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1. Introduction 
 
The role of metropoles as important generators of economic growth has been getting more and 
more attention recently both within politics and media (Van Oort et al, 2015). Considering that 
since 2008 for the first time in human history more than half of the world population lives 
within cities, this is not surprising (Van Oort & Rietbergen, 2014). As economist Edward Glaeser 
(2012) in his famous work ‘The Triumph of the City’ claims: ‘’cities grant people more economic 
possibilities than elsewhere, making cities important for individuals and companies and many 
others.” Glaeser (2012) was just one of many that covered this topic. Already since the 1920’s 
great amounts of authors have tried to explain the processes behind the spatial concentration of 
economic activity. Famous economic geographical works are traditional agglomeration theories 
(Marshall, 1920), the concept of spin-offs (Klepper, 2007; Hannigan, Cano-Kollmann & 
Mudambi, 2015), the product and knowledge space perspectives (Rigby, 2015; Balland & Rigby, 
2017), regional resilience literature (Martin, 2012; Fritsch & Wyrwich, 2014) and the triple-
helix model (Leydesdorff & Etzkowitz, 1998; Maldonado & Romein, 2009). 
 
Research on the role of metropoles has gained even more relevance today as national and 
European institutions predict and warn that the global economy is ‘metropolising,’ meaning that 
economic activities are increasingly concentrated in metropoles all over the globe (Van Oort et 
al., 2015). These predictions are in line with the arguments of scholars who stress the 
importance of large agglomerations as drivers of economic growth and prosperity, also known 
as ‘agglomeration benefits’ (Meijers et al., 2018). Many agglomeration economies-themed 
studies have argued that larger and denser cities perform better than smaller cities 
economically. As a result, population growth strategies to provide citizens and firms with more 
benefits brought by agglomeration have been implemented by many city councils in the past, 
entering what is believed to be an upward cycle of economic growth (Meijers et al., 2018). 
However, in theory this also means that as bigger cities end up in an upward cycle, smaller cities 
will find themselves struggling to keep up and will eventually fall behind in the heavily 
competitive global economy (Van Oort et al, 2015). Approaching urban space as a collection of 
bigger and smaller agglomerations, European cities like Malmö, Lille, Sheffield or even 
Amsterdam would never be able to compete with Europe’s biggest players such as Paris, 
London or Frankfurt.  
 
However, Europe’s urban structure has already proven that this ‘monocentric’ and 
agglomeration-minded view on how cities develop and strengthen their position is too 
simplistic in reality.  First of all, the EU has a much more polycentric and a less concentrated 
urban structure than other parts of the world such as North America and China (Dijkstra, 
Garcilazo & McCann, 2013). Furthermore, the concentration of people and economic growth in 
the largest cities has slowed down or even reversed in many of the developed European 
countries over the last two decades (Dijkstra, Garcilazo & McCann, 2013). These findings 
contradict the dominant literature stressing the importance of agglomeration for growth (Van 
Oort et al, 2015). It shows that Europe’s urban space is not simply a collection of increasingly 
dominant metropoles but that the situation is much more complex. It turns out that factors like 
size and concentration are not the only paths towards ‘success’ for an urban region. Thus, 
because the urban dynamics in Western Europe cannot be explained through conventional 
agglomeration theories, new approaches have become increasingly popular, including terms 
such as ‘polycentricity’ and ‘network benefits’. 
 
Therefore, in recent years, many new scholars emphasised that economic growth is more 
dependent on network embeddedness of cities than on their size.  They believe that metropoles 
should not be approached as isolated entities of which only local characteristics, such as the size 
of their labour market, matter. As Meijers and Peris (2019) state:  
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“Cities and regions cannot be studied in isolation. Their fate and fortune depends on how they 
are embedded in flows of goods, people, information and capital, as well as their absorptive 
capacity to use and exploit these flows.”  
 
In other words, four middle-sized cities of two hundred fifty thousand people that are well 
interconnected might be just as economically competitive as one big agglomeration of one 
million people. In literature, such clusters of historically distinct but spatially proximate and 
well-connected cities have been identified as ‘polycentric metropoles.’ These relatively new 
ideas about polycentric development through network improvement attracted policymakers. 
The concept of polycentric metropoles has increasing importance within Europe: in addition to 
old examples such as the Randstad (Netherlands) and Métropole européenne de Lille 
(France/Belgium) there are relatively new initiatives such as the Metropoolregio Rotterdam 
(Netherlands), Øresundsregionen (Sweden/Denmark) and the Upper Silesian metropolitan area 
(Poland/Czechia). Polycentricity even played a central role in the discussion of spatial 
development in the EU over the last 15 years (Kramar & Kadi, 2013): the idea lives that more 
polycentric structures on a national and European level could potentially lead to a more equal 
and effective regional development, to less inequalities between the regions and to a better 
integrated and sustainable European economy (ESPON, 2007). In addition, some authors even 
argue that polycentric metropoles are more advantageous over the traditional large-size 
agglomerations. For example, polycentric development has been proposed as a specific form of 
urban growth that allows for economic growth while securing higher levels of liveability and 
sustainability. Negative externalities in the traditional metropoles, such as congestion costs and 
high cost of living, may increase the appeal of polycentric metropoles (Dijkstra, Garcilazo & 
McCann, 2013, Boussauw et al, 2018).  
 
However, despite its popularity, there are a few reasons to be critical about the concept of 
polycentric metropoles. An important reason is that the definition of ‘polycentrism’ has not 
been used consistently.  Because of this, analysing polycentric metropoles has become much 
more complex than it might sound (ESPON, 2007). However, with ‘metropoles’ and ‘polycentric 
development’ becoming more popular within national, regional and EU policy, there is a 
growing need for clear insights about what polycentric metropoles exactly are and how strongly 
they compete with Europe’s most famous agglomerations. Thus, consensus about what 
polycentric metropoles are, is needed. Furthermore, even when there are ways to identify 
polycentric metropoles consistently there still is the of struggle measuring the networks that 
make polycentric metropoles interesting. 
 
After all, as Meijers and Peris state (2019), the importance of networks between different places 
has always been hard to analyse by the difficulty of obtaining consistent information on these 
networks between places. Despite considerable progress over the last 20 years, the availability 
and suitability of data on relationships between cities still remains a critical issue, as ‘relational’ 
data, which is preferred, is hard to find in the quantities needed. Therefore, the lack of evidence 
on networks between cities has been considered the ‘dirty little secret’ of research into 
networks of polycentric metropoles for a long time now despite several attempts (Short, Kim, 
Kuu, & Wells, 1996). 
 

However, new publications have shown that so called ‘knowledge flows’ are not only an 
indicator of long-term economic growth, but also a potential indicator of network 
embeddedness. Thus, the first aim of this thesis is analysing knowledge flows between EU-
regions with patent co-inventor linkages data, to get more insight into the ‘dirty little secret’ 
that is polycentric network embeddedness. Therefore, the main research question is as follows: 
“To what extent are polycentric metropoles within the EU network-embedded, based on 
knowledge flows, and to what extent does this change over time?’’ 
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To be able to answer the main question properly, the knowledge flows within polycentric 
metropoles could not be analysed in ‘isolation’. In other words, the knowledge flows related to 
polycentric metropoles had to be compared with those in monocentric metropoles and non-
metropolitan regions to get insight into how network-embedded polycentric metropoles 
actually are. Therefore, five sub-questions were needed to be able to answer the main question. 
 
Regarding the first sub-question, the expectation is that the more patent co-inventor links can 
be found within a region, the stronger its networks and therefore its competitiveness are argued 
to be. Thus, it is expected that ‘polycentric metropoles must be at least as interconnected 
through knowledge flows as monocentric metropoles, if not more. Therefore, the first sub 
question is: 
 
‘’To what extent do polycentric metropoles have a higher share of knowledge flows than 
monocentric metropoles?’’ 
 
In line with the first sub-question, the expectation was that on average, the group of 
metropolitan regions (both polycentric and monocentric) as a whole, has a larger share of 
knowledge flows than non-metropolitan regions. After all, if no difference between both groups 
could be found, this would question the importance of network-embeddedness as a whole. Thus, 
the second sub question is:  
 
‘’To what extent do metropolitan regions have a higher share of knowledge flows than non-
metropolitan regions?’’ 
 
While the first two sub questions focus on the quantity of knowledge flows, the next two sub 
questions focus on the distribution of the knowledge flows. In other words, they focus on what 
places these flows are actually connecting. Once again, polycentric metropoles were compared 
to monocentric metropoles and metropolitan regions to non-metropolitan regions. The next two 
sub questions therefore are as follows: 
 
‘’To what extent does the distribution of knowledge flows of polycentric metropoles differ from 
that of monocentric metropoles?,’’ and 
 
‘’To what extent does the distribution of knowledge flows of metropolitan regions differ from 
that of non-metropolitan regions?’’ 
 
As will be covered in the methodology section, a first look at the data shows that the majority of 
knowledge flows fully stay within one country. This raises the question whether polycentric 
network embeddedness really matters or that being part of the same country is the underlying 
force. To test whether the network embeddedness of polycentric metropoles is strong enough to 
transcend boundaries, two types of polycentric metropoles, domestic and cross-border, have 
been compared. Therefore, the last sub question is: 
 
‘’To what extent does the distribution of knowledge flows of cross-border polycentric 
metropoles differ from that of domestic polycentric metropoles?’’  
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2. Literature study 

2.1 Background on polycentricity and polycentric metropoles 

 
As mentioned in the introduction, there is not one commonly accepted definition of the 
‘polycentric metropole’ or polycentricity in general. However, it became clear that polycentricity 
as a concept is a reaction to the popularity of ‘monocentric’ thinking. Until the 1970s 
‘monocentric’ models, that were largely based on American case studies, were dominant within 
literature. These models portray physical space in quite a simplistic way. This should not be 
considered surprising, since they are essentially based on the ideal-typical construction of 
American 19th century industrial cities, where industrial activity was concentrated around the 
central business district and central railroad terminals had monopolies as urban export nodes. 
Such models claim that cities are structured in such a way that economic activity decreases as 
the distance to the city centre increases, forming a clear core-periphery distinction. Hence, the 
relationship 
between the urban core and its suburbs in the monocentric model is hierarchical-nodal 
or centralised. For example, commuting flows, shopping and other ‘lower-order’ interfirm links 
were seen as predominantly directed from the residential suburban suburbs towards the 
central cities, while ‘higher-order’ interfirm relations, such as business flows, largely remained 
between urban cores (Van Oort, Burger, Raspe, 2009, p. 729). Economic space was thus argued 
to be mostly flat with occasional spikes of economic activity. 
 
Monocentric ideas fit traditional agglomeration theories. It was generally assumed that the 
larger a metropole, the more so called ‘agglomeration externalities’, such as the quality of 
infrastructure, the pool of labour and the overall range of opportunities available to companies 
and people, would be present within that metropole (Melo, Graham & Noland, 2009). Since 
these agglomeration externalities or benefits are considered a driver of growth and prosperity, 
agglomeration theorists believed that the bigger a city, the greater its performance would be 
(Van Oort et al., 2015). As a result, the consensus among many scholars was a future of 
increasingly dominant metropoles. This is also known as metropolization:  
 
“A process in which high value-added socioeconomic capacities, advanced infrastructures, 
industrial growth, inward investment, and labor flows are increasingly concentrated within 
major metropolitan regions, and territorial disparities between core urban regions and 
peripheral towns and regions are significantly intensifying across the entire European 
economy’’ (Veltz, 1996). 
 
