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Abstract 
[Context & Motivation] Requirements Traceability (RT) aims to follow and describe the lifecycle 

of a requirement. A multitude of standards require RT practices because they provide benefits in 

project management, project visibility, maintenance, and verification and validation.  

[Problem] Many of these RT practices are carried out manually, which poses significant risks. 

Manual tracing techniques are prone to mistakes, vulnerable to changes, time-consuming, and 

difficult to maintain. The task of recovering traces should not be done manually but should instead 

be automated. However, this is an issue since existing automatic tracing tools have shortcomings, 

as evidenced by the low tool penetration. 

[Results] We propose to tackle this problem by using machine learning (ML) techniques. This 

research presents the design of a tracing tool for automatically recovering traces between JIRA 

issues and commits in a model-driven development (MDD) context. Using process and text-based 

data, we created 154 features to train a ML classifier. This classifier was then validated using four 

real MDD industry datasets. We were able to get an average F2-sore of 73.48 with the best tested 

configuration, for a situation where we could recommend traces to a developer. An F0.5-score of 

77.32 was obtained in the scenario of automatically maintaining traces of a current project. 

[Contribution] The findings of this study demonstrate that state-of-the-art trace recovery 

techniques can successfully be implemented in an MDD-context, bridging the gap between 

academia and industry.  

Keywords: Requirements Traceability, Machine Learning, Trace Link Recovery 
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1. Introduction 
Requirements Engineering (RE) is the discipline concerned with the identification, management, 

and evolution of requirements [1]. RE activities form the foundation of every software engineering 

project [2]. They define and communicate the needs of the stakeholders involved and what a 

software system must do in order to satisfy that need. During the many phases of a software 

project, numerous requirement artefacts are created. The documentation of these requirement 

artefacts may range from user stories to class diagrams [3]. It is therefore not a surprise that RE 

is a topic of research. 

One classical topic in RE research and practice is that of requirements traceability (RT). It is 

defined as “the ability to describe and follow the life of a requirement” [4]. RT practices are 

mandated by commonly accepted standards such as CMM, ISO 9000, and IEEE Std. 830-1998 [5], 

[6]. As a consequence, organizations who wish to or are required to comply with such standards 

embrace RT practices. 

A reason why RT practices are included in a plethora of standards is because adopting them is 

expected to deliver several benefits during a software project [7]. The first benefit is in the area of 

project management. During a project, requirements are bound to change. However, before 

changes can be implemented the impact of those changes need to be assessed. By adopting RT, the 

change affected requirement artefacts can be identified. 

Second, RT also benefits the project visibility [7], [8]. Trace information can be shared with the 

whole project team. Utilising this, all team members have access to finer context and rationale 

behind the requirement. A lower-level requirement might be puzzling for an engineer but reading 

the higher-level requirement may provide the necessary context. In addition, the increased 

project visibility benefits in the onboarding of new team members. 

Third, RT practices provide benefits during the maintenance phase [7]. Requirements often 

change during a project. Implementing change requests has its impact on multiple other 

requirements, code, and test cases. Using RT, it is easier to identify which artefacts need to be 

updated and thus provides insight in the impact of the change request. This insight makes 

maintenance tasks more efficiently and increase the quality of work [9]. 

Finally, and most significantly, the benefits of RT are realized during the phase of verification and 

validation [7]. An increase in the level of traceability decreases the expected defect rate in 

developed software [10]. This leads towards an increased implementation quality. 

These benefits make RT a topic of interest in multiple areas of software engineering research [11]. 

One of those areas is model-driven development (MDD). MDD “is a development paradigm that 

uses models as the primary artefact of the development process” [12]. It aims to raise the level of 

abstraction during development [13]. By doing so, MDD makes software artefacts more accessible 

to a wider range of people. In an ideal MDD implementation, the necessity for highly skilled 

software developers will be reserved for complicated projects, while daily projects may be 

developed by the organization's existing personnel, resulting in increased productivity. 
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1.2 Problem Statement 

MDD offers many opportunities for practicing traceability [11]. Unfortunately, the practice of RT 
is not self-evident. RT activities are found to be “time-consuming, tedious and fallible” [14]. The 
lack of awareness is one of the reasons why RT activities are poorly used or not adopted altogether 
[5], [15]. Other reasons include financial, political, customer, and operational factors. 
 
However, even when organizations do see the benefits of RT, many industry practitioners prefer 
to use manual traceability techniques over traceability tools [7]. This is a problem because manual 
tracing methods are error-prone, vulnerable to changes, time-consuming, and impossible to 
maintain [16]. In short, these manual tracing methods do not suit the needs of the software 
engineering industry. 
 
So why are these unsuitable manual methods still favoured over traceability tools? Gotel and 
Finkelstein [4], found that this preference for manual tracing methods was due to the 
shortcomings of available traceability tools. Kannenberg and Saiedian [7] concluded this was still 
apparent, since the tool penetration was still low. 
 
Therefore, there is a need for enhanced traceability tools, that address the shortcoming of the 
current traceability tools. Recent advances in the machine learning domain provide opportunities, 
that may be able to address these limitations [14], [17]. These technologies should aim to facilitate 
the recovery of trace artefacts commonly used in modern software development [17]. 
 

1.3 Research Objective and Questions 

In this research we aim to design a new RT tool, which incorporates technologies from the 
machine learning domain, in order to improve the aforementioned problems. Specifically, the 
research will focus on the MDD domain. MDD is predominately focussed on tracing models to 
models. However, traceability in MDD needs to consider how models can be traced to non-model 
(e.g., requirements) artefacts [18].  
 
To study this, we collaborate with Mendix, a MDD-platform producer [19]. An exploratory 
research on RT was already done at Mendix and opportunities for a new RT tool were identified 
[20].  This research will build on top of this earlier acquired knowledge, to design the new RT tool. 
The new tool will be investigated and constructed iteratively. We hope to bridge the gap between 
industry and research by forming this cooperation. To clarify the objective of the research, the 
template of Wieringa [21] is utilised to come up with the following research objective: 
 
 

The goal of the research is to improve the perceived usefulness of RT tools, by automating 
the recovery of requirement traces in an MDD-context, that incorporates techniques from 
the machine learning domain, so that the MDD industry can better cope with changing 
requirements.  
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To achieve the research objective, the research is guided by the main research question (MQ). 
 

This MQ is decomposed into five sub-research questions (SQs). They assist in answering the MQ. 

The first two SQs aim to build a thorough understanding of the relevant literature.  

 

SQ1 builds a thorough understanding of the literature on RT. We aim to discuss the fundamentals 
of RT and establish a theoretical framework.  This is achieved by means of a semi-structured 

literature review.  

 
Once the fundamentals on RT are established, the research can be scoped to finding the state-of-

the-art on automatically tracing artefacts. Specifically, SQ2 aims to identify current approaches 

and compiles a list of the existing algorithms that these approaches employ, which may be 

employed in our treatment design. 

 

After understanding the theory, knowledge of the domain needs to be built. This will be done by 

answering SQ3. The RT tool is supposed to interact and operate in the MDD-domain, rather than 

in an isolated setting. To optimally design for this scenario, the MDD-domain needs to be 

understood. The answering of SQ3 is operationalized by means of two activities. The first activity 

is to review the literature on the fundamentals of MDD. Parallel to this activity, exploratory 

interviews are held at Mendix. Goal of these is to find out the needs and opportunities. 

Once knowledge about both the theory and practice is known, the next phase can be initiated. In 

this phase, the design and development of the RT tool take a central stage. The activities in this 

phase serve to answer the following SQs.  

 

Through the collaboration with Mendix, we gain access to datasets on both requirements and MDD 

artefacts. SQ4 aims to create an overview of these resources and how these can be utilised for the 

design and construction of the RT tool. 

 

An overview of trace recovery approaches has been created. SQ5 aims to find a way how (parts) 

of these approaches can be embedded in the design of the RT tool. Ultimately, it should produce a 

prototype which is able to take 1) requirements and 2) models as input and output the trace links 

between them. 

What is the state-of-the-art in Requirements Traceability? SQ1 

How do MDD artefacts and requirements co-evolve in an MDD company? SQ3 

What are the resources available to design and construct a RT tool for the MDD 

domain? 
SQ4 

How to embed automatic tracing algorithms in a RT tool for the MDD domain? SQ5 

How to automate tracing between requirements and models in a Model Driven 

Environment? 
MQ 

What algorithms are needed to automatically trace artefacts? SQ2 



1. Introduction  | 11 

 

 

Finally, the produced prototype needs to be validated. SQ6 aims to find out how the effectiveness 

can be measured and thereafter report the results of the prototype. 

1.4 Thesis Outline 

The thesis report is structured as follows: Chapter 2 will discuss the Design Science method that 

we used for this research. It goes over the three phases of Design Science: Problem Investigation, 

Treatment Design, and Treatment Validation, as well as how we have used them in our study. 

Then, in Chapter 3, key terminology on RT and MDD will be presented. In addition, it will also 

discuss the state-of-the-art in trace link recovery. This concludes the literature review, which will 

be followed by the results of the Design Science phases. 

Chapter 4 will through the results of the Problem Investigation phase. It explains the context in 

which the to-be-created artefact must function. In addition, two scenarios are described, which 

the artefact should support. Then, Chapter 5 describes the outcomes of the Treatment Design 

phase. It addresses the design of the artefact that we developed in order to support the scenarios 

described in Chapter 4. In here, we will go through all the components that make up the treatment 

artefact. The experiments of determining the most optimal configuration of these components are 

described in Chapter 6. It provides the results of the best configuration for each of the two 

scenarios. This is followed by Chapter 7, which discusses the key contributions of our study, as 

well as any threats to the validity and how we attempted to mitigate them. Finally, the study is 

concluded in Chapter 8, which additionally provides directions for future research. 

  

How do we validate the effectiveness of a RT tool for the MDD domain? SQ6 
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2. Research Method 

2.1 Design Science 

We stated in our research objective that we wanted to automate "the recovery of requirement 

traces in an MDD-context". To accomplish so, we will need to design an artefact that is capable of 

doing so. This brings us to the field of Design Science, which is concerned with the creation and 

investigation of artefacts in context [21]. An important component of Design Science is the Design 

Cycle. It is a rational problem-solving framework specifically developed for software engineering 

and information systems research. It is part of the Engineering Cycle and consists of three 

activities that are iterated over Problem Investigation, Treatment Design, and Treatment 

Validation. Figure 1 illustrates the relationship between the Engineering cycle and the Design 

cycle, together with its phases. These phases were well suited to the requirements of our research 

and were therefore employed to structure it. 

 
 

 
Figure 1: Design Cycle [21] 

 
 
 
Problem Investigation 
The first task in the cycle is the problem investigation. The goal of this task is to understand the 
problem. We have operationalized this task by first doing a semi-systematic literature review, 
further elaborated in Section 3.1. Its goal was to identify what the current problems are in RT 
research, together with their proposed solution, answering SQ1 and SQ2. Simultaneously, we 
conducted semi-structured interviews with stakeholders of a case company, further elaborated in 
Section 3.2. The goal of this was to provide an answer to SQ3 by identifying the problems occurring 
in industry.  
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Following the semi-systematic literature study and semi-structured interview, we attempted to 
determine which problem was present in both the literature and the case company. This problem 
was then selected as the problem for which we intended to find a solution. 
 
Treatment Design 
This solution was developed during the Treatment Design phase. We took all of the knowledge 
obtained during the Problem research phase and combined it with resources (e.g., data, expertise) 
from Mendix to build a treatment for the problem. This phase generated the information needed 
to answer SQ4 and SQ5, which was subsequently materialized as a software artefact.   
 
Treatment Validation 
Finally, the developed software artefact was evaluated to determine whether the intended 
treatment produced the desired results. This was accomplished by conducting experiments and 
quantifying performance using metrics found during the Problem Investigation Phase.  This phase 
provided us with the answers required for solving SQ6. 

2.2 Semi-Systematic Literature Review 

To research the state-of-the-art of requirements traceability (SQ1) and the state-of-the-practice 

of model-driven development (SQ2), relevant literature was reviewed. The selection of literature 

was done according to the guidelines of a systematic literature review (SLR), proposed by 

Kitchenham et al. [22]. It needs to be taken into account that the primary goal of the SLR was to 

gain a general understanding of the problem, with the aim of designing a treatment, rather than 

an exhaustive mapping of literature. Therefore a selection and adaptation of components of a SLR 

was made [22]. This selection was then used as a guideline. The selection includes seven tasks, 

which are specified in Table 1. 

Table 1: Overview of all tasks executed during the systematic literature review 

Task Description 

Specify the research 
questions 

The SLR seeks to provide an answer to SQ1, SQ2, and SQ3 as defined 
earlier: 
SQ1 What is the state-of-the-art in Requirements Traceability? 
SQ2 What algorithms are needed to automatically trace 
requirements to MDD artefacts? 
SQ3 How do MDD artefacts and requirements co-evolve in an MDD 
company? 

Define Search Terms The following search terms are considered: requirements 
traceability, technique, tool, automated, automating, software 
traceability, traceability, model driven engineering, model driven 
development, model driven architecture, MDE, MDD, and MDA. 

Define Search Queries • (Requirements Traceability OR ‘Software Traceability’) 
• (‘Requirements Traceability’) AND (‘Technique’ OR ‘Tool’) 
• (‘Automated’ OR ‘Automating’) AND (‘Requirements 

Traceability’ OR ‘Traceability’) 
• (‘Model Driven Engineering’ OR ‘Model Driven Development’ 

OR ‘Model Driven Architecture’ OR ‘MDE’ OR ‘MDD’ OR 
‘MDA’) 

Select Sources All search queries are done on Google Scholar. 
Query Sources The defined search queries were applied on Google Scholar. 
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Apply Inclusion 
Criteria 

Literature was included if one of the following criteria was met: 
• The article has one of the terms or synonyms as a keyword. 
• The focus of the article is on requirements traceability. 
• The focus of the article is on model-driven development. 

Apply Exclusion 
Criteria 

Literature is excluded if one of the following criteria was met: 
• Literature not available in English. 
• Literature not available in Dutch. 
• Literature only available in the form of an abstract. 

 

2.3 Backward and Forward Snowballing 

The semi-systematic literature study provides the initial set of literature. This literature was used 
as a starting point for the snowballing procedure. Snowballing is the systematic search for 
“primary studies based on references to and from other studies” [23]. The procedure 
differentiates 2 types: backwards snowballing and forward snowballing. The former refers to 
looking at the papers cited by the ‘starting article’ and the latter refers to looking at papers citing 
the ‘starting article’. For this research at most two rounds of both backwards and forward 
snowballing was used. For the articles to be considered the inclusion and exclusion criteria 
defined in Table 1 are used. 
 

2.4 Case Study 

To come up with a more elaborate answer to SQ2 and to answer SQ3, interviews were held with 

different experts from Mendix. Founded in 2005, it is now the leading low-code software 

development platform [24]. The organisation has over 1500 employees worldwide and has over 

4000 companies using their platform.  

The interviews followed the guidelines for semi-structured interviewing by Longhurst [25]. First, 

questions were formulated around 3 themes: the Mendix Platform, requirements, and tracing 

requirements to MDD artefacts. These can be found in the interview protocol, found in Appendix 

A. This protocol was then shown to a contact person at Mendix, who provided interviewees to 

perform the interviews with. These were held with four experts within Mendix, shown in Table 2, 

either in English or Dutch, and were audio recorded. Within one week, the recordings were played 

back and transcribed. 

Table 2: Overview of all Mendix employees interviewed 

Interviewee ID Interviewee Function Goal of Interview 

1 Principle Engineer SQ2 
2 Principle Engineer SQ3, SQ4 
3 Solution Architect SQ3 
4 Mendix Developer SQ3, SQ4 
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3. Literature Review 

3.1 Fundamentals of Requirements Traceability 

In 1968 the NATO Science Committee organised a conference on software engineering. Its goal 
was to identify current problems in software engineering, and discuss possible techniques, 
methods, and developments which might solve those problems. During that conference the 
importance of traceability was already recognised [26].  
 
