

Utrecht University

Master’s Thesis

A Machine Learning Approach for

Requirement Traceability in Model-

Driven Development

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science

in
Business Informatics

Faculty of Science
Department of Information and Computing Sciences

Author: Supervisors:
Randell Rasiman Dr. Fabiano Dalpiaz
4281209 Dr. Sergio España Cubillo

August 2021

Abstract | 1

Abstract
[Context & Motivation] Requirements Traceability (RT) aims to follow and describe the lifecycle

of a requirement. A multitude of standards require RT practices because they provide benefits in

project management, project visibility, maintenance, and verification and validation.

[Problem] Many of these RT practices are carried out manually, which poses significant risks.

Manual tracing techniques are prone to mistakes, vulnerable to changes, time-consuming, and

difficult to maintain. The task of recovering traces should not be done manually but should instead

be automated. However, this is an issue since existing automatic tracing tools have shortcomings,

as evidenced by the low tool penetration.

[Results] We propose to tackle this problem by using machine learning (ML) techniques. This

research presents the design of a tracing tool for automatically recovering traces between JIRA

issues and commits in a model-driven development (MDD) context. Using process and text-based

data, we created 154 features to train a ML classifier. This classifier was then validated using four

real MDD industry datasets. We were able to get an average F2-sore of 73.48 with the best tested

configuration, for a situation where we could recommend traces to a developer. An F0.5-score of

77.32 was obtained in the scenario of automatically maintaining traces of a current project.

[Contribution] The findings of this study demonstrate that state-of-the-art trace recovery

techniques can successfully be implemented in an MDD-context, bridging the gap between

academia and industry.

Keywords: Requirements Traceability, Machine Learning, Trace Link Recovery

Abstract | 2

Contents
Abstract .. 1

List of Figures .. 5

List of Tables .. 6

Acknowledgements ... 7

1. Introduction ... 8

1.2 Problem Statement ... 9

1.3 Research Objective and Questions .. 9

1.4 Thesis Outline ... 11

2. Research Method .. 12

2.1 Design Science .. 12

2.2 Semi-Systematic Literature Review .. 13

2.3 Backward and Forward Snowballing ... 14

2.4 Case Study .. 14

3. Literature Review ... 15

3.1 Fundamentals of Requirements Traceability .. 15

3.1.1 Requirement Traceability Delineations .. 16

3.2 Fundamentals Model-Driven Development ... 18

Models .. 18

3.3 Computer-Assisted Trace Link Recovery ... 19

3.3.1 Metrics .. 19

3.3.2 Information Retrieval ... 21

3.3.3 Heuristics ... 23

3.3.4 Machine Learning ... 23

3.3.5 Deep Learning .. 24

3.3.6 Automated Traceability Approaches.. 25

3.3.7 Lessons Learned ... 30

4. Problem Investigation .. 32

4.1 The Mendix Platform ... 32

4.1.1 Mendix Studio (Pro) .. 32

4.1.2 Mendix Developer Portal... 33

4.1.3 Mendix Servers .. 33

Abstract | 3

4.2 JIRA ... 34

4.2.1 Epics and Stories ... 34

4.3 Case description of Mendix ... 35

4.4 Desired solution .. 36

5. Treatment Design ... 38

5.1 Initial Data ... 38

5.1.1 JIRA Dataset .. 38

5.1.2 SVN Dataset... 39

5.2 Pre-processing ... 40

5.2.1 Loading and pre-processing .. 40

5.2.2. Trace Link Construction ... 40

5.3 Feature Families .. 41

5.3.1 Process-Related ... 41

5.3.2 Document Statistics ... 42

5.3.3 Information Retrieval ... 42

5.3.4 Query Quality ... 43

5.4 Data Normalisation .. 43

5.5 Rebalancing ... 44

5.6 Classification Algorithms ... 44

5.7 Hyperparameter tuning ... 45

5.8 Summary .. 45

6. Results ... 46

6.1 Baseline Results ... 46

6.1.1 Statistical Comparison of Rebalancing Strategies ... 49

6.2.2 Statistical Comparison of Classification algorithms ... 51

6.2 Results of Normalising the baseline configuration ... 52

6.3 Best Model for Trace Recommendation Scenario. .. 53

6.3.1 Best Features of Trace recommendation features ... 54

6.3.2 The Results of Hyperparameter Tuning ... 55

6.4 Best Model for Trace Maintenance Scenario ... 56

6.4.1 Top 5 most important features ... 57

6.4.2 The Results of Hyperparameter Tuning ... 58

7. Discussion .. 59

7.1 Main Contributions .. 59

7.2 Threats to validity .. 59

Abstract | 4

7.2.1 Construct Validity ... 59

7.2.2 Internal Validity .. 60

7.2.3 External Validity ... 60

7.2.4 Reliability ... 60

8. Conclusion and Future Work ... 62

8.1 Sub Questions ... 62

8.2 Main Research Question .. 64

8.3 Future Work .. 64

Bibliography .. 66

Appendix A - Interview Protocol .. 71

Appendix B – Feature Overview ... 73

List of Figures | 5

List of Figures
Figure 1: Design Cycle [21] ... 12

Figure 2: Two Trace Artefacts Connected Through a Trace Link Forming a Trace............................. 15

Figure 3: Backward and Forward Traceability [33] ... 16

Figure 4: Pre-RS and post-RS traceability [33] ... 17

Figure 5: Relationships between MDE, MDD, and MDA .. 18

Figure 6: Overview of the eight most popular metrics for benchmarking computer-assisted TLR

[40] .. 19

Figure 7: Graphical representation of spatial distance between terms [48] .. 22
Figure 8: Architecture of a recurrent neural network [59] ... 24

Figure 9: The formulas and plots of Sigmoid, Tanh, and RELU functions ... 24

Figure 10: Overview of the ML simulation experiments conducted by Abukwaik et al. [61] 25

Figure 11: Architecture of the tracing method of Guo et al. using a RNN [58] 30

Figure 12: The user interface of Mendix Studio ... 32

Figure 13: Developer Portal is the user interface of Mendix to support management functionality

 .. 33

Figure 14: The GUI in Mendix Studio Pro to commit changes to the Team Server. The developer

can see all open stories in SPRINTR (left), changes made to the model (middle), and all changes

made on disk (right) .. 34

Figure 15: Overview of the JIRA issue hierarchy [68] ... 34

Figure 16: Example of a JIRA User Story ... 35

Figure 17: Commit history of a project in Mendix containing requirement traces 36

Figure 18: Mock-up of a trace recommendation system .. 37

Figure 19: Overview of the data making up a revision .. 39

Figure 20: Leaf-wise Tree Growth (top) and Level-Wise Tree growth (bottom) 44

Figure 21: Process-Delivery Diagram depicting the method we used to obtain our results 47

Figure 22: The mean precision, recall, F-0.5, F1, and F2 metrics for the various model

configurations on non-normalized data .. 48

Figure 23: Mean precision, recall, F0.5, F1, and F2 metrics for the different model configurations

using Min-Max [0,1] normalized data ... 53

Figure 24: Total gain for the 5 most important features for the Project 3 (left), Project 2 (middle),

and Project 4 (right) datasets .. 54

Figure 25: Comparison of F2-scores between default and hyperparameter tuned LightGBM for

Cross-Validation (left) and Test (right) ... 56

Figure 26: Average gain for the 5 most important features for the Project 3 (left), Project 2

(middle), and Project 4 (right) datasets .. 57

Figure 27: Comparison of F0.5-scores between default and hyperparameter tuned XGBoost for

Cross-Validation (left) and Test (right) ... 58

List of Tables | 6

List of Tables
Table 1: Overview of all tasks executed during the systematic literature review 13

Table 2: Overview of all Mendix employees interviewed .. 14

Table 3: Overview of feature families used by Abukwaik [61] .. 26

Table 4: Overview of feature families used in TRAIL [38] ... 27

Table 5: Average F-score (in percentage) achieved by TRAIL [38] ... 27

Table 6: Overview of feature families used by Falessi et al. [64]. ... 28

Table 7: Overview of feature families used by Rath et al. [56] ... 29

Table 8: Overview of the data quantity for each internal project we have obtained from Mendix
 .. 38

Table 9: Overview of the proportion of labelled data in the various datasets 40

Table 10: The amount of valid trace links in various acquired datasets .. 41

Table 11: VSM with TF-IDF weighting features .. 42

Table 12: Evaluated configurations of the treatment .. 46

Table 13: Mean F0.5-measure, F1-measure, and F2-measure for the different non-normalized

configurations. The asterisk denotes the combinations for which the greatest F-measure was

obtained. ... 49

Table 14: Nemenyi test results for Random Forests. The asterisk denotes the combinations

which were found to be significantly different (p < 0.01).. 50

Table 15: Nemenyi test results for XGBoost. The asterisk denotes the combinations which were

found to be significantly different (p < 0.01). .. 50

Table 16: Nemenyi test results for LightGBM. The asterisk denotes the combinations which were

found to be significantly different (p < 0.01). .. 51

Table 17: Nemenyi test results for none rebalancing strategy on F0.5. The asterisk denotes the

combinations which were found to be significantly different (p < 0.01). ... 51

Table 18: Nemenyi test results for 5050 rebalancing strategy on F2. The asterisk denotes the

combinations which were found to be significantly different (p < 0.01). ... 52

Table 19: Mean F0.5-measure and F2-measure for the different normalized configurations 52

Table 20: The Mann-Whitney U statistics for the different configurations .. 52

Table 21: The considered search space for the Randomized Search on the LightGBM model 56

Table 22:The considered search space for the Randomized Search on the XGBoost model 58

Acknowledgements | 7

Acknowledgements
This was the end of an eight-month journey in which I wrote my master thesis. In those eight

months, in between the lockdowns, curfews, and vaccination appointments, I suppose I have

learned a thing or two about requirements traceability, model driven development, and applied

machine learning. However, this also marks the end of my time as a student. And at the end of such

a life-defining phase, I am grateful to the individuals that brought me here.

First, I would like to thank my supervisors. Dr. Fabiano Dalpiaz, who guided me throughout the

entire journey and probably is the sole reason I am still graduating this academic year. Thank you

for your supervision, patience, and faith in me. Dr. Sergio España Cubillo, who was a great

supervisor, but also a great teacher. I still recall your enthusiasm during the ICT advisory course,

and for that I am grateful.

Then my acknowledgments to the people at Mendix. Toine Hurkmans, who introduced me to

Mendix. Thank you for the meetings and the assistance. My thanks also go to Joep, Benny, Arjan,

Thomas, Jonathan, Omar, Huib and other individuals at Mendix for sharing their expertise.

Then I ‘d like to extend my thanks to two of my friends, who were of great help to me. Amir, thanks

for the countless grammar mistakes you’ve fixed. Have a good time in The Hague and stop by for

a game of tennis. Daniel, thank you for all the library sessions, and for proof reading. Now it is your

turn!

Finally, I'd want to thank my family. Thank you, Mom and Dad, for inspiring me to pursue my

academic goals. And Abigail for simply being present.

1. Introduction | 8

1. Introduction
Requirements Engineering (RE) is the discipline concerned with the identification, management,

and evolution of requirements [1]. RE activities form the foundation of every software engineering

project [2]. They define and communicate the needs of the stakeholders involved and what a

software system must do in order to satisfy that need. During the many phases of a software

project, numerous requirement artefacts are created. The documentation of these requirement

artefacts may range from user stories to class diagrams [3]. It is therefore not a surprise that RE

is a topic of research.

One classical topic in RE research and practice is that of requirements traceability (RT). It is

defined as “the ability to describe and follow the life of a requirement” [4]. RT practices are

mandated by commonly accepted standards such as CMM, ISO 9000, and IEEE Std. 830-1998 [5],

[6]. As a consequence, organizations who wish to or are required to comply with such standards

embrace RT practices.

A reason why RT practices are included in a plethora of standards is because adopting them is

expected to deliver several benefits during a software project [7]. The first benefit is in the area of

project management. During a project, requirements are bound to change. However, before

changes can be implemented the impact of those changes need to be assessed. By adopting RT, the

change affected requirement artefacts can be identified.

Second, RT also benefits the project visibility [7], [8]. Trace information can be shared with the

whole project team. Utilising this, all team members have access to finer context and rationale

behind the requirement. A lower-level requirement might be puzzling for an engineer but reading

the higher-level requirement may provide the necessary context. In addition, the increased

project visibility benefits in the onboarding of new team members.

Third, RT practices provide benefits during the maintenance phase [7]. Requirements often

change during a project. Implementing change requests has its impact on multiple other

requirements, code, and test cases. Using RT, it is easier to identify which artefacts need to be

updated and thus provides insight in the impact of the change request. This insight makes

maintenance tasks more efficiently and increase the quality of work [9].

Finally, and most significantly, the benefits of RT are realized during the phase of verification and

validation [7]. An increase in the level of traceability decreases the expected defect rate in

developed software [10]. This leads towards an increased implementation quality.

These benefits make RT a topic of interest in multiple areas of software engineering research [11].

One of those areas is model-driven development (MDD). MDD “is a development paradigm that

uses models as the primary artefact of the development process” [12]. It aims to raise the level of

abstraction during development [13]. By doing so, MDD makes software artefacts more accessible

to a wider range of people. In an ideal MDD implementation, the necessity for highly skilled

software developers will be reserved for complicated projects, while daily projects may be

developed by the organization's existing personnel, resulting in increased productivity.

1. Introduction | 9

1.2 Problem Statement

MDD offers many opportunities for practicing traceability [11]. Unfortunately, the practice of RT
is not self-evident. RT activities are found to be “time-consuming, tedious and fallible” [14]. The
lack of awareness is one of the reasons why RT activities are poorly used or not adopted altogether
[5], [15]. Other reasons include financial, political, customer, and operational factors.

However, even when organizations do see the benefits of RT, many industry practitioners prefer
to use manual traceability techniques over traceability tools [7]. This is a problem because manual
tracing methods are error-prone, vulnerable to changes, time-consuming, and impossible to
maintain [16]. In short, these manual tracing methods do not suit the needs of the software
engineering industry.

So why are these unsuitable manual methods still favoured over traceability tools? Gotel and
Finkelstein [4], found that this preference for manual tracing methods was due to the
shortcomings of available traceability tools. Kannenberg and Saiedian [7] concluded this was still
apparent, since the tool penetration was still low.

Therefore, there is a need for enhanced traceability tools, that address the shortcoming of the
current traceability tools. Recent advances in the machine learning domain provide opportunities,
that may be able to address these limitations [14], [17]. These technologies should aim to facilitate
the recovery of trace artefacts commonly used in modern software development [17].

1.3 Research Objective and Questions

In this research we aim to design a new RT tool, which incorporates technologies from the
machine learning domain, in order to improve the aforementioned problems. Specifically, the
research will focus on the MDD domain. MDD is predominately focussed on tracing models to
models. However, traceability in MDD needs to consider how models can be traced to non-model
(e.g., requirements) artefacts [18].

To study this, we collaborate with Mendix, a MDD-platform producer [19]. An exploratory
research on RT was already done at Mendix and opportunities for a new RT tool were identified
[20]. This research will build on top of this earlier acquired knowledge, to design the new RT tool.
The new tool will be investigated and constructed iteratively. We hope to bridge the gap between
industry and research by forming this cooperation. To clarify the objective of the research, the
template of Wieringa [21] is utilised to come up with the following research objective:

The goal of the research is to improve the perceived usefulness of RT tools, by automating
the recovery of requirement traces in an MDD-context, that incorporates techniques from
the machine learning domain, so that the MDD industry can better cope with changing
requirements.

1. Introduction | 10

To achieve the research objective, the research is guided by the main research question (MQ).

This MQ is decomposed into five sub-research questions (SQs). They assist in answering the MQ.

The first two SQs aim to build a thorough understanding of the relevant literature.

SQ1 builds a thorough understanding of the literature on RT. We aim to discuss the fundamentals
of RT and establish a theoretical framework. This is achieved by means of a semi-structured

literature review.

Once the fundamentals on RT are established, the research can be scoped to finding the state-of-

the-art on automatically tracing artefacts. Specifically, SQ2 aims to identify current approaches

and compiles a list of the existing algorithms that these approaches employ, which may be

employed in our treatment design.

After understanding the theory, knowledge of the domain needs to be built. This will be done by

answering SQ3. The RT tool is supposed to interact and operate in the MDD-domain, rather than

in an isolated setting. To optimally design for this scenario, the MDD-domain needs to be

understood. The answering of SQ3 is operationalized by means of two activities. The first activity

is to review the literature on the fundamentals of MDD. Parallel to this activity, exploratory

interviews are held at Mendix. Goal of these is to find out the needs and opportunities.

Once knowledge about both the theory and practice is known, the next phase can be initiated. In

this phase, the design and development of the RT tool take a central stage. The activities in this

phase serve to answer the following SQs.

Through the collaboration with Mendix, we gain access to datasets on both requirements and MDD

artefacts. SQ4 aims to create an overview of these resources and how these can be utilised for the

design and construction of the RT tool.

An overview of trace recovery approaches has been created. SQ5 aims to find a way how (parts)

of these approaches can be embedded in the design of the RT tool. Ultimately, it should produce a

prototype which is able to take 1) requirements and 2) models as input and output the trace links

between them.

What is the state-of-the-art in Requirements Traceability? SQ1

How do MDD artefacts and requirements co-evolve in an MDD company? SQ3

What are the resources available to design and construct a RT tool for the MDD

domain?
SQ4

How to embed automatic tracing algorithms in a RT tool for the MDD domain? SQ5

How to automate tracing between requirements and models in a Model Driven

Environment?
MQ

What algorithms are needed to automatically trace artefacts? SQ2

1. Introduction | 11

Finally, the produced prototype needs to be validated. SQ6 aims to find out how the effectiveness

can be measured and thereafter report the results of the prototype.

1.4 Thesis Outline

The thesis report is structured as follows: Chapter 2 will discuss the Design Science method that

we used for this research. It goes over the three phases of Design Science: Problem Investigation,

Treatment Design, and Treatment Validation, as well as how we have used them in our study.

Then, in Chapter 3, key terminology on RT and MDD will be presented. In addition, it will also

discuss the state-of-the-art in trace link recovery. This concludes the literature review, which will

be followed by the results of the Design Science phases.

Chapter 4 will through the results of the Problem Investigation phase. It explains the context in

which the to-be-created artefact must function. In addition, two scenarios are described, which

the artefact should support. Then, Chapter 5 describes the outcomes of the Treatment Design

phase. It addresses the design of the artefact that we developed in order to support the scenarios

described in Chapter 4. In here, we will go through all the components that make up the treatment

artefact. The experiments of determining the most optimal configuration of these components are

described in Chapter 6. It provides the results of the best configuration for each of the two

scenarios. This is followed by Chapter 7, which discusses the key contributions of our study, as

well as any threats to the validity and how we attempted to mitigate them. Finally, the study is

concluded in Chapter 8, which additionally provides directions for future research.