However, as the decades went by, traditional theories concerning monocentricity, monocentric 
metropoles and agglomeration externalities were increasingly unable to explain urban 
development due to global changes such as improved high-speed infrastructure, and the rapid 
development of modern communication technologies such as the internet enabled people to be 
less dependent on spatial proximity (You, 2017). In addition, societal changes in the Western 
World such as the growing participation of women into the labour market, the introduction of 
the family car and overall wealth growth had a strong impact on where people wanted to live 
and work (Kloosterman & Musterd, 2001). Furthermore, a growing number of scholars started 
to become aware of the traditional literature’s American-centric nature and that urban 
development in other global regions, such as Western Europe, were completely different from 
that in the US in the first place. For example, 56% of the EU urban population lives in small- and 
medium-sized cities (Dijkstra, Garcilazo & McCann, 2013) These outcomes heavily contrasted 
the predictions of a ‘Battle of the cities’ between the biggest agglomerations. 
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Because agglomeration theories and monocentric models were seemingly outdated, an 
explanation that goes beyond these conventional ideas, was necessary. This is when theories 
concerning ‘polycentricity’ and the corresponding importance of ‘network embeddedness’ 
gained popularity in literature. A growing number of scholars started to argue that perhaps 
there are alternative pathways to economic growth that have been overlooked by the focus on 
development of the world’s biggest metropoles or agglomerations (Johansson and Quigley 
2004). Thus, the development of urban economies is increasingly less associated with local 
factors such as size and density of cities, and instead are framed in a network perspective. More 
scholars believe being part of a network of cities may substitute for being part of a large 
agglomeration (Johansson and Quigley 2004). It has been assumed that a good position of 
middle-sized or small cities in networks may allow them to ‘borrow size’ from each other, thus 
compensating their relatively small size by being very well embedded in city networks (Meijers 
and Burger, 2015). Some even suggest that the effects of agglomeration size have not been the 
primary economic drivers within the EU15 in the same way they have been elsewhere in the 
world and that national and international urban connectivity (thus being part of a network) has 
more impact on urban performance than the size of an urban region has (McCann & Acs, 2011; 
Dijkstra et al., 2013). In other words, one big (monocentric) agglomeration might be just as 
competitive as a group of well-connected smaller cities. Such clusters of historically distinct but 
well-connected cities have been mostly referred to as ‘polycentric metropoles’.  
 

2.2. Identification of polycentric metropoles 

 
As the last section covers, ideas concerning the polycentric metropole were a reaction to 
outdated agglomeration theories and the monocentric models of the past. The question that still 
remains however is what ‘polycentricity’ and ‘polycentric metropoles’ truly encompass. Even 
though most authors seem to use a similar basis, it remains an overstretched concept. Not only 
has the term been used as an analytical tool for research but has also been adapted as a 
normative concept for giving direction towards spatial development processes, as local and 
regional policy makers are increasingly using the concept to promote their respective region’s 
economic potential (Kramar & Kadi, 2013, p. 184). The absence of a coherent definition makes it 
difficult to measure polycentricity and makes it similarly hard to compare polycentric 
metropoles with other urban structures (Münter & Volgmann, 2020).  
 
As a result of the concept’s fuzziness a great diversity of polycentric metropoles has been 
identified (Kloosterman & Musterd, 2001). In the Netherlands for example, several different 
interpretations of the polycentric metropole concept can be found: in the case of metropole 
region Rotterdam-The Hague, the polycentric metropole has been operationalised on a much 
lower spatial scale than in the case of the Randstad that covers four Dutch provinces or the 
Tristate City that covers most of the Netherlands, Belgium and Western Germany. A possible 
explanation for the lack of a consistent use of the terms are the different backgrounds of the 
scholars that are interested in polycentric development as spatial planners for example tend to 
have a different way of looking at polycentric urban regions than human or economic 
geographers (Lambooy, 1998). In addition to the latter, as Kloosterman and Musterd (2001, p. 
623) state:  
 
“Cities as rich, multifaceted and historically contextualised spatial phenomena encompass 
almost every aspect of social life and this means that polycentricity can, in principle, refer to the 
spatial clustering of almost any human activity. The diversity in interpretations of polycentricity 
is, therefore, also a reaction of this inherent complexity.’’ 
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Despite the overall lack of cohesion, the pure essence has been commonly accepted by most 
scholars: polycentricity refers to the existence of more than one spatial centre within a clearly 
defined spatial entity (Kramar & Kadi, 2013, p. 184). Building on this essence, there are four 
commonly accepted characteristics of polycentric metropoles: the first characteristic is that 
polycentric metropoles consist out of two or more historically distinct cities (Dieleman & Faludi, 
1998, p. 365). Secondly, polycentric metropoles lack a leading city which dominates the rest of 
the metropole economically, culturally and politically. Instead, they consist of a group of 
relatively similar sized cities with relatively comparable importance (Dieleman & Faludi, 1998, 
p. 365). Thirdly, polycentric metropoles are not bound to (national) borders. Therefore, in 
addition to domestic polycentric metropoles, also cross-border polycentric metropolitan 
regions gained coverage in recent years. Until relatively recent, border regions were considered 
the natural counterpart of the monocentric and centrally located metropoles. However, an 
increasing number of scholars agrees that the demographic and economic weight of cross-
border polycentric regions could actually be just as competitive (Baert, 2008; ESPON, 2010; 
Zhao & Islam, 2017). Fourth and last, as was mentioned before, to be considered a polycentric 
metropole, the cities within such a structure have to be interconnected, and thus need to 
interact in some sort of way. In most literature, three dimensions are considered through which 
these interactions or connections take place: 
 
• The first dimension is the morphological dimension which focuses on how the polycentric 

metropoles are structured within space such as the cities’ sizes within the polycentric 
metropole and their distances to one another. The morphological existence of more centres 
within one metropole is considered to be the backbone of the development of functional 
based relations between them (Schmitt, Volgmann, Münter & Reardon, 2015) 

• The second one is the institutional dimension: Across Europe, the concept of polycentricity 
has been absorbed by the political institutions of many urban areas and ideas about ‘the 
polycentric metropole’ have been integrated into normative planning and development. The 
application of polycentricity completely differs per urban area however, as some cities 
integrated it fully into its policies while others only find it promising enough to take into 
account (Schmitt et al., 2015). The focus within this dimension therefore lies on the extent to 
which polycentricity has been institutionalised. 

• The third dimension is called the functional dimension in which the focus lies on the 
networks between the centres within the polycentric metropole. Thus, a metropole can be 
characterized as functionally polycentric if multidirectional exchanges between two or more 
of its centres occur throughout the metropole (Burger & Meijers 2012, p. 1133).  

 
Figure 1: The three dimensions of polycentricity 
 

 
 Source: author 

 
Most research performed on polycentric metropoles has been structured along one or more of 
these dimensions. Based upon the morphological dimension, Meijers, Hoogbrugge and Cardoso 
(2018) managed to create the first comprehensive identification and precise definition of all 
polycentric metropoles in Europe. With European data; delimitations set by the ESPON-
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programme and the use of the Herfindahl-Hirschman index as a measure to calculate 
polycentricity, 117 polycentric metropoles within the European Union were identified. Almost 
122 million Europeans live within the identified polycentric metropoles which is 25 per cent of 
the EU (incl. Norway and Switzerland) population. The work of Meijers, Hoogbrugge and 
Cardoso (2018) has been of vital importance within the field of polycentric development in 
western Europe, since it enables future research to be based on a similar consistent quantitative 
approach. However, their outcome needs additional research. 
 
After all, the dimension arguably most important to polycentric development is the functional 
dimension (Van Oort, Burger & Raspe, 2010). As mentioned before, the popularity of the 
polycentric metropole concept is mostly based on the assumption that network embeddedness 
works as a substitute for being part of an agglomeration. Some scholars have argued that the 
functional dimension is of more significant importance for the existence of a polycentric urban 
structure than the extent of spatial proximity or the exact shape of the institutional cooperation 
between its cities (Meijers, Hoogerbrugge & Cardoso, 2018). 
 
There is one big problem however, which is that identifying networks or even interaction 
between cities is not as easy as it might seem. As said before, despite considerable progress over 
the last 20 years, the availability and suitability of data on relationships between cities still 
remains a critical issue. The reason for this is that the ‘relational’ or ‘flow’ data needed for such 
research is still not available to the same extent as the more static and less preferred ‘stock’ 
data. This problem not only arises among scholars but even the EU struggles to analyse linkages 
between such different settings (ESPON, 2010). A significant amount of scholars have attempted 
to identify networks between cities within European polycentric metropoles: examples are 
Meijers, Burger and Hoogerbrugge (2016) and Meijers, Hoogbrugge and Cardoso (2018) who 
analysed (inter)national network connectivity based on embeddedness in international and 
national road, rail and air networks. However, as those examples show, such stock data fails to 
show the actual flows taking place: just because two cities are well connected through railroads 
and highways does not automatically mean significantly more interaction is taking place. As a 
result, outcomes of research such as the two examples above are not satisfying: Meijers, Burger 
and Hoogerbrugge (2016) even conclude that on average, local characteristics such as 
agglomeration size are more important than network embeddedness in determining the level of 
metropolitan functions in cities, which is opposite to their initial expectations.  
 
Of course there are examples of polycentric networks successfully being identified with flow 
data, going as far back as 1990 when telephone calls between ‘telephone districts’ in Northern 
Italy were used to identify flows between Italian cities (Camagni & Capello, 2004). More recent 
examples are Ducruet, Cuyala, and El Hosni (2018) who used vessel movement data to analyse 
global maritime transport flows or the work of Derudder and Witlox (2005) in which airline 
data was analysed to access the world city network and Nelson and Rae (2016), analysing the 
flows of commuters in the United States. Furthermore, new techniques such as web scraping 
enabled the creation of new forms of data: Meijers and Peris (2019), identified networks 
between cities based on co-occurrences of place names in a text corpus. 
 
However, none of the studies that used flow data, such as the ones mentioned above, focussed 
on identifying networks with polycentric metropoles specifically for all of Europe. Some of these 
works are just regional case studies: Camagni and Capello (2004) and Meijers and Peris (2019) 
only focus on respectively Northern Italy and Dutch regions such as the Randstad and Zeeland. 
Others limit their research to specific hubs of global traffic such as Ducruet, Cuyala and El Hosni 
(2018) with coastal cities and Derruder and Witlox (2005) on major air travel hubs. Others 
happened to analyse different continents instead of Europe, such as Nelson and Rae (2016) with 
the US. Thus, there is still a great need for an EU-wide network analysis for polycentric 
networks while using flow data, building further on the foundations laid down by Meijers, 
Hoogerbrugge and Cardoso (2018). 
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Besides the lack of European-focussed research, another problem with the studies done so far is 
that the data being used to identify those polycentric networks might not be suitable for finding 
the kind of networks this study tried to find. After all, the whole discussion is centred around 
whether the network embeddedness of polycentric metropoles has a clear positive impact on 
their competitiveness. Even though data containing telephone calls, vessel movement, air traffic 
and commuter flows are great examples of using flow data, it is doubtful they are relevant to 
network embeddedness-based economic competitiveness. Therefore, a different approach with 
a different kind of data analysis is needed and it can be found within the field of knowledge 
flows.  
 

2.3. Knowledge flows  

 

It has been commonly accepted that the accumulation of knowledge is a key driver of 
technological change and most importantly, of long-run economic growth (Kogler, Rigby & 
Tucker, 2013). As Runiewicz-Wardyn (2013) mentioned, the diffusion or application of 
knowledge forms the basis of technological change, which is needed to gain an advantage. 
Economic geographers have long recognized geographic patterns of knowledge. As a result, 
many scholars have tried to understand the way knowledge is spatially distributed and why 
particular knowledge is present in particular regions and not in others. Within this economic 
geography, several new approaches have been used to measure knowledge, such as co-
publications, R&D expenditures and patent data, of which the latter might be the most useful for 
this study (Runiewicz-Wardyn, 2013, p. 21).  
 
Well known examples of patents being used to ‘map’ knowledge are Kogler, Rigby and Tucker 
(2013) and Rigby (2015). In contrast to older works, both studies specifically focussed on the 
character of the knowledge produced within regions. Furthermore, they analysed how these so-
called ‘geographies of knowledge’ evolve over time. The region's geography of knowledge was 
based on U.S. patent co-classification data to measure the relationship or the “distance” between 
technologies. Through this approach, they were able to identify the character of knowledge 
cores within US cities about which they found that smaller cities in general have a higher 
knowledge relatedness due to the smaller amount of companies while larger cities on the other 
hand generate knowledge that is more broadly dispersed across knowledge space (Kogler, 
Rigby & Tucker, 2013; Rigby, 2015). Thus, both studies focussed on relatedness between the 
different technologies and industries. However, their approach can also be used to identify 
networks that make up polycentric metropoles. 
 
