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Abstract

The study contributes to the theory behind applying neural networks
to active learning. It is generally assumed that having more data available
will lead to increased performance when using machine learning. This as-
sumption was tested in a specific problem setting: using neural networks in
combination with active learning to aid in systematic reviewing. A simula-
tion study was performed using the neural network classifier in ASReview.
The ASReview simulation mode was applied to different sized samples out
of three different datasets, to measure the change in performance. The re-
sults from this study show that for active learning, increasing the dataset
sample size does not always lead to increased performance.



1 Introduction

Systematic reviews are important contributions to science. Synthesizing the outcomes
of multiple studies on the same topic leads to more reliable and objective results while
also making research more accessible to both scholars and the general public (Boaz,
Ashby, Young, et al., 2002). Systematic reviews are defined by being both transparent
and reproducible (Liberati et al., 2009). Researchers should strive to identify as much
of the relevant work as possible when performing a systematic review (Boaz et al.,
2002). This is traditionally done by first doing a keyword search to identify candidate
records that might be relevant, and then manually screening the candidate papers to
exclude the irrelevant records from the review. This manual screening process is time
consuming and has also been proven to be somewhat unreliable; Wang et al. report
an error rate of 10.76% (Wang, Nayfeh, Tetzlaff, O’Blenis, & Murad, 2020).

Machine learning can be used to aid researchers during the screening process
(van de Schoot et al., 2021). The downside of machine learning is that training an
accurate classifier model generally requires a lot labeled data, which is not available at
the start of the screening process. Active learning approaches circumvent this problem
by letting the model select which data point should be labeled next. This reduces the
amount of labeled data required (Kremer, Steenstrup Pedersen, & Igel, 2014). In a
Human-in-the-loop approach, a human user is involved in training the model by la-
beling the data that is selected by the model (Holzinger, 2016). Generally in active
learning, the goal is to train a model for future use. Active learning is then used to
limit the amount of labeled data that is required to train the model, which saves la-
beling costs and computation time (Kremer et al., 2014). In systematic reviewing, the
goal is different. The goal is to find the relevant records from the dataset, not to train
a model for future use. In literature, this application of active learning is usually not
considered, e.g., review studies conducted by Schroder et al. and Ren et al. (Schroder
& Niekler, 2020)(Ren et al., 2020).

Van de Schoot et al. have demonstrated with a simulation study that traditional
classification models (e.g., Naive Bayes) used in combination with active learning can
achieve good results in systematic reviewing, reducing the amount of records that need
to be screened by as much as 90% (van de Schoot et al., 2021). However, the state of
the art models for document classification are all based on deep learning (Minaee et al.,
2021). In theory, applying these state of the art models to systematic reviewing should
reach even better results than the traditional models. The challenge here is that deep
learning models are trained on datasets that are much larger than typical systematic
review dataset sizes. For example, Gigab - a commonly used dataset for training deep
learning models - contains almost 10 million documents, while systematic reviews
usually have only a few thousand records (Parker, Graff, Kong, Chen, & Maeda,
2011).

Shallow neural networks (i.e., networks with less than five layers) can be considered
an intermediate step between traditional models and deep learning models in both
model complexity and data required for training. In theory, the increased model
complexity can lead to improved performance, but more understanding is needed of
how the limited dataset sizes in active learning affect neural networks. A commonly
used rule of thumb for dataset sample size requirements for neural networks is that
the sample size should be at least ten times the number of trainable parameters in
the model. Alwosheel et al. demonstrate that this rule of thumb is not conservative
enough, they recommend using at least fifty times the number of trainable parameters
instead (Alwosheel, van Cranenburgh, & Chorus, 2018). This suggests only very simple



networks can be used for active learning in systematic reviewing. However, since their
experiments do not consider active learning, their results might not apply here.

Neural network models have the potential to perform even better than traditional
models in systematic reviewing. This increased performance would make it easier
and less time consuming for researchers to do a systematic review study. Previous
research has shown that the optimal classifier model in systematic reviewing differs
per dataset (Ferdinands et al., 2020), it would therefore be helpful to know on what
kind of datasets neural networks can perform well.

