
Towards a Data-Driven Energy Advice

Creating a base model for gas usage prediction
&

Classifying external heating sources

Martin Doornhein
6209432
Master Thesis
MSc Applied Data Science
Utrecht Univeristy
First reader Prof. dr. Anro Siebes
Second reader: dr. Ing. habil G. Krempl
2 July 2021

Table of Content

Towards a Data-Driven Energy Advice 0

Table of Content 1

Preface 2

Introduction 3

Method -- Base model 7
Software 7
Data 7
Filters 11
Exploratory data analysis 12
Modelling base model 18

Results -- Base model 19

Method -- Classification Task 20
Data 20
Design 21

Results -- Classification Task 24

Discussion 28
Base model 28
Classification Task 29

Reference 32

Appendix Code 35

1

Preface
This study was carried out as an assignment for the company Intergas. Within this study,

there were two parts. The first part is a collaboration of three Applied Data Science

students from University Utrecht. This part aims to create a base prediction model that

predicts gas usage using the available data. Within this collaboration part, we have made

use of each student’s own strengths. This resulted in the following division of tasks:

Name Responsibility

Martin Doornhein Data analysis in Python and development of methodology of

regressor model implementation.

Robin Reijers Writing of the energy gap, digital energy label and it’s related

literature research. Together with the exploratory data analysis.

Lesley Rietvelt Background research (with a focus on the current energy label) and

writing.

The second part of this thesis consists of the individual research of each student. This

thesis focuses on classifying external heating sources.

2

Introduction
The European Union has set the goal to become climate neutral by 2050. Each country that

falls under the EU, is required to develop national policies that support this goal (RVO, n.d.).

In the Netherlands, the The Netherlands Enterprise Agency (RVO) is responsible for

implementing these national policies. According to the EU, homes and utility buildings are

responsible for 40 percent of our energy consumption and 36 percent of total CO2 emissions

(European Commission, 2020).Therefore, the RVO is implementing policies that help lower

the CO2 emissions of buildings and improve their energy efficiency.

One of these policies is the energy labelling system, which is currently used to advise

home owners on their house's energy efficiency (RVO, 2021). To stimulate homeowners to

invest in improving energy efficiency and to make this process accessible, the RVO is trying

to create a National Digital Platform. Their first step is to automate the process of

determining the energy efficiency of Dutch houses. This means the current energy labelling

system will be converted into a digital energy label.

In the Netherlands, homeowners are required to provide an energy label upon

delivery, sale or rental of the home. When a homeowner wants to register the energy label, an

energy advisor inspects their home and calculates its energy efficiency. Eventually, the energy

label indicates the overall performance of the house from A++++ to G. Next to this, it

contains details on the insulation and installations, offers advice for future improvement, and

estimates the energy costs of the homeowner (RVO, 2021).

On 1 January 2021, the method that determines the energy efficiency of a house was

updated. Energy labels are now held against new standards and documents (NTA 8800, BRL

9500, and ISSO 82.1) (RVO 2021). Although the new and old methods overlap, NTA 8800

requires more information on the building and advisors have to report every apartment

separately. Next to this, more detailed descriptions of, among others, pipe transits and

insulation, heating installations, delivery and distribution systems, and cooling installations

are required (RVO, 2020a). For example, DGMR (DGMR, n.d.) established that the

construction method of a building influences its energy efficiency, and therefore advisors are

required to provide information on the construction method from January 2021 onwards

(RVO, 2020b). Thus, creating an energy label with the newly required standards and

documents is a time-consuming process. An inspection takes, on average, one to two hours to

record all the details mentioned above (Energielabel, n.d.). This extensive inspection should

3

theoretically guarantee accuracy. However, the label given is highly influenced by the

methods and precision of the advisor and the availability of certain information (for example,

whether or not it is possible to retrieve what materials were used for improving insulation)

(Radar, 2021).

Next to this, energy labels do not accurately reflect the energy consumption of a house due to

the “Energy Gap”.

Recently, an increasing amount of research has been done regarding energy labels and

the “Energy Gap”. This research shows energy labels give an estimate of the energy

consumption that often differs significantly from the actual consumption. This difference is

called the energy gap. Buildings that are considered inefficient have a lower actual

consumption than the estimated consumption, while buildings that are considered energy

efficient often have a higher actual consumption than the estimation (Majcen, Itard &

Visscher, 2013; van den Brom, Meijer & Visscher, 2018). Policies to reduce energy

consumption in order to meet the 2050 goal are based on the theoretical consumption and

energy efficiency of buildings. Since these estimations differ from the actual energy

efficiency, these policies are less effective in practice than on paper (Macjen, Itard &

Visscher, 2013). Several studies called for a better way to address the current energy gap and

the usage of energy labels in housing as houses are currently labeled unfairly (Majcen, Itard

& Visscher, 2013; van den Brom, Meijer & Visscher, 2018; Boonekamp, 2007; Martens &

Spaargaren, 2005; Majcen, Itard & Visscher, 2015).

Intergas is researching the possibility of creating a digital energy labelling method

based on their data, which could perhaps decrease the energy gap. Intergas is a company that

focuses on developing sustainable heating systems, advising customers based on data, and

selling their energy efficient systems (Intergas, n.d.). Over the years, they have collected data

from their heaters, resulting in approximately 6TB of information in their database. This data,

together with weather measurements from the Royal Dutch Meteorological Institute (KNMI),

can be used to create basic and improved models that are able to classify houses based on

their energy usage. Since such a model would be based on actual gas consumption, it is

possible the estimations are more accurate than current methods.

Earlier research shows several factors influence actual gas usage and energy

efficiency. For example, building characteristics such as the surface of the building’s floors in

m2 and building year often have an impact on energy consumption (Majcen & Itard, 2014a).

Resident’s characteristics (such as age, income and social standing) also influence the

4

consumption, which was apparent due to differences in consumption between houses with

similar characteristics (Majcen, Itard & Visscher, 2013; Yun & Steemers, 2011; Berkland,

2014; Santin, 2011; Jeeninga, Uyterlinde & Uitzinger, 2001). Lastly, resident’s behavior

(such as heating patterns, airing and absence) has an impact on how much energy is used as

well (Majcen & Itard, 2014b). The data provided by Intergas contains information on some of

the important building characteristics, such as the building year and surface area. Next to this,

Intergas’ data could be used to gain insight into resident’s behavior by trying to detect heating

patterns and research possibilities for correcting for this behavior.

Research also shows electrical usage is negligible when researching energy labels.

The RVO energy label is exclusively taking electrical installations into consideration, while

most electricity usage comes from household appliances. The theoretical electricity usage and

actual electricity usage of those installations do not differ from each other, or per label class

(Majcen & Itard, 2014b).Therefore, electricity usage is negligible in this analysis.

This thesis then aims to explore the opportunities of creating a model based on

Intergas’ data which can accurately predict the gas consumption of a building in order to

eventually assign correct energy labels. Next to this, the individual cases will research

possibilities of clustering, classifying and correcting in order to improve the base model. If

such a model can indeed be created, future research can improve the accuracy of this model

and further explore the possibilities of creating a digital energy label, but that is not within

the scope of this project.

According to what was scheduled for this research, another exploratory question was

proposed by Intergas. The proposal was a classification task that aimed to classify external

heating sources. The question is: “can we classify if there are external heating sources?”. This

classification should be derived from the available data without any reference data. To

classify this property, a certain rule has to be determined. This rule can distinguish, based on

the currently available data, whether a house has an external heating source or not. This

classification, then, would help gain insight in resident’s behavior and could be used to

improve the base model.

According to a panel research done by climate agency HIER (2018), 88% of the

Dutch people use radiators for indoor climate control. The second highest percentage (19%)

of warming is underfloor heating. The third highest percentage is a wood stove (8%).

Apparently, people can use different heating sources within one house. Some households will

use a gas fueled system as their main system, and use an external heating source, like a

woodstove, as an extra system. Radiators use gas as their fuel to provide heating. Underfloor

5

heating could be fueled by gas, but also by electricity. For the wood stove it seems clear that

the common fuel is wood. The presence of different heating sources within one household

might have an influence on the gas usage of the resident. The expectation is that having a

wood stove or underfloor heating fueled by electricity will reduce the gas usage.

This classification task will focus on heating sources that are not fueled by gas. These

heating sources should be apparent in a house that also uses heating by gas. This condition is

needed to see differences in gas usage for different timepoints. Because the data is collected

by central heating systems that are fueled by gas, it is very likely that households use gas as a

fuel to heat the house.

6

Method -- Base model

Since the aim of this project is exploratory, the focus laid on what information the data could

provide. However, the large amount of data forced us to make decisions about filtering and

rearranging the data. Next, exploratory analysis was done to find correlations and extract

information. Eventually, a basic model was created and separate analyses were done to

explore further possibilities. The software, data and methods used during this project,

together with the decisions that have been made, will be explained in more detail in this

chapter.

Software
Intergas’ database was built upon Hadoop and consists of approximately 6TB of data. With

large amounts of data, it is recommended to use Apache Spark. Spark is fast, offers less

reading and writing from and to the disk and, due to the Python API PySpark, is fairly easy to

use. It was also possible to work on smaller portions of the data, meaning other Python

packages (e.g. Pandas) could be used. Overall, the following software packages were used:

PySpark, Pandas, NumPy, Matplotlib, Seaborn, and Plotnine.

Data
The data provided was spread among different datasets. These datasets were used to create a

data frame that would be useful for different analyses (see figure 1). This paragraph will

discuss the different datasets and the features in it.

Intergas_raw

This dataset contained many columns. Most of its content was about small interval

measurement values. For this project, the focus was on 24 hour data. Therefore, a

selection of only a few columns was made, which gave information on the gas usage

of central heating and warm water. Next to this, all gas use measurements below zero

were removed when loading this dataset. This was done to reduce the amount of

errors in the data and decrease the computational load while merging datasets.

Gas_use_hourly

7

This dataset contained information about hourly gas used per m2 grouped by heater

id’s. These id’s are unique numbers per heater (see table 3).

KNMI_data_24

This dataset is provided by Intergas.

This dataset contained information about the weather for every hour, grouped by time

point and neighborhood.

Ig_heater_info

This dataset contained heater ID’s, the neighborhood and two house properties from

the given house. These properties were house building year and total surface area of

residence.

First, the datasets described above were merged to create a data frame that could be used for

inspection, exploration and analysis. This was done by using inner join, meaning the

intersection of both datasets is used for the newly created data frame. Since this method only

adds the overlapping keys, the new data frame has a low amount of missing values. Reducing

the number of missing values was desirable, due to the small number of columns. Table 1

shows the order that was used to create the data frame for further analysis.

Table 1. Joining steps for the final dataset.

Dataframe 1 Dataframe 2 Keys New dataframe

Intergas Raw Ig_heater_info Heater_id Merge_1

Merge_1 Gas_use_hourly Heater_id, date_day Merge_2

Merge_2 df_knmi Neighborhood, date_day df_24hour

This final data frame contained 28,651,724 rows and 12 columns (table 2). From this data

frame, a sample of 10% was taken. Since the whole data frame is too large to work with

easily, this sample will be used for testing analysis and visual inspection.

8

Table 2. Variables in the merged dataset

Variable_name Type Meaning

Heater_id Integer Unique heater identification number

Neighborhood Integer Neighborhood

Date_day Integer Year/month/day

Surface Integer Surface of total house in m²

Building_year Integer Building year of house

Rain Double Amount of rain in 0.1 mm (precipitation <0.05mm = -1)

Sun Double Amount of sun in 0.1 hours (sunshine <0.05h = -1)

Temp Double Temperature in celsius * 10

Wind Double Wind in 0.1 meters / second

T_act Double Actual inside house temperature (C)

T_set Double Set inside house temperature (C)

Gas_ch Double Gas use in m³ for heating house

Gas_dhw Double Gas use in m³ for hot water

Temp_diff Double Inside temperature - outside temperature (C)

A final step that was performed before the filtering process, was dealing with missing values.

Based on the first inspection, it seemed that there were missings in 4 columns (see table 2).

These columns were: rain, sun, temp and building year. After closer inspection, it became

clear that there was a fifth column that had missings which were valued with a zero (n =

74,114). This column was Surface and the missings did overlap 100% with the building year

column.

Table 3: columns with missing values

rain sun temp building year

91,229 279,904 44,881 74,114

The missings values came from two different datasets that were used in the merging of

datasets. The missings in the weather variables came from the KNMI dataset. A possible

explanation for this missings is an error with one, or more of the weather stations. The

missings in the variable building year and surface came from the Ig_heater_info dataset. A

9

reasonable explanation for these missings is that these customers did not want to

communicate their information. Due to not having a proper NMAR analysis, it was not

possible to reverse calculate the missing data. To prevent skewing of the data it was chosen to

leave out the rows which contained missing data.

After removing missing values (n = 259,922), the number of rows was: 28,393,420. The

missing values were divided among rain (86,290), sun (258,923), temperature (42,533). For

building year and surface 74,114 values are missing.