How do we validate the effectiveness of a RT tool for the MDD domain? SQ6

2. Research Method | 12

2. Research Method

2.1 Design Science

We stated in our research objective that we wanted to automate "the recovery of requirement

traces in an MDD-context". To accomplish so, we will need to design an artefact that is capable of

doing so. This brings us to the field of Design Science, which is concerned with the creation and

investigation of artefacts in context [21]. An important component of Design Science is the Design

Cycle. It is a rational problem-solving framework specifically developed for software engineering

and information systems research. It is part of the Engineering Cycle and consists of three

activities that are iterated over Problem Investigation, Treatment Design, and Treatment

Validation. Figure 1 illustrates the relationship between the Engineering cycle and the Design

cycle, together with its phases. These phases were well suited to the requirements of our research

and were therefore employed to structure it.

Figure 1: Design Cycle [21]

Problem Investigation
The first task in the cycle is the problem investigation. The goal of this task is to understand the
problem. We have operationalized this task by first doing a semi-systematic literature review,
further elaborated in Section 3.1. Its goal was to identify what the current problems are in RT
research, together with their proposed solution, answering SQ1 and SQ2. Simultaneously, we
conducted semi-structured interviews with stakeholders of a case company, further elaborated in
Section 3.2. The goal of this was to provide an answer to SQ3 by identifying the problems occurring
in industry.

2. Research Method | 13

Following the semi-systematic literature study and semi-structured interview, we attempted to
determine which problem was present in both the literature and the case company. This problem
was then selected as the problem for which we intended to find a solution.

Treatment Design
This solution was developed during the Treatment Design phase. We took all of the knowledge
obtained during the Problem research phase and combined it with resources (e.g., data, expertise)
from Mendix to build a treatment for the problem. This phase generated the information needed
to answer SQ4 and SQ5, which was subsequently materialized as a software artefact.

Treatment Validation
Finally, the developed software artefact was evaluated to determine whether the intended
treatment produced the desired results. This was accomplished by conducting experiments and
quantifying performance using metrics found during the Problem Investigation Phase. This phase
provided us with the answers required for solving SQ6.

2.2 Semi-Systematic Literature Review

To research the state-of-the-art of requirements traceability (SQ1) and the state-of-the-practice

of model-driven development (SQ2), relevant literature was reviewed. The selection of literature

was done according to the guidelines of a systematic literature review (SLR), proposed by

Kitchenham et al. [22]. It needs to be taken into account that the primary goal of the SLR was to

gain a general understanding of the problem, with the aim of designing a treatment, rather than

an exhaustive mapping of literature. Therefore a selection and adaptation of components of a SLR

was made [22]. This selection was then used as a guideline. The selection includes seven tasks,

which are specified in Table 1.

Table 1: Overview of all tasks executed during the systematic literature review

Task Description

Specify the research
questions

The SLR seeks to provide an answer to SQ1, SQ2, and SQ3 as defined
earlier:
SQ1 What is the state-of-the-art in Requirements Traceability?
SQ2 What algorithms are needed to automatically trace
requirements to MDD artefacts?
SQ3 How do MDD artefacts and requirements co-evolve in an MDD
company?

Define Search Terms The following search terms are considered: requirements
traceability, technique, tool, automated, automating, software
traceability, traceability, model driven engineering, model driven
development, model driven architecture, MDE, MDD, and MDA.

Define Search Queries • (Requirements Traceability OR ‘Software Traceability’)
• (‘Requirements Traceability’) AND (‘Technique’ OR ‘Tool’)
• (‘Automated’ OR ‘Automating’) AND (‘Requirements

Traceability’ OR ‘Traceability’)
• (‘Model Driven Engineering’ OR ‘Model Driven Development’

OR ‘Model Driven Architecture’ OR ‘MDE’ OR ‘MDD’ OR
‘MDA’)

Select Sources All search queries are done on Google Scholar.
Query Sources The defined search queries were applied on Google Scholar.

2. Research Method | 14

Apply Inclusion
Criteria

Literature was included if one of the following criteria was met:
• The article has one of the terms or synonyms as a keyword.
• The focus of the article is on requirements traceability.
• The focus of the article is on model-driven development.

Apply Exclusion
Criteria

Literature is excluded if one of the following criteria was met:
• Literature not available in English.
• Literature not available in Dutch.
• Literature only available in the form of an abstract.

2.3 Backward and Forward Snowballing

The semi-systematic literature study provides the initial set of literature. This literature was used
as a starting point for the snowballing procedure. Snowballing is the systematic search for
“primary studies based on references to and from other studies” [23]. The procedure
differentiates 2 types: backwards snowballing and forward snowballing. The former refers to
looking at the papers cited by the ‘starting article’ and the latter refers to looking at papers citing
the ‘starting article’. For this research at most two rounds of both backwards and forward
snowballing was used. For the articles to be considered the inclusion and exclusion criteria
defined in Table 1 are used.

2.4 Case Study

To come up with a more elaborate answer to SQ2 and to answer SQ3, interviews were held with

different experts from Mendix. Founded in 2005, it is now the leading low-code software

development platform [24]. The organisation has over 1500 employees worldwide and has over

4000 companies using their platform.

The interviews followed the guidelines for semi-structured interviewing by Longhurst [25]. First,

questions were formulated around 3 themes: the Mendix Platform, requirements, and tracing

requirements to MDD artefacts. These can be found in the interview protocol, found in Appendix

A. This protocol was then shown to a contact person at Mendix, who provided interviewees to

perform the interviews with. These were held with four experts within Mendix, shown in Table 2,

either in English or Dutch, and were audio recorded. Within one week, the recordings were played

back and transcribed.

Table 2: Overview of all Mendix employees interviewed

Interviewee ID Interviewee Function Goal of Interview

1 Principle Engineer SQ2
2 Principle Engineer SQ3, SQ4
3 Solution Architect SQ3
4 Mendix Developer SQ3, SQ4

3. Literature Review | 15

3. Literature Review

3.1 Fundamentals of Requirements Traceability

In 1968 the NATO Science Committee organised a conference on software engineering. Its goal
was to identify current problems in software engineering, and discuss possible techniques,
methods, and developments which might solve those problems. During that conference the
importance of traceability was already recognised [26].

Gotel et al. [27] present a terminology on traceability. They define traceability as the potential
for traces to be established and used. A trace is comprised of two elements, displayed in Figure 2:
trace artefact and trace link.

Figure 2: Two Trace Artefacts Connected Through a Trace Link Forming a Trace

The Trace Artefact is a traceable unit of data. An example of a trace artefact is a single requirement
or a Python class. The Trace Link is a specified relation that is used to interrelate a pair of trace
artefacts. Trace Artefacts can be differentiated into categories with the same or similar structure
and/or purpose, called trace artefact types. For instance, requirements may be a distinct artefact
type.

Depending on which trace artefact type is the object of interest, several types of traceability can
be delineated. For example in test-to-code traceability, one is exclusively interest in tracing unit
tests and tested classes [28].

Research on traceability has greatly focused on requirements traceability [29]. Since its inception
it has been an important topic in the requirements engineering research community. In 2005, the
Center of Excellence for Software & Systems Traceability (CoEST) was founded to encourage and
foster RT research [30]. Researchers and practitioners of the CoEST envision traceability to be
ubiquitous in software and system development [31]. Once the vision of ubiquitous traceability is
fulfilled the following scenario described by Cleland-Huang et al. [32] should be commonplace:

“A new developer joins an agile team and is assigned a user story to implement. She uses
automatically captured trace information to explore the impact of the new story on the system.
Results are quickly visualized in ways that help her to understand which parts of the codebase
might need to be changed, potential side effects on existing user stories and test cases, and a list
of fellow team members who have previously worked with the code and could be considered
expert consultants”.

3. Literature Review | 16

For us to study RT, we need to establish a definition which explains the concepts. Several
definitions have been proposed by multiple authors. For instance Pinheiro [33] defines RT as:

Requirements Traceability “the ability to define, capture, and follow the traces left by
requirements on other elements of the software development environment and the traces left
by those elements on requirements”.

Another earlier definition was given by Gotel & Finkelstein [4]:

Requirements Traceability “refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins, through its
development and specification, to its subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these phases)”.

The definition coined by Gotel & Finkelstein became the most prominent definition for RT and is
consequently used by several other studies [11], [34], [35]. For the same reason, this work will
utilise the definition by Gotel & Finkelstein.

3.1.1 Requirement Traceability Delineations

In the literature there are several common delineations made for tracing requirements.

Backward and Forward Traceability

Traceability can be delineated in the direction they are able to trace. This can be in either a
forward or a backward direction [27], illustrated in Figure 3, and is defined as follows [33]:

Backward traceability “The ability to trace a requirement to its source, i.e., to a person,
institution, law, argument etc.”

Forward traceability “The ability to trace a requirement to components of a design or
implementation”.

Figure 3: Backward and Forward Traceability [33]

3. Literature Review | 17

Pre- and Post-Requirements Specification Traceability

The results of an elicitation process are collected in a requirements specification (RS).

Requirements in the RS can be traced into two directions: 1) To information prior to its inclusion

in the RS or 2) to information after its inclusion in the RS. This distinction is illustrated in Figure

4 and is defined as [33]:

Pre-RS Traceability: “refers to those aspects of a requirement’s life prior to its inclusion in
the requirements specification”.

Post-RS Traceability: “refers to those aspects of a requirement’s life that result from
inclusion in the requirement specification”.

Figure 4: Pre-RS and post-RS traceability [33]

Manual and Computed Traceability

Trace links can originate in either two ways: manual and computed and is defined as [35]:

Manual Traceability “Trace links are established by a human user”.

Computed Traceability “Trace links are established by an algorithm”.

Computed traceability is established by means of automated reasoning. Examples of this include
information retrieval or machine learning algorithms. More on this will be discussed in 3.3.

3. Literature Review | 18

3.2 Fundamentals Model-Driven Development

Within academia many acronyms are used in the Model-Driven Paradigm. Therefore, we first need

to establish a common understanding in the different used terms.

Model-Driven Development (MDD) “is a development paradigm that uses models as the primary

artefact of the development process” [12]. The Object Management Group (OMG) adjusted this
definition to fit other OMG standards. This particular vision is called Model-Driven Architecture

(MDA), which “provides guidelines for structuring software specifications that are expressed as

models” [36]. For this reason, MDA can be seen as a subset of MDD.

On the other hand, MDD can be regarded as a subset of Model-Driven Engineering (MDE). The

former focuses purely on the development activities, whereas the latter encompasses all the

model based tasks in a software engineering process [12]. The relationship between MDE, MDD,

and MDD is summarized in Figure 5.

Figure 5: Relationships between MDE, MDD, and MDA

Model-Driven Engineering consist of two key components: models, and model transformations.

Models

Models can be defined by a conceptual and a technical definition. This distinction is important
according to Holtmann et al. [35]. They argue that 1) both definitions do not always correspond
to each other, and 2) an unambiguous understanding of model boundaries (i.e., whether trace
artefacts belong to the same model) is needed.

To effectively communicate our ideas, we must first settle on the precise definition to which we
will adhere. Academia offers a number of conceptual definitions of a model. For example, the
following definition was provided by Wasowski and Berger [35].

Model “an abstraction of reality made with a given purpose in mind”.

Although it explains the concept, it does not help to differentiate whether two artefacts are part
of the same model or part of two distinct models. Therefore, a more technical definition is needed.
Holtmann et al. [35] coined the following definition:

3. Literature Review | 19

Model represents an aspect of a system under development captured in a specific instance of
a formal language that serves a purpose within the development lifecycle.

The definition implies, that all artefacts expressed in instances of formal languages are considered
models. For instance, when a requirement documented in natural language is structured by a
meta-model for requirements, it is considered a model. In addition, because it defines a system
rather than a mental model, this definition is more appropriate for our goal.

Model Transformations
The main task of MDD is to transform higher-level models into platform-specific models [37]. This
is done by applying transformations rules which dictate how the source-model should be
transferred to the target-model. This automated process is referred to as model transformation.

3.3 Computer-Assisted Trace Link Recovery

The software engineering task focused on establishing trace links between related artefacts is
called Traceability Link Recovery (TLR) [38]. The process exclusively focusing on establishing
trace links between requirements and other artefacts is requirements traceability recovery (RTR)
[39]. According to Aung et al. [17], the approaches for TLR and RTR can be separated into four
orthogonal categories: Information Retrieval based, Heuristic-Based, Machine Learning, and Deep
Learning.

This section will first discuss the measures that are commonly used to compare the performance
of the TLR and RTR methods. Then it will discuss the fundamentals of each category defined by
Aung [17]. Following that, a discussion of some notable TLR approaches will take place. Finally,
we will use that discussion to draw lessons for the design of our treatment.

3.3.1 Metrics

Many different computed TLR and RTR approaches have been proposed. To compare and

benchmark these approaches it is necessary to define evaluation methods and metrics. Shin et al.

[40] did a systematic literature on current evaluation practices on requirements traceability

techniques. They found that traceability is typically measured using either classification accuracy

metrics or rank accuracy measures. In Figure 6 the occurrences of the different metrics are given.

We will now discuss the top 5 most occurring metrics.

Figure 6: Overview of the eight most popular metrics for benchmarking computer-assisted TLR [40]

3. Literature Review | 20

Classification Accuracy metrics
This set of metrics count the number of correctly or incorrectly retrieved links. Commonly used
classification accuracy metrics include recall, precision, and F-Measure. Recall denotes the fraction
of relevant documents that are correctly retrieved and is defined as follows:

Equation 1: Recall

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Precision denotes the percentage of retrieved trace links which are valid and is defined as follows:

Equation 2: Precision

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall and Precision are always given together. The reason is that between both, there is a trade-
off. As one increases the other decreases. The average between both is given by the F-measure,
which knows two variants: F1-Measure and Fβ-Measure. F1-Measure denotes the harmonic mean
of precision and recall. It is denoted as follows:

Equation 3: F1-Measure

 𝐹1𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Fβ-Measure is a simplified version of F1-Measure. It applies a real weighting factor β, valuing either
precision or recall more than the other. In case β > 1, more emphasis is put on the importance of
the recall. Fβ-Measure is defined as follows:

Equation 4: Fβ-Measure

𝐹𝛽 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(1+ β2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(β2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙

Rank Accuracy Measures
The accuracy of the relative ordering of correct links in a ranked list are measured using rank
accuracy metrics. These include: Average Precision, DiffAR, DiffMR, and Lag.

The Average Precision denotes the extent to which relevant links are placed towards the top of a
ranked list. It is defined as follows:

Equation 5: Average Precision

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ (𝑃(𝑟) ∗ 𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑟))𝑁

𝑟=1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

In the equation, r is the rank of a document in the ordered list of retrieved results from N
documents. isRelevant() is a binary function, which assigns 1 if the rank is relevant and 0 if
otherwise. P(r) denotes the precision, computed after truncating the list immediately below that
ranked position.

DiffAR is a measurement for the difference between the average relevance scores of correct and
incorrect trace links retrieved. It is defined as follows:

Equation 6: DiffAR

DiffAR =
∑ 𝑟𝑒𝑙(𝑞,𝑑)(𝑞,𝑑)∈ true positives

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 −

∑ 𝑟𝑒𝑙(𝑞,𝑑)(𝑞,𝑑)∈ false positives

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

3. Literature Review | 21

In the equation, q denotes a query, d denotes a document, and rel(q,d) denotes the relevance score
between q and d.

3.3.2 Information Retrieval

The objective of an information retrieval (IR) system is to find relevant information from an

organised collection of documents [41]. Today, these IR systems are omnipresent: when searching

the recipe for apple pie on Google; when searching a movie on Netflix; or searching a product on

Amazon. These systems rely on IR algorithms, which need to present the user only those

documents which are semantically similar to the search query.

In a similar way, these IR algorithms are used by most modern semi- or automatic TLR approaches

[6], [42]–[44]. These techniques work on the premise that when two artefacts have high textual

similarity, they probably should be traced to each other [45]. Therefore, to recover trace links, the

algorithm computes the textual similarity between software artefacts and assigns a score to them.

Trace links scoring above a given threshold are considered a valid link. Common used IR

algorithms include Vector Space Models, Latent Semantic Indexing, Jenson and Shannon Models,

Latent Dirichlet Allocation [17]. Although good results have been achieved, recovering trace links

reliably may be difficult. Because the algorithms heavily depend on the text quality, considerate

pre-processing is required.

Vector Space Models (VSM)
In VSM, the goal is to represent each document d as a vector in a vector space [46]. This is
illustrated in Figure 7. Vectors close to each other are semantically similar, whereas vectors
distant from each other are semantically different. When a query q is ran, a point in space is
identified, and documents close to the point are returned. This is operationalised as follows: 1) all
unique terms occurring in query q and document d is represented as a vector T = {t1…tn}. 2) A
weighting scheme is chosen, of which TF-IDF is a common one. TF-IDF is the product of two
statistics: term frequency and inverse document frequency [47]. Term frequency refers to the
number of times t occurs in d. The inverse document frequency refers to the rarity of a term t
across all documents. It is defined as follows:

𝒊𝒅𝒇𝒕 = 𝒍𝒐𝒈
𝑵

𝒅𝒇𝒕

Where N is the total number of documents and dft the number of documents t appears in. 3) All
documents are represented as vectors d = {w1,d, ..., wnd} and the TF-IDF of term i in document d is
calculated. 4) Finally, the similarity is calculated as the cosine of the angle between query q and
document d as follows:

𝑠𝑖𝑚(𝑄, 𝐷) =
∑ 𝑞𝑖 × 𝑑𝑖

𝑛
𝑖=1

√∑ 𝑞𝑖
2𝑛

𝑖=1 × ∑ 𝑑𝑖
2𝑛

𝑖=𝑖

3. Literature Review | 22

Figure 7: Graphical representation of spatial distance between terms [48]

Latent Semantic Indexing
A fundamental problem in IR is that searchers employ query terms that are not the same as the
ones used to index the documents they seek. This issue can broadly be traced back to the notion
of synonymy and polysemy. Synonymy refers to the problem that people use different terms for
the same object (e.g., ‘drawing’ and ‘illustration’), and decreases the recall. Polysemy refers to the
problem that terms have multiple definition (e.g. ‘fall’), and decreases precision [49].

The problem can be illustrated as follows: We have a set of documents. 100 documents contain
the word ‘drawing’, and 100 documents contain the word ‘illustration’. 95 documents contain both
the words “drawing” and ‘illustration’. When running a query ‘drawing’, we want to retrieve all
documents containing the word ‘drawing’. However, we also want to retrieve documents only
containing the word ‘illustration’, because there likely related to each other.