Gotel et al. [27] present a terminology on traceability. They define traceability as the potential 
for traces to be established and used. A trace is comprised of two elements, displayed in Figure 2: 
trace artefact and trace link.  
 

 
Figure 2: Two Trace Artefacts Connected Through a Trace Link Forming a Trace 

The Trace Artefact is a traceable unit of data. An example of a trace artefact is a single requirement 
or a Python class. The Trace Link is a specified relation that is used to interrelate a pair of trace 
artefacts. Trace Artefacts can be differentiated into categories with the same or similar structure 
and/or purpose, called trace artefact types. For instance, requirements may be a distinct artefact 
type. 
 
Depending on which trace artefact type is the object of interest, several types of traceability can 
be delineated. For example in test-to-code traceability, one is exclusively interest in tracing unit 
tests and tested classes [28]. 
 
Research on traceability has greatly focused on requirements traceability [29]. Since its inception 
it has been an important topic in the requirements engineering research community. In 2005, the 
Center of Excellence for Software & Systems Traceability (CoEST) was founded to encourage and 
foster RT research [30]. Researchers and practitioners of the CoEST envision traceability to  be 
ubiquitous in software and system development [31]. Once the vision of ubiquitous traceability is 
fulfilled the following scenario described by Cleland-Huang et al. [32] should be commonplace: 
 

“A new developer joins an agile team and is assigned a user story to implement. She uses 
automatically captured trace information to explore the impact of the new story on the system. 
Results are quickly visualized in ways that help her to understand which parts of the codebase 
might need to be changed, potential side effects on existing user stories and test cases, and a list 
of fellow team members who have previously worked with the code and could be considered 
expert consultants”. 
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For us to study RT, we need to establish a definition which explains the concepts. Several 
definitions have been proposed by multiple authors. For instance Pinheiro [33] defines RT as: 
 

Requirements Traceability “the ability to define, capture, and follow the traces left by 
requirements on other elements of the software development environment and the traces left 
by those elements on requirements”. 

 
Another earlier definition was given by Gotel & Finkelstein [4]: 
 

Requirements Traceability “refers to the ability to describe and follow the life of a 
requirement, in both a forwards and backwards direction (i.e., from its origins, through its 
development and specification, to its subsequent deployment and use, and through all periods 
of on-going refinement and iteration in any of these phases)”. 

 
The definition coined by Gotel & Finkelstein became the most prominent definition for RT and is 
consequently used by several other studies [11], [34], [35].  For the same reason, this work will 
utilise the definition by Gotel & Finkelstein. 
 

3.1.1 Requirement Traceability Delineations 

In the literature there are several common delineations made for tracing requirements.  
 

Backward and Forward Traceability 

Traceability can be delineated in the direction they are able to trace. This can be in either a 
forward or a backward direction [27], illustrated in Figure 3, and is defined as follows [33]:    
 

Backward traceability “The ability to trace a requirement to its source, i.e., to a person, 
institution, law, argument etc.” 

 

Forward traceability “The ability to trace a requirement to components of a design or 
implementation”. 

 
 

 

Figure 3: Backward and Forward Traceability [33] 
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Pre- and Post-Requirements Specification Traceability 

The results of an elicitation process are collected in a requirements specification (RS). 

Requirements in the RS can be traced into two directions: 1) To information prior to its inclusion 

in the RS or 2) to information after its inclusion in the RS. This distinction is illustrated in Figure 

4 and is defined as [33]:  

 

Pre-RS Traceability: “refers to those aspects of a requirement’s life prior to its inclusion in 
the requirements specification”. 

 

Post-RS Traceability: “refers to those aspects of a requirement’s life that result from 
inclusion in the requirement specification”. 

 

 

 

Figure 4: Pre-RS and post-RS traceability [33] 

 

Manual and Computed Traceability 

Trace links can originate in either two ways: manual and computed and is defined as [35]:  

Manual Traceability “Trace links are established by a human user”. 

 

Computed Traceability “Trace links are established by an algorithm”. 

 
Computed traceability is established by means of automated reasoning. Examples of this include 
information retrieval or machine learning algorithms. More on this will be discussed in 3.3. 
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3.2 Fundamentals Model-Driven Development 

Within academia many acronyms are used in the Model-Driven Paradigm. Therefore, we first need 

to establish a common understanding in the different used terms. 

Model-Driven Development (MDD) “is a development paradigm that uses models as the primary 

artefact of the development process” [12].  The Object Management Group (OMG) adjusted this 
definition to fit other OMG standards. This particular vision is called Model-Driven Architecture 

(MDA), which “provides guidelines for structuring software specifications that are expressed as 

models” [36]. For this reason, MDA can be seen as a subset of MDD. 

On the other hand, MDD can be regarded as a subset of Model-Driven Engineering (MDE). The 

former focuses purely on the development activities, whereas the latter encompasses all the 

model based tasks in a software engineering process [12]. The relationship between MDE, MDD, 

and MDD is summarized in Figure 5. 

 

Figure 5: Relationships between MDE, MDD, and MDA 

Model-Driven Engineering consist of two key components: models, and model transformations.  

Models 

Models can be defined by a conceptual and a technical definition. This distinction is important 
according to Holtmann et al. [35]. They argue that 1) both definitions do not always correspond 
to each other, and 2) an unambiguous understanding of model boundaries (i.e., whether trace 
artefacts belong to the same model) is needed. 
 
To effectively communicate our ideas, we must first settle on the precise definition to which we 
will adhere. Academia offers a number of conceptual definitions of a model. For example, the 
following definition was provided by Wasowski and Berger [35]. 
 

Model “an abstraction of reality made with a given purpose in mind”. 

 
Although it explains the concept, it does not help to differentiate whether two artefacts are part 
of the same model or part of two distinct models. Therefore, a more technical definition is needed. 
Holtmann et al. [35] coined the following definition: 
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Model represents an aspect of a system under development captured in a specific instance of 
a formal language that serves a purpose within the development lifecycle. 

 
The definition implies, that all artefacts expressed in instances of formal languages are considered 
models. For instance, when a requirement documented in natural language is structured by a 
meta-model for requirements, it is considered a model. In addition, because it defines a system 
rather than a mental model, this definition is more appropriate for our goal. 
 
Model Transformations 
The main task of MDD is to transform higher-level models into platform-specific models [37]. This 
is done by applying transformations rules which dictate how the source-model should be 
transferred to the target-model. This automated process is referred to as model transformation. 

3.3 Computer-Assisted Trace Link Recovery 

The software engineering task focused on establishing trace links between related artefacts is 
called Traceability Link Recovery (TLR) [38]. The process exclusively focusing on establishing 
trace links between requirements and other artefacts is requirements traceability recovery (RTR) 
[39]. According to Aung et al. [17], the approaches for TLR and RTR can be separated into four 
orthogonal categories: Information Retrieval based, Heuristic-Based, Machine Learning, and Deep 
Learning. 
 
This section will first discuss the measures that are commonly used to compare the performance 
of the TLR and RTR methods. Then it will discuss the fundamentals of each category defined by 
Aung [17]. Following that, a discussion of some notable TLR approaches will take place. Finally, 
we will use that discussion to draw lessons for the design of our treatment. 
 

3.3.1 Metrics 

Many different computed TLR and RTR approaches have been proposed. To compare and 

benchmark these approaches it is necessary to define evaluation methods and metrics. Shin et al. 

[40] did a systematic literature on current evaluation practices on requirements traceability 

techniques. They found that traceability is typically measured using either classification accuracy 

metrics or rank accuracy measures. In Figure 6 the occurrences of the different metrics are given. 

We will now discuss the top 5 most occurring metrics. 

 

Figure 6: Overview of the eight most popular metrics for benchmarking computer-assisted TLR [40] 
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Classification Accuracy metrics 
This set of metrics count the number of correctly or incorrectly retrieved links. Commonly used 
classification accuracy metrics include recall, precision, and F-Measure. Recall denotes the fraction 
of relevant documents that are correctly retrieved and is defined as follows: 
 

Equation 1: Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Precision denotes the percentage of retrieved trace links which are valid and is defined as follows: 

Equation 2: Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

Recall and Precision are always given together. The reason is that between both, there is a trade-
off. As one increases the other decreases. The average between both is given by the F-measure, 
which knows two variants: F1-Measure and Fβ-Measure. F1-Measure denotes the harmonic mean 
of precision and recall. It is denoted as follows: 
 

Equation 3: F1-Measure 

 𝐹1𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

 
Fβ-Measure is a simplified version of F1-Measure. It applies a real weighting factor β, valuing either 
precision or recall more than the other. In case β > 1, more emphasis is put on the importance of 
the recall. Fβ-Measure is defined as follows:  

Equation 4: Fβ-Measure 

𝐹𝛽 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1+ β2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(β2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
  

 
Rank Accuracy Measures  
The accuracy of the relative ordering of correct links in a ranked list are measured using rank 
accuracy metrics. These include: Average Precision, DiffAR, DiffMR, and Lag. 
 
The Average Precision denotes the extent to which relevant links are placed towards the top of a 
ranked list. It is defined as follows: 

Equation 5: Average Precision 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ (𝑃(𝑟) ∗ 𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑟))𝑁

𝑟=1

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

 
In the equation, r is the rank of a document in the ordered list of retrieved results from N 
documents. isRelevant() is a binary function, which assigns 1 if the rank is relevant and 0 if 
otherwise. P(r) denotes the precision, computed after truncating the list immediately below that 
ranked position. 
 
DiffAR is a measurement for the difference between the average relevance scores of correct and 
incorrect trace links retrieved. It is defined as follows: 

Equation 6: DiffAR 

DiffAR =  
∑ 𝑟𝑒𝑙(𝑞,𝑑)(𝑞,𝑑)∈ true positives  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 −  

∑ 𝑟𝑒𝑙(𝑞,𝑑)(𝑞,𝑑)∈ false positives  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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In the equation, q denotes a query, d denotes a document, and rel(q,d) denotes the relevance score 
between q and d. 
 

3.3.2 Information Retrieval 

The objective of an information retrieval (IR) system is to find relevant information from an 

organised collection of documents [41]. Today, these IR systems are omnipresent: when searching 

the recipe for apple pie on Google; when searching a movie on Netflix; or searching a product on 

Amazon. These systems rely on IR algorithms, which need to present the user only  those 

documents which are semantically similar to the search query. 

In a similar way, these IR algorithms are used by most modern semi- or automatic TLR approaches 

[6], [42]–[44]. These techniques work on the premise that when two artefacts have high textual 

similarity, they probably should be traced to each other [45]. Therefore, to recover trace links, the 

algorithm computes the textual similarity between software artefacts and assigns a score to them. 

Trace links scoring above a given threshold are considered a valid link.  Common used IR 

algorithms include Vector Space Models, Latent Semantic Indexing, Jenson and Shannon Models, 

Latent Dirichlet Allocation [17].  Although good results have been achieved, recovering trace links 

reliably may be difficult. Because the algorithms heavily depend on the text quality, considerate 

pre-processing is required. 

 
Vector Space Models (VSM) 
In VSM, the goal is to represent each document d as a vector in a vector space [46]. This is 
illustrated in Figure 7. Vectors close to each other are semantically similar, whereas vectors 
distant from each other are semantically different. When a query q is ran, a point in space is 
identified, and documents close to the point are returned. This is operationalised as follows: 1) all 
unique terms occurring in query q and document d is represented as a vector T = {t1…tn}. 2) A 
weighting scheme is chosen, of which TF-IDF is a common one. TF-IDF is the product of two 
statistics: term frequency and inverse document frequency [47].  Term frequency refers to the 
number of times t occurs in d. The inverse document frequency refers to the rarity of a term t 
across all documents. It is defined as follows: 

𝒊𝒅𝒇𝒕 = 𝒍𝒐𝒈
𝑵

𝒅𝒇𝒕
 

Where N is the total number of documents and dft the number of documents t appears in. 3) All 
documents are represented as vectors d = {w1,d, ..., wnd} and the TF-IDF of term i in document d is 
calculated. 4) Finally, the similarity is calculated as the cosine of the angle between query q and 
document d as follows: 
 

𝑠𝑖𝑚(𝑄, 𝐷)  =  
∑ 𝑞𝑖 ×  𝑑𝑖

𝑛
𝑖=1

√∑ 𝑞𝑖
2𝑛

𝑖=1  ×  ∑ 𝑑𝑖
2𝑛

𝑖=𝑖
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Figure 7: Graphical representation of spatial distance between terms [48] 

 
Latent Semantic Indexing 
A fundamental problem in IR is that searchers employ query terms that are not the same as the 
ones used to index the documents they seek. This issue can broadly be traced back to the notion 
of synonymy and polysemy. Synonymy refers to the problem that people use different terms for 
the same object (e.g., ‘drawing’ and ‘illustration’), and decreases the recall. Polysemy refers to the 
problem that terms have multiple definition (e.g. ‘fall’), and decreases precision [49].  
 
The problem can be illustrated as follows: We have a set of documents. 100 documents contain 
the word ‘drawing’, and 100 documents contain the word ‘illustration’. 95 documents contain both 
the words “drawing” and ‘illustration’. When running a query ‘drawing’, we want to retrieve all 
documents containing the word ‘drawing’. However, we also want to retrieve documents only 
containing the word ‘illustration’, because there likely related to each other. 
 
The example illustrates that the occurrence of the terms ‘drawing’ or ‘illustration’ on their own 
are bad indicators of a relevant document. We need to sort out how to predict what terms in a 
query ‘actually’ mean (i.e., ‘latent semantics’) and replace them by an implicit higher-order 
structure, which is a more reliable indicator. Deerwester et al. [49] introduced an Latent Semantic 
Indexing (LSI), an algorithm which is able to recover these ‘latent semantics’. It utilises a technique 
called Singular Value Decomposition, to approximate the original set of terms by a ‘latent’ 
structure. This latent structure can then be used a feature set, which better reflects major sociative 
data patterns and ignores less important influences. 
 
Jenson and Shannon Models 
In Jenson and Shannon Models (JSM) documents are treated as a probabilistic distribution [50], 
[51].  The probability of its states is given by the empirical distribution of the terms occurring in 
the document. Like VSM, the similarity between the query q and the document d is measured by 
the ‘distance’ between both. However, while VSM measures the distance using the cosine of the 
angle between q and d, JSM measures the distance using the Jenson-Shannon Divergence. It is 
defined as follows: 

𝐽𝑆(𝑞, 𝑑) ≜ (
𝑝̂𝑞 + 𝑝̂𝑑  

2
) − (

𝐻(𝑝̂𝑞) + 𝐻(𝑝̂𝑑) 

2
) 

H(p)≜ ∑ ℎ(𝑝(𝑤)), ℎ(𝑥) ≜ -x log x, 

w ∈ W
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where H(p) is the entropy (a measure of uncertainty) of the empirical distribution, 𝑝̂𝑞is the 

empirical distribution of q and 𝑝̂𝑑 the distribution of d. 
 
Latent Dirichlet Allocation 
Latent Dirichlet Allocation (LDA) is a probabilistic model [52].  It takes a m × n term-by-document 

matrix as input, where m is the number of terms occurring in the entire corpus, and n is the 

number of documents in the corpus. LDA is then able to identify the latent topics and generates a 

k × n topic-by-document matrix, where k is the number of latent topics. Using this reduced space, 

LDA clusters documents with the same relevant topics. 

3.3.3 Heuristics 

Many of the IR techniques still require intervention of the user, which make them only semi-
automatic [39]. Another attempt for automatic RTR is Heuristic Search (HS). HS aims to find an 
acceptable approximate solution to a specific problem in a search space [53]. This technique is 
usually utilised whenever an exact algorithmic solution is absent or is too complex and time-
consuming. Examples such as hill climbing, simulated annealing, and genetic algorithms belong 
the paradigm of HS techniques. 
 