Figure 1. Data frames that were used to get the final dataframe

10

Filters

Table 3 shows the filters that were used to clean the dataset. These filters were chosen based

on a combination of reasoning and the influence of the filter on the data. For the variable

surface, the cutoff value of 40 was used. Houses smaller than 40 square meters were removed

because these values are very unlikely to be correct. Looking at the data, 40 seemed to be an

appropriate cutoff because the number of removals highly increased after applying a value

higher than 40.

For both gas_measures, a cutoff value of 40 m3 per 24 hours was used. Based on information

from Intergas, values higher than 40 m3 are very unlikely and could be considered errors from

the heater. These errors can be caused by a momentary loss of power, for example. From the

data perspective, these cutoffs did not influence the data much.

For the variables t_act (temperature measured inside) and t_set (temperature set on the

thermometer), the cutoff value is equal or smaller than 26 degrees Celsius. These points were

chosen because values higher than 26 are unusual. For t_act, there was also a minimum filter

with a value of 10 added. This cutoff value was selected based on the data.

Table 4. Filters and number of removed rows after applying
Variable name Filter # removed % removed

Surface min > 40 299464 1.05%

Surface max < 600 269998 0.94%

Gas_ch < 40 7286 0.03%

Gas_dhw < 40 484 0.002%

T_act <= 30 33607 0.12

T_act >= 10 1393515 4.86%

T_set <= 26 19060 0.07%

11

The total number of removed rows is 1,978,666 which is 6.91% of the total number of rows

(see table 4 for the descriptives).

Lastly, the variable temp_diff (temperature difference) contained values below zero,

meaning the outside temperature was higher at these moments than the inside temperature. In

this case, there is no gas needed. Therefore, the limit of this variable was modified and all

negative values were replaced with zero.

Table 5. Descriptives of the removed rows

Summary Surface Gas_ch Gas_dhw T_act T_set

Count 1.978.666 1.978.666 1.978.666 1.978.666 1.978.666

Mean 388,27 23,99 34,89 6,56 5,47

Standard deviation 1.553,91 2.471,23 3.610,76 11,27 8,77

Minimum 0 0 0 -323,65 -154,27

Maximum 68.353,0 429.496,73 429.483,71 326,95 325,11

Exploratory data analysis
After applying the filters, the dataset was reduced by a total of 6.91 percent when

compared to the total data available. With this exploratory data analysis the make-up

of the dataset will be shown. All visualisations are based on the earlier mentioned

sample of 10%.

Gas usage for warming houses is lower (0.18 ± 0.73) in the summer months and

higher in the winter months (7.10 ± 4.56). This is also true for warm water (0.57 ±

0.50) in summer versus (0.91 ± 0.78) in winter) but with not as much of a difference

(figure 2).

12

Figure 2: Boxplots of gas usage per 24 hours for house warming (left) and warm water

(right)

During the exploratory analysis, correlations were found between certain variables. For

example, there is a positive correlation between the average sunshine per day and average

temperature (0.68). Another positive correlation (0.53) is temperature difference

inside/outside and gas_ch (gas used for heating purposes).

With negative correlations the avg(temp) and temp(diff) are strongly negatively

correlated (-0.93), also temperature difference inside/outside and average sunshine

are negatively correlated (-0.60). Other negative correlations are between gas usage

for heating and average temperature (-0.58) and the average sunshine (-0.47).

Figure 3: Correlations between variables

The most frequently occurring surface area is 110m² with the lowest value being 40 m² due to

the filter applied on surface area and the highest value is 600m². The average surface area in

13

square metres is 125.42 (± 52). The outliers are not shown in the boxplot to reduce visual

clutter (Figure 4).

Most of the data from Intergas is from residential housing, this would explain the distribution

of surface area in housing that is found in the dataset. Meaning that the model possibly could

face difficulties when trying to estimate the actual gas consumption in houses with a larger

surface area.

Figure 4: Boxplot of housing per m²

In the dataset the most frequently occurring building year of houses is 1978. The oldest

building in the dataset dates from the year 1300 and there are no buildings newer than being

built in 2020 (figure 5).Building years of the houses are on average 1971 (± 62). There are no

outliers above 2020 in the dataset (figure 5)

This range of years encompasses several different updates of the EU regulations in

housing insulation and requirements. Meaning that within the dataset there are houses which

adhere to different standards of insulation and specs.

14

Figure 5: Boxplot of building years

Within the data it is found that summer months (Jun - Aug) have the highest temperatures and

the most amount of sun hours for each month. While the winter months (Dec - Feb) have the

lowest temperatures and amount of sunshine each month (Figure 6 & 7). This tells us the data

itself is in line with the weather patterns as reported from the KNMI and that there are no

abnormalities within the general sense of the dataset.

Figure 6: Boxplot of average temperature Figure 7: Boxplot of average sun hours

For the average temperature difference (inside - outside) the greatest temperature difference

is found in the winter months and when looking at the smallest temperature difference it is

found during the summer months (figure 8).

15

Figure 8: Average temperature difference (inside - outside) in Celcius per day for every

month.

For all years there is a negative correlation found between gas consumption and temperature

outside. The trendlines are linear, which is expected due to specific heat. Specific heat “is

defined as the energy required to raise the temperature of a unit mass by one degree” (Yunus,

Cengel & Ghajar, 2020).1 It costs the same amount of energy to heat up the air in a room from

0 to 1 degree Celsius as it does from 5 to 6 degrees. On average the years 2017 through 2020

each have a similar slope and starting point, but the year of 2021 has a way higher starting

point and slope value. This is due the dataset only partially containing 2021 and only the

winter months, in these months the gas consumption is the most as previously shown (figure

9). Next to this, we expect the average gas usage to be higher due to working from home

during corona.

1 Yunus A. Çengel and Afshin J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications,
(McGraw-Hill Education, New York: 2015), p. 7.

16

Figure 9: Average gas consumption plotted against temperature per year

The average gas consumption per year is positively correlated with the total temperature

difference between inside and outside of homes. Meaning that the higher the temperature

difference is, the higher the gas consumption is, tying together the temperatures outside

during colder periods together with the increased gas consumption to gain the same amount

of heating as one normally would get with higher outside temperatures.

All of the years between 2017 and 2020 show a similar slope profile. In 2021 there is

a flatter but increased slope value due to only partly having values from the winter months

and not the rest of the year meaning that the data is skewed to more gas consumption then in

the previous years (figure 10).

17

Figure 10: Average gas consumption per year plotted against temperature difference (inside

– outside)

Modelling base model
To model the data and predict the gas usage, a random forest regressor model was used. This

model aims to predict the total gas usage per year, per m². The Random Forest regressor was

chosen for different reasons. First, the model copes well with non-linear relations. Second, it

deals well with collinearity. This is desirable because the KNMI-predictors did correlate

among each other, for example: sun and temp (r = .701). One of the drawbacks of this

method is that it is not able to extrapolate predictions. A linear regression model could predict

outside the range of the train set.

To feed this random forest model, the earlier described dataframe was grouped by

heater_id and years. This resulted in a dataframe with averages of all the variables for every

heater id, per year. The outcome variable total gas consumption per m² was included. Some

columns, which were no longer of need, were removed (heater_id, year, gas_ch, gas_dhw).

To get the data in the right format to train the regressor, the vectorindexer from the PySpark

package was used.

To train and test the model, a proportion of the data (30%) was held out for validation.

The train set contained 87,399 rows and the test set contained 37,388 rows. Because there

was a lot of data available, the hold out method seemed to be sufficient as a method to

determine testing accuracy. Cross validation would be an alternative, but because of the high

amount of data, this method would be highly computational expensive.

18

Results -- Base model
Different random forest regressor models were performed. Every model is trained on the

whole dataset.The initial random forest model (r² = .460, RMSE = 0.0230) has the goal of

being a baseline model. This model aims to predict gas usage per m² and was trained on

124,787 observations, which was divided into a train set of 70 % (n = 87,399) and a test set

of 30% (n = 37,388). The mean of the outcome column is: 0.044 . In an effort to increase

accuracy, an extra filter was added. The dataset was filtered for the number of observations

within a year. This filter is applied for the cutoff values > 200 and > 250. For these models,

the same train-test-set proportions were applied. The first model (n = 70,993, r² = .239,

RMSE = 0.015) and second model (n = 64,413, r² = .245, RMSE = 0.015) both performed

less well and had a lower explained variance. Therefore, the first model is chosen to be the

base model.

To inspect the impact of the features on the prediction accuracy, a feature importance

plot was visualized (figure 1). The highest scoring features are year and sun. Two features

had a relative high influence on the model which were: year and sun. The feature wind had

the lowest impact on the model.

Figure 11: Feature importance barplot for random regressor model

19

Method -- Classification Task

Data

To investigate the option of deriving the classification of external heating sources from the

available data, the Intergas_hourly dataset was used. This set contains gas usage data points

for every hour in a day. The dataset was combined with the KNMI dataset, to get the hourly

weather information, based on the local district of the heater. This combination of datasets

could help to provide insight into more specific heating patterns compared to the dataset that

was used for the base model. An hourly heating pattern could possibly help to find out

whether a consumer uses an external heating source or not. The merge of these two datasets

was done with an inner join. This type of join aims to remove nonmatching data, which

cannot be used later in the analysis. After this step, the merged dataset was combined with the

heater_info dataset. This combining was also done with an inner join, which resulted in a

dataset (n = 687,848,004) that contained the same heater IDs as the dataset that was used for

the base model. A second advantage of this step was that the house properties were included

in the newly created data frame. Applying filters on these house properties help to clean the

data, as was done with the dataset created to train the base model. A difference and possible

limitation, compared to the base model dataset is that this one only has one variable for gas

use. So, there is no distinction between gas use by heating and gas use by warm water.

To assure that the outside temperature is low on average, the data was filtered for the

months January and February. This low outside temperature will probably lead to more use of

external heating sources. This filtering also overcomes the problem of low gas usage because

of the relatively high outside temperature, which was an advice given by the domain expert

from Intergas. From the filtered dataset, a sample of 1% (n = 18,252,987) was taken. Unless

using a sample does decrease the data points per heater ID, some data reduction was needed

because of computational considerations.

After creating the dataset that was needed to do the analysis, some of the earlier

mentioned filter steps were applied. The majority of the earlier defined filters could be

applied here. The same rules for house properties hold for this dataset. Based on the

descriptives of the gas use variable, there was no sign of erroneous values. So, there was no

need for any filter on this variable. This resulted in the data frame (n = 16,896,635) that is

clean and ready for use.

20

Table 6: Steps for creating the data frame

Df Action New df name

Intergas_hourly join(df_KNMI, how = inner) Df_gashourly

Df_gashourly Filter(month = 1 | month = 2) Df_winter

Df_winter Sample(proportion = .01) Df_winter_sample

Df_winter_sample Applying filters Df_winter_sample

Design

To find a rule to classify the heater IDs based on their gas usage, certain expectations were

defined. Firstly, when consumers use their external heating source, it is expected that the

inside temperature is not lower than usual compared to heating by gas fueled systems. So, we

look for normal actual inside temperatures. A second thing to expect is that the gas usage for

housewarming is lower than usual, because there is no gas needed for house warming. And

finally, these expectations are only true when the outside temperature is on a level that forces

people to use some source of heating to warm their houses. These expectations together could

be presented as the next rule:

If (outside temp < x) & (inside temp > y) & (gas_usage < z): 1 (external heating source)

else: 0 (no external heating source)

The goal is to find heater IDs that are likely to have an external heating source. This

classification is based on the gas usage of a heater. The expectation about gas usage could be

different for different types of external heating. For heating sources that are used to provide

the regular heating of a house, the expectation is that the gas usage for different timepoints

will be low on average. For heating sources that are not used as a regular heating source, like

a wood stove, the expectation is that the gas usage will be different for different timepoints.

To determine which values are applicable for the classification rule, different timepoints

within a certain heater ID were compared. To further reduce the amount of data, only the data

for the year 2020 was selected. This year was selected because in 2021 there was the corona

pandemic. This pandemic situation could possibly influence the gas usage somehow. Because

there was no labeled reference data for external heating sources, an assumption about when

21

people use their external heating source needed to be made. This assumption was made in

consultation with one of the domain experts from the heater company. We determined that

people are more likely to use their non regular external heating source on Saturday night

compared to Tuesday night. This choice is based on the assumption that a wood stove is

associated with coziness. We expected that people are more driven to create this cozy

experience during Saturday night than Tuesday night. For the regular external heating

sources, Tuesday and Saturday night will both score low on average. In line with these

assumptions, a subset was made which only included observations for Tuesday between

20:00 and 22:00 and Saturday between 20:00 and 22:00.

Table 7. Steps for creating data frame

Data frame Action New data frame

Df_winter_sample Filter((dayofweek = 3 | dayofweek =
7) & year = 2020)

Df1

Df1 filter(hour = 20 | hour = 21 Df2

Df2 Groupby(heater_id, Timekey).mean() df_grouped

In the first attempt to make a distinction between different kinds of heating patterns, heater

IDs with anormal patterns were manually selected. Based on this selection it became clear

that using an absolute value to classify could be problematic. The problem with this way of

working is that there is some spread around the mean (mean = 0.38, SD = 0.36). In other

words, there is a lot of difference within gas usage per resident (figure 1).

