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Abstract 

A comparison is performed between Bayesian penalized regression priors: the lasso and 

regularized horseshoe using the statistical programming language R. This study aims to 

provide researchers with insights into the use of these priors to deal with high-dimensional 

data. Therefore, the shrinkage behavior of the Bayesian lasso and regularized horseshoe 

models, using different hyperparameter settings, were compared. Furthermore, variable 

selection was executed for the models. Lastly, the predictive performances were evaluated 

based on their Root Mean Square Error (RMSE). Results showed that researchers have to 
take several factors into consideration. First consideration concerns which prior is best suited 

on their data. The Bayesian lasso showed more variation in shrinkage behavior and is easy to 

implement, while regularized horseshoe prior is more robust to their specific hyperparameter 

settings and is complex to implement. Second, researchers should consider a variable 

selection method. This paper shows that an RMSE plot is a suitable tool for variable selection. 

In conclusion, there were no significant differences in predictive performances found between 

the Bayesian lasso and regularized horseshoe.   
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Introduction 
 
In the current technological era, companies and researchers have more access to data than ever before. 

Technical devices such as phones, smartwatches, and computers are able to track user’s behaviour 

and collect all kinds of data within a country’s privacy laws. These huge amounts of data, also known 

as Big Data, offers great research possibilities in different fields. For example, a study showed how the 

American healthcare system can be improved using high-dimensional data from several sources (Bates, 

Saria, Ohno-Machado, Shah, & Escobar, 2014). Besides the research possibilities of high-dimensional 

data, there are also challenges concerning overfitting models when using high-dimensional data. Hence, 

more research can be done on certain models to deal with overfitting to provide better performing models 

for big data analysis.  

Proven statistical methods such as linear regression models are less usable for these high-dimensional 

data due to computational limitations (Hawkins, 2004). Linear regression models are popular for 

evaluating the relative impact of a predictor variable on a particular outcome, but they perform poorly on 

datasets with large number of coefficients. Overfitting occurs when the model includes more coefficients 

than necessary, resulting in a model with a high variance hurting the generalizability (McNeish, 2015). 

The effect of overfitting increases when more complex models are tried to fit. 

Penalized regression offers a solution for fitting models to high-dimensional data. While ordinary least 

squares (OLS) regression minimizes the sum of squared residuals (SSR) to find the estimates for 

regression coefficients, penalized regression also includes a penalty term to the minimalization of the 

SSR. This is in order to shrink small coefficients towards zero, while leaving the large coefficients. The 

shrinkage of non-relevant variables towards zero makes this technique popular for datasets with a large 

number of predictors. Penalized regression techniques avoid overfitting and achieve model parsimony 

(Derksen & Keselman, 1992; Tibshiranit, 1996). A widely researched and implemented penalization 

method is the least absolute shrinkage prior, also known as lasso. Lasso makes it possible to shrink 

coefficients towards zero with the possibility of setting some coefficients to exactly zero, resulting in a 

simultaneous estimation and variable selection procedure (McNeish, 2015). 

Penalized regression can also be used in the Bayesian framework. Penalized regression in the Bayesian 

framework has several advantages over classical penalization and offers multiple shrinkage priors. 

These shrinkage priors shrink variables towards zero which can guide variable selection. Small 

coefficients are more likely to be shrunken towards zero, causing them to be excluded from the model. 

Priors come in different shape and form, such as the Bayesian lasso and the more flexible regularized 

horseshoe. The Bayesian lasso does not distinguish between the coefficients and thus shrinks them all 

by the same amount. This prior is easy to implement but could result in too much shrinkage of relevant 

coefficients (Park & Casella, 2008). In addition, the regularized horseshoe does distinguish between the 

coefficients due to its flexibility. However, the amount of shrinkage depends on multiple hyperparameters 

which makes it a complex prior to implement (Piironen & Vehtari, 2017). 

This paper aims to provide researchers with insight into the use of the Bayesian lasso and regularized 

horseshoe with different model settings. While the lasso is available in both the classical and Bayesian 

frameworks, the complex regularized horseshoe is only available in the Bayesian framework. Interesting 

is to understand to what extent the shrinkage differs among the priors. Therefore, the Bayesian lasso 

will be compared with the Bayesian regularized horseshoe using data analysis. This paper could be 

used as guidance for researchers when using regularized horseshoe or Bayesian lasso for model fitting.  

To begin with, the methodology is given wherein the penalized regression method and the Bayesian 

priors are explained. Furthermore, the data wrangling and data analysis steps are also included in the 

methodology. In addition, the results of the data analysis are presented and interpreted. Finally, the 

results are discussed, and the conclusion is given. 
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Figure 1 shows the bias-variance trade-off for overfitting, underfitting and balanced models. 

Methodology 

Ordinary least squares (OLS) regression 
The standard OLS regression is a frequently used regular regression method to predict a metric outcome 

from predictors. This regression estimates the coefficients by minimizing the sum of squared residuals, 

wherein the residuals are equal to the difference between the observed and the predicted value 

(McNeish, 2015). A simple OLS regression can be presented as follows: 

 

Here, y is the n x 1 vector of outcome observations, X is the n x p + 1 matrix of the predictor variable 

including a vector of ones for the intercept, β is the parameter of the regression, and ϵ is the generally 

normally distributed n x 1 vector of errors. Herein, n stands for the sample size and p stands for the 

number of predictor variables. An issue with the OLS regression is that random noise can become 

entangled with signal. This occurs more often with small sample sizes relative to the number of 

predictors. This can result in overfitting, with the consequences of underestimated standard errors, and 

non-parsimonious models. Estimates from an overfit model perform well on the fitted sample sizes, but 

they perform significantly less on a different sample size of the same population, thus the generalizability 

of the model is in dispute (McNeish, 2015).  