The example illustrates that the occurrence of the terms ‘drawing’ or ‘illustration’ on their own
are bad indicators of a relevant document. We need to sort out how to predict what terms in a
query ‘actually’ mean (i.e., ‘latent semantics’) and replace them by an implicit higher-order
structure, which is a more reliable indicator. Deerwester et al. [49] introduced an Latent Semantic
Indexing (LSI), an algorithm which is able to recover these ‘latent semantics’. It utilises a technique
called Singular Value Decomposition, to approximate the original set of terms by a ‘latent’
structure. This latent structure can then be used a feature set, which better reflects major sociative
data patterns and ignores less important influences.

Jenson and Shannon Models
In Jenson and Shannon Models (JSM) documents are treated as a probabilistic distribution [50],
[51]. The probability of its states is given by the empirical distribution of the terms occurring in
the document. Like VSM, the similarity between the query q and the document d is measured by
the ‘distance’ between both. However, while VSM measures the distance using the cosine of the
angle between q and d, JSM measures the distance using the Jenson-Shannon Divergence. It is
defined as follows:

𝐽𝑆(𝑞, 𝑑) ≜ (
𝑝̂𝑞 + 𝑝̂𝑑

2
) − (

𝐻(𝑝̂𝑞) + 𝐻(𝑝̂𝑑)

2
)

H(p)≜ ∑ ℎ(𝑝(𝑤)), ℎ(𝑥) ≜ -x log x,

w ∈ W

3. Literature Review | 23

where H(p) is the entropy (a measure of uncertainty) of the empirical distribution, 𝑝̂𝑞is the

empirical distribution of q and 𝑝̂𝑑 the distribution of d.

Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a probabilistic model [52]. It takes a m × n term-by-document

matrix as input, where m is the number of terms occurring in the entire corpus, and n is the

number of documents in the corpus. LDA is then able to identify the latent topics and generates a

k × n topic-by-document matrix, where k is the number of latent topics. Using this reduced space,

LDA clusters documents with the same relevant topics.

3.3.3 Heuristics

Many of the IR techniques still require intervention of the user, which make them only semi-
automatic [39]. Another attempt for automatic RTR is Heuristic Search (HS). HS aims to find an
acceptable approximate solution to a specific problem in a search space [53]. This technique is
usually utilised whenever an exact algorithmic solution is absent or is too complex and time-
consuming. Examples such as hill climbing, simulated annealing, and genetic algorithms belong
the paradigm of HS techniques.

3.3.4 Machine Learning

Machine Learning (ML) is defined as “the automated detection of meaningful patterns in data”
[54]. A well-known application of ML is the filtering of spam e-mails. To do this, the machine is
given a set of emails which are labelled ‘not spam’ or ‘spam’. It then runs an algorithm over the
data and it ‘learns’ which features make up a spam e-mail. This process results in a model, which
takes an e-mail as input and outputs whether the e-mail is spam or not.

In recent years, developments from the ML domain have been utilized in automatic TLR [17]. ML
approaches treat the TLR process as a classification task [38], [55]. Given two artefacts it needs to
label the link between them as valid or invalid. In case of the former, there is a trace link. For this
to work, the ML classifiers need to be trained on data. This training data arises as follows: Given
two artefact sets A1 and A2, the Cartesian product A1 × A2 is computed. Each element of A1 × A2
represents a trace link between a ∈ A1 and a ∈ A2. These are either valid or invalid, which is the
label the classifier needs to learn. Therefore, for each trace link a vector representation is
computed, derived from features. Most ML RLT approaches use similarity scores of IR-based
methods as features [38], [55], [56] and are able to outperform IR-based TLR approaches [38].

Data imbalance

When computing A1 × A2, it is expected that most trace links are invalid. Therefore, the training
data is highly imbalanced, which makes the training of a classifier problematic [57]. For example,
a training set could consist of 100 trace links, of which only 3 trace links are valid. A classifier
achieves the greatest performance, when it classifies 100 percent of the trace links as invalid.
While 97 trace links are correctly classified, it results in the misclassification of the trace link of
interest.

It is therefore important to rebalance the data. One possibility is to use undersampling.
Undersampling is data-reduction method that reduces the majority class by selecting only a subset
of its datapoint for training. Another possibility is to use oversampling. This technique artificially
creates new data points of the minority class, based on the original data.

3. Literature Review | 24

3.3.5 Deep Learning

Deep learning (DL) finds its origin in Artificial Neural Networks (ANN). ANNs approximate the

human brain by connecting many simple computational units, called neurons, in a multi-layered

structure. Several neural network structures exist, each targeted at a specific learning task. For

example, convolution neural networks are well suited for image recognition tasks, while recurrent

neural networks (RNN) are targeted tasks concerned with sequential inputs, such as NLP.

Because TLR deals with natural language, RNNs are mostly used for this task. Figure 8 shows the

typical architecture RNNs follow. RNNs allows outputs to be used as inputs, and essentially mimic

memory [58], [59]. This is operationalised by the activation function a<t>, which takes two inputs:

1) the current time step t (i.e., word embedding), and 2) the output of the previous activation

function a<t-1>. The output of the RNN is therefore determined by its current and prior input.

Figure 8: Architecture of a recurrent neural network [59]

Common activation functions used in RNNs include the Sigmoid, Tanh, and Rectified Linear Unit

(RELU) functions. These are described in Figure 9.

Figure 9: The formulas and plots of Sigmoid, Tanh, and RELU functions

3. Literature Review | 25

3.3.6 Automated Traceability Approaches

Aung et al. [17] did a systematic literature review on automated TLR approaches and identified

33 relevant studies published between 2012 and 2019. These studies were mapped into

categories. In this section, we will discuss the studies mapped to either ‘Machine Learning’,

‘Information Retrieval + Machine Learning’, ‘Deep Learning’, or ‘Information Retrieval + Deep

Learning’. These mappings were chosen because literature agrees that both ML-based and DL-

based TLR approaches outperform IR-based TLR approaches [14], [58], [60].

Tracing Features to Code Commits Using Machine Learning

Abukwaik et al. [61] proposed a recommender system for annotating features to code commits.
Whenever a developer commits code to a version control system, the system must recommend
possible features the code commit may belongs to.

To create the system a Java tool was constructed, which reuses IR libraries from the Lucene search
engine and ML libraries from the WEKA toolkit. The tool does 3 tasks: data pre-processing,
generating ML classification models and creating evaluation results. Figure 10 shows all
individual steps and are elaborated below.

Figure 10: Overview of the ML simulation experiments conducted by Abukwaik et al. [61]

Data Pre-processing
The approach starts with preparing the data. Each delta code is extracted from the repository.
Thereafter, code related to a feature (e.g. //&line[System Monitor]) is extracted from the
delta code, which is then associated with the respective feature (System Monitor). Finally, each
delta is chunked to the granularity of a single line of code and is labelled with the name of their
related features. These chunks are saved in the Feature Corpus.

Generating ML Classification Models
For every chunk in the Feature Corpus, a data vector D is calculated, which consists of four metrics,
explained in Table 3. These were then used to train a kNN, SVM, and Decision Tree classifying
model.

Creating Evaluation Results
The input of a classifier is a new set of data vectors for an unclassified code block. The output is
an indication of which features it may belong to. For every stage the N in the code repository the
experiment is run, and the performance is recorded.

3. Literature Review | 26

Table 3: Overview of feature families used by Abukwaik [61]

Classification Feature Description

Feature Presence Metric (𝑓)

Indicates if the code block belongs to a feature, indicated by
a 1 or 0.

Cosine Text Similarity(𝑐) Represents the similarity between two vectors, measured as
the cosine of the angle between them.

Source Code Localisation
Distance(𝑠)

The relative distance of the code block to already known
feature locations

Number of Already Existing
Annotations metric(𝑛⃗⃗)

The summation of the number of existing annotations for a
feature

Results
The best results were achieved when applying kNN, with a F1-measure between 50% and 60%,
which was already achieved after training on 60 commit change-sets, with an average of 5
annotations each. The authors did not mention the number of k used when training on the data.
Results for SVM were unsatisfying with a F1-Measure of 7% and 15%.

Maintaining Traceability Information using Machine Learning

Mills et al. [38] proposes an approach, called TRAIL (TRAceability lInk cLassifier), with the goal of
automatically verifying the validity of ranked trace links by IR models, using ML classifiers. Their
method starts with typical data pre-processing tasks [43], which consists of four steps: 1) all
identifiers were split using camelCase and under_score algorithms, 2) common English, Italian,
and Java keywords were removed, 3) the remaining keywords were stemmed to their root form,
4) the approach rebalanced the training data. Both undersampling as oversampling was
conducted, for which they used Synthetic Minority Oversampling Technique (SMOTE) and
Random Majority Undersampling.

Once the data was prepared, the cartesian product of both artefact sets was computed, of which
each element is a vector. These vectors consist of 131 features, which fall into three distinct
categories. These categories are elaborated on in Table 4.

To decrease the dimensionality of the feature space, five feature selection algorithms are
considered: Correlation-based Feature Subset Selection, Pearson’s Correlation, Gain Ratio,
Information Gain, and Symmetrical Uncertainty. Finally, each potential trace link is classified by a
set of ML algorithms, which include k-Nearest Neighbours with k = 5 (5NN), Naive Bayes (NB),
Logistical Regression, Random Forest (RF), Support Vector Machines (SVM), and a Voting
ensemble.

Results
The results of TRAIL are displayed in
Table 5. The configuration of Random Forest as classifier, and Pearson correlation for feature
selection and SMOTE for data rebalancing, results in the best performance with an average F-score
of 75.18%.

3. Literature Review | 27

Table 4: Overview of feature families used in TRAIL [38]

 Feature Description

IR-Based For every potential trace link, the similarity score is calculated using 7 different IR-
algorithms. Since the retrieval direction significantly impacts the results of TLR
[62], the similarity score is calculated for each direction for each IR-algorithm. This
results in a total of 14 IR-based features.

Query
Quality

It matters if a candidate link has a low similarity score, because they are indeed
invalid, or that the artefact is generally hard to trace. This is quantified in 28 Quality
Quantity (QQ) metrics [63]. These QQs can be divided into 21 pre-retrieval QQs and
7 post-retrieval QQs, for which the former is applied before running a query and
the latter after running the query.

Document
Statistics
Features

For each document the three statistics are calculated: a) number of unique terms,
total number of terms, c) percentage of overlapping terms between two documents
in a candidate link. These statistics are then used to calculate five classifications in
the following way: Given artefact A1 and A2. For both A1 and A2, statistic a and b are
calculated. Then for the trace link between A1 and A2 feature c is calculated.

Table 5: Average F-score (in percentage) achieved by TRAIL [38]

Rebalancing
Technique

Feature
Selection

Classifier

5NN Logistic
Regression

NB RF SVM Vote

none None 47.43 50.19 39.49 67.18 0.00 55.96
cfs 59.72 40.25 39.22 63.14 0.79 53.84
correlation 47.43 50.19 39.49 67.22 0.00 56.06
GainRatio 61.22 61.00 40.17 72.03 0.00 66.84
InfoGain 61.22 61.00 40.17 72.29 0.00 66.96
Symmetrical 61.22 61.00 40.17 72.07 0.00 66.89

undersampling None 31.18 34.60 36.13 51.37 31.22 38.24
cfs 39.88 37.65 35.65 47.43 34.77 38.35
correlation 31.18 34.59 36.13 51.42 31.41 38.28
GainRatio 37.63 38.05 37.81 51.38 35.69 41.82
InfoGain 37.63 38.05 37.81 51.34 35.69 41.83
Symmetrical 37.63 38.05 37.81 51.41 35.69 41.83

smote None 56.19 56.31 38.05 74.80 46.77 56.94
cfs 54.07 41.04 37.46 62.74 41.44 45.42
correlation 56.15 56.33 38.05 75.18 46.99 56.99
GainRatio 63.10 58.05 39.74 73.89 47.68 57.74
InfoGain 63.10 57.95 39.75 73.88 47.67 57.74
Symmetrical 63.09 58.06 39.77 73.85 47.69 57.77

5050 None 49.59 51.19 38.03 72.09 43.70 53.36
cfs 51.24 40.80 37.35 61.47 40.34 44.33
correlation 49.60 51.17 38.02 72.33 43.97 53.38
GainRatio 57.04 56.64 39.67 70.62 45.55 55.01
InfoGain 57.10 56.63 39.69 70.64 45.58 54.99

3. Literature Review | 28

Symmetrical 57.04 56.64 39.68 70.60 45.55 55.02

Tracing Requirements top Source Code Using Machine Learning

Falessi et al. [64] aimed to present and evaluate a novel family of metrics to predict the set of
classes by a new requirement, called Similarity to Class’s Requirements Set (R2RS). This was
compared to four other families of metrics, all elaborated in Table 6.

Common data pre-processing steps like the usage of camelCase, under_score algorithms,
stemming etc. were used on the training data. Furthermore, the training data was rebalanced by
undersampling all valid requirement-class pairs and on an equal number of invalid requirement-
class pairs.

To examine which metric family provided the best prediction results, the proportion of times a
metric was selected by the automated metric selection, using default WEKA parameters
SubsetEvaluation and BestFirst. On average, TLCC had the highest selection proportion, followed
by R2RS, R2C, CKJM, and SQ. The study did not provide a clear indication which ML classifier
performed bests.

Table 6: Overview of feature families used by Falessi et al. [64].

Classification Feature Description

Similarity to Class’s
Requirements Set (R2RS)

Given is an existing code class C, which associated with a set of
previously implemented requirements R. The idea is that a new
requirement which is semantically like R, is more likely to impact
C. This idea is captured in 18 R2RS metrics.

Requirement-to-Class
Similarity (R2C)

Vector Space Model and Jensen Shannon Divergence were used
to calculate the similarity between requirements and classes.

Temporal Locality of Class
Changes (TLCC)

If a class is frequently changed in the past, then these are likely
to be impacted by future change. TLCC takes the class’s
modification history in consideration in three different
measurements.

Complexity via CKJM
(CKJM)

Classes with low cohesion, or lots of public methods, are likely to
be changed. Therefor common coupling and cohesion metrics are
calculated.

Bad Smells via SonarQube
(SQ)

Code smells are patterns in code which indicate a possibility for
refactoring. Using SonarQube, each class was analysed for code
smells directly after a new version.

3. Literature Review | 29

Tracing Code Commits to Issues Using Machine Learning

Rath et al. [56] presented and evaluated an approach to recover trace links between code commits
and issues. The authors tested multiple ML classifiers, trained on process-related information and
textual similarity data, further elaborated in Table 7. Part of the research was to evaluate which
feature set yielded the best results. Therefore, four experiments were done: 1) solely the process-
related information, 2) solely the similarity data, 3) all features, 4) automatically selected features
using Weka’s inbuilt auto-selection feature.

Table 7: Overview of feature families used by Rath et al. [56]

Classification Feature Description

Process-related
information

16 metrics are defined which are related to the process of
committing. These include stakeholder-related information,
temporal relations between issue and commits, closest previous
linked commits, closest subsequent linked commit, number of
issues and existing links.

Textual similarity between
artefacts

VSM, VSM with N-gram enhancements, and LSI were used to
compute the cosine similarity. Each document was treated as an
unstructured bag of terms. Common pre-processing steps like,
removal of stop words, stemming, splitting on camel case and
snake case words. Each term is weighted using TF-IDF.

Their approach needed to support two different scenarios. In the first scenario, the approach is
used as a recommender system. Whenever the developer commits a change, the system should
present a list of at most three related issues. Subsequently, the developer can manually trace the
related issue. For this scenario to work, a high recall is important. One wants to make sure that
the three recommended issues are indeed valid. In the second scenario, the system should provide
full automated augmentation of trace links between commits and issues. The goal for this scenario
is a high precision.

The results indicated the approach performed best using the Random Forests algorithm trained
on all features, achieving an average recall of 96%.

Tracing Requirements to Design Documents using Deep Learning

The goal of the study is to trace requirements to design documents [58]. Their approach was
designed with three scenarios in mind. In the first scenario, the approach is trained on manually
constructed trace links, which then can be used to automate the production of other trace links.
In the second scenario, the approach is learned on a complete set of trace links, which then can be
used to find missed trace links, Finally, in the third scenario the approach is trained on a complete
set of trace links, which could be used to identify trace links in a project in a similar domain.

3. Literature Review | 30

The approach is divided into two phases: a word embedding mapping layer, and a semantic-
relation evaluation layer. Its architecture is illustrated in Figure 11.

Figure 11: Architecture of the tracing method of Guo et al. using a RNN [58]

Word embedding mapping layer
First an unsupervised learner is trained on set of requirements, which returns a vector containing
word embeddings. Then a set of labelled trace links is used to train a tracing network. Within the
Tracing Network, Recurrent Neural Network algorithm (RNN) learns the representation of
artefact semantics. For each requirement, the word-embedding vector is fed into the RNN, which
in return outputs a vector representing the semantic information of the requirement.

This process is repeated for the design documents. The results of this process were passed to the
next layer.

Semantic-relation evaluation layer
In this layer, the tracing network compares the semantic vectors of two artefacts, by calculation
the direction and distance between pairs. The resulting vector is then passed to the sigmoid and
softmax functions, which then output the probability that they are linked.

Results
To benchmark the effectiveness of the tracing algorithm they calculated the Mean Average

Precision (MAP). This was done by calculating the average precision of each individual query,

followed by taking the mean. The results indicate that deep learning approaches can be used for

TLR and perform significantly better (MAP = .834) than IR-based TLR approaches, like VSM

(MAP= .625; p < .001) and LSI (MAP = .637; p < .001).

3.3.7 Lessons Learned

From the existing approaches, we can extract some lessons learned.
1) The approaches for trace link recovery support different scenarios, and they have

therefore different requirements regarding performance. For instance, for semi-automatic
tracing high recall is important, while a fully automated system would benefit more from
high precision.

3. Literature Review | 31

2) Defining correct feature families. Every dataset and domains offer new possibilities in
terms of features. It is necessary to empirically study what feature families work best for
the MDD domain.

3) Mills et al. [38] demonstrated the impact the rebalancing technique has on the
performance of the classifier. We must carefully consider, which method to employ.

4) Multiple classifying algorithms need to be examined. Although Rath et al. [56] and Mills et
al. [38] concluded RF performed best, results of other algorithms need to be studies.