Figure 12: left: boxplot of gas usage. Right: density plot for gas usage.

22

To overcome the problem with using absolute values, a more relative variable was needed.

This conclusion resulted in a formula that was used to provide insight into how much gas was

used proportionally to the inside temperature. This formula is determined in consideration

with the domain expert. The formula was:

Y = Gas usage / (temperature actual – temperature set)

To use this variable in the classification task, two points are important:

1. Houses that use external heating sources will have a low gas usage on average.

Therefore, the Y in this formula will be low as well. When the temperature difference

between t_act and t_set is high, Y will decrease. This is more likely by houses that use

external heating sources, because the gas fueled heating system will not activate if the

inside temperature is already at the set temperature. So, houses that could possibly be

classified as 1, are likely to score low. Values with very small differences between

t_act and t_set could be really high. For example: a gas usage of 0.5 divided by .01 =

50.

2. Y needs to be positive to get the classification 1. To get classified as 1, the t_act

cannot be lower than the t_set. Because the expectation is that external heating

sources will help to increase the t_act, without increasing t_set.

A point to take in consideration is the minimum gas usage variable value. The gas use

variable will probably not be zero when there is no consumption by heating. In this variable,

the consumption by using warm water is also included. Without using warm water, the

consumption by heating water is also often not zero. This is due to a setting in many heating

systems that provided warm water immediately. The heating system saves a small amount of

water and warms this constantly. As a result, there is immediately warm water when using the

warm water tap (Intergas, 2018).

In conclusion, the expectation is that houses that use an external heating source will

have a positive Y value that is close to zero. To use this Y variable to make a distinction

between heater IDs, a maximum allowed value for Y needs to be determined. This cutoff will

determine the line between the classification of 1 versus 0. To find this value, data analysis

focused on the distribution of gas usage was done. After determining this maximum allowed

value, different classifying rules were inspected and compared. Finally, based on visual

23

inspection, data points within heaters were compared. This inspection aimed to answer the

question: “can we classify external heating sources based on the available data?”.

24

Results -- Classification Task
The selection of heater IDs that probably use an external heating source is selected based on a

few elements. The elements contain the real distinguishing value, and some conditions that

must be met. The following elements were included in the rules that were inspected:

1. A maximum allowed value for Y. This cutoff does make the distinction between a

resident with an external heater and a non-external heater.

2. Gas usage for selected ID must be smaller than the average gas usage (mean = 0.37).

This overcomes the problem that residents with a big inside temp difference (t_act –

t_set), but also a high gas usage, still fall within the criteria.

3. The inside temperature (t_act) needs to be at a point that makes it proper to assume

that people are at home. This value is set at 19 degrees (C) which is close to the

reported average 19.9 according to the HIER research (2018) research.

The difference between the different classification rules that were tried, is based on the first

element. Determining a cutoff value has a high influence on which IDs were selected. Y

needs to be positive, but smaller than a certain value. Y is derived from gas use / (t_act -

t_set), the maximum value should be the highest outcome for this Y variable. The same sort

of formula was used for determining the cutoff. Beside this formula, some conditions must be

met. These conditions are added to every filtering rule:

Cutoff = Y < (f(gas_use)) / x

Condition 1 = Y > 0

Condition 2 = gas_use < gas_use.mean()

Condition 3 = t_act > 19

Different options for f() and x were tried to get the best cutoff. The filtering rules were

applied on a dataset (n = 80,706) with 24,213 unique heater IDs. The following rules were

considered to be the best:

Cutoff = Y < (gas_usage.mean() – 1SD) / 1.5

25

This filtering rule did select a subset (n = 9,137) with 5,940 unique heater IDs, which

is 25% of the initial data frame.

Cutoff = Y < (gas_usage.mean() – 1SD) / 2

This filtering rule did select a subset (n = 8,197) with 5,434 unique heater IDs, which

is 22% of the initial data frame.

This choice is made based on the earlier mentioned research by HIER (2018). This

research states that 19% of the residents have an underfloor heating system, which could be

fueled by electricity, and 8% of the residents have a wood stove. Although these percentages

are a very rough indicator for what this result would expect to find, this filtering rule seems to

have a percentage which is close to the results of the HIER research. The second filtering rule

was selected as being the best rule. This rule was chosen because it has the most strict

cutoffs. Beside the expected percentages, it seems to make sense, to expect that the gas usage

will be low on average. An important thing to mention is that the filtering rule does only have

to select a heater once. After selecting it once, the ID is added to the subset and is therefore

selected for classification 1. So, strict cutoffs for gas usage do make sense.

Observations within this subset are likely to be correctly classified as 1 (having an

external heating source). From this dataset, the IDs were extracted. The next step was

comparing Tuesday with Saturday. This comparison aimed to find out if a resident has an

irregular heating pattern, or a low average which is more consistent over time. This

inspection was done manually. The first six heater IDs from the extracted list were chosen to

be visualized (figure 2).

26

Figure 13:First 6 heater IDs extracted from the newly created subset. Figures compare gas

usage between 20:00 – 22:00 from Tuesday and Saturday.

From figure 2, especially the plots 2 and 4 are remarkable. Both plots show a big difference

between Tuesday and Saturday. Based on these observations, it is very likely that we can

detect external heating sources. For the other plots, it is very likely that these residents are

fueled by a non-gas external heating source, because their gas usage is very low compared to

the mean. Although these conclusions seem reasonable, it will never be certain without any

reference data.

The research within the framework of a new energy label does not stop here. A further

27

step that could help to scale up the classification of wood stove patterns, could be done by

subtracting the Saturday Y value from the Tuesday Y value. Values that are relatively far

away from 0 have relatively high differences between these two days. This could indicate a

wood stove gas pattern. But, it seems a good first step to classify more accurately before

further specifying the labels.

28

Discussion

Base model
This research aimed to find the answer to the question “Can we build a base model to predict

gas usage?”. The answer to this question seemed to be “yes”. In the process of this research, a

random forest regressor model was used to predict resident gas usage. Although this model

did not predict quite accurately, the results give a hopeful depiction of what is possible with

data and gas usage prediction. Because this model had no baseline or reference point, it is

hard to classify its performance as good or bad. Despite this baseline absence, the explained

variance gives an indication of its usability and the predictors can be compared among each

other.

The regressor model had an explained variance of almost 50 percent. This statistic

tells that 50 percent of the variance in the outcome could be explained by the features in the

model. This result is interpreted as high. Although these predictors seem to explain quite

some variance, there is also more than 50 percent non explained variance. This is according

to what was expected. There are a lot of factors that influence one’s gas usage. Also, there is

a lot of difference between households and their gas usage behavior, which will be highly

complex to predict accurately.

For the created regressor model for this research, the feature importance can give

sight into what had a substantial impact on the prediction accuracy. Two features scored high

on average, which were: year and sun. According to the correlations (see fig x), sun was

expected to be a substantial predictor. Sun is ofcourse, highly correlated with temperature.

This temperature feature had not a substantial influence on the prediction. Random Forest is a

model that is well known for its way of dealing well with collinearity, which was the main

consideration to choose for this model. This way of dealing with collinearity is a possible

explanation for the high influence of sun and lower influence of temperature. Because they

are collinear, they cannot both have a high influence. A more remarkable observation was the

influence of year on the prediction within the model. Year is a derived variable from the

observation timestamp. Observation year could have an influence because some years will

have a lower temperature on average than others. This will probably influence the mean gas

usage.

29

One of the main limitations of this research is the varying amount of records for the

year values. Every ID’s year's value is the average of all the 24hour values from this ID,

within a certain year. This varying amount of records could have an influence on the results.

For example, for some heater ID’s only data points from the winter period are missing. This

would give biased estimates and has influence on the averages that were used to train the

model. A proposed solution could be to make a distribution to see which values are missing,

if for instance the missing values are in a heating curve the slope value of this curve could be

used to calculate the missing value. Further research should find a solution for this problem.

The random forest regressor model has the property of being an easily applicable

model, which often works well, also without any parameter tuning. This property helped to

overcome the problem of complex steps to make an algorithm work. At the same time, the

prediction accuracy could probably be improved by tuning these parameters. This parameter

tuning could be a good followup research topic.

This explorative study was the first attempt to create a digital energy label. This label aims to

predict gas usage, compare residence and possibly also advice on how to improve sustainable

housing.

Classification Task

This research aimed to answer the question “Can we classify if there are external heating

sources?”. The answer to this question seems to be “yes”. Low regular gas usage is likely to

be caused by external heating sources, like an electrical fueled underfloor heater. Also, the

irregular gas usage patterns are an indication of external heating, for example by a wood

stove. This specification within external heating sources could lead in the future to classify

even more accurately. Although these interpretations of the data seem reasonable, there is a

high uncertainty caused by the fact that there is no reference data available. Unfortunately,

the classification rule could also not be applied over the whole hourly dataset, because of the

limited amount of time. Therefore, the improvement on the random forest regressors could

not be assessed. Nevertheless, the visual inspection of the IDs that were selected showed a

promising look on the possibility of classifying external heating sources. At the same time, it

is not expected that accurately classifying external heating sources will increase the explained

variance drastically. The variance between resident gas usage does probably depend on a

30

huge set of factors that possibly will be very complex to determine.

A strong point of this research is the interval of the timepoints. Hourly based data

frames could determine different gas usage patterns way more accurately than 24hour data.

The availability of this data frame was a great opportunity to do these analyses with this level

of accuracy. Also, further specifying classes within the classification of external heating

sources would be a lot harder without this hourly based dataset.

This study also has some limitations. The first limitation is the fact that the used data

is a sample of the initial hourly dataset. 1 % percent of the initial dataset was randomly

picked for creating the sample dataset that was used for these analyses. Reducing the data

was needed to properly work with it. This reduction obviously resulted in an incomplete

number of observations per heater ID. Due to these incomplete records, the results could be

biased. This problem could have been passed by using other filters in the early stages of the

research. Unfortunately, due to the limited amount of time we had to work with this dataset.

Future research should focus on better selection criteria if they want to further improve this

classification task.

A second limitation of this research was the formula for determining Y. This formula

uses the overall gas usage mean. Using this value, does not take into account that bigger

houses on average need more gas to get warm, than smaller houses. As a result, the accuracy

of the classification is likely to be less accurate for smaller houses. Future research that

focuses on a classification task like this should try to avoid this drawback. A possible solution

could be using gas usage per m². A drawback of this method is that there is no linear relation

between surface and gas usage. This nonlinear relation will result in an advantage for bigger

houses, instead of smaller houses.

This classification task is part of a movement towards a data drive energy label.

Classifying external heating sources is a piece in the puzzle that tries to create a new method

for energy labelling. This new method aims to predict and compare residence energy

consumption controlled for consumer behavior. According to what was found in the

development of the base model, some external factors, like the amount of sun, seem to have

an influence on gas usage. Detecting and classifying different heating patterns is likely to be a

first step in controlling for consumer behavior. Future research and development of this data

drive energy label will show the capabilities of this system which possibly could lead to the

replacement of the nowadays energy label.

31

This explorative research tried to answer different questions based on datasets provided by

Intergas. The methods in this research were chosen based on the experience with data

analysis we gained from our courses during the master Applied Data Science. Also, every

step within this research is discussed and performed in consideration with our closely

involved supervisor.

32

Reference

Berkland, S. M. (2014). A Comparison of American, Canadian, and European Home Energy

Performance in Heating Dominated–Moist Climates Based on Building Codes.

Boonekamp, P. G. (2007). Price elasticities, policy measures and actual developments in

household energy consumption–A bottom up analysis for the Netherlands. Energy

Economics, 29(2), 133-157.

Bozsaky, D. (2010). The historical development of thermal insulation materials. Periodica

Polytechnica Architecture, 41(2), 49-56.

van den Brom, P., Meijer, A., & Visscher, H. (2018). Performance gaps in energy

consumption: household groups and building characteristics. Building Research &

Information, 46(1), 54-70.

Energielabel. (n.d.). Veelgestelde vragen.

https://www.energielabel.nl/woningen/veelgestelde-vragen/

European Commission. (2020, 17 Febuary). In focus: Energy effiency in buildings.

https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-feb-17_en/

European commission. (n.d.). 2050 long term strategy.

www.ec.europa.eu/clima/policies/strategies/2050_en/#tab-0-0

HIER klimaatbureau. (2018, 5 Octobre). Onderzoeksresultaten Verwarmings-gewoonten van

Nederlanders.

https://www.hier.nu/uploads/inline/20181005%20Onderzoeksresultaten%20Verwarmingsgew

oonten_HIER%20klimaatbureau.pdf

Intergas. (2018, May). Kombi Kompakt.

https://www.intergas-verwarming.nl/app/uploads/2018/01/Installatievoorschrift-Kombi-Kom

pakt-HRE-88557803.pdf

33

https://www.energielabel.nl/woningen/veelgestelde-vragen/
https://www.hier.nu/uploads/inline/20181005%20Onderzoeksresultaten%20Verwarmingsgewoonten_HIER%20klimaatbureau.pdf
https://www.hier.nu/uploads/inline/20181005%20Onderzoeksresultaten%20Verwarmingsgewoonten_HIER%20klimaatbureau.pdf

Intergas. (n.d.). Over Intergas. https://www.intergas-verwarming.nl/consument/over-intergas/\

Jeeninga, H., Uyterlinde, M. A., & Uitzinger, J. (2001). Energieverbruik van energiezuinige

woningen. Effecten van gedrag en besparingsmaatregelen op de spreiding in en de hoogte van

het reële energieverbruik.