To create a model where no overfitting occurs for small sample sizes, the bias-variance trade-off of the 

regression model should be balanced properly. Herein, bias is the difference between the average 

prediction of the model and the correct value, and variance is the variability of a model prediction for a 

specific value. An overfitting model has a low bias and a high variance, which can be seen in the figure 

below: 

 

 

 

  

  

 

 

 

 

Penalized regression 
Penalized regression analysis is frequently used to prevent overfitting in small data samples with many 

predictors. The general idea of the penalization regression is to select relevant variables for a particular 

prediction using a statistical approach. While the OLS regression minimizes the sum of squared 

residuals, penalized regression adds a penalty term to the sum of squared residuals. The objective of 

the penalty term of the penalized regression is to shrink small coefficients towards zero while keeping 

large coefficients large. By doing so, a model can be created wherein no overfitting occurs and model 

parsimony is achieved, which results in model generalizability (Kyung, Gilly, Ghoshz, & Casellax, 2010). 

The formula of a general penalized regression is as followed: 

 

 

 𝑦 =  𝑋𝛽 +  𝜀, (1)                                                                                                   
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In equation 2, y is the vector containing the observations on the outcome variable with n-dimensions 

(y1,,yn). β0 is the intercept, 1 represents the n-dimensional vector of ones, X represents a matrix of the 

observed scores on the predictor variables (n x p) and β is the parameter vector of regression 

coefficients with p-dimensions (β1,…, β n). λc
 represents the penalty parameter of the penalized 

regression. A higher λc value results in more shrinkage towards zero while 𝜆𝑐 =  0 results in ordinary 

least squares solutions. In addition, q in the equation determines the induced penalty type. There are 

several penalty types, each corresponds with the value of q, wherein  q = 1 refers to the lasso penalty 

(Tibshiranit, 1996). Despite the promising classical lasso penalty technique, this study only focuses on 

the penalized regression method in a Bayesian framework. 

 

Bayesian penalized regression 
The Bayesian approach to penalized regression models requires priors for all model parameters and 
has multiple advantages over the classical framework. Only specific priors that provide clear shrinkage 
behaviour result in a Bayesian penalized approach. The form of the prior distribution decides the 
shrinkage behavior of the Bayesian penalized regression method. The more peaked the distribution is, 
the more shrinkage towards zero for small coefficients is executed. In addition, the heaviness of the tails 
in the distribution also affects the shrinkage behavior. Heavy tails allow large coefficients to escape the 
shrinkage towards zero. 
 

Advantages of the Bayesian approach 
The first advantage refers to the natural fit of penalization in a Bayesian framework. In any case, prior 

distributions are needed and parametric shrinkage towards zero can be accomplished by choosing a 

specific parametric form for the prior. Prior distributions can be chosen in order to shrink small effects 

(non-relevant parameters) to zero, and simultaneously keeping significant effects (relevant parameters) 

large. Furthermore, prior distributions combined with specific posterior estimate can result in the same 

outcome as classical penalization models and in some cases Bayesian priors perform even better than 

classical penalized methods (Kyung et al., 2010; Li & Liny, 2010).  The second advantage lies in the 

estimation of the penalty parameter λ. Bayesian penalization makes it possible to estimate the penalty 

parameter with other model parameters in a single step. Instead of estimating the λ using cross-

validation, Bayesian penalization sets a prior on the λ and estimates it using data. Large values for the 

λ results in heavier shrinkage towards zero and a λ value of zero results in no shrinkage (van Erp, 2020). 

The third advantage concerns the flexibility of the Bayesian penalization in terms of the penalty types 

that can be considered. While classical penalization methods result in a point estimate by finding the 

minimum of the penalized regression function, the Bayesian penalization technique uses Markov Chain 

Monte Carlo (MCMC) sampling which results in a full posterior distribution (van Erp, 2020). 

 

Bayesian lasso 
Interpreting lasso estimates as a Bayes posterior using Laplace distribution model was first noted by 

Tibshirani (1996). Park and Casella (2008) considered a fully Bayesian analysis by using MCMC 

sampling for the lasso with the Laplace prior distribution and extending their model by placing prior 

distributions on the σ2 and λ to take care of the hyperparameters uncertainty. The following formula of 

the Laplace prior was considered: 

 

𝜋(𝛽|𝜎2) =  ∏
𝜆

2√𝜎2
𝑒

−𝜆|𝛽𝑗
|/√𝜎2

.

𝑝
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Herein, β is the regression parameter, σ2 is the variance and λ is the penalty parameter. Conditioning 

on σ2 is important, because it guarantees a unimodal full posterior (Park & Casella, 2008). The Bayesian 

lasso is a global prior. Thus, the exact form of the Bayesian lasso and its shrinkage behavior fully 

depends on the adjustable λ, which operates as a global shrinkage parameter. In comparison with the 

classical lasso, the Bayesian lasso does not shrink small coefficients to exactly zero. Hence, additional 

criteria are essential for selecting relevant variables when using the Bayesian Lasso. 

Advantage of the Bayesian lasso is that it is easy to implement. Disadvantage of the Bayesian lasso is 

that this prior can lead to over shrinkage of large coefficients due its global shrinkage property (Polson 

& Scott, 2010). A solution to this problem is found in the Bayesian regularized horseshoe prior. This 

prior allows simultaneously global shrinkage on all coefficients and local shrinkage on large coefficients 

to prevent too much shrinkage.  

