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Abstract

In this work, a stochastic two species Lotka-Volterra model with additive noise is studied, using
a field-theoretical formalism. This nonlinear model describes the evolution of predator and
prey populations, which are affected by stochastic external environmental effects described by
the noise. The functional approach applied to this model is the Martin-Siggia-Rose (MSR)
formalism. This method describes the evolution of observables of a stochastic system as a
stochastic field theory. This allows an analytical description of noise effects. First, stochastic
systems and methods are studied in general, before turning to functional descriptions of these
systems. After a derivation of the MSR formalism and an analytical and numerical study of
the deterministic Lotka-Volterra model, the stochastic case is investigated. Simulations of this
model for different noise realizations are performed, for which an ensemble average is computed.
For large simulation time, the average stochastic trajectory shows an inward spiraling motion
towards the fixed point, starting from the periodic solution of the deterministic system. This
inward motion increases for larger noise amplitudes or larger simulation time, which is caused
by the diffusion of the individual simulations due to noise effects. Using the MSR formalism,
the general behavior of the populations under the influence of noise is studied. This is done
by deriving expressions for the one- and two-point correlation functions of the fluctuations in
terms of Feynman diagrams. These are calculated and compared with the simulated results.
For small simulation time, the one-point functions and the resulting total average populations
show similar behavior. For larger simulation time, the analytical results obtained with the MSR
formalism grow exponentially compared to the simulated results, which causes large deviations
in all correlation functions.
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Glossary
N : Number of particles in a system.
r(t): Position of a particle at time t.
p(t): Momentum of a particle at time t.
X(t): A random variable with parameter t, taking values in a state space S.
{X(t)}: A stochastic process, which is a set of random variables X(t).
PX(x, t): Probability distribution (density function) of a random variable X(t), which gives the
probability that X = x at time t, for some x ∈ S.
{x(t)}: A realization/trajectory of a stochastic process, which is a fixed configuration.
〈O(X(t))〉: Expectation value of a function O(X) with respect to the probability density function
PX(x, t).
〈X(t)n〉: nth moment of X(t).
Y (t): Observable of a physical system, that evolves in time t.
η(t): A random function or noise in a physical system, that can be described by a stochastic process,
with realization {h(t)}.
C(Y, t): Function that describes the deterministic evolution of an observable Y (t).
D(Y, t): Function that describes the coupling of an observable Y (t) to the noise η(t) in the system.
Ξ: Amplitude of the autocorrelation function of white noise.
ξ(t− t′): Autocorrelation function for colored noise.
τc: Autocorrelation time of a physical process.
P (A|B): Conditional probability that an event A occurs, given that B occurs.
P (xn, tn|xn−1, tn−1): Transition probability for a stochastic process X(t) from state xn−1 at time
tn−1 to state xn at time tn.
Peq(y): Equilibrium distribution of an observable Y (t) that takes values y.
〈O(Y )〉: Ensemble average of a function O(Y ) with respect to Peq(y).
O(Y ): Time average of a function O(Y ).
W (xf |xk): Transition probability rate (time independent), i.e. the probability per unit time that
during an infinitesimal time interval the system changes from state xk to xf .
Fn(x): The nth Fokker-Planck moment. Usually one writes F1(x) = A(x) and F2(x) = B(x).
v(t): Velocity of a particle at time t.
kB: Boltzmann constant.
T : Temperature.
PMB(v): The Maxwell-Boltzmann distribution, which is the equilibrium velocity distribution of a
one dimensional gas.
D: Diffusion coefficient, equal to kBT/γm.
Γ: Phase space of a dynamical system, containing all its possible states.
ρ(y, t): Phase space distribution function.
y∗: Fixed point of a dynamical system ẏ = g(y), for which g(y∗) = 0.
J (y): Jacobian matrix at point y of a dynamical system ẏ = g(y).
λ: Lyapunov exponent.
C[rb, 0,B, t]: All trajectories r(t′) that start in r(0) = rb and end up in a domain B ⊆ Rn at time t.
dW r(t

′): Wiener measure for a path integral over paths r(t′).
W (t): A Wiener process.
Y (y0, t, [η]): An observable Y with initial value y0, that is a functional of the noise η(t).
Dy(t): The functional measure for a function y(t).
P[η]: Probability density functional of a random function η(t).
Z[J ]: (Moment) Generating functional.
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J(t): Source function.
K[J ]: Cumulant generating functional.〈∏2m

i=1X(ti)
〉
(c)

: (Connected) Correlation function.

G(t, s): Two-point correlation function, which is usually also a Green’s function.
S[r]: Action of a dynamical system with variable r.
q(t): Auxiliary field, also called response field.
R(t, t′): Response function.
Θ(t− t′): Heaviside step function.
Z0[J ]: Free generating functional.
S0[y(t)]: Free action, without interactions.
SI [y(t)]: Interacting part of the action.
ys(t): Solution to the saddle point equation(s) of the action.
u(t): Prey population in the two species predator-prey Lotka-Volterra model.
v(t): Predator population in the two species predator-prey Lotka-Volterra model.
ru: Growth rate of prey in the absence of predators.
rv: Loss rate of predators in the absence of prey.
α: Predation/consumption rate of prey.
β: Growth rate of predators by consumption of prey.
(u0, v0): Initial prey and predator population at time t = 0.
Ki: Carrying capacity of species i.
Tlin: Period of the linearized Lotka-Volterra model.
M : Constant of motion for the predator-prey Lotka-Volterra model.
Tsim: Simulation time used for the simulations and calculations.
m: The number of linear cycles that are simulated.
∆t: Time step size.
(ud(t), vd(t)): Periodic solution of the deterministic Lotka-Volterra model.
w(t): Fluctuations in the prey species with respect to the deterministic evolution ud(t).
z(t): Fluctuations in the predator species with respect to the deterministic evolution vd(t).
(〈un(t)〉, 〈vn(t)〉): Average of simulations of multiple different noise realizations of a stochastic Lotka-
Volterra model with additive noise.
(qu(t), qv(t)): Auxiliary fields for the MSR formalism corresponding to the prey and predator species.
GB(t, t′): Bare Green’s function.
GM (t, t′): Mean-field Green’s function.
Zcl[Jy]: Deterministic contribution to the generating functional.
Zψ[Jy,Jϕ]: Contribution of the fluctuations to the generating functional.
B(t, t′): Mean-field Green’s matrix.

Abbreviations

MSR: Martin-Siggia-Rose.
EoM: Equations of motion.
SDE: Stochastic differential equation.
PDF: Probability density function.
QFT: Quantum field theory.
PDF : Probability density functional.
ODE: Ordinary differential equation.
SQUID: Superconducting quantum interference device.
PLR: Pupil light reflex.
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1 Introduction
To describe the evolution of equilibrium systems, standard approaches in physics include Hamilton’s
equations [1] or methods from statistical physics [2]. Whenever the system is out of equilibrium,
the macroscopic and deterministic equations of motion (EoM) are perturbed by fluctuations at the
microscopic level. To investigate these deviations from the deterministic behavior, the system can
be studied at the intermediate mesoscopic level, where the fluctuations can be described as random
effects [3]. Such a stochastic approach yields stochastic differential equations (SDEs) as EoM, which
contain noise perturbations next to the deterministic evolution [4]. Often, these stochastic effects
are assumed to be caused by Gaussian white noise [3]. The stochastic system can be investigated
further by means of a master equation [5] or a Fokker-Planck equation [3], which describe the
evolution of the probability density function (PDF) of the observables in the system.

A more physical approach, which is based on the corresponding SDE, was constructed by Langevin
in 1908 to describe the velocity of a Brownian particle [6]. This method was extended by Wiener in
1921 [7]. He was the first to use path integrals, even before Feynman [8] and Dirac [9] introduced
them for quantum field theory (QFT), to find an expression for the probability density functional
(PDF) for the position of a Brownian particle. Chandrasekhar [10] used the same approach in
1943 to describe the velocity of the particle, for which he obtained the same results earlier found by
Langevin. These findings opened the way for describing stochastic systems by means of a functional
formalism, comparable to the field-theoretical approach to quantum systems. Using the operator for-
malism, this eventually led to a method to study classical stochastic systems, developed by Martin,
Siggia and Rose in 1973 [11]. Near a phase transition, the order parameter satisfies a Langevin-like
equation. To investigate classical fluctuations, they developed a method which would later be called
the MSR formalism. The approach was extended to the equivalent path integral interpretation in
1976 by Janssen [12] and de Dominicis [13]. This method transforms the SDE, describing the evolu-
tion of the system’s observables, to a stochastic field theory, which allows an analytical description
of the noise effects. In the years after, the formalism was applied to a wide variety of systems,
ranging from quantum systems [14, 15] to stochastic models in neurodynamics [16–19].

Another recent application of the MSR formalism can be found in the field of population ecol-
ogy. The evolution of interacting species can be described by a (generalized) Lotka-Volterra
model [20, 21]. To account for external environmental effects that influence the populations, a
noise contribution can be included in the model. When the number of species is large, this allows
for a field-theoretical or statistical description of the system [22, 23]. The MSR formalism was shown
to describe well the general behavior of such a stochastic system [24, 25]. A functional approach
can also be applied to the model for a small number of species. The simplest and original form of
the Lotka-Volterra equations is a two species model, describing the time evolution of interacting
predators and prey [26]. In the deterministic case, this model has periodic solutions, for which no
explicit analytical expression exists [27]. Stochastic versions of this two species system have been
studied widely, mostly through simulations [28–30] or mathematical analysis [31–33].

In this work, a stochastic version of the two species predator-prey Lotka-Volterra model with addi-
tive Gaussian white noise is studied, by means of the MSR formalism. Since this formalism has never
before been applied to this stochastic model, the results are compared with numerical simulations.
First, a general overview of stochastic methods in physics and complex systems is discussed. These
methods are generalized to a functional approach and compared with their quantum mechanical
analogs. Then, the MSR formalism is derived and applied to a linear and nonlinear SDE. Before
studying a stochastic case, the deterministic two species Lotka-Volterra model is studied carefully.
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This is done through an analytical investigation of the corresponding phase space and a numerical
study, as the model does not have an analytical solution.

The stochastic Lotka-Volterra model with additive noise is first analyzed through simulations. Be-
cause this model has not been studied previously for a large enough simulation time, this already
yields interesting new results. We found that after performing an ensemble average over a large
amount of simulations, the averaged simulated trajectory in phase space shows an inward spiraling
motion towards the fixed point of the deterministic model. After carefully analyzing this and other
results, the MSR formalism is used to derive analytical expressions for the correlation functions
of the fluctuations and the total populations, which are compared with the results obtained from
the simulations. Our main result is that for small enough simulation time, the average fluctua-
tions in both species obtained with the MSR formalism show behavior that is comparable with the
(ensemble) averaged fluctuations obtained from the simulations. This also results in total popu-
lations that show the same general evolution for both methods. For larger simulation time, the
analytical correlation functions show exponentially deviating behavior compared to the simulated
ones. From our findings, we can conclude that the MSR formalism yields reliable results for this
stochastic Lotka-Volterra model, for small enough simulation times. For larger simulation times,
improvements are necessary to obtain comparable results.
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2 Stochastic methods in physics and complex systems
To incorporate external environmental effects in the Lotka-Volterra model, a noise contribution has
to be included. This noise is random, resulting in a stochastic instead of a deterministic system.
Therefore, it is useful to study stochastic systems in general first. This section starts with an
introduction to stochastic processes and stochastic differential equations (SDEs), together with
their origin in physics and complex systems. Then, methods to describe stochastic systems, such
as a master equation, Fokker-Planck equation and the Langevin approach, are discussed. This last
method was used by Paul Langevin to understand Brownian motion [6], which is a very important
physical stochastic problem that will be treated elaborately. Langevin’s approach can be used
to solve several SDEs and it is also important for the connection to field-theoretical methods.
The Langevin equation for Brownian motion was one of the first SDEs to be solved by means of a
functional approach, from which later the MSR formalism followed, as will be discussed in Section 3.
This section ends with a generalization of the theory of stochastic systems and methods to complex
systems. First, the necessary tools to analyze dynamical systems are discussed briefly. These are
combined with stochastic methods to describe some examples of stochastic complex systems.

2.1 Stochastic processes in physics

Consider a system consisting of N classical particles with positions ri(t) and momenta pi(t), i =
1, ..., N . Furthermore, assume that this system is closed and that its Hamiltonian H(rN ,pN , t) is
known, where the positions rN = {r1(t), ..., rN (t)} and momenta pN = {p1(t), ...,pN (t)} together
describe a microstate of the system. The time evolution of the system is now completely and
uniquely determined by Hamilton’s equations [1]. So, the entire future behavior of this system can
be deduced from this microscopic description.