Martens, S., & Spaargaren, G. (2005). The politics of sustainable consumption: the case of

the Netherlands. Sustainability: science, practice and policy, 1(1), 29-42.

Majcen, D., Itard, L. C. M., & Visscher, H. (2013). Theoretical vs. actual energy consumption

of labelled dwellings in the Netherlands: Discrepancies and policy implications. Energy

policy, 54, 125-136.

Majcen, D., & Itard, L. (2014a). Relatie tussen energielabel, werkelijk energiegebruik en

CO2-uitstoot van Amsterdamse corporatiewoningen. Delft University of Technology (OTB):

Rekenkamer Metropool Amsterdam. Von http://resolver. tudelft. nl/uuid:

b0b73c48‐4413‐4dda‐8b1b‐748cf65a534b abgerufen.

Majcen, D., & Itard, L. C. M. (2014b). Relatie tussen huishoudenskenmerken en-gedrag,

energielabel en werkelijk energiegebruik in Amsterdamse corporatiewoningen.

Majcen, D., Itard, L., & Visscher, H. (2015). Statistical model of the heating prediction gap in

Dutch dwellings: Relative importance of building, household and behavioural characteristics.

Energy and Buildings, 105, 43-59.

ODYSSEE. (2015, June). Energy Efficiency Trends and Policies in the Household and

Tertiary Sectors.

https://www.odyssee-mure.eu/publications/archives/energy-efficiency-trends-policies-buildin

gs.pdf

Radar. (2021, 3 March). Tot 500 euro voor het energielabel, maar wat heb je eraan?

https://radar.avrotros.nl/uitzendingen/gemist/item/tot-500-euro-voor-het-energielabel-maar-w

at-heb-je-eraan/

34

https://www.intergas-verwarming.nl/consument/over-intergas/%5C
https://www.odyssee-mure.eu/publications/archives/energy-efficiency-trends-policies-buildings.pdf
https://www.odyssee-mure.eu/publications/archives/energy-efficiency-trends-policies-buildings.pdf

RVO. (2020a, March). Opnameformulier behorend bij het opnameprotocol.

https://www.rvo.nl/sites/default/files/2020/10/opnameformulier-behorend-bij-het-opnameprot

ocol-nta-8800-versie-maart-2020.pdf

RVO. (2020b, 29 May). Energielabels op basis van NTA 8800 bij bouwaanvraag EPC.

https://www.rvo.nl/sites/default/files/2020/06/energielabels-op-basis-van-nta-8800-bij-bouwa

anvraag-epc.pdf

RvO. (2021, 29 June). Energielabel woningen.

https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/gebouwen/wetten-en-regels/bestaand

e-bouw/energielabel-woningen

Santin, O. G. (2011). Behavioural patterns and user profiles related to energy consumption

for heating. Energy and Buildings, 43(10), 2662-2672.

Yun, G. Y., & Steemers, K. (2011). Behavioural, physical and socio-economic factors in

household cooling energy consumption. Applied Energy, 88(6), 2191-2200.

Yunus A.. Çengel, & Ghajar, A. J. (2020). Heat and Mass Transfer: Fundamentals [and]

Applications. McGraw-Hill Education.

35

https://www.rvo.nl/sites/default/files/2020/10/opnameformulier-behorend-bij-het-opnameprotocol-nta-8800-versie-maart-2020.pdf
https://www.rvo.nl/sites/default/files/2020/10/opnameformulier-behorend-bij-het-opnameprotocol-nta-8800-versie-maart-2020.pdf
https://www.rvo.nl/sites/default/files/2020/06/energielabels-op-basis-van-nta-8800-bij-bouwaanvraag-epc.pdf
https://www.rvo.nl/sites/default/files/2020/06/energielabels-op-basis-van-nta-8800-bij-bouwaanvraag-epc.pdf
https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/gebouwen/wetten-en-regels/bestaande-bouw/energielabel-woningen
https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/gebouwen/wetten-en-regels/bestaande-bouw/energielabel-woningen

Appendix Code

36

Df_merging

July 2, 2021

[23]: import os
os.environ["SPARK_LOCAL_DIRS"] = "/home/jovyan/work/tmp"

[24]: from pyspark import SparkContext
from pyspark.sql import SparkSession, Row, DataFrameWriter, functions as sf
from pyspark.sql.functions import *

#Connect to spark context and create session
context = SparkContext('local[*]')
session = SparkSession(context)

Spark notebook home (/home/jovyan/data is mounted to server /data)
datadir = '/home/jovyan/work/data'

0.1 DF: Gas use hourly

[3]: #loading whole df_data_ig
ig_hourly = session.read.json(datadir+'/ig-gasuse-hourly.json/*.json.gz') #␣
↪→whole set

#select necessary cols
ig_hourly = ig_hourly.select("heater_id", "t_act", "t_set", "TimeKey", "Wijk")

[4]: #print schema and top rows
ig_hourly.printSchema()
ig_hourly.show(5)

root
|-- heater_id: long (nullable = true)
|-- t_act: double (nullable = true)
|-- t_set: double (nullable = true)
|-- TimeKey: string (nullable = true)
|-- Wijk: string (nullable = true)

+---------+-----+-----+----------+----+
|heater_id|t_act|t_set| TimeKey|Wijk|
+---------+-----+-----+----------+----+

1

10741	21.89	22.0	2018110901	1400
10741	21.95	22.0	2018110902	1400
10741	22.06	22.0	2018110903	1400
10741	22.05	22.0	2018110904	1400
10741	21.97	22.0	2018110905	1400
+---------+-----+-----+----------+----+
only showing top 5 rows

[5]: #create new col: dateday, as key to merge with other df's
ig_hourly = ig_hourly.withColumn("date_day", col("TimeKey").substr(0,8))
ig_hourly = ig_hourly.withColumn("hour", col("TimeKey").substr(8,2))

[6]: ig_hourly_24 = ig_hourly.groupBy("heater_id", "date_day").agg(avg("t_act"),␣
↪→avg("t_set"))

ig_hourly_24.show(3)

+---------+--------+------------------+----------+
|heater_id|date_day| avg(t_act)|avg(t_set)|
+---------+--------+------------------+----------+
10741	20181208	20.705	21.02375
10741	20190426	22.25583333333333	22.0
10741	20190820	22.980416666666674	14.4425
+---------+--------+------------------+----------+
only showing top 3 rows

0.2 DF: KNMI data
[8]: #loading whole KNMI df

df_knmi = session.read.json(datadir+'/knmi-hourly.json/*.json.gz')

#get column date_day and hour from TimeKey
df_knmi = df_knmi.withColumn("date_day", col("TimeKey").substr(0,8))

#show
df_knmi.show(4)

+----------+----+------------------+-----------------+------------------+-------
-----------+--------+
| TimeKey|Wijk| rain| sun| temp|
wind|date_day|
+----------+----+------------------+-----------------+------------------+-------
-----------+--------+
|2011020220|1001| 0.0| 0.0|
35.90114600398778|101.62519242926264|20110202|
|2011020410|1001|0.9808532599793152|5.792962250180368|
82.17807402757347|121.08183753807421|20110204|

2

|2011020423|1001| 0.0| 0.0|
91.16874426977826|147.29297003266316|20110204|
|2011021404|1001| 0.0| 0.0|29.964811250901842|
63.69556992745895|20110214|
+----------+----+------------------+-----------------+------------------+-------
-----------+--------+
only showing top 4 rows

[10]: # GroupBy Wijk & date_day and get average knmi data
df_avg_knmi = df_knmi.groupBy("Wijk", "date_day").avg("rain", "sun", "temp",␣
↪→"wind")

#show
df_avg_knmi.show(4)

+----+--------+--------------------+------------------+-------------------+-----
-------------+
|Wijk|date_day| avg(rain)| avg(sun)| avg(temp)|
avg(wind)|
+----+--------+--------------------+------------------+-------------------+-----
-------------+
|1001|20110313| 0.03295133200407028|19.038369723259674|
93.00903432208953|33.929621648990526|
|1001|20130222|-0.04352160445389…| 27.1564311402127|-13.227166279583725|
66.24841480430572|
|1002|20131202| 0.0|12.561415625659238|
52.59694793334723|15.439418152891578|
|1003|20140430| 0.48958753014916007| 67.13607528992402|
136.6616932569032|31.291684519422457|
+----+--------+--------------------+------------------+-------------------+-----
-------------+
only showing top 4 rows

0.3 DF: Intergas_raw

[]: #loading whole df_data_ig_raw
ig_raw = session.read.json(datadir+'/intergas-raw.json/*.json.gz')
ig_raw.printSchema()
ig_raw.show()

[]: # select necessary columns
ig_raw_selection = ig_raw.select("stats_24h.gasmeter_ch_24h", "stats_24h.
↪→gasmeter_dhw_24h", "date", "date_day", "heater_id")

#filter: gas_ch >0 & gas_dhw > 0

3

ig_raw_selection = ig_raw_selection.filter((ig_raw_selection.gasmeter_ch_24h[0]␣
↪→>= 0) & (ig_raw_selection.gasmeter_dhw_24h[0] >= 0))

show
ig_raw_selection.show(5)
ig_raw_selection.printSchema()

0.4 DF: ig_heater-info

[]: df_heater = session.read.csv(datadir+'/ig-heater-info.csv', header=True)
df_heater.printSchema()
df_heater.show(3)

0.5 Join data sets
[]: #merge df_data_ig_raw_selection & df_data_heater

merge1 = ig_raw_selection.join(df_heater, ["heater_id"], how='inner')
merge1.show(3)
merge1.printSchema()

[]: merge2 = merge1.join(ig_hourly_24, ["heater_id", "date_day"], how='inner')
merge2.show(3)
merge2.printSchema()

[]: df = merge2.join(df_avg_knmi, ['Wijk','date_day'], how='inner')
df.printSchema()
df.show(3)

[]: df.count()

[]: #save new dataset
df.write.format('json').save("/home/jovyan/work/data/df_24hour")

0.6 Samples from df

[]: # get samples do test anlaysis
3 samples with 10% of total dataset

#sample 1
df_sample_2 = df.sample(False, .1, seed=102)
df_sample_2.printSchema()
df_sample_2.write.format('json').save("/home/jovyan/work/data/df_sample_2") #␣
↪→save

#sample 3
df_sample_3 = df.sample(False, .1, seed=103)

4

df_sample_3.printSchema()
df_sample_3.write.format('json').save("/home/jovyan/work/data/df_sample_3") #␣
↪→save

#sample 1
df_sample_4 = df.sample(False, .1, seed=104)
df_sample_4.printSchema()
df_sample_4.write.format('json').save("/home/jovyan/work/data/df_sample_4") #␣
↪→save

root
|-- wijk: string (nullable = true)
|-- date_day: string (nullable = true)
|-- heater_id: long (nullable = true)
|-- gasmeter_ch_24h: array (nullable = true)
| |-- element: double (containsNull = true)
|-- gasmeter_dhw_24h: array (nullable = true)
| |-- element: double (containsNull = true)
|-- date: string (nullable = true)
|-- pandbouwjaar: string (nullable = true)
|-- oppervlakteverblijfsobject: string (nullable = true)
|-- avg(t_act): double (nullable = true)
|-- avg(t_set): double (nullable = true)
|-- avg(rain): double (nullable = true)
|-- avg(sun): double (nullable = true)
|-- avg(temp): double (nullable = true)
|-- avg(wind): double (nullable = true)

[1]: # session.stop()
context.stop()

5

EDA2

July 2, 2021

[1]: import os
os.environ["SPARK_LOCAL_DIRS"] = "/home/jovyan/work/tmp"

from pyspark import SparkContext
from pyspark.sql import SparkSession, Row, DataFrameWriter, functions as sf
from pyspark.sql.functions import *

#Connect to spark context and create session
context = SparkContext('local[*]')
session = SparkSession(context)

Spark notebook home (/home/jovyan/data is mounted to server /data)
datadir = '/home/jovyan/work/data'

[2]: datadir = '/home/jovyan/work/data'
df = session.read.json(datadir+'/df_sample_4/*.json')

[3]: from pyspark.sql.functions import *

add col temp diff
df = df.withColumn('avg(temp)/10', df['avg(temp)']/10)

#filter: t_act < 25
df = df.filter(df['avg(t_act)'] <= 26)
df = df.filter(df['avg(t_act)'] >= 10)
df = df.withColumn('temp_diff', df['avg(t_act)'] - df['avg(temp)/10'])

#filter: t_set < 25
df = df.filter(df['avg(t_set)'] <= 26)

#filter temp = max(temp_diff, 0)
df = df.withColumn('temp_diff', when(col('temp_diff') < 0, 0).
↪→otherwise(col('temp_diff')))

add gas outcomes as type double and filter < 40
gas_ch

df = df.withColumn('gas_ch', df['gasmeter_ch_24h'].getItem(0))

