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ABSTRACT 

Current air-quality maps in The Netherlands are produced on a 4x4 km² spatial resolution by a 

interpolation model, called RIO. This model is based on a low resolution measurement network, which 

misses air-quality on micro-scale. However, deployment of low-cost sensors has helped in producing 

detailed air-quality maps in the recent years. One of the entities that implemented a low-cost sensor 

network, through the citizen science project called Snuffelfiets, is the Province of Utrecht. These sensors 

measure particulate matter with particles smaller than 2.5 micrometer (PM2.5). This research paper 

investigated the quality of the observations done by low-cost sensors of the Snuffelfiets project and 

compared these to the estimated PM2.5 concentrations from the RIO model. First, the raw dataset is 

cleaned to remove unreliable observations. Observations are then aggregated within a 1x1 km² grid 

cell on a weekly basis between 06:00 and 20:00 on Monday through Friday and the mean PM2.5 

concentration is assigned to the corresponding grid cells. The calculated PM2.5 means are then 

compared to the referenced RIO concentrations using the one-sampled t-test. The outcome is used to 

produce t-score and p-value maps, which show if there is a statistical difference between the low-cost 

sensors and the RIO model. Results did not show any spatial pattern between the weeks of analysis, 

which was due to the irregularities in temporal and spatial distribution from the Snuffelfiets 

observations. In addition, the quality of the Snuffelfiets sensors combined has been investigated against 

the advanced RIVM sensors. The analysis showed no systematic bias between the low-cost sensors and 

the advanced sensors.  

1 INTRODUCTION 
Air pollution is a global health problem and growing in salience in the face of urbanization. Exposure 

to air pollution has been linked to cardiovascular and pulmonary diseases, neurodevelopmental 

disorders, respiratory diseases and neurodegenerative diseases (Landrigan, 2017; Cesaroni et al., 2014; 

WHO, 2014). One of the most toxic chemical compounds found in the air and responsible for these 

health problems is Nitrogen Dioxide (NO2). This is dangerous due to its high reactivity associated with 

it being a free radical and is part of particulate matter with particles smaller than 2.5 micrometer: PM2.5 

(Chen et al., 2007; Fazlzadeh et al., 2021). What is more, NO2 is also one of the most salient compounds 

in urban contexts as it is mainly generated by combustion processes, such as fuel-based motors in cars.   

To improve the public health and the monitoring and assessment of air quality, The European 

Commission published a directive which limits the Nitrogen Dioxide (NO2), Particulate Matter (PM2.5 

and PM10) and Carbon Dioxide (CO2) values emitted (EC, 2008). Hourly average emissions of NO2 are 

limited to 200 μg/m³ (not to be exceeded more than 18 times a calendar year), while yearly average 

emissions of NO2 and PM2.5 are limited to 40 μg/m³ and 20 µg/m³ respectively. The World Health 

Organization even advises to limit the yearly average for PM2.5 at 10 µg/m³ (WHO, 2005). In addition, 

the directive imposes that EU members must assess annual ambient air quality in all air quality zones 

and agglomerations on their territory. To comply to this directive, The Ministry of Public Health and 

Environment (RIVM) monitors the air quality at 44 automatic monitoring sites, which collect data on 

an hourly basis, spread over the Netherlands. They are divided into five categories: (1) regional; (2) 

urban; (3) heavy traffic; (4) industrial and (5) Other. The different categorical sites monitor different 

air quality variables, for example, particulate matter, nitrogen dioxide and ozone concentration. Using 

the measured values of particulate matter at the regional and urban locations, the RIVM implemented 

a new interpolation model, called RIO1, to estimate the air quality for the Netherlands on a 4 x 4 km² 

resolution (RIVM, 2014; Janssen, 2008). This model uses the Corine Land Cover (CLC) 2000 map, which 
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has a spatial resolution of 100 x 100 m², to incorporate the local character of air pollution in the 

interpolation model (RIVM, 2014; Janssen, 2008). This links specific (statistical) properties of the air 

pollution to land use patterns at the same local scale which are described by a so called land use 

indicator (Janssen, 2008). This results in a final air pollution map of 4 x 4 km², which accounts for the 

local character of air pollution based on the CLC map.  