 

Regularized horseshoe 
The Bayesian horseshoe is a prior which adds a local shrinkage parameter into the priors’ equation next 

to the global shrinkage parameter. The horseshoe prior is characterized by an asymptote at zero and 

heavy tails, which allow heavy shrinkage of small coefficients towards zero while leaving the large 

coefficients out of the shrinkage (Carvalho et al., 2010; Polson & Scott, 2010). However, small shrinkage 

on large coefficients might be necessary, because the heavy tailed horseshoe can lead to an unstable 

MCMC sample when there are large but weakly identified coefficients in the data (van Erp, 2020). The 

regularized horseshoe offers solutions to the disadvantages of the horseshoe. Regularized horseshoe 

shrinks the small coefficients in the same way as the horseshoe prior, but it also guarantees small 

shrinkage on the large coefficients (Piironen & Vehtari, 2017). Regularized horseshoe is suggested in 

the following form:  

 
𝛽𝑗|𝜆𝑗 , 𝜏, 𝑐 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, �̃�𝑗

2𝜏),  𝑤𝑖𝑡ℎ  �̃�𝑗
2 =

𝑐2𝜆𝑗
2

𝑐2 +𝜏2𝜆𝑗
2 

, 
 

 𝜆𝑗 ~ ℎ𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0,1),    

 𝜏|𝜏0
2~ ℎ𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0, 𝜏0

2),     𝑤𝑖𝑡ℎ 𝜏0 =
𝑝0

𝑝 − 𝑝0
 

𝜎

√𝑛
 , (4) 

 𝑐2|𝑣, 𝑠2~ 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝑣/2, 𝑣𝑠2/2).    
 

In equation 4, the global parameter τ shrinks all βj towards zero, the local shrinkage parameter λj allows 

certain 𝛽𝑗 to escape the shrinkage, parameter c guarantees small shrinkage with v = 4 and s2 = 2 and 

p0  denotes a guess of the number of relevant variables . Modification of these shrinkage parameter lead 

to specific shrinkage behaviour, wherein v has to be small to ensure a robust pattern of shrinkage on 

the large coefficients (Piironen & Vehtari, 2017; van Erp, Oberski, & Mulder, 2019). The Bayesian 

regularized horseshoe is more flexible in comparison with the Bayesian lasso due its to the number of 

modifiable parameters. 

 

Bayesian lasso tuning with brms  
The Bayesian Regression Models using 'Stan’ (brms) package is used in R for the data analysis. This 

package implements Bayesian multilevel models in R using the probabilistic programming language 

Stan, including several priors such as the Bayesian lasso and the regularized horseshoe. Furthermore, 

brms allow specifying multilevel generalized linear models with the same formula form as classical 

multilevel generalized linear models in the glmer function in R (Bürkner, 2017). 

 

In brms, the Bayesian lasso has the following formula: 

 

 
𝛽 ∼  𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0,

𝑠𝑐𝑎𝑙𝑒 ∗  1

𝜆
). 

                                                                                     
(5)   

 
In equation 5, the coefficient parameter β is given in a Laplace distribution with a mean of zero and a 

variance of scale x 1, divided by the inverse of λ. The scale and the inverse λ are modifiable 
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Figure 2 shows with default hyperparameters values [df = 1, scale = 1], lasso2 with hyperparameter values [df=1, scale=0.1], 
lasso3 with hyperparameter values [df = 5, scale = 1]. 

hyperparameters which influence the prior distribution. The inverse λ value is given by the degrees of 

freedom (df) in a chi-square distribution, wherein a higher df value gives a less peaked distribution with 

thicker tails which results in less shrinkage. In addition, a lower scale gives a more peaked distribution 

with thin tails which result in heavier shrinkage towards zero. Figure 2 shows Bayesian lasso prior 

distributions with the default hyperparameters, with a modified scale, and with a modified df. 

 

   

 

 

 

 

 

  

 

 

 

  

   

 

 

 

Figure 2 shows that there is a significant difference in the exact form of the distribution, thus a difference 

in the executed shrinkage. Most shrinkage is executed when the prior is very peaked, this is the case 

with lasso2. Least shrinkage is executed when the prior is least peaked which is the case for Lasso3. 

Lasso3 has a very low peak and is more spread in comparison to the other lassos. Furthermore, figure 

2 shows that default lasso1 is less peaked than lasso2, but more peaked than lasso3. Hence, shrinkage 

of this prior is less in comparison to lasso2 and heavier in comparison to lasso3.  For this research, the 

lasso1, lasso2, and lasso3 Bayesian priors will be implemented on data to compare the variable 

selection output.  

 

Regularized horseshoe tuning with brms  
In brms, the regularized horseshoe prior has five modifiable hyperparameters: df, scale_global, 

df_global, scale_slab and df_slab. For global shrinkage, the scale (scale_global) and the degrees of 

freedom (global_df) need to be specified. The global scale influences how peaked the prior is, wherein 

a smaller scale results in more overall shrinkage of the coefficients. The global degrees of freedom 

determine the tail behavior of the prior, wherein a higher value results in lighter tails. The hyperparameter 

that needs to be modified for the local shrinkage is the local_df which allows large coefficients to escape 

the shrinkage, wherein higher values result in lighter tails. In addition, there are two hyperparameters to 

protect large coefficients from heavy shrinkage. Therefore the scale (slab_scale) and the df (slab_df) 

need to be specified (van Erp, 2020). For this study, the brms default values of regularized horseshoe 

will be compared with two models wherein the global scale and the local scale are adjusted to a lower 

value.  
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Theoretically, lowering the global scale should result in heavy shrinkage towards zero for all coefficients, 

while lowering the local scale should result heavier shrinkage on the large coefficients in comparison 

with the default settings. Adjusting these hyperparameters gives us insight into the specific influence of 

these hyperparameters on the shrinkage behaviour and on the model variable selection. 