3.3.4 Machine Learning 

Machine Learning (ML) is defined as “the automated detection of meaningful patterns in data” 
[54]. A well-known application of ML is the filtering of spam e-mails. To do this, the machine is 
given a set of emails which are labelled ‘not spam’ or ‘spam’. It then runs an algorithm over the 
data and it ‘learns’ which features make up a spam e-mail. This process results in a model, which 
takes an e-mail as input and outputs whether the e-mail is spam or not. 
  
In recent years, developments from the ML domain have been utilized in automatic TLR [17]. ML 
approaches treat the TLR process as a classification task [38], [55]. Given two artefacts it needs to 
label the link between them as valid or invalid. In case of the former, there is a trace link. For this 
to work, the ML classifiers need to be trained on data. This training data arises as follows: Given 
two artefact sets A1 and A2, the Cartesian product A1 × A2 is computed. Each element of A1 × A2 
represents a trace link between a ∈ A1 and a ∈ A2. These are either valid or invalid, which is the 
label the classifier needs to learn. Therefore, for each trace link a vector representation is 
computed, derived from features. Most ML RLT approaches use similarity scores of IR-based 
methods as features [38], [55], [56] and are able to outperform IR-based TLR approaches [38].  
 

Data imbalance 

When computing A1 × A2, it is expected that most trace links are invalid. Therefore, the training 
data is highly imbalanced, which makes the training of a classifier problematic [57]. For example, 
a training set could consist of 100 trace links, of which only 3 trace links are valid. A classifier 
achieves the greatest performance, when it classifies 100 percent of the trace links as invalid. 
While 97 trace links are correctly classified, it results in the misclassification of the trace link of 
interest.  
 
It is therefore important to rebalance the data. One possibility is to use undersampling. 
Undersampling is data-reduction method that reduces the majority class by selecting only a subset 
of its datapoint for training.  Another possibility is to use oversampling. This technique artificially 
creates new data points of the minority class, based on the original data. 
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3.3.5 Deep Learning 

Deep learning (DL) finds its origin in Artificial Neural Networks (ANN). ANNs approximate the 

human brain by connecting many simple computational units, called neurons, in a multi-layered 

structure. Several neural network structures exist, each targeted at a specific learning task. For 

example, convolution neural networks are well suited for image recognition tasks, while recurrent 

neural networks (RNN) are targeted tasks concerned with sequential inputs, such as NLP.  

Because TLR deals with natural language, RNNs are mostly used for this task. Figure 8 shows the 

typical architecture RNNs follow. RNNs allows outputs to be used as inputs, and essentially mimic  

memory [58], [59]. This is operationalised by the activation function a<t>, which takes two inputs: 

1) the current time step t (i.e., word embedding), and 2) the output of the previous activation 

function a<t-1>. The output of the RNN is therefore determined by its current and prior input. 

 

 

Figure 8: Architecture of a recurrent neural network [59] 

Common activation functions used in RNNs include the Sigmoid, Tanh, and Rectified Linear Unit 

(RELU) functions. These are described in Figure 9. 

 

Figure 9: The formulas and plots of Sigmoid, Tanh, and RELU functions 
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3.3.6 Automated Traceability Approaches 

Aung et al. [17] did a systematic literature review on automated TLR approaches and identified 

33 relevant studies published between 2012 and 2019. These studies were mapped into 

categories. In this section, we will discuss the studies mapped to either ‘Machine Learning’, 

‘Information Retrieval + Machine Learning’, ‘Deep Learning’, or ‘Information Retrieval + Deep 

Learning’. These mappings were chosen because literature agrees that both ML-based and DL-

based TLR approaches outperform IR-based TLR approaches [14], [58], [60]. 

Tracing Features to Code Commits Using Machine Learning 

Abukwaik et al. [61] proposed a recommender system for annotating features to code commits. 
Whenever a developer commits code to a version control system, the system must recommend 
possible features the code commit may belongs to.  
 
To create the system a Java tool was constructed, which reuses IR libraries from the Lucene search 
engine and ML libraries from the WEKA toolkit. The tool does 3 tasks: data pre-processing, 
generating ML classification models and creating evaluation results. Figure 10 shows all 
individual steps and are elaborated below. 
 

 
Figure 10: Overview of the ML simulation experiments conducted by Abukwaik et al. [61] 

 
Data Pre-processing 
The approach starts with preparing the data. Each delta code is extracted from the repository. 
Thereafter, code related to a feature (e.g. //&line[System Monitor]) is extracted from the 
delta code, which is then associated with the respective feature (System Monitor). Finally, each 
delta is chunked to the granularity of a single line of code and is labelled with the name of their 
related features. These chunks are saved in the Feature Corpus. 
 
Generating ML Classification Models 
For every chunk in the Feature Corpus, a data vector D is calculated, which consists of four metrics, 
explained in Table 3. These were then used to train a kNN, SVM, and Decision Tree classifying 
model. 
 
Creating Evaluation Results 
The input of a classifier is a new set of data vectors for an unclassified code block. The output is 
an indication of which features it may belong to. For every stage the N in the code repository the 
experiment is run, and the performance is recorded.  
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Table 3: Overview of feature families used by Abukwaik [61] 

Classification Feature Description 

Feature Presence Metric (𝑓) 
 

Indicates if the code block belongs to a feature, indicated by 
a 1 or 0. 

Cosine Text Similarity(𝑐) Represents the similarity between two vectors, measured as 
the cosine of the angle between them. 

Source Code Localisation 
Distance(𝑠) 

The relative distance of the code block to already known 
feature locations 

Number of Already Existing 
Annotations metric(𝑛⃗⃗) 

The summation of the number of existing annotations for a 
feature 

 
Results 
The best results were achieved when applying kNN, with a F1-measure between 50% and 60%, 
which was already achieved after training on 60 commit change-sets, with an average of 5 
annotations each. The authors did not mention the number of k used when training on the data. 
Results for SVM were unsatisfying with a F1-Measure of 7% and 15%.  

 

Maintaining Traceability Information using Machine Learning 

Mills et al. [38] proposes an approach, called TRAIL (TRAceability lInk cLassifier), with the goal of 
automatically verifying the validity of ranked trace links by IR models, using ML classifiers. Their 
method starts with typical data pre-processing tasks [43], which consists of four steps: 1) all 
identifiers were split using camelCase and under_score algorithms, 2) common English, Italian, 
and Java keywords were removed, 3) the remaining keywords were stemmed to their root form, 
4) the approach rebalanced the training data. Both undersampling as oversampling was 
conducted, for which they used Synthetic Minority Oversampling Technique (SMOTE) and 
Random Majority Undersampling.  
 
Once the data was prepared, the cartesian product of both artefact sets was computed, of which 
each element is a vector. These vectors consist of 131 features, which fall into three distinct 
categories. These categories are elaborated on in Table 4. 
 
To decrease the dimensionality of the feature space, five feature selection algorithms are 
considered: Correlation-based Feature Subset Selection, Pearson’s Correlation, Gain Ratio, 
Information Gain, and Symmetrical Uncertainty. Finally, each potential trace link is classified by a 
set of ML algorithms, which include k-Nearest Neighbours with k = 5 (5NN), Naive Bayes (NB), 
Logistical Regression, Random Forest (RF), Support Vector Machines (SVM), and a Voting 
ensemble.  
 
Results 
The results of TRAIL are displayed in  
Table 5. The configuration of Random Forest as classifier, and Pearson correlation for feature 
selection and SMOTE for data rebalancing, results in the best performance with an average F-score 
of 75.18%. 
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Table 4: Overview of feature families used in TRAIL [38] 

 Feature Description 

IR-Based For every potential trace link, the similarity score is calculated using 7 different IR-
algorithms. Since the retrieval direction significantly impacts the results of TLR 
[62], the similarity score is calculated for each direction for each IR-algorithm. This 
results in a total of 14 IR-based features. 

Query  
Quality 

It matters if a candidate link has a low similarity score, because they are indeed 
invalid, or that the artefact is generally hard to trace. This is quantified in 28 Quality 
Quantity (QQ) metrics [63]. These QQs can be divided into 21 pre-retrieval QQs and 
7 post-retrieval QQs, for which the former is applied before running a query and 
the latter after running the query.  

Document 
Statistics 
Features 

For each document the three statistics are calculated: a) number of unique terms, 
total number of terms, c) percentage of overlapping terms between two documents 
in a candidate link. These statistics are then used to calculate five classifications in 
the following way: Given artefact A1 and A2. For both A1 and A2, statistic a and b are 
calculated. Then for the trace link between A1 and A2 feature c is calculated. 

 

Table 5: Average F-score (in percentage) achieved by TRAIL [38] 

Rebalancing 
Technique 

Feature 
Selection 

Classifier 

5NN Logistic 
Regression 

NB RF SVM Vote 

none None 47.43 50.19 39.49 67.18 0.00 55.96 
cfs 59.72 40.25 39.22 63.14 0.79 53.84 
correlation 47.43 50.19 39.49 67.22 0.00 56.06 
GainRatio 61.22 61.00 40.17 72.03 0.00 66.84 
InfoGain 61.22 61.00 40.17 72.29 0.00 66.96 
Symmetrical 61.22 61.00 40.17 72.07 0.00 66.89 

undersampling None 31.18 34.60 36.13 51.37 31.22  38.24 
cfs 39.88 37.65 35.65 47.43 34.77 38.35 
correlation 31.18 34.59 36.13 51.42 31.41 38.28 
GainRatio 37.63 38.05 37.81 51.38 35.69 41.82 
InfoGain 37.63 38.05 37.81 51.34 35.69 41.83 
Symmetrical 37.63 38.05 37.81 51.41 35.69 41.83 

smote None 56.19  56.31 38.05 74.80 46.77 56.94 
cfs 54.07 41.04 37.46 62.74 41.44 45.42 
correlation 56.15 56.33 38.05 75.18 46.99 56.99 
GainRatio 63.10 58.05 39.74 73.89 47.68 57.74 
InfoGain 63.10 57.95 39.75 73.88 47.67 57.74 
Symmetrical 63.09 58.06 39.77 73.85 47.69 57.77 

5050 None 49.59 51.19 38.03 72.09 43.70  53.36 
cfs 51.24  40.80 37.35 61.47  40.34 44.33 
correlation 49.60 51.17 38.02 72.33 43.97 53.38 
GainRatio 57.04 56.64 39.67 70.62 45.55 55.01 
InfoGain 57.10 56.63 39.69 70.64 45.58 54.99 
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Symmetrical 57.04 56.64 39.68 70.60 45.55 55.02 

Tracing Requirements top Source Code Using Machine Learning 

Falessi et al. [64] aimed to present and evaluate a novel family of metrics to predict the set of 
classes by a new requirement, called Similarity to Class’s Requirements Set (R2RS). This was 
compared to four other families of metrics, all elaborated in Table 6.  
 
Common data pre-processing steps like the usage of camelCase, under_score algorithms, 
stemming etc. were used on the training data. Furthermore, the training data was rebalanced by 
undersampling all valid requirement-class pairs and on an equal number of invalid requirement-
class pairs.  
 
To examine which metric family provided the best prediction results, the proportion of times a 
metric was selected by the automated metric selection, using default WEKA parameters 
SubsetEvaluation and BestFirst. On average, TLCC had the highest selection proportion, followed 
by R2RS, R2C, CKJM, and SQ. The study did not provide a clear indication which ML classifier 
performed bests. 
 
 

Table 6: Overview of feature families used by Falessi et al. [64]. 

Classification Feature Description 

Similarity to Class’s 
Requirements Set (R2RS) 

Given is an existing code class C, which associated with a set of 
previously implemented requirements R. The idea is that a new 
requirement which is semantically like R, is more likely to impact 
C. This idea is captured in 18 R2RS metrics. 

Requirement-to-Class 
Similarity (R2C) 

Vector Space Model and Jensen Shannon Divergence were used 
to calculate the similarity between requirements and classes.  

Temporal Locality of Class 
Changes (TLCC) 

If a class is frequently changed in the past, then these are likely 
to be impacted by future change. TLCC takes the class’s 
modification history in consideration in three different 
measurements.  

Complexity via CKJM 
(CKJM) 

Classes with low cohesion, or lots of public methods, are likely to 
be changed. Therefor common coupling and cohesion metrics are 
calculated. 

Bad Smells via SonarQube 
(SQ) 

Code smells are patterns in code which indicate a possibility for 
refactoring. Using SonarQube, each class was analysed for code 
smells directly after a new version. 
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Tracing Code Commits to Issues Using Machine Learning 

Rath et al. [56] presented and evaluated an approach to recover trace links between code commits 
and issues. The authors tested multiple ML classifiers, trained on process-related information and 
textual similarity data, further elaborated in Table 7. Part of the research was to evaluate which 
feature set yielded the best results. Therefore, four experiments were done: 1) solely the process-
related information, 2) solely the similarity data, 3) all features, 4) automatically selected features 
using Weka’s inbuilt auto-selection feature.  
 

Table 7: Overview of feature families used by Rath et al. [56] 

Classification Feature Description 

Process-related 
information 

16 metrics are defined which are related to the process of 
committing. These include stakeholder-related information, 
temporal relations between issue and commits, closest previous 
linked commits, closest subsequent linked commit, number of 
issues and existing links. 

Textual similarity between 
artefacts 

VSM, VSM with N-gram enhancements, and LSI were used to 
compute the cosine similarity. Each document was treated as an 
unstructured bag of terms. Common pre-processing steps like, 
removal of stop words, stemming, splitting on camel case and 
snake case words. Each term is weighted using TF-IDF. 

 
Their approach needed to support two different scenarios. In the first scenario, the approach is 
used as a recommender system. Whenever the developer commits a change, the system should 
present a list of at most three related issues. Subsequently, the developer can manually trace the 
related issue. For this scenario to work, a high recall is important. One wants to make sure that 
the three recommended issues are indeed valid. In the second scenario, the system should provide 
full automated augmentation of trace links between commits and issues. The goal for this scenario 
is a high precision.  
 
The results indicated the approach performed best using the Random Forests algorithm trained 
on all features, achieving an average recall of 96%. 
 

Tracing Requirements to Design Documents using Deep Learning 

The goal of the study is to trace requirements to design documents [58]. Their approach was 
designed with three scenarios in mind. In the first scenario, the approach is trained on manually 
constructed trace links, which then can be used to automate the production of other trace links. 
In the second scenario, the approach is learned on a complete set of trace links, which then can be 
used to find missed trace links, Finally, in the third scenario the approach is trained on a complete 
set of trace links, which could be used to identify trace links in a project in a similar domain. 
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The approach is divided into two phases: a word embedding mapping layer, and a semantic-
relation evaluation layer. Its architecture is illustrated in Figure 11. 
 

 
Figure 11: Architecture of the tracing method of Guo et al. using a RNN [58] 

 
Word embedding mapping layer 
First an unsupervised learner is trained on set of requirements, which returns a vector containing 
word embeddings. Then a set of labelled trace links is used to train a tracing network. Within the 
Tracing Network, Recurrent Neural Network algorithm (RNN) learns the representation of 
artefact semantics. For each requirement, the word-embedding vector is fed into the RNN, which 
in return outputs a vector representing the semantic information of the requirement.  
 
This process is repeated for the design documents. The results of this process were passed to the 
next layer. 
 
Semantic-relation evaluation layer 
In this layer, the tracing network compares the semantic vectors of two artefacts, by calculation 
the direction and distance between pairs. The resulting vector is then passed to the sigmoid and 
softmax functions, which then output the probability that they are linked. 
 
Results 
To benchmark the effectiveness of the tracing algorithm they calculated the Mean Average 

Precision (MAP). This was done by calculating the average precision of each individual query, 

followed by taking the mean. The results indicate that deep learning approaches can be used for 

TLR and perform significantly better (MAP = .834) than IR-based TLR approaches, like VSM 

(MAP= .625; p < .001) and LSI (MAP = .637; p < .001). 

3.3.7 Lessons Learned 

From the existing approaches, we can extract some lessons learned.  
1) The approaches for trace link recovery support different scenarios, and they have 

therefore different requirements regarding performance. For instance, for semi-automatic 
tracing high recall is important, while a fully automated system would benefit more from 
high precision.  
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2) Defining correct feature families. Every dataset and domains offer new possibilities in 
terms of features. It is necessary to empirically study what feature families work best for 
the MDD domain.  