Providing more detailed spatial mapping of air-quality is limited due to the low density of advanced 

monitoring stations, only 44 in the Netherlands. The installation of particular monitoring stations tends 

to be very expensive, require regular maintenance and the monitored value is only representative in a 

small surrounding area (Borrego et al., 2016; Kumar et al., 2015). Therefore, air-quality maps often lack 

variation of air quality on a micro-scale, as this depends predominantly on local emission sources, 

atmospheric flow conditions and street topology (Britter and Hanna, 2003; Bossche, 2015). However, 

in the recent years a growing trend has been developed to use low-cost mobile air-quality sensors in 

mapping local variation for air-quality (Borrego et al., 2016; Bossche, 2015; Hu, 2021; Hankey and 

Marshall, 2015). Although the collection through low-cost sensors produces lower quality data, they 

can be deployed at a high number of locations simultaneously, which allows for high-resolution air 

quality mapping (Kumar et al., 2015). However, these datasets contain substantial data gaps (Schneider 

et al., 2017) and large amounts of data are required to represent the range of possible meteorological 

and traffic conditions (Bossche, 2015). 

One of the entities that deployed the use of low-cost air-quality sensors in The Netherlands is the 

Province of Utrecht. Through a citizen science project called Snuffelfiets (https://snuffelfiets.nl/), 

participants received a mobile air-quality monitoring kit, which measured PM2.5, humidity, 

temperature, atmospheric pressure and time of measurement and uploaded this to an online portal. 

The project went live in 2018 and since has acquired over 25 million observations within Utrecht 

(Hendricx, 2021). Initially the project was developed to monitor green cycling routes, but the amount 

of observations collected brought up the interest for use in detailed spatial mapping.  

Previous research has produced detailed air-quality maps through the use of data fusion between low-

cost sensors and model estimates (Schneider et al., 2017; Hasenfratz, 2015; Gressent et al., 2020). 

However, these studies are based on a combination of mobile and fixed sensors and have been pre-

calibrated before being deployed. As the Snuffelfiets sensor kits are mobile and uncalibrated before 

deployment, it is of importance to investigate the produced quality of the Snuffelfiets observations 

before they can be used in data fusion. In this paper, the performance of the Snuffelfiets observations 

is compared to the estimated RIO concentrations of PM2.5 within the Municipality of Utrecht. The aim 

is to use the observations done by the low-cost air-quality sensors and investigate if there is a statistical 

difference between the measured PM2.5 concentrations and the estimated PM2.5 concentrations 

produced by the RIO model. The materials used in this study are presented in Section 2, the methods 

applied are described in Section 3, the results and differences between the two maps are presented in 

Section 4, followed by a discussion and conclusion in Section 5.  

2 MATERIALS  

2.1 SNIFFING BIKE 
Since 2018, the Province of Utrecht started collecting mobile measurements of particulate matter with 

the help of volunteered cyclists. Participants received a compact mobile monitoring kit to measure 

different air quality values at high temporal resolution (every ten seconds) during their cycling trips, 

which is uploaded in real time using Narrow Band IOT (NB-IOT) or LTE-M to the online data platform 

https://snuffelfiets.nl/


4 
 

of Civicity as weekly CSV files (Civicity, 2019). Measurements for PM2.5 are done using the MCERTS2-

certified Sensirion SPS30 sensor. This sensor measures the mass concentration of PM2.5 within the 

range of 0 – 1000 µg/m³ with a precision of ± 10 µg/m³ between 0 -100 µg/m³ and ± 10% between 

100 – 1000 µg/m³ and can detect particles ranging from 0,3 - 2,5 𝜇m (Sensirion, 2021). Before being 

uploaded to the online platform, each measurement is linked to its geographical location in EPSG:426 

CRS and time of acquisition using GPS and internet time.  