The two examples above have shown that knowledge could be as well used as an indicator of 
network embeddedness. One problem is, however, that most of these scholars approach 
knowledge as something quantitative, only focussing on the amount of knowledge that is being 
created and exchanged. This is also the main critique of Balland and Rigby (2017), who argue 
that too many scholars have been obsessed with ‘counting knowledge’ instead of focussing on 
the quality of the knowledge itself. For example, an innovative breakthrough in the automotive 
sector does not have the same impact as one in semiconductors. Because not all knowledge has 
the same value it is important to take into account ‘complexity’ of knowledge in addition to 
quantity (Balland & Rigby, 2017). As the outcome of their study shows, regions with the most 
complex technology concentrations are not necessarily those with the highest rates of patenting. 
Their patent analysis also showed that more complex patents are less likely to be cited than less 
complex patents, as more complexity makes it harder to share knowledge (Balland & Rigby, 
2017). Therefore, when analysing knowledge flows, both quantity and ‘quality’ are of 
importance. However, adding a qualitative dimension to this study was not feasible for practical 
reasons, as will be explained in the methodology. 
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2.4. Theoretical framework  
Based on the literature covered above, a theoretic framework was created. The framework, as 
can be seen in figure 2, will be covered from right to left. The current literature has shown that 
many scholars believe that a metropole with a polycentric structure embedded within strong 
networks can be just as competitive, if not even more, than a monocentric metropole that is 
based on agglomeration. The way polycentric metropoles develop is believed to happen through 
three main dimensions, being the institutional, morphological and functional dimensions. Based 
on the literature, of those three, the functional polycentricity has the most direct impact on the 
development of a well-embedded polycentric metropole. However, the functional dimension 
cannot be approached as a fully isolated object as all three dimensions are influencing each 
other. For example, one could say that governmental collaboration between two cities might 
facilitate stronger knowledge flows between the two, but one could also say that the knowledge 
flows already existing might have facilitated institutional collaboration. The interrelation of the 
three dimensions is also important when considering the existence of cross-border polycentric 
metropoles and the potential role of spatial boundaries such as national borders. While 
acknowledging the other dimensions however, this study mostly focuses on functional 
polycentricity. As the framework shows, there are many types of networks that form the 
functional dimension:  
 
Figure 2: Theoretical framework 

Source: Author 

Networks can be interpreted in the form of connectivity, which is purely based on existing 
infrastructure such as international and national road, rail and air networks. Other forms of 
networks are based on actual flows such as maritime transport, air traffic and commuting. In 
addition, with the start of the digital age, networks also express themselves through online 
connections such as co-occurrence. While acknowledging that networks exist in different forms, 
this study focuses just on analysing knowledge flows because of the argument that knowledge is 
an important indicator for economic growth. Thus, it is assumed here that networks of 
knowledge are most relevant to analyse when trying to explain competitiveness through 
network embedded polycentric metropoles. However, as the figure shows, it is important to be 
aware of the fact that knowledge is diverse: not only quantity of knowledge is considered to be 
important, but also the quality of the knowledge is important. 
 
To summarize, knowledge flows are expected to be an important indicator of a polycentric 
metropole’s network-embeddedness and through that, its competitiveness. In the next section 
will be explained how the identification and analysis of polycentric networks through 
knowledge flows has been put into place. 
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3. Methodology 

 
Within this thesis an attempt has been made to identify polycentric networks by comparing a 
pre-selected set of polycentric metropoles to a set of monocentric counterparts based on the 
distribution of ‘patent co-inventors links’ across EU NUTS2-regions. NUTS-2 level regions cover 
relatively large areas of space with population sizes somewhere between 800,000 and 3 million 
inhabitants. In the Netherlands for example, NUTS-2 equals Dutch provinces (e.g. Utrecht, 
Noord-Brabant). Parallel to the monocentric/polycentric comparisons, additional comparisons 
between metropolitan regions and non-metropolitan regions were made to put the possible 
differences found between polycentric and monocentric regions into further perspective. 
Because national borders happened to have a strong impact, domestic and cross-border 
polycentric metropoles were also compared based on patent links distribution. This was to test 
whether polycentric metropoles are at least ‘strong’ enough to transcend national boundaries. 
To make sure the outcome was not based on one ‘snapshot’ from a particular year or period and 
to get insight into changes of the network-embeddedness over time, the study covered five 
equally long periods between 1992 and 2012, being 1992-1996, 1997-2001, 2002-2016, 2007-
2011 and 2012-2016. All steps were performed with the use of descriptive statistics and several 
types of statistical tests. 
 
The first step was the composition of a list of both polycentric metropoles and monocentric 
metropoles. Up till recently, such a list did not exist as most studies so far were either case 
studies or had a different geographical focus. As said in the theory section, Meijers, 
Hoogerbrugge and Cardoso (2018) with help of ESPON-made classifications, managed to 
compile the first comprehensive list of all polycentric metropoles within the European Union. 
Therefore, partly based on their work and own used criteria, a new more complete list of 
metropoles within the EU has been put together, not only including a selection of polycentric 
but also monocentric metropoles for the purpose of comparing the two types. Similarly to 
Meijers, Hoogerbrugge and Cardoso (2018), this selection of metropoles is based on the 
morphological dimension. Because it has been commonly accepted that the lack of a ‘leading’ or 
‘dominant’ city is an important characteristic of polycentricity, Meijers, Hoogerbrugge and 
Cardoso (2018) only selected the metropoles that were characterised by a balanced urban size 
distribution, meaning that greater balance was equal to higher levels of polycentricity. To 
calculate polycentricity this way, the Herfindahl-Hirschmann index was used as a measure (see 
figure 3).  
 
Figure 3: Herfindahl-Hirschmann Index 

Source: Author 
 
For the index the following formula has been used, in which Si stands for the share of city i in 
the total population of all in cities in the region while N stands for the number of cities in the 
region. The Herfindahl-Hirschmann Index scores range between 1/N and 1, which means that 
the lower the score the more polycentric the metropole is. Just like Meijers, Hoogerbrugge and 
Cardoso (2018) did, a metropole with an HH-index score lower than 0,56 was considered 
polycentric. The Herfindahl-Hirschmann index was also used to calculate monocentricity, 
meaning that all metropoles with an HH-index score of 0,56 or higher were labelled 
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‘monocentric’. The result was a new list of metropoles within the European Union, including 39 
polycentric metropoles, all with a population of at least 800.000 inhabitants and 28 
monocentric metropoles with populations of at least 1.000.000 inhabitants. The choice for 
leaving out metropoles with lower populations will be explained in the following section. After 
composing the list of metropoles that would form the base of this research, the next step was 
choosing the data being used for measuring the distribution of knowledge flows. 
 
As the literature shows, several kinds of data have been used in the past to measure knowledge. 
For this analysis, so-called ‘patent co-inventor links’ data was used. Patents have the purpose of 
providing protection for technological advances as they are the official proof of an inventor’s 
intellectual property rights. Companies thus protect their innovation through patenting them 
(Runiewicz-Wardyn, 2013). Patent data analysis has proven to be successful for a few reasons: 
besides the fact that patents are available in great quantities digitally, patent data has the 
advantage of containing great amounts of different information. Every patent holds information 
about the geographical origin of its inventors and co-inventors, making the data highly suitable 
for various kinds of geographical analysis (Runiewicz-Wardyn, 2013). 
 
However, interpreting ‘patent co-inventor links’ as knowledge flows also has a few 
disadvantages, the first one being that not all knowledge is patented. After all, patent data 
covers mostly technological innovations. For example, the knowledge creation within creative 
sectors such as art, design, tv and fashion are not within the scope of patent data. Furthermore, 
even some technological changes simply cannot be patented as it is not always a “new device” 
that needs to be patented but sometimes it is just about improving organizational working 
techniques (Runiewicz-Wardyn, 2013). In addition, the impact or success of the new innovation 
or the newly gained knowledge is not always known (Runiewicz-Wardyn, 2013). However, even 
after acknowledging that patent data does not include all knowledge, patent data is still of  use 
for identifying knowledge flows thanks to the availability and to the wealth of information the 
data provides (Rigby, 2015). 
 
Since this study focuses on the European Union as a research area, a dataset from the European 
Patent Office (EPO) has been used for the analysis. Beforehand, this dataset has been ‘cleaned’, 
which includes the correction of wrongly structured information. This EPO patent co-inventor 
linkages data provided the absolute number of co-inventor linkages with all 301 NUTS-2 regions 
for every single NUTS2 region, including intra-regional linkages. For example, this means that 
not only linkages between the region of Utrecht and the other 300 regions are available but also 
linkages that stay fully within Utrecht itself. 

 
Because the list of polycentric and monocentric metropoles mentioned above is not structured 
on NUTS-2 level, all of these metropoles had to be ‘translated’ to their own set of corresponding 
NUTS-2 regions. The number of corresponding NUTS-2 regions per metropole differed. For 
example: The Randstad polycentric metropole has been translated to three NUTS-2 regions, 
respectively Noord-Holland, Zuid-Holland and Utrecht, while the Paris monocentric metropole 
translates just to the NUTS-2 region of Ile de France. As a result, the 67 metropoles were linked 
to 102 different NUTS-2 regions in total. The polycentric NUTS-2 regions were then divided into 
a group of domestic and cross-border polycentric regions. In contrast to metropolitan regions, 
all NUTS-2 regions that were not considered part of a metropole, were labelled non-
metropolitan regions. The last step was the creation of a metropole-code (MM01, MM02, PM01 
etc.) for all 67 metropoles, and linking them to the corresponding NUTS-2 regions. This allowed 
for easier data selection during the following analyses. The resulting list can be found in 
Appendix B. 
 
However, the step above shows the main problem with the patent data set however, namely 
that the data is only available on NUTS-2 level and not for the more detailed NUTS-3 level. This 
means that the sum of a particular set of NUTS-2 regions might cover a significantly larger area 
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than the polycentric metropole it is corresponding with. An example to illustrate this: the 
Donostia–San Sebastian–Bayonne metropole transcending the Spanish-French border has a 
population of around one and a half million. However, the Spanish and French NUTS-2 regions it 
translates to are País Vasco and Nouvelle-Aquitaine. These two regions stretch far beyond the 
polycentric metropole’s reach, having a combined population of a much larger 8 million citizens 
and a land area that is twice the Netherlands as a whole. However, as every NUTS-2 region 
differs in size this example does not apply for all polycentric metropoles and their 
corresponding NUTS-2 regions: For example, the Randstad metropole (NL) has a very similar 
population to that of the three NUTS-2 regions linked to it (being Noord-Holland, Zuid-Holland 
and Utrecht). To prevent the biggest significant distortions however, the list of potentially 
hundreds of metropoles, varying in populations from 10 million to less than hundred thousand 
was therefore brought down to a selection of 67 metropoles, only including polycentric 
metropoles and monocentric metropoles with population benchmarks of respectively 800,000 
and 1 million inhabitants. Because the minimum population size of a NUTS-2 region is 800,000, 
it was considered a matter of common sense to leave out polycentric metropoles that have a 
smaller population than the bare NUTS-2 minimum. Even though patent data on the less ‘robust’ 
NUTS-3 level would have been preferred, it is not enough reason to not use patent data on 
NUTS-2 level.  
 
After the first preparation of the patent data, and the creation of a list polycentric and 
monocentric NUTS-2 regions, descriptive and inferential statistics were performed to compare 
knowledge flows within polycentric metropoles with those within monocentric metropoles and 
non-metropolitan regions. After that, differences between domestic and cross-border 
polycentric metropoles were analysed as well. The comparisons are based on: 1) the average 
number of patent co-inventor links, purely quantitative; 2) the average percentage of links that 
connect a NUTS-2 region with another NUTS-2 region from the same metropole; 3) the average 
percentage of links that stay fully within the region itself; 4) the average percentage of links that 
connect with a NUTS-2 region from the same country and 5) the average percentage of links 
that connect with a direct neighbouring NUTS-2 region. The descriptive and analytical statistics 
have been performed in nine separate steps. All of these steps are covered in the nine sections 
below.  
 