In principle, N is very large1, so it becomes intractable to determine the behavior of many-particle
systems from the dynamics of every individual particle by using Hamilton’s equations. Therefore,
one turns to a statistical mechanical description of the system, which relates macroscopic ther-
modynamical observables, such as the temperature and pressure, to the microscopic single-particle
level. Suppose that the energy and number of particles of an isolated many-particle system is known
and fixed. The fundamental assumption of statistical mechanics tells that, in thermodynamic equi-
librium, the system can be found in every microstate (corresponding to a macrostate) with equal
probability [35]. Here, the condition of thermodynamic equilibrium is necessary, and using this
assumption the branch of equilibrium statistical mechanics can be explored.

2.1.1 A stochastic approach

The method described above works well for phenomena in equilibrium systems, but not for the
out of equilibrium case, as the fundamental assumption does not hold. As emphasized above,
one cannot hope to use a full microscopic description of the system. Therefore, an intermediate
approach can be used, which is at the mesoscopic level. To obtain a macroscopic description, an
elimination of microscopic variables is required, which results in a small set of variables obeying some
deterministic EoM [3]. These equations are only an approximation, so fluctuations around their
(average) solutions should be taken into account. These fluctuations define the crossover between
the macroscopic and microscopic level, and are therefore called mesoscopic. Figure 2.1 shows an
intuitive picture of these different levels of description. The problem is that these fluctuations still

1A typical amount of matter that one encounters in every day life has a mass in the order of grams. For carbon,
1 mol 12C = 12 g, which already contains 6.02 · 1023 particles [34].
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depend on the behavior of the system at the microscopic level. To solve this, one can describe
them in a stochastic way, by assigning a certain randomness. In this way, the complete microscopic
picture does not need to be described, as the fluctuations due to phenomena at the microscale can
be treated as random effects on the average macroscopic behavior.

Figure 2.1: An intuitive view on the different levels of description. At the macroscopic level, one can
describe the leaf that obeys a deterministic EoM by approximation. Zooming in, the mesoscopic
level is reached, where the cells and its constituents are studied. For this description, fluctuations
play an important role. Zooming in further, one arrives at the microscopic level of atoms and the
elementary particles, which obey their own deterministic laws. The last level is the esoteric level,
at which fundamental theories are presumed to hold. This figure has been extracted from Ref. [36].

All microscopic details of the system are thus contained in this stochastic description, which func-
tions as a coarse-graining method. Since all these details are usually very complicated to compute
and in the non-equilibrium case not even known completely, they can only be treated in this stochas-
tic sense. In addition, real physical systems are never perfectly isolated. It is a useful assumption
to investigate the intrinsic properties of a system, but a realistic model takes into account effects of
the surrounding environment. Since most of the time interactions with the environment are either
of minor influence or partially unknown, they can also be described stochastically [3].

The discussion above motivates the definition of a stochastic process. This is a set of random
variables {X(t)}, where the parameter t usually represents time. Since every X(t) is a random
variable, its value for fixed t is not uniquely determined, but subject to a probability distribution
PX(x, t) for some x ∈ S, the state space of X(t). This probability distribution is either a probability
mass function for a discrete random variable or a probability density function (PDF) for a continuous
random variable. For the latter case, the expectation value or average of a function O(X) is defined
as

〈O(X(t))〉 =
∫
O(x)PX(x, t) dx, (2.1)

for a normalized PDF PX(x, t). From this general expression, the nth moment of X can be defined as
〈Xn(t)〉. A fixed configuration {x(t)} of the stochastic process is called a realization or a trajectory.

The time evolution of a physical system subject to noise can be described by a stochastic process,
due to the stochastic nature of the fluctuations. Hence, every system whose dynamics is influenced
by some random effect can be represented by a stochastic process, and can therefore be called a
stochastic system. Usually, the evolution of an observable of a deterministic system can be described
by some (partial) differential equation [37]. Similarly, observables Y (t) in stochastic systems obey
a stochastic differential equation (SDE). A SDE is a differential equation of which at least one of
the terms is a stochastic process. For the systems discussed here, a general SDE can be written as

dY (t)

dt
= C(Y, t) +D(Y, t)η(t). (2.2)
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The function C(Y, t) represents the deterministic evolution of Y (t) and D(Y, t) represents the cou-
pling of Y (t) to a random function η(t), which is a stochastic process often called noise [4]. The
deterministic behavior of the ’slow’ variable Y (t) is thus perturbed by the second term, which in-
cludes all other degrees of freedom that in comparison fluctuate rapidly. For constant D(Y, t), the
noise is called2 additive, while for any other form of D(Y, t) it is called multiplicative. The main
difference with ordinary differential equations (ODEs) is that SDEs do not have a unique solution.
Let Y (t0) = y0 be the initial condition for Eq. (2.2). Since for every t the stochastic process η(t)
takes a random value in its state space S, the solution Y (y0, t, [η]) of Eq. (2.2) is a functional of
η(t) and is therefore also a stochastic process [3]. Only when a noise trajectory {h(t)} is fixed, the
SDE reduces to an ODE and its solution y(t, h(t)) is unique for the initial condition y(t0) = y0.

The noise η(t) thus completely determines the fluctuating behavior of a stochastic system and its
observables Y (t). As mentioned above, the noise in a SDE can be additive or multiplicative. Next
to this, the noise itself can also have certain properties, which distincts different kinds of noise. A
general property is that the expectation value 〈η(t)〉 = 0 for all kinds of noise, to enable the system
to reach equilibrium3. This also makes sense intuitively, since the noise term in Eq. (2.2) describes
the deviation of Y (t) from its deterministic evolution. If the average fluctuations would be nonzero,
their average effect could be included in C(Y, t) as a part of the deterministic evolution.

The most common kind of noise is called white noise. Next to a vanishing expectation value, this
noise is characterized by its autocorrelation function4

〈η(t)η(t′)〉 = Ξ δ(t− t′), (2.3)

where Ξ is a constant autocorrelation amplitude and δ(t − t′) is the Dirac delta function. This
means that fluctuations at different times are uncorrelated. The fluctuations are also independent
of all other quantities in the system. The reason that this noise is called white is because its spectral
density5 is equal to the constant Ξ. Hence, this is independent of the frequency, so every frequency
contributes equally to the spectral density, making it a white spectrum, analogous to white light.

This immediately leads to the definition of colored noise. Its expectation value is also zero, but its
autocorrelation function is given by

〈η(t)η(t′)〉 = ξ(t− t′). (2.4)

The autocorrelation function ξ(t − t′) is usually peaked around zero, but it has a finite width and
is therefore not a Dirac delta function. Consequently, its spectral density is not constant, so some
frequencies contribute more than others. This explains the name ’colored’ noise, in contrast to
white noise. Since ξ(t − t′) is peaked, it may be negligible or zero for |t − t′| > τc, where τc is the
autocorrelation time. Obviously, τc = 0 for white noise, but this is not the case for colored noise.
This makes it much more difficult to solve SDEs with colored noise analytically. Therefore, one
usually assumes the autocorrelation time to be small [3], allowing for an expansion in powers of τc,
of which the zeroth order is the white noise result.

Both types of noise discussed above only specify the first moment and the autocorrelation. To
further characterize η(t), one has to investigate its PDF. If η(t) has a Gaussian distribution, it is

2In the literature, the noise is usually called additive or multiplicative, but mathematically this is wrong, as instead
the complete SDE should be called additive or multiplicative [3].

3If an equilibrium exists for the EoM without noise.
4This is the second moment of η(t), but for different times t, t′, so it is called a correlation function.
5This is just the Fourier transform of the autocorrelation function of η(t), in frequency space.
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called Gaussian noise. This also specifies all higher moments of η(t). If the Gaussian noise is also
white, it is completely determined by its autocorrelation amplitude Ξ. If the noise has some other
distribution, it is generally called non-Gaussian. Non-Gaussian white noise cannot be described by
the single parameter Ξ, but requires all parameters Ξn, which are related to the nth correlation
function [3].

In most stochastic systems, the fluctuations are assumed to be Gaussian white noise, since this
often holds approximately and it is much easier to handle in calculations. For example, thermal or
Johnson-Nyquist noise [38], occurring in electrical conductors and resistors due to random thermal
motion of electrons and ions, is approximately white. A well-known example of colored noise is pink
noise6, which often occurs in biological systems [39].

Now that the concept of noise has been understood, we can again turn to the physical processes
influenced by it. Let us illustrate the importance of stochastic processes in physics by mentioning
a few examples. The best known physical stochastic process is Brownian motion [40], where a
mesoscopic particle immersed in a fluid shows random displacements due to collisions with the
surrounding fluid particles. The velocity of a Brownian particle can be described by a SDE called
the Langevin equation. This problem and Langevin’s approach will be discussed extensively in
Section 2.3, for its major importance and wide applicability to stochastic systems.

Another well-known example is the decay process of a radioactive material [3]. The number of nuclei
N(t) after time t that did not decay yet can be modeled by a stochastic process. The SDE of this
process can be obtained by taking C(N, t) = −κN(t), where κ is the decay rate, and D(N, t)η(t)
as some Gaussian white noise. This last term represents fluctuations in the decay rate due to the
unpredictable nature of radioactive decay. Hence, the expected number of nuclei 〈N(t)〉 follows
a differential equation without noise, that has the well-known solution N(t) = N(0) exp(−κt) for
exponential decay. This SDE can be used to model any decay process with random fluctuations,
such as emission of light by atoms or even the killing of enemy troops by random shooting [3].

2.1.2 Markov processes

Before introducing another important stochastic process, a subclass of stochastic processes, called
Markov processes, has to be discussed first. Let {t0, t1, ..., tn−1, tn} be a set of successive times,
and write P (A|B) as the conditional probability that an event A occurs, given that B occurs. A
stochastic process {X(t)} is a Markov process if it satisfies

P (xn, tn|xn−1, tn−1; ...;x0, t0) = P (xn, tn|xn−1, tn−1), (2.5)

with xn a realization of X(t) at time tn. This is called the Markov property, which basically states
that the process is memoryless, in the sense that its future state only depends on its present state and
is not affected by the earlier states. The quantity P (xn, tn|xn−1, tn−1), which is intuitively called
the transition probability, is the probability that X(tn) = xn, given that X(tn−1) = xn−1. The
Markov property simplifies calculations considering transition rates and probabilities drastically,
since only the present state of the system has to be taken into account, instead of its whole history.

The examples above of Brownian motion and decay processes are Markov processes [3]. Another
important stochastic process that is Markovian is the Poisson process, which occurs in counting
experiments [41]. A lot of physical stochastic processes are in fact (approximately) Markovian.

6It is also called 1/f noise due to the spectral density being inversely proportional to the frequency f .
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If successive observations i, i + 1 of a physical stochastic process are such that |ti+1 − ti| > τc,
with τc the autocorrelation time of the (noise in the) process, then the autocorrelation function
ξ(ti+1 − ti) is negligible or zero. This implies that the successive observations are uncorrelated, so
the process satisfies the Markov property [3]. Consequently, a system with white noise can always
be described by a (multicomponent) Markov process. So, if η(t) is white, a solution {Y (t)} of
Eq. (2.2) is a Markov process. On the other hand, sytems with colored noise are only Markovian
on timescales larger than their autocorrelation time. Hence, analyzing systems with colored noise
in their Markovian limit is directly related to the expansion in powers of τc.

The (approximate) Markovian character of physical processes results from the repeated random-
ness assumption or Stosszahlansatz, as it was called by Ehrenfest [42], which also accounts for
irreversibility in dynamical systems. By including all microscopic variables, the evolution of any
isolated physical system could be described by a multicomponent Markov process, and in fact its
evolution would be deterministic [3]. As this is intractable for most systems, physicists want to
find a small set of (macroscopic) variables that by approximation still evolve as a multicomponent
Markov process. This is the case for both the equilibrium and stochastic approach.

A very useful property of Markov processes is that their transition probabilities obey the Chapman-
Kolmogorov equation [3], given by

P (xf , tf |xi, ti) =
∫
P (xf , tf |xk, tk)P (xk, tk|xi, ti) dxk, (2.6)

for ti < tk < tf . For an observable Y (t) that evolves according to a continuous stochastic process,
the transition probabilities are related to its PDF PY (y, t). In the next section, an equation for the
time evolution of PY (y, t) will be introduced, that can be derived from the Chapman-Kolmogorov
equation.