1

df = df.filter(df.gas_ch < 40)

gas_dhw
df = df.withColumn('gas_dhw', df['gasmeter_dhw_24h'].getItem(0))
df = df.filter(df.gas_dhw < 40)

change col types
df = df.withColumn("oppervlakteverblijfsobject",␣
↪→df['oppervlakteverblijfsobject'].cast("double"))

df = df.withColumn("pandbouwjaar", df['pandbouwjaar'].cast("integer"))
df = df.withColumn("wijk", df['wijk'].cast('integer'))

get col year
df = df.withColumn('year', col('date_day').substr(1, 4))

get col month
df = df.withColumn('month', col('date_day').substr(5, 2))

get col gas use m2
df = df.withColumn('total_gas_m2', (df.gas_ch + df.gas_dhw)/df.
↪→oppervlakteverblijfsobject)

filter: oppervalkteverblijfsobjct >= 40 & < 600
df = df.filter(df.oppervlakteverblijfsobject >= 40)
df = df.filter(df.oppervlakteverblijfsobject < 600)

drop unnecessary cols
cols = ['date', 'gasmeter_ch_24h', 'gasmeter_dhw_24h']
df = df.drop(*cols)
df.printSchema()

root
|-- avg(rain): double (nullable = true)
|-- avg(sun): double (nullable = true)
|-- avg(t_act): double (nullable = true)
|-- avg(t_set): double (nullable = true)
|-- avg(temp): double (nullable = true)
|-- avg(wind): double (nullable = true)
|-- date_day: string (nullable = true)
|-- heater_id: long (nullable = true)
|-- oppervlakteverblijfsobject: double (nullable = true)
|-- pandbouwjaar: integer (nullable = true)
|-- wijk: integer (nullable = true)
|-- avg(temp)/10: double (nullable = true)
|-- temp_diff: double (nullable = true)
|-- gas_ch: double (nullable = true)
|-- gas_dhw: double (nullable = true)

2

|-- year: string (nullable = true)
|-- month: string (nullable = true)
|-- total_gas_m2: double (nullable = true)

[4]: #get months jan. and feb.
df_winter = df.filter((df.month == '01') | (df.month == '02'))
df_winter.show(3)

+-------------------+------------------+------------------+------------------+--
-----------------+------------------+--------+---------+------------------------
--+------------+-----+-------------------+------------------+-------------------
+------------------+----+-----+--------------------+
| avg(rain)| avg(sun)| avg(t_act)| avg(t_set)|
avg(temp)|
avg(wind)|date_day|heater_id|oppervlakteverblijfsobject|pandbouwjaar| wijk|
avg(temp)/10| temp_diff| gas_ch|
gas_dhw|year|month| total_gas_m2|
+-------------------+------------------+------------------+------------------+--
-----------------+------------------+--------+---------+------------------------
--+------------+-----+-------------------+------------------+-------------------
+------------------+----+-----+--------------------+
| 0.0|15.066755816416586| 21.38| 21.5|
9.682061231962802|41.490809270779884|20210114| 88503|
170.0| 2002| 1003| 0.9682061231962802| 20.41179387680372|
6.373199999999997|2.5860999999999876|2021| 01| 0.05270176470588226|
| 0.0|15.066755816416586|20.509999999999994| 15.0|
9.682061231962802|41.490809270779884|20210114| 173555|
191.0| 2005| 1003| 0.9682061231962802|19.541793876803716|0.08479999999985
921|1.4487000000000307|2021| 01|0.008028795811517749|
|-0.3218487898902769|
8.142366768458983|19.144166666666667|16.252916666666668|-13.413290924220258|
65.76885105295825|20170208| 53937| 93.0|
1957|10601|-1.3413290924220258|20.485495759088693| 9.056500000000142|
0.877900000000011|2017| 02| 0.10682150537634573|
+-------------------+------------------+------------------+------------------+--
-----------------+------------------+--------+---------+------------------------
--+------------+-----+-------------------+------------------+-------------------
+------------------+----+-----+--------------------+
only showing top 3 rows

[5]: df.describe().show()

+-------+-------------------+-------------------+------------------+------------
--------+------------------+------------------+--------------------+------------
------+--------------------------+------------------+-----------------+---------
---------+------------------+-----------------+------------------+--------------

3

----+------------------+--------------------+
|summary| avg(rain)| avg(sun)| avg(t_act)|
avg(t_set)| avg(temp)| avg(wind)| date_day|
heater_id|oppervlakteverblijfsobject| pandbouwjaar| wijk|
avg(temp)/10| temp_diff| gas_ch| gas_dhw|
year| month| total_gas_m2|
+-------+-------------------+-------------------+------------------+------------
--------+------------------+------------------+--------------------+------------
------+--------------------------+------------------+-----------------+---------
---------+------------------+-----------------+------------------+--------------
----+------------------+--------------------+
| count| 2605965| 2588867| 2614462|
2614462| 2610253| 2614462| 2614462|
2614462| 2614462| 2614462| 2614462|
2610253| 2610253| 2614462| 2614462|
2614462| 2614462| 2614462|
| mean| 0.6931115783215736| 36.41823030408528|20.623722297322303|
16.7576500133664| 90.92280309067996| 43.52875942534622|2.0187832447827507E7|
91796.53089469268|
143.496526627658|1965.1157343269858|66414.51303442162|
9.092280309068038|11.539991806875015|3.338218177927236|0.7693700813016233|
2018.715729278146|6.5941673659819875|0.034840749029792735|
| stddev| 1.4719286503170799| 31.858157405562267| 2.22202899641818|
3.088474349773235|57.609488249718254|21.310360881541918|
13176.763213186694|61660.150918615254| 395.32001428445034|
63.42263794761144| 57914.4196659706| 5.760948824971834|4.9730611498692365|4.2885
17020907146|0.6867816314217753|1.3229080360149592| 3.589469216709949|
0.03853067486617739|
| min|-0.6414749137889136|0.05661141827097143|
10.0|-0.00791666666666…|-79.39315473007132|3.8886266251021944|
20151004| 1499| 40.0| 1005|
300|-7.939315473007132| 0.0| 0.0| 0.0|
2015| 01| 0.0|
| max| 31.158154904429136| 130.9650152513161| 26.0|
26.0|308.27342108891355|188.09149485061832| 20210201|
204776| 68353.0| 2020|
197820|30.827342108891354| 32.07211049680499|39.98979999999938|
39.72479999999996| 2021| 12| 0.8909688888888568|
+-------+-------------------+-------------------+------------------+------------
--------+------------------+------------------+--------------------+------------
------+--------------------------+------------------+-----------------+---------
---------+------------------+-----------------+------------------+--------------
----+------------------+--------------------+

[6]: # from pyspark.sql.functions import *
df_winter.groupBy('heater_id').agg(avg('gas_ch'), avg('temp'))

4

[7]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

[8]: pd_winter = df_winter.toPandas()

[9]: fig = plt.figure(figsize= [10,6])
ax = plt.axes()
ax.set_title("Gas use for temperature in jan. and feb. for different years")

df, x, y year == 2017
df_xy = pd_winter[pd_winter.year == '2017']
df_xy = df_xy.dropna()
x = df_xy['avg(temp)/10'] #filter for year
y = df_xy['gas_ch'] #filter for year

#df, x, y: year == 2018
df_xy1 = pd_winter[pd_winter.year == '2018']
df_xy1 = df_xy1.dropna()
x1 = df_xy1['avg(temp)/10'] #filter for year
y1 = df_xy1['gas_ch'] #filter for year

df, x, y: year == 2019
df_xy2 = pd_winter[pd_winter.year == '2019']
df_xy2 = df_xy2.dropna()
x2 = df_xy2['avg(temp)/10'] #filter for year
y2 = df_xy2['gas_ch'] #filter for year

df, x, y: year == 2020
df_xy3 = pd_winter[pd_winter.year == '2020']
df_xy3 = df_xy3.dropna()
x3 = df_xy3['avg(temp)/10'] #filter for year
y3 = df_xy3['gas_ch'] #filter for year

df, x, y: year == 2020
df_xy4 = pd_winter[pd_winter.year == '2021']
df_xy4 = df_xy4.dropna()
x4 = df_xy4['avg(temp)/10'] #filter for year
y4 = df_xy4['gas_ch'] #filter for year

#scatter and trendline: 2017
ax.scatter(x2, y2, alpha=.5)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x),"b--", label= 'Trendline 2017: y=%.6fx+%.6f'%(z[0],z[1]))

5

#scatter and trendline: 2018
ax.scatter(x1, y1, alpha=.5)
z1 = np.polyfit(x1, y1, 1)
p1 = np.poly1d(z1)
plt.plot(x1,p1(x1),"g--", label= 'Trendline 2018: y=%.6fx+%.6f'%(z1[0],z1[1]))

#scatter and trendline: 2019
ax.scatter(x2, y2, alpha=.5)
z2 = np.polyfit(x2, y2, 1)
p2 = np.poly1d(z2)
plt.plot(x2,p2(x2),"r--", label= 'Trendline 2019: y=%.6fx+%.6f'%(z2[0],z2[1]))

#scatter and trendline: 2020
ax.scatter(x2, y2, alpha=.5)
z3 = np.polyfit(x3, y3, 1)
p3 = np.poly1d(z3)
plt.plot(x3,p3(x3),"y--", label= 'Trendline 2020: y=%.6fx+%.6f'%(z3[0],z3[1]))

#scatter and trendline: 2021
ax.scatter(x2, y2, alpha=.5)
z4 = np.polyfit(x4, y4, 1)
p4 = np.poly1d(z4)
plt.plot(x4,p4(x4),"c--", label= 'Trendline 2021: y=%.6fx+%.6f'%(z4[0],z4[1]))

#properties of fig
plt.legend(loc="upper right")
ax.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.set_xlabel('Temperature (C)')
ax.set_ylabel('Gas use (m³)')

[9]: Text(0, 0.5, 'Gas use (m³)')

6

[10]: pd_year = df.toPandas()
pd_year.head()

[10]: avg(rain) avg(sun) avg(t_act) avg(t_set) avg(temp) avg(wind) \
0 0.000000 49.428351 18.926250 17.5 64.497099 36.796227
1 0.000000 107.616097 23.171667 16.0 192.848343 31.043363
2 3.040219 11.315445 19.878750 16.0 161.789993 77.275430
3 -0.008935 6.165509 22.390417 19.0 71.879050 84.686033
4 4.274873 37.367628 21.940000 17.0 130.892169 107.099784

date_day heater_id oppervlakteverblijfsobject pandbouwjaar wijk \
0 20170310 12927 490.0 1830 1001
1 20190617 12927 490.0 1830 1001
2 20160929 40989 123.0 1959 1002
3 20161224 54477 79.0 1956 1002
4 20170913 54477 79.0 1956 1002

avg(temp)/10 temp_diff gas_ch gas_dhw year month total_gas_m2
0 6.449710 12.476540 6.8691 1.4980 2017 03 0.017076
1 19.284834 3.886832 0.0000 0.2331 2019 06 0.000476
2 16.178999 3.699751 0.0000 0.8656 2016 09 0.007037
3 7.187905 15.202512 6.5733 0.8204 2016 12 0.093591
4 13.089217 8.850783 1.4064 0.6214 2017 09 0.025668

7

[11]: fig = plt.figure(figsize= [10,6])
ax = plt.axes()
ax.set_title("Average gas consumption vs. temperature per year")

df, x, y year == 2017
df_xy = pd_year[pd_year.year == '2017']
df_xy = df_xy.dropna()
x = df_xy['avg(temp)/10'] #filter for year
y = df_xy['gas_ch'] #filter for year

#df, x, y: year == 2018
df_xy1 = pd_year[pd_year.year == '2018']
df_xy1 = df_xy1.dropna()
x1 = df_xy1['avg(temp)/10'] #filter for year
y1 = df_xy1['gas_ch'] #filter for year

df, x, y: year == 2019
df_xy2 = pd_year[pd_year.year == '2019']
df_xy2 = df_xy2.dropna()
x2 = df_xy2['avg(temp)/10'] #filter for year
y2 = df_xy2['gas_ch'] #filter for year

df, x, y: year == 2020
df_xy3 = pd_year[pd_year.year == '2020']
df_xy3 = df_xy3.dropna()
x3 = df_xy3['avg(temp)/10'] #filter for year
y3 = df_xy3['gas_ch'] #filter for year

df, x, y: year == 2020
df_xy4 = pd_year[pd_year.year == '2021']
df_xy4 = df_xy4.dropna()
x4 = df_xy4['avg(temp)/10'] #filter for year
y4 = df_xy4['gas_ch'] #filter for year

#scatter and trendline: 2017
ax.scatter(x2, y2, alpha=.5)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x),"b--", label= 'Trendline 2017: y=%.6fx+%.6f'%(z[0],z[1]))

#scatter and trendline: 2018
ax.scatter(x1, y1, alpha=.5)
z1 = np.polyfit(x1, y1, 1)
p1 = np.poly1d(z1)
plt.plot(x1,p1(x1),"g--", label= 'Trendline 2018: y=%.6fx+%.6f'%(z1[0],z1[1]))