1. Number of patent links per thousand inhabitants: Monocentric versus Polycentric 

metropoles 
 
As mentioned in the literature section, knowledge flows are expected to be a strong indicator of 
network embeddedness. In other words, the more patent co-inventor links can be found within 
a region, the stronger its networks and therefore its network embeddedness are argued to be.  
Thus, it is expected that ‘polycentric metropoles must be at least as interconnected through 
knowledge flows as monocentric metropoles, if not more. Therefore, the first polycentric-
monocentric comparison was based on the average number of patent links.  
 
During the analysis process, it became clear that the large differences in population size 
between the different metropoles that were selected, stretching from less than 1 million 
inhabitants to more than 10 million, were a potential cause of distortion for this analysis. An 
additional correction for population size was therefore deemed necessary. Thus, population 
data for the period 1990-2020 on NUTS2 level was retrieved from the freely accessible Eurostat 
database, of which the data from 1992-2012 was extracted. Then, averages were calculated for 
the periods 1992-1996, 1997-2001, 2002-2006, 2007-2011, and 2012-2016, thus matching the 
structure of the patent data. For some NUTS2-regions, population numbers were unavailable for 
one or more of the five periods mentioned above, which resulted in gaps within the data set. To 
solve this, for every of those five periods an average population growth index was calculated 
based on all NUTS2 regions. For example, if the average population growth index between the 
periods 1997-2001 and 2002-2006 based on all NUTS2-regions is 105, and if the population of 
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NUTS2-region A in 1997-2001 is 100,000 inhabitants, then the population of region A in 2002-
2006 was assumed to be 105,000 if this number was unavailable in the original data set. 
 
The absolute number of patent co-inventor links of every NUTS2-region could then be divided 
by the NUTS2-region’s population, resulting in the number of patent links per inhabitant. For 
convenience, this was converted to the number of patent links per thousand inhabitants. It was 
assumed that this portrays the actual density of knowledge flows per NUTS-2 region. For 
example, region B with 50,000 patent links and a population of 1 million inhabitants might have 
been assumed to be more network embedded than region C with 40,000 patent links and a 
population of 600,000 inhabitants. After the correction for population, it could be assumed that 
region B (50 patent links per 1000 inhabitants) actually has a less dense network of knowledge 
flows than region C (67 patent links per 1000).  
 
After that, descriptive analysis was performed to create a first overview of the differences in 
quantity of patent links between the two types of metropoles. Then, an one-sided independent 
samples t-test was performed separately for every of the five time periods to test whether there 
is a significant difference between both types of metropoles. As the number of objects within 
both groups was large enough to assume normality of the data (n>30), and because  
Levene's test indicated equal variances (see Appendix A), the Student’s t-test was performed. 
For the descriptive and statistical analyses in this section and all other analyses, an open-source 
statistical analysis program developed by the University of Amsterdam has been used, named 
JASP. Since the expectation is that polycentric metropoles have a denser network of patent links 
than monocentric metropoles, the null and alternative hypotheses are: 
 
H0: µ Corrected total links in Polycentric NUTS-2 regions ≤ µ Corrected total links in monocentric 
NUTS-2 regions 
H1: µ Corrected total links in Polycentric NUTS-2 regions > µ Corrected total links in monocentric 
NUTS-2 regions 
 
2. Number of patent links per thousand inhabitants: Metropolitan versus Non-

metropolitan regions 
 
 
Regarding the next comparison, it is expected that metropolitan regions have a higher number 
of patent links per thousand inhabitants than non-metropolitan regions. This is motivated by 
the assumption that a lack of difference between these two types of regions would imply that 
the quantity of networks is not related to a region being metropolitan. To illustrate this: if a 
polycentric NUTS-2 region such as Zuid-Holland with millions of inhabitants has a similar 
number of patent links as a sparsely populated region like Drenthe, then there must be other 
factors why both regions differ in urban growth.  
 
Similar to the first analysis, the number of patent links was corrected for population size. This 
resulted in the average number of patent links per thousand inhabitants per metropolitan and 
non-metropolitan NUTS-2 region. The following descriptive analysis gave insight into the 
differences between both types of regions. Then, another one-sided independent samples t-test 
was performed separately for every of the five time periods, to test whether there is a 
significant difference. Since the number of objects within both groups was large enough to 
assume normality of the data (n>30), but because Levene's test indicated unequal variances 
(see Appendix A), the choice fell on the Welch’s t-test. The null and alternative hypotheses are: 
 
H0: 𝜇Corrected total links in metropolitan NUTS-2 regions ≤ 𝜇Corrected total links in non-
metropolitan NUTS-2 regions 
H1: 𝜇Corrected total links in metropolitan NUTS-2 regions > 𝜇Corrected total links in non-
metropolitan NUTS-2 regions 
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Whether the outcomes above show a difference between polycentric and monocentric 
metropoles and non-metropolitan regions, it is not enough to assume that polycentric 
metropoles on average are indeed more network-embedded. Just looking at the quantity of 
patent links alone gives no insight into what places are connected through these patent co-
inventor links. Four different options of a patent linking two places are considered relevant to 
this study. These are: 1) links between two co-inventors from the same NUTS-2 region; 2) links 
between co-inventors from different NUTS-2 regions, but from the same metropole; 3) links 
between co-inventors from the same country; and 4) links between co-inventors from 
neighbouring regions. Many links have more than one of those ‘functions’. Thus, the next 
analyses focus on the distribution of patent co-inventor linkages, to get insight into whether 
polycentric metropoles are different from other regions when looking at the destination of 
those patent links. 

 
3. The percentage of co-inventor links that connect within regions from the same 

metropole: Polycentric versus Monocentric 
 
As mentioned in the theory section, authors have been arguing that polycentric metropoles are 
able to compete with the ‘mass’ or size of monocentric metropoles because of their network-
embedded structure, as explained through ‘borrowed size’. If this is indeed the case, one could 
argue that polycentric metropoles should have at least a similar percentage of patent links that 
stay within the borders of the metropole compared to monocentric metropoles. If polycentric 
metropoles have a significantly lower percentage on average however, it might indicate that 
polycentric metropoles are not as ‘cohesive’ as monocentric metropoles and that they fail to 
compensate a lack of size (in comparison to monocentric metropoles) through network-
embeddedness. 
 
Therefore, per individual monocentric and polycentric NUTS2-region, the patent links that went 
to other NUTS-2 regions of the same metropole were added together and divided by the total 
number of all links in the ‘home’ NUTS-2 region. This resulted in the percentage of ‘intra-
metropolitan’ patent links for every metropolitan NUTS-2 region, for the five time periods. After 
that, descriptive statistics were used to get a first idea about whether polycentric and 
monocentric NUTS-2 regions differ regarding the percentage of intra-metropolitan links. As the 
number of objects for both groups was not large enough to assume normality of the data, and 
because the Shapiro-Wilk test found non-normality of the data, it was necessary to use the non-
parametric Mann-Whitney for the statistical analysis. The expectation was that polycentric 
NUTS2 regions had an equal or higher percentage of intra-metropolitan patent links than 
monocentric NUTS-2 regions. Therefore, the null hypothesis and alternative hypothesis are: 
 
H0: 𝜇Share of ‘metropolitan’ links in polycentric NUTS-2 regions ≥ 𝜇Share of ‘metropolitan’ links 
in monocentric NUTS-2 regions 
H1: 𝜇Share of ‘metropolitan’ links in polycentric NUTS-2 regions < 𝜇Share of ‘metropolitan’ links 
in monocentric NUTS-2 regions 
 
 
4. The percentage of intraregional links: Monocentric versus polycentric 
 
For the fourth analysis, it was expected that polycentric regions have a significantly lower 
concentration of patent links that stay fully within the same NUTS-2 region than monocentric 
regions. This is based on the assumption that polycentric metropoles lack a leading city which 
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dominates the rest of the metropole (Dieleman & Faludi, 1998, p. 365). This is in contrast to 
monocentric metropoles, which are characterised by their gradually increasing concentration of 
activity closer towards the metropole’s centre (Van Oort, Burger & Raspe, 2009). Therefore, it 
was expected that monocentric regions have less connections with surrounding regions and 
thus higher concentrations of links that do not leave the home region. 
 
The first step towards testing this was the use of formulas in Excel to structure the data to 
calculate the percentage of ‘intra-regional patent co-inventor links’ per NUTS2 region for all five 
time periods. Descriptive statistics were used to compare polycentric with monocentric NUTS-2 
regions, followed by another one-tailed independent samples t-test. Since both groups were 
assumed to be normal (n>30) and because Levene's test indicated equal variances (Appendix 
A), a Student’s t-test could be performed. Because it was expected that monocentric 
metropolitan NUTS2-regions had a significantly higher percentage of ‘intraregional patent co-
inventor links’ than polycentric metropolitan NUTS2-regions over time, the null and alternative 
hypotheses are: 
 
H0: 𝜇Share of ‘intraregional’ links in polycentric NUTS-2 regions ≥ 𝜇Share of ‘intraregional’ links 
in monocentric NUTS-2 regions. 
H1: 𝜇Share of ‘intraregional’ links in polycentric NUTS-2 regions < 𝜇Share of ‘intraregional’ links 
in monocentric NUTS-2 regions. 
 
 
5. The percentage of intraregional links: Metropolitan versus non-metropolitan 
 
While the expectation was that polycentric regions had a lower percentage of intra-regional 
linkages than monocentric regions, no difference was expected between metropolitan and non-
metropolitan regions. With authors arguing that the EU overall has a very polycentric urban 
landscape with 56% of the EU-citizens living in small- and medium-sized cities (Dijkstra, 
Garcilazo & McCann, 2013), it was expected that monocentric metropoles were only exceptions 
with their ‘inward’ and ‘centralised nature. Therefore, no significant difference between the 
group of metropolitan regions as a whole and non-metropolitan regions was assumed.  
 
Descriptive statistics were followed by a two-tailed independent samples t-test. Once again, 
both groups had enough objects (n>30) to assume normality. However, equal variances was not 
indicated with the Levene’s test (Appendix A), which made Welch’s t-test a more fitting option 
for the statistical analysis. The null and alternative hypotheses are: 
 
H0: 𝜇Share of ‘intraregional’ links in metropolitan NUTS-2 regions = 𝜇Share of ‘intraregional’ 
links in non-metropolitan NUTS-2 regions. 
H1: 𝜇Share of ‘intraregional’ links in metropolitan NUTS-2 regions ≠ 𝜇Share of ‘intraregional’ 
links in non-metropolitan NUTS-2 regions. 
 
 
 
6. The percentage of patent co-inventor linkages that goes to neighbours: Monocentric 

versus polycentric metropoles 
 
Because monocentric metropoles are characterised for being centralised in contrast to the 
decentralised, more equally distributed polycentric metropoles (Van Oort, Burger & Raspe, 
2009), it was expected that polycentric regions on average have a higher percentages of patent 
links with neighbouring regions than monocentric regions. To make the ‘neighbour’-analysis 
possible however, it was necessary to create a list of neighbouring regions for every individual 
NUTS2-region, as the patent data does not provide this information.  
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Therefore, ArcMap, a Geographical Information System (GIS) developed by esri, was used to 
make a list with all neighbour regions for per NUTS2 region. This information was extracted 
from a shapefile provided by Esri (2019) for public use. After that, the list was exported as a (z) 
file and imported into Microsoft Excel. There, the data was restructured to a more convenient 
format. Finally, with the help of Excel formulas, the percentage of patent co-inventor links 
traceable to neighbouring regions per NUTS2-region could be calculated. Then, descriptive 
statistics gave insight into the potential differences between the two types of metropoles. Lastly, 
another one-tailed independent samples t tests followed. Both normality and equality of 
variances were assumed (Appendix A), which allowed the Student’s t-test to be used. The null 
and alternative hypotheses are: 
 
H0: 𝜇Share of links with neighbours in polycentric NUTS-2 regions ≤ 𝜇Share of links with 
neighbours monocentric NUTS-2 regions. 
H1: 𝜇Share of links with neighbours in polycentric NUTS-2 regions > 𝜇Share of links with 
neighbours monocentric NUTS-2 regions. 
 