Markov processes are also useful to describe equilibrium systems and their fluctuations. Suppose
an isolated system has quantities Y (t) that can be treated like a multicomponent Markov process.
After reaching equilibrium, PY (y, t) reduces to the time-independent equilibrium distribution Peq(y).
This implies time-invariance for the transition probabilities, so PY (y2, t2| y1, t1) = PY (y2| y1; τ)
with τ = t2 − t1 the length of the time interval. This automatically results in a time-invariant
evolution of the system. The Markov process Y (t) with this property is called stationary. Using
the equilibrium distribution Peq(y), the average behavior and the fluctuations around it can be
studied. A very important stationary Markov process is the Ornstein-Uhlenbeck process [43], which
describes the behavior of the velocity of a Brownian particle. Its equilibrium distribution is a
Gaussian distribution. The (normalized) equilibrium probability density also allows the definition
of a so-called ensemble average

〈O(Y )〉 =
∫
O(y)Peq(y) dy, (2.7)

of any function O(Y ) of the observables Y (t). Note the resemblance to the expectation value
〈O(Y (t))〉 in Eq. (2.1), only now with respect to the equilibrium distribution Peq(y), resulting in a
time independent average 〈O(Y )〉. On the other hand, one could measure O(y(t)) for a time τ and
divide by the length of the time interval. This gives rise to the definition of a time average

O(Y ) = lim
τ→∞

1

τ

∫ t0+τ

t0

O(y(t)) dt. (2.8)
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Systems that have 〈O(Y )〉 = O(Y ) for all functions O(y) are called ergodic [5]. This property is
only proven for a few systems, but often it is assumed to be true. However, when the system is not
in equilibrium, the PDF PY (y, t) is time dependent. In that case, the expectation value 〈O(Y (t))〉
also changes in time. This destroys ergodicity, since the time average can obviously not be time
dependent.

Figure 2.2: A schematic illustration of the magne-
tization process. Starting from the origin and ap-
plying a magnetic field with strength H, the mag-
netization B of the ferromagnetic material follows
the dashed curve. After decreasing H monotoni-
cally to zero, the magnetization follows the solid
line till Br, called the remanence. If a magnetic
field is applied in the opposite direction, the mag-
netization keeps decreasing along the same line
and vanishes at the coercivity Hc of the material.
The relation between H and B is now given by the
depicted loop, which does not overlap with the
dashed curve showing the initial magnetization.
This figure has been extracted from Ref. [44].

Another important subclass of Markov pro-
cesses are homogeneous processes. These are
non-stationary, but their transition probabili-
ties only depend on the time difference τ . Often,
homogeneity is assumed for Markov processes
that are related to physical systems. Since sys-
tems out of equilibrium are non-stationary, this
property can therefore also be used to study
these.

Despite the usefulness of the Markov property
and its (approximate) legitimacy in many pro-
cesses, there also exist processes in physical
systems that are non-Markovian. The best
known example is magnetization of a ferromag-
net [45]. This process is schematically shown in
Figure 2.2. If an external magnetic field with
strength H is applied to a ferromagnetic ma-
terial with zero magnetization, it gets magne-
tized. When H varies monotonically, the mag-
netization B follows a loop that does not over-
lap with the initial magnetization curve. Hence,
the magnetization B depends on the history of
the material7 and consequently this process is
non-Markovian.

A lot of (non-equilibrium) systems require a
stochastic description of their behavior. The ex-
amples above are just a few, which already have
many applications. Therefore, studying stochastic systems is of major importance for understanding
dynamical systems.

2.2 Master equation & Fokker-Planck equation

In this section, some methods to study stochastic systems will be developed. Since the evolution of
the state of such a system is subject to a random effect, the most insightful quantity to investigate
is the PDF of the observables in the system. This density is directly related to the transition
probabilities and it will be shown to obey similar relations.

7This dependency is called hysteresis.
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2.2.1 Master equation

Consider a stochastic system, of which the evolution of one or more variables can be described
by a homogeneous Markov process {X(t)}. This Markov process takes values in its state space
S, and has (an unknown) PDF8 P (x, t). Starting from the Chapman-Kolmogorov equation (2.6),
one can derive an expression for the time evolution of P (xf , tk) through its transition probabilities
P (xf , tf |xi, ti). Such an expression is called a master equation, which is given by

∂P (xf , tk)

∂tk
=

∫
[P (xk, tk)W (xf |xk)− P (xf , tk)W (xk|xf )] dxk. (2.9)

A derivation of this equation is performed in Ref. [5]. The transition probability rates9 W (xf |xk)
are defined as the probability per unit time that, during an infinitesimal time interval, the system
changes its state from xk to xf . The master equation is just the differential form of the Chapman-
Kolmogorov equation (2.6), but it is more convenient to use due to its linearity. Furthermore, it also
provides a more direct physical interpretation for the time evolution of the PDF P (xf , tk) in terms
of a ’gain’ and ’loss’. The first term increases the probability due to transitions from states xk to
state xf , while the second term reduces it via transitions from state xf to (all) other states xk. The
rate of probability change is thus very intuitively given by these gain and loss processes. Also, the
transition probability rates W (xf |xk) are the infinitesimal analogues of transition probabilities.
Therefore, they are an inherent property of the examined physical system. Hence, the master
equation contains specific information on the transition probabilities that determine the mesoscopic
state of the system, in contrast to the nonlinear Chapman-Kolmogorov equation that only arises
from the Markov property.

For the decay process discussed in Section 2.1.1, one can write down the master equation for the
probability P (N, t) that there are N radioactive nuclei at time t. In this case, the states N are
discrete, since they describe the number of nuclei, the decay rate κ is independent of time, and the
only possible transition is from N to N − 1 nuclei. Thus, we can write W (M |N) = κNδM,N−1 for
the transition probability rates and the master equation of the decay process reduces to

∂P (N, t)

∂t
= κ(N + 1)P (N + 1, t)− κNP (N, t). (2.10)

In general, calculating the transition probability rates W (y|x), with x, y states of the system, di-
rectly requires a complete microscopic description of the system and is therefore usually intractable.
However, a lot of approximation methods exist to calculate these probabilities. The best known
one is time-dependent perturbation theory, which results in Fermi’s Golden Rule for quantum sys-
tems [46]

W (f | i) = 2π

~
|〈f |H ′|i〉|2ρ(Ef ). (2.11)

Here |i〉 and |f〉 are, respectively, the initial and final state, 〈f |H ′|i〉 is the matrix element of the
perturbed Hamiltonian and ρ(Ef ) is the density of states at the energy Ef of the final state. Fermi’s
Golden Rule gives the transition probability rate of a quantum system in an energy eigenstate to
other eigenstates, due to a perturbation.

Another method to find the transition probability rates is by imposing conditions on them. If a
system is in a steady state, P (x, t) is not an explicit function of time and therefore ∂P (x, t)/∂t = 0.

8From now on, the subscript X is omitted.
9These are time-independent due to the assumed homogeneity of the Markov process.
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Looking at Eq. (2.9), a steady state thus implies a total balance of probability flow. Here, total
balance means that the rate of transitions into a state x is equal to the rate of transitions out of state
x. An even stronger and also sufficient condition for reaching a stationary probability distribution
is detailed balance, which, as the name hints, is given by

P (x, t)W (y|x) = P (y, t)W (x| y). (2.12)

So, for each pair of states x, y the rate of transitions is balanced. The transition probability rates
W (y|x) can now be chosen such that they obey

P (x, t→ ∞)W (y|x) = P (y, t→ ∞)W (x| y), (2.13)

where P (x, t→ ∞) is the equilibrium distribution Peq(x), which is also stationary. Detailed balance
implies that such an equilibrium distribution exists, and thus guarantees that the system reaches
an equilibrium state after waiting for a sufficient amount of time. It turns out that a thermal
equilibrium state necessarily satisfies detailed balance, while other steady states only satisfy total
balance [47]. It can be proven that closed, isolated and finite physical systems satisfy detailed
balance under certain restrictions [3]. This also explains their tendency towards (an) equilibrium
(distribution). A well-known explicit application of the principle of detailed balance comes from
Einstein. He used this in his quantum theory of emission and absorption of radiation [48].

2.2.2 Fokker-Planck equation

The master equation (2.9) is already easier to handle than the Chapman-Kolmogorov equation (2.6),
but it is still an integro-differential equation. Therefore, we derive10 a more tractable equation from
the master equation.

Let xi be the initial state of the system and s the size of the ’jump’ that the process makes in an
infinitesimal time interval. Then, the transition probability rates can be written in terms of x and
s as W (x|xi) = W (x − s, s) where s = x − xi. Note that s is well-defined if a state x is given by
the value of some observable of the system. The master equation for the probability distribution
P (x, t) is then given by

∂P (x, t)

∂t
=

∫
P (x− s, t)W (x− s, s) ds− P (x, t)

∫
W (x,−s) ds. (2.14)

We now make two assumptions. First, it is assumed that only small jumps occur, so W (x − s, s)
is peaked around s = 0. As a second assumption, we take P (x, t) and W (x − s, s) to be varying
slowly with x. Now, the expression in the first integral in Eq. (2.14) can be expanded as a Taylor
series around x up to second order, yielding

∂P (x, t)

∂t
'
∫
P (x, t)W (x, s) ds−

∫
s
∂

∂x
[P (x, t)W (x, s)] ds

+
1

2

∫
s2
∂2

∂x2
[P (x, t)W (x, s)] ds− P (x, t)

∫
W (x,−s) ds. (2.15)

In fact, one can include all terms of the expansion, which is then called the Kramers-Moyal expan-
sion [49, 50]. Since W (x, s) is assumed to be symmetric in the jump size s, the first and fourth term
cancel. For notational convenience, it is useful to define the Fokker-Planck moments as

Fn(x) =

∫
snW (x, s) ds. (2.16)

10The derivation in Section 8 of Ref. [3] is followed closely.
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In terms of these Fokker-Planck moments, Eq. (2.15) now simplifies to the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x
[F1(x)P (x, t)] +

1

2

∂2

∂x2
[F2(x)P (x, t)] . (2.17)

Note that the Fokker-Planck equation is an approximate substitute for the master equation, to
describe the evolution of the PDF for Markov processes with small jumps. The first term on the
right-hand side is called the drift term, and the second one is called the diffusion term. These names
should not necessarily be interpreted in a physical way, but they will make sense in the treatment of
Brownian motion in Section 2.3. In the literature, the Fokker-Planck moments are usually written
as F1(x) = A(x) and F2(x) = B(x). This notation will be used from now on. A restriction is that
B(x) > 0 ∀x, which is easily verified from the definition of F2(x) in Eq. (2.16).

Since the Fokker-Planck equation is by definition linear in P (x, t), the adjective ’linear’ can be used
to indicate a special kind of Fokker-Planck equations. These are called linear if A(x) = A0 + A1x
and B(x) = B0, for some A0, A1, B0 ∈ R. If A1 < 0 the linear Fokker-Plank equation describes a
stationary Markov process which has a Gaussian stationary distribution. This is exactly the earlier
mentioned Ornstein-Uhlenbeck process [43], which corresponds to a diffusion process for the velocity
of a Brownian particle.

The Fokker-Planck equation is easier to use than the master equation since it is a differential instead
of integro-differential equation. A more important advantage is that not all transition probability
rates W (x, s) for every pair of states x, y need to be known, but only the first and second Fokker-
Planck moments A(x) and B(x). One could argue that this still requires knowledge of W (x, s)
through Eq. (2.16), but in fact this equation can be used to express A(x) and B(x) in terms of the
average fluctuations. Eq. (2.16) is exactly the time derivative of the nth moment of the fluctuation
s = x− xi, because W (x, s) is a transition probability rate. So, we obtain

∂

∂t
〈s〉 = A(x),

∂

∂t
〈s2〉 = B(x). (2.18)

Hence, by determining these average fluctuations for a short time interval, the Fokker-Planck mo-
ments can be obtained and the resulting Fokker-Planck equation can be used to find the long time
behavior of the system. After some manipulations, as performed in Ref. [3], we can write Eq. (2.18)
in terms of the moments of x itself as

∂

∂t
〈x〉 = 〈A(x)〉, ∂

∂t
〈x2〉 = 〈B(x)〉+ 2〈xA(x)〉. (2.19)

The Fokker-Planck equation can also be generalized to a N -dimensional case, where the state x of
the system is a random vector containing random variables xm. The evolution of the PDF of the
corresponding multivariate (Markov) process can be shown to obey

∂P (x, t)

∂t
= −

N∑
m=1

∂

∂xm
[Am(x)P (x, t)] +

1

2

N∑
m,n=1

∂2

∂xm∂xn
[Bmn(x)P (x, t)] , (2.20)

which is the multivariate Fokker-Planck equation.
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2.3 Brownian motion & the Langevin equation

Brownian motion was already discussed briefly in Section 2.1.1 as an example of a physical process
that can be described by a SDE. In this section, the problem is discussed more elaborately because
of its historic value and the wide applicability of Langevin’s approach.

Brownian motion is named after Robert Brown, who did an extensive study of the irregular motion of
pollen immersed in a fluid in 1827 [51]. The motion he observed can be generalized to any heavy11

mesoscopic particle immersed in a fluid. The lighter fluid particles collide with the mesoscopic
particle in a random way, resulting in a randomly fluctuating velocity v(t) for the mesoscopic
particle. One can assume that the velocity change dv depends on the current velocity v(t), since on
average there will be more collisions in front than at the back of the particle. However, dv is not
affected by earlier velocities, so the velocity evolution can be modeled as a Markov process.