This study aims to contribute to the development of neural networks for system-
atic reviewing by focusing on dataset size: how does the performance in systematic
reviewing of a neural network change when increasing the dataset size? It is expected
that the performance of a neural network in systematic reviewing will improve with
larger dataset sizes because text classification models in general achieve better results
with larger datasets (Wei & Zou, 2019). There is a limit to how much increasing
dataset size can improve the model performance, though the work of Alwosheel et al.
suggests that this limit is around a dataset size of fifty times the number of trainable
parameters in the model (Alwosheel et al., 2018), which means this limit is unlikely
to be reached in systematic reviewing.

2 Methodology
2.1 Datasets

Three different datasets were chosen to take samples from, these datasets were de-
scribed in more detail in Table 1. The first dataset was collected by Nagtegaal et
al. during a systematic review study on nudging healthcare professionals to evidence-
based medicine (Nagtegaal, Tummers, Noordegraaf, & Bekkers, 2019). The second
dataset was collected by Hall et al. (Hall, Beecham, Bowes, Gray, & Counsell, 2011),
they performed a systematic review study on fault prediction in software engineering
(Hall et al., 2011). The third dataset was collected by Brouwer et al. during a system-
atic review study on depressive relapse and recurrence (Brouwer et al., 2019). All three
authors fully describe the search strategy they used to construct these datasets in their
papers (Nagtegaal et al., 2019)(Hall et al., 2011)(Brouwer et al., 2019). All datasets
have very low inclusion rates (5.0%, 1.2%, 0.1%) and thus suffer from an imbalanced
data problem, which is common in systematic review datasets(Borah, Brown, Capers,
& Kaiser, 2017).

Dataset Topic Number of records Included records
Nagtegaal 2019 Nudging 2008 101
Hall 2012 Software fault prediction 8812 104
Brouwer 2019 Depression 48977 62

Table 1: Description of the datasets used in the study. The listed numbers of
records are after deduplication.



2.2  Simulation study setup

A simulation study was performed using ASReview, version 0.17 (van de Schoot et
al., 2021). ASReview includes a simulation mode that can be used to simulate in
what order a particular machine learning model would have suggested the records
from a fully labeled dataset. A neural network implemented within ASReview was
applied to multiple samples from the datasets described in the previous section. For
every combination of dataset and sample size, a single simulation was performed. The
scripts needed to reproduce the results in this simulation study are available online
(Verberg, 2021).

The machine learning pipeline in ASReview consists of the following steps: balance
strategy, feature extraction, classification model, query strategy. The balance strategy
changes the weights of relevant and irrelevant records, which is useful for datasets
with low inclusion rates. The feature extraction step is used to create a numerical
vector representation of the title and abstract for each record. These vectors can
then be used as input features for the classification model. The classification model is
first trained on the labeled records and then used to predict relevance scores for the
unlabeled records. The query strategy then determines which record is screened next,
based on these relevance scores. The balance strategy used here was ‘double balance’,
which was the default setting in ASReview (ASReview documentation, 2021b). For
feature extraction, the Doc2Vec model included in ASReview was used, which was
based on gensim (ASReview documentation, 2021a)(Rehfifek & Sojka, 2010). The
classification model used was a dense neural network containing 2 hidden layers of 128
units each, and a sigmoid output unit. It was implemented using Keras (ASReview
documentation, 2021d)(Chollet et al., 2015). The total number of trainable parameters
in the network was 21889. The query strategy used was ‘max certainty’, which selects
the record with the highest relevance score in the model for screening. "Max certainty’
was the default option in ASReview. (ASReview documentation, 2021c).