 

Data wrangling  
For this research, data for chronic kidney diseases research is used from an open-source database 

(UCI, 2015). The original dataset contained 400 observations, 24 predictive variables such as age, blood 

pressure and sugar levels, with class as the outcome variable which refers to whether or not the 

participant has a chronic kidney disease. Hence, logistic regressions are used for the models. 

Furthermore, the dataset included missing data in both predictive and outcome variables. The MICE 

package in R is used to impute values for the missing data. Data imputation with MICE is a preferred 

method for dealing with missing data because it minimizes the bias and deals with uncertainty (van 

Buuren & Groothuis-Oudshoorn, 2011). In addition, dummy variables were created for all nominal 

variables. In addition, numeric variables were standardized because shrinkage only affects coefficients 

equally if they are on the same scale (Bürkner, 2017). Finally, the dataset was randomly divided into a 

training set and test set for cross-validation, wherein 70% of the data is used as a training set and 30% 

is used as a test set.  

 

Data analysis  
Upon completion of the data wrangling, the Bayesian lasso and regularized models were fit on the 

training set. Table 1 gives an overview of the modified hyperparameters per model. Other 

hyperparameters of the regularized horseshoe which are excluded from table 1 were set on the default 

settings. Also, default priors were used on the model parameters. 

 

 

The following step was to select the relevant variables of the fitted Bayesian penalized models, which is 

realized with the projpred package (Piironen, Paasiniemi, & Vehtari, 2018). The suggest_size function 

and Root-Mean-Square-Error (RMSE) plot are both used for variable selection and are available in 

projpred. RMSE measures the difference between the observed values and the predicted values, 

wherein an RMSE of zero indicates a perfect fit (Kuhn & Johnson, 2013). RMSE plot visualizes the  

influence of model sizes on the RMSE. To select variables based on the plot, the decrease of RMSE is 

examined per additional variable. Only variables that significantly decrease the RMSE should be 

included. The suggest_size function suggests the number of relevant variables based on a heuristic 

decision rule.  

 

Finally, the performance of each model with the selected variables is evaluated using cross-validation. 

Models with their selected variables were fitted on the test set using the default brms model to predict 

the outcome variables. These predicted outcome variables are compared with the observed outcome 

Table 1  
Overview of the modified hyperparameters for the Bayesian lasso and regularized horseshoe priors. 

Lasso Degrees of freedom (df) Scale 

Setting 1 
(default) 

1  1  

Setting 2 1  0.1 

Setting 3 5 1 

Regularized horseshoe Global scale Local scale 

Setting 1  
(default) 

1 1 

Setting 2 0.1 1 

Setting 3 1 0.1 
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Figure 3 shows the posterior distribution of the estimated su_1 coefficient for three Bayesian lasso models. 

variables which results in an RMSE value. The steps above are performed for all the Bayesian lasso 

and regularized horseshoe models.   

 

Results  
In this section, the results are presented and interpreted. Firstly, the amount of shrinkage for the 

Bayesian lasso and regularized horseshoe models are visualized and compared using different 

hyperparameter settings. Secondly, the variable selection per model is given and interpreted. Lastly, the 

models are evaluated based on their RMSE outcomes.  

Amount of shrinkage 
Bayesian Lasso 
The amount of shrinkage is analyzed for small and large coefficients of the dataset. The coefficient sugar 

(su_1 in the dataset) is used as the small coefficient and describes the patients' blood sugar level, while 

the coefficient red blood cells (rbc_normal in the dataset) is used as the large coefficient and describes 

the patients' red blood cells level. The different hyperparameter settings of the Bayesian lasso models 

were given in table 1. The Bayesian lasso posterior mean estimates of the su_1 and the rbc_normal 

coefficients are presented in tables 2 and 3. Furthermore, the Bayesian lasso posterior distributions of 

the su_1 and the rbc_normal coefficients are visualized in figures 3 and 4. 

 

 

 

 

  

  

      

  

 

  

  

 

  

  

  

 

  

  

  

 

Table 2  
Posterior mean estimates of the small su_1 coefficient per lasso model 

 Posterior mean 
estimates 

Std. error 

Su_1    

Lasso 1 0.18 4.04 

Lasso 2 0.10 1.76 

Lasso 3 0.25 6.32 
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Figure 3 shows that the posterior distributions of the three Bayesian lasso models lie around zero which 

implies that the su_1 coefficient is a non-relevant predictor. Posterior mean estimates of non-relevant 

coefficients should be close to zero, but this differs per model and depends on the shrinkage behavior 

of their priors. Figure 3 also shows that Lasso2 has the highest peak around zero with thin tails which 

indicates a high probability of  su_1 having a posterior mean estimate of zero. Lasso1 has a lower peak 

and thicker tails, which indicates a higher probability of su_1 having a posterior mean estimate higher 

than zero in comparison to lasso2. Lasso3 has the lowest peak and thickest tails which indicates the 

highest probability of su_1 having a posterior mean estimate higher than zero in comparison to Lasso1 

and Lasso2. In table 2, Lasso2 has the lowest posterior mean of su_1 with an estimated value of 0.18, 

while Lasso3 has the highest posterior mean of su_1 with an estimated value of 0.25. Thus, most 

shrinkage on su_1 is executed by Lasso2 and the least shrinkage is executed by Lasso3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

  

                 Figure 4 shows the posterior distribution of the estimated rbc_normal coefficient for three Bayesian lasso models. 

