every
run of instance 𝑖 + 1, with 𝑃0 = 1 and 𝑃𝑖+1 = 2 · 𝑃𝑖 . The maxi-
mum number of running LT-GOMEA instances is 25. We set the
No Improvement Stretch (NIS) to 1 + 𝑙𝑜𝑔10 (𝑃𝑖), where 𝑃𝑖 is the pop-
ulation size of LT-GOMEA instance 𝑖 . Forced Improvement (FI)[3]
is run if the best fitness in a population did not improve for more
generations than this NIS. We use premature stopping to stop any
LT-GOMEA instance when a LT-GOMEA instance with a bigger
population size has a higher average fitness. A LT-GOMEA instance
is also stopped when the fitness variance in the population of a
LT-GOMEA instance is equal to or smaller than 0.00001. When
the global optimum score is found, we stop execution (of all LT-
GOMEA instances) and record the current number of evaluations
as the first hitting time. Finally, we also stop execution as soon as
we hit 300,000 evaluations, with every partial evaluation counting
as an evaluation as well.

GECCO ’21 Companion, July 10–14,2021, Lille, France Tobias van Driessel and Dirk Thierens

The results are shown in Figure 2; the upper graph shows the
first hitting time for increasing values of the problem size 𝑁 , with a
line per overlap 𝑜 setting, and the lower graph shows the effective-
ness. When the effectiveness of an overlap configuration decreases
below 50%, it is not considered reliable anymore and therefore its
performance is not plotted anymore in the upper graph. To empha-
size this decision, we have highlighted the 50% effectiveness mark
in the lower graph with a horizontal line.

We hypothesised that the problems would become more difficult
to solve for LT-GOMEA with increasing overlap 𝑜 , however, the
results paint a different picture. Problems with overlap 1 and 2 do
require more evaluations and have a lower effectiveness than prob-
lems without any overlap, and are very close in both the required
number of evaluations as well as the effectiveness. Interestingly,
problems with overlap setting 3 have a lower number of required
evaluations and a higher effectiveness than overlap settings 1 and
2, so one could regard problems with overlap 3 as easier. Likewise,
problems with an overlap of 4 variables require less evaluations
and have a higher effectiveness than problems with overlap setting
3. Finally, and perhaps most surprising of all, the results show that
problems with overlap 4 are solved using fewer evaluations than
problems with overlap 0, for problem sizes 𝑁 ≤ 60. Importantly,
however, problems with overlap 0 are always solved, whereas prob-
lems with overlap 4 are not.

5 CONCLUSIONS
This paper aimed 1) to provide a better understanding of the Cli-
queTreeMk algorithm, 2) let researchers use our implementation to
generate TD Mk Landscapes and benchmark their algorithms, and
3) show that TD Mk Landscapes could be of interest to benchmark
blackbox algorithms.

First, we introduced the CliqueTreeMk benchmark generator
for TD Mk Landscapes by Thierens et al.[8] in more detail. We
have shown the main difference with the construction algorithm
by Whitley et al.[10]: it is able to construct TD Mk Landscapes with
a clique tree rather than a clique chain, due to the branching factor
configuration parameter 𝑏. With this branching factor, it is able to
construct any TD Mk Landscape with fixed 𝑘 , 𝑜 , and 𝑏. In the exam-
ple section, we have illustrated the usage of our implementation of
CliqueTreeMk, which is publicly available on GitHub and designed
to be easy to use for researchers. Finally, we have reported on a sim-
ple experiment to show the variation in difficulty one can already
achieve with the change of one parameter of the TD Mk Landscape;
the number of overlapping bits between subfunctions 𝑜 . The results
show that the performance and effectiveness of LT-GOMEA do not
necessarily decrease with increasing overlap 𝑜 for deceptive trap
problems.

By varying the codomain of the landscape, multiple types of
problems can be created. TD Mk Landscapes are well suited to
serve as benchmark functions for blackbox Genetic Algorithms
that are not given the structural problem information as specified
by the clique tree. Specifically, for particular codomains - including
deceptive functions - linkage learning techniques will be neces-
sary to be able to find the global optima reliably and efficiently.
Experimental studies of genetic algorithms greatly benefit from the
availability of suitable and well understood benchmark functions.

In the future, one might consider extending the CliqueTreeMk
algorithm for variable (but bounded)𝑘 , 𝑜 , and𝑏. If implemented, this
would then allow for truly any TD Mk Landscape to be generated
and its optimum calculated.

REFERENCES
[1] Peter A.N. Bosman, Ngoc Hoang Luong, and Dirk Thierens. 2016. Expanding

from discrete cartesian to permutation Gene-Pool Optimal Mixing Evolutionary
Algorithms. GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Com-
putation Conference (2016), 637–644. https://doi.org/10.1145/2908812.2908917

[2] Peter A.N. Bosman and Dirk Thierens. 2013. More concise and robust linkage
learning by filtering and combining linkage hierarchies. GECCO 2013 - Proceedings
of the 2013 Genetic and Evolutionary Computation Conference (2013), 359–366.
https://doi.org/10.1145/2463372.2463420

[3] Peter A N Bosman and Dirk Thierens. 2012. Linkage Neighbors , Optimal Mix-
ing and Forced Improvements in Genetic Algorithms Categories and Subject
Descriptors. Gecco 2012 x (2012), 585–592.