8

#scatter and trendline: 2019
ax.scatter(x2, y2, alpha=.5)
z2 = np.polyfit(x2, y2, 1)
p2 = np.poly1d(z2)
plt.plot(x2,p2(x2),"r--", label= 'Trendline 2019: y=%.6fx+%.6f'%(z2[0],z2[1]))

#scatter and trendline: 2020
ax.scatter(x2, y2, alpha=.5)
z3 = np.polyfit(x3, y3, 1)
p3 = np.poly1d(z3)
plt.plot(x3,p3(x3),"y--", label= 'Trendline 2020: y=%.6fx+%.6f'%(z3[0],z3[1]))

scatter and trendline: 2021
ax.scatter(x2, y2, alpha=.5)
z4 = np.polyfit(x4, y4, 1)
p4 = np.poly1d(z4)
plt.plot(x4,p4(x4),"c--", label= 'Trendline 2021: y=%.6fx+%.6f'%(z4[0],z4[1]))

#properties of fig
plt.legend(loc="upper right")
ax.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.set_xlabel('Temperature (C)')
ax.set_ylabel('Gas consumption (m³)')
ax.set_ylim(0,12)
ax.set_xlim(-7, 25)

[11]: (-7.0, 25.0)

9

[12]: fig = plt.figure(figsize= [10,6])
ax = plt.axes()
ax.set_title("Temperature difference (inside - outside) vs. avg gas consumption␣
↪→per year", fontsize=12)

df, x, y year == 2017
df_xy = pd_year[pd_year.year == '2017']
df_xy = df_xy.dropna()
x = df_xy['temp_diff'] #filter for year
y = df_xy['gas_ch'] #filter for year

#df, x, y: year == 2018
df_xy1 = pd_year[pd_year.year == '2018']
df_xy1 = df_xy1.dropna()
x1 = df_xy1['temp_diff'] #filter for year
y1 = df_xy1['gas_ch'] #filter for year

df, x, y: year == 2019
df_xy2 = pd_year[pd_year.year == '2019']
df_xy2 = df_xy2.dropna()
x2 = df_xy2['temp_diff'] #filter for year
y2 = df_xy2['gas_ch'] #filter for year

df, x, y: year == 2020

10

df_xy3 = pd_year[pd_year.year == '2020']
df_xy3 = df_xy3.dropna()
x3 = df_xy3['temp_diff'] #filter for year
y3 = df_xy3['gas_ch'] #filter for year

df, x, y: year == 2020
df_xy4 = pd_year[pd_year.year == '2021']
df_xy4 = df_xy4.dropna()
x4 = df_xy4['temp_diff'] #filter for year
y4 = df_xy4['gas_ch'] #filter for year

#scatter and trendline: 2017
ax.scatter(x2, y2, alpha=.5)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x),"b--", label= 'Trendline 2017: y=%.6fx+%.6f'%(z[0],z[1]))

#scatter and trendline: 2018
ax.scatter(x1, y1, alpha=.5)
z1 = np.polyfit(x1, y1, 1)
p1 = np.poly1d(z1)
plt.plot(x1,p1(x1),"g--", label= 'Trendline 2018: y=%.6fx+%.6f'%(z1[0],z1[1]))

#scatter and trendline: 2019
ax.scatter(x2, y2, alpha=.5)
z2 = np.polyfit(x2, y2, 1)
p2 = np.poly1d(z2)
plt.plot(x2,p2(x2),"r--", label= 'Trendline 2019: y=%.6fx+%.6f'%(z2[0],z2[1]))

#scatter and trendline: 2020
ax.scatter(x2, y2, alpha=.5)
z3 = np.polyfit(x3, y3, 1)
p3 = np.poly1d(z3)
plt.plot(x3,p3(x3),"y--", label= 'Trendline 2020: y=%.6fx+%.6f'%(z3[0],z3[1]))

scatter and trendline: 2021
ax.scatter(x2, y2, alpha=.5)
z4 = np.polyfit(x4, y4, 1)
p4 = np.poly1d(z4)
plt.plot(x4,p4(x4),"c--", label= 'Trendline 2021: y=%.6fx+%.6f'%(z4[0],z4[1]))

#properties of fig
plt.legend(loc="upper right")
ax.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax.set_xlabel('Temperature difference', fontsize=12)

11

ax.set_ylabel('average gas consumption', fontsize=12)
ax.set_ylim(0,12)
ax.set_xlim(0,32)

[12]: (0.0, 32.0)

[13]: pd_winter

[13]: avg(rain) avg(sun) avg(t_act) avg(t_set) avg(temp) avg(wind) \
0 0.000000 15.066756 21.380000 21.500000 9.682061 41.490809
1 0.000000 15.066756 20.510000 15.000000 9.682061 41.490809
2 -0.321849 8.142367 19.144167 16.252917 -13.413291 65.768851
3 -0.321849 8.142367 19.312083 17.500000 -13.413291 65.768851
4 1.355774 6.997916 20.049583 17.000000 27.089749 56.528794
… … … … … … …
457052 0.000000 3.992979 17.539167 17.964583 -3.960250 16.326736
457053 0.000000 3.992979 20.798750 20.497500 -3.960250 16.326736
457054 0.127165 1.879825 19.134583 16.789167 11.616213 96.030642
457055 0.163255 2.370457 16.526667 12.748750 4.753975 48.011423
457056 0.000000 1.764178 17.685000 17.500000 5.646814 33.239672

date_day heater_id oppervlakteverblijfsobject pandbouwjaar wijk \
0 20210114 88503 170.0 2002 1003
1 20210114 173555 191.0 2005 1003

12

2 20170208 53937 93.0 1957 10601
3 20170208 56399 90.0 1962 10601
4 20190128 99315 152.0 1968 10602
… … … … … …
457052 20170122 8324 115.0 1978 99522
457053 20170122 12816 70.0 1975 99522
457054 20160126 8735 214.0 2002 99524
457055 20180119 79825 76.0 1998 99538
457056 20200120 194488 593.0 1996 99561

avg(temp)/10 temp_diff gas_ch gas_dhw year month total_gas_m2
0 0.968206 20.411794 6.3732 2.5861 2021 01 0.052702
1 0.968206 19.541794 0.0848 1.4487 2021 01 0.008029
2 -1.341329 20.485496 9.0565 0.8779 2017 02 0.106822
3 -1.341329 20.653412 12.5593 0.7018 2017 02 0.147346
4 2.708975 17.340608 8.6957 0.7347 2019 01 0.062042
… … … … … … … …
457052 -0.396025 17.935192 9.0891 0.7576 2017 01 0.085623
457053 -0.396025 21.194775 18.4499 1.8151 2017 01 0.289500
457054 1.161621 17.972962 4.3184 1.5474 2016 01 0.027410
457055 0.475398 16.051269 5.1254 0.5776 2018 01 0.075039
457056 0.564681 17.120319 13.2843 0.2582 2020 01 0.022837

[457057 rows x 18 columns]

[14]: jan = pd_winter[pd_winter.month == '01']['total_gas_m2']
feb = pd_winter[pd_winter.month == '02']['total_gas_m2']
winter = [jan, feb]

fig, ax1 = plt.subplots(figsize=(9,6))
ax1.set_title("")

ax1.boxplot(winter)
ax1.violinplot(winter)
ax1.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5)
ax1.set_xticks({1: 'Jan', 2: 'Feb.'})
ax1.set_ylabel('Gasconsumption per m²')

[14]: Text(0, 0.5, 'Gasconsumption per m²')

13

[15]: fig = plt.figure(figsize= [10,6])
ax = plt.axes()
ax.set_title("Temperature difference (inside - outside) vs. avg gas␣
↪→consumption per year", fontsize=12)

df, x, y year == 2017
xy = pd_year
xy = xy.dropna()
x = xy['avg(t_act)'] #filter for year
y = xy['avg(temp)/10'] #filter for year

z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x,p(x),"y--")
plt.scatter(x,y)
ax.set_xlim(10, 25)

[15]: (10.0, 25.0)

14

[16]: pd_winter.groupby

[16]: <bound method DataFrame.groupby of avg(rain) avg(sun) avg(t_act)
avg(t_set) avg(temp) avg(wind) \
0 0.000000 15.066756 21.380000 21.500000 9.682061 41.490809
1 0.000000 15.066756 20.510000 15.000000 9.682061 41.490809
2 -0.321849 8.142367 19.144167 16.252917 -13.413291 65.768851
3 -0.321849 8.142367 19.312083 17.500000 -13.413291 65.768851
4 1.355774 6.997916 20.049583 17.000000 27.089749 56.528794
… … … … … … …
457052 0.000000 3.992979 17.539167 17.964583 -3.960250 16.326736
457053 0.000000 3.992979 20.798750 20.497500 -3.960250 16.326736
457054 0.127165 1.879825 19.134583 16.789167 11.616213 96.030642
457055 0.163255 2.370457 16.526667 12.748750 4.753975 48.011423
457056 0.000000 1.764178 17.685000 17.500000 5.646814 33.239672

date_day heater_id oppervlakteverblijfsobject pandbouwjaar wijk \
0 20210114 88503 170.0 2002 1003
1 20210114 173555 191.0 2005 1003
2 20170208 53937 93.0 1957 10601
3 20170208 56399 90.0 1962 10601
4 20190128 99315 152.0 1968 10602
… … … … … …
457052 20170122 8324 115.0 1978 99522
457053 20170122 12816 70.0 1975 99522

15

457054 20160126 8735 214.0 2002 99524
457055 20180119 79825 76.0 1998 99538
457056 20200120 194488 593.0 1996 99561

avg(temp)/10 temp_diff gas_ch gas_dhw year month total_gas_m2
0 0.968206 20.411794 6.3732 2.5861 2021 01 0.052702
1 0.968206 19.541794 0.0848 1.4487 2021 01 0.008029
2 -1.341329 20.485496 9.0565 0.8779 2017 02 0.106822
3 -1.341329 20.653412 12.5593 0.7018 2017 02 0.147346
4 2.708975 17.340608 8.6957 0.7347 2019 01 0.062042
… … … … … … … …
457052 -0.396025 17.935192 9.0891 0.7576 2017 01 0.085623
457053 -0.396025 21.194775 18.4499 1.8151 2017 01 0.289500
457054 1.161621 17.972962 4.3184 1.5474 2016 01 0.027410
457055 0.475398 16.051269 5.1254 0.5776 2018 01 0.075039
457056 0.564681 17.120319 13.2843 0.2582 2020 01 0.022837

[457057 rows x 18 columns]>

[17]: pd_winter[['avg(t_act)', 'avg(t_set)', 'avg(temp)/10', 'gas_ch']].describe()

[17]: avg(t_act) avg(t_set) avg(temp)/10 gas_ch
count 457057.000000 457057.000000 456445.000000 457057.000000
mean 19.361823 17.394793 3.890697 7.343040
std 1.774115 2.693917 3.137082 4.709177
min 10.000000 0.000000 -7.939315 0.000000
25% 18.560000 16.000000 1.570685 4.155300
50% 19.551667 17.500000 3.867938 6.589300
75% 20.430000 19.000000 6.200449 9.631200
max 26.000000 26.000000 13.006078 39.989800

[18]: pd_winter[['avg(t_act)', 'avg(t_set)', 'avg(temp)/10', 'gas_ch']]

[18]: avg(t_act) avg(t_set) avg(temp)/10 gas_ch
0 21.380000 21.500000 0.968206 6.3732
1 20.510000 15.000000 0.968206 0.0848
2 19.144167 16.252917 -1.341329 9.0565
3 19.312083 17.500000 -1.341329 12.5593
4 20.049583 17.000000 2.708975 8.6957
… … … … …
457052 17.539167 17.964583 -0.396025 9.0891
457053 20.798750 20.497500 -0.396025 18.4499
457054 19.134583 16.789167 1.161621 4.3184
457055 16.526667 12.748750 0.475398 5.1254
457056 17.685000 17.500000 0.564681 13.2843

[457057 rows x 4 columns]

16

[19]: x = pd_winter['gas_ch']
fig, ax = plt.subplots()
ax.violinplot(x)
ax.boxplot(x)
plt.xticks([])
ax.set_ylabel('gas consumption')
ax.set_title("density gas consumption jan and feb")

[19]: Text(0.5, 1.0, 'density gas consumption jan and feb')

[20]: #de som van grouped id gas_ch geeft een vertekend beeld omdat verschillende ids␣
↪→verschillende counts hebben

x = pd_winter.groupby('heater_id')['gas_ch'].mean()

fig, ax = plt.subplots()
ax.violinplot(x)
ax.boxplot(x)
ax.scatter
plt.xticks([])
ax.set_ylabel('gas consumption grouped by id')
ax.set_title("density gas consumption jan and feb")

[20]: Text(0.5, 1.0, 'density gas consumption jan and feb')

17

[21]: sns.set_style('whitegrid')
sns.kdeplot(x)

[21]: <AxesSubplot:xlabel='gas_ch', ylabel='Density'>

18

[22]: sns.distplot(x, hist=True)