Figure 2.3: A possible two dimensional trajectory
of a heavy mesoscopic particle, showing random
net displacements after many collisions with its
surrounding fluid particles. This figure has been
extracted from Ref. [52].

The collisions and velocity changes occur so
rapidly that displacements between successive
collisions were not visible under a microscope
when Brown studied the phenomenon, but the
resulting position after many collisions could be
observed. This is shown in Figure 2.3. This
was also understood by Einstein [40] and Smolu-
chowski [53] in their independent explanation of
Brownian motion in the early twentieth century.
In their description they used the atomistic
ideas from the kinetic theory of gases, which
therefore supported the existence of the parti-
cle structure of matter. If one considers succes-
sive measurements r1, r2, ... of the position of a
Brownian particle, the displacements are ran-
dom due to the random nature of the collisions.
So, the next position rn only depends on the
current position rn−1, which yields a Markov
process. Note however that this process occurs
on a coarse-grained time scale with respect to
the process describing the velocity evolution.
Hence, Brownian motion can be described by
different Markov processes, depending on the
scale at which it is studied. This is a feature
of many physical stochastic processes and in solving the problem of Brownian motion this will be
exploited. An important remark is that both these processes are Markovian only by approximation.
Collisions between particles are not instantaneous and therefore the velocity change can depend on
earlier collisions, i.e. on earlier velocities. Therefore, the autocorrelation time τc of the velocity is
nonzero, which gives rise to (weakly) correlated successive displacements [3].

2.3.1 Langevin’s approach

Since the velocity v(t) of a Brownian particle with mass m is subject to random fluctuations, one
can write down a SDE to model its evolution. This is the Langevin equation, proposed by Paul

11Heavy with respect to the fluid particles.
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Langevin in 1908 [6], which in one dimension is given by

m
dv(t)

dt
= −αv(t) + F (t). (2.21)

This is just Newton’s second law for the evolution of the particles velocity. The right-hand side
represents the forces exerted on the particle, which are given by a linear friction force with coefficient
α and a random force F (t) exerted by the random collisions. If no external force is applied, this
yields, after dividing by the mass m of the particle,

v̇(t) = −γv(t) + f(t), (2.22)

where γ = α/m is the damping coefficient and f(t) = F (t)/m is the random force per unit mass m.
This SDE has a general solution for an initial condition v(0) = v0 given by

v(t) = v0e
−γt + e−γt

∫ t

0
eγt

′
f(t′)dt′. (2.23)

To solve this, the random force or noise f(t) needs to be investigated further. The collisions with the
molecules of the fluid occur approximately instantaneously, such that the noise fluctuates rapidly
and is not correlated with any quantity at different times. Furthermore, one can assume f(t) to be
zero on average, as is usual for noise. Hence, the properties of the random force can be summarized
as

〈f(t)〉 = 0, 〈f(t)v(t′)〉 = 0, 〈f(t)f(t′)〉 = Gδ(t− t′), (2.24)

where G is a constant autocorrelation amplitude. Hence, the random force f(t) is assumed to be
white noise12, with a Gaussian distribution.

The stochastic character of f(t) makes that the velocity v(t) is also a stochastic process. Since
〈f(t)〉 vanishes, the initial velocity decays exponentially on average: 〈v(t)〉 = v0exp(−γt). For the
second moment of v(t), the autocorrelation function of f(t) yields

〈
v2(t)

〉
= v20e

−2γt +Ge−2γt

∫ t

0

∫ t

0
eγ(t

′+t′′)〈f(t′)f(t′′)〉dt′ dt′′,

= 〈v(t)〉2 + G

2γ

(
1− e−2γt

)
. (2.25)

To find an expression for the unknown constant G, we can take the limit of t→ ∞. In this limit, it
can be expected that the system has reached thermal equilibrium, where the equipartition theorem
from statistical mechanics can be applied [2]. In one dimension, this gives

lim
t→∞

〈
v2(t)

〉
=

G

2γ
=
kBT

m
, (2.26)

where kB is the Boltzmann constant and T is the temperature. This relates the amplitude of the
autocorrelation function G and therefore the fluctuations to the damping coefficient γ. Hence, the
noise can be expressed completely in terms of the damping and the temperature. Such a relation

12In reality, the collisions are not instantaneous. The autocorrelation function 〈f(t)f(t′)〉 should therefore be
a function of |t − t′|, sharply peaked, with a width equal to the time a collision takes (which is related to the
autocorrelation time τc). This results in colored noise. Hence, assuming the noise to be white is equivalent to treating
Brownian motion as a Markov process. This turns out to be a good approximation for |t− t′| � τc.
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turns out to exist for many systems and Eq. (2.26) is a simple version of the more general fluctuation-
dissipation theorem, that holds for any system obeying detailed balance [54]. This theorem states
that, for every process dissipating energy, there must occur a reverse process causing fluctuations.
In the case of Brownian motion, the damping term −γv(t) tries to reduce the particles velocity,
while the random force f(t) causes it to remain nonzero. The resulting balance between these
two processes is exactly the equilibrium Maxwell-Boltzmann distribution PMB(v) [2]. Another very
important example of the fluctuation-dissipation theorem is the earlier mentioned Johnson-Nyquist
noise in resistors [38]. This originates from thermal fluctuations of electrons and ions, arising from
dissipating electrical energy due to resistance.

Since the velocity v(t) is stochastic, it is insightful to study its probability distribution P (v, t| v0).
The fact that the noise f(t) is Gaussian implies that v(t) is Gaussian too [3], so it is completely
determined by its first two moments that were calculated above. The quadratic deviation or variance
is given by 〈

(∆v(t))2
〉
=
〈
v2(t)

〉
− 〈v(t)〉2 = kBT

m

(
1− e−2γt

)
, (2.27)

where Eq. (2.25) is used for 〈v2(t)〉 and Eq. (2.26) for G. Plugging in this expression and the
expectation value 〈v(t)〉 in a general Gaussian form yields

P (v, t| v0) =
{

m

2πkBT [1− exp(−2γt)]

}1/2

exp

{
− m [v − v0 exp(−γt)]2

2kBT [1− exp(−2γt)]

}
. (2.28)

Taking again the limit of t → ∞, the Maxwell-Boltzmann distribution PMB(v) is obtained. This
distribution is known to be the equilibrium velocity distribution of a (one-dimensional) gas, so this
is a useful validation of this method.

For the position r(t) of the particle, a similar calculation can be performed by integrating all
expressions for the velocity in time. The details will not be shown, but there is one important result
that should be mentioned. For sufficiently long times (t � 1/γ), the mean square displacement is
given by 〈

(∆r(t))2
〉
=

2kBT

γm
t = 2Dt, (2.29)

where D is the diffusion coefficient. This result was derived by Einstein in 1905 [40]. In the same
long time limit, one can obtain an expression for the probability distribution P (r, t| v0, r0) of the
particle’s position, if it is also assumed to be Gaussian, as

P (r, t| v0, r0) = (4πDt)−1/2 exp

[
−(r − r0 − v0/γ)

2

4Dt

]
. (2.30)

This is exactly the solution of a one-dimensional diffusion equation

∂P (r, t)

∂t
= D

∂2P (r, t)

∂r2
, (2.31)

with diffusion coefficient D, which clarifies the name for the constant D.
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2.3.2 Fokker-Planck equations for Brownian motion

In Langevin’s treatment of Brownian motion, the earlier discussed methods for stochastic systems,
like the master equation or the Fokker-Planck equation, were not applied at all. The reason for
this is that Langevin’s approach is physically very insightful and also gives a more concrete view on
the problem. Here, Brownian motion will be investigated briefly using Fokker-Planck equations, to
compare both methods. First, the process is studied at the (finer) time scale on which the velocity
of the particle can be described by a Markov process. Consider the Langevin equation without a
random force f(t), so there is only a linear damping given by −γv. Through Eq. (2.18), the first
Fokker-Planck moment is obtained as

A(v) =
∂

∂t
〈∆v〉 = −γv. (2.32)

This clarifies the name of this first moment, as it corresponds to a drift or damping in this physical
process. For the second Fokker-Planck moment, it is known that B(v) > 0, hence it is taken to
be a constant B0, which is reasonable for small velocities. Filling in these moments in Eq. (2.17)
gives the Fokker-Planck equation for the evolution of the probability distribution for the velocity of
a Brownian particle

∂P (v, t)

∂t
= γ

∂

∂v
[vP (v, t)] +

B0

2

∂2P (v, t)

∂v2
. (2.33)

To find an expression for the constant B0, recall that the equilibrium distribution Peq(v) for the
velocity v of a particle (in an ideal gas) is given by the Maxwell-Boltzmann distribution PMB(v).
Substituting this distribution in Eq. (2.33) yields B0 = 2γkBT/m, which is the same expression
as (2.26) that was found for the autocorrelation amplitude G via the Langevin approach. Eq. (2.33)
now reduces to

∂P (v, t)

∂t
= γ

{
∂

∂v
[vP (v, t)] +

kBT

m

∂2P (v, t)

∂v2

}
, (2.34)

which is a linear Fokker-Planck equation corresponding to the Ornstein-Uhlenbeck process, that has
a Gaussian stationary distribution. From Eq. (2.34), one can directly derive that the moments of
v(t) correspond to the expressions found by Langevin’s method. Also, the probability distribution
P (v, t| v0) in Eq. (2.28) is the solution to this Fokker-Planck equation.

Looking at the coarser description, in which the position of the Brownian particle constitutes a
Markov process, one can also write down a Fokker-Planck equation. For convenience, the initial
position and velocity of the particle are taken to be zero, hence this is the no-drift case. Since
the problem is now symmetric and independent of the starting point, one can take A(r) = 0,
B(r) = const. = B1 [3], yielding

∂P (r, t)

∂t
=
B1

2

∂2P (r, t)

∂r2
, (2.35)

as the Fokker-Planck equation for the probability distribution of the particle’s position. This is
similar to the diffusion equation (2.31) with diffusion coefficient D = B1/2. So, for r0 = v0 = 0, it
also has the same solution as found by Langevin’s method, given by Eq. (2.30) .

From the analysis above, it seems that Langevin’s approach is equivalent to the Fokker-Planck
equation. However, this is not entirely the case. To calculate the moments of v(t) from the Langevin
equation, f(t) was assumed to be Gaussian white noise in Eq. (2.24). This allowed us to calculate
only up to the second moment of v(t), while the Fokker-Planck equation determines the whole
stochastic process v(t). It can be shown that, see Ref. [3], the Langevin equation with Gaussian
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white noise with an amplitude G represents the same Markov process v(t) as the Fokker-Planck
equation in Eq. (2.33), if B0 = G. Hence, under these conditions for the noise, both descriptions
are equivalent.

2.3.3 General Langevin approach

The reason that Langevin’s treatment of Brownian motion is so succesful is that it is physically very
intuitive for describing the fluctuations that lead to the particle’s displacement. In fact, this method
is used to model the effect of fluctuations in many physical systems. It can be used for almost any
dynamical system described by a SDE of the form (2.2). To see how this can be done, it is useful
to write down a general formulation of the Langevin approach. Consider a physical system with
known macroscopic behavior, that exhibits fluctuations. To find the effect of these fluctuations, one
should

1. Find the macroscopic EoM of the system, which are deterministic.

2. Add a random force (or noise) η(t) to the EoM, which is assumed to be white, with autocor-
relation amplitude Ξ.

3. Find an expression for the autocorrelation amplitude Ξ in terms of observables in the system.
This can be done by obtaining the stationary solution and fitting it to results known from
equilibrium statistical mechanics, or via other methods.

The Langevin equation (2.22) can be generalized by also including external forces Fext(t) like gravity,
which usually appear in the equation as the derivative V ′(r) of some external potential. Another
generalization can be obtained by using colored noise, resulting in a non-Markovian process and a
much more involved analysis [55]. Brownian motion and the Langevin equation turn out to appear
in a lot of systems, see Ref. [56]. A few of these applications will be discussed in Section 2.4.2.

Although Langevin’s method is more concrete and intuitive than the Fokker-Planck equation, it faces
some difficulties in the nonlinear case. By assuming that 〈η(t)〉 = 0, a linear Langevin equation
reduces to the deterministic macroscopic EoM after averaging. Now, consider a system with an
observable Y (t) obeying a deterministic EoM Ẏ = C(Y, t) for some nonlinear function C(Y, t), to
which a noise term η(t) is added to account for fluctuations,

Ẏ = C(Y, t) + η(t). (2.36)

Even if one assumes the noise η(t) to have a vanishing expectation value, the macroscopic EoM is
not recovered after averaging this equation, since 〈C(Y, t)〉 6= C(〈Y 〉, t) in general. This also means
that in determining 〈Y 〉, the higher moments of η(t) are required, which are usually unknown or
fixed by making assumptions for its PDF. Eq. (2.36) is a quasilinear Langevin equation, since the
noise η(t) is still additive. Taking η(t) to be Gaussian white noise with autocorrelation amplitude
Ξ, this equation can be shown, see Ref. [3], to be equivalent to a quasilinear Fokker-Planck equation

∂P (y, t)

∂t
= − ∂

∂y
[C(y, t)P (y, t)] +

Ξ

2

∂2P (y, t)

∂y2
, (2.37)

for a realization y(t) of Y (t). The Fokker-Planck moments can usually be determined from fluc-
tuation data and using Eq. (2.18). Hence, we can now pose a similar conclusion for the general
Langevin approach as for the specific Brownian case. If the noise η(t) is Gaussian and white, the
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solution of the SDE (2.36) is a Markov process {Y (t)}, for which the PDF P (y, t) satisfies the
associated Fokker-Planck equation (2.37). Therefore, both descriptions are equivalent in this case.