2.2 RIVM  
In collaboration with RIVM, hourly estimated PM2.5 values are obtained in text format. The text files 

contain the  geographical point coordinates for the Province of Utrecht (within the boundary box in 

latitude, longitude going clockwise from top left: 52.257450, 4.881910; 52.25799, 5.74604; 51.90746, 

5.74324; 51.90693, 4.88585) in Amersfoort RD New coordinate reference system (CRS) and the 

average hourly PM2.5 estimates corresponding to the point coordinate. Originally the RIO model 

produces estimates on a 4x4 km² spatial resolution, however the RIVM was able to extract estimates 

on a 1x1 km² resolution. Therefore, the text files contain point coordinates on a 1x1 km² spatial 

resolution with a total of 2.400 values per text file.  

3 METHODS  

3.1 STUDY DESIGN 
Data collection is done for the Municipality of Utrecht (latitude 52.083333, longitude 5.166667, area 

of 1.560 km²) starting from the 6th of January 2020 at 12:00 until the 3rd of February 2020 11:59. The 

hourly average PM2.5 estimates from the RIO model are given as point coordinates on a 1 x 1 km² 

resolution (points are spaced 1 km from each other). Analysis is done on the aggregated mean PM2.5 

concentrations from the RIO point estimates within a 1x1 km² grid cell (Figure 1). Same is done for all 

snuffelfiets observations that fall within a 1 x 1 km² grid cell. The observations within a grid cell are 

aggregated and the mean PM2.5 concentration of all observations is assigned to the intersecting grid 

cell. 

  
Figure 1: Study area of the municipality of Utrecht within The Netherlands including the 1 x 1 km² grid surface 

Data exploration of the Snuffelfiets observations showed that the spatial and temporal distribution 

differs over days. Most of the cycling activity is registered on Monday through Friday between 06:00 

and 20:00, with low to no activity in the night hours. To cover the majority of the grid cells within the 
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municipality with mean PM2.5 values, while keeping the temporal resolution as low as possible, four 

different weeks are used in the analysis. For each week, observations are aggregated that are 

registered between 06:00 and 20:00 on Monday through Friday. This results in a mean PM2.5 

concentration that is aggregated over 70 available hours a week.   

3.2 DATA PROCESSING 
The Snuffelfiets dataset is cleaned and processed using Python 3.8.6. Through data exploration, 

incorrect PM2.5 observations were detected for different sensors. For example, the dataset contained 

values within the range 0 – 5.630 ug/m³, which are outside the detection range of 1.000 ug/m³ from 

the Sensirion SPS30 sensor. These faulty detections can significantly affect the statistics (e.g., the 

average and standard deviation), resulting in overestimated or underestimated values during analysis 

(Kwak, 2017). Therefore, outliers are excluded from the analysis by defining a study scope. The 

following criteria are set for the observations: (1) based on expert knowledge from RIVM, PM2.5 values 

need to lie withing the range of 0.5 - 150 ug/m³ (52.533 observations excluded). Observations outside 

this range are to be considered as measurement error(s); (2) the registered speed of observations 

needs to lie within the range of 5 – 45 km/h (354.936 observations excluded). Observations higher 

than 45 km/h are not considered to be measured by a cyclist and observations lower than 5 km/h are 

not considered to be part of a cycling trip, as speeds lower than 5 km/h could indicate that the bike is 

stored inside and (3) Observations need to be located within the geographical boundaries of the 

municipality of Utrecht (520.575 observations excluded), which are given by the Central Bureau of 

Statistics (CBS, 2021).   