/opt/conda/lib/python3.8/site-packages/seaborn/distributions.py:2557:
FutureWarning: `distplot` is a deprecated function and will be removed in a
future version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function for
histograms).

warnings.warn(msg, FutureWarning)

[22]: <AxesSubplot:xlabel='gas_ch', ylabel='Density'>

[23]: pd_winter.groupby('heater_id').mean().describe()
mean gas_ch: 7.344812
range 0-25% = 0 - 4.727518

[23]: avg(rain) avg(sun) avg(t_act) avg(t_set) avg(temp) \
count 31423.000000 31160.000000 31468.000000 31468.000000 31445.000000
mean 0.800662 11.935515 19.338394 17.413449 39.837093
std 0.572889 4.784431 1.546166 2.388008 15.513266
min -0.292772 0.307035 10.144167 0.000000 -66.096203
25% 0.411673 8.846501 18.564211 16.140612 30.836981
50% 0.711325 12.130806 19.447515 17.500000 40.692367
75% 1.066427 15.000140 20.275463 18.815768 50.111305

19

max 9.190572 48.766772 25.902250 26.000000 114.916330

avg(wind) oppervlakteverblijfsobject pandbouwjaar wijk \
count 31468.000000 31468.000000 31468.000000 31468.000000
mean 51.814216 147.062413 1964.953763 66058.671825
std 13.186515 527.493361 62.926572 57696.694006
min 7.909961 40.000000 1005.000000 300.000000
25% 42.499673 97.000000 1955.000000 26806.000000
50% 49.729988 116.000000 1976.000000 43100.000000
75% 59.669280 141.000000 1989.000000 84502.000000
max 134.214676 68353.000000 2020.000000 197820.000000

avg(temp)/10 temp_diff gas_ch gas_dhw total_gas_m2
count 31445.000000 31445.000000 31468.000000 31468.000000 31468.000000
mean 3.983709 15.355261 7.344045 0.915435 0.070216
std 1.551327 2.202415 3.918300 0.665643 0.036065
min -6.609620 0.000000 0.000000 0.000000 0.000000
25% 3.083698 14.017927 4.729456 0.478508 0.047270
50% 4.069237 15.344690 6.734042 0.793855 0.065309
75% 5.011130 16.716805 9.221471 1.206467 0.087053
max 11.491633 28.112954 38.978600 35.816900 0.642479

[]:

[24]: buckets = [0, 4.727518, 13.750750]
bucketnames = ['yes', 'no']

pd_winter['External_Heating'] = pd.cut(x=pd_winter['gas_dhw'], bins=buckets,␣
↪→labels=bucketnames)

pd_winter.External_Heating.value_counts()

[24]: yes 435386
no 1164
Name: External_Heating, dtype: int64

[25]: buckets = [0, 4.727518, 13.750750]
bucketnames = ['yes', 'no']

pd_winter['External_Heating'] = pd.cut(x=pd_winter['gas_dhw'], bins=buckets,␣
↪→labels=bucketnames)

pd_winter.External_Heating.value_counts()

[25]: yes 435386
no 1164
Name: External_Heating, dtype: int64

20

[26]: pd_winter.year.value_counts()

[26]: 2020 144587
2019 100962
2018 72449
2021 72193
2017 46113
2016 20753
Name: year, dtype: int64

[]: 1174/435385

[]: # session.stop()
context.stop()

21

RF_gasm2

July 2, 2021

[1]: import pandas as pd
import os
os.environ["SPARK_LOCAL_DIRS"] = "/home/jovyan/work/tmp"

from pyspark import SparkContext
from pyspark.sql import SparkSession, Row, DataFrameWriter, functions as sf
from pyspark.sql.functions import *

#Connect to spark context and create session

context = SparkContext('local[*]')
context.setSystemProperty("spark.driver.memory", "8g")
session = SparkSession(context)

[2]: datadir = '/home/jovyan/work/jupyter/data'
df = session.read.json(datadir+'/df_24hour/*.json')

[3]: df.printSchema()
df.show()

root
|-- avg(rain): double (nullable = true)
|-- avg(sun): double (nullable = true)
|-- avg(t_act): double (nullable = true)
|-- avg(t_set): double (nullable = true)
|-- avg(temp): double (nullable = true)
|-- avg(wind): double (nullable = true)
|-- date: string (nullable = true)
|-- date_day: string (nullable = true)
|-- gasmeter_ch_24h: array (nullable = true)
| |-- element: double (containsNull = true)
|-- gasmeter_dhw_24h: array (nullable = true)
| |-- element: double (containsNull = true)
|-- heater_id: long (nullable = true)
|-- oppervlakteverblijfsobject: string (nullable = true)
|-- pandbouwjaar: string (nullable = true)
|-- wijk: string (nullable = true)

1

+--------------------+------------------+------------------+------------------+-
-----------------+------------------+-------------------+--------+--------------
------+--------------------+---------+--------------------------+------------+--
--+
| avg(rain)| avg(sun)| avg(t_act)| avg(t_set)|
avg(temp)| avg(wind)| date|date_day| gasmeter_ch_24h|
gasmeter_dhw_24h|heater_id|oppervlakteverblijfsobject|pandbouwjaar|wijk|
+--------------------+------------------+------------------+------------------+-
-----------------+------------------+-------------------+--------+--------------
------+--------------------+---------+--------------------------+------------+--
--+
|-0.05294595819723685| 16.43587820098253|19.269583333333333| 19.34|
90.94516994556801|20.256406436265483|2015-10-20 03:32:01|20151020|
[8.621199999999988]|[0.9984000000000037]| 10565| 490|
1830|1001|
|-0.03940268795338…| 7.113720059929197|17.269999999999996|17.153333333333336|
74.36535687217368| 36.45375808419566|2015-10-28 03:27:38|20151028|
[8.494399999999985]|[0.9584000000000117]| 10565| 490|
1830|1001|
| 0.0| 5.015029120600641| 18.74875| 17.5|
2.400337425438097| 30.71207452710746|2017-01-24 00:00:02|20170124|
[9.926699999999983]| [1.057800000000043]| 12927| 490|
1830|1001|
| 0.0| 5.015029120600641|19.330416666666668| 19.0|
2.400337425438097| 30.71207452710746|2017-01-24
00:00:02|20170124|[14.412200000000212]| [1.480899999999906]| 10565|
490| 1830|1001|
| 0.15950629163660526| 25.85703027475181| 21.01|20.002499999999998|
87.00004815705019| 65.48449099504091|2017-05-05
00:00:00|20170505|[10.247299999999996]|[1.8859999999999673]| 10565|
490| 1830|1001|
| 0.15950629163660526| 25.85703027475181|19.143333333333334| 17.5|
87.00004815705019| 65.48449099504091|2017-05-05 00:00:00|20170505|
[4.941600000000108]|[1.3326999999999316]| 12927| 490|
1830|1001|
| 0.15950629163660526| 25.85703027475181|18.477083333333336| 17.0|
87.00004815705019| 65.48449099504091|2017-05-05
00:00:00|20170505|[3.9876999999999896]|[0.3897000000000004]| 74889|
110| 1900|1001|
| 0.0| 92.27045960665221| 22.03708333333334|
16.5|177.36104142556144| 42.33107086849937|2017-08-14 00:00:00|20170814|
[0.0]|[0.9915999999998348]| 12927| 490|
1830|1001|
| 0.0| 92.27045960665221|22.044166666666673|
18.5|177.36104142556144| 42.33107086849937|2017-08-14 00:00:00|20170814|
[0.0]|[0.6870000000000118]| 10565| 490|
1830|1001|
| 0.0| 92.27045960665221|22.216666666666665|

2

16.0|177.36104142556144| 42.33107086849937|2017-08-14 00:00:00|20170814|
[0.0]|[0.7335000000000065]| 74889| 110|
1900|1001|
| 3.2666881794837437| 12.37969597763103|21.327142857142853| 8.978095238095236|
136.3339607192684|32.723804110140186|2017-09-30 00:00:00|20170930|
[0.0]|[0.6674999999999898]| 74889| 110|
1900|1001|
| 3.2666881794837437| 12.37969597763103|22.342916666666664| 22.75|
136.3339607192684|32.723804110140186|2017-09-30
00:00:00|20170930|[3.2569000000003143]|[0.7223999999999933]| 10565|
490| 1830|1001|
| 3.2666881794837437| 12.37969597763103|19.450833333333332|16.749166666666667|
136.3339607192684|32.723804110140186|2017-09-30
00:00:00|20170930|[1.0981000000001586]|[0.6872000000000753]| 12927|
490| 1830|1001|
|-0.04125762574060…| 18.65642163691027|20.848333333333336|
20.49166666666667|54.739008591828146| 43.87506414308755|2018-03-23
00:00:00|20180323|[11.578300000000127]| [1.070799999999963]| 10565|
490| 1830|1001|
|-0.04125762574060…| 18.65642163691027| 17.71125|
17.0|54.739008591828146| 43.87506414308755|2018-03-23 00:00:00|20180323|
[6.214500000000044]|[0.3527000000001408]| 12927| 490|
1830|1001|
|-0.04125762574060…| 18.65642163691027|17.822916666666668|
16.0|54.739008591828146| 43.87506414308755|2018-03-23 00:00:00|20180323|
[8.033600000000206]|[0.02359999999998…| 74889| 110|
1900|1001|
| 3.3984857276846356|24.341323885011477|21.069166666666668|
15.5|163.51541030282706| 76.50490330279088|2020-07-04 00:00:00|20200704|
[0.0]|[0.18150000000014…| 12927| 490|
1830|1001|
| 3.3984857276846356|24.341323885011477|22.149166666666673|
22.0|163.51541030282706| 76.50490330279088|2020-07-04 00:00:00|20200704|
[0.701600000000326]|[0.4733000000001084]| 10565| 490|
1830|1001|
| 0.06650076269844905|15.264374622653902|16.107916666666668|
16.0|14.224409744023896|28.852744449488398|2016-11-08
00:00:01|20161108|[17.549799999999976]|[0.7513000000000005]| 40989|
123| 1959|1002|
| 0.14786031466780003| 4.544780251412445|21.592499999999998|
19.0|56.046195879670414| 58.73225644094658|2016-12-22 00:00:03|20161222|
[6.527500000000003]|[0.2917000000000005]| 54477| 79|
1956|1002|
+--------------------+------------------+------------------+------------------+-
-----------------+------------------+-------------------+--------+--------------
------+--------------------+---------+--------------------------+------------+--
--+
only showing top 20 rows

3

[4]: from pyspark.sql.functions import *

add col temp diff
df = df.withColumn('avg(temp)/10', df['avg(temp)']/10)

#filter: t_act < 25
df = df.filter(df['avg(t_act)'] <= 26)
df = df.filter(df['avg(t_act)'] >= 10)
df = df.withColumn('temp_diff', df['avg(t_act)'] - df['avg(temp)/10'])

#filter: t_set < 25
df = df.filter(df['avg(t_set)'] <= 26)

#filter temp = max(temp_diff, 0)
df = df.withColumn('temp_diff', when(col('temp_diff') < 0, 0).
↪→otherwise(col('temp_diff')))

add gas outcomes as type double and filter < 40
gas_ch

df = df.withColumn('gas_ch', df['gasmeter_ch_24h'].getItem(0))
df = df.filter(df.gas_ch < 40)

gas_dhw
df = df.withColumn('gas_dhw', df['gasmeter_dhw_24h'].getItem(0))
df = df.filter(df.gas_dhw < 40)

change col types
df = df.withColumn("oppervlakteverblijfsobject",␣
↪→df['oppervlakteverblijfsobject'].cast("double"))

df = df.withColumn("pandbouwjaar", df['pandbouwjaar'].cast("integer"))
df = df.withColumn("wijk", df['wijk'].cast('integer'))

get col year
df = df.withColumn('year', col('date_day').substr(1, 4))

get col gas use m2
df = df.withColumn('total_gas_m2', (df.gas_ch + df.gas_dhw)/df.
↪→oppervlakteverblijfsobject)

filter: oppervalkteverblijfsobjct >= 40
df = df.filter(df.oppervlakteverblijfsobject >= 40)

drop unnecessary cols
cols = ['date', 'date_day', 'gasmeter_ch_24h', 'gasmeter_dhw_24h']
df = df.drop(*cols)

4

df.printSchema()

root
|-- avg(rain): double (nullable = true)
|-- avg(sun): double (nullable = true)
|-- avg(t_act): double (nullable = true)
|-- avg(t_set): double (nullable = true)
|-- avg(temp): double (nullable = true)
|-- avg(wind): double (nullable = true)
|-- heater_id: long (nullable = true)
|-- oppervlakteverblijfsobject: double (nullable = true)
|-- pandbouwjaar: integer (nullable = true)
|-- wijk: integer (nullable = true)
|-- avg(temp)/10: double (nullable = true)
|-- temp_diff: double (nullable = true)
|-- gas_ch: double (nullable = true)
|-- gas_dhw: double (nullable = true)
|-- year: string (nullable = true)
|-- total_gas_m2: double (nullable = true)

[5]: df.show(5)