The completely nonlinear Langevin equation is given by

Ẏ = C(Y, t) +D(Y, t)η(t), (2.38)

for some nonlinear functions C(Y, t) and D(Y, t). Here, the noise term is multiplicative, which
leads to much more difficulties. Luckily, this can be reduced to the quasilinear case via some
transformations [3]. The corresponding Fokker-Planck equation is then given by

∂P (y, t)

∂t
= − ∂

∂y
[C(y, t)P (y, t)] +

Ξ

2

∂

∂y

{
D(y, t)

∂

∂y
[D(y, t)P (y, t)]

}
. (2.39)

There is however a problem of interpretation for Eq. (2.38). The noise η(t) takes a random value
at an instantaneous time t, causing a sudden jump in Ẏ , that affects the observable Y (t). Hence,
at time t, the value of Y (t) and consequently D(Y (t), t) are not determined yet. Eq. (2.38) does
not specify if one should take for Y (t) in D(Y (t), t) its value before or after the jump, or the
mean of these. This results in multiple Fokker-Planck equations, which have different solutions.
This interpretation issue was studied by both Stratonovich [57] and Itô [58], who each opted for a
different choice. Stratonovich proposed to take the mean value of Y (t) before and after the jump.
This allows for the usual transformation of variables, resulting in a Fokker-Planck equation of the
form (2.39). It is proven that this choice is appropriate in the limit of τc → 0, which is the white
noise limit [59]. However, the autocorrelation time cannot be exactly equal to zero, to prevent an
infinitely sharp δ−peak for the correlations. The Itô interpretation, on the other hand, which takes
the value of Y (t) before the jump, is only valid for white noise with τc = 0. This interpretation
is preferred by mathematicians, but it does not allow for a simple transformation to a quasilinear
equation. The corresponding Fokker-Planck equation is not given by Eq. (2.39), but takes the form

∂P (y, t)

∂t
= − ∂

∂y
[C(y, t)P (y, t)] +

Ξ

2

∂2

∂y2
[
D2(y, t)P (y, t)

]
. (2.40)

For constant D(y, t), i.e. additive noise, both interpretations result in the same Fokker-Planck
equation (2.37) after rescaling Ξ. An example of where Itô’s choice is appropriate is for decay pro-
cesses. The master equation for such a stochastic process is given by Eq. (2.10), which describes the
evolution of the probability P (N, t) that there are N radioactive nuclei at time t. This probability
is proportional to the number of nuclei N before the jump, which is exactly what Itô proposed.

In the treatment of Langevin’s approach, the source of the fluctuations was never considered. In
dynamical systems, noise can be separated in two general types13. There exist fluctuations that are
added to the system by applying some external random force, which is called external noise. When
this noise is turned off, the system is governed by a deterministic equation Ẏ = C(Y, t). External
noise often occurs in engineering problems and electrical circuits, but also in external effects on
population growth, like the weather. The other type of fluctuations is internal noise. As the name
suggests, this is a property of (parts of) the system, which cannot be turned off. Therefore, it is
not possible to find a deterministic equation that governs the system without noise. As the general
Langevin approach starts from a deterministic EoM, it does not work for (nonlinear) systems with

13Note that this distinction is completely separate from the additive or multiplicative character of the noise. This
is determined by the form of the noise coupling D(Y, t), which relates the noise to other observables. The source of
the noise determines if it is external or internal.
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internal noise. Nevertheless, it is possible to write down a SDE for such a system in the Langevin
form (2.2), only without a clear distinction between a deterministic and noise contribution. For
example, C(Y, t) could already include internal noise effects, which in the small noise limit reduces
to the deterministic evolution. It is not decided if the Itô and Stratonovich interpretation each
correspond to a kind of noise, which would only matter if the noise is multiplicative, as stated earlier.
Usually, external noise is approximately white, allowing for both interpretations, depending on the
assumptions for the autocorrelation time τc. Also, there are examples of processes with internal
noise, like the decay process, chemical reactions, emission processes and diseases in population
growth, where Itô’s choice seems more appropriate.

2.4 Stochastic approach for complex systems

Brownian motion and other examples like radioactive decay and magnetization already showed that
a stochastic approach to physical systems can be very useful. However, the techniques described
above are not restricted to physical applications. The N -particle system that was introduced at the
beginning of this section can be generalized to any dynamical system consisting of many interacting
agents, which is generally called a complex system. The microscopic description of such a system
suffers from the same difficulties as the N -particle system. The amount and interaction of the
agents give rise to a large number of unknown and uncontrollable variables, that can be reduced by
using the same stochastic approach [60]. This results in the familiar noise effects in the system on a
mesoscopic level, which also restrict the predictability due to their random nature. Hence, the ideas
described in Section 2.1.1 can be used in many complex dynamical systems to study their (nonlinear)
behavior in terms of stochastic processes. It is therefore not surprising that the Langevin approach
and other stochastic methods like the Fokker-Planck equation are, next to previous examples, also
useful for other (non)physical complex systems. Here, some of their applications are studied in
short, but first a few useful tools for analyzing the behavior of dynamical systems are discussed.

2.4.1 Dynamical systems analysis

The phase space Γ of a (stochastic) dynamical system consists of all possible microscopic states that
the system can occupy [61]. It corresponds14 to the state space S of a stochastic process {Y (t)}, if
{Y (t)} is the process that describes the evolution of all canonical variables in the complex system.
Every possible state is represented by a phase point. For the N -particle system, a phase point is
given by (rN ,pN ), where rN = {r1(t), ..., rN (t)} and pN = {p1(t), ...,pN (t)} represent, respectively,
the coordinates and momenta of the N particles. Its phase space is therefore 6N -dimensional, but
in general Γ contains all degrees of freedom of the system. The time evolution of the variables Y (t)
can now be seen as a motion of the phase point along a (phase) trajectory {y(t)}. A trajectory {y(t)}
is a solution of the EoM of the system, for an initial condition y(t0) = y0. In the deterministic case,
the EoM are given by ODEs that usually have a unique solution for any initial condition y0 [37].
This implies that different trajectories cannot intersect, since otherwise their uniqueness would be
violated. Due to the random fluctuations in stochastic systems, their EoM are given by SDEs [4].
As explained in Section 2.1.1, a solution {Y (t)} is a stochastic process since it is a functional of the
noise η(t). Therefore, the solution is not a uniquely determined trajectory in phase space, but it is
subject to randomness, which allows trajectories to intersect. Only for a noise realization {h(t)},
the EoM reduce to ODEs, and the process follows a unique trajectory {y(t)}. This is an important
difference between deterministic and stochastic systems, that will also appear in the path integral

14The state space can also correspond to a part of the phase space, if not all degrees of freedom are included in the
stochastic process {Y (t)}.
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approach in Section 3. This distinction is illustrated in Figure 2.4, in which the black line is the
trajectory of a two-dimensional deterministic system, governed by some ODEs. The red and blue
trajectories, fluctuating around the black line, are solutions of SDEs given by the same ODEs with
some external noise. These trajectories are not the same and can even intersect, since they are
solutions of different SDEs due to a different realization of the noise η(t).

Figure 2.4: A phase portrait of a two-dimensional
nonlinear system. The black trajectory repre-
sents a solution of the corresponding ODEs. The
red and blue lines are solutions of SDEs, that are
obtained from the ODEs by adding noise, which
results in trajectories fluctuating around the so-
lution of the ODEs. These trajectories are dis-
tinct, since the noise has a different realization
for each solution of the SDEs. This figure has
been extracted from Ref. [62].

Figure 2.5: Classification of fixed points x∗ in
a two-dimensional dynamical system with vari-
ables x1, x2. Note that this figure does not con-
tain all possible fixed points. The eigenvalues
of the Jacobian J (x∗), λ1 and λ2, completely
determine the character of the fixed point. For
all upper cases, the eigenvalues are real, while
for the lower cases they are complex. The real
part determines the stability. This figure has
been extracted from Ref. [63].

If all n canonical variables of a stochastic complex system are contained in Y (t), then the phase space
distribution function ρ(y, t) determines the probability of the system to be in an infinitesimal part
dny = dΓ of its phase space. This ρ(y, t) is exactly equivalent to the PDF P (y, t) of the stochastic
process {Y (t)}, so it will be written as P (y, t) from now on. If the system is in equilibrium, the
partial time derivative of P (y, t) vanishes, resulting in a stationary phase space distribution that is
equivalent to the equilibrium distribution Peq(y) of the stochastic process [5].

Now that the concept of phase space is understood, one can look at interesting features of the
evolution of the system. In general, the EoM of a dynamical system can be written as ẏ = g(y),
for some function g(y). Note that y ∈ Rn, since it contains all n variables of the system, and that
g(y) : Rn → Rn also contains the noise if the system is stochastic. If g(y∗) = 0 for a point y∗ in the
phase space, then the system has a vanishing time evolution at that point. Therefore, y∗ is called
a fixed point. A fixed point y∗ is attracting if all trajectories starting in its neighborhood approach
y∗ for t→ ∞. If the neighborhood condition is dropped, y∗ is globally attracting. If all trajectories
starting in the neighborhood of y∗ also remain close to it for all time, y∗ is called Lyapunov stable. If
it is both attracting and Lyapunov stable, it is called a stable fixed point. If it is neither attracting
nor Lyapunov stable, y∗ is called unstable. A further classification of the system can be done by
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qualitatively analyzing its phase portrait, which is a plot of trajectories in the corresponding phase
space like in Figure 2.4, that can be found directly from properties of g(y). This analysis is done
extensively in Ref. [61], so only the most important features are mentioned here.

It is insightful to study the trajectories of a (nonlinear) system near a fixed point y∗. To do this,
one can linearize ẏ = g(y) around y∗, yielding

ẏ = J (y∗)(y − y∗), where J (y∗) =
∂gi
∂yj

∣∣∣∣
y=y∗

(2.41)

is the Jacobian matrix evaluated at the fixed point, with i, j = 1, ..., n. This linearized system can
be studied by performing a linear stability analysis. This is done by determining the eigenvalues
of J (y∗). Depending on the nature15 of these eigenvalues, the behavior of the system around y∗

is different. For real eigenvalues, the fixed points are nodes or saddle points, while for complex
eigenvalues, they are spirals or centers. For a two-dimensional system, these different cases are
shown in Figure 2.5. The Hartman-Grobman theorem [64] states that if no eigenvalue is purely
imaginary, the system’s behavior is topologically equivalent to the behavior of its linearization, near
the fixed point. Fixed points for which the eigenvalues of the Jacobian have nonzero real part are
called hyperbolic. Hence, in these cases, the linearization procedure does not qualitatively change
the system and its trajectories near the fixed point, which is very useful for a stability analysis.

Other interesting features of a phase portrait are closed trajectories, which are periodic solutions
to the EoM. An example of a closed trajectory is the black trajectory shown in Figure 2.4. Isolated
and closed trajectories are called limit cycles, isolated meaning that trajectories in its neighborhood
are not closed16. Hence, they spiral either towards or away from the limit cycle, giving rise to
stable, unstable and half-stable limit cycles. If a stable limit cycle exists, then the system can show
self-sustained oscillations [61].

Until now the function g(y) was taken to be fixed, and only the evolution of the variable(s) y
was considered. When parameters in a complex dynamical system are varied, i.e. g(y) is altered,
the topological structure of the phase portrait can change. Such a change is called a bifurcation
Examples of a bifurcation are a change in the number or stability of fixed points or closed orbits.
Bifurcations can be divided into two categories. Local bifurcations happen in the neighborhood of
fixed points or closed orbits. Examples of these include the creation or destruction of fixed points in
saddle-node, transcritical or pitchfork bifurcations, which all have in common that one eigenvalue
of J (y∗) is zero [61]. Hopf bifurcations, which occur when a stable spiral becomes unstable and
surrounded by a limit cycle, are also local. There are also global bifurcations, which are not confined
to a small neighborhood around a fixed point. Examples of these are saddle-node bifurcations of
cycles, and homoclinic bifurcations where a saddle point collides with a limit cycle.