2.3 Evaluating performance

The performance of the neural network was evaluated using three different metrics that
were also used in earlier simulation studies (Ferdinands et al., 2020). The first of these
is Relevant References Found (RRF) after having screened the first 10% of the records
(RRF@10). This metric measures how well the model performs in the early stages of
screening. The other two metrics are Work Saved over Sampling (WSS) at two different
levels of recall: 95% and 100% (WSS@95 and WSS@100). These metrics measure the
reduction in the numbers of records that need to be screened as a percentage, compared
to random screening. Earlier simulations have shown that finding all relevant records
is significantly more difficult than finding 95% of the relevant records when using
traditional machine learning models (van de Schoot et al., 2021). Considering also the
error rate in manual screening (Wang et al., 2020), finding 95% of relevant records
is generally sufficient and more practical than finding all relevant records. However,
finding all relevant records would be the preferred result of the screening process,
which is why WSS@100 is also included as a metric.

2.4 Prior knowledge and dataset samples

The review process in ASReview requires at least two records (one relevant and one
irrelevant) to be chosen as prior knowledge before starting the screening process. These



records are used to train the first model. In this simulation study, the same priors were
used for each sample to decrease randomness in the results. Samples from each dataset
were taken in the following way: Two (one relevant and one irrelevant) records were
split off from the full dataset before sampling. Samples were created using stratified
sampling, to keep the inclusion rate stable. Sampling was done in such a way that
smaller samples are a subset of larger samples, meaning for example that all records
included in the software 200 sample are also in the software 400 sample. After creating
the samples, the two records that were split off at the start are added to each of the
samples. These two records were used as prior knowledge for all runs. For the nudging
dataset, samples of the following sizes were taken: 200, 400, 800, 1600. For the software
dataset, samples of the following sizes were taken: 200, 400, 800, 1600, 3200, 6400. For
the depression dataset, samples of the following sizes were taken: 1600, 3200, 6400,
12800, 25600, 48975.

3 Results

The performance of the neural network during each of the simulation runs can be
measured by the metrics described in the methods section. The RRF@10 is shown in
Figure 1. Work saved over sampling at 95% and 100% recall are shown in Figure 2
and Figure 3 respectively.

4 Discussion

4.1 Main findings

The goal of the simulation study was to find how dataset size influences neural network
performance in systematic reviewing. Three different metrics were used to measure
this performance. Because only a single simulation run was performed for every com-
bination of dataset and sample size, there is no margin of error available for the
measurements of the metrics.

The RRF@10 is shown in Figure 1. The results follow a different pattern for
each dataset. For the nudging dataset the results are stable, though there seems
to be some random noise. For the software dataset, the performance in this metric
rapidly increases to the maximum score, which occurs when all relevant papers were
found within the first 10% of the screening phase. After this point, performance is
consistently high. For the depression dataset, the performance starts at the maximum
value and then drops to the minimum value when the sample size is increased. A
possible explanation for this is that the larger sample contained a lot of new records
that were very difficult to find. After this, the performance increases along with the
sample size.

The WSS@Q95 is shown in Figure 2. Again, the results follow a different pattern
for each dataset. For the nudging dataset, performance in this metric increases along
with the sample size. For the software dataset, performance is high for all but one
sample, which could be caused by noise. For the depression dataset, the performance
starts high and then decreases first before increasing again.



RRF@10 at different sample sizes
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Figure 1: The number of relevant records found after having screened the first
10% of the records, for the different samples and datasets. The line styles and
colors indicate the three different datasets from which the samples were taken.
A higher score indicates better performance; a score of 100 indicates all relevant
records were found within the first 10% of the screening phase.



WsS@a5 at different sample sizes
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Figure 2: The amount of work that can be saved compared to random sampling,
with a goal of finding 95% of the relevant records in the dataset. The line styles
and colors indicate the three different datasets from which the samples were

taken.



WSS@100 at different sample sizes
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Figure 3: The amount of work that can be saved compared to random sampling,
with a goal of finding 100% of the relevant records in the dataset. The line
styles and colors indicate the three different datasets from which the samples
were taken.