 

In figure 4, the posterior distributions of the three Bayesian lasso models lie around a higher value than 

zero which indicates that rbc_normal is a relevant predictor. Furthermore, figure 4 shows that the three 

Bayesian lasso models do not centre around the same value, wherein a posterior distribution closer to 

zero indicates heavier shrinkage. The posterior distribution of Lasso2 is the closest to zero with the 

Table 3  
Posterior mean estimates of the large rbc_normal coefficient per lasso model 

 

 Posterior mean 
estimates 

Std. error 

Rbc_normal   

Lasso 1 -9.92 5.03 

Lasso 2 -5.58 2.23 

Lasso 3 -13.74 7.48 
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highest peak and thin tails which indicates a high probability for rbc_normal to have the lowest posterior 

mean estimate. Lasso1 has a lower peak and thicker tails which indicates a high probability of 

rbc_normal having a higher posterior mean estimate than lasso2. Lasso3 is the furthest to zero with the 

lowest peak and thickest tails which indicates the highest probability of rbc_normal having the highest 

posterior mean estimate in comparison to Lasso1 and Lasso2. Table 3 shows that lasso2 has the 

smallest posterior mean of rbc_normal with an estimated value of -5.58, while Lasso3 has the largest 

posterior mean of rbc_normal with an estimated value of -13.74. Thus, most shrinkage on rbc_normal 

is executed by Lasso2 and the least shrinkage is executed by Lasso3. 

In figure 2 we saw that lasso 2 prior was most peaked with thin tails, while lasso 3 prior was less peaked 

with heavy tails. Based on these prior distributions, we would thus expect most shrinkage from lasso 2 

and least shrinkage from lasso 3. This is in line with what we see here in figures 3 and 4. 

Regularized horseshoe 
The amount of shrinkage is also analyzed using regularized horseshoe models with different 

hyperparameter settings. These prior hyperparameter settings can be found in table 1. The regularized 

horseshoe posterior mean estimates of the su_1 and rbc_normal coefficients are presented in tables 4 

and 5. In addition, the regularized horseshoe posterior distributions of su_1 and rbc_normal are 

visualized in figures 5 and 6. 

 

 Posterior mean 
estimates 

Std. error 

Su_1   

Regularized horseshoe  1 0.09 2.60 

Regularized horseshoe  2 0.12 2.52 

Regularized horseshoe  3 0.10 2.20 

 

Table 4 
Posterior mean estimates of the small su_1 coefficient per regularized horseshoe model 

 

Figure 5 shows the posterior distribution of the estimated su_1 coefficient for three Bayesian regularized horseshoe 
models. 
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In figure 5 we see that all three regularized horseshoe models are centred around zero and have 

comparable posterior distribution. However, the posterior distribution of RegHor2 is more peaked than 

RegHor1 and RegHor3, but this difference is very small in comparison with the different lasso distribution 

peaks. Hence, the posterior distributions of figure 5 indicate a high probability of su_1 having a posterior 

mean estimate of zero for all three regularized horseshoe models. This is in line with table 4 which 

shows that the posterior mean estimates of the models are close to zero, wherein RegHor2 has the 

highest posterior mean estimate of 0.12 and RegHor1 has the lowest posterior mean estimate of 0.09.   

Thus, the shrinkage behavior of the regularized horseshoe models on the small su_1 coefficient are 

almost identical. Even though RegHor2 has the highest peak, this does not translate into heavier 

shrinkage than the other two regularized horseshoe models. The slightly different posterior distribution 

peaks and posterior mean estimates are explainable by the number of MCMC samples. A lower number 

of MCMC samples result in less computation time but could also result in twisting outcomes.   

 

 

  

Table 5 
Posterior mean estimates of the large rbc_normal coefficient per regularized horseshoe model 
  Posterior mean 

estimates 
Std. error 

Rbc_normal   

Regularized horseshoe  1 -6.66 2.92 

Regularized horseshoe  2 -6.69 3.04 

Regularized horseshoe  3 -5.49 2.63 

Figure 6 shows the posterior distribution of the estimated rbc_normal coefficient for three Bayesian regularized 
horseshoe models. 



13 
 

Figure 7 shows the comparison of posterior mean estimates and 95% credibility intervals. 

Figure 6 shows that all regularized horseshoe models are centred around the same value which is higher 

than zero. Furthermore, we see slightly different peaks of  the posterior distributions with almost identical 

tails. Despite the fact RegHor2 has the lowest peak and slightly thicker tails than RegHor1 and RegHor3, 

this does not imply less shrinkage. Table 5 shows that RegHor3 has the lowest posterior mean estimate 

of -5.49 and RegHor2 has the largest posterior mean estimate of -6.69. The difference between these 

posterior mean estimates is very limited in comparison with the posterior mean estimates of the 

Bayesian lassos. Hence, the regularized horseshoe models show similar shrinkage behaviour on the 

large rbc_normal coefficient. Again, the small differences in posterior mean estimates are explainable 

by the MCMC sampling earlier explained.  