3) Mills et al. [38] demonstrated the impact the rebalancing technique has on the 
performance of the classifier. We must carefully consider, which method to employ.  

4) Multiple classifying algorithms need to be examined. Although Rath et al. [56] and Mills et 
al. [38] concluded RF performed best, results of other algorithms need to be studies.  
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4. Problem Investigation 
One of the key lessons from the literature review was that RTR systems could support various 

scenarios. Before designing a treatment, we must first establish which scenarios may be 

supported. To do so, we needed to study the current situation, which we accomplished by 

conducting semi-structured interviews at Mendix. During those interviews, we gained a deeper 

knowledge of the Mendix Platform and discovered that requirements were maintained in 

Atlassian JIRA.  

This will be covered in greater depth in this chapter. First, Section 4.1 introduces the Mendix 

Platform. Then, Section 4.2 will discuss Atlassian JIRA. The section that follows describes the 

interaction between the Mendix Platform and Atlassian JIRA. Finally, the chapter concludes with 

a description of two identified scenarios a RTR system could support. 

4.1 The Mendix Platform 

4.1.1 Mendix Studio (Pro) 

Mendix Studio is the area of the Mendix software suite in which the developer creates their 
application. A screenshot of the user interface is shown in Figure 12. The software is available in 
two editions: Studio and Studio Pro. They differ in the category of users it focuses on, where the 
former focuses on non-technical business users and the latter focuses on professional developers 
[65]. However, both editions utilize the principles of MDD: the developer creates an application 
model by means of pages, domain model, microflows, and navigation document. When creating a 
new application, a new Mendix Project File (.mpr) is created. 
 
 

 
Figure 12: The user interface of Mendix Studio 



4. Problem Investigation  | 33 

 

 

4.1.2 Mendix Developer Portal 

Mendix wants to support the entire Agile application life cycle. To do this, they offer a basic project 
management functionality in the form of the Developer Portal, shown in Figure 13. It offers tools 
to manage user stories, end-user feedback, and sprints. User stories can be added in the Stories 
tab. Whenever a new story is created, the user can fill in a form containing the following fields: 
title, description, story type, story points, related sprint, and story status. The user input is not 
restricted to any template. 

 
Figure 13: Developer Portal is the user interface of Mendix to support management functionality 

 

4.1.3 Mendix Servers 

For every application created a repository on the Mendix Team server is provided. In essence, this 
is an adapted version of the open-source version control system Apache Subversion. To date, all 
Mendix servers run this. In the future, the version control system will be migrated to git. 
 
Whenever a change is made in the application model there are two versions of the application in 
existence: one locally stored in Mendix Studio and one remotely on the Team Server. To save the 
local changes to the remote repository, the developers need to commit the changes to the Team 
Server. In the backend, this is done using Subversion SVN, however the developer is only shown 
the GUI as shown in Figure 14. In the top you are shown in which branch you are committing, and 
you can provide a message, describing the changes you have made. Furthermore, there are 3 tabs 
visible: Related Stories, Changes in model, and Changes on disk. In the Related stories tab, you can 
relate stories to the commit. The stories shown, are the ones the user stories made in the 
Developer Portal. In the Changes in model tab, you see all units added, modified, or deleted in the 
commit. Finally, in the Changes on Disk tab you find an overview of all changes, outside of the .mpr 
file. 
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Figure 14: The GUI in Mendix Studio Pro to commit changes to the Team Server. The developer can see all open stories in 
SPRINTR (left), changes made to the model (middle), and all changes made on disk (right) 

4.2 JIRA 

Atlassian JIRA is a software tools designed for teams to manage their projects [66]. The software 

is in development since 2002 and it is used by more by 65,000 companies worldwide [67]. JIRA 

comes with a variety of features and templates, which can be tailored to the specific needs of the 

team. For instance, there are project templates available for human resources, finance, design, and 

more.  

When creating a new project for a software development, templates for Kanban, Scrum, and Bug 

Tracking are available. Once the template is initialized, ‘JIRA issues’ can be placed on the board. 

JIRA issues are work items and are categorized into 5 types: Epic, Story, Bug, Task, and Sub-task. 

These types are set up like a hierarchy, which is shown in Figure 15.  

 

Figure 15: Overview of the JIRA issue hierarchy [68] 

4.2.1 Epics and Stories 

When working on a project, it is good practice to break down the project into smaller work items  

[69]. Within JIRA, an Epic assists in the breakdown of work, by offering the means to organize the 

work and create hierarchy. They can essentially be seen as a collection of related work items. Epics 

are meant to be flexible, as they extend over a set of sprints. During the project work items can be 

added and removed, purporting the new requirements. One of these work items are user stories. 
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A user story is a method for documenting requirements from the perspective of the user. In 

practice, 70% of the user stories follow the Connextra template: “As a <type of user>, I want to 

<some goal>, so that <some reason> [70]. It consists of three elements. First, the <type of user> 

relates to the role of the person for whom the requirement is created. The <some goal> concerns 

the objective the user wants to fulfil. Finally, the <some reason> provides the motive to why the 

user wants the requirement. 

In JIRA, a user story is like any other work item and can thus be supplemented with extra details. 

For instance, it features the possibility to add a description or attachment, assign it to a specific 

team member, or add comments to it. Figure 16 shows an example of a JIRA user story. 

 

  

Figure 16: Example of a JIRA User Story 

 

4.3 Case description of Mendix 

At Mendix, developers are working with the SCRUM development process.  The life cycle of a 

requirement: from a definition to implementation is described below. This lifecycle can be divided 

into two phases. 

In the first phase the team work on the “definition of ready”, determines all elements necessary 

for a requirement to be considered for a sprint. These requirements are ideated during 

discussions between the product owners (POs) and the customers. Then these are documented as 

user stories, following the Connextra template, and added to the product backlog.  

When the product owner wants the story implemented, the development team comes together for 

a refinement session. In the refinement session, the user story is refined by adding details of the 

technical and functional aspects (e.g., UX, software dependencies). Once the user story is fully 

refined, it can be considered for the sprint planning. In the sprint planning it gets decided which 

user stories are going to be implemented in the coming sprint. After the sprint planning is 

completed, the second phase can be started. 
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In the second phase the team is working on the “definition of done”, which defines all elements 

required for a user story to be considered implemented. This is operationalized during a sprint, 

when user stories are assigned to a single developer, who is subsequently responsible for the 

implementation. 

The process of implementing a user story can be summarized into a number of activities. First the 

developers read the user story to get familiar with what needs to be done. Then he/she opens 

latest Mendix model and navigates to the modules, which need to be changed. These modules are 

changed until the pre-defined acceptance criteria, found in the JIRA issue, are met. Then the 

developer creates documentation for other developers to understand their work. Finally, the work 

can be committed to the Mendix Team server. When committing, the developer also puts the JIRA 

issue ID in the commit message. By doing this, they ensure a form of requirements traceability. 

When looking back at the history of past commits, the traces can be seen in the messages. An 

example is shown in Figure 17. 

 

Figure 17: Commit history of a project in Mendix containing requirement traces 

4.4 Desired solution 

According to the interview findings, establishing traces from commits to JIRA issues is a manual 

process within Mendix. Evidenced by earlier research, this is prone to errors. In this study we have 

analysed data that originates from multiple projects. In this data, we observed errors, which 

include misspelling, incorrect values, misformatting, or absence of trace links. This is not unusual, 

because it is a human task. 
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It is apparent that these problems can be mitigated by introducing an automatic system to the 

process. After analysing this process, we have identified two scenarios that could offer 

opportunities to the case company. 

1. When a developer needs to commit his/her changes to the Mendix Team Server. Recall, 

that the developer opens a commit dialog in which he/she describe their changes in the 

commit message together with a trace. In this situation, there is an opportunity to add a 

recommendation system into the commit dialog. This system can show the developer all 

possibly related JIRA issues. The only manual task remaining, is for the developer to check 

the valid traces. A mock-up of this recommendation system is shown in Figure 18. For this 

scenario to work, high recall is required. The reason for this is that for a developer to 

examine a valid trace, it must first appear in the list. Precision is of less importance in this 

scenario, since developers can leave invalid traces unchecked. 

 

Figure 18: Mock-up of a trace recommendation system 

 

2. Another problem is that not all commits are traced to a JIRA issue. For designing our 

solution, we have obtained two datasets for theory building. Only 86 percent of the 

commits in one dataset were tracked, whereas only 71 percent in the other. This shows 

that maintenance is required, to recover traces for the untraced commits. This is the goal 

of the second scenario: a fully automated trace maintenance system is introduced into the 

project. This system would periodically recover traces, which were forgotten by the 

developer, which would ultimately lead to a higher level of RT in the project. For this 

scenario to work, a high precision is needed. The reason for this is that there is no human 

intervention in this scenario to correct invalid traces. The system needs to ensure each 

predicted trace is truly a valid trace.  



5. Treatment Design  | 38 

 

5. Treatment Design 
In Section 4.4, we introduced two possible treatment scenarios, which can improve the current 

situation. In this chapter, we will go over the design and development of the treatment. First, the 

raw datasets acquired will be explored and described. Next, the procedure for pre-processing the 

data is outlined. This is followed by a section that describes all features that represent these traces. 

Then, the imbalance in the obtained data is demonstrated, as are the strategies for dealing with it. 

Finally, the classification algorithms are examined. 

5.1 Initial Data 

Mendix provided us with data on four of their internal software projects for the study: Project 1, 

Project 2, Project 3, and Project 4. For each project 2 datasets were given: the JIRA export data of 

the respective project, and a data dump of the Subversion dump file. Table 8 gives an overview of 

the data supplied for each project. 

Table 8: Overview of the data quantity for each internal project we have obtained from Mendix 

Project Number of Tuples 

JIRA export data Subversion Dump File 
Project 1 994 3663 
Project 2 58 818 
Project 3 173 2929 
Project 4 634 713 

 

5.1.1 JIRA Dataset 

The JIRA datasets are delivered in either .xml or .csv. Each tuple represents a JIRA issue, together 

with its metadata. Below, we will discuss the metadata used for the study. 

1) Summary: A concise description of maximum 255 characters. Within Mendix, this field is 

often used for documenting the user story (as… I want to… so that…), although this is not 

always the case. 

2) Issue key: The unique id of the issue as specified by Mendix. It is formatted as the project 

code, followed by an incremental integer (e.g., AFM-3184 or AFM-3185).  

3) Assignee: The person who is responsible for implementing the JIRA issue. It is documented 

as the first name plus last name (e.g., Randell Rasiman) 

4) Comment: Remarks people have given on the JIRA issue. Each comment creates another 

column. For example: An issue with 2 comments contains the columns ‘Comments’ and 

‘Comments.1’. An issue with 3 comments has the columns ‘Comments, ‘Comments.1’, and 

‘Comments.2’.  It is important to note that, out of the four datasets received, only the 

Project 2 and Project 3 datasets contained comment data. The comment data was missing 

from the Project 1 and the Project 4 datasets. 

5) Description: A written account, which further explains the requirements for implementing 

the JIRA issue. 

6) Resolved: The datetime on which the JIRA issue its status was marked resolved. 

7) Created: The datetime on which the JIRA issue was created. 

8) Updated: The datetime on which the JIRA issue was last updated. 
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5.1.2 SVN Dataset 

The Subversion dataset is provided as a .txt file. Each tuple represents a revision done in a project. 

Below we will describe the data used for the study. An overview of all revision data is given in 

Figure 19. 

1) revision-number: an ascending integer, starting from 0. Revision-number 0 is reserved for 

the initialisation of the project. Revision-number 1 is reserved for the initialisation on the 
Mendix Teams server.  

2) author. This is the user who committed the revision and is stored as an email address (e.g., 

randell.rasiman@mendix.com).  

3) log. An optional log message of the commit, in which the user can describe the changes he 

or she has made. The author often includes the issue-key of the related JIRA issue inside 

the log.  

4) date. That is the datetime on which the revision was committed by the user. It follows the 

ISO 8601 UTC Zulu standard.  

5) metadata. This attribute provides metadata which include the branch name, modeler 

version, model changes, related stories, and whether it’s made in Studio or Studio Pro. The 

‘ModelChanges’ attribute in the metadata is formatted as a JSON-objects. For this study we 

mainly make use of the UnitName attribute. It contains the name given by the developer 

to a unit (e.g., microflow or form). The rationale behind this is that the given names are 

often describing the functionality of the unit. 

 

Figure 19: Overview of the data making up a revision 

 

mailto:e.g.,%20randell.rasiman@mendix.com
mailto:e.g.,%20randell.rasiman@mendix.com
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5.2 Pre-processing 

5.2.1 Loading and pre-processing 

The solution was created in a Jupyter Notebook [71], which can be found in de online Appendix. 

The data must be in tabular format for further processing. Because the acquired SVN data was 

given in text format, the data had to be transformed first. This was done using Regular Expressions 

(REGEX). Next to transforming, REGEX was also used to extract the issue-key(s) from the log 

message and store it in a distinct issue-key column. Because a classifier can only be trained using 

labelled data, only revisions containing an issue-key were retained, while revisions without were 

discarded. The implications of this decision are shown in Table 9. It is noticeable that the Project 

3 and Project 4 contain significantly less labelled revisions than the other 2 project. This is due to 

the fact that multiple development teams, each with their own JIRA-project, may operate on a 

single software project. As a result, the commit history may contain JIRA issue-keys from multiple 

JIRA projects. This was especially prevalent in the Project 3 and Project 4 projects. For our 

research, we have solely focussed on tracing the commits to the JIRA issues present in one of our 

four obtained datasets. As a result, commits traced to issue-keys not belonging to the acquired 

JIRA projects, were marked as unlabelled and therefore discarded. 

Table 9: Overview of the proportion of labelled data in the various datasets 

 Total Revisions Number of Labelled 
Revisions 

Number of Discarded 
Revisions 

Project 1 3663 (100%) 3159 (86.24%) 504 (13.76%) 
Project 2 818 (100%) 583 (71.27%) 235 (28.73%) 
Project 3 2929 (100%) 1495 (51.04%) 1434 (48.96%) 
Project 4 713 (100%) 206 (28.29%) 507 (71.11%) 

 

The JIRA datasets did not need any extra modifications were required for loading, since these were 

already in a tabular format. After loading the data into the environment, all natural text was pre-

processed using six common pre-processing methods. This was done for JIRA as well as the SVN 

dataset.  

1) All words were lowercased.  

2) All the interpunction was removed.  

3) All numeric characters were removed. 

4) All sentences were tokenized with NLTK. 

5) The stop words corpus from NLTK was used to eliminate all stop words. 

6) All remaining terms were stemmed using the Porter Stemming Algorithm [72].  

5.2.2. Trace Link Construction 

After loading and pre-processing both datasets, we can construct the candidate trace links by 

calculating the Cartesian product between the JIRA dataset and the SVN dataset. For each trace 

link, the validity was determined by checking if the JIRA issue-key was present in the commit log. 

If the JIRA issue-key was present, the trace link was classified as valid; if the JIRA issue-key was 

not present, the trace link was classified as invalid. Furthermore, we applied causality filtering to 

the trace links [56]: when a trace link had a SVN commit that was committed prior to the creation 

of a JIRA issue, it was deemed invalid due to causality. Table 10 shows an overview of the 

outcomes of these activities. 
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Table 10: The amount of valid trace links in various acquired datasets 

Dataset Before/after 
Filtering 

Number of traces Valid traces 

Project 1 Before 3,139,052 3104 (0.10%) 
After 1,375,042 3104 (0.23%) 

Project 2 Before 33,756 451 (1.34%) 
After 27,815 451 (1.62%) 

Project 3 Before 258,635 420 (0.16%) 
After 89,233 420 (0,47%) 

Project 4 Before 129,970 86 (0,07%) 
After 33,627 86 (0.26%) 

 

5.3 Feature Families 

The previously produced set of candidate traces can now be used for training the classifier. 