 

Figure 2: Cycling activity for the municipality of Utrecht for each given week after data processing 

Further analysis on the mean PM2.5 values registered by each sensor showed observations are present 

within the dataset that are random in registration. As individual observations are assigned to a specific 

cycling trip through the ‘trip_sequence’ variable, trips with <= 20 observations, or a good three 

minutes, are excluded from the dataset. Trips containing <= 20 observations are considered as noise 

and therefore are not used in further analysis (27.333 observations excluded). The statistics for the 

cleaned dataset are shown in Table 1. Trimming the dataset and excluding outliers has reduced the 

original dataset from 1.112.960 to 157.584 observations, which means only 14,2% of the original 

Snuffelfiets data is considered as valid for this particular analysis. The corresponding cycling activity 

for each week is given in Figure 2. 
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Table 1: Overview of Snuffelfiets dataset after data processing 

Week Start date and 
hour 

Stop date and 
hour 

Observations Mean PM2.5 Range PM2.5 St. Dev 

2 06-01-2020 
12:00 

10-01-2020 
20:00 

36.850 8.90 ug/m² [1 – 103] 
ug/m³ 

5.67 
ug/m³ 

3 13-01-2020 
06:00 

17-01-2020 
20:00 

32.521 6.51 ug/m³ [1 - 127] 
ug/m³ 

5.54 
ug/m³ 

4 20-01-2020 
06:00 

24-01-2020 
20:00 

38.031 16.56 ug/m³ [1 - 124] 
ug/m³ 

12.54 
ug/m³ 

5 27-01-2020 
06:00 

31-01-2020 
20:00 

33.978 5.63 ug/m³ [1 – 54] 
ug/m³ 

4.40 
ug/m³ 

3.3 COMPARISON 
The aim of this study is to test whether the mean of the aggregated Snuffelfiets observations is the 

same as the aggregated mean of the RIO estimates. Mapping the results, based on the Student’s t-

statistic (Student, 1908), is already used in the field of neuroscience, where mean values for brain 

activity are compared between two brain activity maps (Miyauchi, 1989; Duffy, 1981; Hassainia, 1994). 

However, no literature has been found for this application in the field of geoscience. Therefore this 

study will adapt the significance probability mapping (SPM) technique and produce t-value and p-value 

maps between the means of the Snuffelfiets observations and the means of the RIO estimates within 

the municipality of Utrecht. First, the pre-processed Snuffelfiets observations are aggregated on a 1x1 

km² grid on Monday through Friday between 06:00 and 20:00. Next, multiple statistics are calculated 

for each grid for use in analysis; (1) mean PM2.5 value; (2) maximum PM2.5; (3) minimum PM2.5; (4) 

number of observations; (5) mean relative humidity measured by the Snuffelfiets sensor kit (6) amount 

of unique sensors contributing to the mean PM2.5 concentration; (7) amount of unique hours (Monday-

Friday) contributing to the aggregated PM2.5 concentrations; (8) mean temperature and (9) mean 

atmospheric pressure. As previous literature (Li, 2017; Yang, 2017) showed that meteorological 

variables have a positive or negative correlation with PM2.5 concentration, it is of interest to investigate 

if there is a correlation between different independent variables and the t-score. For this, the 

significance of statistics five through nine (as statistics one through four are directly correlated with 

the t-score) will be tested with the use of a linear regression model based on the ordinary least squares 

method. From the dataset with the RIO estimates the mean PM2.5 is calculated, as the available dataset 

doesn’t contain raw observations. Finally, the Student’s t-statistic and corresponding p-value is 

calculated for each 1 x 1 km² grid cell and the two topographic maps are produced for each week. 

3.3.1 One-sample t-test 
For each 1x1 km² grid cell the following null hypothesis is tested: the mean PM2.5 concentration from 

the Snuffelfiets observations is the same as the mean PM2.5 concentration from the RIO model. As no 

raw data is available from the RIO model, no standard error can be calculated for the RIO model. 