The global shrinkage hyperparameter of RegHor2 was set on 0.1 which results in a prior distribution 

with a high peak and thin tails. The local parameter of RegHor3 was set on 0.1 which ensures heavy 

shrinkage on large coefficients. Based on this, we would expect heavy shrinkage on both su_1 and 

rbc_normal from RegHor2 and the heaviest shrinkage on rbc_normal from RegHor3. Figure 6 does 

show heavy shrinkage on the large coefficient with RegHor3, but the overall shrinkage behaviour of 

these models differ less than expected.  
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In figure 7, the posterior mean estimates of all coefficients are given for lasso 2, lasso 3, and RegHor 2. 

These three models are compared because they all have a modified global shrinkage parameter, 

wherein lasso 2 and RegHor 2 have a low scale for heavy shrinkage, while lasso 3 has a higher df to 

ensure less shrinkage. The plot shows that lasso 2 and RegHor 2 shrink coefficients towards zero by a 

very comparable amount, wherein the shrinkage of lasso 2 is slightly heavier. This is the case for both 

small and large coefficients. Despite the comparable posterior mean estimates, we do see that RegHor2 

has larger intervals than Lasso2. Larger intervals occur when the prior distribution is more spread out. 

Hence, the estimates of RegHor2 have a slightly higher uncertainty in the posterior mean estimates.  

Furthermore, we see that the least shrinkage is executed by lasso 3. The posterior mean estimates are 

the furthest from zero which implies less shrinkage. In addition, the intervals of lasso 3 are very large, 

but figure 2 also showed a very spread out lasso 3 prior. Hence, the interval and shrinkage behavior is 

in line with the expectation. 

Variable selection 
The cross-validated variable selection (varsel) function in projpredict is used to select variables 

based on their capability to lower the root mean square error (RMSE) of the model. There are multiple 

methods to obtain the selected variables with this function, the two used methods are RMSE plot 

interpretation and the suggest_size function. Variable selection with the RMSE plot is shown below.  

Figure 8 shows a decrease of the RMSE when the model size increases. Including more variables 

results in a lower RMSE, but could result in overfitting due to a high variance. The bias-variance trade-

off should be balanced. To obtain this balance and model parsimony, only variables with a significant 

impact on the RMSE should be included. Figure 8 shows that after 9 variables, the decrease of RMSE 

is insignificant per extra included variable. Hence, the number of selected variables should be 9, based 

on the decrease of RMSE and the aim to realize model parsimony.  

The second method to obtain the optimal model size is the suggest_size function. This function suggests 

a suitable model size based on certain model default settings. The decision guidelines for this function 

are heuristic, which implies that the outcome of this method should be considered as guidance. The 

number of selected variables for the lasso models are presented in in tables 6 and 7. The number of 

selected variables for the regularized horseshoe models are presented in in tables 8 and 9. All tables 

include the smallest and largest possible model as reference. 

Figure 8 shows the RMSE plot of the Bayesian lasso 1 using projdpredict. 
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Table 7 
The number of selected variables for Bayesian lasso based on the suggested size function 

 
 

Table 6 shows that all lasso models have the same number of selected variables based on the RMSE 

plots. Thus, there is no significant RMSE decrease after a model size of 9. Table 7 shows that the 

suggest_size function results in larger model sizes, with even twice as many variables suggested for 

lasso 2 in comparison to the plot-based variable selection. The RMSE plot in figure 8 showed a slight 

increase of the RMSE value after variable number 14 which corresponds to number of selected variables 

for lasso 1 in table 7. Thus, the suggest_size function suggests the number of selected variables when 

the lowest RMSE value is followed by an increased RMSE. When minimizing the RMSE is the only 

consideration, the suggested model size of 14 could be used. However, this model size includes 5 

variables with minor impact on the RMSE which endanger model parsimony.   

 

Table 8 
The number of selected variables for regularized horseshoe based on RMSE plots 

 

Table 9 

The number of selected variables for regularized horseshoe based on the suggest size functions 

 

Table 6 
The number of selected variables for Bayesian lasso based on RMSE plots 

Model Degrees of freedom Scale  Selected 
variables 

RMSE 

Lasso 1 (default) 1 1 9 0.397 

Lasso 2 1 0.1 9 0.397 

Lasso 3 5 1 9 0.397 

Smallest model - - 1 0.543 

Largest model - - 35 0.401 

Model Degrees of freedom Scale  Selected 
variables 

RMSE 

Lasso 1 (default) 1 1 14 0.402 

Lasso 2 1 0.1 18 0.412 

Lasso 3 5 1 16 0.407 

Smallest model - - 1 0.543 

Largest model - - 35 0.401 

Model Global Scale  Scale slab Suggested size RMSE 

RegHor 1 (default) 1 1 9 0.397 

RegHor 2 0.1 1 8 0.397 

RegHor 3 1 0.1 9 0.398 

Smallest model - - 1 0.543 

Largest model - - 35 0.401 

Model Global Scale  Scale slab Suggested size RMSE 

RegHor 1 (default) 1 1 17 0.404 

RegHor 2 0.1 1 17 0.402 

RegHor 3 1 0.1 18 0.409 

Smallest model - - 1 0.543 

Largest model - - 35 0.401 
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Table 8 shows that the regularized horseshoe models have the same model size as the lasso models 

based on the RMSE plots. These plots show that all extra included variables after a model size of 9 do 

not result in a significant decrease of the RMSE. Once more, we see that the suggest size function gives 

a higher number of selected variables for the models.  

Model evaluation 
To evaluate the predictive performances of the Bayesian lasso and regularized horseshoe models, the 

RMSE of the models are calculated and shown in table 6 to table 9. To get a better understanding of 

the model performances in terms of the RMSE, RMSE values of the smallest and largest possible 

models are also calculated and should be interpreted as upper and lower limits.  