7. The percentage of patent co-inventor linkages that goes to neighbours: Metropolitan 

regions versus non-metropolitan regions 
 
Also here, metropolitan regions were compared to non-metropolitan regions. Similar to the 
intra-regional links analysis, it was expected that there would be no significant difference 
between metropolitan and non-metropolitan regions based on the share of patent links 
connected to neighbouring regions. Also here, descriptive and statistical analysis followed. The 
Welch’s t-test was used, since Levene's test indicated unequal variances (Appendix A). The null 
and alternative hypotheses are: 
 
H0: 𝜇Share of links with neighbours in metropolitan NUTS-2 regions = 𝜇Share of links with 
neighbours non-metropolitan NUTS-2 regions. 
H1: 𝜇Share of links with neighbours in metropolitan NUTS-2 regions ≠ 𝜇Share of links with 
neighbours non-metropolitan NUTS-2 regions. 
 
8. The percentage of patent links that connect with regions from the same metropole: 

Domestic versus cross-border 
 
As the results section will cover, it became clear that not only metropoles matter when it comes 
to the distribution of patent co-inventor linkages. Almost every NUTS-2 region has the majority 
of its links with other NUTS2-regions from the same country, meaning that only a small 
percentage of patent links crosses the national borders. This questions whether being part of a 
polycentric metropole matters, as knowledge flows seem to be strongly bound to a countries 
instead. To illustrate this with an example: are Noord-Holland and Zuid-Holland well connected 
mostly because they are part of the same metropole or because they happen to be part of the 
same country? Since the other analyses focussed on comparing polycentric metropolitan NUTS-
2 regions with monocentric metropoles and non-metropolitan regions, it still is not clear what 
the actual ‘strength’ of a polycentric metropole within such a bigger structure is. However, since 
polycentric metropoles can be divided into domestic and cross-border polycentric metropoles, 
it was possible to get more insight through comparing these. 
 
First, the domestic and cross-border polycentric NUTS-2 regions have been compared based on 
the share of links with regions from the same metropole. Similar to the other analyses, 
descriptive and statistical analysis followed. Because the group of cross-border polycentric 
metropoles was too small to assume normality and because the Shapiro Wilk-test rejected 
normality for this group as well (Appendix A), a non-parametric Mann-Whitney t-test was 
performed. Because the assumption was that the connection between polycentric NUTS-2 
regions from the same metropole is strong enough to cross borders, it was expected that cross-



18 
 

border polycentric metropoles have a significantly lower percentage of intra-national links than 
domestic ones. Therefore, the null hypothesis of the last Mann-Whitney t-test is: 
 
H0: 𝜇Share of ‘intra national’ links in domestic polycentric NUTS-2 regions ≤ 𝜇Share of ‘intra 
national’ links in cross-border NUTS-2 regions  
H1: 𝜇Share of ‘intra national’ links in domestic polycentric NUTS-2 regions > 𝜇Share of ‘intra 
national’ links in cross-border NUTS-2 regions  
 
9. The percentage of patent links that stay within the same country: Domestic versus 

cross-border 
 
The second Mann-Whitney t-test covers the percentage of patent links that connect one NUTS-2 
region with another region from the same metropole. While the expectation was that 
polycentric metropoles function independently from their country, national borders were still 
assumed to be a barrier for polycentric networks. Therefore, the prediction was that on average, 
domestic NUTS-2 regions have a higher percentage of patent links with other regions from their 
own metropoles than cross-border regions. The null hypothesis for this test is therefore as 
follows: 
 
H0: 𝜇Share of ‘inter metropolitan’ links in domestic polycentric NUTS-2 regions ≤ 𝜇Share of ‘inter 
metropolitan’ links in cross-border NUTS-2 regions 
H1: 𝜇Share of ‘inter metropolitan’ links in domestic polycentric NUTS-2 regions > 𝜇Share of ‘inter 
metropolitan’ links in cross-border NUTS-2 regions 
 
In the following section, ‘Results’, the outcomes of the descriptive statistics and t-tests will be 
covered in the same order as described above. This means there will be nine subsections, each 
with a descriptive analysis part and statistical analysis.  
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4. Results 
 
 
1. Number of patent links per thousand inhabitants: Monocentric versus Polycentric  

 
 

Descriptive results 
 

Looking at figure 4, it becomes clear that polycentric metropoles have a higher average of 
patents per thousand inhabitants over the whole period of 1992-2012. The difference between 
both groups’ averages even grew until an overall setback in the 2012-2016 period, from about 4 
patents in 1992-1996 up to almost 10 patents per thousand inhabitants difference in 2007-
2011. This is a large difference considering the average number of all NUTS-2 regions that are 
represented in the data (again, see figure 4). To test whether polycentric metropolitan regions 
indeed have a higher number of patent links per thousand inhabitants, an independent samples 
Student’ t-test was conducted. 

 
 

Test 
 

The test was found to be statistically significant for two of the five periods (see table 1). For the 
period 2002-2006, the test found the difference between polycentric (M = 20.56, SD = 24.87) 
and monocentric metropoles (M = 12.37, SD = 16.25 to be significant: t (94) = -1.744; p < 0.05; d 
= -0.37. The effect size for this analysis (d = -0.39) was found to be small. 

 
Also for the period 2007-2011, polycentric NUTS-2 regions demonstrated a higher number of 
patents per thousand inhabitants (M = 25.80, SD= 26.47) than monocentric NUTS-2 regions (M 
= 16.14, SD = 22.53). The difference is significant: t (94) = -1.814; p < 0.05; d = -0.38. Similar to 
the period 2002-2006 the analysis had a small effect size (d = -0.39).  

 
Despite the other three periods showing a similar difference between polycentric and 
monocentric NUTS-2 regions and a small effect size in 1992-1996 (d = -0.277); in 1997-2001 (d 
= -0.304); and in 2012-2016 (d = -0.32), the test found no significant effect (p= .098; p =  .077; p 
=  .066). 
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Figure 4: Number of patent links per 1000 inhabitants
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2. Number of patent links per thousand inhabitants: Metropolitan versus Non-
metropolitan 

 
Descriptive results 
 
It was expected that metropolitan regions had a significantly higher percentage of patent links 
than non-metropolitan regions, even after correcting for population. As figure 5 shows, this 
seems to be the case for all five time periods. 

 

 
 

Test 
 
Another independent samples Welch t-test, one-tailed, was then performed. In line with the 
results from the last analysis, metropolitan NUTS-2 regions had a significantly higher number of 
patent links per thousand inhabitants than non-metropolitan regions for all five periods (see 
table 2). As the descriptive results revealed, the difference between both groups seemed to 
increase over time, with exception of 2012-2016. This is in line with a growing effect size 
between 1992 and 2011: 

 
 
 

Table 1: Number of patent links per 1000 inhabitants: Polycentric versus monocentric  

Type 
Year  Polycentric 

(n=61) 
Monocentric 

(n=35) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

10.066 
(16.565) 

6.171 
(7.958) 

-1.551 = .062 -0.300 

1997-2001 M 
SD 

15.590 
(19.757) 

10.143 
(14.069) 

-1.569 = .060 -0.318 

2002-2006 M 
SD 

20.557 
(24.867) 

12.371 
(16.252) 

-1.947 < .05** -0.390 

2007-2011 M 
SD 

25.803 
(26.467) 

16.143 
(22.531) 

-1.895 < .05** -0.393 

2012-2016 M 
SD 

16.033 
(17.050) 

10.771 
(14.850) 

-1.582 = .059 -0.329 
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Table 2: Number of patent links per 1000 inhabitants: Metropolitan versus Non-metropolitan 

Type 
Year  Metropolitan 

(n=96) 
Non-metropolitan 

(n=206) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

8.646 
(14.125) 

1.772 
(3.184) 

-4.713 <.001*** -0.617 

1997-2001 M 
SD 

13.604 
(18.009) 

3.160 
(5.387) 

-5.567 <.001*** -0.786 

2002-2006 M 
SD 

17.563 
(22.378) 

4.296 
(7.357) 

-5.672 <.001*** -0.797 

2007-2011 M 
SD 

22.281 
(25.416) 

5.981 
(10.223) 

-6.060 <.001*** -0.842 

2012-2016 M 
SD 

14.115 
(16.401) 

4.058 
(6.814) 

-5.780 <.001*** -0.801 

 
 
For the period 1992-1996, metropolitan regions (M= 8.646, SD = 14.125) had a significantly 
higher number of patent links per thousand inhabitants than non-metropolitan regions (M = 
1.772, SD = 3.184): t (96.22) = -4.713; p < 0.001. The effect size during this period was medium 
(d = -0.62).  
 
Also by 2007-2011, metropolitan regions (M= 22.281, SD = 25.416 a significantly higher 
number of patent links per thousand inhabitants than non-metropolitan regions (M = 5.981, SD 
= 10.223): t (x) = -6.060; p < 0.001. The effect size now was large (d = -0.842). 
 
3. The percentage of patent links connected to regions of the same metropole 
 
Descriptive results 
 
The expectation was that polycentric NUTS2 regions had an equal or higher share of co-inventor 
links that stay within the own metropole than that of monocentric NUTS-2 regions. As can be 
seen in figure 6, the average share of Polycentric metropolitan NUTS-2 regions is higher than 
that of monocentric NUTS-2 regions for the periods 1997-2001, 2002-2006 and 2007-2011. For 
the other two periods however, monocentric NUTS-2 regions have a higher share. 
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 Test 
 
Then, a Mann-Whitney test was conducted to test whether polycentric metropolitan regions had 
a higher share of ‘metropolitan’ patent links than monocentric regions. The parametric test 
found no significant difference between both groups. As table 3 shows, this was the case for all 
five time periods.  

 
Table 3: Share of patent links connected to regions of the same metropoles: Polycentric versus Monocentric 

Type 
Year  Polycentric 

(n=31) 
Monocentric 

(n=12) 
t-value Significance (p) Rank-

Biserial 
Correlation 

1992-1996 M 
SD 

0.136 
(0.108) 

0.145 
(0.066) 

- = .622 - 

1997-2001 M 
SD 

0.144 
(0.104) 

0.131 
(0.057) 

- = .430 - 

2002-2006 M 
SD 

0.132 
(0.080) 

0.118 
(0.044) 

- = .271 - 

2007-2011 M 
SD 

0.124 
(0.089) 

0.109 
(0.036) 

- = .389 - 

2012-2016 M 
SD 

0.119 
(0.097) 

0.123 
(0.049) 

- = .764 - 

 
 
4. The percentage of intraregional links per NUTS2 region: Monocentric versus 

polycentric 
 

Descriptive results 
 
It was expected that monocentric metropolitan NUTS2-regions had a significantly higher 
percentage of ‘intraregional patent co-inventor links’ than polycentric metropolitan NUTS2-
regions over time. For all five time periods, monocentric regions have an average share of 
intraregional linkages that is higher than that of polycentric regions (see figure 7). Per time 
period the size difference between both groups seems to change. 

 

 
 
 

0%

10%

20%

30%

40%

50%

60%

70%

1992-1996 1997-2001 2002-2006 2007-2011 2012-2016

Figure 7: Percentage of intraregional linkages

Polycentric Monocentric



23 
 

 
Test 
 
To test whether monocentric regions indeed have a significantly higher share of intraregional 
patent links than polycentric regions, a Student’s t-test was performed. As table 4 shows, in the 
periods 1992-1996, the Student’s t-test found monocentric regions (M = 0.663, SD = 0.111) to 
have a significantly higher number of intraregional links than polycentric regions (M = 0.618, SD 
= 0.088;): t (94) = 2.168; p < 0.05. The effect size was close to medium (d = 0.46) 

 
Table 4: Share of intraregional linkages: Polycentric versus Monocentric (Student’s t test) 

Type 
Year  Polycentric 

(n=61) 
Monocentric 

(n=35) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

0.618 
(0.088) 

0.663 
(0.111) 

2.168 < .05** 0.46 

1997-2001 M 
SD 

0.598 
(0.094) 

0.619 
(0.108) 

0.980 = .165 0.21 

2002-2006 M 
SD 

0.584 
(0.094) 

0.617 
(0.098) 

1.625 = .054 0.36 

2007-2011 M 
SD 

0.569 
(0.098) 

0.610 
(0.091) 

2.061 < .05** 0.44 

2012-2016 M 
SD 

0.592 
(0.095) 

0.612 
(0.106) 

0.952 = .172 0.20 

 
The Student’s t-test also found a significantly higher number of intraregional links in 
monocentric regions (M = 0.610, SD = 0.091) than in polycentric regions (M = 0.569, SD = 
0.098): t (94) = 2.061; p < 0.05. Also here, the effect size was close to medium (d = 0.44). 
 