4. Problem Investigation | 32

4. Problem Investigation
One of the key lessons from the literature review was that RTR systems could support various

scenarios. Before designing a treatment, we must first establish which scenarios may be

supported. To do so, we needed to study the current situation, which we accomplished by

conducting semi-structured interviews at Mendix. During those interviews, we gained a deeper

knowledge of the Mendix Platform and discovered that requirements were maintained in

Atlassian JIRA.

This will be covered in greater depth in this chapter. First, Section 4.1 introduces the Mendix

Platform. Then, Section 4.2 will discuss Atlassian JIRA. The section that follows describes the

interaction between the Mendix Platform and Atlassian JIRA. Finally, the chapter concludes with

a description of two identified scenarios a RTR system could support.

4.1 The Mendix Platform

4.1.1 Mendix Studio (Pro)

Mendix Studio is the area of the Mendix software suite in which the developer creates their
application. A screenshot of the user interface is shown in Figure 12. The software is available in
two editions: Studio and Studio Pro. They differ in the category of users it focuses on, where the
former focuses on non-technical business users and the latter focuses on professional developers
[65]. However, both editions utilize the principles of MDD: the developer creates an application
model by means of pages, domain model, microflows, and navigation document. When creating a
new application, a new Mendix Project File (.mpr) is created.

Figure 12: The user interface of Mendix Studio

4. Problem Investigation | 33

4.1.2 Mendix Developer Portal

Mendix wants to support the entire Agile application life cycle. To do this, they offer a basic project
management functionality in the form of the Developer Portal, shown in Figure 13. It offers tools
to manage user stories, end-user feedback, and sprints. User stories can be added in the Stories
tab. Whenever a new story is created, the user can fill in a form containing the following fields:
title, description, story type, story points, related sprint, and story status. The user input is not
restricted to any template.

Figure 13: Developer Portal is the user interface of Mendix to support management functionality

4.1.3 Mendix Servers

For every application created a repository on the Mendix Team server is provided. In essence, this
is an adapted version of the open-source version control system Apache Subversion. To date, all
Mendix servers run this. In the future, the version control system will be migrated to git.

Whenever a change is made in the application model there are two versions of the application in
existence: one locally stored in Mendix Studio and one remotely on the Team Server. To save the
local changes to the remote repository, the developers need to commit the changes to the Team
Server. In the backend, this is done using Subversion SVN, however the developer is only shown
the GUI as shown in Figure 14. In the top you are shown in which branch you are committing, and
you can provide a message, describing the changes you have made. Furthermore, there are 3 tabs
visible: Related Stories, Changes in model, and Changes on disk. In the Related stories tab, you can
relate stories to the commit. The stories shown, are the ones the user stories made in the
Developer Portal. In the Changes in model tab, you see all units added, modified, or deleted in the
commit. Finally, in the Changes on Disk tab you find an overview of all changes, outside of the .mpr
file.

4. Problem Investigation | 34

Figure 14: The GUI in Mendix Studio Pro to commit changes to the Team Server. The developer can see all open stories in
SPRINTR (left), changes made to the model (middle), and all changes made on disk (right)

4.2 JIRA

Atlassian JIRA is a software tools designed for teams to manage their projects [66]. The software

is in development since 2002 and it is used by more by 65,000 companies worldwide [67]. JIRA

comes with a variety of features and templates, which can be tailored to the specific needs of the

team. For instance, there are project templates available for human resources, finance, design, and

more.

When creating a new project for a software development, templates for Kanban, Scrum, and Bug

Tracking are available. Once the template is initialized, ‘JIRA issues’ can be placed on the board.

JIRA issues are work items and are categorized into 5 types: Epic, Story, Bug, Task, and Sub-task.

These types are set up like a hierarchy, which is shown in Figure 15.

Figure 15: Overview of the JIRA issue hierarchy [68]

4.2.1 Epics and Stories

When working on a project, it is good practice to break down the project into smaller work items

[69]. Within JIRA, an Epic assists in the breakdown of work, by offering the means to organize the

work and create hierarchy. They can essentially be seen as a collection of related work items. Epics

are meant to be flexible, as they extend over a set of sprints. During the project work items can be

added and removed, purporting the new requirements. One of these work items are user stories.

4. Problem Investigation | 35

A user story is a method for documenting requirements from the perspective of the user. In

practice, 70% of the user stories follow the Connextra template: “As a <type of user>, I want to

<some goal>, so that <some reason> [70]. It consists of three elements. First, the <type of user>

relates to the role of the person for whom the requirement is created. The <some goal> concerns

the objective the user wants to fulfil. Finally, the <some reason> provides the motive to why the

user wants the requirement.

In JIRA, a user story is like any other work item and can thus be supplemented with extra details.

For instance, it features the possibility to add a description or attachment, assign it to a specific

team member, or add comments to it. Figure 16 shows an example of a JIRA user story.

Figure 16: Example of a JIRA User Story

4.3 Case description of Mendix

At Mendix, developers are working with the SCRUM development process. The life cycle of a

requirement: from a definition to implementation is described below. This lifecycle can be divided

into two phases.

In the first phase the team work on the “definition of ready”, determines all elements necessary

for a requirement to be considered for a sprint. These requirements are ideated during

discussions between the product owners (POs) and the customers. Then these are documented as

user stories, following the Connextra template, and added to the product backlog.

When the product owner wants the story implemented, the development team comes together for

a refinement session. In the refinement session, the user story is refined by adding details of the

technical and functional aspects (e.g., UX, software dependencies). Once the user story is fully

refined, it can be considered for the sprint planning. In the sprint planning it gets decided which

user stories are going to be implemented in the coming sprint. After the sprint planning is

completed, the second phase can be started.

4. Problem Investigation | 36

In the second phase the team is working on the “definition of done”, which defines all elements

required for a user story to be considered implemented. This is operationalized during a sprint,

when user stories are assigned to a single developer, who is subsequently responsible for the

implementation.

The process of implementing a user story can be summarized into a number of activities. First the

developers read the user story to get familiar with what needs to be done. Then he/she opens

latest Mendix model and navigates to the modules, which need to be changed. These modules are

changed until the pre-defined acceptance criteria, found in the JIRA issue, are met. Then the

developer creates documentation for other developers to understand their work. Finally, the work

can be committed to the Mendix Team server. When committing, the developer also puts the JIRA

issue ID in the commit message. By doing this, they ensure a form of requirements traceability.

When looking back at the history of past commits, the traces can be seen in the messages. An

example is shown in Figure 17.

Figure 17: Commit history of a project in Mendix containing requirement traces

4.4 Desired solution

According to the interview findings, establishing traces from commits to JIRA issues is a manual

process within Mendix. Evidenced by earlier research, this is prone to errors. In this study we have

analysed data that originates from multiple projects. In this data, we observed errors, which

include misspelling, incorrect values, misformatting, or absence of trace links. This is not unusual,

because it is a human task.

4. Problem Investigation | 37

It is apparent that these problems can be mitigated by introducing an automatic system to the

process. After analysing this process, we have identified two scenarios that could offer

opportunities to the case company.

1. When a developer needs to commit his/her changes to the Mendix Team Server. Recall,

that the developer opens a commit dialog in which he/she describe their changes in the

commit message together with a trace. In this situation, there is an opportunity to add a

recommendation system into the commit dialog. This system can show the developer all

possibly related JIRA issues. The only manual task remaining, is for the developer to check

the valid traces. A mock-up of this recommendation system is shown in Figure 18. For this

scenario to work, high recall is required. The reason for this is that for a developer to

examine a valid trace, it must first appear in the list. Precision is of less importance in this

scenario, since developers can leave invalid traces unchecked.

Figure 18: Mock-up of a trace recommendation system

2. Another problem is that not all commits are traced to a JIRA issue. For designing our

solution, we have obtained two datasets for theory building. Only 86 percent of the

commits in one dataset were tracked, whereas only 71 percent in the other. This shows

that maintenance is required, to recover traces for the untraced commits. This is the goal

of the second scenario: a fully automated trace maintenance system is introduced into the

project. This system would periodically recover traces, which were forgotten by the

developer, which would ultimately lead to a higher level of RT in the project. For this

scenario to work, a high precision is needed. The reason for this is that there is no human

intervention in this scenario to correct invalid traces. The system needs to ensure each

predicted trace is truly a valid trace.

5. Treatment Design | 38

5. Treatment Design
In Section 4.4, we introduced two possible treatment scenarios, which can improve the current

situation. In this chapter, we will go over the design and development of the treatment. First, the

raw datasets acquired will be explored and described. Next, the procedure for pre-processing the

data is outlined. This is followed by a section that describes all features that represent these traces.

Then, the imbalance in the obtained data is demonstrated, as are the strategies for dealing with it.

Finally, the classification algorithms are examined.

5.1 Initial Data

Mendix provided us with data on four of their internal software projects for the study: Project 1,

Project 2, Project 3, and Project 4. For each project 2 datasets were given: the JIRA export data of

the respective project, and a data dump of the Subversion dump file. Table 8 gives an overview of

the data supplied for each project.

Table 8: Overview of the data quantity for each internal project we have obtained from Mendix

Project Number of Tuples

JIRA export data Subversion Dump File
Project 1 994 3663
Project 2 58 818
Project 3 173 2929
Project 4 634 713

5.1.1 JIRA Dataset

The JIRA datasets are delivered in either .xml or .csv. Each tuple represents a JIRA issue, together

with its metadata. Below, we will discuss the metadata used for the study.

1) Summary: A concise description of maximum 255 characters. Within Mendix, this field is

often used for documenting the user story (as… I want to… so that…), although this is not

always the case.

2) Issue key: The unique id of the issue as specified by Mendix. It is formatted as the project

code, followed by an incremental integer (e.g., AFM-3184 or AFM-3185).

3) Assignee: The person who is responsible for implementing the JIRA issue. It is documented

as the first name plus last name (e.g., Randell Rasiman)

4) Comment: Remarks people have given on the JIRA issue. Each comment creates another

column. For example: An issue with 2 comments contains the columns ‘Comments’ and

‘Comments.1’. An issue with 3 comments has the columns ‘Comments, ‘Comments.1’, and

‘Comments.2’. It is important to note that, out of the four datasets received, only the

Project 2 and Project 3 datasets contained comment data. The comment data was missing

from the Project 1 and the Project 4 datasets.

5) Description: A written account, which further explains the requirements for implementing

the JIRA issue.

6) Resolved: The datetime on which the JIRA issue its status was marked resolved.

7) Created: The datetime on which the JIRA issue was created.

8) Updated: The datetime on which the JIRA issue was last updated.

5. Treatment Design | 39

5.1.2 SVN Dataset

The Subversion dataset is provided as a .txt file. Each tuple represents a revision done in a project.

Below we will describe the data used for the study. An overview of all revision data is given in

Figure 19.

1) revision-number: an ascending integer, starting from 0. Revision-number 0 is reserved for

the initialisation of the project. Revision-number 1 is reserved for the initialisation on the
Mendix Teams server.

2) author. This is the user who committed the revision and is stored as an email address (e.g.,

randell.rasiman@mendix.com).

3) log. An optional log message of the commit, in which the user can describe the changes he

or she has made. The author often includes the issue-key of the related JIRA issue inside

the log.

4) date. That is the datetime on which the revision was committed by the user. It follows the

ISO 8601 UTC Zulu standard.

5) metadata. This attribute provides metadata which include the branch name, modeler

version, model changes, related stories, and whether it’s made in Studio or Studio Pro. The

‘ModelChanges’ attribute in the metadata is formatted as a JSON-objects. For this study we

mainly make use of the UnitName attribute. It contains the name given by the developer

to a unit (e.g., microflow or form). The rationale behind this is that the given names are

often describing the functionality of the unit.

Figure 19: Overview of the data making up a revision

mailto:e.g.,%20randell.rasiman@mendix.com
mailto:e.g.,%20randell.rasiman@mendix.com

5. Treatment Design | 40

5.2 Pre-processing

5.2.1 Loading and pre-processing

The solution was created in a Jupyter Notebook [71], which can be found in de online Appendix.

The data must be in tabular format for further processing. Because the acquired SVN data was

given in text format, the data had to be transformed first. This was done using Regular Expressions

(REGEX). Next to transforming, REGEX was also used to extract the issue-key(s) from the log

message and store it in a distinct issue-key column. Because a classifier can only be trained using

labelled data, only revisions containing an issue-key were retained, while revisions without were

discarded. The implications of this decision are shown in Table 9. It is noticeable that the Project

3 and Project 4 contain significantly less labelled revisions than the other 2 project. This is due to

the fact that multiple development teams, each with their own JIRA-project, may operate on a

single software project. As a result, the commit history may contain JIRA issue-keys from multiple

JIRA projects. This was especially prevalent in the Project 3 and Project 4 projects. For our

research, we have solely focussed on tracing the commits to the JIRA issues present in one of our

four obtained datasets. As a result, commits traced to issue-keys not belonging to the acquired

JIRA projects, were marked as unlabelled and therefore discarded.

Table 9: Overview of the proportion of labelled data in the various datasets

 Total Revisions Number of Labelled
Revisions

Number of Discarded
Revisions

Project 1 3663 (100%) 3159 (86.24%) 504 (13.76%)
Project 2 818 (100%) 583 (71.27%) 235 (28.73%)
Project 3 2929 (100%) 1495 (51.04%) 1434 (48.96%)
Project 4 713 (100%) 206 (28.29%) 507 (71.11%)

The JIRA datasets did not need any extra modifications were required for loading, since these were

already in a tabular format. After loading the data into the environment, all natural text was pre-

processed using six common pre-processing methods. This was done for JIRA as well as the SVN

dataset.

1) All words were lowercased.

2) All the interpunction was removed.

3) All numeric characters were removed.

4) All sentences were tokenized with NLTK.

5) The stop words corpus from NLTK was used to eliminate all stop words.

6) All remaining terms were stemmed using the Porter Stemming Algorithm [72].

5.2.2. Trace Link Construction

After loading and pre-processing both datasets, we can construct the candidate trace links by

calculating the Cartesian product between the JIRA dataset and the SVN dataset. For each trace

link, the validity was determined by checking if the JIRA issue-key was present in the commit log.

If the JIRA issue-key was present, the trace link was classified as valid; if the JIRA issue-key was

not present, the trace link was classified as invalid. Furthermore, we applied causality filtering to

the trace links [56]: when a trace link had a SVN commit that was committed prior to the creation

of a JIRA issue, it was deemed invalid due to causality. Table 10 shows an overview of the

outcomes of these activities.

5. Treatment Design | 41

Table 10: The amount of valid trace links in various acquired datasets

Dataset Before/after
Filtering

Number of traces Valid traces

Project 1 Before 3,139,052 3104 (0.10%)
After 1,375,042 3104 (0.23%)

Project 2 Before 33,756 451 (1.34%)
After 27,815 451 (1.62%)

Project 3 Before 258,635 420 (0.16%)
After 89,233 420 (0,47%)

Project 4 Before 129,970 86 (0,07%)
After 33,627 86 (0.26%)

5.3 Feature Families

The previously produced set of candidate traces can now be used for training the classifier.

However, for the classifier to distinguish the valid traces from the invalid traces, the candidate

trace links need to be represented as a set of features. In total 154 features are engineered. In this

section we will describe these features, which fall into 4 categories: Process-related, document

statistics, information retrieval and query quality.

5.3.1 Process-Related

The process-related category is based on work of [56] and consists of four features. The first

feature captures stakeholder information by indication whether the assignee of a JIRA issue

assignee(I) is the same person as the author of a commit author (C). The remaining three features

capture temporal information. This is accomplished in three ways:

1) The difference between the date of commit and the date of the JIRA issue was created.

2) The difference between the date of commit and the date the JIRA issue was last updated.

3) The difference between the date of commit and the date the JIRA issue was resolved.

5. Treatment Design | 42

5.3.2 Document Statistics

The document statistics is based on the work of [38], and include features to gauge document

relevance and the information contained within the documents. Within this category seven

metrics are included:

1) The total number of terms. This is both calculated for the JIRA issue and the commit.

2) The total number of unique terms. This too, is calculated for both the JIRA issue and the
commit.

3) The overlap of terms between the JIRA issue and the commit. To calculate this metric, the

overlap of terms is divided by the set of terms you are comparing it to. Because this may

be accomplished in three distinct ways, each of these approaches is treated as a separate

feature.

a. Overlap of terms divided by the terms in the JIRA issue

b. Overlap of terms divided by the terms in the commit

c. Overlap of terms divided by the union of the terms between the JIRA issue and the

commit.

5.3.3 Information Retrieval

The Information Retrieval feature set capture the semantic similarity between two trace artefacts.

The was done by first applying VSM with TF-IDF weighting to transform the trace artefacts to a

vector representation. Because we use TF-IDF weighting, the chosen corpus used for weighting

impacts the resulting vector. For instance, the term ‘want’ occurs commonly in the JIRA summary,

since Mendix developers put their user story in there. However, it might be a rare term when

taking in account all the terms in a JIRA issue. Since we do not know which corpus best represents

the trace artefact, we opted to explore multiple representations. As a result, we have constructed

the JIRA issue vector representation with four corpora and the SVN commit with three corpora.

This results in a total of 12 distinct pairs for each trace link candidate, as shown in Table 11. The

cosine similarity of each pair was computed and utilized as a feature.

Mills and Haiduc [62] showed that the chosen trace direction (i.e. which artefact in the trace link

is used as a query has an effect on performance, especially for traceability. For this reason, we

calculated the cosine distance in either direction, resulting in a total of 24 IR-features. We used

Scikit-learn [73] for TF-IDF weighting and SciPy [74] for calculating the cosine distance.

Table 11: VSM with TF-IDF weighting features

ID Artefact 1 Artefact 2

1 SVN Log Message JIRA Issue (Summary, Description, and comments)
2 SVN Log Message JIRA Issue Summary
3 SVN Log Message JIRA Issue Description
4 SVN Log Message JIRA Issue Comments
5 SVN Unit Names JIRA Issue (Summary, Description, and comments)
6 SVN Unit Names JIRA Issue Summary
7 SVN Unit Names JIRA Issue Description
8 SVN Unit Names JIRA Issue Comments
9 SVN (Log Message, Unit

Names)
JIRA Issue (Summary, Description, and comments)

5. Treatment Design | 43

10 SVN (Log Message, Unit
Names)

JIRA Issue Summary

11 SVN (Log Message, Unit
Names)

JIRA Issue Description

12 SVN (Log Message, Unit
Names)

JIRA Issue Comments

5.3.4 Query Quality

In IR, queries are used to retrieve information from a document collection. However, the

succession of finding the right documents also depends on the quality of the query. This also

applies when IR is used for traceability. It makes a difference whether two artefacts in a candidate

trace link have a low cosine similarity because a) they are truly an invalid trace pair or b) the

quality of the query artefact is low.