[4] Yves Crama, Pierre Hansen, and Brigitte Jaumard. 1990. The basic algorithm for
pseudo-Boolean programming revisited. Discrete Applied Mathematics 29, 2-3
(1990), 171–185. https://doi.org/10.1016/0166-218X(90)90142-Y

[5] PL Hammer, I Rosenberg, and S Rudeanu. 1963. Application of discrete linear
programming to the minimization of Boolean functions. Rev. Mat. Pures Appl 8
(1963), 459–475.

[6] Kei Ohnishi, Shota Ikeda, and Tian-Li Yu. 2020. A Test Problem with Difficulty
in Decomposing into Sub-Problems for Model-Based Genetic Algorithms. In Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
(Cancún, Mexico) (GECCO ’20). Association for Computing Machinery, New York,
NY, USA, 221–222. https://doi.org/10.1145/3377929.3389993

[7] Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark
Hauschild. 2009. Performance of evolutionary algorithms on NK landscapes with
nearest neighbor interactions and tunable overlap. Proceedings of the 11th Annual
Genetic and Evolutionary Computation Conference, GECCO-2009 (2009), 851–858.
https://doi.org/10.1145/1569901.1570018

[8] Dirk Thierens and Tobias van Driessel. 2021. A Benchmark Generator of Tree
Decomposition Mk Landscapes. In Proceedings of the Genetic and Evolutionary
Computation Conference 2021 (GECCO ’21). Association for ComputingMachinery,
229–230.

[9] Darrell Whitley. 2015. Mk landscapes, NK landscapes, MAX-kSAT: A proof that
the only challenging problems are deceptive. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. 927–934.

[10] L Darrell Whitley, Francisco Chicano, and Brian W Goldman. 2016. Gray box
optimization for Mk landscapes (NK landscapes and MAX-kSAT). Evolutionary
computation 24, 3 (2016), 491–519.

https://doi.org/10.1145/2908812.2908917
https://doi.org/10.1145/2463372.2463420
https://doi.org/10.1016/0166-218X(90)90142-Y
https://doi.org/10.1145/3377929.3389993
https://doi.org/10.1145/1569901.1570018

Benchmark Generator for TD Mk Landscapes GECCO ’21 Companion, July 10–14,2021, Lille, France

Figure 2: Performance and effectiveness of LT-GOMEA for different overlap values

	Introduction
	Research Questions
	Pseudo-Boolean optimization problem
	NK Landscapes
	Dynamic Programming for Adjacent NK Landscapes
	Hammer
	Weinberger
	Wright
	Pelikan

	Mk Landscapes
	Background knowledge
	Variable Interaction Graph
	Tree Decomposition / Clique Tree

	Localized and TD Mk Landscape
	TD Mk Landscape Algorithms
	Construction Whitley
	CliqueTreeMk Introduction
	CliqueTreeMk Construction
	CliqueTreeMk Global Optimum Dynamic Programming Algorithm
	CliqueTreeMk Discussion

	LT-GOMEA
	EA
	FOS
	EDAs
	GOMEA
	LT-GOMEA
	Population Sizing-Free Scheme

	Experiment: Increasing Overlap
	Experimental setup
	Benchmark problems
	Evaluation
	LT-GOMEA configuration

	Results
	Conclusions

	Experiment: Branching / Global Optima
	Experimental setup
	Results
	Conclusions

	Experiment: Global Optima
	Experimental setup
	Benchmark problems

	Results
	LT-GOMEA
	# of Global Optima Distribution
	Hamming Distance Between Global Optima
	Short Discussion

	Conclusions

	Experiment: Increasing Overlap and Branching
	Experimental Setup
	Results
	Random Linkage LT-GOMEA & U-GOMEA
	# Cliques per Variable

	Conclusions
	General
	LT-GOMEA
	Random linkage LT-GOMEA & U-GOMEA
	Branching

	Experiment: Random vs. Deceptive Trap Codomain
	Experimental Setup
	Results
	LT-GOMEA
	Random Linkage LT-GOMEA

	Conclusions

	Conclusions
	Summary
	Increasing Overlap
	Branching / Global Optima
	Global Optima
	Increasing Overlap and Branching
	Random vs. Deceptive Trap Codomain

	Takeaways
	Future work
	Global optima & cliques per variable
	Other

	Additional Tables & Figures
	Global Optima
	Increasing Overlap and Branching
	Random Linkage LT-GOMEA
	U-GOMEA

	GECCO '21 Workshop Paper
	Abstract
	1 Introduction
	2 Tree Decomposition Mk Landscapes
	3 Clique Tree MK
	3.1 Construction
	3.2 Global Optimum Dynamic Programming Algorithm

	4 Example
	4.1 Problem Generation
	4.2 Experiment

	5 Conclusions
	References