Despite the other three periods showing a similar difference between polycentric and 
monocentric NUTS-2 regions and a small effect size in 1997-2001 (d = 0.21); in 2002-2006 (d = 
0.36); and in 2012-2016 (d = 20), the test found no significant effect (p= .165; p =  .054; p =  
.172). 
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5. The percentage of intraregional links per NUTS2 region: Metropolitan versus non-

metropolitan 
 
Descriptive results 
 
Because only monocentric metropoles are characterised by being more ‘inward’ oriented, the 
expectation was that there is no difference in the share of intraregional links between 
metropolitan and non-metropolitan NUTS-2 regions. As figure 8 shows, for all five time periods, 
metropolitan regions had a higher average of intraregional links than non-metropolitan regions. 
The difference however seems minimal. Furthermore, both types of regions saw an overall 
decline of their averages from the period 1992-1996 until the period 2012-2016, after which 
Metropolitan saw a small increase in intraregional linkages.  

 
Test 
 
A Welch t-test was conducted to test for a significant difference between the metropolitan and 
non-metropolitan regions. As can be seen in table 5, the test found metropolitan regions to have 
a higher share of intraregional patent links than non-metropolitan regions for the periods of 
1997-2001, 2007-2011 and 2012-2016. However, only the latter had an effect size close to 
medium (d = -0.39), while both periods 1997-2001 and 2007-2011 had a small effect size (d = -
0.21; d = -0.25). 

 
Table 5: Share of intraregional linkages: Metropolitan versus Non-metropolitan (Welch t test) 

Type 
Year  Metropolitan 

(n=96) 
Non-metropolitan 

(n=204) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

0.634 
(0.099) 

0.620 
(0.168) 

-0.900 = .184 -0.10 

1997-2001 M 
SD 

0.606 
(0.099) 

0.578 
(0.155) 

-1.873 < .05** -0.21 

2002-2006 M 
SD 

0.596 
(0.096) 

0.579 
(0.160) 

-1.133 = .129 -0.13 

2007-2011 M 
SD 

0.584 
(0.097) 

0.556 
(0.126) 

-2.110 < .05** -0.25 

2012-2016 M 
SD 

0.599 
(0.099) 

0.552 
(0.137) 

-3.332 < .05** -0.39 
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6. The share of patent co-inventor linkages that goes to NUTS2-neighbours: Monocentric 
versus polycentric  

 
Descriptive results 
 
In line with the last section, it was expected that polycentric metropolitan regions have a 
significantly higher share of co-inventor links connected to neighbouring regions than 
monocentric regions. For all five periods, polycentric metropolitan regions had a higher average 
share than monocentric ones (see figure 9). During the first three periods, this difference 
seemed to grow, while this changed from the period 2007-2011 onwards. 

 

 
 
Test 
 
To find out whether this difference was significant or not, a Student’s t-test was performed. 
Looking at table 6, it shows that the t-test found polycentric regions to have a significantly 
higher share of linkages going towards neighbours than monocentric regions for all five time 
periods.  

 
Table 6: Share of linkages with neighbours: Polycentric versus Monocentric (Student’s t test) 

Type 
Year  Polycentric 

(n=61) 
Monocentric 

(n=35) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

0.161 
(0.085) 

0.117 
(0.083) 

-2.382 < .01** -0.53 

1997-2001 M 
SD 

0.166 
(0.095) 

0.116 
(0.086) 

-2.487 < .01** -0.54 

2002-2006 M 
SD 

0.175 
(0.098) 

0.113 
(0.073) 

-3.203 < .001*** -0.69 

2007-2011 M 
SD 

0.181 
(0.093) 

0.122 
(0.077) 

-3.101 < .01** -0.67 

2012-2016 M 
SD 

0.175 
(0.086) 

0.135 
(0.091) 

-2.124 < .05* -0.46 
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For the period 2002-2006, the Student’s t-test found the difference between polycentric regions 
(M = 0.175, SD = 0.098) and monocentric regions (M = 0.113, SD = 0.073) the most significant: t 
(92) = -3.203; p < 0.001. The effect size for the time period was the highest of all five periods, 
being close to a high effect (d = -0.69). 
 
The t-test found the period 2012-2016 to have the lowest significant difference (t (92) = -2.124; 
p < 0.05) between polycentric (M = 0.175, SD = 0.086) and monocentric (M = 0.135, SD = 0.091) 
regions. With an effect size close to medium (d = -0.46), this period had the lowest effect size of 
all five periods. 
 

 
7. Metropolitan versus non-metropolitan 
 
Descriptive results 
 
For the same reason that metropolitan regions were not expected to be different from non-
metropolitan regions based on intraregional links, it was also assumed that metropolitan 
regions would have no significant different percentage of neighbour-links than non-
metropolitan regions. As figure 10 shows, metropolitan regions only have a slightly higher share 
for all five periods. 
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Test 
 
However, as table 7 shows, the Welch t-test found no significant difference between 
metropolitan and non-metropolitan NUTS-2 regions for any of the five time periods. 

 
Table 7: Share of linkages with neighbours: Metropolitan versus Non-metropolitan (Welch t test) 

Type 
Year  Metropolitan 

(n=96) 
Non-metropolitan 

(n=204) 
t-value Significance (p) Cohen’s D 

1992-1996 M 
SD 

0.146 
(0.086) 

0.141 
(0.099) 

-0.354 = .362 - 

1997-2001 M 
SD 

0.149 
(0.094) 

0.145 
(0.120) 

-0.285 = .388 - 

2002-2006 M 
SD 

0.153 
(0.094) 

0.147 
(0.113) 

-0.495 = .311 - 

2007-2011 M 
SD 

0.160 
(0.092) 

0.156 
(0.108) 

-0.335 = .369 - 

2012-2016 M 
SD 

0.161 
(0.090) 

0.160 
(0.109) 

-0.059 = .477 - 

 
 

8. The percentage of patent links that goes to another region of the same metropole: 
Domestic versus cross-border 

 
Descriptive results 
 
As mentioned in the methodology section, the expectation was that cross-border polycentric 
regions have a significantly lower percentage of links that go to other regions of the same 
metropole than domestic polycentric regions. Looking at figure 11, for all time periods there 
seems to be a clear difference between both groups in the average share. The difference 
however, got slightly smaller over time.  
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Test 
 
In line with figure 11, the parametric Mann-Whitney test found Domestic polycentric regions to 
have a significantly higher share of links that go to other regions in the same metropole than 
Cross-border polycentric regions for all five time periods (see table 8). 

 
Table 8: Share of patent links connected to regions of the same metropoles: Domestic versus Cross-border 

Type 
Year  Cross-Border 

(n=16) 
Domestic 

(n=27) 
W Significance (p) Rank-

Biserial 
Correlation 

1992-1996 M 
SD 

0.063 
(0.079) 

0.184 
(0.078) 

57.000 < .001*** -0.736 

1997-2001 M 
SD 

0.082 
(0.090) 

0.174 
(0.076) 

79.000 < .001*** -0.634 

2002-2006 M 
SD 

0.078 
(0.063) 

0.158 
(0.060) 

75.000 < .001*** -0.653 

2007-2011 M 
SD 

0.066 
(0.066) 

0.156 
(0.065) 

73.500 < .001*** -0.698 

2012-2016 M 
SD 

0.060 
(0.086) 

0.161 
(0.075) 

65.500 < .001*** -0.733 

 
 
 
 
9. The percentage of patent links that stay within the same country: Domestic versus 

cross-border 
 
Descriptive results 
 
For the final analysis, the prediction was that on average, domestic NUTS-2 regions have a 
higher share of ‘intra-national’ links than cross-border regions. Looking at the results, domestic 
regions have a higher share of intra-national than Cross-border regions for all time periods 
(figure 12). In some periods, the difference in is almost 10%.  
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Test 
 
As table 9 shows, the second Mann-Whitney test found Domestic polycentric regions to have a 
significantly higher share of intra-national links than Cross-border polycentric regions for all of 
the five time periods between 1992 and 2016.  

 
Table 9: Share of intra national links: Domestic versus Cross-border 

Type 
Year  Cross-Border 

(n=21) 
Domestic 

(n=75) 
W Significance (p) Rank-

Biserial 
Correlation 

1992-1996 M 
SD 

0.814 
(0.115) 

0.907 
(0.090) 

359.500 < .001*** -0.543 

1997-2001 M 
SD 

0.825 
(0.097) 

0.884 
(0.098) 

462.000 < .01** -0.413 

2002-2006 M 
SD 

0.786 
(0.090) 

0.873 
(0.087) 

361.000 < .001*** -0.542 

2007-2011 M 
SD 

0.791 
(0.103) 

0.877 
(0.079) 

383.000 < .001*** -0.514 

2012-2016 M 
SD 

0.821 
(0.094) 

0.887 
(0.072) 

422.500 < .001*** -0.463 
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5. Conclusion 
In recent years an increasing number of scholars emphasises the importance of network-
embeddedness for the competitive position of cities. As Meijers and Peris (2019) put it, the fate 
of cities mostly depends on how they are embedded in networks in combination with their 
absorptive capacity to exploit these networks. However, identifying the networks that make the 
polycentric metropole possible has remained a critical issue over the last 20 years, as preferred 
relational data is not easily available.  
 
Therefore, with this thesis an attempt has been made to identify the networks that form the 
functional dimension of polycentric metropoles. This was done by comparing and analysing 
knowledge flow networks of a selection of polycentric and monocentric metropoles and non-
metropolitan regions. Both the polycentric and monocentric metropoles were selected based on 
their morphological dimension, as had been done by Meijers, Hoogerbrugge and Cardoso (2018) 
when they created the first comprehensive list of polycentric metropoles. The knowledge flow 
analysis was based on the quantity and distribution of ‘patent co-inventors links’ across the 
European Union on NUTS2 level. Comparisons with a selection of monocentric metropoles and 
non-metropolitan regions were made, to get inside into whether the networks within 
polycentric regions are actually different from those in regions that are not. 
 
While answering the first sub question, ‘’to what extent do polycentric metropoles have a higher 
share of knowledge flows than monocentric metropoles?’’, it became clear that polycentric 
metropoles on average have a total number of knowledge flows that is at least comparable to 
that of monocentric metropoles. While looking at the number of links per thousand inhabitants 
however, and despite this outcome not being statistically significant for all of the five time 
periods, it can be assumed that polycentric metropoles have a denser network of knowledge 
flows than monocentric metropoles. 
 
To put this outcome into perspective, the second sub question, ‘’to what extent do metropolitan 
regions have a higher share of knowledge flows than non-metropolitan regions?’’, was 
answered. Based on the results it can be assumed that on average, metropolitan regions contain 
a higher number of knowledge flows than non-metropolitan regions, both without and with a 
correction for population size. This implies that polycentric metropoles on average have denser 
networks of knowledge flows than both monocentric metropoles and non-metropolitan regions, 
which supports the assumptions of scholars that the network embeddedness of polycentric 
metropoles substitutes for being a large agglomeration like monocentric metropoles (Johansson 
and Quigley 2004). 
 
However, this outcome itself was not enough to conclude that polycentric metropoles indeed 
are more network-embedded than regions that are not polycentric metropoles. The third sub-
question therefore focused on the places those knowledge flows are connecting: ‘’To what 
extent does the distribution of knowledge flows of polycentric metropoles differ from that of 
monocentric metropoles?’’ The results show that polycentric and monocentric metropoles differ 
on a few aspects but not for all. The latter is the case for the average share of intra-metropolitan 
knowledge flows. The results assume that there is no difference between polycentric and 
monocentric metropoles when it comes to the percentage of knowledge flows that stay within 
the metropoles themselves. The concentration of intra-metropolitan flows being similar for 
both types of metropoles over time strengthens the assumption that polycentric networks 
compensating their relatively small size by being very well embedded in city networks. The 
result might thus be a proof for the ‘borrowing of size’ (Meijers and Burger, 2015). 
 