Therefore, a one-sampled t-test is used, where the mean PM2.5 concentration of the Snuffelfiets 

observations is tested against the referenced mean PM2.5 concentration from the RIO model. If there 

is a difference between the Snuffelfiets mean PM2.5 concentration and the referenced mean PM2.5 

concentration from the RIO model, the null hypothesis is rejected and the alternative hypothesis that 

the Snuffelfiets mean PM2.5 concentration is significantly different from the referenced mean PM2.5 

concentration from the RIO model is accepted: 

𝐻0: 𝜇𝑒 = 𝜇𝑜  

𝐻𝑎: 𝜇𝑒 ≠ 𝜇𝑜 
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𝜇0 = Mean from the aggregated Sniffing bike observations 

𝜇𝑒= Reference mean PM2.5 concentration from the RIO model  

The t-score, which takes into account the amount of observations done within a 1x1 km² grid cell, is 

calculated using formula (1). This score uses the standard error of the population mean to indicate the 

precision of the Snuffelfiets observations mean value. A large sample size ‘𝑛’ will result in a smaller 

standard error of the mean and therefore a higher t-score. High t-scores indicates that the Snuffelfiets 

mean PM2.5 concentration is significantly different from the referenced mean PM2.5 concentration from 

the RIO model, while lower t-scores indicate that the Snuffelfiets mean PM2.5 concentration is similar 

to the referenced PM2.5 concentration from the RIO model: 

𝑡 =
�̅�−𝜇𝑒

𝑠

√𝑛

      (1) 

�̅� = Sample mean 

𝜇𝑒 = Referenced RIO value 

𝑠 = sample standard deviation 

𝑛 = number of observations 

3.3.2 Snuffelfiets data reliability 
At the start of the citizen science project of the Snuffelfiets, no calibration of the low-cost sensors is 

performed. As calibration of low-cost air quality sensors require a controlled environment, where 

sensors measure at a constant time interval and location (Wang et al., 2019; Patra et al., 2021; 

Zimmerman et al., 2018; Chu et al., 2020), calibration of the sensor is out of the scope of this study. 

However, low-cost sensors are easily affected by environmental parameters, such as temperature and 

relative humidity (Wang et al., 2019). Therefore, the lack of calibration can result in random and/or 

systematic bias produced by the low-cost sensors. To interpret the results of this study, it is therefore 

needed to assess the quality of the Snuffelfiets observations against advanced sensors from the RIVM 

measurement station. Systematic errors of the Snuffelfiets observations are investigated for hourly 

aggregated PM2.5 concentrations of all sensors combined. The hourly aggregated PM2.5 concentrations 

are compared to the hourly PM2.5 concentrations of the two official RIVM measurement stations, 

where PM2.5 is being measured, within Utrecht: NL10643 (Utrecht-Griftpark) and NL10636 (Utrecht-

Kardinaal de Jongweg). These are depicted in Figure 3.  

 

Figure 3: Official PM2.5 RIVM measurement stations 
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4 RESULTS 
Results are divided into three sections. First, the t-score and p-value map, where significant differences 

within grid cells, are presented. Second, the correlation of different independent variables on the t-

score is discussed. Finally the Snuffelfiets observations are compared to the official RIVM 

measurements for data reliability.  

4.1 T-scores and p-values 
T-score and p-value maps are produced to locate grid cells where significant differences are observed 

between the Snuffelfiets mean PM2.5 concentrations and the referenced RIO PM2.5 concentrations. 

These are presented in Figure 4. Week 2 shows that the RIO model significantly underestimated the 

mean PM2.5 value for the largest part of the municipality (49 grid cells) where t-scores are higher than 

2 and are as high as 13.8 with p-values < 0.0001. The absolute mean PM2.5 differences vary between 

0.44 and 11.95 ug/m³. For the area where no significant difference between the two mean values is 

observed (31 grid cells) the t-score varies between -2 and 2. These grid cells correspond with p-values 

> 0.05. Finally a small area (18 grid cells) with t-scores between negative 2 and negative 23 shows that 

the mean PM2.5 concentrations are significantly overestimated by the RIO model with t-scores as low 

as -23 with p-values < 0.0001. Mean PM2.5 difference varies between -0.48 and -5.62 ug/m³. In contrary 

to the 2nd week, the t-score map for week 3 overestimates the largest part of the municipality (46 grid 

cells) where t-scores vary between -2 and -32.6 with PM2.5 difference varies between -0.35 and -4.41 

ug/m³. No significant difference is found for 38 grid cells. Just a small area is underestimated by the 