All tools and concepts discussed above are useful for any kind of dynamical system, either determin-
istic or stochastic, governed by an EoM of the form ẏ = g(y). Especially bifurcations are insightful,
since they describe the effect of a change in parameters on the behavior of the system, in terms
of the phase portrait. These parameters can however be varied in a controlled way. The noise in
a stochastic system changes in a random way and consequently g(y) also varies randomly. Hence,
next to (deterministic) bifurcations, it is also interesting to study how (much) a stochastic system

15The eigenvalues can be real (positive or negative), complex or purely imaginary.
16This implies that limit cycles do not exist in linear systems, since then any multiple of a periodic solution is also

periodic.
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is affected by noise. This can even give rise to the same kind of qualitative changes in the phase
portrait as happens for bifurcations. Since these changes are caused by random noise instead of
varying parameters, they are called noise-induced transitions [65].

Figure 2.6: Two trajectories in a two-dimensional
phase space, separated by a distance |δ(0)| at
t = 0. If at time t their separation is given by
|δ(t)| = eλt|δ(0)|, then λ is the Lyapunov expo-
nent. Its maximal component λmax can indicate
chaotic behavior in the system. This figure has
been extracted from Ref. [66].

Sometimes it is difficult to tell whether a sys-
tem is stochastic and shows random behavior
due to fluctuations, or whether it is just deter-
ministic but shows chaotic behavior. Chaos can
be loosely defined as an extreme dependence on
initial conditions [61]. Suppose that two trajec-
tories in phase space start at phase points x0
and x0 + δ(0). If their separation at time t is
given by |δ(t)| = eλt|δ(0)|, then the trajectories
separate exponentially fast with Lyapunov ex-
ponent λ [61]. This is schematically shown in
Figure 2.6. If the phase space is n-dimensional,
λ is an n-dimensional vector. The largest entry
of this Lyapunov exponent vector is defined by

λmax = lim
t→∞

lim
|δ(0)|→0

1

t
log

|δ(t)|
|δ(0)|

. (2.42)

If λmax > 0, there is a direction in which the
separation δ(t) grows exponentially. So, the tra-
jectories starting with separation δ(0) at t = 0,
separate exponentially fast in this direction, in-
dicating an extreme dependence of the behav-
ior on initial conditions. Usually, this implies
chaotic behavior. If λmax ≤ 0, none of the components of the Lyapunov exponent are positive.
Hence, there is no direction in which the trajectories separate exponentially fast, i.e. they stay
relatively close together. In this case the systems behavior is therefore not chaotic.

Now the theory for analyzing dynamical systems is set up properly, it can be applied to study
complex systems. In the next section, some of the tools discussed above, together with the stochastic
methods from Section 2.1 and 2.2, are used to describe the behavior of some stochastic complex
systems. To get an idea of the wide range of applicability of these methods, both physical and
nonphysical examples will be discussed.

2.4.2 Applications of stochastic methods in complex systems

From the general Langevin approach, as discussed in Section 2.3.3, it is clear that it can model
several stochastic processes in physics, as long as the macroscopic EoM can be written as SDEs in
the form of Eq. (2.2) and the noise is external. Again, this can be generalized to any complex system
with this kind of EoM. A first physical application of Langevin’s method is the RLC−circuit. The
dynamics of the magnetic flux φ through the interior of such a circuit are governed by

Cφ̈+
RC

L
φ̇+

φ

L
= If (t), where 〈If (t)〉 = 0, 〈If (t)If (t′)〉 =

2RCkBT

L
δ(t− t′). (2.43)

Clearly, this is a Langevin equation for a potential U(φ) = φ2/2L [67], where the fluctuating current
If (t) arises from the thermal or Johnson-Nyquist noise [38]. Note that in this case the fluctuations
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are fully determined by the temperature T , the resistance R, the capacitance C and the inductance
L. A similar Langevin equation appears in so-called superconducting quantum interference devices
(SQUIDs) [68]. In a superconducting material, the bosonic Cooper pairs are condensed into the
same quantum state, resulting in a wavefunction that extends beyond the material. When bringing
two superconductors close together, the tails of their wavefunctions can spatially overlap in the
vacuum between them. This overlap gives rise to a current without any applied voltage, which is
called the Josephson effect [69]. This effect also appears when two superconductors are connected
by a weak link, called a Josephson junction, which is a non-superconducting material. It can be
represented by a RLC-circuit, since the weak link acts like a resistor, a capacitor and a nonlinear
element in parallel. It is worth knowing that both saddle-node and homoclinic bifurcations occur
in Josephson junctions [61].

Figure 2.7: An illustration of a su-
perconducting ring connected by a non-
superconducting weak link, which is a
Josephson junction, in a magnetic field. If
the temperature T < Tc, the magnetic flux
is trapped inside the ring and quantized in
units of φ0 = hc/e. The flux can escape
through the weak link, which is measured by
a SQUID through a voltage difference. This
figure has been extracted from Ref. [70].

Now consider a ring of superconducting material
with a weak link built in, yielding a Josephson junc-
tion, like in Figure 2.7. If a magnetic field is ap-
plied perpendicular to the ring and the temperature
T is brought below the critical temperature Tc of the
material, the magnetic flux is trapped in the inte-
rior of the ring. Furthermore, the amount of flux in
the interior is quantized in units of the flux quantum
φ0 = hc/e. However, the flux can escape in multiples
of φ0 through the weak link. This principle is used
in SQUIDs to measure very small amounts of flux up
to the flux quantum, via a resulting voltage differ-
ence. The escaping flux results in a fluctuating cur-
rent If (t). Therefore, the dynamics of the magnetic
flux inside a SQUID obey a Langevin equation sim-
ilar to Eq. (2.43), for a different potential U(φ) [71].

As a first well-known example of a complex system,
the climate system is considered. Our climate is af-
fected by many processes on several different spatio-
temporal scales. Therefore, to describe its behavior,
stochastic methods are required to model the influ-
ence of processes at small scales, such as weather fluc-
tuations. There exist, for example, stochastic mod-
els of turbulence, where an external random force is
added to the Navier-Stokes equations [72]. Another
interesting phenomenon in the climate system is the
observed transition between warm and cold phases,

with a regularity of approximately 100,000 years. This is in phase with Milankovitch cycles, which
are changes in radiation resulting from the varying orbital parameters of the Earth. In 1982, Benzi
et al. [73] tried to relate these cycles by adding fluctuations to a climate model. If X is a change in
temperature near an equilibrium point T0, then one can write down the following Langevin equation

dX

dt
= X −X3 +B(t) sin(ωt) + η(t), (2.44)

where B(t) is the forcing amplitude, ω is the frequency of the Milankovitch cycle and η(t) is some
Gaussian white noise with autocorrelation amplitude σ. The first two terms in the SDE arise from
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a simple climate model including only feedback due to radiation. For a small and slowly varying
force B(t) = B cos(ωt), there is a resonant range for σ, in which the small periodic perturbation
B(t) synchronizes with the random behavior caused by the noise η(t). This yields an amplified
periodic output, as can be seen in Figure 2.8. This mechanism is called stochastic resonance. It is
counterintuitive, since the fluctuations cooperate with the system to enhance its periodic behavior.

Figure 2.8: Numerical solution of a Langevin
equation similar to Eq. (2.44), for small and slowly
varying B(t) and σ in the resonant range. This
yields a large periodic output for X(t). This fig-
ure has been extracted from Ref. [74].

Unfortunately, the simulated results of Eq. (2.44)
showing stochastic resonance did not agree with
observed temperature changes. This can how-
ever also be due to the simplistic climate model
that was used. Nevertheless, the concept of
stochastic resonance has become important in
all kinds of complex systems. It can occur in any
system containing a signal and white noise, in
which the frequencies of the signal resonate with
the corresponding noise frequencies, thereby in-
creasing the signal-to-noise ratio. This can be
technologically useful and stochastic resonance
has found its applications in biology and in the
earlier mentioned SQUIDs [75].

It turns out that stochastic methods also appear
in the nonphysical context of finance. In 1900,
before Einstein, Smoluchowski and Langevin,
Louis Bachelier was the first to give a mathe-
matical description of Brownian motion [76]. He used this for modelling the stock market, which
marked the birth of mathematical finance. More recently, it has been shown that the probability
distribution of price changes on the foreign exchange market obeys a Fokker-Planck equation, which
can be transformed to a Langevin equation with multiplicative noise in the Itô interpretation [77].

Most of the examples discussed above are Markovian by the assumption of the noise being white.
As stated in Section 2.1.1, this usually holds only as an approximation. A class of non-Markovian
stochastic processes that occur frequently in the study of populations are branching processes [78].
Consider an organism that multiplies by division. If a is the age of the organism, its probability to
divide into two organisms during the next time interval dt is given by κ(a)dt. This process continues
and the main question is to determine the probability P (n, t| q, 0) of having n organisms after a
time t, given that there are q organisms at time t = 0. In general, this process is non-Markovian,
since κ depends on the age a of the organism, so on its entire life or history. This is a simple model
that does not include a probability of dying, but it already has a lot of applications. For example,
the number of freely moving neutrons in a nuclear reactor can be modeled by a branching process.
However, in this case, the process is Markovian, since κ is independent of the ’age’ of the neutrons.

Another non-Markovian process occurs in the human body. In nerve circuits, neurons usually form
a feedback loop, which is a path in a neural system from the input to its output, and back to its
input. Since the propagation of neurons along the loop takes a finite amount of time, the evolution
of neural activity depends on its present state, as well as on earlier states. This creates a neural
delayed feedback system [60]. It is interesting to study the origin of fluctuations in these systems,
and whether or not they suppress oscillatory behavior. A neural system that is relatively easy to
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study experimentally is the pupil light reflex (PLR). This system contains a negative17 feedback loop,
from which a deterministic equation for the time evolution of the pupil area A can be derived [60].
The equation predicts a stable fixed point A∗ that changes into an oscillation if the delay in the
PLR is increased. This indicates a stable limit cycle, and therefore a Hopf bifurcation has occurred.
Nevertheless, the predictions of the deterministic equation and this Hopf bifurcation do not agree
with observations, which asks for the inclusion of a noise contribution. In the PLR, noise originates
from hippus, which is a fluctuation of the pupil area occurring for a constant light flux. Hippus is
colored noise, which seems to arise from neural noise, with an autocorrelation time of approximately
one second. Adding this effect yields a better agreement with data, and also shows a noise-induced
transition. The noise stabilizes the fixed point A∗, before it becomes unstable with a surrounding
stable limit cycle for a larger delay. Hence, the noise postpones the initiation of oscillations in the
pupil area.

As a last application of stochastic methods in complex systems, the Verhulst model is considered [79].
This already gives a glimpse towards the Lotka-Volterra equations, since it is a different model for
studying population dynamics, but for only one species. For the population of a single species
N(t) ≥ 0, the Verhulst equation is given by

Ṅ = µN −N2. (2.45)

This is essentially the logistic equation18 [61], but with rescaled variables such that the quadratic
term has unit coefficient. This nonlinear term models overcrowding due to limited resources. The
coefficient µ is the growth rate, which is given by the difference between birth and death rates. For
µ < 0, the population obviously gets extinct, and so N = 0 is a stable fixed point. If µ > 0, N = 0
becomes an unstable fixed point and a new stable fixed point is given by N = µ. Therefore, µ can
also be called the carrying capacity, which is the stable population size (in these units). This model
thus shows a very simple bifurcation due to a change in µ.

In real populations, the growth rate is of course not a constant, but depends on environmental
effects like the weather and diseases, which cause it to fluctuate. To incorporate this, the constant
µ can be replaced by µ(t) = 〈µ〉+η(t), which is a stochastic process with expectation value 〈µ〉 and
a Gaussian white noise η(t) that has autocorrelation amplitude σ. Taking these fluctuations into
account transforms Eq. (2.45) to the SDE

Ṅ = 〈µ〉N −N2 +Nη(t), (2.46)

which is a nonlinear Langevin equation with multiplicative noise. This modification has profound
effects. It turns out that the average population is not equal to 〈µ〉, as one might expect, but
slightly smaller. This effect becomes larger for increasing noise amplitude σ, until eventually the
population faces extinction in its steady state for very large fluctuations.