As shown earlier RMSE decreases when the model size increases. Thus, including only one variable in 

the model gives a high RMSE value of 0.543 and results in an underfitting model. Including all available 

variables of the dataset gives a lower RMSE value of 0.401 and results in an overfitting model. 

Surprisingly even though all models have a lower RMSE value than the upper limit, tables 6 and 8 show 

that models with a model size of 9 have a lower RMSE than the lower limit of 0.401. 

Tables 6 to 9 also show that the RMSE of the Bayesian lasso and regularized horseshoe models are 

identical or close to each other. Both small and large Bayesian lasso and regularized horseshoe models 

have an RMSE close to the lower limit which suggests a good performing model. Hence, the different 

priors and hyperparameter settings did not result in different model performances in terms of RMSE. 

 

 

Discussion 
In this research, a comparison is performed between Bayesian penalized regression priors: lasso and 

regularized horseshoe. This study aimed to provide researchers with insights into the use of these priors 

to deal with high-dimensional data. Therefore, the shrinkage behaviour of the Bayesian lasso and 

regularized horseshoe models using different hyperparameter settings were compared. In addition, the 

lasso and regularized horseshoe models were evaluated based on their root-mean-square error 

(RMSE).  

First, the global hyperparameter of the Bayesian lasso and regularized horseshoe were modified by 

lowering the scale to ensure heavy shrinkage on all coefficients. The heaviest shrinkage for both small 

and large coefficients was accomplished with the Bayesian lasso. However, across all specifications, 

this shrinkage did not differ much from the regularized horseshoe shrinkage. This result was in line with 

the expectation because the lower scaled lasso clearly showed a very peaked prior distribution with thin 

tails which results in heavy shrinkage for all coefficients. Furthermore,  the different Bayesian lasso 

models showed more variation in shrinkage behavior than the different regularized horseshoe models. 

Literature shows that the regularized horseshoe prior is a robust prior which implies that the prior 

distribution is less dependent on specific hyperparameter settings (Piironen & Vehtari, 2017). Hence, 

both priors are suitable for heavy shrinkage of coefficients towards zero, but it is more complex to control 

the amount of shrinkage manually with the regularized horseshoe due to its robust property. 

 

Second, variable selection on the models was performed using the RMSE plot and the suggest_size 

function which are available in the projpred package (Piironen et al., 2018). All Bayesian lasso and 

regularized horseshoe models had a model size of 9 based on their RMSE plot. This outcome is 

surprising for the lasso models because these models showed quite a few differences in shrinkage 

behavior on the coefficients. Hence, this method is not very sensitive for hyperparameter settings which 

is convenient because a balanced bias-variance trade-off can still be obtained when the chosen prior 

hyperparameter settings are not ideal. Furthermore, variable selection with the suggest_size function 

resulted in larger models in comparison to the RMSE plots. The decision rules of this function are 

heuristic and should be interpreted as guidance. The suggest_size function is not desirable because it 

includes more variables than necessary which could result in overfitting.  
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Third, the RMSE of the models were calculated to evaluate the model performances. Interesting is that 

the RMSE did not differ much between the small and large models. In that case, it is better to use the 

smaller model to achieve model parsimony and to ensure a balanced bias-variance trade-off. The 

Bayesian lasso and regularized horseshoe models with a model size of 9 had the lowest RMSE values. 

Thus, models with 9 selected variables perform better than the larger models for both priors. Despite 

the desirable low RMSE values, results also showed that both lasso and regularized horseshoe models 

had an RMSE value lower than the lower limit which should not occur. A possible explanation of the 

varying RMSE values is that the data was divided in a train and a test sets without a validation set. 

Literature shows that validation sets are used to provide an unbiased evaluation of a model on the 

training dataset while tuning model parameters (Bylander & Tate, 2006). Splitting the dataset only into 

train and test sets possibly resulted in biased or optimistic estimates. A solution to this problem is to 

implement the k-fold validation technique to deal with the bias (Rodríguez, Pérez, & Lozano, 2010). 

However, splitting the data into only a train and test set is a simpler and especially a faster way of cross-

validation which is necessary for the slow Bayesian models, while k-fold validation requires more 

computation time. 

This paper has several limitations. First, this research only compared the Bayesian lasso and regularized 

horseshoe priors, while Bayesian penalized regression includes more shrinkage priors such as the 

hyperlasso and the spike-and-slab. Second, the sample size of the data was large relative to the number 

of variables, while datasets with a small sample size relative to the number of variables cause most 

difficulties. Future research could investigate whether the Bayesian lasso and regularized horseshoe 

priors also show similar model performances in terms of RMSE at other settings such as a dataset with 

far more variables than observations. 

 

 

Conclusion 
Based on the findings of the comparison between the Bayesian lasso and the regularized horseshoe 

models, researchers should consider which prior suits their data best. The main consideration relates to 

the large coefficients of the data. The Bayesian lasso is a global prior, which has only two 

hyperparameters in brms: scale and degrees of freedom. Lowering the scale hyperparameter results in 

a very peaked distribution with thin tails which executes heavy shrinkage towards zero on all coefficients. 