Mills et al. [63] devised a number of metrics, which can infer the query quality (QQ). We have

implemented 17 pre-retrieval QQ metrics, assessing three different aspects: 1) specificity,

referring to the query its ability to capture the information need, 2) similarity, relating to the

similarity between the query and the entire document collection, and 3) term relatedness,

referring to how often terms in the query co-occur in the document collection.

We encountered issues while computing the QQ. Our RAM capacity of 16GB was insufficient to

complete the term relatedness QQ calculation of the Project 1 dataset and resulted in a crash. Due
to this, as well as a shortage of training time, forced us to discontinue further analysis of the

dataset.

We did, however, manage to complete the computation of the 17 QQ metrics for the Project 2,

Project 3, and Project 4 datasets. The computation was repeated, using all seven corpora

mentioned in Section 5.3.3, since the outcome of several QQ metrics is dependent on the corpus

of which the query is a part. This resulted in a total of 119 QQ features.

5.4 Data Normalisation

Normalisation of the data may lead to a reduction of estimation errors of the model in its

hypothesis class, or can yield an faster algorithm [54]. Within the field automated RTR, some

studies have included data normalization as part of their pre-processing procedure [38], while

others have not [61]. However, none of the previous studies addressed the normalisation variable

for evaluation, leaving the effect uncertain.

We wanted to investigate how data normalisation may enhance our treatment as part of our

research. As a result, we produced two variants of our data. In the first variant, the data was not

normalised and therefore remained unaltered. In the second variant, we normalised the data by

applying a Min-Max [0, 1] scale to the values of all our features.

5. Treatment Design | 44

5.5 Rebalancing

As was explained in Section 3.3.4 Machine Learning, the construction of the candidate trace links

result in a highly imbalanced dataset, which is also observable in Table 10. For this study, we

evaluated four different strategies, proposed by Mills et al. [38], to deal with this imbalance:

1) None. There is no rebalancing method applied to the data.
2) Oversampling. The minority class is oversampled until it reaches the size of the majority

class, by applying SMOTE. This is the default setting in Scikit-Learn.

3) Undersampling. The majority class is randomly undersampled until it has the same size as

the minority class, by applying the random undersampling technique. This is the default

setting in Scikit-Learn.

4) 5050. In this strategy we are combine over- and undersampling. First, the minority class

is oversampled using SMOTE with a sampling strategy of 0.5. Then undersampling is

applied to the majority class until the sizes of both classes are equal.

5.6 Classification Algorithms

For the design of the treatment, we looked at two supervised machine learning algorithms for

classifying trace links as valid or invalid. These were Random Forests and Gradient Boosted

Decision Trees. These motivation for these two algorithms is twofold. First, Random Forests is

shown to be the best classifier in RTR by earlier research [38], [56]. Second, Gradient Boosted

Decision Trees have demonstrated to outperform Random Forests in other domains [75], [76].

To implement the Random Forest algorithm, we used the framework of Scikit Learn. To

implement the Gradient Boosted Decision Trees we used two different frameworks: XGBoost, and

LightGBM. These frameworks differ in two major respects [77], [78]. The first distinction is in the

method of splitting. XGBoost splits the tree level-wise rather than leaf-wise, whereas LightGBM

splits the tree leaf-wise. This distinction is illustrated in Figure 20.

Figure 20: Leaf-wise Tree Growth (top) and Level-Wise Tree growth (bottom)

5. Treatment Design | 45

The second distinction is the method of determining the best split value. XGBoost uses histogram-

based algorithm, which splits a feature its data points into discrete bins. These bins are then used

to find the best split value. LightGBM uses a subset of the training data rather than the entire

training dataset. It employs a sampling technique, called Gradient Based One Side Sampling, which

samples the training data based on gradients, resulting to significant faster training times.

5.7 Hyperparameter tuning

All three classification frameworks have various hyperparameters which can be changed.

Changing these hyperparameters may change the performance of the models. Due to the

computational time needed to tune the hyperparameters, we only considered 5 hyperparameters

per framework. These hyperparameters were chosen based on their popularity, which was

determined as follows:

1) Query Google.com with “<Model Name> + hyperparameter tuning”.

2) Collect all articles on page 1, from the domains: Medium, Towardsdatascience, or Analytics

Vidhya.

3) Tally the hyperparameter mentions in the articles.

The top 5 most tallied hyperparameters are considered for tuning in the study. Sections 6.3.2 and

6.4.2 go into further detail on this subject.

5.8 Summary

In this Chapter we explained that we have represented the trace into a total of 154 features. These

features are classified into four families: Process-Related (4), Document Statistics (7), IR-Related

(24), and Query Quality Metrics (119). In addition, we demonstrated a variety of settings and

strategies for selecting classification algorithms, rebalancing training data, adjusting

hyperparameters, and data normalisation. In the next chapter, we will experiment with these

settings and strategies to identify the best performing model to help with the scenarios described

in Section 4.4.

6. Results | 46

6. Results
In the previous chapter we have covered all components of the treatment. These components can

be configured in a variety of combinations, each of which yields a different result. In this chapter,

we will experiment with these configuration combinations, in order to find the best configuration.

First, we will determine the baseline results of our treatment. This baseline will serve as a

reference point of the possible performance. Then, we discuss the experimentation with Min-Max

[0,1] normalization of the training data to see if this process can significantly impact our

performance. We considered all 154 features when obtaining these results.

From there, the scope of the experiment will be narrowed by focussing on the two configurations

best suited to the scenarios, trace recommender system and trace recommender system, as

specified in Section 4.4. We will provide an explanation in terms of feature importance for each of

the two models. This explanation is followed by an experiment to find out if hyperparameter

tuning is able to significantly enhance the performance.

6.1 Baseline Results

We wanted to get an initial evaluation of the performance of our treatment model, which we

considered as the baseline result. We examined 12 alternative configurations of rebalancing

techniques (discussed in Section 5.5) and classification algorithms (discussed in Section 5.6) for

this evaluation. These 12 configurations are shown in Table 12.

Table 12: Evaluated configurations of the treatment

Rebalancing Technique Classification Algorithm

None Random Forests
GX Boost

LightGBM
SMOTE Random Forests

GX Boost

LightGBM
Undersampling Random Forests

GX Boost

LightGBM
5050 Random Forests

GX Boost
LightGBM

Each configuration was evaluated on every dataset independently. For this evaluation each

dataset was first divided into a train and test set using an 80:20 split. Each of these splits was

stratified, meaning that each class was distributed proportionally between the two splits. Then

the model was trained with a stratified 10-fold cross validation on the train set and run once on

the test set of which the test score is recorded. This procedure was repeated 10 times for each

implementation, and averaged. A Process-Delivery Diagram [79] of this procedure is shown in

Figure 21.

6. Results | 47

Figure 21: Process-Delivery Diagram depicting the method we used to obtain our results

6. Results | 48

The full results of these evaluations can be found in the online Appendix. Figure 22 depicts the

average precision, recall, F0.5-measure, F1-measure, and F2-measure over all iterations for all

configurations of the treatment design. The different rebalancing techniques are presented on the

horizontal axis, while the outcomes for the various datasets are given on the vertical axis. The

three different colors respresent the three different classification algorithms used. Table 13 shows

the average F-measures for the three datasets.

Figure 22: The mean precision, recall, F-0.5, F1, and F2 metrics for the various model configurations on non-normalized
data

6. Results | 49

Table 13: Mean F0.5-measure, F1-measure, and F2-measure for the different non-normalized configurations. The asterisk
denotes the combinations for which the greatest F-measure was obtained.

Algorithm
Rebalancing

Random Forests XGBoost LightGBM

F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2
No Rebalancing 67.97 50.09 40.01 77.32* 51.41 46.38 60.35 55.45 52.69

SMOTE 69.79 62.52 56.77 73.23 71.35* 70.65 69.69 69.32 69.18

Undersampling 11.97 17.37 32.25 13.60 18.47 33.11 13.10 18.66 33.28

5050 62.76 61.25 60.03 65.80 69.03 72.73 63.05 67.78 73.48*

Upon initial review, the results indicate that using a different rebalancing approach produces the

most notable variations in performance across all datasets. When no rebalancing is applied, the

maximum precision can be achieved, while still maintaining a decent recall, resulting in the

highest F0.5-measure (with a top value of 77.32 for XGBoost).

SMOTE reduces precision while increasing recall, resulting in the greatest F1-measure (with a

peak value of 71.35 for XGBoost). This indicates that this is the optimum equilibrium between

precision and recall. Our findings support the findings of Mills et al. [38], who demonstrated that

using SMOTE as a rebalancing strategy results in the highest F1-score.

When we use Undersampling as a rebalancing strategy, we get the highest recall scores of any

rebalancing strategy. However, the strategy produces impractical precision. As a results all

undersampling configurations belong to the group with the lowest F-measures.

Altough Undersampling by itself is impractical, combining the strategy with SMOTE yields a better

balance. The 5050 rebalancing strategy creates a better balance by trading recall for precision.

This results in a performance that retains strong recall while providing a more practical precision.

This is quantified by the F2-measure, which is greatest in the 5050 model configuration (with a

top value of 73.48).

6.1.1 Statistical Comparison of Rebalancing Strategies

In this section we will evaluate if these differences were statistically significant. Because the

primary aim is to establish if the rebalancing strategy has any significant effect in general, we used

the F1-score rather than the F0.5-score or F2-score. Finetuning for each scenario is currently out

of scope and will be explored later.

For the evaluation we ran a non-parametric Friedman test. It rendered a Chi-square score of 70.83
for Random Forests, a Chi-square score of 54.99 for XGBoost, and a Chi-square score of 75.00 for
LightGBM. All three outcomes are significant with (p < 0.01). This indicates that the rebalancing
strategies are significantly different. As a posthoc test, we use the Nemenyi test to identify which
specific strategies have distinct means. These results are shown in Table 14, Table 15, and Table
16.

When setting Random Forests as a classifier, the choice of rebalancing strategy matters. The
Nemenyi test scores in Table 14 indicate a couple of things: 1) None is significantly different (p <
0.01) than the other rebalancing methods. 2) SMOTE and 5050 are significantly different (p <
0.01) than None and Under. 3) 5050 and SMOTE are not significantly different (p > 0.01).

6. Results | 50

These results imply that the Random Forests algorithm should be used in combination with either
the SMOTE or 5050 rebalancing strategies. This is because SMOTE has the greatest mean F1-score
and 5050 does not perform significantly worse. It should, however, be emphasized, that 5050
should be the preferable option. Because this strategy includes undersampling, you have fewer
data points to train on, resulting in a shorter training period.

Table 14: Nemenyi test results for Random Forests. The asterisk denotes the combinations which were found to be
significantly different (p < 0.01).

 None SMOTE Under 5050

None - 0.003144* 0.001497* 0.001808*
SMOTE 0.003144* - 0.001000*

0.900000

Under 0.001497* 0.001000* - 0.001000*
5050 0.001808* 0.900000 0.001000* -

Two findings stand out, when we look at the Nemenyi test results for the XGBoost classifier in
Table 15. First, the undersampling rebalancing approach differs significantly from the other three
strategies. Second, the SMOTE, undersampling, and 5050 rebalancing strategies do not
significantly differ from each other. Based on these two findings, as well as the fact that SMOTE
gets the highest mean F1, SMOTE, undersampling, and 5050 can all be considered for use with
XGBoost.

Table 15: Nemenyi test results for XGBoost. The asterisk denotes the combinations which were found to be significantly
different (p < 0.01).

 None SMOTE Under 5050

None - 0.77998 0.001* 0.90000
SMOTE 0.77998 - 0.001* 0.90000
Under 0.001* 0.001* - 0.001*
5050 0.90000 0.90000 0.001* -

The Neymyi results for the LightGBM, as seen in Table 16, imply three things: First, there is a
significant difference between SMOTE and undersampling (p < 0.01). Second, the F1-results for
SMOTE and undersampling vary significantly (p < 0.01). Third, 5050 and SMOTE do not differ
significantly (p > 0.01).

This leads to the following conclusion. Table 13 shows that 5050 produced the highest average
F1. With this in mind, and the fact that 5050 and SMOTE do not differ significantly, both
rebalancing strategies can be considered for use with the LightGBM classifier.

6. Results | 51

Table 16: Nemenyi test results for LightGBM. The asterisk denotes the combinations which were found to be
significantly different (p < 0.01).

 None SMOTE Under 5050

None - 0.001000* 0.002623* 0.014361
SMOTE 0.001000* - 0.001000* 0.438945
Under 0.002623* 0.001000* - 0.001000*
5050 0.014361 0.438945 0.001000* -

6.2.2 Statistical Comparison of Classification algorithms

When keeping the rebalancing strategy and dataset constant, we can observe that the

performance disparities across the different classification algorithms are less pronounced, yet still

present. In virtually all configurations, Random Forests performs significantly worse than

XGBoost and LightGBM. This is a interesting finding considering the fact that Random Forests is

often shown to be the best classifier in RTR [56], [63]. Depending on the specific dataset and

rebalancing strategy, XGBoost performs better at times, while LightGBM performs better at

others.

We have examined whether these differences were statistically significant, using the Friedman

test and with posthoc Nemenyi test. However, in contrast to the previous section, where we

examined the overall performance of the rebalancing strategies based on F1, we now concentrate

on identifying the statistically best classifier specific for each of the two proposed scenarios. That

is, we will look for the classifier with the best F0.5 performance as well as the classifier with the

best F2 performance.

For identifying the best F0.5 scoring classifier, we considered the no rebalancing strategy. The

reason for this was that the no rebalancing strategy (in combination with XGBoost) produced the

highest mean F0.5-score, as was shown in Table 13. As a result, we performed the Friedman test

on the F0.5-scores for the No rebalancing strategy. This rendered a Chi-square of 23.41 which was

significant (p < 0.01). The results of the Nemenyi test are shown in Table 17. The results suggest,

when configuring a model for the trace maintenance system that the performance of XGBoost is

significantly different than that of Random forests and LightGBM.

Table 17: Nemenyi test results for none rebalancing strategy on F0.5. The asterisk denotes the combinations which were
found to be significantly different (p < 0.01).

 Random Forests XGBoost LightGBM

Random Forests - 0.001* 0.900
XGBoost 0.001* - 0.001*
LightGBM 0.900 0.001* -

In order to find best F2 scoring classifier, we evaluated the 5050-rebalancing strategy. This choice

was motivated by the fact that the 5050 rebalancing strategy yielded the highest mean F2-score,

as was shown in Table 13. On that account, we ran the Friedman test on the F2-scores for the 5050

rebalancing strategy. This rendered a Chi-square of 39.47 which was significant (p < 0.01). The

results of the Nemenyi test are shown in Table 18. They indicate that Random Forests significantly

differs from the Boosted Decision Trees algorithm. When opting to use the Boosted Decision Trees
algorithm, it does not matter which framework you choose. XGBoost and LightGBM are not

significantly different.

6. Results | 52

Table 18: Nemenyi test results for 5050 rebalancing strategy on F2. The asterisk denotes the combinations which were
found to be significantly different (p < 0.01).

 Random Forests XGBoost LightGBM

Random Forests - 0.00100* 0.00100*
XGBoost 0.001* - 0.848105
LightGBM 0.001* 0.848105 -

6.2 Results of Normalising the baseline configuration

As explained in Section 5.4, we evaluate the effect of Min-Max [0,1] scaling to the values of our

features. The mean precision, recall, and F-metrics for the normalized dataset are shown in Figure

23 and the mean F-metrics are shown in Table 19. These findings still show that using various

rebalancing techniques makes the most significant difference in performance. The effect of

normalizing the data before training, on the other hand, appears to be negligible. However, one

distinction can be observed. When non-normalized, a combination of 5050 rebalancing and

LightGBM produces the best F2 scores in all three datasets. However, when we normalize the data,

we see that the performance of the Project 4 project suffers substantially.

To test the significance between these two methods, we have formulated the following

hypotheses:

H0: Min-Max [0,1] normalizing does not change the F1 of the classification models (alpha=0.05)
H1: Min-Max [0,1] normalizing does change the F1 of the classification models (alpha=0.05)

For each of the 12 configurations we did a Mann-Whitney U test between the non-normalized F1
results with the normalized results for each of the 12 configurations. The U statistics (n=30)
together with the P-values are given in Table 20. We find that normalisation has no significant
effect on the F1-scores of the classification models, and therefore we fail to reject the null-
hypothesis. However, it is worth noting that the configurations XGBoost + 5050 (p = .07),
LightGBM + SMOTE (p = .02), and LightGBM + 5050 (p = .07 nearly passed the significance level.

Table 19: Mean F0.5-measure and F2-measure for the different normalized configurations

Algorithm
Rebalancing

Random Forests XGBoost LightGBM

F0.5 F2 F0.5 F2 F0.5 F2
No Rebalancing 65.91 27.79 78.40 48.20 61.93 42.18

SMOTE 70.28 43.70 73.53 52.49 65.28 50.68

Undersampling 11.73 23.58 12.77 24.49 13.25 25.06

5050 63.83 47.64 61.13 52.80 59.98 52.02

Table 20: The Mann-Whitney U statistics for the different configurations

Algorithm
Rebalancing

Random Forests XGBoost LightGBM

None 395.0 (p = .21) 390 (p = .19) 401 (p = .24)
SMOTE 417.5 (p = .32) 443.0 (p = .46) 304.5 (p = .02)
Under 420 (P = .33) 442 (p = .46) 441.0 (p = .45)
5050 397.5 (p = .22) 348 (p = .07) 350.0 (p = .07)

6. Results | 53

Figure 23: Mean precision, recall, F0.5, F1, and F2 metrics for the different model configurations using Min-Max [0,1]
normalized data

6.3 Best Model for Trace Recommendation Scenario.

From our baseline results, we have chosen the best model fit (i.e., highest mean F2-score) for the

trace recommendation scenario. This was a configuration with LightGBM as a classifier and 5050

as a rebalancing strategy, and no Min-Max [0,1] normalisation in the pre-processing, which

6. Results | 54

averaged (n = 30) an F2-score of 73.48 (SD = 6.64). In this section, we further explore this

configuration of the model by doing another 25 runs to minimise sampling error. These results

are then used to explain the most important features. Finally, a discussion follows about whether

the model can be further improved by hyperparameter tuning.

6.3.1 Best Features of Trace recommendation features

In this Section we present the features which are deemed the most important. We report this in
terms of total gain [80], which was the default metric of feature importance in LightGBM. Of each

run we have logged the total gain of every individual feature and have averaged it. These averages

were then used to find the top 5 most important features for each individual dataset. The results

are shown in the boxplots of Figure 24.