However, for the classifier to distinguish the valid traces from the invalid traces, the candidate 

trace links need to be represented as a set of features. In total 154 features are engineered. In this 

section we will describe these features, which fall into 4 categories: Process-related, document 

statistics, information retrieval and query quality. 

5.3.1 Process-Related 

The process-related category is based on work of [56] and consists of four features. The first 

feature captures stakeholder information by indication whether the assignee of a JIRA issue 

assignee(I) is the same person as the author of a commit author (C). The remaining three features 

capture temporal information. This is accomplished in three ways: 

1) The difference between the date of commit and the date of the JIRA issue was created. 

2) The difference between the date of commit and the date the JIRA issue was last updated. 

3) The difference between the date of commit and the date the JIRA issue was resolved. 
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5.3.2 Document Statistics 

The document statistics is based on the work of [38], and include features to gauge document 

relevance and the information contained within the documents. Within this category seven 

metrics are included:  

1) The total number of terms. This is both calculated for the JIRA issue and the commit.  

2) The total number of unique terms. This too, is calculated for both the JIRA issue and the 
commit. 

3) The overlap of terms between the JIRA issue and the commit. To calculate this metric, the 

overlap of terms is divided by the set of terms you are comparing it to. Because this may 

be accomplished in three distinct ways, each of these approaches is treated as a separate 

feature. 

a. Overlap of terms divided by the terms in the JIRA issue 

b. Overlap of terms divided by the terms in the commit 

c. Overlap of terms divided by the union of the terms between the JIRA issue and the 

commit. 

5.3.3 Information Retrieval 

The Information Retrieval feature set capture the semantic similarity between two trace artefacts. 

The was done by first applying VSM with TF-IDF weighting to transform the trace artefacts to a 

vector representation. Because we use TF-IDF weighting, the chosen corpus used for weighting 

impacts the resulting vector. For instance, the term ‘want’ occurs commonly in the JIRA summary, 

since Mendix developers put their user story in there. However, it might be a rare term when 

taking in account all the terms in a JIRA issue. Since we do not know which corpus best represents 

the trace artefact, we opted to explore multiple representations. As a result, we have constructed 

the JIRA issue vector representation with four corpora and the SVN commit with three corpora. 

This results in a total of 12 distinct pairs for each trace link candidate, as shown in Table 11. The 

cosine similarity of each pair was computed and utilized as a feature. 

Mills and Haiduc [62] showed that the chosen trace direction (i.e. which artefact in the trace link 

is used as a query has an effect on performance, especially for traceability. For this reason, we 

calculated the cosine distance in either direction, resulting in a total of 24 IR-features. We used 

Scikit-learn [73] for TF-IDF weighting and SciPy [74] for calculating the cosine distance. 

 

Table 11: VSM with TF-IDF weighting features 

ID Artefact 1 Artefact 2 

1 SVN Log Message JIRA Issue (Summary, Description, and comments) 
2 SVN Log Message JIRA Issue Summary 
3 SVN Log Message JIRA Issue Description 
4 SVN Log Message JIRA Issue Comments 
5 SVN Unit Names JIRA Issue (Summary, Description, and comments) 
6 SVN Unit Names JIRA Issue Summary 
7 SVN Unit Names JIRA Issue Description 
8 SVN Unit Names JIRA Issue Comments 
9 SVN (Log Message, Unit 

Names) 
JIRA Issue (Summary, Description, and comments) 
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10 SVN (Log Message, Unit 
Names) 

JIRA Issue Summary 

11 SVN (Log Message, Unit 
Names) 

JIRA Issue Description 

12 SVN (Log Message, Unit 
Names) 

JIRA Issue Comments 

 

5.3.4 Query Quality 

In IR, queries are used to retrieve information from a document collection. However, the 

succession of finding the right documents also depends on the quality of the query. This also 

applies when IR is used for traceability. It makes a difference whether two artefacts in a candidate 

trace link have a low cosine similarity because a) they are truly an invalid trace pair or b) the 

quality of the query artefact is low.  

Mills et al. [63] devised a number of metrics, which can infer the query quality (QQ). We have 

implemented 17 pre-retrieval QQ metrics, assessing three different aspects: 1) specificity, 

referring to the query its ability to capture the information need, 2) similarity, relating to the 

similarity between the query and the entire document collection, and 3) term relatedness, 

referring to how often terms in the query co-occur in the document collection. 

We encountered issues while computing the QQ. Our RAM capacity of 16GB was insufficient to 

complete the term relatedness QQ calculation of the Project 1 dataset and resulted in a crash. Due 
to this, as well as a shortage of training time, forced us to discontinue further analysis of the 

dataset. 

We did, however, manage to complete the computation of the 17 QQ metrics for the Project 2, 

Project 3, and Project 4 datasets. The computation was repeated, using all seven corpora 

mentioned in Section 5.3.3, since the outcome of several QQ metrics is dependent on the corpus 

of which the query is a part. This resulted in a total of 119 QQ features. 

5.4 Data Normalisation 

Normalisation of the data may lead to a reduction of estimation errors of the model in its 

hypothesis class, or can yield an faster algorithm [54]. Within the field automated RTR, some 

studies  have included data normalization as part of their pre-processing procedure [38], while 

others have not [61]. However, none of the previous studies addressed the normalisation variable 

for evaluation, leaving the effect uncertain. 

We wanted to investigate how data normalisation may enhance our treatment as part of our 

research. As a result, we produced two variants of our data. In the first variant, the data was not 

normalised and therefore remained unaltered. In the second variant, we normalised the data by 

applying a Min-Max [0, 1] scale to the values of all our features. 
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5.5 Rebalancing 

As was explained in Section 3.3.4 Machine Learning, the construction of the candidate trace links 

result in a highly imbalanced dataset, which is also observable in Table 10. For this study, we 

evaluated four different strategies, proposed by Mills et al. [38], to deal with this imbalance:  

1) None. There is no rebalancing method applied to the data.  
2) Oversampling. The minority class is oversampled until it reaches the size of the majority 

class, by applying SMOTE. This is the default setting in Scikit-Learn. 

3) Undersampling. The majority class is randomly undersampled until it has the same size as 

the minority class, by applying the random undersampling technique. This is the default 

setting in Scikit-Learn. 

4) 5050. In this strategy we are combine over- and undersampling. First, the minority class 

is oversampled using SMOTE with a sampling strategy of 0.5. Then undersampling is 

applied to the majority class until the sizes of both classes are equal. 

 

5.6 Classification Algorithms 

For the design of the treatment, we looked at two supervised machine learning algorithms for 

classifying trace links as valid or invalid. These were Random Forests and Gradient Boosted 

Decision Trees. These motivation for these two algorithms is twofold. First, Random Forests is 

shown to be the best classifier in RTR by earlier research [38], [56]. Second, Gradient Boosted 

Decision Trees have demonstrated to outperform Random Forests in other domains [75], [76]. 

To implement the Random Forest algorithm, we used the framework of Scikit Learn. To 

implement the Gradient Boosted Decision Trees we used two different frameworks: XGBoost, and 

LightGBM. These frameworks differ in two major respects [77], [78]. The first distinction is in the 

method of splitting. XGBoost splits the tree level-wise rather than leaf-wise, whereas LightGBM 

splits the tree leaf-wise. This distinction is illustrated in Figure 20. 

 

 

Figure 20: Leaf-wise Tree Growth (top) and Level-Wise Tree growth (bottom) 
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The second distinction is the method of determining the best split value. XGBoost uses histogram-

based algorithm, which splits a feature its data points into discrete bins. These bins are then used 

to find the best split value. LightGBM uses a subset of the training data rather than the entire 

training dataset. It employs a sampling technique, called Gradient Based One Side Sampling, which 

samples the training data based on gradients, resulting to significant faster training times. 

5.7 Hyperparameter tuning 

All three classification frameworks have various hyperparameters which can be changed. 

Changing these hyperparameters may change the performance of the models. Due to the 

computational time needed to tune the hyperparameters, we only considered 5 hyperparameters 

per framework. These hyperparameters were chosen based on their popularity, which was 

determined as follows: 

1) Query Google.com with “<Model Name> + hyperparameter tuning”. 

2) Collect all articles on page 1, from the domains: Medium, Towardsdatascience, or Analytics 

Vidhya. 

3) Tally the hyperparameter mentions in the articles. 

The top 5 most tallied hyperparameters are considered for tuning in the study.  Sections 6.3.2 and 

6.4.2 go into further detail on this subject. 

5.8 Summary 

In this Chapter we explained that we have represented the trace into a total of 154 features. These 

features are classified into four families: Process-Related (4), Document Statistics (7), IR-Related 

(24), and Query Quality Metrics (119). In addition, we demonstrated a variety of settings and 

strategies for selecting classification algorithms, rebalancing training data, adjusting 

hyperparameters, and data normalisation. In the next chapter, we will experiment with these 

settings and strategies to identify the best performing model to help with the scenarios described 

in Section 4.4. 
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6. Results 
In the previous chapter we have covered all components of the treatment. These components can 

be configured in a variety of combinations, each of which yields a different result. In this chapter, 

we will experiment with these configuration combinations, in order to find the best configuration. 

First, we will determine the baseline results of our treatment. This baseline will serve as a 

reference point of the possible performance. Then, we discuss the experimentation with Min-Max 

[0,1] normalization of the training data to see if this process can significantly impact our 

performance. We considered all 154 features when obtaining these results. 

From there, the scope of the experiment will be narrowed by focussing on the two configurations 

best suited to the scenarios, trace recommender system and trace recommender system, as 

specified in Section 4.4. We will provide an explanation in terms of feature importance for each of 

the two models. This explanation is followed by an experiment to find out if hyperparameter 

tuning is able to significantly enhance the performance. 

6.1 Baseline Results 

We wanted to get an initial evaluation of the performance of our treatment model, which we 

considered as the baseline result. We examined 12 alternative configurations of rebalancing 

techniques (discussed in Section 5.5) and classification algorithms (discussed in Section 5.6) for 

this evaluation. These 12 configurations are shown in Table 12. 

Table 12: Evaluated configurations of the treatment 

Rebalancing Technique Classification Algorithm 

None Random Forests 
GX Boost 

LightGBM 
SMOTE Random Forests 

GX Boost 

LightGBM 
Undersampling Random Forests 

GX Boost 

LightGBM 
5050 Random Forests 

GX Boost 
LightGBM 

 

Each configuration was evaluated on every dataset independently. For this evaluation each 

dataset was first divided into a train and test set using an 80:20 split. Each of these splits was 

stratified, meaning that each class was distributed proportionally between the two splits. Then 

the model was trained with a stratified 10-fold cross validation on the train set and run once on 

the test set of which the test score is recorded. This procedure was repeated 10 times for each 

implementation, and averaged. A Process-Delivery Diagram [79] of this procedure is shown in 

Figure 21.  
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Figure 21: Process-Delivery Diagram depicting the method we used to obtain our results 
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The full results of these evaluations can be found in the online Appendix. Figure 22 depicts the 

average precision, recall, F0.5-measure, F1-measure, and F2-measure over all iterations for all 

configurations of the treatment design. The different rebalancing techniques are presented on the 

horizontal axis, while the outcomes for the various datasets are given on the vertical axis. The 

three different colors respresent the three different classification algorithms used. Table 13 shows 

the average F-measures for the three datasets. 

 

Figure 22: The mean precision, recall, F-0.5, F1, and F2 metrics for the various model configurations on non-normalized 
data 
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Table 13: Mean F0.5-measure, F1-measure, and F2-measure for the different non-normalized configurations. The asterisk 
denotes the combinations for which the greatest F-measure was obtained. 

Algorithm 
Rebalancing 

Random Forests XGBoost LightGBM 

F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2 
No Rebalancing 67.97 50.09 40.01 77.32* 51.41 46.38 60.35 55.45 52.69 

SMOTE 69.79 62.52 56.77 73.23 71.35* 70.65 69.69 69.32 69.18 

Undersampling 11.97 17.37 32.25 13.60 18.47 33.11 13.10 18.66 33.28 

5050 62.76 61.25 60.03 65.80 69.03 72.73 63.05 67.78 73.48* 

 

Upon initial review, the results indicate that using a different rebalancing approach produces the 

most notable variations in performance across all datasets. When no rebalancing is applied, the 

maximum precision can be achieved, while still maintaining a decent recall, resulting in the 

highest F0.5-measure (with a top value of 77.32 for XGBoost). 

SMOTE reduces precision while increasing recall, resulting in the greatest F1-measure (with a 

peak value of 71.35 for XGBoost). This indicates that this is the optimum equilibrium between 

precision and recall. Our findings support the findings of Mills et al. [38], who demonstrated that 

using SMOTE as a rebalancing strategy results in the highest F1-score. 

When we use Undersampling as a rebalancing strategy, we get the highest recall scores of any 

rebalancing strategy. However, the strategy produces impractical precision. As a results all 

undersampling configurations belong to the group with the lowest F-measures.  

Altough Undersampling by itself is impractical, combining the strategy with SMOTE yields a better 

balance. The 5050 rebalancing strategy creates a better balance by trading recall for precision. 

This results in a performance that retains strong recall while providing a more practical precision. 

This is quantified by the F2-measure, which is greatest in the 5050 model configuration (with a 

top value of 73.48). 

6.1.1 Statistical Comparison of Rebalancing Strategies 

In this section we will evaluate if these differences were statistically significant. Because the 

primary aim is to establish if the rebalancing strategy has any significant effect in general, we used 

the F1-score rather than the F0.5-score or F2-score. Finetuning for each scenario is currently out 

of scope and will be explored later. 

For the evaluation we ran a non-parametric Friedman test. It rendered a Chi-square score of 70.83 
for Random Forests, a Chi-square score of 54.99 for XGBoost, and a Chi-square score of 75.00 for 
LightGBM. All three outcomes are significant with (p < 0.01). This indicates that the rebalancing 
strategies are significantly different. As a posthoc test, we use the Nemenyi test to identify which 
specific strategies have distinct means. These results are shown in Table 14, Table 15, and Table 
16.  
 
When setting Random Forests as a classifier, the choice of rebalancing strategy matters. The 
Nemenyi test scores in Table 14 indicate a couple of things: 1) None is significantly different (p < 
0.01) than the other rebalancing methods. 2) SMOTE and 5050 are significantly different (p < 
0.01) than None and Under. 3) 5050 and SMOTE are not significantly different (p > 0.01).  
 
 



6. Results  | 50 

 

These results imply that the Random Forests algorithm should be used in combination with either 
the SMOTE or 5050 rebalancing strategies. This is because SMOTE has the greatest mean F1-score 
and 5050 does not perform significantly worse. It should, however, be emphasized, that 5050 
should be the preferable option. Because this strategy includes undersampling, you have fewer 
data points to train on, resulting in a shorter training period. 
 
 

Table 14: Nemenyi test results for Random Forests. The asterisk denotes the combinations which were found to be 
significantly different (p < 0.01). 

 None SMOTE Under 5050 

None - 0.003144* 0.001497* 0.001808* 
SMOTE 0.003144* - 0.001000* 

 
0.900000 
 

Under 0.001497* 0.001000* - 0.001000* 
5050 0.001808* 0.900000 0.001000* - 

 
 
Two findings stand out, when we look at the Nemenyi test results for the XGBoost classifier in 
Table 15. First, the undersampling rebalancing approach differs significantly from the other three 
strategies. Second, the SMOTE, undersampling, and 5050 rebalancing strategies do not 
significantly differ from each other. Based on these two findings, as well as the fact that SMOTE 
gets the highest mean F1, SMOTE, undersampling, and 5050 can all be considered for use with 
XGBoost. 
 
 

Table 15: Nemenyi test results for XGBoost. The asterisk denotes the combinations which were found to be significantly 
different (p < 0.01). 