To quantitatively analyze this behavior, it is useful to consider the Fokker-Planck equation for
the probability distribution P (N, t) corresponding to Eq. (2.46). Since this Langevin equation is
nonlinear and has multiplicative noise, different Fokker-Planck equations can be derived, in either
the Itô or the Stratonovich interpretation. First, the Itô interpretation will be considered. Then,

17An increase in light flux decreases the pupil area, and vice versa.
18Its discrete-time version, called the logistic map, actually shows exponentially diverging trajectories (i.e. a positive

Lyapunov exponent) for certain values of µ, and therefore chaotic behavior [61].
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the Fokker-Planck equation has the form of Eq. (2.40) and yields

∂P (N, t)

∂t
= − ∂

∂N

[(
〈µ〉N −N2

)
P (N, t)

]
+
σ

2

∂2

∂N2

[
N2P (N, t)

]
,

=
∂

∂N

{[
N2 − 〈µ〉N

]
P (N, t) +

σ

2

∂

∂N

[
N2P (N, t)

]}
, (2.47)
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Figure 2.9: Plot of the stationary probability distribution
Peq(N) of a stochastic Verhulst model, obtained from the
Fokker-Planck equation in the Itô interpretation. The re-
sults are calculated for an average growth rate 〈µ〉 = 1 and
multiple values of the noise autocorrelation amplitude σ.
Even for small σ, Peq(N) already shows a right skewness,
indicating an average population below 〈µ〉. For σ = 〈µ〉,
where N = 0 becomes the most probable population, the
form of Peq(N) suddenly changes, showing the noise-induced
transition.

for the stochastic Verhulst model. By
putting the left-hand side to zero, one
finds that the stationary probability
distribution is given by

Peq(N) = cN2(〈µ〉/σ−1)e−2N/σ,

for 2〈µ〉
σ

> 1. (2.48)

The condition follows from the re-
striction of Peq(N) being normaliz-
able, with finite normalization con-
stant c [60]. The form of Peq(N)
changes when σ = 〈µ〉, at which
N = 0 becomes the most probable
population19. This is shown in Fig-
ure 2.9. The behavior of the popula-
tion changes qualitatively due to the
noise, which indicates a noise-induced
transition. If the fluctuations become
so large that σ ≥ 2〈µ〉, the condition
in Eq. (2.48) is violated and therefore
Peq(N) does not have the given form.
Instead, the population gets extinct
and Peq(N) = δ(N) is the stationary
probability distribution, even though
the growth rate is still positive. This
is another transition due to the fluc-
tuations, which can be called a noise-induced extinction.

In the Stratonovich interpretation, the Fokker-Planck equation has the form of Eq. (2.39), which
results in

∂P (N, t)

∂t
= − ∂

∂N

[(
〈µ〉N −N2

)
P (N, t)

]
+
σ

2

∂

∂N

{
N

[
∂

∂N
NP (N, t)

]}
,

=
∂

∂N

{[
N2 − 〈µ〉N

]
P (N, t) +

σ

2
N

∂

∂N
[NP (N, t)]

}
, (2.49)

=
∂

∂N

{[
N2 − 〈µ〉N − σ

2
N
]
P (N, t) +

σ

2

∂

∂N

[
N2P (N, t)

]}
.

19For σ = 〈µ〉, Peq(N) is just exponential decay which takes its highest value for N = 0. For 2〈µ〉 > σ > 〈µ〉,
Peq(N) decays even faster, with an asymptote at N = 0.
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Luckily, this equation has a stationary solution of the same form as Eq. (2.48) for the Itô case, after
a transformation 〈µ〉 → 〈µ〉+ σ/2. The normalizability condition is now given by 〈µ〉/σ > 0, which
is always satisfied for a positive average growth rate. The other stationary solution Peq(N) = δ(N)
holds only for 〈µ〉 < 0, i.e. on average there are more deaths than births. Hence, in the Stratonovich
interpretation, the system does not show the noise-induced extinction for a positive growth rate, as
in the Itô case. This demonstrates the difference between both interpretations and the important
distinctions it can make in the qualitative behavior of dynamical systems. The other noise-induced
transition, where N = 0 becomes the most probable population, does still occur in the Stratonovich
case, but now at a noise amplitude σ = 2〈µ〉.
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3 Functional approach to stochastic systems
To describe the evolution of an observable Y (t) in a stochastic system, a general SDE (2.2) was
introduced in Section 2.1. For an initial condition Y (t0) = y0, its solution is given by Y (y0, t, [η]),
which is a functional of the noise η(t). So, due to its random nature, the SDE has a unique solution
only for a noise realization {h(t)}. Analogously, random effects also appear in quantum phenomena,
although here the fluctuations arise from the inherent unpredictability in quantum mechanics. To
deal with this, a functional formalism called the Feynman path integral was developed in 1948 [8].
Later, it was realized that this formalism indeed relates quantum and stochastic processes [80]. This
allowed functional methods to describe stochastic systems, which is especially useful for coupled
nonlinear systems where a Fokker-Planck or Langevin’s approach can break down. In fact, the
first notion of a path integral appeared in 1921 in the work of Norbert Wiener, in his solution to
Brownian motion [7]. This section will start with this intuitive introduction to path integrals. This
idea is then generalized from a stochastic point of view and the relation with quantum mechanics
is discussed. The connection between the functional formalism and SDEs will be used to derive the
MSR formalism, which is the most important technique used in this work. This method is then
applied to solve both a linear and nonlinear Langevin equation.

3.1 Path integrals for Brownian motion

In the (coarser) position description, the PDF P (r, t) of a Brownian particle in one dimension at
position r at time t is governed by a diffusion equation (2.31) with diffusion coefficient D = kBT/γm,
as was noted in Section 2.3. This result was already derived by Einstein in his theory of Brownian
motion [40], before Langevin proposed its solution. For an initial condition r(0) = r0, or formally
lim
t→0

P (r, t) → δ(r − r0), the diffusion equation is solved by

P (r, t| r0) =
1√
4πDt

exp

[
−(r − r0)

2

4Dt

]
. (3.1)
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Figure 3.1: A possible trajectory of a Brownian
particle, starting at r(0) = 0. At each time ti, the
particle traverses an interval [Ai, Bi]. The ’prop-
agating’ interval is depicted by the striped area.

3.1.1 Wiener’s approach

Inspired by the description of Brownian motion
in terms of randomness, Norbert Wiener tried
to give a mathematically rigorous description of
the problem [7]. Instead of discussing Wiener’s
complete treatment, only his main results will
be presented here, following the line of thought
of Ref. [81].

For a one-dimensional Brownian particle, start-
ing in r(0) = 0, the probability to find it in an
interval [A,B] at time t is given by

P{r(t) ∈ [A,B]} =

∫ B

A
P (r, t) dr. (3.2)

Wiener derived another expression for this prob-
ability. Before arriving in [A,B], the particle
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traverses N intervals [Ai, Bi] at times ti = i∆t, where ∆t = t/N . This time-slicing procedure is
shown in Figure 3.1. In Section 2.3, we explained that successive observations r(ti) = ri of the posi-
tion of a Brownian particle can constitute a Markov process. Hence, by the Markov property (2.5),
successive displacements are independent and P{ri ∈ [Ai, Bi]} only depends on the current position
ri−1 through lim

t→ti−1

P (ri, t) → δ(r − ri−1). So, it is possible to write

P{r(t1) ∈ [A1, B1], r(t2) ∈ [A2, B2], ..., r(tN ) ∈ [AN , BN ]}
= P{r(t1) ∈ [A1, B1]}P{r(t2) ∈ [A2, B2]

∣∣r1}... P{r(tN ) ∈ [AN , BN ]
∣∣rN−1},

=

N∏
i=1

∫ Bi

Ai

P (ri, ti| ri−1) dri, (3.3)

=
N∏
i=1

∫ Bi

Ai

1√
4πD(ti − ti−1)

exp

[
− (ri − ri−1)

2

4D(ti − ti−1)

]
dri,

by inserting the Chapman-Kolmogorov equation (2.6) N times in the third line. Using this expres-
sion in the continuous time limit N → ∞ (i.e. ∆t → 0), the probability that the particle passes
through an infinite number of infinitesimal intervals dri is given by

lim
N→∞

N∏
i=1

exp

[
− (ri − ri−1)

2

4D(ti − ti−1)

]
dri√

4πD(ti − ti−1)

= lim
N→∞

exp

[
− 1

4D

N∑
i=1

(
ri − ri−1

∆t

)2

∆t

]
N∏
i=1

dri√
4πD∆t

, (3.4)

= exp

[
− 1

4D

∫ t

0
ṙ2(t′) dt′

] t∏
t′=0

dr(t′)√
4πD dt′

.

This is essentially the probability of a particle following the trajectory r(t′). All trajectories r(t′)
that start in r(0) = 0 and end up in [A,B] at t′ = t are denoted by the set C[0, 0, [A,B], t]. To
calculate P{r(t) ∈ [A,B]}, one needs to sum the probabilities (3.4) of all trajectories in this set
C[0, 0, [A,B], t]. Since the trajectories are continuous, this yields an integral

P{r(t) ∈ [A,B]} =

∫
C[0,0,[A,B],t]

exp

[
− 1

4D

∫ t

0
ṙ2(t′) dt′

] t∏
t′=0

dr(t′)√
4πD dt′

. (3.5)

This expression should now be equivalent to Eq. (3.2). But here, instead of integrating the PDF
of the final position r(t) over the interval [A,B], one integrates over all paths r(t′) that end up in
[A,B] at t′ = t. Therefore, the integration over the set C[0, 0, [A,B], t] is called the Wiener path
integral [81]. The exponential integrand together with the product measure is called the Wiener
measure, which is usually denoted by dW r(t

′). Hence, this approach makes use of a measure
and integral over the functional space of all trajectories r(t′), which has infinite dimension by
construction.

If the final position r(t) is also fixed by setting A = B = rt, all trajectories in the set C[0, 0, rt, t]
end up in rt, as is shown in Figure. 3.2. Equating Eq. (3.2) and Eq. (3.5) for this case gives∫

C[0,0,rt,t]
dW r(t

′) =
1√

4πD t
exp

[
− r2t
4D t

]
, (3.6)
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which is exactly the (conditional) PDF of a one-dimensional Brownian particle starting at r(0) = 0
and arriving at rt at time t. This naturally shows the equivalence of both approaches.

Wieners solution makes use of the description of Brownian motion in terms of a stochastic process.
Next to the Markov property, this particular process satisfies other conditions, which allows for
the definition of a Wiener process [7]. The Wiener process is a continuous-time stochastic process,
denoted by W (t), that has the following properties [72]:

1) W (0) = 0, or lim
t→0

P (w, t) → δ(w) for every realization w(t).

2) It has independent increments: Future increments W (s+ t)−W (s) are independent of W (u)
for every t, s ≥ 0, u ≤ s.

3) The increments W (s+ t)−W (s) have a Gaussian distribution with average 0 and variance t.

4) W (t) is almost surely continuous in t.

r

t'0 t

rt

Figure 3.2: Different trajectories r(t′) of a one-
dimensional Brownian particle, with fixed initial
position r(0) = 0 and final position r(t) = rt.

Taking s = 0 in property 3) directly results in a
Gaussian PDF for W (t) with average zero and
variance t, as in the right-hand side of Eq. (3.6)
for a one-dimensional Brownian particle with
D = 1. The Wiener process is usually treated as
a synonym for Brownian motion, while it actu-
ally is its mathematical generalization. For ex-
ample, the independent increments in property
2) reduce to independent (successive) displace-
ments in Brownian motion. Although defining
the Wiener process seems more of a formal-
ity, it has an interesting connection to white
noise. The time derivative of a Wiener process
dW (t)/dt is exactly equal to a Gaussian white
noise process η(t) that is delta correlated, as
in Eq. (2.3). Integrating Gaussian white noise
from time 0 to t results again in the Wiener pro-
cess at time t. Due to this connection and its
useful properties, the Wiener process has a lot of
applications, both in fundamental and applied
mathematics [82].

3.1.2 A functional approach to the Langevin equation

Wiener was the first to use path integrals to solve Brownian motion. Note however that he studied
the problem in the position representation, which does not contain any noise η(t), due to the coarser
level of description. The diffusion equation (2.31) is therefore just a partial differential equation.
Chandrasekhar [10] also applied functional methods to the problem of Brownian motion. He used
them to solve the Langevin equation for the velocity of a Brownian particle. Just as for Wiener’s
approach, only the main results will be presented, following the line of thought of Ref. [83].

The Langevin equation (2.22) for Brownian motion has a general solution (2.23) given by

v(t) = v0e
−γt + e−γt

∫ t

0
eγt

′
f
(
t′
)
dt′, (3.7)
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for initial velocity v(0) = v0 and damping coefficient γ. Instead of immediately specifying properties
of the random force f(t′) to calculate moments of the velocity v(t), as was done in Section 2.3, one
can take a careful look at this general solution. Due to the integration over time, a solution v(t)
depends on the values of the noise f(t′) over the whole time interval [0, t]. Hence, v(t) is a functional
of f(t′) and can be denoted by v(v0, t, [f ]), just as was done for a general observable Y (y0, t, [η])
governed by a SDE with noise η(t′). To relate this to Wiener’s approach, one can think of a
function Y (y0, t, η0, η1, ..., ηN ) of N + 3 variables, with ηi = η(ti) and ti = i∆t = it/N . From this
time-slicing procedure, the functional Y (y0, t, [η]) is then defined by the continuous time limit of
this discretization, yielding

Y (y0, t, [η]) = lim
N→∞

Y (y0, t, η0, η1, ..., ηN ). (3.8)

Functional integration can be understood in a similar way, by taking the limit of N → ∞ in the
multidimensional integral of Y (y0, t, η0, η1, ..., ηN ) over the N+1 variables ηi. However, this can lead
to divergences. In the cases that are considered here, this is dealt with by introducing a weighting
functional Φ[η] for the integration variables. Now, the functional integral I[η] of a functional20 Y [η]
over the function η(t′) can be written as

I[η] = lim
N→∞

I(η0, η1, ..., ηN ),

= lim
N→∞

∫
...