Modifying the degrees of freedom to a larger value results in a less peaked distribution with thicker tails 

which results in less shrinkage. This prior does not allow large coefficients to escape from heavy 

shrinkage. The Bayesian regularized horseshoe on the other hand is a global-local prior and has five 

hyperparameters in brms: df, scale_global, df_global, scale_slab, and df_slab. Lowering the global 

scale did not result in more shrinkage than the default settings. In addition, lowering the local scale 

resulted in heavier shrinkage on the large coefficient but not significantly heavier than the default 

settings. Thus, the regularized horseshoe is a complex and robust prior which makes it difficult to easily 

interpret its hyperparameters, but generally the results seem robust to their specific settings. A second 

consideration is to choose the variable selection method. This research showed that the RMSE plot 

which is available in projpredict is very suitable for variable selection. This paper did not find 

significant differences in model predictive performances between the Bayesian lasso and regularized 

horseshoe.    
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Appendix 

I. RMSE plots 
 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 10 Projpred RMSE plot of Lasso 3 

Figure 9 Projpred RMSE plot of Lasso 2. 
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Figure 12: Projpred RMSE plot of regularized horseshoe  2. 

Figure 11: Projpred RMSE plot of regularized horseshoe  1. 
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Figure 13: : Projpred RMSE plot of regularized horseshoe  3.  

  

II. R packages 
 

## R version 4.1.0 (2021-05-18) 

## Platform: x86_64-w64-mingw32/x64 (64-bit) 
## Running under: Windows 10 x64 (build 19042) 
##  
## Matrix products: default 
##  
## locale: 
## [1] LC_COLLATE=Dutch_Netherlands.1252  LC_CTYPE=Dutch_Netherlands.1252    
## [3] LC_MONETARY=Dutch_Netherlands.1252 LC_NUMERIC=C                       
## [5] LC_TIME=Dutch_Netherlands.1252     
##  
## attached base packages: 
## [1] stats     graphics  grDevices utils     datasets  methods   base      
##  
## other attached packages: 
##  [1] LaplacesDemon_16.1.4 invgamma_1.1         extraDistr_1.9.1     
##  [4] Metrics_0.1.4        projpred_2.0.2       rstanarm_2.21.1      
##  [7] bayesplot_1.8.0      broom.mixed_0.2.6    ggstance_0.3.5       
## [10] jtools_2.1.3         rstantools_2.1.1     brms_2.15.0          
## [13] Rcpp_1.0.6           reshape2_1.4.4       ggplot2_3.3.3        
## [16] fastDummies_1.6.3    mice_3.13.0          dplyr_1.0.6          
## [19] RWeka_0.4-43         
##  
## loaded via a namespace (and not attached): 
##   [1] minqa_1.2.4          colorspace_2.0-1     ellipsis_0.3.2       
##   [4] ggridges_0.5.3       rsconnect_0.8.18     estimability_1.3     
##   [7] markdown_1.1         base64enc_0.1-3      rstan_2.21.2         
##  [10] DT_0.18              fansi_0.5.0          mvtnorm_1.1-1        
##  [13] bridgesampling_1.1-2 codetools_0.2-18     splines_4.1.0        
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##  [16] knitr_1.33           shinythemes_1.2.0    jsonlite_1.7.2       
##  [19] nloptr_1.2.2.2       rJava_1.0-4          broom_0.7.6          
##  [22] shiny_1.6.0          compiler_4.1.0       emmeans_1.6.1        
##  [25] backports_1.2.1      assertthat_0.2.1     Matrix_1.3-3         
##  [28] fastmap_1.1.0        cli_2.5.0            later_1.2.0          
##  [31] htmltools_0.5.1.1    prettyunits_1.1.1    tools_4.1.0          
##  [34] igraph_1.2.6         coda_0.19-4          gtable_0.3.0         
##  [37] glue_1.4.2           V8_3.4.2             vctrs_0.3.8          
##  [40] nlme_3.1-152         crosstalk_1.1.1      xfun_0.23            
##  [43] stringr_1.4.0        ps_1.6.0             lme4_1.1-27          
##  [46] mime_0.10            miniUI_0.1.1.1       lifecycle_1.0.0      
##  [49] gtools_3.8.2         RWekajars_3.9.3-2    MASS_7.3-54          
##  [52] zoo_1.8-9            scales_1.1.1         colourpicker_1.1.0   
##  [55] promises_1.2.0.1     Brobdingnag_1.2-6    parallel_4.1.0       
##  [58] inline_0.3.19        TMB_1.7.20           shinystan_2.5.0      
##  [61] gamm4_0.2-6          yaml_2.2.1           curl_4.3.1           
##  [64] gridExtra_2.3        pander_0.6.3         loo_2.4.1            
##  [67] StanHeaders_2.21.0-7 stringi_1.6.1        dygraphs_1.1.1.6     
##  [70] boot_1.3-28          pkgbuild_1.2.0       rlang_0.4.11         
##  [73] pkgconfig_2.0.3      matrixStats_0.58.0   evaluate_0.14        
##  [76] lattice_0.20-44      purrr_0.3.4          htmlwidgets_1.5.3    
##  [79] tidyselect_1.1.1     processx_3.5.2       plyr_1.8.6           
##  [82] magrittr_2.0.1       R6_2.5.0             generics_0.1.0       
##  [85] DBI_1.1.1            pillar_1.6.1         withr_2.4.2          
##  [88] mgcv_1.8-35          xts_0.12.1           survival_3.2-11      
##  [91] abind_1.4-5          tibble_3.1.2         crayon_1.4.1         
##  [94] utf8_1.2.1           rmarkdown_2.8        grid_4.1.0           
##  [97] callr_3.7.0          threejs_0.3.3        digest_0.6.27        
## [100] xtable_1.8-4         tidyr_1.1.3          httpuv_1.6.1         
## [103] RcppParallel_5.1.4   stats4_4.1.0         munsell_0.5.0        
## [106] shinyjs_2.0.0 

 

 

 

  

   

 

 

 

 

 

 