+--------------------+-----------------+------------------+------------------+--
---------------+------------------+---------+--------------------------+--------
----+----+------------------+------------------+------------------+-------------
-----+----+--------------------+
| avg(rain)| avg(sun)| avg(t_act)| avg(t_set)|
avg(temp)|
avg(wind)|heater_id|oppervlakteverblijfsobject|pandbouwjaar|wijk|
avg(temp)/10| temp_diff| gas_ch| gas_dhw|year|
total_gas_m2|
+--------------------+-----------------+------------------+------------------+--
---------------+------------------+---------+--------------------------+--------
----+----+------------------+------------------+------------------+-------------
-----+----+--------------------+
|-0.05294595819723685|16.43587820098253|19.269583333333333|
19.34|90.94516994556801|20.256406436265483| 10565| 490.0|
1830|1001| 9.094516994556802|10.175066338776531|
8.621199999999988|0.9984000000000037|2015| 0.01963183673469386|
|-0.03940268795338…|7.113720059929197|17.269999999999996|17.153333333333336|74
.36535687217368| 36.45375808419566| 10565| 490.0|
1830|1001| 7.436535687217368| 9.833464312782628|
8.494399999999985|0.9584000000000117|2015|0.019291428571428564|
| 0.0|5.015029120600641| 18.74875|
17.5|2.400337425438097| 30.71207452710746| 12927| 490.0|
1830|1001|0.2400337425438097|18.508716257456193| 9.926699999999983|
1.057800000000043|2017|0.022417346938775562|

5

| 0.0|5.015029120600641|19.330416666666668|
19.0|2.400337425438097| 30.71207452710746| 10565| 490.0|
1830|1001|0.2400337425438097| 19.09038292412286|14.412200000000212|
1.480899999999906|2017| 0.03243489795918392|
| 0.15950629163660526|25.85703027475181|
21.01|20.002499999999998|87.00004815705019| 65.48449099504091| 10565|
490.0| 1830|1001|
8.700004815705018|12.309995184294984|10.247299999999996|1.8859999999999673|2017|
0.0247618367346938|
+--------------------+-----------------+------------------+------------------+--
---------------+------------------+---------+--------------------------+--------
----+----+------------------+------------------+------------------+-------------
-----+----+--------------------+
only showing top 5 rows

[6]: #get df grouped by heater id and year

#check

from pyspark.sql.functions import avg, count
df_rf = df.groupBy("heater_id", 'year').agg(

count('heater_id').alias('records'),
avg('temp_diff'),
avg('pandbouwjaar'),
avg('year'),
avg('oppervlakteverblijfsobject'),
avg('avg(temp)'),
avg('avg(wind)'),
avg('avg(rain)'),
avg('avg(sun)'),
avg('gas_ch'),
avg('gas_dhw'),
avg('total_gas_m2')

)

df_rf.orderBy('heater_id').show(5)

+---------+----+-------+------------------+-----------------+---------+---------
----------------------+------------------+------------------+------------------+
------------------+------------------+------------------+--------------------+
|heater_id|year|records|
avg(temp_diff)|avg(pandbouwjaar)|avg(year)|avg(oppervlakteverblijfsobject)|
avg(avg(temp))| avg(avg(wind))| avg(avg(rain))| avg(avg(sun))|
avg(gas_ch)| avg(gas_dhw)| avg(total_gas_m2)|
+---------+----+-------+------------------+-----------------+---------+---------
----------------------+------------------+------------------+------------------+

6

------------------+------------------+------------------+--------------------+
| 1499|2016| 306|12.453300370235102| 1967.0| 2016.0|
108.0|
91.51045250257755|44.400704194223465|0.6661683790950261|39.473702595110474|
5.202154575163405| 1.316375816993463| 0.06035676289034138|
| 1499|2019| 326|11.082129498629476| 1967.0| 2019.0|
108.0|100.94631365173376| 47.49253637194074|0.8330010602508482|
41.55707809297405| 4.53654355828222|0.7167487730061337| 0.04864159566007736|
| 1499|2017| 332|11.840301201578082| 1967.0| 2017.0|
108.0| 99.75939344809571| 45.75986844153401| 0.904056034215566|
40.42001451813369|4.7041987951807265|1.3421039156626535| 0.05598428435966094|
| 1499|2015| 88|11.718996655513003| 1967.0| 2015.0|
108.0|
93.66933345192811|54.327702589339765|0.8836471741474242|13.234175291583078|
5.986957954545457|1.4604636363636365| 0.06895760732323235|
| 1499|2018| 329|12.179415351386263| 1967.0| 2018.0|
108.0| 98.31711915703762| 46.32753568881532|0.5933056634898966|
44.00934019763482| 4.363585410334349|1.3278389057750757|0.052698373297309524|
+---------+----+-------+------------------+-----------------+---------+---------
----------------------+------------------+------------------+------------------+
------------------+------------------+------------------+--------------------+
only showing top 5 rows

[7]: df_rf.describe().show()

+-------+------------------+------------------+------------------+--------------
----+-----------------+------------------+-------------------------------+------
------------+------------------+-------------------+------------------+---------
---------+------------------+--------------------+
|summary| heater_id| year| records|
avg(temp_diff)|avg(pandbouwjaar)|
avg(year)|avg(oppervlakteverblijfsobject)| avg(avg(temp))| avg(avg(wind))|
avg(avg(rain))| avg(avg(sun))| avg(gas_ch)| avg(gas_dhw)|
avg(total_gas_m2)|
+-------+------------------+------------------+------------------+--------------
----+-----------------+------------------+-------------------------------+------
------------+------------------+-------------------+------------------+---------
---------+------------------+--------------------+
| count| 124787| 124787| 124787|
124646| 124787| 124787| 124787|
124646| 124787| 124425| 123586|
124787| 124787| 124787|
| mean| 99087.9017525864|2018.8882175226586|209.67591175362818|12.60308187622
1438|1965.039146705987|2018.8882175226586| 146.2851498954218|
76.01430218900265| 44.15684397017695| 0.7186161552205141|28.465776488845908|
4.432465428288918|0.8033218272349866|0.044402623350609974|
| stddev|64368.351889833204|1.6370002246718944| 137.1270314794069|

7

3.555771040507057|63.49026916458678|1.6370002246718944|
478.80513075031365|36.973608106878665|10.292178321381122|0.30009477814046975|
17.10906655587824|3.4483344902300863| 0.583696928374209| 0.03130552131586808|
| min| 1499| 2015| 1|
0.0| 1005.0| 2015.0|
40.0|-47.61569050983935| 5.433052112498122|-0.5065557189034849|
0.29311813968648| 0.0| 0.0| 0.0|
| max| 204776| 2021|
384|23.941872700640655| 2020.0| 2021.0|
68353.0| 264.8715407975971|130.01002399352583| 11.969095836325218|
127.933974674158|38.733149999999114| 36.39265000000012| 0.6505844444444395|
+-------+------------------+------------------+------------------+--------------
----+-----------------+------------------+-------------------------------+------
------------+------------------+-------------------+------------------+---------
---------+------------------+--------------------+

0.1 Random Forest
[8]: from pyspark.ml import Pipeline

from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

[9]: df_rf = df_rf.drop('heater_id', 'year', 'records', 'avg(gas_ch)',␣
↪→'avg(gas_dhw)')

df_rf.printSchema()
df_rf.show(3)

root
|-- avg(temp_diff): double (nullable = true)
|-- avg(pandbouwjaar): double (nullable = true)
|-- avg(year): double (nullable = true)
|-- avg(oppervlakteverblijfsobject): double (nullable = true)
|-- avg(avg(temp)): double (nullable = true)
|-- avg(avg(wind)): double (nullable = true)
|-- avg(avg(rain)): double (nullable = true)
|-- avg(avg(sun)): double (nullable = true)
|-- avg(total_gas_m2): double (nullable = true)

+------------------+-----------------+---------+-------------------------------+
------------------+------------------+------------------+-----------------+-----
---------------+
| avg(temp_diff)|avg(pandbouwjaar)|avg(year)|avg(oppervlakteverblijfsobject)|
avg(avg(temp))| avg(avg(wind))| avg(avg(rain))| avg(avg(sun))|
avg(total_gas_m2)|
+------------------+-----------------+---------+-------------------------------+
------------------+------------------+------------------+-----------------+-----

8

---------------+
| 9.164158747196396| 1973.0| 2016.0|
126.0|102.13704489796953|
48.02385066684009|0.7069514931311731|39.15119119918311|0.012848126786946665|
| 9.048692950297404| 1987.0| 2020.0| 154.0|
111.07649411354359|45.151972067300235|0.7851257747605533|46.43218297051898|0.029
021788270038987|
|10.058170935157975| 2002.0| 2019.0|
191.0|114.71220048427774|
43.44013095070814|0.8057876669096891|48.18929981385622| 0.02468419688665534|
+------------------+-----------------+---------+-------------------------------+
------------------+------------------+------------------+-----------------+-----
---------------+
only showing top 3 rows

[10]: from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

def transData(data):
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).

↪→toDF(['features','label'])

[11]: transformed= transData(df_rf)
transformed.show(5)

+--------------------+--------------------+
| features| label|
+--------------------+--------------------+
[9.16415874719639…	0.012848126786946665
[9.04869295029740…	0.029021788270038987
[10.0581709351579…	0.02468419688665534
[9.84885378239807…	0.03306417096959266
[8.39143171627965…	0.028507745038884404
+--------------------+--------------------+
only showing top 5 rows

[12]: from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator

featureIndexer = VectorIndexer(inputCol="features", \
outputCol="indexedFeatures",\
maxCategories=4).fit(transformed)

9

df_rf = featureIndexer.transform(transformed)
df_rf.show(5,True)

+--------------------+--------------------+--------------------+
| features| label| indexedFeatures|
+--------------------+--------------------+--------------------+
[9.16415874719639…	0.012848126786946665	[9.16415874719639…
[9.04869295029740…	0.029021788270038987	[9.04869295029740…
[10.0581709351579…	0.02468419688665534	[10.0581709351579…
[9.84885378239807…	0.03306417096959266	[9.84885378239807…
[8.39143171627965…	0.028507745038884404	[8.39143171627965…
+--------------------+--------------------+--------------------+
only showing top 5 rows

[13]: #train test split
(trainingData, testData) = df_rf.randomSplit([0.7, 0.3], seed=101)
print(f" length trainset {trainingData.count()}")
print(f" length testset {testData.count()}")

length trainset 87399
length testset 37388

[14]: ## train model

rf instance
rf = RandomForestRegressor(featuresCol='features')

#pipeline
pipeline = Pipeline(stages=[featureIndexer, rf])

chain indexer and tree in pipeline
model = pipeline.fit(trainingData)

[15]: ## make predictions

#predictions
predictions = model.transform(testData)

results
predictions.select('features', 'label','prediction').show(5)

+--------------------+--------------------+--------------------+
| features| label| prediction|
+--------------------+--------------------+--------------------+
[4.53481425735851…	0.003240957015409581	0.018729086650799205
[4.70764708103691…	0.01182340425531915	0.04232517336995147
[6.71956619561564…	0.012668122081025301	0.02278396983679409

10

|[6.92515453303155…|0.009821295814244067|0.027390975126491014|
|[7.04033736046601…| 1.15E-4|0.030364626191401067|
+--------------------+--------------------+--------------------+
only showing top 5 rows

[16]: #Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(

labelCol="label", predictionCol="prediction", metricName="rmse")

#calculate rmse
rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

Root Mean Squared Error (RMSE) on test data = 0.023003

[17]: df_rf.describe().show()

+-------+--------------------+
|summary| label|
+-------+--------------------+
count	124787
mean	0.044402623350609974
stddev	0.03130552131586808
min	0.0
max	0.6505844444444395
+-------+--------------------+

[18]: import sklearn.metrics

y_true = predictions.select('label').toPandas()
y_pred = predictions.select('prediction').toPandas()

r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print('r2_score: {:4.3f}'.format(r2_score))

r2_score: 0.460

[19]: model.stages[-1].featureImportances

[19]: SparseVector(8, {0: 0.0421, 1: 0.1094, 2: 0.3864, 3: 0.0968, 4: 0.0888, 5:
0.0046, 6: 0.0286, 7: 0.2434})

[20]: session.stop()
context.stop()

11

[88]: labels = ['','temp_diff', 'bulding year', 'year', 'surface', 'temp', 'wind',␣
↪→'rain', 'sun']

import matplotlib.pyplot as plt

predictors = {0: 0.0421, 1: 0.1094, 2: 0.3864, 3: 0.0968, 4: 0.0888, 5: 0.0046,␣
↪→6: 0.0286, 7: 0.2434}

fit, ax = plt.subplots()
ax.barh(range(len(predictors)), predictors.values())
ax.set_yticklabels(labels)
ax.set_title("Feature importance random forest regressor \n (sum of features␣
↪→scores = 1)")

ax.set_ylabel("Features")
ax.set_xlabel("Importance")
ax.set_xticklabels(['Tuesday', 'Saturday'], rotation=0)

<ipython-input-88-8617cf2ad3ce>:8: UserWarning: FixedFormatter should only be
used together with FixedLocator

ax.set_yticklabels(labels)

[88]: Text(0.5, 0, 'Importance')

[]:

12