RIO model with 19 grid cells. The mean PM2.5 difference varies between 0.65 and 8.74 ug/m³. For week 

4 the largest area of the municipality is considered significantly underestimated with 58 grid cells 

containing t-scores that vary between 2 and 27.5. The mean PM2.5 difference varies between 0.95 and 

30.46. No significant difference is observed for 30 grid cells with mean PM2.5 differences that vary 

between -6.90 and 15.9. The 19 overestimated grid cells have t-scores between -2 and -51.9 with mean 

PM2.5 differences between -0.94 and -13.39. One extreme outlier is observed with a t-score of -51.9, 

which indicates an extreme overestimation by the RIO model. However, this particular grid cell only 

contained observations from a single unique sensor on a single day, which could explain the difference. 

For week 5 the largest area of the map is considered significantly overestimated with 59 grid cells 

containing t-scores that vary between -2 and -144.2 and mean PM2.5 differences between -0.30 and -

4.97 ug/m³. Some extreme overestimations are observed with t-scores < -50. These grid cells contained 

observations from a single sensor within a single day, which could explain the big difference observed 

between the referenced RIO PM2.5 concentrations and the mean PM2.5 Snuffelfiets concentrations. No 

significant difference is observed for 29 grid cells with mean PM2.5 differences that vary between -1.23 

and 3.72 ug/m³. The 21 underestimated grid cells have t-scores between 2 and 42.5 with mean PM2.5 

differences between 0.46 and 9.12 ug/m³.  

From the t-score maps, no systematic spatial pattern could be detected between the weeks for area’s 

where underestimation, overestimation or no significant difference is observed. Week 2 and 4 seem 

to share a pattern where the mean PM2.5 concentrations are significantly underestimated from the 

referenced RIO PM2.5 concentration, while week 3 and 5 show a dominantly overestimated map. For 

grid cells where significant differences are found, the mean PM2.5 difference falls predominantly within 

the ±10 ug/m³ range. 
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Figure 4: T-scores and corresponding p-values for the four different weeks. Top left: 06 January - 10 January 2020; Top right:13-
17 January 2020; Bottom left: 20-24 January 2020 and Bottom right: 27-31 January 2020  

Finally, the amount of unique hours that contribute to the aggregated mean PM2.5 concentrations from 

the Snuffelfiets observations are analysed (Figure 5). The referenced PM2.5 concentrations from the 

RIO model are available for all 70 hours that are used for analysis, however the aggregated PM2.5 

concentration, which is calculated from the Snuffelfiets observations, varies between 1 and 65 unique 

hours. Week 2 showed 50% of the grid cells containing < 20 unique hours with a maximum of 64 unique 

hours. Week 3 contained < 17 unique hours for 50% of the grid cells with a maximum of 64 unique 

hours for a single grid cell. Week 4 contained < 20.5 unique hours for 50% of the grid cells with a 

maximum of 64 unique hours for a single grid cell and week 5 contained < 17 unique hours for 50% of 

the grid cell with a maximum of 65 unique hours for a single grid cell.   

  

  
Figure 5: Amount of unique hours contributing to each 1x1 km² grid cell for each week 
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4.2 Independent variables 
As no spatial pattern between the t-score maps is detected, other independent variables are 

investigated to find a possible correlation with the t-scores. Five of the nine calculated statistics, as 

four give information about the PM2.5 concentrations or the standard error and are directly correlated 

with the t-score, are used for finding this relationship: (1) the mean relative humidity; (2) number of 

unique sensors; (3) mean temperature; (4) number of unique hours and (5) mean atmospheric 

pressure. The correlation plots are presented in Figure 6. For each plot a regression line with a 95% 

confidence interval is shown.  