 None SMOTE Under 5050 

None - 0.77998 0.001* 0.90000 
SMOTE 0.77998 - 0.001* 0.90000 
Under 0.001* 0.001* - 0.001* 
5050 0.90000 0.90000 0.001* - 

 
 

The Neymyi results for the LightGBM, as seen in Table 16, imply three things: First, there is a 
significant difference between SMOTE and undersampling (p < 0.01). Second, the F1-results for 
SMOTE and undersampling vary significantly (p < 0.01). Third, 5050 and SMOTE do not differ 
significantly (p > 0.01). 
 
This leads to the following conclusion. Table 13 shows that 5050 produced the highest average 
F1. With this in mind, and the fact that 5050 and SMOTE do not differ significantly, both 
rebalancing strategies can be considered for use with the LightGBM classifier. 
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Table 16: Nemenyi test results for LightGBM. The asterisk denotes the combinations which were found to be 
significantly different (p < 0.01). 

 None SMOTE Under 5050 

None - 0.001000* 0.002623* 0.014361 
SMOTE 0.001000* - 0.001000* 0.438945 
Under 0.002623* 0.001000* - 0.001000* 
5050 0.014361 0.438945 0.001000* - 

 

6.2.2 Statistical Comparison of Classification algorithms 

When keeping the rebalancing strategy and dataset constant, we can observe that the 

performance disparities across the different classification algorithms are less pronounced, yet still 

present. In virtually all configurations, Random Forests performs significantly worse than 

XGBoost and LightGBM. This is a interesting finding considering the fact that Random Forests is 

often shown to be the best classifier in RTR [56], [63]. Depending on the specific dataset and 

rebalancing strategy, XGBoost performs better at times, while LightGBM performs better at 

others.  

We have examined whether these differences were statistically significant, using the Friedman 

test and with posthoc Nemenyi test. However, in contrast to the previous section, where we 

examined the overall performance of the rebalancing strategies based on F1, we now concentrate 

on identifying the statistically best classifier specific for each of the two proposed scenarios. That 

is, we will look for the classifier with the best F0.5 performance as well as the classifier with the 

best F2 performance. 

For identifying the best F0.5 scoring classifier, we considered the no rebalancing strategy. The 

reason for this was that the no rebalancing strategy (in combination with XGBoost) produced the 

highest mean F0.5-score, as was shown in Table 13. As a result, we performed the Friedman test 

on the F0.5-scores for the No rebalancing strategy. This rendered a Chi-square of 23.41 which was 

significant (p < 0.01). The results of the Nemenyi test are shown in Table 17. The results suggest, 

when configuring a model for the trace maintenance system that the performance of XGBoost is 

significantly different than that of Random forests and LightGBM. 

Table 17: Nemenyi test results for none rebalancing strategy on F0.5. The asterisk denotes the combinations which were 
found to be significantly different (p < 0.01). 

 Random Forests XGBoost LightGBM 

Random Forests - 0.001* 0.900 
XGBoost 0.001* - 0.001* 
LightGBM 0.900 0.001* - 

 

In order to find best F2 scoring classifier, we evaluated the 5050-rebalancing strategy. This choice 

was motivated by the fact that the 5050 rebalancing strategy yielded the highest mean F2-score, 

as was shown in Table 13. On that account, we ran the Friedman test on the F2-scores for the 5050 

rebalancing strategy. This rendered a Chi-square of 39.47 which was significant (p < 0.01). The 

results of the Nemenyi test are shown in Table 18. They indicate that Random Forests significantly 

differs from the Boosted Decision Trees algorithm. When opting to use the Boosted Decision Trees 
algorithm, it does not matter which framework you choose. XGBoost and LightGBM are not 

significantly different. 
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Table 18: Nemenyi test results for 5050 rebalancing strategy on F2. The asterisk denotes the combinations which were 
found to be significantly different (p < 0.01). 

 Random Forests XGBoost LightGBM 

Random Forests - 0.00100* 0.00100* 
XGBoost 0.001* - 0.848105 
LightGBM 0.001* 0.848105 - 

 

6.2 Results of Normalising the baseline configuration 

As explained in Section 5.4, we evaluate the effect of Min-Max [0,1] scaling to the values of our 

features. The mean precision, recall, and F-metrics for the normalized dataset are shown in Figure 

23 and the mean F-metrics are shown in Table 19. These findings still show that using various 

rebalancing techniques makes the most significant difference in performance. The effect of 

normalizing the data before training, on the other hand, appears to be negligible. However, one 

distinction can be observed. When non-normalized, a combination of 5050 rebalancing and 

LightGBM produces the best F2 scores in all three datasets. However, when we normalize the data, 

we see that the performance of the Project 4 project suffers substantially. 

To test the significance between these two methods, we have formulated the following 

hypotheses: 

H0: Min-Max [0,1] normalizing does not change the F1 of the classification models (alpha=0.05) 
H1: Min-Max [0,1] normalizing does change the F1 of the classification models (alpha=0.05) 
 
For each of the 12 configurations we did a Mann-Whitney U test between the non-normalized F1 
results with the normalized results for each of the 12 configurations. The U statistics (n=30) 
together with the P-values are given in Table 20. We find that normalisation has no significant 
effect on the F1-scores of the classification models, and therefore we fail to reject the null-
hypothesis. However, it is worth noting that the configurations XGBoost + 5050 (p = .07), 
LightGBM + SMOTE (p = .02), and LightGBM + 5050 (p = .07 nearly passed the significance level. 
 

Table 19: Mean F0.5-measure and F2-measure for the different normalized configurations 

Algorithm 
Rebalancing 

Random Forests XGBoost LightGBM 

F0.5 F2 F0.5 F2 F0.5 F2 
No Rebalancing 65.91 27.79 78.40 48.20 61.93 42.18 

SMOTE 70.28 43.70 73.53 52.49 65.28 50.68 

Undersampling 11.73 23.58 12.77 24.49 13.25 25.06 

5050 63.83 47.64 61.13 52.80 59.98 52.02 

 
Table 20: The Mann-Whitney U statistics for the different configurations 

Algorithm 
Rebalancing 

Random Forests XGBoost LightGBM 

None 395.0 (p = .21) 390 (p = .19) 401 (p = .24) 
SMOTE 417.5 (p = .32) 443.0 (p = .46) 304.5 (p = .02) 
Under 420 (P = .33) 442 (p = .46) 441.0 (p = .45) 
5050 397.5 (p = .22) 348 (p = .07) 350.0 (p = .07) 
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Figure 23: Mean precision, recall, F0.5, F1, and F2 metrics for the different model configurations using Min-Max [0,1] 
normalized data 

 

6.3 Best Model for Trace Recommendation Scenario. 

From our baseline results, we have chosen the best model fit (i.e., highest mean F2-score) for the 

trace recommendation scenario. This was a configuration with LightGBM as a classifier and 5050 

as a rebalancing strategy, and no Min-Max [0,1] normalisation in the pre-processing, which 
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averaged (n = 30) an F2-score of 73.48 (SD = 6.64). In this section, we further explore this 

configuration of the model by doing another 25 runs to minimise sampling error. These results 

are then used to explain the most important features. Finally, a discussion follows about whether 

the model can be further improved by hyperparameter tuning. 

6.3.1 Best Features of Trace recommendation features 

In this Section we present the features which are deemed the most important. We report this in 
terms of total gain [80], which was the default metric of feature importance in LightGBM. Of each 

run we have logged the total gain of every individual feature and have averaged it. These averages 

were then used to find the top 5 most important features for each individual dataset. The results 

are shown in the boxplots of Figure 24.  

 

Figure 24: Total gain for the 5 most important features for the Project 3 (left), Project 2 (middle), and Project 4 (right) 
datasets 

 

These results reveal a number of interesting findings. The first finding is that the process-related 

feature family provides a lot of information on whether a JIRA issue and a commit should be traced 

together. Both the Resolved_commit_date_dif and Updated_commit_date_dif features are among the 
top five most significant features in all three datasets. This suggests that the time between 

committing and altering the status of a JIRA issue is a significant indicator of whether these should 

be traced. The last process-related feature assignee_is_commiter is likewise a significant indicator 

for trace validity, ranking in the top five in two of the three datasets. 

The second finding is that the TF-IDF representation of the trace artefact appears to be important. 

We mentioned in Section 5.3.3 that we examined various TF-IDF representations. For example, 
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one approach is to represent a commit as a whole by taking into account all natural language, such 

as logs and unit names. The second approach is to express the commit as individual subsets and 

represent the commit logs separately from the unit names. Most research [38], [56], [64] mainly 

consider the first approach. However, our findings indicate that the second approach would be 

more beneficial to the classifier. Figure 23 indicates that the cosine similarity between a commit 

log and a JIRA problem, Vsm_logs_jira_as_query, is the third most important feature for evaluating 

the authenticity of a trace, with a mean total gain of 20385.58 (SD = 4546.96). This is significantly 

higher than the cosine similarity between the whole commit and the JIRA issue, 

vsm_svn_jira_jira_as_query, which has a mean total gain of 9939.16 (SD = 1744.80). A similar 

argument can be made for additional top five features, such as vsm_comments_comments_as_query 

or jira_summaries_as_query_queryscope. As a result, we may argue that special attention should be 

paid to how we represent the trace artefacts. 

The last finding is that the top five most important features differ between the three datasets. 

Since the datasets originate from different projects, the data might have been developed by 

different team composition. The data characteristics are likely to alter depending on the team 

makeup, resulting in various features being considered important by the model. As a consequence, 

provided resources and sufficient training data are available, we may propose training the model 

again for each new project, resulting in a project-finetuned model rather than a generic trained 

model. 

6.3.2 The Results of Hyperparameter Tuning   

To produce the baseline results, we have used the default settings of the classification algorithms. 
We wanted to examine whether these results could be further improved by optimizing the 
hyperparameters of the model, by means of a Randomized Search on the hyperparameters, for 
which the Scikit-Learn library was used.  
 
For this experiment, we considered five hyperparameters: 

1) Num_leaves: This controls the maximum number of leaves in one tree, and acts as the main 
parameter for determining the complexity of the model 

2) Min_data_in_leaf: The minimum number of data points required in a leaf, in order for the 
leaf to be added to the tree. 

3) Max_depth: The maximum depth a tree can have in the model. 
4) Learning_rate: The shrinkage rate used in update 
5) Max_bin: The maximum number of bins for each feature. A larger value can improve 

accuracy at the costs of training speed. 
 
For each of the five hyperparameters we have specified a set of ten values. These values are shown 

in Table 21. A total of 100 samples were drawn from the search space. To produce the results, we 

once again divided the data into a train and test set using an 80:20 stratified split. We applied the 

Random Search Algorithm on a stratified 10-fold split. Both the best cross-validation F2-score and 

test F2-score were recorded. We have repeated this procedure 25 times, of which the results are 

shown in Figure 25.  
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Table 21: The considered search space for the Randomized Search on the LightGBM model 

Hyperparameter Value sets *indicates the default setting 

Num Leaves {11, 16, 21, 26, 31, 36, 41, 46, 51, 56} 
Min_data_in_leaf {5, 10, 15, 20*, 25, 30, 35, 40, 45, 50} 
Max_depth {-1, 100, 200, 300, 400, 500, 600, 700, 800, 

900} 
Learning_rate {0.1*, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.0} 
Max_bin {50, 100, 150, 200, 255*, 300, 350, 400, 450, 

500} 
 
 

 

Figure 25: Comparison of F2-scores between default and hyperparameter tuned LightGBM for Cross-Validation (left) and 
Test (right) 

We observe that the F2 scores on cross-validation were higher in the Hyperparameter tuned 

group than the default group. A Mann-Whitney U test showed significantly different results, U 

(NDefault=75, NHyperparameter tuned = 75) = 1897, p < .01. However, the most interesting is of course the 

F2-scores on the test set. These turned out not to be significant, U (NDefault=75, NHyperparameter tuned = 

75) = 2787, p = 0.46. This possibly indicates that hyperparameter tuning leads to an overfit on the 

training data but does not necessarily impact the generalizability of the model. 

6.4 Best Model for Trace Maintenance Scenario 

The best model fit, in terms of mean F0.5, for the trace maintenance scenario, was a configuration 

with XGBoost as classifier, no rebalancing strategy applied, and a Min-Max [0,1] normalisation 

applied to the data. We will now discuss the model in terms of feature importance, as we did with 

the best trace recommendation model. This will be followed by the results of the hyperparameter 

tuning experiment. 
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6.4.1 Top 5 most important features 

In this section we present the features which are deemed the most important for the scenario of 

trace maintenance. We used the same method for assessing feature importance as we did for 

assessing feature importance in the trace recommendation scenario. In contrast to that scenario, 

we now express feature importance in terms of average gain rather than total gain. This is because 

the default feature significance metric in XGBoost is average gain rather than total gain. It makes 

no difference because these metrics are always used to evaluate the relative importance of 

features within the same model, not between models. The top five most important features is 

shown in  Figure 26. 

A number of observations can be made from this. Once again, the project-related feature family is 

well-represented among the top five most important features. Remarkable, however, is the fact 

that none of them are present in the Project 4.  

Furthermore, as compared to the model for trace recommendation, the query quality metrics are 

more prominent in the top 5. The most significant feature in the Project 2 dataset is 

JiraSummariesAsQuery maxEntropy, and the Project 4 datasets its top 3 entirely consists of query 

quality metrics.  

 

Figure 26: Average gain for the 5 most important features for the Project 3 (left), Project 2 (middle), and Project 4 (right) 
datasets 
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6.4.2 The Results of Hyperparameter Tuning   

For hyperparameter tuning the best model for the trace maintenance scenario, we applied the 

same strategy as for the trace recommendation scenario. To the search space for the randomized 

search belonged five parameters. 

1) Learning Rate: Identical to the learning rate parameter in the LightGBM Framework 

2) Max Depth: Identical to the max_depth parameter in the LightGBM Framework 
3) Min_child_weight: The minimum sum of instance weight required in a child. 

4) Gamma: Minimum loss reduction required to make a further partition on a leaf node of the 

tree.  

5) Colsample_byTree: The proportion of parameters utilized for training each tree 

For each of the five parameters, 10 values were considered, which are shown in Table 22.  

The results for the hyperparameter tuning are produced in an identical way as with the 

recommendation system. The results are shown in Figure 27. Our findings reaffirm the results of 

hyperparameter tuning for the trace recommendation scenario. The cross-validation F0.5-scores 

differ significantly, U (NDefault=75, NHyperparameter tuned = 75) = 1106, p< .01, while the test F0.5-scores 

did not,U(NDefault=75, NHyperparameter tuned = 75) = 2500, p = 0.12). 

Table 22:The considered search space for the Randomized Search on the XGBoost model 

Hyperparameter Range (Default value indicated by *) 

Learning_rate {0.15, 0.20, 0.25, 0.30*, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60} 
Max_depth {2, 4, 6*, 8, 10, 12, 14, 16, 18, 20} 
Min_child_weight {1*, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
gamma {0.0*, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 
Colsample_bytree {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0*} 

 

  
Figure 27: Comparison of F0.5-scores between default and hyperparameter tuned XGBoost for Cross-Validation (left) and 

Test (right) 
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7. Discussion 
In this chapter, we will discuss the findings of our study. First, we will present the main 

contributions together with their implications. Then, the limitations of our method, together with 

their implications are discussed. Finally, all the threats to the validity are discussed, together with 

our strategy of mitigation. 

7.1 Main Contributions 

The main contribution of this study lies in the acquisition of new insights on the specific context 

of RE in MDD. These insights were then used to create a treatment specially tailored to the needs 

of this context. As a result, the gap between academic research and industrial demands has been 

narrowed, bringing us closer to the vision of  ubiquitous requirements traceability [31]. This type 

of research adheres to the idea of context-driven research. finternalThis type of research is 

essential, because the applicability and scalability of software engineering solutions heavily 

affected by the contextual, organizational, and domain-related factors.  

Furthermore, we contribute by providing insights on using Gradient Boosted Trees for RTR. We 

have presented data on how this class of algorithms (i.e., LightGBM or XGBoost) performed and 

how they compared to the Random Forests algorithm. This is, to the best of our knowledge, the 

first study to provide such an empirical comparison. 