Figure 24: Total gain for the 5 most important features for the Project 3 (left), Project 2 (middle), and Project 4 (right)
datasets

These results reveal a number of interesting findings. The first finding is that the process-related

feature family provides a lot of information on whether a JIRA issue and a commit should be traced

together. Both the Resolved_commit_date_dif and Updated_commit_date_dif features are among the
top five most significant features in all three datasets. This suggests that the time between

committing and altering the status of a JIRA issue is a significant indicator of whether these should

be traced. The last process-related feature assignee_is_commiter is likewise a significant indicator

for trace validity, ranking in the top five in two of the three datasets.

The second finding is that the TF-IDF representation of the trace artefact appears to be important.

We mentioned in Section 5.3.3 that we examined various TF-IDF representations. For example,

6. Results | 55

one approach is to represent a commit as a whole by taking into account all natural language, such

as logs and unit names. The second approach is to express the commit as individual subsets and

represent the commit logs separately from the unit names. Most research [38], [56], [64] mainly

consider the first approach. However, our findings indicate that the second approach would be

more beneficial to the classifier. Figure 23 indicates that the cosine similarity between a commit

log and a JIRA problem, Vsm_logs_jira_as_query, is the third most important feature for evaluating

the authenticity of a trace, with a mean total gain of 20385.58 (SD = 4546.96). This is significantly

higher than the cosine similarity between the whole commit and the JIRA issue,

vsm_svn_jira_jira_as_query, which has a mean total gain of 9939.16 (SD = 1744.80). A similar

argument can be made for additional top five features, such as vsm_comments_comments_as_query

or jira_summaries_as_query_queryscope. As a result, we may argue that special attention should be

paid to how we represent the trace artefacts.

The last finding is that the top five most important features differ between the three datasets.

Since the datasets originate from different projects, the data might have been developed by

different team composition. The data characteristics are likely to alter depending on the team

makeup, resulting in various features being considered important by the model. As a consequence,

provided resources and sufficient training data are available, we may propose training the model

again for each new project, resulting in a project-finetuned model rather than a generic trained

model.

6.3.2 The Results of Hyperparameter Tuning

To produce the baseline results, we have used the default settings of the classification algorithms.
We wanted to examine whether these results could be further improved by optimizing the
hyperparameters of the model, by means of a Randomized Search on the hyperparameters, for
which the Scikit-Learn library was used.

For this experiment, we considered five hyperparameters:

1) Num_leaves: This controls the maximum number of leaves in one tree, and acts as the main
parameter for determining the complexity of the model

2) Min_data_in_leaf: The minimum number of data points required in a leaf, in order for the
leaf to be added to the tree.

3) Max_depth: The maximum depth a tree can have in the model.
4) Learning_rate: The shrinkage rate used in update
5) Max_bin: The maximum number of bins for each feature. A larger value can improve

accuracy at the costs of training speed.

For each of the five hyperparameters we have specified a set of ten values. These values are shown

in Table 21. A total of 100 samples were drawn from the search space. To produce the results, we

once again divided the data into a train and test set using an 80:20 stratified split. We applied the

Random Search Algorithm on a stratified 10-fold split. Both the best cross-validation F2-score and

test F2-score were recorded. We have repeated this procedure 25 times, of which the results are

shown in Figure 25.

6. Results | 56

Table 21: The considered search space for the Randomized Search on the LightGBM model

Hyperparameter Value sets *indicates the default setting

Num Leaves {11, 16, 21, 26, 31, 36, 41, 46, 51, 56}
Min_data_in_leaf {5, 10, 15, 20*, 25, 30, 35, 40, 45, 50}
Max_depth {-1, 100, 200, 300, 400, 500, 600, 700, 800,

900}
Learning_rate {0.1*, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.0}
Max_bin {50, 100, 150, 200, 255*, 300, 350, 400, 450,

500}

Figure 25: Comparison of F2-scores between default and hyperparameter tuned LightGBM for Cross-Validation (left) and
Test (right)

We observe that the F2 scores on cross-validation were higher in the Hyperparameter tuned

group than the default group. A Mann-Whitney U test showed significantly different results, U

(NDefault=75, NHyperparameter tuned = 75) = 1897, p < .01. However, the most interesting is of course the

F2-scores on the test set. These turned out not to be significant, U (NDefault=75, NHyperparameter tuned =

75) = 2787, p = 0.46. This possibly indicates that hyperparameter tuning leads to an overfit on the

training data but does not necessarily impact the generalizability of the model.

6.4 Best Model for Trace Maintenance Scenario

The best model fit, in terms of mean F0.5, for the trace maintenance scenario, was a configuration

with XGBoost as classifier, no rebalancing strategy applied, and a Min-Max [0,1] normalisation

applied to the data. We will now discuss the model in terms of feature importance, as we did with

the best trace recommendation model. This will be followed by the results of the hyperparameter

tuning experiment.

6. Results | 57

6.4.1 Top 5 most important features

In this section we present the features which are deemed the most important for the scenario of

trace maintenance. We used the same method for assessing feature importance as we did for

assessing feature importance in the trace recommendation scenario. In contrast to that scenario,

we now express feature importance in terms of average gain rather than total gain. This is because

the default feature significance metric in XGBoost is average gain rather than total gain. It makes

no difference because these metrics are always used to evaluate the relative importance of

features within the same model, not between models. The top five most important features is

shown in Figure 26.

A number of observations can be made from this. Once again, the project-related feature family is

well-represented among the top five most important features. Remarkable, however, is the fact

that none of them are present in the Project 4.

Furthermore, as compared to the model for trace recommendation, the query quality metrics are

more prominent in the top 5. The most significant feature in the Project 2 dataset is

JiraSummariesAsQuery maxEntropy, and the Project 4 datasets its top 3 entirely consists of query

quality metrics.

Figure 26: Average gain for the 5 most important features for the Project 3 (left), Project 2 (middle), and Project 4 (right)
datasets

6. Results | 58

6.4.2 The Results of Hyperparameter Tuning

For hyperparameter tuning the best model for the trace maintenance scenario, we applied the

same strategy as for the trace recommendation scenario. To the search space for the randomized

search belonged five parameters.

1) Learning Rate: Identical to the learning rate parameter in the LightGBM Framework

2) Max Depth: Identical to the max_depth parameter in the LightGBM Framework
3) Min_child_weight: The minimum sum of instance weight required in a child.

4) Gamma: Minimum loss reduction required to make a further partition on a leaf node of the

tree.

5) Colsample_byTree: The proportion of parameters utilized for training each tree

For each of the five parameters, 10 values were considered, which are shown in Table 22.

The results for the hyperparameter tuning are produced in an identical way as with the

recommendation system. The results are shown in Figure 27. Our findings reaffirm the results of

hyperparameter tuning for the trace recommendation scenario. The cross-validation F0.5-scores

differ significantly, U (NDefault=75, NHyperparameter tuned = 75) = 1106, p< .01, while the test F0.5-scores

did not,U(NDefault=75, NHyperparameter tuned = 75) = 2500, p = 0.12).

Table 22:The considered search space for the Randomized Search on the XGBoost model

Hyperparameter Range (Default value indicated by *)

Learning_rate {0.15, 0.20, 0.25, 0.30*, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60}
Max_depth {2, 4, 6*, 8, 10, 12, 14, 16, 18, 20}
Min_child_weight {1*, 2, 3, 4, 5, 6, 7, 8, 9, 10}
gamma {0.0*, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Colsample_bytree {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0*}

Figure 27: Comparison of F0.5-scores between default and hyperparameter tuned XGBoost for Cross-Validation (left) and

Test (right)

7. Discussion | 59

7. Discussion
In this chapter, we will discuss the findings of our study. First, we will present the main

contributions together with their implications. Then, the limitations of our method, together with

their implications are discussed. Finally, all the threats to the validity are discussed, together with

our strategy of mitigation.

7.1 Main Contributions

The main contribution of this study lies in the acquisition of new insights on the specific context

of RE in MDD. These insights were then used to create a treatment specially tailored to the needs

of this context. As a result, the gap between academic research and industrial demands has been

narrowed, bringing us closer to the vision of ubiquitous requirements traceability [31]. This type

of research adheres to the idea of context-driven research. finternalThis type of research is

essential, because the applicability and scalability of software engineering solutions heavily

affected by the contextual, organizational, and domain-related factors.

Furthermore, we contribute by providing insights on using Gradient Boosted Trees for RTR. We

have presented data on how this class of algorithms (i.e., LightGBM or XGBoost) performed and

how they compared to the Random Forests algorithm. This is, to the best of our knowledge, the

first study to provide such an empirical comparison.

Additionally, we demonstrated that the representation of a trace artefact is important to the

classifier. In our results, we found that features that used TF-IDF representation of a subset of a

trace artefact (e.g., summary, description) were more prominent in the top important features.

Finally, this research contributes by advising which specific rebalancing technique belongs to

which scenario. Mills et al. [38] already have shown that different rebalancing strategies yield

different results. However, they were primarily interested in finding the most optimal balance

between precision and recall, so results are more generalizable. In our research, we specifically

looked at which rebalancing strategy was best for a trace recommendation and which rebalancing

strategy was best for trace maintenance.

7.2 Threats to validity

The threats to the validity of this research are discussed using the four aspects of validity [23].

These consist of the Construct Validity, Internal Validity, External Validity, and Reliability. For

each aspect, the threats and the strategy to overcome them are discussed in the following sections.

7.2.1 Construct Validity

The extent to which the operational constructs reflect the theoretical structures is referred to as

construct validity. Several steps have been made to mitigate the threats. First, because all study
was done by a single researcher, there was no possibility of misunderstanding of the data. Second,

when available, opensource libraries, such as Scikit-Learn, have been used to operationalize the

constructs.

However, it should be emphasized that not everything can be mitigated. In particular, there are

threat to the construct validity of the query quality metrics [63]. No open-source Python library

7. Discussion | 60

was found to compute these metrics. As a result, these computations were coded by the

researchers themselves. This poses threats in two ways. First, personal interpretations of the

theory may result in operational constructs, which did not sufficiently reflect the theoretical

constructs. Second, there might have been programming mistakes that influenced the results.

Another threat stems from the origin of our labelled data. For the labelled data we made use of

the manually produced traces by the Mendix engineers. As we discussed previously in Chapter 1,

this type of RT is prone to errors. Because we have not validated if the traces we created were

legitimate, a garbage-in-garbage-out scenario is a possibility.

7.2.2 Internal Validity

The internal validity relates to the level to which the claims made in research are not caused by

an unanticipated third factor. We attempted to mitigate threats by conducting a literature study

and conducting semi-structured interviews to ensure that all relevant factors were identified.

Despite these efforts mitigate the threats to some extent, two of those factors continue to pose a

threat to the internal validity.

The first threat is related to how we compared our models to one another. We obtained three

datasets for our research. Two datasets contained JIRA comment data, whereas one did not.

despite the fact they are not directly comparable, we evaluated all three datasets in a comparison.

We were aware of the discrepancy between them and have given great consideration to the claims

we made based on this comparison.

The second threat relates to the data quality used for the study. The studied organisation has

imposed a number of quality standards that its JIRA issues and commits must meet. To that extent,

it is plausible that this level of data quality is required for the models to perform successfully. As

a result, it is unclear if the model works effectively with less comprehensive data.

7.2.3 External Validity

The external validity is concerned with how generalizable the study results are and how valuable

they are to individuals outside of the study. We did our best to mitigate this evaluating the

treatment on datasets from three distinct projects. Furthermore, these projects were obtained

from 2 separate teams, each with its unique set of procedures and practices. Finally, to minimize

overfitting and enhance generalizability, we followed the standard practice of having a distinct

training and test set.

Despite our best efforts to mitigate the threats, not everything can be accounted for. All the results

were obtained from a single organisation. As a result, the external validity is threatened since the

results are biased towards the examined organisation. This organization may have had unique

practices that were not seen elsewhere. Consequently, we had to be cautious in how we expressed

our conclusions.

7.2.4 Reliability

The degree to which the results are dependent on the researcher who conducted the research is

referred to as the aspect of reliability. When another researcher does the same study, the

outcomes should be the same. To accomplish this we followed the guidelines of peer-reviewed

7. Discussion | 61

methods by Wieringa [21], Kitchenham [22], and Longhurst [25]. Furthermore, the exact

operationalisation of these methods was documented into great detail, and we have tried to be as

unambiguous as possible, for other researchers to replicate. In addition, all relevant documents

deemed useful (e.g., interview protocol, Jupyter Notebooks) are included in the Appendix. Finally,

the raw results are accessible in the online Appendix.

8. Conclusion and Future Work | 62

8. Conclusion and Future Work
This research studied how requirements traceability can be improved in a model-driven

development environment. This was done by studying relevant literature, conducting semi-

structured interviews at Mendix, designing a trace link classifier for the MDD environment, and

evaluating its performance.

This chapter concludes the research by answering the research questions formulated in Chapter

1. Furthermore, we outline directions for future research.

8.1 Sub Questions

Before answering the main research question, we will first go through the process of answering

the sub questions.

The goal of this sub question was to get familiar with RT fundamentals, and to understand the

present challenges identified by the research community. This was answered by reviewing the

literature in a semi-systematic way.

There are several study areas in requirements traceability research. Several scholars believe the

area that requires the most attention is that of automatically recovering trace links between

requirements and some other artefact, which is known as the process of automatic trace recovery.

This works as follows: given are two trace artefacts, there is either a trace link between them or

there is not. An algorithm is then tasked with automatically determining whether there is a trace

link between them.

The goal of this sub-question was to identify which algorithms are used for automatic trace

recovery. This question was also answered by reviewing the literature.

Algorithms used for automatic trace recovery can be categorized into four orthogonal categories:

information retrieval, heuristic, machine learning and deep learning [17]. Researchers believe

that Machine Learning and Deep learning approaches belong to the state-to-the-art for

establishing the trace links [17]. As a results, new RT tools should concentrate on incorporating

these technologies.

In this study, we have concentrated on the algorithms from the machine learning paradigm. The

performance of several machine learning classifying algorithms in RTR tasks have been

researched, with Random Forests outperforming the others.

However, the Boosted Decision Trees algorithm was not included in these studies' comparisons.

Studies in other domains demonstrated that this algorithm outperformed Random Forests [75],

[76], therefore we evaluated it for the RTR task as well.

What is the state-of-the-art in Requirements Traceability? SQ1

What algorithms are needed to automatically trace artefacts? SQ2

8. Conclusion and Future Work | 63

The aim of this question was to get familiar with the MDD context, in which our treatment would

operate in. At Mendix, semi-structured interviews were used to address this question.

According to the findings of these interviews, developers produce software to the principles of the

Agile Manifesto and releasing software in sprints. During a sprint, developers implement a set of

requirements, stored in JIRA issues, in their software. Mendix Studio, their IDE, is used for this

task. Changes to the software are made locally with Mendix Studio. Each modification to the model

is recorded in a commit, which is later synced with the Mendix Team server, saving all commits

and model data.

Developers at Mendix manually trace their commits to JIRA issues by noting the associated JIRA

issue ID in the commit log. The current situation of working with two separate systems (i.e. JIRA

and Mendix Studio) is not optimal. This problem would be improved by embedding a trace system

in Mendix Studio.

This embedding might support one of two envisioned scenarios. In the first scenario, the

embedded system should recommend traces to the developer whenever he or she wants to

commit their changes to the Team servers. In the second scenario, the system should serve as a

trace maintenance tool. Its purpose is to recover traces between commits and JIRA issues in

existing projects for commits which are now untraceable.

All commit data is stored on the Mendix Team Server, which we were able to obtain. Because

developers include JIRA issue IDs in the log message, this data could be used to train a ML

classifier. Corresponding commit data and JIRA data were obtained from four distinct projects.

This data is used to develop and build an RT tool using a combination of opensource Python

libraries.

When validating the performance of an automatic RTR tool, we must first formulate what we are

most interested in. In the scenarios we have envisioned, this is the classification of valid traces

(true positives). The two measures used to assess this are precision and recall. For this reason,

both metrics belong to the most popular metrics used when validating RT tools.

Furthermore, it is important not to look at both metrics individually, but rather to look at the most

ideal balance. The F-measure, which has several variants, is the metric used to quantify this

balance. Depending on the scenario, a different variant must be considered. For the trace

recommendation system, the F2-measure is important, while for the fully automatic trace

maintainer the F0.5-measure is important.

How do MDD artefacts and requirements co-evolve in an MDD company? SQ3

How to embed automatic tracing algorithms in a RT tool for the MDD domain? SQ4

What are the resources available to design and construct a RT tool for the MDD

domain?
SQ5

How do we validate the effectiveness of a RT tool for the MDD domain? SQ6

8. Conclusion and Future Work | 64

8.2 Main Research Question

Now that all sub questions are answered, we can provide an answer to the Main Research
Question:

Before starting with automating, you first need to get clear what scenario the automatic tracer is

used for. For the MDD environment that we studied, we identified 2 scenarios which are most

beneficial. The first scenario recommends trace links between JIRA issues and SVN commits to the

developer. In the second scenario, a tool maintains a project by recovering trace links between

JIRA issues and SVN commits in a fully automatic way.

This was achieved by first producing the cartesian product between the JIRA issue set and the SVN

commits set is created. Each element of this result is a candidate trace. Each trace is then

represented as features of 4 categories: process-related, document statistics, information-

retrieval, and query quality.

Because we are producing a Cartesian product, we are creating a highly imbalanced dataset.
Depending on the scenario, it can be beneficial to rebalance the data. Once this is done, we can

train a ML classifier to identify which of the candidate traces are valid.

In this study, we have successfully constructed a prototype of the design using data acquired from

Mendix. We were able to get a mean F0.5-score of 77.32 employing XGBoost as the ML classifier,

with no rebalancing on the training data, and Min-Max normalization [0,1] on the training data,

when we configured our classifier for the scenario of Full automated maintenance.

When we configure our classifier for the scenario of trace recommendation, we get an F2-score of

73.48 by using the LightGBM ML classifier, the 5050-rebalancing strategy, and no Min-Max

normalizing on our training data.

8.3 Future Work

This research has shown how traces between JIRA issues and MDD commits can be automatically

recovered. Although the general concept is explored and applied, certain aspects can be studied

in greater depth.

First, we have developed various IR-features. These features rely on the TF-IDF vector

representation. For the TF-IDF calculations, we have considered multiple corpora. For

representing a JIRA issue: entire JIRA issue, JIRA summary, JIRA comment, and JIRA description.

For representing a commit issue, we utilized entire commit, commit log, and commit unit names.

When producing the results, we have utilized all features and let the model determine which

feature is most usable. A future study should investigate what vector representation provides the

best results.