For week 2, a large negative correlation is observed between the mean temperature and the mean 

atmospheric pressure against the t-score. However, the mean relative humidity, the number of unique 

sensors and the number of unique hours show a small positive correlation with the t-score. Linear 

regression based on the ordinary least squares method is performed to test if the variables have a 

significant influence on the t-score. This resulted in a model with a R² adjusted of 0.102 with none of 

the variables having any significance. For week 3 a large negative correlation is observed between the 

mean temperature and the t-score, while the other variables don’t seem to show any correlation with 

the t-score. The Linear regression model resulted in a R² adjusted of 0.267 with mean relative humidity, 

mean temperature and mean atmospheric pressure being significant with coefficients of -0.41, -3.84 

and 0.069 respectively, while the other variables are insignificant. Statistics for week 4 showed some 

extreme values with mean temperature registrations of 78 °C and 162 °C, mean humidity values of 0% 

and 21% and mean pressure values larger than 2 bar. These observations are due to measurement 

errors within the sensors and are excluded from analysis. The resulting plots are shown in Figure 6. 

The linear regression model resulted in a R² adjusted of 0.169 with the mean relative humidity, mean 

temperature and mean atmospheric pressure being significant  with coefficients of -0.69, -3.42 and 

0.08 respectively, while the other variables are insignificant. Week 5 shows a small positive correlation 

between the mean humidity and the mean temperature against the t-score, while the other variables 

don’t seem to indicate a relationship with the t-scores. The linear regression model resulted in a R² 

adjusted of 0.214 with the mean relative humidity, mean temperature and mean atmospheric pressure 

being significant with coefficients of 1.20, 4.60 and -0.14 respectively, while the other variables are 

insignificant.  
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Figure 6: Correlation between the independent variables and the t-value: (A) Observations within a grid cell; (B) Mean humidity 
in %;  (C) Number of unique sensors and (D) mean temperature. First row: 06-10 January 2020; Second row: 13-17 January 
2020; Third row: 20-24 January 2020 and fourth row: 27-31 January 2020 

4.3 Data reliability 
The hourly PM2.5 concentrations of the Snuffelfiets observations and the official RIVM stations are 

presented in Figure 7. For the hourly mean PM2.5 concentrations of the Snuffelfiets observations, the 

95% confidence band is included in the figure. Compared to station ‘NL10636’ the hourly PM2.5 

concentrations range between -3 and 5 ug/m³ for week 2, between -3 and 5 ug/m³ for week 3, between 

-7 and 8 ug/m³ for week 4 and between ±5 ug/m³ for week 5. Compared to station ‘NL10643’ the 

hourly PM2.5 concentrations range between ±4  ug/m³ for week 2, between ±5 ug/m³ for week 3, 

between ±6 ug/m³ for week 4 and between -2 and 5 ug/m³ for week 5. However, differences between 

the two RIVM stations are also observed, where the hourly PM2.5 concentrations range between ±4  

ug/m³  for week 2, between ±4  ug/m³ for week 3, between ±5 ug/m³ for week 4 and between ±4 

ug/m³ for week 5.  

Weather conditions at the weather station ‘The Bilt’ are used to investigate differences where PM2.5 

concentrations differ from the official RIVM measurement stations. For week 04, where higher PM2.5 

concentrations are observed, the relative humidity was the highest between 95% and 100%, which is 

an indication of rainfall or fog. Relative humidity for the other weeks ranged between 70% and 95%. 

Temperature for week 04 was lowest between 0 C° and 6 °C, while for the other weeks the temperature 

ranged between 6 °C and 12°C. For week 05, where the Snuffelfiets observations seem to be 

systematically lower than the official RIVM measurements for a couple of days, no different conditions 

for temperature or relative humidity could be found in data from the official measurement station.  
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Figure 7: Hourly PM2.5 concentrations Snuffelfiets vs RIVM measurement stations 

5 CONCLUSION AND DISCUSSION 
The study is the first in the geoscience domain that investigated the difference in PM2.5 concentration 

between low-cost sensors and the RIO model based on the one-sampled t-test. First, the corrected 

data is used to produce t-score and p-value maps for week 2-5 in January 2020. Based on the spatial 

distribution of the cycling activity, most activity takes place around the city centre, comparable spatial 

patterns were expected for this area. However, not all 1x1 km² grid cells had equal temporal 

distribution from the Snuffelfiets observations. Most of the 1x1 km² grid cells (50%) contained 

calculated PM2.5 concentrations from data collected within less than 20 unique hours, while the 

referenced PM2.5 concentration from the RIO model is based on all 70 available hours from official 