Additionally, we demonstrated that the representation of a trace artefact is important to the 

classifier. In our results, we found that features that used TF-IDF representation of a subset of a 

trace artefact (e.g., summary, description) were more prominent in the top important features. 

Finally, this research contributes by advising which specific rebalancing technique belongs to 

which scenario. Mills et al. [38] already have shown that different rebalancing strategies yield 

different results. However, they were primarily interested in finding the most optimal balance 

between precision and recall, so results are more generalizable. In our research, we specifically 

looked at which rebalancing strategy was best for a trace recommendation and which rebalancing 

strategy was best for trace maintenance. 

7.2 Threats to validity 

The threats to the validity of this research are discussed using the four aspects of validity [23]. 

These consist of the Construct Validity, Internal Validity, External Validity, and Reliability. For 

each aspect, the threats and the strategy to overcome them are discussed in the following sections. 

7.2.1 Construct Validity 

The extent to which the operational constructs reflect the theoretical structures is referred to as 

construct validity. Several steps have been made to mitigate the threats. First, because all study 
was done by a single researcher, there was no possibility of misunderstanding of the data. Second, 

when available, opensource libraries, such as Scikit-Learn, have been used to operationalize the 

constructs. 

However, it should be emphasized that not everything can be mitigated. In particular, there are 

threat to the construct validity of the query quality metrics [63]. No open-source Python library 
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was found to compute these metrics. As a result, these computations were coded by the 

researchers themselves. This poses threats in two ways. First, personal interpretations of the 

theory may result in operational constructs, which did not sufficiently reflect the theoretical 

constructs. Second, there might have been programming mistakes that influenced the results. 

Another threat stems from the origin of our labelled data. For the labelled data we made use of 

the manually produced traces by the Mendix engineers. As we discussed previously in Chapter 1, 

this type of RT is prone to errors. Because we have not validated if the traces we created were 

legitimate, a garbage-in-garbage-out scenario is a possibility. 

7.2.2 Internal Validity 

The internal validity relates to the level to which the claims made in research are not caused by 

an unanticipated third factor.  We attempted to mitigate threats by conducting a literature study 

and conducting semi-structured interviews to ensure that all relevant factors were identified. 

Despite these efforts mitigate the threats to some extent, two of those factors continue to pose a 

threat to the internal validity. 

The first threat is related to how we compared our models to one another. We obtained three 

datasets for our research. Two datasets contained JIRA comment data, whereas one did not. 

despite the fact they are not directly comparable, we evaluated all three datasets in a comparison. 

We were aware of the discrepancy between them and have given great consideration to the claims 

we made based on this comparison. 

The second threat relates to the data quality used for the study. The studied organisation has 

imposed a number of quality standards that its JIRA issues and commits must meet. To that extent, 

it is plausible that this level of data quality is required for the models to perform successfully. As 

a result, it is unclear if the model works effectively with less comprehensive data.  

7.2.3 External Validity 

The external validity is concerned with how generalizable the study results are and how valuable 

they are to individuals outside of the study. We did our best to mitigate this evaluating the 

treatment on datasets from three distinct projects. Furthermore, these projects were obtained 

from 2 separate teams, each with its unique set of procedures and practices. Finally, to minimize 

overfitting and enhance generalizability, we followed the standard practice of having a distinct 

training and test set. 

Despite our best efforts to mitigate the threats, not everything can be accounted for. All the results 

were obtained from a single organisation. As a result, the external validity is threatened since the 

results are biased towards the examined organisation. This organization may have had unique 

practices that were not seen elsewhere. Consequently, we had to be cautious in how we expressed 

our conclusions. 

 

 

7.2.4 Reliability 

The degree to which the results are dependent on the researcher who conducted the research is 

referred to as the aspect of reliability. When another researcher does the same study, the 

outcomes should be the same. To accomplish this we followed the guidelines of peer-reviewed 
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methods by Wieringa [21], Kitchenham [22], and Longhurst [25]. Furthermore, the exact 

operationalisation of these methods was documented into great detail, and we have tried to be as 

unambiguous as possible, for other researchers to replicate. In addition, all relevant documents 

deemed useful (e.g., interview protocol, Jupyter Notebooks) are included in the Appendix. Finally, 

the raw results are accessible in the online Appendix. 
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8. Conclusion and Future Work 
This research studied how requirements traceability can be improved in a model-driven 

development environment. This was done by studying relevant literature, conducting semi-

structured interviews at Mendix, designing a trace link classifier for the MDD environment, and 

evaluating its performance. 

This chapter concludes the research by answering the research questions formulated in Chapter 

1. Furthermore, we outline directions for future research. 

8.1 Sub Questions 

Before answering the main research question, we will first go through the process of answering 

the sub questions.  

 

The goal of this sub question was to get familiar with RT fundamentals, and to understand the 

present challenges identified by the research community. This was answered by reviewing the 

literature in a semi-systematic way. 

There are several study areas in requirements traceability research. Several scholars believe the 

area that requires the most attention is that of automatically recovering trace links between 

requirements and some other artefact, which is known as the process of automatic trace recovery. 

This works as follows: given are two trace artefacts, there is either a trace link between them or 

there is not. An algorithm is then tasked with automatically determining whether there is a trace 

link between them. 

 

The goal of this sub-question was to identify which algorithms are used for automatic trace 

recovery. This question was also answered by reviewing the literature.  

Algorithms used for automatic trace recovery can be categorized into four orthogonal categories: 

information retrieval, heuristic, machine learning and deep learning [17]. Researchers believe 

that Machine Learning and Deep learning approaches belong to the state-to-the-art for 

establishing the trace links [17]. As a results, new RT tools should concentrate on incorporating 

these technologies.  

In this study, we have concentrated on the algorithms from the machine learning paradigm. The 

performance of several machine learning classifying algorithms in RTR tasks have been 

researched, with Random Forests outperforming the others.  

However, the Boosted Decision Trees algorithm was not included in these studies' comparisons. 

Studies in other domains demonstrated that this algorithm outperformed Random Forests [75], 

[76], therefore we evaluated it for the RTR task as well. 

What is the state-of-the-art in Requirements Traceability? SQ1 

What algorithms are needed to automatically trace artefacts? SQ2 
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The aim of this question was to get familiar with the MDD context, in which our treatment would 

operate in. At Mendix, semi-structured interviews were used to address this question.  

According to the findings of these interviews, developers produce software to the principles of the 

Agile Manifesto and releasing software in sprints. During a sprint, developers implement a set of 

requirements, stored in JIRA issues, in their software. Mendix Studio, their IDE, is used for this 

task. Changes to the software are made locally with Mendix Studio. Each modification to the model 

is recorded in a commit, which is later synced with the Mendix Team server, saving all commits 

and model data. 

 

Developers at Mendix manually trace their commits to JIRA issues by noting the associated JIRA 

issue ID in the commit log. The current situation of working with two separate systems (i.e. JIRA 

and Mendix Studio) is not optimal. This problem would be improved by embedding a trace system 

in Mendix Studio. 

This embedding might support one of two envisioned scenarios. In the first scenario, the 

embedded system should recommend traces to the developer whenever he or she wants to 

commit their changes to the Team servers. In the second scenario, the system should serve as a 

trace maintenance tool. Its purpose is to recover traces between commits and JIRA issues in 

existing projects for commits which are now untraceable. 

 

All commit data is stored on the Mendix Team Server, which we were able to obtain. Because 

developers include JIRA issue IDs in the log message, this data could be used to train a ML 

classifier. Corresponding commit data and JIRA data were obtained from four distinct projects. 

This data is used to develop and build an RT tool using a combination of opensource Python 

libraries.  

 

When validating the performance of an automatic RTR tool, we must first formulate what we are 

most interested in. In the scenarios we have envisioned, this is the classification of valid traces 

(true positives). The two measures used to assess this are precision and recall. For this reason, 

both metrics belong to the most popular metrics used when validating RT tools.  

Furthermore, it is important not to look at both metrics individually, but rather to look at the most 

ideal balance. The F-measure, which has several variants, is the metric used to quantify this 

balance. Depending on the scenario, a different variant must be considered. For the trace 

recommendation system, the F2-measure is important, while for the fully automatic trace 

maintainer the F0.5-measure is important. 

How do MDD artefacts and requirements co-evolve in an MDD company? SQ3 

How to embed automatic tracing algorithms in a RT tool for the MDD domain? SQ4 

What are the resources available to design and construct a RT tool for the MDD 

domain? 
SQ5 

How do we validate the effectiveness of a RT tool for the MDD domain? SQ6 
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8.2 Main Research Question 

Now that all sub questions are answered, we can provide an answer to the Main Research 
Question: 
 

 

Before starting with automating, you first need to get clear what scenario the automatic tracer is 

used for. For the MDD environment that we studied, we identified 2 scenarios which are most 

beneficial. The first scenario recommends trace links between JIRA issues and SVN commits to the 

developer. In the second scenario, a tool maintains a project by recovering trace links between 

JIRA issues and SVN commits in a fully automatic way.  

This was achieved by first producing the cartesian product between the JIRA issue set and the SVN 

commits set is created. Each element of this result is a candidate trace. Each trace is then 

represented as features of 4 categories: process-related, document statistics, information-

retrieval, and query quality.  

Because we are producing a Cartesian product, we are creating a highly imbalanced dataset. 
Depending on the scenario, it can be beneficial to rebalance the data. Once this is done, we can 

train a ML classifier to identify which of the candidate traces are valid. 

In this study, we have successfully constructed a prototype of the design using data acquired from 

Mendix. We were able to get a mean F0.5-score of 77.32 employing XGBoost as the ML classifier, 

with no rebalancing on the training data, and Min-Max normalization [0,1] on the training data, 

when we configured our classifier for the scenario of Full automated maintenance.  

When we configure our classifier for the scenario of trace recommendation, we get an F2-score of 

73.48 by using the LightGBM ML classifier, the 5050-rebalancing strategy, and no Min-Max 

normalizing on our training data. 

 

8.3 Future Work 

This research has shown how traces between JIRA issues and MDD commits can be automatically 

recovered. Although the general concept is explored and applied, certain aspects can be studied 

in greater depth.  

First, we have developed various IR-features. These features rely on the TF-IDF vector 

representation. For the TF-IDF calculations, we have considered multiple corpora. For 

representing a JIRA issue: entire JIRA issue, JIRA summary, JIRA comment, and JIRA description. 

For representing a commit issue, we utilized entire commit, commit log, and commit unit names. 

When producing the results, we have utilized all features and let the model determine which 

feature is most usable. A future study should investigate what vector representation provides the 

best results. 

How to automate tracing between requirements and models in a Model Driven 

Environment? 
MQ 
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Furthermore, another aspect of the feature engineering process can be examined. To the family of 

query quality metrics, we have examined a total of 3 categories: specificity, similarity, term 

relatedness. However, Mills et al. [63] also identified metrics of the ‘coherency’ category. We have 

briefly considered implementing metrics of this category; however, it was infeasible due to 

limitations in time. A follow-up study could include this category into the feature set and evaluate 

its impact. 

Additionally, more research can be done about which features to include in the model. For our 

study, we have considered all engineered features. However, during the feature engineering 

process it was noted that, on occasions, introducing new features degraded performance. One 

cause might be that a higher number of features will overfit the data. This is especially true for the 

query quality metrics, which comprise the vast majority of our feature set. Using feature selection 

methods to remove noise and reduce model complexity may enhance performance. Future 

research could investigate which strategies are most suited for the MDD domain.  

Another direction for further research is to the use of Gradient Boosted Trees in RTR. We 

demonstrated that these algorithms outperform Random Forests in a MDD domain. Is this sort of 

algorithm particularly suited to RTR problems, or do they possess qualities that other algorithms 

do not? To assess this, we must run this algorithm on datasets accessible from CoEST that are 

frequently used in RT research [82]. This allows us to directly compare the performance to prior 

research. 

Finally, we limited the scope of this research to trace JIRA issues to commits. It is a great first step, 

but further research needs to be done to see if it feasible to trace requirements directly to a model 

unit. These findings would enable new scenarios. For instance, the model could warn the 

developer whenever he she creates a model unit, which is not yet documented in JIRA. In addition, 

JIRA problems and version control systems are not limited to the MDD domain. Future studies can 

determine whether similar findings apply to other fields. 
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Appendix A - Interview Protocol 
1. Introduction Prior to the Interview  
Thanks for participating in this interview. As [CONTACT PERSON AT MENDIX] may have told you, 
this interview is part of my research on automatic tracing of requirements to models. I want to get 
a grasp on 1) how customers use Mendix software to develop their software 
 
Consent  
Before we start. I will record the audio of this interview. This audio will be used to summarise the 
findings gained. After summarising the audio will be deleted. The summary will be shared with 
you and so you have the possibility to change/correct the summary. Is this okay with you? 
 
2. General Background 
Can you give me a brief description of your job and your team? 
Can you explain all the phases of a typical project? 
How does Studio fit in this? 
 
3. Building an app using Mendix 
Can you briefly describe how a typical Mendix app is build using Mendix software? 

• As a customer of Mendix 
• As an internal team of Mendix 

Do many teams within Mendix use Studio to develop apps? 
Why do some teams use Studio while others don’t? 
 
How does versioning work when building a Mendix app? 
Where is the binary file stored? 
When you make a revision (commit), what data do you send to server? 
Would it be possible to find out which models were adjusted, when only looking at the data from 
a commit? 
 
4. Requirements 
What are the different ways requirements can be managed in Mendix Software? 
Do you use systems, other than Mendix, to manage requirements? 

• Why not everything in Mendix? 
• Do you use JIRA? 
• How do these systems work together? 

Do you have a recommended way of documenting requirements? 
• User stories? 

Can you show me how a user story is made in SPRINTR? 
• Are there naming conventions? 
• These user stories could manually be related to a commit. Are there any other artefacts it 

can be related to? 
 

5. Traceability 
How do you cope with changing requirements? 
How do you validate if requirements are implemented? 
How do you link or trace software artefacts to each other, e.g., code to user stories 
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6. Finalization  
This was the interview.  