The results also show that regions that are part of a polycentric metropole have a higher 
percentage of knowledge flows connected with neighbouring regions than monocentric regions 
have. The less ‘centralised’ flows of knowledge of polycentric metropoles are in line with the 
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idea that polycentric metropoles are not led by one dominant core which overshadows the 
metropole itself and regions beyond, but instead consist of a group of relatively similar urban 
cores with a comparable importance (Dieleman & Faludi, 1998, p. 365).  
 
For the same reason, it was expected that regions part of a polycentric metropole had a lower 
percentage of intra-regional links (thus staying within the home region) than monocentric 
metropoles. However, this result only turned out to be significant for a few time periods. More 
interesting about the results was the high percentage of intra-regional for all regions in general, 
whether they were considered polycentric, monocentric or non-metropolitan. Finding an 
explanation for this might be interesting for different research. 
 
So far, polycentric metropoles do not only have a higher number of links in comparison to 
monocentric metropoles and non-metropolitan regions, polycentric regions also are less 
centralised than monocentric regions. Interestingly, the results did not show significant 
differences between metropolitan and non-metropolitan regions on the latter. This suggests 
that the more ‘decentralised’ structure of knowledge in polycentric metropoles has more in 
common with non-metropolitan regions in the EU than with the more centralised structure of 
monocentric regions. This is in line with other literature where Europe’s urban landscape was 
found to be much more dispersed and polycentric than that of the US (Dijkstra, Garcilazo & 
McCann, 2013). 
 
Though the outcomes so far suggest that knowledge flows analysis gave reasons to assume 
polycentric networks exist, a quick look at the data also has shown that the vast majority of 
knowledge flows stays within one country. This raised the question whether polycentric 
metropolitan networks really matter when knowledge flows only seem to be strongly bound to 
a country’s borders. For that, the last sub-question, ‘’to what extent does the distribution of 
knowledge flows of cross-border polycentric metropoles differ from that of domestic 
polycentric metropoles?’’ had to be answered. The results show that both countries and 
polycentric networks matter for the distribution of knowledge flows. The significantly lower 
percentage of knowledge flows that go to other regions of the same metropole for cross-border 
polycentric regions than for domestic polycentric regions implies that country borders form an 
obstacle. However, the fact that domestic regions have a higher share of intra-national 
knowledge flows than cross-border regions, not only strengthen the legitimacy of polycentric 
networks, but also imply that they indeed are able to transcend national borders. This not only 
debunks the traditional idea that border regions are the natural counterpart of the monocentric 
and centrally located metropoles, but also gives reason to believe that cross-border polycentric 
networks make such regions compete (Baert, 2008; ESPON, 2010; Zhao & Islam, 2017). 
 
To answer the main question “To what extent are polycentric metropoles within the EU 
network-embedded based on knowledge flows, and to what extent does this change over time?,’’ 
the multistep-analysis of patent co-inventor links gave several reasons to assume that 
polycentric networks do exist and that they are not just theory based. First of all, polycentric 
metropoles on average have a higher density of knowledge flows than monocentric metropoles 
and non-metropolitan regions. Concerning the destination of knowledge flows, polycentric 
metropoles on average have percentages of flows that stay within the metropole itself similar to 
that of monocentric metropoles. This implies that polycentric metropoles, despite their 
decentralised morphology, are indeed more than just a sum of urban cores and that they can be 
just as ‘cohesive’ as the agglomerations that monocentric metropoles are. Thirdly, the results 
also show that polycentric networks are less inward oriented in contrast to those of 
monocentric metropoles, implying that the points over gravity within polycentric metropoles 
are indeed more equally balanced than monocentric metropoles.  Fourth, the results also have 
shown that the case of polycentric networks becomes stronger when making a distinction 
between domestic and cross-border. Not only does it emphasise that polycentric networks can 
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transcend national borders but also that ideas about ‘the central monocentric metropole’ might 
be outdated.  
 
Furthermore, the results also suggest that the factor of ‘time’ was important to take into account 
when looking at network-embeddedness based on knowledge flows. For all nine analyses, there 
are clear differences between the five time periods. This study shows several examples of how 
the same analysis has found a significant difference between two types of regions in some 
periods, while in other time periods no differences could be assumed. However, the outcomes of 
a few analyses actually show a trend. The results from analysis 2 imply that the difference in the 
number of patent links per 1000 inhabitants between both metropolitan and non-metropolitan 
regions seems to increase over time. This might support the idea that metropoles are becoming 
increasingly important, though it be in a less ‘monocentric’ way than Veltz (1996) argued. 
Another result regarding ‘time’ is that the percentage of intraregional links seems to be 
decreasing over the period 1992-2016 for all types of NUTS-2 regions, whether they are 
polycentric, monocentric or non-metropolitan. 
 
This thesis has shown that patent co-inventor linkage data has the potential to identify 
networks which are argued to be essential to the development of the network-embedded 
polycentric metropole. Therefore, it supports the statement of Meijers and Peris (2019) and 
other authors that size and concentration are not the only paths towards more competitive and 
economically succesfull cities. Furthermore, the outcome is in line with the claim that cities 
should not be studied in isolation within the context of networks. However, there are several 
points of improvement for future research on this matter.  
 
First of all, even though it has been argued in this study that patent co-inventor linkages data is 
a useful dataset for identifying knowledge flows, it was also acknowledged that patent data does 
not represent all creation and exchange of knowledge. While patent data covers mostly 
technological innovations, it does not take into account innovations in creative sectors. 
Furthermore, it has been argued that knowledge flows are useful for the identification of 
networks in the light of competitiveness through network-embeddedness. Especially because 
knowledge is seen as a driver of long-run economic growth (Kogler, Rigby & Tucker, 2013). 
However, it is important to keep into account that knowledge is just one of the many ways to 
identify networks (e.g: Derudder & Witlox, 2005; Nelson & Rae, 2016; Meijers & Peris, 2019). 
Future research should therefore focus on identifying polycentric networks with different 
approaches. 
 
Secondly, as mentioned before, the patent data used for the study was only available on NUTS-2 
level, which are regions that cover relatively large areas of space with population sizes 
somewhere between 800,000 and 3 million inhabitants. Even though the area and population 
sizes of some metropoles match those of their corresponding NUTS-2 regions, this was 
especially problematic for metropoles with populations of just a few hundred thousand people. 
Therefore, many metropoles that could have been useful during this research were left out 
because of the big differences with corresponding NUTS-2 regions. Furthermore, the size of 
regions on NUTS-2 level also caused particular analyses to be less detailed and less effective 
than prefered. To illustrate this: for a metropole such as Paris it was not possible to properly 
analyse knowledge flows that stayed within the metropole because only one NUTS-2 region 
corresponds with Paris: Ile de France. On NUTS-3 level however, Ile de France is divided into 
eight different regions, which would have allowed for a deeper analysis. Future studies should 
therefore focus on using NUTS-3 level. Another alternative is the use of publication data as it 
gives even more detailed geographical information, providing the addresses of every university 
and research institute per publication (Runiewicz-Wardyn, 2013, p. 21). Publication data is 
derived from large data bases such as Scopus and Web of Science, containing millions of books, 
articles and reports. However, finding datasets similar in size to that of patent data will be a 
challenge. 
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Third, because of time practical reasons and the absence of the qualitative data needed, it was 
not possible to add a dimension to the study that focussed on the quality of the knowledge being 
distributed. As Balland and Rigby (2017) argued, regions with the most complex technology 
concentrations are not necessarily those with the highest rates of patenting. Their patent 
analysis also showed that more complex patents are less likely to be cited than less complex 
patents, as more complexity makes it harder to share knowledge (Balland & Rigby, 2017). 
Therefore, future research needs to include both quantity and quality when analysing 
knowledge flows between places.  
 
Nevertheless, analysing knowledge flows through patent co-inventor linkages data, has been a 
new but useful approach to the identification of the networks that make polycentric metropoles 
popular. The hope is that future studies will get more detailed insight into the ‘dirty little secret’ 
of polycentricity-related research.  
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7. Appendix A 

Tests of Equality of Variances and Normality Tests 

Table 1: Analysis 1 - Levene’s Test 

Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 3.024 1 0.085 

1997-2001 2.048 1 0.156 

2002-2006 2.403 1 0.125 

2007-2011 0.677 1 0.413 

2012-2016 1.158 1 0.285 

 

Table 2: Analysis 2 - Levene’s Test 

Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 30.558 1 <.001*** 

1997-2001 41.119 1 <.001*** 

2002-2006 37.226 1 <.001*** 

2007-2011 39.702 1 <.001*** 

2012-2016 43.263 1 <.001*** 

 

Table 3: Analysis 3 - Levene’s Test 
Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 10.171 1 <.005** 

1997-2001 7.586 1 <.05* 

2002-2006 11.547 1 <.005** 

2007-2011 15.230 1 <.001*** 

2012-2016 8.996 1 <.005** 

 

Table 4: Analysis 4 - Levene’s Test 

Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 3.856 1 .053 

1997-2001 2.411 1 .124 

2002-2006 0.524 1 .471 

2007-2011 0.170 1 .681 

2012-2016 1.170 1 .282 
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Table 5: Analysis 5 - Levene’s Test 
Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 16.187 1 <.001*** 

1997-2001 13.959 1 <.001*** 

2002-2006 17.808 1 <.001*** 

2007-2011 4.564 1 <.05* 

2012-2016 6.548 1 <.05* 

 

Table 6: Analysis 6 - Levene’s Test 
Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 0.225 1 .637 

1997-2001 0.697 1 .406 

2002-2006 7.027 1 .090 

2007-2011 3.606 1 .061 

2012-2016 0.146 1 .704 

 

Table 7: Analysis 7 - Levene’s Test 

Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 1.869 1 .173 

1997-2001 4.243 1 <.05* 

2002-2006 2.483 1 .116 

2007-2011 2.903 1 .090 

2012-2016 4.223 1 <.05* 

 

Table 8: Analysis 8 - Levene’s Test 

Equality of Variances 

 

Time period F df Significance 
(p) 

1992-1996 0.029 1 .866 

1997-2001 0.220 1 .642 

2002-2006 0.0002 1 .987 

2007-2011 0.121 1 .730 

2012-2016 1.243 1 .271 

 

Table 9: Analysis 9 - Levene’s Test 

Equality of Variances 

Time period F df Significance 
(p) 

1992-1996 3.545 1 .063 

1997-2001 0.100 1 .752 

2002-2006 0.091 1 .764 

2007-2011 1.142 1 .288 

2012-2016 1.210 1 .274 
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Table 10: Analysis 3 – Shapiro-Wilk’s Test 
 

Test of Normality 

Time period Type W Significance (p) 

1992-1996 Mono 0.940 .493 
 Poly 0.911 <.05* 

1997-2001 Mono 0.961 .795 

 Poly 0.941 .088 

2002-2006 Mono 0.932 .401 

 Poly 0.939 .077 

2007-2011 Mono 0.938 .472 

 Poly 0.921 <.05* 

2012-2016 Mono 0.950 .632 

 Poly 0.904 <.01** 

 

 

Table 11: Analysis 8 – Shapiro-Wilk’s Test 

 
Test of Normality 

Time period Type W Significance (p) 

1992-1996 Cross-border 0.774 <.001*** 

 Domestic 0.980 .862 

1997-2001 Cross-border 0.783 <.005** 

 Domestic 0.979 .842 

2002-2006 Cross-border 0.882 <.05* 

 Domestic 0.966 .504 

2007-2011 Cross-border 0.854 <.05* 

 Domestic 0.946 .169 

2012-2016 Cross-border 0.753 <.001*** 

 Domestic 0.955 .289 

 

 

Table 12: Analysis 9 – Shapiro-Wilk’s Test 

 
Test of Normality 

Time period Type W Significance (p) 
1992-1996 Cross-border 0.924 .107 

 Domestic 0.770 <.001*** 
1997-2001 Cross-border 0.904 0.05* 

 Domestic 0.841 <.001*** 
2002-2006 Cross-border 0.945 .276 

 Domestic 0.905 <.001*** 
2007-2011 Cross-border 0.910 .054 

 Domestic 0.928 <.001*** 
2012-2016 Cross-border 0.845 <.005** 

 Domestic 0.877 <.001*** 
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8. Appendix B 