RIVM measurement stations for that week. The produced t-score and p-value maps can show 

significant differences for areas, while these are not based on a comparable scale. Grid cells where 

PM2.5 concentrations are calculated based on low observations or unique hour count don’t show the 

full averaged PM2.5 concentration of the entire week. Therefore, fluctuations due to local emission 

sources and there temporal variability (Janssen, 2008) are missed by the Snuffelfiets. It is also 

reasonable that Snuffelfiets activity is lower with (local) bad weather conditions and therefore the 

actual PM2.5 concentrations of that moment are missed in the analysis. 

Second, individual variables are investigated for correlation with the calculated t-scores. The mean 

humidity, the number of unique sensors, the mean temperature, the number of unique hours and the 

mean atmospheric pressure are used in a linear regression model based on the ordinary least squares 

method, but all showed poor performance with calculated R² adjusted values smaller than 0.267. As 

literature suggested (Li, 2017; Yang, 2017), the meteorological variables temperature, relative 

humidity and atmospheric pressure showed a significant correlation with the t-scores. However, the 

number of unique sensors and unique hours did not show any significance. Based on this analysis, no 
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minimum amount of unique sensors or unique hours can be determined for an accurate estimation of 

the t-scores within the 1x1 km² grid cells.  

Third, the Snuffelfiets observations are compared to the official RIVM measurement stations. Analysis 

showed that the Snuffelfiets observations follow the trend of the official RIVM measurement stations 

within a margin of ± 6 ug/m³ and no systematic bias could be detected. Considering that the Sensirion 

SPS30 sensors have a accuracy of ± 10 ug/m³, the Snuffelfiets observations performed good in 

comparison to the official RIVM measurement stations. However, due to uncertainty in the spatial 

domain, it is unknown how these sensors actually perform. As Chu et al. (2020) mentioned in their 

study, low-cost observations are influenced by high relative humidity. This is observed for week 04 (20 

– 24 January), where relative humidity was measured above 95%. Data quality could be improved by 

calibrating the Sensirion SPS30 sensors in a controlled environment (Wang et al., 2019; Patra et al., 

2021; Zimmerman et al., 2018; Chu et al., 2020). However, it should be noted that even two official 

measurement stations, that are placed 200m apart from each other, show noticeable differences in 

hourly PM2.5 concentrations. It should be noted that the combined Snuffelfiets sensors are compared 

to single advanced RIVM sensors. Single comparison between low-cost sensors and advanced sensors 

would be possible if the low-cost sensors are measuring at a fixed location and time interval. Future 

studies should incorporate a set of fixed sensors to assess the quality of the existing mobile sensors.  

In conclusion, the Snuffelfiets Sensirion SPS30 sensors are adequate for measuring air-quality at a 1x1 

km² resolution. However, the biggest obstacle for use in air-quality mapping is the inconsistency in 

temporal resolution. For better performance the sensors should measure at a pre-defined location and 

time interval. This would mean that the Snuffelfiets sensors shouldn’t be mounted on bicycles, but 

rather be mounted on, for example, lighting poles throughout the municipality. By removing the 

temporal resolution problem, this study showed that the combined performance of the Sensirion 

SPS30 sensors is comparable to the advanced RIVM stations. Finally, this study showed that the 

Snuffelfiets observations are usable for data fusion. As previous literature resulted in promising results 

(Schneider et al., 2017; Hasenfratz, 2015; Gressent et al., 2020), further research should focus on 

extracting RIO model estimates on a higher spatial resolution of maximum 250m and use this in data 

fusion with the Snuffelfiets observations, which could generate improved air-quality maps, better 

estimation of the individual exposure and general air-quality monitoring.  
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