• Do you have any questions?  
• Do you know colleagues which I should speak to for this research?  
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Appendix B – Feature Overview 
ID Feature Name Feature Family Description 

1 Creation commit 
date dif 

Process-Related The time delta between date of commit 
creation and JIRA issue creation 

2 Updated commit 
date dif 

Process-Related The time delta between date of commit 
creation and last JIRA issue update 

3 
Resolved commit 
date dif 

Process-Related The time delta between date of commit 
creation and date when JIRA issue was 
resolved 

4 
Assignee is 
commiter 

Process-Related Binary indicator indicating if the person who 
committed is the same person as the one who 
committed 

5 vsm logs jira as 
query 

IR-Related Cosine similarity between commit log and 
Entire JIRA issue using JIRA issue as query  

6 vsm logs log as 
query 

IR-Related Cosine similarity between commit log and 
Entire JIRA issue using log as query  

7 
vsm unit names 
jira as query 

IR-Related Cosine similarity between commit unit names 
and Entire JIRA issue using JIRA issue as 
query 

8 
vsm unit names 
log as query 

IR-Related Cosine similarity between commit unit names 
and Entire JIRA issue using unit names as 
query 

9 vsm unitnames 
comments 
 comments as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA comments using comments as query 

10 vsm unitnames 
comments  
unitnames as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA comments using unit names as 
query 

11 vsm unitnames 
description  
description as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA descriptions using descriptions as 
query 

12 vsm unitnames 
description  
unitnames as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA descriptions using unit names as 
query 

13 vsm summary 
logs summary  
as query 

IR-Related Cosine similarity between commit logs and 
JIRA summaries using summaries as query 

14 vsm summary 
logs logs as  
query 

IR-Related Cosine similarity between commit logs and 
JIRA summaries using logs as query 
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15 vsm summary 
unitNames  
summary as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA summaries using summaries as 
query 

16 vsm summary 
unitNames  
summary as 
query 

IR-Related Cosine similarity between commit unit names 
and JIRA summaries using logs as query 

17 vsm description 
description  
as query 

IR-Related Cosine similarity between commit logs and 
JIRA descriptions using descriptions as query 

18 vsm description 
log as query 

IR-Related Cosine similarity between commit logs and 
JIRA descriptions using logs as query 

19 vsm comments 
comments  
as query 

IR-Related Cosine similarity between commit logs and 
JIRA comments using comments as query 

20 vsm comments 
log as query 

IR-Related Cosine similarity between commit logs and 
JIRA comments using logs as query 

21 vsm svn jira jira 
as query 

IR-Related Cosine similarity between commit and JIRA 
issue using JIRA issue as query 

22 vsm svn jira svn 
as query 

IR-Related Cosine similarity between commit and JIRA 
issue using commit as query 

23 vsm svn 
summary svn as 
query 

IR-Related Cosine similarity between commit and JIRA 
summaries using commits as query 

24 vsm svn 
summary 
summary  
as query 

IR-Related Cosine similarity between commit and JIRA 
summaries using JIRA summaries as query 

25 vsm svn 
description svn 
as query 

IR-Related Cosine similarity between commit and JIRA 
description using commit as query 

26 vsm svn 
description 
description  
as query 

IR-Related Cosine similarity between commit and JIRA 
description using JIRA descriptions as query 

27 vsm svn 
comments svn as 
query 

IR-Related Cosine similarity between commit and JIRA 
comments using commits as query 

28 vsm svn 
comments 
comments  
as query 

IR-Related Cosine similarity between commit and JIRA 
comments using JIRA comments as query 

29 unique term 
count jira 

Document 
Statistics 

Number of unique terms in a JIRA issue 

30 unique term 
count svn 

Document 
Statistics 

Number of unique terms in a commit 

31 total term  count  
jira 

Document 
Statistics 

Total number of terms in a JIRA issue 
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32 total  term  count  
svn 

Document 
Statistics 

Total number of terms in a commit 

33 overlap  
percentage  
compared  to  
jira 

Document 
Statistics 

Overlap of terms between JIRA issue and 
commit compared to a JIRA issue 

34 overlap  
percentage  
compared  to  
svn 

Document 
Statistics 

Overlap of terms between JIRA issue and 
commit compared to a commit 

35 overlap  
percentage  
compared  to  
union 

Document 
Statistics 

Overlap of terms between JIRA issue and 
commit compared to the union of a commit 
and JIRA issue 

36 SvnAsQuery  
avgIDF 

Query Quality Average IDF when using SVN as query 

37 SvnAsQuery  
maxIDF 

Query Quality Maximum IDF when using SVN as query 

38 SvnAsQuery  
devIDF 

Query Quality Standard Deviation of IDF when using SVN as 
query 

39 SvnLogsAsQuery  
avgIDF 

Query Quality Average IDF when using SVN logs as query 

40 SvnLogsAsQuery  
maxIDF 

Query Quality Maximum IDF when using SVN logs as query 

41 SvnLogsAsQuery  
devIDF 

Query Quality Standard Deviation of IDF when using SVN 
logs as query 

42 SvnUnitNamesAs
Query  avgIDF 

Query Quality Average IDF when using SVN unit names as 
query 

43 SvnUnitNamesAs
Query  maxIDF 

Query Quality Maximum IDF when using SVN unit names as 
query 

44 SvnUnitNamesAs
Query  devIDF 

Query Quality Standard Deviation of IDF when using SVN 
logs as query 

45 JiraAsQuery  
avgIDF 

Query Quality Average IDF when using JIRA issues as query 

46 JiraAsQuery  
maxIDF 

Query Quality Maximum IDF when using JIRA issues as 
query 

47 JiraAsQuery  
devIDF 

Query Quality Standard Deviation of IDF when using JIRA 
issues as query 

48 JiraSummariesAs
Query  avgIDF 

Query Quality Average IDF when using JIRA summaries as 
query 

49 JiraSummariesAs
Query  maxIDF 

Query Quality Maximum IDF when using JIRA summaries as 
query 

50 JiraSummariesAs
Query  devIDF 

Query Quality Standard Deviation of IDF when using JIRA 
sumaries as query 

51 JiraDescriptions
AsQuery  avgIDF 

Query Quality Average IDF when using JIRA descriptions as 
query 

52 JiraDescriptions
AsQuery  
maxIDF 

Query Quality Maximum IDF when using JIRA descriptions 
as query 
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53 JiraDescriptions
AsQuery  devIDF 

Query Quality Standard Deviation of IDF when using JIRA 
descriptions as query 

54 JiraCommentsAs
Query  avgIDF 

Query Quality Average IDF when using JIRA comments as 
query 

55 JiraCommentsAs
Query  maxIDF 

Query Quality Maximum IDF when using JIRA comments as 
query 

56 JiraCommentsAs
Query  devIDF 

Query Quality Standard Deviation of IDF when using JIRA 
comments as query 

57 SvnAsQuery  
avgICTF 

Query Quality Average ICTF when using SVN as query 

58 SvnAsQuery  
maxICTF 

Query Quality Maximum ICTF when using SVN as query 

59 SvnAsQuery  
devICTF 

Query Quality Standard Deviation of ICTF when using SVN 
as query 

60 SvnLogsAsQuery  
avgICTF 

Query Quality Average ICTF when using SVN logs as query 

61 SvnLogsAsQuery  
maxICTF 

Query Quality Maximum ICTF when using SVN logs as query 

62 SvnLogsAsQuery  
devICTF 

Query Quality Standard Deviation of ICTF when using SVN 
logs as query 

63 SvnUnitNamesAs
Query  avgICTF 

Query Quality Average ICTF when using SVN unit names as 
query 

64 SvnUnitNamesAs
Query  maxICTF 

Query Quality Maximum ICTF when using SVN unit names 
as query 

65 SvnUnitNamesAs
Query  devICTF 

Query Quality Standard Deviation of ICTF when using SVN 
unit names as query 

66 JiraAsQuery  
avgICTF 

Query Quality Average ICTF when using JIRA issues as 
query 

67 JiraAsQuery  
maxICTF 

Query Quality Maximum ICTF when using JIRA issues as 
query 

68 JiraAsQuery  
devICTF 

Query Quality Standard Deviation of ICTF when using JIRA 
issues as query 

69 JiraSummariesAs
Query  avgICTF 

Query Quality Average ICTF when using JIRA summaries as 
query 

70 JiraSummariesAs
Query  maxICTF 

Query Quality Maximum ICTF when using JIRA summaries 
as query 

71 JiraSummariesAs
Query  devICTF 

Query Quality Standard Deviation of IDF when using JIRA 
summaries as query 

72 JiraDescriptions
AsQuery  
avgICTF 

Query Quality Average ICTF when using JIRA descriptions as 
query 

73 JiraDescriptions
AsQuery  
maxICTF 

Query Quality Maximum ICTF when using JIRA descriptions 
as query 

74 JiraDescriptions
AsQuery  
devICTF 

Query Quality Standard Deviation of ICTF when using JIRA 
descriptions as query 

75 JiraCommentsAs
Query  avgICTF 

Query Quality Average ICTF when using JIRA comments as 
query 
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76 JiraCommentsAs
Query  maxICTF 

Query Quality Maximum ICTF when using JIRA comments as 
query 

77 JiraCommentsAs
Query  devICTF 

Query Quality Standard Deviation of ICTF when using JIRA 
comments as query 

78 SvnAsQuery  
avgEntropy 
 

Query Quality Average Entropy when using commit as 
query 

79 SvnAsQuery  
medEntropy 

Query Quality Median Entropy when using commit as query 

80 SvnAsQuery  
maxEntropy 

Query Quality Maximum Entropy when using commit as 
query 

81 SvnAsQuery  
devEntropy 

Query Quality Standard deviation of Entropy when using 
commit as query 

82 SvnLogsAsQuery  
avgEntropy 

Query Quality Average Entropy when using commit logs as 
query 

83 SvnLogsAsQuery  
medEntropy 

Query Quality Median Entropy when using commit logs as 
query 

84 SvnLogsAsQuery  
maxEntropy 

Query Quality Maximum Entropy when using commit logs 
as query 

85 SvnLogsAsQuery  
devEntropy 

Query Quality Standard deviation of Entropy when using 
commit logs as query 

86 SvnUnitNamesAs
Query  
avgEntropy 

Query Quality Average Entropy when using commit unit 
names as query 

87 SvnUnitNamesAs
Query  
medEntropy 

Query Quality Median Entropy when using commit unit 
names as query 

88 SvnUnitNamesAs
Query  
maxEntropy 

Query Quality Maximum Entropy when using commit unit 
names as query 

89 SvnUnitNamesAs
Query  
devEntropy 

Query Quality Standard deviation of Entropy when using 
commit unit names as query 

90 JiraAsQuery  
avgEntropy 

Query Quality Average Entropy when using JIRA issue as 
query 

91 JiraAsQuery  
medEntropy 

Query Quality Median Entropy when using JIRA issue as 
query 

92 JiraAsQuery  
maxEntropy 

Query Quality Maximum Entropy when using JIRA issue as 
query 

93 JiraAsQuery  
devEntropy 

Query Quality Standard deviation of Entropy when using 
JIRA issue as query 

94 JiraSummariesAs
Query  
avgEntropy 

Query Quality Average Entropy when using JIRA summaries 
as query 

95 JiraSummariesAs
Query  
medEntropy 

Query Quality Median Entropy when using JIRA summaries 
as query 

96 JiraSummariesAs
Query  
maxEntropy 

Query Quality Maximum Entropy when using JIRA 
summaries as query 
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97 JiraSummariesAs
Query  
devEntropy 

Query Quality Standard deviation of Entropy when using 
JIRA summaries as query 

98 JiraDescriptions
AsQuery  
avgEntropy 

Query Quality Average Entropy when using JIRA 
descriptions as query 

99 JiraDescriptions
AsQuery  
medEntropy 

Query Quality Median Entropy when using JIRA descriptions 
as query 

100 JiraDescriptions
AsQuery  
maxEntropy 

Query Quality Maximum Entropy when using JIRA 
descriptions as query 

101 JiraDescriptions
AsQuery  
devEntropy 

Query Quality Standard deviation of Entropy when using 
JIRA descriptions as query 

102 JiraCommentsAs
Query  
avgEntropy 

Query Quality Average Entropy when using JIRA comments 
as query 

103 JiraCommentsAs
Query  
medEntropy 

Query Quality Median Entropy when using JIRA comments 
as query 

104 JiraCommentsAs
Query  
maxEntropy 

Query Quality Maximum Entropy when using JIRA 
comments as query 

105 JiraCommentsAs
Query  
devEntropy 

Query Quality Standard deviation of Entropy when using 
JIRA comments as query 

106 SvnAsQuery  
QueryScope 

Query Quality Query Scope when using commit as query 

107 SvnLogsAsQuery  
QueryScope 

Query Quality Query Scope when using commit logs as 
query 

108 SvnUnitNamesAs
Query  
QueryScope 

Query Quality Query Scope when using commit unit names 
as query 

109 JiraAsQuery  
QueryScope 

Query Quality Query Scope when using JIRA issue as query 

110 JiraSummariesAs
Query  
QueryScope 

Query Quality Query Scope when using JIRA summaries as 
query 

111 JiraDescriptions
AsQuery  
QueryScope 

Query Quality Query Scope when using JIRA descriptions as 
query 

112 JiraCommentsAs
Query  
QueryScope 

Query Quality Query Scope when using JIRA comments as 
query 

113 SvnAsQuery  SCS Query Quality SCS when using commit as query 
114 SvnLogsAsQuery  

SCS 
Query Quality SCS when using commit logs as query 

115 SvnUnitNamesAs
Query  SCS 

Query Quality SCS when using commit unit names as query 
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116 JiraAsQuery  SCS Query Quality SCS when using JIRA issue as query 
117 JiraSummariesAs

Query  SCS 
Query Quality SCS when using JIRA summaries as query 

118 JiraDescriptions
AsQuery  SCS 

Query Quality SCS when using JIRA descriptions as query 

119 JiraCommentsAs
Query  SCS 

Query Quality SCS when using JIRA comments as query 

120 SvnAsQuery  
avgSCQ 

Query Quality Average SCQ when using commit as query 

121 SvnAsQuery  
maxSCQ 

Query Quality Maximum SCQ when using commit as query 

122 SvnAsQuery  
sumSCQ 

Query Quality Summation of SCQ when using commit as 
query 

123 SvnLogsAsQuery  
avgSCQ 

Query Quality Average SCQ when using commit logs as 
query 

124 SvnLogsAsQuery  
maxSCQ 

Query Quality Maximum SCQ when using commit as query 

125 SvnLogsAsQuery  
sumSCQ 

Query Quality Summation of SCQ when using commit as 
query 

126 SvnUnitNamesAs
Query  avgSCQ 

Query Quality Average SCQ when using commit unit names 
as query 

127 SvnUnitNamesAs
Query  maxSCQ 

Query Quality Maximum SCQ when using commit unit 
names as query 

128 SvnUnitNamesAs
Query  sumSCQ 

Query Quality Summation of SCQ when using commit unit 
names as query 

129 JiraAsQuery  
avgSCQ 

Query Quality Average SCQ when using JIRA issues as query 

130 JiraAsQuery  
maxSCQ 

Query Quality Maximum SCQ when using JIRA issues as 
query 

131 JiraAsQuery  
sumSCQ 

Query Quality Summation of SCQ when using JIRA issues as 
query 

132 JiraSummariesAs
Query  avgSCQ 

Query Quality Average SCQ when using JIRA summaries as 
query 

133 JiraSummariesAs
Query  maxSCQ 

Query Quality Maximum SCQ when using JIRA summaries as 
query 

134 JiraSummariesAs
Query  sumSCQ 

Query Quality Summation of SCQ when using JIRA 
summaries as query 

135 JiraDescriptions
AsQuery  avgSCQ 

Query Quality Average SCQ when using JIRA descriptions as 
query 

136 JiraDescriptions
AsQuery  
maxSCQ 

Query Quality Maximum SCQ when using JIRA descriptions 
as query 

137 JiraDescriptions
AsQuery  
sumSCQ 

Query Quality Summation of SCQ when using JIRA 
descriptions as query 

138 JiraCommentsAs
Query  avgSCQ 

Query Quality Average SCQ when using JIRA comments as 
query 

139 JiraCommentsAs
Query  maxSCQ 

Query Quality Maximum SCQ when using JIRA comments as 
query 
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140 JiraCommentsAs
Query  sumSCQ 

Query Quality Summation of SCQ when using JIRA 
comments as query 

141 SvnAsQuery  
avgPMI 

Query Quality Average PMI when using commit as query 

142 SvnAsQuery  
maxPMI 

Query Quality Maximum PMI when using commit as query 

143 SvnLogsAsQuery  
avgPMI 

Query Quality Average PMI when using commit logs as 
query 

144 SvnLogsAsQuery  
maxPMI 

Query Quality Maximum PMI when using commit logs as 
query 

145 SvnUnitNamesAs
Query  avgPMI 

Query Quality Average PMI when using commit unit names 
as query 

146 SvnUnitNamesAs
Query  maxPMI 

Query Quality Maximum PMI when using commit unit 
names as query 

147 JiraAsQuery  
avgPMI 

Query Quality Average PMI when using JIRA issues as query 

148 JiraAsQuery  
maxPMI 

Query Quality Maximum PMI when using JIRA issues as 
query 

149 JiraSummariesAs
Query  avgPMI 

Query Quality Average PMI when using JIRA summaries as 
query 

150 JiraSummariesAs
Query  maxPMI 

Query Quality Maximum PMI when using JIRA summaries as 
query 

151 JiraDescriptions
AsQuery avgPMI 

Query Quality Average PMI when using JIRA descriptions as 
query 

152 JiraDescriptions

AsQuery  

maxPMI 

Query Quality Maximum PMI when using JIRA descriptions 
as query 

153 JiraCommentsAs

Query  avgPMI 

Query Quality Average PMI when using JIRA comments as 
query 

154 JiraCommentssA
sQuery_maxPMI 

Query Quality Maximum PMI when using JIRA comments as 
query 

 
 