The WSS@100 is shown in Figure 3. results follow a different pattern for each
dataset, but a very similar pattern as for the WSS@95. For the nudging dataset, per-
formance increases along with the sample size. For the software dataset, performance
is stable for the first few samples but then starts varying. For the depression dataset,
the performance starts high and then decreases first before increasing again.

The results show that all three metrics used to evaluate the performance are some-
what correlated. Finding a high percentage of relevant records early in the run will
lead to high scores for all of the metrics. The observed changes in performance when
increasing the dataset sample size appear to be influenced by random noise. There is
currently no likely theoretical explanation for why performance should first decrease
and then increase again. This effect has also not been observed in other studies, like
the work of Alwosheel et al. (Alwosheel et al., 2018). It is possible that some unknown
effect exists in this specific problem setting which could lower the performance of the
model when increasing the dataset size. In that case, the observed results could be
explained as some kind of tipping point between two different effects that decrease and
increase performance with dataset size.

A possible explanation for the differences between datasets is that the relation
between the performance and the dataset sample size is dependent on other dataset
characteristics, like the systematic review topic or the inclusion rate.

All three metrics used in this study are influenced by results from the start of the
screening process. The first model in each simulation run is trained with only the two
prior records, and then a single record is added with each step within the simulation
process. So the datasets used to train the model are very small in the first phase of the
simulation, regardless of the full sample size. It is likely that the initial performance
of the model influences the performance of the model during the full simulation run,
which could explain why there is not always an increase in performance at higher
sample sizes.

4.2 Study limitations and recommendations for future re-
search

The results obtained during this study are statistically weak, which could be improved
upon by future research, by increasing the number of simulation runs at each sample
size and adding more datasets to sample from. The number of runs at each sample
size can be increased by taking different samples of the same size or by using the
same samples but switching the priors. The simulation runs are computationally
expensive for larger datasets, which should be considered when trying to expand on
this simulation study.

Other methods that can be used to increase the performance of neural networks
within active learning have not been explored in this study. There are many different
neural network architectures that could be considered, while only a single one was used
here. In addition, the current neural network implementation in ASReview is training
a new model from scratch every time a new record is labeled. This seems unnecessary
- the model architecture is the same every time, and the goal of the model is the same
too. The only change between consecutive models is the input data. Concepts of
transfer learning could be applied: the model weights of a previously trained model
can be used to initialize the new model. The amount of epochs trained per model can
then be reduced significantly. Reducing computing time this way opens up options
that might otherwise be too computationally expensive (like using a deeper network).
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4.3 Conclusion

Machine learning can be applied to systematic reviewing, to save researchers a lot of
time during the screening process (van de Schoot et al., 2021). Optimizing the machine
learning model leads to even more saved time, though the performance of machine
learning models in systematic reviewing is dataset dependent (Ferdinands et al., 2020).
Neural networks can be used as the classification models within systematic reviewing,
but it is not known on what kind of datasets they perform well. In this study, the effect
of dataset size on the performance of neural networks within systematic reviewing was
simulated.

The results from this study show that increasing the dataset size is not guaranteed
to lead to an increase in performance for neural networks within systematic review-
ing. Alwosheel et al. show that the performance of neural networks in classification
problems increases with dataset sample size (Alwosheel et al., 2018), which is also the
accepted theory within the machine learning community. The results from this study
are not in conflict with this theory, because systematic reviewing is a specific problem
and the metrics used to evaluate model performance are different than the metrics
that are generally used in classification problems.

Because there is no proven increase in performance for neural networks on larger
datasets, researchers should consider using traditional models even for very large sys-
tematic review datasets. Conversely, neural networks might also be viable candidates
for small datasets. How neural networks perform in systematic reviewing compared
to traditional models has not been tested in this study. Other neural network archi-
tectures might exist which do benefit from having large systematic review datasets.

Dataset size is often assumed to improve machine learning model performance.
This study shows that for neural networks in systematic reviewing, other paths should
be considered when trying to improve model performance. This might also apply to
other applications of neural networks in active learning.
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