How to automate tracing between requirements and models in a Model Driven

Environment?
MQ

8. Conclusion and Future Work | 65

Furthermore, another aspect of the feature engineering process can be examined. To the family of

query quality metrics, we have examined a total of 3 categories: specificity, similarity, term

relatedness. However, Mills et al. [63] also identified metrics of the ‘coherency’ category. We have

briefly considered implementing metrics of this category; however, it was infeasible due to

limitations in time. A follow-up study could include this category into the feature set and evaluate

its impact.

Additionally, more research can be done about which features to include in the model. For our

study, we have considered all engineered features. However, during the feature engineering

process it was noted that, on occasions, introducing new features degraded performance. One

cause might be that a higher number of features will overfit the data. This is especially true for the

query quality metrics, which comprise the vast majority of our feature set. Using feature selection

methods to remove noise and reduce model complexity may enhance performance. Future

research could investigate which strategies are most suited for the MDD domain.

Another direction for further research is to the use of Gradient Boosted Trees in RTR. We

demonstrated that these algorithms outperform Random Forests in a MDD domain. Is this sort of

algorithm particularly suited to RTR problems, or do they possess qualities that other algorithms

do not? To assess this, we must run this algorithm on datasets accessible from CoEST that are

frequently used in RT research [82]. This allows us to directly compare the performance to prior

research.

Finally, we limited the scope of this research to trace JIRA issues to commits. It is a great first step,

but further research needs to be done to see if it feasible to trace requirements directly to a model

unit. These findings would enable new scenarios. For instance, the model could warn the

developer whenever he she creates a model unit, which is not yet documented in JIRA. In addition,

JIRA problems and version control systems are not limited to the MDD domain. Future studies can

determine whether similar findings apply to other fields.

Bibliography | 66

Bibliography
[1] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements Engineering,” in Future of

Software Engineering (FOSE ’07), May 2007, no. c, pp. 285–303, doi: 10.1109/FOSE.2007.17.
[2] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. London: Springer London, 2011.
[3] S. Wagner, D. M. Fernández, M. Felderer, and M. Kalinowski, “Requirements Engineering

Practice and Problems in Agile Projects: Results from an International Survey,” CIbSE 2017 - XX
Ibero-American Conf. Softw. Eng., pp. 85–98, Mar. 2017, doi: 10.7287/peerj.preprints.2038.

[4] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements traceability problem,” in
Proceedings of IEEE International Conference on Requirements Engineering, Apr. 1994, pp. 94–
101, doi: 10.1109/ICRE.1994.292398.

[5] F. Blaauboer, K. Sikkel, and M. N. Aydin, “Deciding to Adopt Requirements Traceability in
Practice,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 4495 LNCS, 2007, pp. 294–308.

[6] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova, “Best Practices for
Automated Traceability,” Computer (Long. Beach. Calif)., vol. 40, no. 6, pp. 27–35, Jun. 2007,
doi: 10.1109/MC.2007.195.

[7] A. Kannenberg and H. Saiedian, “Traceability Remains a Challenge,” J. Def. Softw. Eng. CrossTalk
J. Def. Softw. Eng., no. May, pp. 14–19, 2009, [Online]. Available: www.stsc.hill.af.mil.

[8] M. C. Panis, “Successful Deployment of Requirements Traceability in a Commercial Engineering
Organization...Really,” in 2010 18th IEEE International Requirements Engineering Conference,
Sep. 2010, no. January, pp. 303–307, doi: 10.1109/RE.2010.43.

[9] P. Mäder and A. Egyed, “Do developers benefit from requirements traceability when evolving
and maintaining a software system?,” Empir. Softw. Eng., vol. 20, no. 2, pp. 413–441, Apr. 2015,
doi: 10.1007/s10664-014-9314-z.

[10] P. Rempel and P. Mader, “Preventing Defects: The Impact of Requirements Traceability
Completeness on Software Quality,” IEEE Trans. Softw. Eng., vol. 43, no. 8, pp. 777–797, Aug.
2017, doi: 10.1109/TSE.2016.2622264.

[11] S. Winkler and J. von Pilgrim, “A survey of traceability in requirements engineering and model-
driven development,” Softw. Syst. Model., vol. 9, no. 4, pp. 529–565, Sep. 2010, doi:
10.1007/s10270-009-0145-0.

[12] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software Engineering in Practice,”
Synth. Lect. Softw. Eng., vol. 1, no. 1, pp. 1–182, Sep. 2012, doi:
10.2200/S00441ED1V01Y201208SWE001.

[13] C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling foundation,” IEEE
Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003, doi: 10.1109/MS.2003.1231149.

[14] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, “Requirements traceability technologies and
technology transfer decision support: A systematic review,” J. Syst. Softw., vol. 146, pp. 59–79,
Dec. 2018, doi: 10.1016/j.jss.2018.09.001.

[15] P. Mäder, I. Philippow, and M. Riebisch, “Customizing traceability links for the unified process,”
in International Conference on the Quality of Software Architectures, 2007, pp. 53–71.

[16] B. Ramesh, “Factors influencing requirements traceability practice,” Commun. ACM, vol. 41, no.
12, pp. 37–44, Dec. 1998, doi: 10.1145/290133.290147.

[17] T. W. W. Aung, H. Huo, and Y. Sui, “A Literature Review of Automatic Traceability Links Recovery
for Software Change Impact Analysis,” in Proceedings of the 28th International Conference on
Program Comprehension, Jul. 2020, pp. 14–24, doi: 10.1145/3387904.3389251.

Bibliography | 67

[18] R. F. Paige et al., “Rigorous identification and encoding of trace-links in model-driven
engineering,” Softw. Syst. Model., vol. 10, no. 4, pp. 469–487, 2011, doi: 10.1007/s10270-010-
0158-8.

[19] Mendix, “What is Model Driven Development (MDD)?,” 2020.
https://www.mendix.com/model-driven-development/ (accessed Mar. 05, 2021).

[20] J. Ruis, “Exploring traceability between requirements and Low-Code Development design,”
Utrecht University, 2020.

[21] R. J. Wieringa, Design Science Methodology for Information Systems and Software Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

[22] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” 2007.

[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in
Software Engineering, vol. 9783642290. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[24] Mendix, “Mendix: We Help Enterprises Achieve their Digital Goals with Low-code,” 2020.
https://www.mendix.com/company/ (accessed Jan. 03, 2021).

[25] R. Longhurst, “Semi-structured Interviews and Focus Groups,” in Key Methods in Geography,
2003, pp. 117–132.

[26] P. Naur and B. Randell, “Report on a conference sponsored by the NATO SCIENCE COMMITTEE,”
1969.

[27] O. Gotel et al., “Traceability Fundamentals,” in Software and Systems Traceability, London:
Springer London, 2012, pp. 3–22.

[28] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “SCOTCH: Test-to-code traceability
using slicing and conceptual coupling,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM), Sep. 2011, pp. 63–72, doi: 10.1109/ICSM.2011.6080773.

[29] S. Nair, J. L. de la Vara, and S. Sen, “A review of traceability research at the requirements
engineering conferencere@21,” in 2013 21st IEEE International Requirements Engineering
Conference (RE), Jul. 2013, pp. 222–229, doi: 10.1109/RE.2013.6636722.

[30] G. Antoniol, J. Cleland-Huang, J. H. Hayes, and M. Vierhauser, “Grand Challenges of Traceability:
The Next Ten Years,” CoRR, vol. abs/1710.0, Oct. 2017, [Online]. Available:
http://arxiv.org/abs/1710.03129.

[31] O. Gotel et al., “The Grand Challenge of Traceability (v1.0),” in Software and Systems
Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman, Eds. London: Springer London, 2012, pp.
343–409.

[32] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman, “Software
traceability: trends and future directions,” in Future of Software Engineering Proceedings, May
2014, pp. 55–69, doi: 10.1145/2593882.2593891.

[33] F. A. C. Pinheiro, “Requirements Traceability,” in Perspectives on Software Requirements,
Boston, MA: Springer US, 2004, pp. 91–113.

[34] I. Galvao and A. Goknil, “Survey of Traceability Approaches in Model-Driven Engineering,” in
11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), Oct.
2007, pp. 313–313, doi: 10.1109/EDOC.2007.4384003.

[35] J. Holtmann, J.-P. Steghofer, M. Rath, and D. Schmelter, “Cutting through the Jungle:
Disambiguating Model-based Traceability Terminology,” in 2020 IEEE 28th International
Requirements Engineering Conference (RE), Aug. 2020, vol. 2020-Augus, pp. 8–19, doi:
10.1109/RE48521.2020.00014.

[36] Object Management Group, “Model Driven Architecture (MDA) | Object Management Group.”
https://www.omg.org/mda/ (accessed Dec. 15, 2020).

[37] S. Sendall and W. Kozaczynski, “Model transformation: the heart and soul of model-driven

Bibliography | 68

software development,” IEEE Softw., vol. 20, no. 5, pp. 42–45, Sep. 2003, doi:
10.1109/MS.2003.1231150.

[38] C. Mills, J. Escobar-Avila, and S. Haiduc, “Automatic Traceability Maintenance via Machine
Learning Classification,” 2018 IEEE Int. Conf. Softw. Maint. Evol., pp. 369–380, Jul. 2018, doi:
10.1109/ICSME.2018.00045.

[39] A. Ghannem, M. S. Hamdi, M. Kessentini, and H. H. Ammar, “Search-based requirements
traceability recovery: A multi-objective approach,” in 2017 IEEE Congress on Evolutionary
Computation (CEC), Jun. 2017, pp. 1183–1190, doi: 10.1109/CEC.2017.7969440.

[40] Y. Shin, J. H. Hayes, and J. Cleland-Huang, “Guidelines for Benchmarking Automated Software
Traceability Techniques,” in Proceedings of the 8th International Symposium on Software and
Systems Traceability, 2015, pp. 61–67.

[41] G. G. Chowdhury, Introduction to modern information retrieval. Facet publishing, 2010.
[42] N. Ali, H. Cai, A. Hamou-Lhadj, and J. Hassine, “Exploiting Parts-of-Speech for effective

automated requirements traceability,” Inf. Softw. Technol., vol. 106, pp. 126–141, Feb. 2019,
doi: 10.1016/j.infsof.2018.09.009.

[43] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: a systematic mapping of
information retrieval approaches to software traceability,” Empir. Softw. Eng., vol. 19, no. 6,
pp. 1565–1616, Dec. 2014, doi: 10.1007/s10664-013-9255-y.

[44] B. Wang, R. Peng, Z. Wang, X. Wang, and Y. Li, “An Automated Hybrid Approach for Generating
Requirements Trace Links,” Int. J. Softw. Eng. Knowl. Eng., vol. 30, no. 07, pp. 1005–1048, Jul.
2020, doi: 10.1142/S0218194020500278.

[45] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery,” in 2010 IEEE 18th International
Conference on Program Comprehension, Jun. 2010, pp. 68–71, doi: 10.1109/ICPC.2010.20.

[46] P. D. Turney and P. Pantel, “From Frequency to Meaning: Vector Space Models of Semantics,”
J. Artif. Intell. Res., vol. 37, pp. 141–188, Mar. 2010, doi: 10.1613/jair.2934.

[47] C. D. Manning, P. Raghavan, and H. Schutze, “Scoring, term weighting, and the vector space
model,” in Introduction to Information Retrieval, no. c, Cambridge: Cambridge University Press,
2008, pp. 100–123.

[48] Google, “Embeddings: Translating to a Lower-Dimensional Space,” 2020.
https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-
lower-dimensional-space (accessed Mar. 08, 2021).

[49] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent
semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, Sep. 1990, doi:
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

[50] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella, “On the role of the nouns
in IR-based traceability recovery,” in 2009 IEEE 17th International Conference on Program
Comprehension, May 2009, pp. 148–157, doi: 10.1109/ICPC.2009.5090038.

[51] A. Abadi, M. Nisenson, and Y. Simionovici, “A Traceability Technique for Specifications,” in 2008
16th IEEE International Conference on Program Comprehension, Jun. 2008, pp. 103–112, doi:
10.1109/ICPC.2008.30.

[52] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk, and A. De Lucia, “How to effectively
use topic models for software engineering tasks? An approach based on Genetic Algorithms,”
in 2013 35th International Conference on Software Engineering (ICSE), May 2013, pp. 522–531,
doi: 10.1109/ICSE.2013.6606598.

[53] A. Ghannem, M. S. Hamdi, M. Kessentini, and H. H. Ammar, “Search-Based Requirements
Traceability Recovery,” in Lecture Notes in Networks and Systems, vol. 15, 2018, pp. 156–171.

[54] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning, vol. 9781107057.

Bibliography | 69

Cambridge: Cambridge University Press, 2014.
[55] D. Falessi, M. Di Penta, G. Canfora, and G. Cantone, “Estimating the number of remaining links

in traceability recovery,” Empir. Softw. Eng., vol. 22, no. 3, pp. 996–1027, 2017, doi:
10.1007/s10664-016-9460-6.

[56] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Maeder, “Traceability in the Wild:
Automatically Augmenting Incomplete Trace Links,” CoRR, vol. abs/1804.0, Apr. 2018, [Online].
Available: http://arxiv.org/abs/1804.02433.

[57] N. V Chawla, “Data Mining for Imbalanced Datasets: An Overview,” in Data Mining and
Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. New York: Springer-Verlag,
2005, pp. 853–867.

[58] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced Software Traceability Using
Deep Learning Techniques,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), May 2017, pp. 3–14, doi: 10.1109/ICSE.2017.9.

[59] A. Amidi and S. Amidi, “VIP Cheatsheet: Recurrent Neural Networks,” 2018.
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
(accessed Mar. 08, 2021).

[60] V. Csuvik, A. Kicsi, and L. Vidacs, “Source Code Level Word Embeddings in Aiding Semantic Test-
to-Code Traceability,” in 2019 IEEE/ACM 10th International Symposium on Software and
Systems Traceability (SST), May 2019, pp. 29–36, doi: 10.1109/SST.2019.00016.

[61] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger, “Semi-Automated Feature Traceability with
Embedded Annotations,” in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2018, pp. 529–533, doi: 10.1109/ICSME.2018.00049.

[62] C. Mills and S. Haiduc, “The Impact of Retrieval Direction on IR-Based Traceability Link
Recovery,” in 2017 IEEE/ACM 39th International Conference on Software Engineering: New
Ideas and Emerging Technologies Results Track (ICSE-NIER), May 2017, pp. 51–54, doi:
10.1109/ICSE-NIER.2017.14.

[63] C. Mills, G. Bavota, S. Haiduc, R. Oliveto, A. Marcus, and A. De Lucia, “Predicting Query Quality
for Applications of Text Retrieval to Software Engineering Tasks,” ACM Trans. Softw. Eng.
Methodol., vol. 26, no. 1, pp. 1–45, Jul. 2017, doi: 10.1145/3078841.

[64] D. Falessi, J. Roll, J. Guo, and J. Cleland-Huang, “Leveraging Historical Associations between
Requirements and Source Code to Identify Impacted Classes,” IEEE Trans. Softw. Eng., vol. 46,
no. 4, pp. 420–441, Aug. 2018, doi: 10.1109/TSE.2018.2861735.

[65] Mendix, “Mendix Announces Studio and Studio Pro; No-Code and Low-Code Visual
Development Environments,” 2019. https://www.mendix.com/press/mendix-announces-
studio-and-studio-pro-no-code-and-low-code-visual-development-environments/ (accessed
Feb. 11, 2021).

[66] Atlassian, “Jira Overview | Products, Projects and Hosting.”
https://www.atlassian.com/software/jira/guides/getting-started/overview#key-terms-to-
know (accessed Jun. 30, 2021).

[67] Atlassian, “Who uses Jira?” https://www.atlassian.com/software/jira/guides/use-cases/who-
uses-jira (accessed Jun. 30, 2021).

[68] M. Rehkopf, “User Stories | Examples and Template,” Atlassian Agile Coach, 2021.
https://www.atlassian.com/agile/project-management/user-stories (accessed Jun. 30, 2021).

[69] Max Rehkopf, “Agile epics: definition, examples, and templates.”
https://www.atlassian.com/agile/project-management/epics (accessed Jun. 30, 2021).

[70] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf, and S. Brinkkemper, “Extracting
conceptual models from user stories with Visual Narrator,” Requir. Eng., vol. 22, no. 3, pp. 339–
358, Sep. 2017, doi: 10.1007/s00766-017-0270-1.

Bibliography | 70

[71] T. Kluyver et al., “Jupyter Notebooks—a publishing format for reproducible computational
workflows,” in Positioning and Power in Academic Publishing: Players, Agents and Agendas -
Proceedings of the 20th International Conference on Electronic Publishing, ELPUB 2016, 2016,
pp. 87–90, doi: 10.3233/978-1-61499-649-1-87.

[72] M. F. Porter, “An algorithm for suffix stripping,” Program, 1980.
[73] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp.

2825–2830, 2011.
[74] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat.

Methods, vol. 17, no. 3, pp. 261–272, Mar. 2020, doi: 10.1038/s41592-019-0686-2.
[75] J. Yoon, “Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting

and Random Forest Approach,” Comput. Econ., vol. 57, no. 1, pp. 247–265, 2021, doi:
10.1007/s10614-020-10054-w.

[76] A. Callens, D. Morichon, S. Abadie, M. Delpey, and B. Liquet, “Using Random forest and Gradient
boosting trees to improve wave forecast at a specific location,” Appl. Ocean Res., vol. 104, no.
September, 2020, doi: 10.1016/j.apor.2020.102339.

[77] A. Swalin, “CatBoost vs. Light GBM vs. XGBoost,” 2018.
https://www.kdnuggets.com/2018/03/catboost-vs-light-gbm-vs-xgboost.html (accessed Jul.
22, 2021).

[78] S. N. Kasturi, “XGBOOST vs LightGBM: Which algorithm wins the race !!!,” 2019.
https://towardsdatascience.com/lightgbm-vs-xgboost-which-algorithm-win-the-race-
1ff7dd4917d (accessed Jul. 22, 2021).

[79] I. van de Weerd and S. Brinkkemper, “Meta-modeling for situational analysis and design
methods,” Handb. Res. Mod. Syst. Anal. Des. Technol. Appl., pp. 35–54, 2008, doi: 10.4018/978-
1-59904-887-1.ch003.

[80] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, Mar. 1986,
doi: 10.1007/BF00116251.

[81] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The Case for Context-Driven
Software Engineering Research: Generalizability Is Overrated,” IEEE Softw., vol. 34, no. 5, pp.
72–75, 2017, doi: 10.1109/MS.2017.3571562.

[82] Center of Excellence for Software & Systems Traceability, “No Title.” http://coest.org/
(accessed Aug. 06, 2021).