 

Table 13: List of NUTS-2 regions corresponding to a polycentric or monocentric metropole 

 
NUT
S-2 

Metropole 
name 

Metropol
e-CODE 

Countr
y  

Type Sub-
type 

No. of 
correspondi
ng NUTS-2 
regions 

HH-
Inde
x 

Populati
on size 
(x1000) 

UKH
2 

London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

UKH
3 

London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

UKI1 London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

UKI2 London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

UKJ2 London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

UKJ4 London MM01 UK Monocentr
ic 

Domesti
c  

9 0,56 13709 

FR10 Paris  MM02 FR Monocentr
ic 

Domesti
c  

1 1 11175 

ES30 Madrid  MM03 ES Monocentr
ic 

Domesti
c  

1 1 5263 

ES51 Barcelona MM04 ES Monocentr
ic 

Domesti
c  

1 0,95 4251 

DE30 Berlin MM05 DE Monocentr
ic 

Domesti
c  

1 1 4016 

EL30 Athens MM06 EL Monocentr
ic 

Domesti
c  

1 0,96 3761 

UKG
1 

Birmingham MM07 UK Monocentr
ic 

Domesti
c  

2 0,66 3683 

UKG
3 

Birmingham MM07 UK Monocentr
ic 

Domesti
c  

2 0,66 3683 

DE21 München MM08 DE Monocentr
ic 

Domesti
c  

2 0,67 3271 

DE27 München MM08 DE Monocentr
ic 

Domesti
c  

2 0,67 3271 

ITI4 Rome MM09 IT Monocentr
ic 

Domesti
c  

1 0,78 3190 

DE60 Hamburg MM10 DE Monocentr
ic 

Domesti
c  

1 1 2983 

PL12 Warschau MM11 PL Monocentr
ic 

Domesti
c  

1 0,9 2785 

DE11 Stuttgart MM12 DE Monocentr
ic 

Domesti
c  

1 0,87 2665 

PT17 Lissabon MM13 PT Monocentr
ic 

Domesti
c  

1 0,98 2591 

AT13 Vienna MM14 AT Monocentr
ic 

Domesti
c  

1 0,93 2584 

UKD
3 

Manchester MM15 UK Monocentr
ic 

Domesti
c  

1 0,92 2556 

HU10 Budapest MM16 HU Monocentr
ic 

Domesti
c  

1 0,91 2523 

SE11 Stockholm MM17 SE Monocentr
ic 

Domesti
c  

1 0,69 2171 

RO32 Boekarest MM18 RO Monocentr
ic 

Domesti
c  

1 1 2064 

FR71 Lyon MM19 FR Monocentr
ic 

Domesti
c  

1 0,75 1787 

ITC1 Turin MM20 IT Monocentr
ic 

Domesti
c  

1 0,85 1716 
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CZ01 Prague MM21 CZ Monocentr
ic 

Domesti
c  

2 0,89 1669 

CZ02 Prague MM21 CZ Monocentr
ic 

Domesti
c  

2 0,89 1669 

DE25 Nürnberg-Fürth MM22 DE Monocentr
ic 

Domesti
c  

1 0,78 1583 

ES52 Valencia-
Sagunto 

MM23 ES Monocentr
ic 

Domesti
c  

1 0,92 1499 

IE02 Dublin MM24 IE Monocentr
ic 

Domesti
c  

1 1 1477 

UKM
3 

Greater 
Glasgow 

MM25 UK Monocentr
ic 

Domesti
c  

1 0,78 1395 

FI1B Helsinki 
Metropolitan 
Area 

MM26 FI Monocentr
ic 

Domesti
c  

1 1 1285 

BG41 Sofia MM27 BG Monocentr
ic 

Domesti
c  

1 1 1174 

NO01 Greater Oslo MM28 NO Monocentr
ic 

Domesti
c  

1 1 1037 

DEA1 Rhein–Ruhr  PM01 DE Polycentri
c 

Domesti
c  

4 0,12 12190 

DEA2 Rhein–Ruhr PM01 DE Polycentri
c 

Domesti
c  

4 0,12 12190 

DEA3 Rhein–Ruhr PM01 DE Polycentri
c 

Domesti
c  

4 0,12 12190 

DEA5 Rhein–Ruhr PM01 DE Polycentri
c 

Domesti
c  

4 0,12 12190 

NL31 Randstad PM02 NL Polycentri
c 

Domesti
c  

3 0,09 6787 

NL32 Randstad PM02 NL Polycentri
c 

Domesti
c  

3 0,09 6787 

NL33 Randstad PM02 NL Polycentri
c 

Domesti
c  

3 0,09 6787 

CH07 Milano PM03 CH Polycentri
c 

Cross-
border 

2 0,48 6011 

ITC4 Milano PM03 IT Polycentri
c 

Cross-
border 

2 0,48 6011 

CZ08 Silesian–
Moravian 

PM04 CZ Polycentri
c 

Cross-
border 

2 0,34 5294 

PL22 Silesian–
Moravian 

PM04 PL Polycentri
c 

Cross-
border 

2 0,34 5294 

BE10 Flemish 
Diamond 

PM05 BE Polycentri
c 

Domesti
c  

5 0,33 5103 

BE21 Flemish 
Diamond 

PM05 BE Polycentri
c 

Domesti
c  

5 0,33 5103 

BE23 Flemish 
Diamond 

PM05 BE Polycentri
c 

Domesti
c  

5 0,33 5103 

BE24 Flemish 
Diamond 

PM05 BE Polycentri
c 

Domesti
c  

5 0,33 5103 

BE31 Flemish 
Diamond 

PM05 BE Polycentri
c 

Domesti
c  

5 0,33 5103 

DE26 Rhein–Main PM06 DE Polycentri
c 

Domesti
c  

3 0,36 4149 

DE71 Rhein–Main PM06 DE Polycentri
c 

Domesti
c  

3 0,36 4149 

DEB3 Rhein–Main PM06 DE Polycentri
c 

Domesti
c  

3 0,36 4149 

ITF3 Napoli PM07 IT Polycentri
c 

Domesti
c  

1 0,42 3714 

BE25 Lille PM08 BE Polycentri
c 

Cross-
border 

3 0,22 3115 

BE32 Lille PM08 BE Polycentri
c 

Cross-
border 

3 0,22 3115 

FR30 Lille PM08 FR Polycentri
c 

Cross-
border 

3 0,22 3115 
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BE22 Maastricht–
Aachen–
Heerlen–Liege 

PM09 BE Polycentri
c 

Cross-
border 

3 0,15 3060 

BE33 Maastricht–
Aachen–
Heerlen–Liege 

PM09 BE Polycentri
c 

Cross-
border 

3 0,15 3060 

DEA2 Maastricht–
Aachen–
Heerlen–Liege 

PM09 DE Polycentri
c 

Cross-
border 

3 0,15 3060 

NL42 Maastricht–
Aachen–
Heerlen–Liege 

PM09 NL Polycentri
c 

Cross-
border 

3 0,15 3060 

DE12 Rhein–Neckar 
(Mannheim–
Ludwigshafen–
Heidelberg) 

PM10 DE Polycentri
c 

Domesti
c  

2 0,2 2931 

DEB3 Rhein–Neckar 
(Mannheim–
Ludwigshafen–
Heidelberg) 

PM10 DE Polycentri
c 

Domesti
c  

2 0,2 2931 

DK01 Oresund PM11 DK Polycentri
c 

Cross-
border 

2 0,49 2842 

SE22 Oresund PM11 SE Polycentri
c 

Cross-
border 

2 0,49 2842 

PT11 Porto–Braga–
Guimaraes 

PM12 PT Polycentri
c 

Domesti
c  

1 0,43 2391 

UKE4 Leeds–Bradford PM13 UK Polycentri
c 

Domesti
c  

1 0,21 2302 

UKD
7 

Liverpool–
Birkenhead 

PM14 UK Polycentri
c 

Domesti
c  

1 0,44 2241 

NL41 Noord–Brabant 
(Eindhoven–
Tilburg–Den 
Bosch–Breda) 

PM15 NL Polycentri
c 

Domesti
c  

1 0,11 2083 

CH04 Zurich PM16 CH Polycentri
c 

Domesti
c  

1 0,48 1615 

UKC
2 

Tyneside PM17 UK Polycentri
c 

Domesti
c  

1 0,47 1599 

UKE3 Sheffield PM18 UK Polycentri
c 

Domesti
c  

1 0,41 1569 

UKJ3 Portsmouth–
Southampton 

PM19 UK Polycentri
c 

Domesti
c  

1 0,38 1547 

UKF1 Nottingham–
Derby 

PM20 UK Polycentri
c 

Domesti
c  

1 0,34 1534 

FRL0 Marseille–Aix–
en–Provence 

PM21 FR Polycentri
c 

Domesti
c  

1 0,5 1530 

ITH3 Venezia–
Padova 

PM22 IT Polycentri
c 

Domesti
c  

1 0,43 1401 

ES21 Donostia–San 
Sebastian–
Bayonne 

PM23 ES Polycentri
c 

Cross-
border 

2 0,37 1391 

FR82 Donostia–San 
Sebastian–
Bayonne 

PM23 FR Polycentri
c 

Cross-
border 

2 0,37 1391 

NL22 Arnhem–
Nijmegen–
Apeldoorn–
Wageningen 

PM24 NL Polycentri
c 

Domesti
c  

1 0,14 1257 

DED5 Leipzig–Halle PM25 DE Polycentri
c 

Domesti
c  

1 0,52 1214 

CH01 Geneve–
Annemasse–
Annecy–Cluses 

PM26 CH Polycentri
c 

Cross-
border 

2 0,45 1200 

FR71 Geneve–
Annemasse–
Annecy–Cluses 

PM26 FR Polycentri
c 

Cross-
border 

2 0,45 1200 
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ITC3 Nice–Cote 
d’Azur–San 
Remo 

PM27 IT Polycentri
c 

Domesti
c  

1 0,27 1189 

DEA4 Bielefeld–
Detmold 

PM28 DE Polycentri
c 

Domesti
c  

1 0,44 1173 

UKL1 Cardiff and 
South Wales 

PM29 UK Polycentri
c 

Domesti
c  

1 0,36 1097 

UKL2 Firenze PM30 IT Polycentri
c 

Domesti
c  

1 0,39 1090 

DE91 Braunschweig–
Wolfsburg 

PM31 DE Polycentri
c 

Domesti
c  

1 0,32 1004 

PL63 Gdansk–Gdynia PM32 PL Polycentri
c 

Domesti
c  

1 0,54 993 

AT31 Linz–Wels–
Steyr–
Amstetten 

PM33 AT Polycentri
c 

Domesti
c  

1 0,48 985 

BE34 Luxembourg PM34 BE Polycentri
c 

Cross-
border 

4 0,17 983 

DEB2 Luxembourg PM34 DE Polycentri
c 

Cross-
border 

4 0,17 983 

FR41 Luxembourg PM34 FR Polycentri
c 

Cross-
border 

4 0,17 983 

LU00 Luxembourg PM34 LU Polycentri
c 

Cross-
border 

4 0,17 983 

CH03 Basel–
Mulhouse 

PM35 CH Polycentri
c 

Cross-
border 

2 0,32 982 

DE13 Basel–
Mulhouse 

PM35 DE Polycentri
c 

Cross-
border 

2 0,32 982 

DED4 Chemnitz–
Zwickau–Aue–
Greiz 

PM36 DE Polycentri
c 

Domesti
c  

1 0,42 940 

CH02 Bern–
Neuchatel–
Biel–Thun 

PM37 CH Polycentri
c 

Domesti
c  

1 0,21 859 

DEG
0 

Erfurt–Jena–
Weimar 

PM38 DE Polycentri
c 

Domesti
c  

1 0,23 853 

ES12 Oviedo–Gijon–
Aviles 

PM39 ES Polycentri
c 

Domesti
c  

1 0,28 844 

 