Appendix A - Interview Protocol | 71

Appendix A - Interview Protocol
1. Introduction Prior to the Interview
Thanks for participating in this interview. As [CONTACT PERSON AT MENDIX] may have told you,
this interview is part of my research on automatic tracing of requirements to models. I want to get
a grasp on 1) how customers use Mendix software to develop their software

Consent
Before we start. I will record the audio of this interview. This audio will be used to summarise the
findings gained. After summarising the audio will be deleted. The summary will be shared with
you and so you have the possibility to change/correct the summary. Is this okay with you?

2. General Background
Can you give me a brief description of your job and your team?
Can you explain all the phases of a typical project?
How does Studio fit in this?

3. Building an app using Mendix
Can you briefly describe how a typical Mendix app is build using Mendix software?

• As a customer of Mendix
• As an internal team of Mendix

Do many teams within Mendix use Studio to develop apps?
Why do some teams use Studio while others don’t?

How does versioning work when building a Mendix app?
Where is the binary file stored?
When you make a revision (commit), what data do you send to server?
Would it be possible to find out which models were adjusted, when only looking at the data from
a commit?

4. Requirements
What are the different ways requirements can be managed in Mendix Software?
Do you use systems, other than Mendix, to manage requirements?

• Why not everything in Mendix?
• Do you use JIRA?
• How do these systems work together?

Do you have a recommended way of documenting requirements?
• User stories?

Can you show me how a user story is made in SPRINTR?
• Are there naming conventions?
• These user stories could manually be related to a commit. Are there any other artefacts it

can be related to?

5. Traceability
How do you cope with changing requirements?
How do you validate if requirements are implemented?
How do you link or trace software artefacts to each other, e.g., code to user stories

Appendix A - Interview Protocol | 72

6. Finalization
This was the interview.

• Do you have any questions?
• Do you know colleagues which I should speak to for this research?

Appendix B – Feature Overview | 73

Appendix B – Feature Overview
ID Feature Name Feature Family Description

1 Creation commit
date dif

Process-Related The time delta between date of commit
creation and JIRA issue creation

2 Updated commit
date dif

Process-Related The time delta between date of commit
creation and last JIRA issue update

3
Resolved commit
date dif

Process-Related The time delta between date of commit
creation and date when JIRA issue was
resolved

4
Assignee is
commiter

Process-Related Binary indicator indicating if the person who
committed is the same person as the one who
committed

5 vsm logs jira as
query

IR-Related Cosine similarity between commit log and
Entire JIRA issue using JIRA issue as query

6 vsm logs log as
query

IR-Related Cosine similarity between commit log and
Entire JIRA issue using log as query

7
vsm unit names
jira as query

IR-Related Cosine similarity between commit unit names
and Entire JIRA issue using JIRA issue as
query

8
vsm unit names
log as query

IR-Related Cosine similarity between commit unit names
and Entire JIRA issue using unit names as
query

9 vsm unitnames
comments
 comments as
query

IR-Related Cosine similarity between commit unit names
and JIRA comments using comments as query

10 vsm unitnames
comments
unitnames as
query

IR-Related Cosine similarity between commit unit names
and JIRA comments using unit names as
query

11 vsm unitnames
description
description as
query

IR-Related Cosine similarity between commit unit names
and JIRA descriptions using descriptions as
query

12 vsm unitnames
description
unitnames as
query

IR-Related Cosine similarity between commit unit names
and JIRA descriptions using unit names as
query

13 vsm summary
logs summary
as query

IR-Related Cosine similarity between commit logs and
JIRA summaries using summaries as query

14 vsm summary
logs logs as
query

IR-Related Cosine similarity between commit logs and
JIRA summaries using logs as query

Appendix B – Feature Overview | 74

15 vsm summary
unitNames
summary as
query

IR-Related Cosine similarity between commit unit names
and JIRA summaries using summaries as
query

16 vsm summary
unitNames
summary as
query

IR-Related Cosine similarity between commit unit names
and JIRA summaries using logs as query

17 vsm description
description
as query

IR-Related Cosine similarity between commit logs and
JIRA descriptions using descriptions as query

18 vsm description
log as query

IR-Related Cosine similarity between commit logs and
JIRA descriptions using logs as query

19 vsm comments
comments
as query

IR-Related Cosine similarity between commit logs and
JIRA comments using comments as query

20 vsm comments
log as query

IR-Related Cosine similarity between commit logs and
JIRA comments using logs as query

21 vsm svn jira jira
as query

IR-Related Cosine similarity between commit and JIRA
issue using JIRA issue as query

22 vsm svn jira svn
as query

IR-Related Cosine similarity between commit and JIRA
issue using commit as query

23 vsm svn
summary svn as
query

IR-Related Cosine similarity between commit and JIRA
summaries using commits as query

24 vsm svn
summary
summary
as query

IR-Related Cosine similarity between commit and JIRA
summaries using JIRA summaries as query

25 vsm svn
description svn
as query

IR-Related Cosine similarity between commit and JIRA
description using commit as query

26 vsm svn
description
description
as query

IR-Related Cosine similarity between commit and JIRA
description using JIRA descriptions as query

27 vsm svn
comments svn as
query

IR-Related Cosine similarity between commit and JIRA
comments using commits as query

28 vsm svn
comments
comments
as query

IR-Related Cosine similarity between commit and JIRA
comments using JIRA comments as query

29 unique term
count jira

Document
Statistics

Number of unique terms in a JIRA issue

30 unique term
count svn

Document
Statistics

Number of unique terms in a commit

31 total term count
jira

Document
Statistics

Total number of terms in a JIRA issue

Appendix B – Feature Overview | 75

32 total term count
svn

Document
Statistics

Total number of terms in a commit

33 overlap
percentage
compared to
jira

Document
Statistics

Overlap of terms between JIRA issue and
commit compared to a JIRA issue

34 overlap
percentage
compared to
svn

Document
Statistics

Overlap of terms between JIRA issue and
commit compared to a commit

35 overlap
percentage
compared to
union

Document
Statistics

Overlap of terms between JIRA issue and
commit compared to the union of a commit
and JIRA issue

36 SvnAsQuery
avgIDF

Query Quality Average IDF when using SVN as query

37 SvnAsQuery
maxIDF

Query Quality Maximum IDF when using SVN as query

38 SvnAsQuery
devIDF

Query Quality Standard Deviation of IDF when using SVN as
query

39 SvnLogsAsQuery
avgIDF

Query Quality Average IDF when using SVN logs as query

40 SvnLogsAsQuery
maxIDF

Query Quality Maximum IDF when using SVN logs as query

41 SvnLogsAsQuery
devIDF

Query Quality Standard Deviation of IDF when using SVN
logs as query

42 SvnUnitNamesAs
Query avgIDF

Query Quality Average IDF when using SVN unit names as
query

43 SvnUnitNamesAs
Query maxIDF

Query Quality Maximum IDF when using SVN unit names as
query

44 SvnUnitNamesAs
Query devIDF

Query Quality Standard Deviation of IDF when using SVN
logs as query

45 JiraAsQuery
avgIDF

Query Quality Average IDF when using JIRA issues as query

46 JiraAsQuery
maxIDF

Query Quality Maximum IDF when using JIRA issues as
query

47 JiraAsQuery
devIDF

Query Quality Standard Deviation of IDF when using JIRA
issues as query

48 JiraSummariesAs
Query avgIDF

Query Quality Average IDF when using JIRA summaries as
query

49 JiraSummariesAs
Query maxIDF

Query Quality Maximum IDF when using JIRA summaries as
query

50 JiraSummariesAs
Query devIDF

Query Quality Standard Deviation of IDF when using JIRA
sumaries as query

51 JiraDescriptions
AsQuery avgIDF

Query Quality Average IDF when using JIRA descriptions as
query

52 JiraDescriptions
AsQuery
maxIDF

Query Quality Maximum IDF when using JIRA descriptions
as query

Appendix B – Feature Overview | 76

53 JiraDescriptions
AsQuery devIDF

Query Quality Standard Deviation of IDF when using JIRA
descriptions as query

54 JiraCommentsAs
Query avgIDF

Query Quality Average IDF when using JIRA comments as
query

55 JiraCommentsAs
Query maxIDF

Query Quality Maximum IDF when using JIRA comments as
query

56 JiraCommentsAs
Query devIDF

Query Quality Standard Deviation of IDF when using JIRA
comments as query

57 SvnAsQuery
avgICTF

Query Quality Average ICTF when using SVN as query

58 SvnAsQuery
maxICTF

Query Quality Maximum ICTF when using SVN as query

59 SvnAsQuery
devICTF

Query Quality Standard Deviation of ICTF when using SVN
as query

60 SvnLogsAsQuery
avgICTF

Query Quality Average ICTF when using SVN logs as query

61 SvnLogsAsQuery
maxICTF

Query Quality Maximum ICTF when using SVN logs as query

62 SvnLogsAsQuery
devICTF

Query Quality Standard Deviation of ICTF when using SVN
logs as query

63 SvnUnitNamesAs
Query avgICTF

Query Quality Average ICTF when using SVN unit names as
query

64 SvnUnitNamesAs
Query maxICTF

Query Quality Maximum ICTF when using SVN unit names
as query

65 SvnUnitNamesAs
Query devICTF

Query Quality Standard Deviation of ICTF when using SVN
unit names as query

66 JiraAsQuery
avgICTF

Query Quality Average ICTF when using JIRA issues as
query

67 JiraAsQuery
maxICTF

Query Quality Maximum ICTF when using JIRA issues as
query

68 JiraAsQuery
devICTF

Query Quality Standard Deviation of ICTF when using JIRA
issues as query

69 JiraSummariesAs
Query avgICTF

Query Quality Average ICTF when using JIRA summaries as
query

70 JiraSummariesAs
Query maxICTF

Query Quality Maximum ICTF when using JIRA summaries
as query

71 JiraSummariesAs
Query devICTF

Query Quality Standard Deviation of IDF when using JIRA
summaries as query

72 JiraDescriptions
AsQuery
avgICTF

Query Quality Average ICTF when using JIRA descriptions as
query

73 JiraDescriptions
AsQuery
maxICTF

Query Quality Maximum ICTF when using JIRA descriptions
as query

74 JiraDescriptions
AsQuery
devICTF

Query Quality Standard Deviation of ICTF when using JIRA
descriptions as query

75 JiraCommentsAs
Query avgICTF

Query Quality Average ICTF when using JIRA comments as
query

Appendix B – Feature Overview | 77

76 JiraCommentsAs
Query maxICTF

Query Quality Maximum ICTF when using JIRA comments as
query

77 JiraCommentsAs
Query devICTF

Query Quality Standard Deviation of ICTF when using JIRA
comments as query

78 SvnAsQuery
avgEntropy

Query Quality Average Entropy when using commit as
query

79 SvnAsQuery
medEntropy

Query Quality Median Entropy when using commit as query

80 SvnAsQuery
maxEntropy

Query Quality Maximum Entropy when using commit as
query

81 SvnAsQuery
devEntropy

Query Quality Standard deviation of Entropy when using
commit as query

82 SvnLogsAsQuery
avgEntropy

Query Quality Average Entropy when using commit logs as
query

83 SvnLogsAsQuery
medEntropy

Query Quality Median Entropy when using commit logs as
query

84 SvnLogsAsQuery
maxEntropy

Query Quality Maximum Entropy when using commit logs
as query

85 SvnLogsAsQuery
devEntropy

Query Quality Standard deviation of Entropy when using
commit logs as query

86 SvnUnitNamesAs
Query
avgEntropy

Query Quality Average Entropy when using commit unit
names as query

87 SvnUnitNamesAs
Query
medEntropy

Query Quality Median Entropy when using commit unit
names as query

88 SvnUnitNamesAs
Query
maxEntropy

Query Quality Maximum Entropy when using commit unit
names as query

89 SvnUnitNamesAs
Query
devEntropy

Query Quality Standard deviation of Entropy when using
commit unit names as query

90 JiraAsQuery
avgEntropy

Query Quality Average Entropy when using JIRA issue as
query

91 JiraAsQuery
medEntropy

Query Quality Median Entropy when using JIRA issue as
query

92 JiraAsQuery
maxEntropy

Query Quality Maximum Entropy when using JIRA issue as
query

93 JiraAsQuery
devEntropy

Query Quality Standard deviation of Entropy when using
JIRA issue as query

94 JiraSummariesAs
Query
avgEntropy

Query Quality Average Entropy when using JIRA summaries
as query

95 JiraSummariesAs
Query
medEntropy

Query Quality Median Entropy when using JIRA summaries
as query

96 JiraSummariesAs
Query
maxEntropy

Query Quality Maximum Entropy when using JIRA
summaries as query

Appendix B – Feature Overview | 78

97 JiraSummariesAs
Query
devEntropy

Query Quality Standard deviation of Entropy when using
JIRA summaries as query

98 JiraDescriptions
AsQuery
avgEntropy

Query Quality Average Entropy when using JIRA
descriptions as query

99 JiraDescriptions
AsQuery
medEntropy

Query Quality Median Entropy when using JIRA descriptions
as query

100 JiraDescriptions
AsQuery
maxEntropy

Query Quality Maximum Entropy when using JIRA
descriptions as query

101 JiraDescriptions
AsQuery
devEntropy

Query Quality Standard deviation of Entropy when using
JIRA descriptions as query

102 JiraCommentsAs
Query
avgEntropy

Query Quality Average Entropy when using JIRA comments
as query

103 JiraCommentsAs
Query
medEntropy

Query Quality Median Entropy when using JIRA comments
as query

104 JiraCommentsAs
Query
maxEntropy

Query Quality Maximum Entropy when using JIRA
comments as query

105 JiraCommentsAs
Query
devEntropy

Query Quality Standard deviation of Entropy when using
JIRA comments as query

106 SvnAsQuery
QueryScope

Query Quality Query Scope when using commit as query

107 SvnLogsAsQuery
QueryScope

Query Quality Query Scope when using commit logs as
query

108 SvnUnitNamesAs
Query
QueryScope

Query Quality Query Scope when using commit unit names
as query

109 JiraAsQuery
QueryScope

Query Quality Query Scope when using JIRA issue as query

110 JiraSummariesAs
Query
QueryScope

Query Quality Query Scope when using JIRA summaries as
query

111 JiraDescriptions
AsQuery
QueryScope

Query Quality Query Scope when using JIRA descriptions as
query

112 JiraCommentsAs
Query
QueryScope

Query Quality Query Scope when using JIRA comments as
query

113 SvnAsQuery SCS Query Quality SCS when using commit as query
114 SvnLogsAsQuery

SCS
Query Quality SCS when using commit logs as query

115 SvnUnitNamesAs
Query SCS

Query Quality SCS when using commit unit names as query

Appendix B – Feature Overview | 79

116 JiraAsQuery SCS Query Quality SCS when using JIRA issue as query
117 JiraSummariesAs

Query SCS
Query Quality SCS when using JIRA summaries as query

118 JiraDescriptions
AsQuery SCS

Query Quality SCS when using JIRA descriptions as query

119 JiraCommentsAs
Query SCS

Query Quality SCS when using JIRA comments as query

120 SvnAsQuery
avgSCQ

Query Quality Average SCQ when using commit as query

121 SvnAsQuery
maxSCQ

Query Quality Maximum SCQ when using commit as query

122 SvnAsQuery
sumSCQ

Query Quality Summation of SCQ when using commit as
query

123 SvnLogsAsQuery
avgSCQ

Query Quality Average SCQ when using commit logs as
query

124 SvnLogsAsQuery
maxSCQ

Query Quality Maximum SCQ when using commit as query

125 SvnLogsAsQuery
sumSCQ

Query Quality Summation of SCQ when using commit as
query

126 SvnUnitNamesAs
Query avgSCQ

Query Quality Average SCQ when using commit unit names
as query

127 SvnUnitNamesAs
Query maxSCQ

Query Quality Maximum SCQ when using commit unit
names as query

128 SvnUnitNamesAs
Query sumSCQ

Query Quality Summation of SCQ when using commit unit
names as query

129 JiraAsQuery
avgSCQ

Query Quality Average SCQ when using JIRA issues as query

130 JiraAsQuery
maxSCQ

Query Quality Maximum SCQ when using JIRA issues as
query

131 JiraAsQuery
sumSCQ

Query Quality Summation of SCQ when using JIRA issues as
query

132 JiraSummariesAs
Query avgSCQ

Query Quality Average SCQ when using JIRA summaries as
query

133 JiraSummariesAs
Query maxSCQ

Query Quality Maximum SCQ when using JIRA summaries as
query

134 JiraSummariesAs
Query sumSCQ

Query Quality Summation of SCQ when using JIRA
summaries as query

135 JiraDescriptions
AsQuery avgSCQ

Query Quality Average SCQ when using JIRA descriptions as
query

136 JiraDescriptions
AsQuery
maxSCQ

Query Quality Maximum SCQ when using JIRA descriptions
as query

137 JiraDescriptions
AsQuery
sumSCQ

Query Quality Summation of SCQ when using JIRA
descriptions as query

138 JiraCommentsAs
Query avgSCQ

Query Quality Average SCQ when using JIRA comments as
query

139 JiraCommentsAs
Query maxSCQ

Query Quality Maximum SCQ when using JIRA comments as
query

Appendix B – Feature Overview | 80

140 JiraCommentsAs
Query sumSCQ

Query Quality Summation of SCQ when using JIRA
comments as query

141 SvnAsQuery
avgPMI

Query Quality Average PMI when using commit as query

142 SvnAsQuery
maxPMI

Query Quality Maximum PMI when using commit as query

143 SvnLogsAsQuery
avgPMI

Query Quality Average PMI when using commit logs as
query

144 SvnLogsAsQuery
maxPMI

Query Quality Maximum PMI when using commit logs as
query

145 SvnUnitNamesAs
Query avgPMI

Query Quality Average PMI when using commit unit names
as query

146 SvnUnitNamesAs
Query maxPMI

Query Quality Maximum PMI when using commit unit
names as query

147 JiraAsQuery
avgPMI

Query Quality Average PMI when using JIRA issues as query

148 JiraAsQuery
maxPMI

Query Quality Maximum PMI when using JIRA issues as
query

149 JiraSummariesAs
Query avgPMI

Query Quality Average PMI when using JIRA summaries as
query

150 JiraSummariesAs
Query maxPMI

Query Quality Maximum PMI when using JIRA summaries as
query

151 JiraDescriptions
AsQuery avgPMI

Query Quality Average PMI when using JIRA descriptions as
query

152 JiraDescriptions

AsQuery

maxPMI

Query Quality Maximum PMI when using JIRA descriptions
as query

153 JiraCommentsAs

Query avgPMI

Query Quality Average PMI when using JIRA comments as
query

154 JiraCommentssA
sQuery_maxPMI

Query Quality Maximum PMI when using JIRA comments as
query