∫
Y (η0, η1, ..., ηN )Φ(η0, η1, ..., ηN )

N∏
i=0

dηi, (3.9)

=

∫
Y [η]Φ[η]Dη(t′).

Here, the functional measure Dη(t′) is defined as

Dη(t′) = lim
N→∞

N∏
i=0

dηi, (3.10)

which accounts for all trajectories of the noise η(t′), for t′ ∈ [0, t]. The functional integral I[η] is
again a functional, but now of η(t). If the function η(t′) describes the possible trajectories r(t′) of
a Brownian particle, the complete integration measure Φ[r]Dr(t′) is exactly the Wiener measure
dW r(t

′). The Wiener path integral is therefore also a kind of functional integral. By the definition
of dW r(t′) through Eq. (3.5), the weighting functional is then given by

Φ[r] = exp

[
− 1

4D

∫ t

0
ṙ2(t′) dt′

]
, (3.11)

where the normalization constant N =
(√

4πD dt′
)−1

is absorbed in Dr(t′). This is the probability
density functional (PDF) P[r] for the position of a Brownian particle. For a general random
function η(t), this can be understood as the continuum limit of a multivariate PDF21

P[η] = lim
N→∞

P (η0, η1, ..., ηN ), (3.12)

20The dependence on initial condition y0 and time t are disregarded from now on, for notational convenience.
21A PDF describes the probability distribution of one or more random variables, while the PDF describes the

probability distribution of a random function. A PDF is therefore a functional generalization of a PDF.



3 FUNCTIONAL APPROACH TO STOCHASTIC SYSTEMS 31

as performed in Eq. (3.4) for a Brownian particle. The PDF P[η] is related to the PDF P (η, t)
via the transition probability P (η, t| η0, t0). P (η, t) is equal to P (η, t| η0, t0), for an initial condition
P (η, t0) = δ(η(t0) − η0). Also, the transition probability can be written in terms of the PDF as a
functional integral

P (η, t| η0, t0) =
∫ η(t)=η

η(t0)=η0

P[η]Dη(t′). (3.13)

In most cases, the weighting functional Φ[η] for a random function η(t′) is indeed given by its PDF
P[η]. Then, the functional integral in Eq. (3.9) reduces to a functional average, i.e. I[η] = 〈Y [η]〉,
if P[η] is properly normalized22. This is the functional generalization of the expectation value in
Eq. (2.1). It can be interpreted as the expected trajectory {y(y0, t, [η])} of a stochastic process
Y (y0, t, [η]), averaged over the random function η(t). Although the normalization constant, given
by the product over t′ in Eq. (3.4) for P[r], is infinite in the continuum limit dt′ → 0, moments with
respect to the PDF are still well-defined [84]. Therefore, the normalization constant of a PDF is
just denoted by N , since it drops out when calculating moments and other correlation functions.

It might seem artificial to just plug a weighting functional in a functional integral to deal with diver-
gences, but in fact this cannot be omitted. Going back to the Langevin equation, only integrating
the random force f(t′) over time would imply that every noise value has an equal probability. In
Section 2.3.1, the random force was assumed to be Gaussian white noise. Therefore, the Gaussian
PDF should also be taken into account when integrating f(t′). To perform a functional integral over
all trajectories f(t′), the PDF P[f ], that specifies the probability distribution of the function f(t′),
should be included instead of the PDF, that specifies the probability distribution of the random
force f(ti) at a single time instance ti. P[f ] is given by the continuum limit of the multivariate
Gaussian PDF [83] that depends on random forces fi = f(ti). Since the random force is uncorre-
lated at different times, the random variables fi are independent, hence the multivariate Gaussian
PDF reduces to a product of single-variable Gaussian PDFs23. Hence, this yields for the PDF

N P[f ]Df(t′) = lim
N→∞

exp

[
− 1

2G

N∑
i=1

f2i ∆t

]
N∏
i=1

∆t dfi√
2πG

,

= N exp

[
− 1

2G

∫ t

0
f2(t′) dt′

]
Df(t′), (3.14)

with G the autocorrelation amplitude of f(t′), Df(t′) the functional measure and N the constant
that normalizes P[f ]. This is the exact same procedure as carried out in Eq. (3.4), so in fact
Wiener also made use of functional integration. Consequently, in general functional integrals over
random functions η(t′), the weighting functional Φ[η] = P[η] emerges naturally to account for the
probability of each trajectory or path to be taken.

Now, the theory above can be applied to the velocity functional v(v0, t, [f ]) for a Brownian particle,
defined by Eq. (3.7), as was done by Chandrasekhar [10]. For comparison with the results obtained
by Langevin, which are stated in Section 2.3.1, it is interesting to calculate the first and second
moments of the velocity, but now with respect to P[f ], which could be called functional moments.
This requires knowledge of the functional moments of f(t′). Using that P[f ] is just the continuum

22Normalization in terms of functional integration means that N
∫
P[η]Dη(t′) = 1

23This is shown explicitly in Eq. (3.3) for the displacements ri− ri−1 of a Brownian particle, which are independent
due to the Markov property.
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limit of a product of independent normally distributed random forces fi with zero average and
variance G, it is clear that

〈f(τ)〉 = N
∫
f(τ)P[f ]Df(t′) = 0, (3.15)

〈f(τ)f(τ ′)〉 = N
∫
f(τ)f(τ ′)P[f ]Df(t′) = Gδ(τ − τ ′) (3.16)

for 0 ≤ τ, τ ′ ≤ t [83]. Note that these are functional averages. The resulting average and autocor-
relation function are exactly the properties of the random force specified in Eq. (2.24). This should
not be surprising, since these properties were implicitly used for each fi in deriving P[f ]. Neverthe-
less, it is reassuring that this also holds in the functional formalism. Starting from Eq. (3.7), the
first velocity moment is now given by

〈v(v0, t, [f ])〉 = N
∫
v(v0, t, [f ])P[f ]Df(t′),

= N
∫ {

v0e
−γt + e−γt

∫ t

0
eγt

′
f
(
t′
)
dt′
}
P[f ]Df(t′), (3.17)

= v0e
−γtN

∫
P[f ]Df(t′) + e−γt

∫ t

0
eγt

′
{
N
∫
f
(
t′
)
P[f ]Df(t′)

}
dt′,

= v0e
−γt,

where Eq. (3.15) and the normalization of P[f ] were used in the last line. This is equivalent to
the result found by Langevin. The second velocity moment 〈v(v0, t, [f ])2〉 follows easily by the
functional analogue of the calculation in Eq. (2.25), which also yields the same result.

It seems unnecessarily cumbersome to solve the Langevin equation by functional integration, espe-
cially since it yields the same results as Langevin’s approach. However, translating this problem to
a functional language allows for the application of other useful methods, that will be treated in the
next section, to calculate interesting quantities. In particular, the functional approach can be used
for nonlinear SDEs by means of perturbation theory.

3.2 Functional methods for stochastic and quantum systems

A few years after Chandrasekhar’s solution to the Langevin equation, Richard Feynman developed
a functional formalism to describe quantum mechanics, which is the Feynman path integral24 [8].
Feynman’s approach was revolutionary and it led to interesting new insights [85]. Later, the methods
developed in this formalism were again used to study the statistical mechanics and fluctuations of
systems near a phase transition [80]. The critical dynamics of such a system are actually governed by
an order parameter that obeys a Langevin equation [86]. The correlation length diverges when the
system approaches the critical point, allowing for a continuous description in terms of functionals
and fields. This led to the application of all functional methods to stochastic systems and later to
the development of the MSR formalism. Here, a general functional approach to stochastic systems
will be developed, by introducing important concepts and quantities from a stochastic point of view.
Afterwards, the connection to quantum mechanics will be explained briefly.

24In fact, Paul Dirac already developed the ideas for a path integral formulation of quantum mechanics in 1932 [9].
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3.2.1 Generating functionals

In Section 2.1.1, the expectation value of a random variable25 X was defined in Eq. (2.1), from
which the nth moment of X could be defined as

〈Xn〉 =
∫
xnP (x, t) dx. (3.18)

The moments are insightful quantities to characterize the behavior of a stochastic system. For
example, the first moment is equal to the expectation value 〈X〉, and the second moment is related
to the variance σ2 of the corresponding PDF, which is a measure for the average deviation from the
mean. Therefore, it is useful to define a (moment) generating function

Z(J) = 〈eJx〉 =
∫

eJxP (x, t) dx, (3.19)

which is the Laplace transform of the PDF. Now, the moments can be obtained by taking derivatives
of Z(J) as

〈Xn〉 = 1

Z(0)

dn

dJn
Z(J)

∣∣∣∣
J=0

, (3.20)

with respect to an auxiliary (complex) variable J , usually called a source. Note that if P (x, t)
would be normalized, Z(0) = 1. As will turn out later, it is useful to not require this normalization
condition, hence the normalization constant N is neglected. It is also interesting to look at the
cumulants of a PDF, which are defined by

〈Xn〉c ≡
dn

dJn
K(J)

∣∣∣∣
J=0

, (3.21)

where the cumulant generating function is given by

K(J) = logZ(J). (3.22)

It can easily be seen that 〈X〉c = 〈X〉 and 〈X2〉c = 〈X2〉−〈X〉2 ≡ σ2. To get an idea of the usefulness
of generating functions, take for example a (time-independent) Gaussian PDF with mean µ and
variance G. Its generating function is

Z(J) =

∫ ∞

−∞
e−(x−µ)2/2G+Jxdx,

=

∫ ∞

−∞
e−

1
2
G−1(x−JG−µ)2+Jµ+ 1

2
JG2

dx,

=
√
2πG eJµ+

1
2
JG2

, (3.23)

= Z(0) eJµ+
1
2
JG2

,

where completing the square was used for the second line and a shifted Gaussian integral was
recognized and performed for the third line. The resulting normalization constant is given by
Z(0) in the fourth line. The cumulant generating function is obtained by taking the logarithm of
Eq. (3.23), yielding

K(J) = Jµ+
1

2
JG2 + logZ(0). (3.24)

25This can be the value of a stochastic process {X(t)} at a fixed time t. To avoid confusion with a random function
X(t), the dependence on t is suppressed in the expectation values.
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Using these generating functions, the moments and cumulants are given by 〈X〉c = 〈X〉 = µ and
〈X2〉c = G, as could have been expected.

The concepts above can be generalized to a n-dimensional random vector X = (X1, X2, ..., Xn) and
source vector J = (J1, J2, ..., Jn). For a multivariate Gaussian PDF with zero mean, the generating
function can be written as

Z(J) =

∫
e−

∑
k,l

1
2
xkG

−1
kl xl+

∑
k Jkxk

n∏
i=1

dxi,

= Z(0) e
∑

k,l
1
2
JkGklJl . (3.25)

The variance is now generalized to a covariance matrix (Gkl)k,l=1,..,n = G, with inverse G−1, which
can be assumed to be symmetric. For symmetric G−1, one can always find an orthonormal basis B,
such that B · G−1 · B−1 is diagonal [87]. By completing the square, one arrives at the second line
in Eq. (3.25), where Z(0) = (2π)n/2(detG)1/2. The mth moment, now consisting of combinations
of Xi, is given by 〈

m∏
i=1

Xi

〉
=

1

Z(0)

m∏
i=1

∂

∂Ji
Z(J)

∣∣∣∣
Ji=0

. (3.26)

The continuum limit can be applied to this multivariate Gaussian case. By using the same time-
slicing procedure as before, one arrives at the generating functional of a random function X(t)

Z[J ] =

∫
e−

1
2

∫
x(t)G−1(t,s)x(s) dsdt+

∫
J(t)x(t) dtDx(t),

= Z[0] e
1
2

∫
J(t)G(t,s)J(s) ds dt, (3.27)

where J(t) is a source function and G(t, s) is a function that will be specified later. In this continuum
limit, the functional integration is over all trajectories or paths {x(t)} that the random function X(t)
can take. Furthermore, the normalization constant Z[0] = lim

n→∞
(2π)n/2(detG)1/2 of this functional

integral is infinite, as was warned for in Section 3.1.2. Nevertheless, a proper definition of the
moments still exists in terms of functional derivatives with respect to the source function〈

2m∏
i=1

X(ti)

〉
=

1

Z[0]

2m∏
i=1

δ

δJ(ti)
Z[J ]

∣∣∣∣
J(t)=0

=
∑

pairings

G(ti1 , ti2) · · ·G(ti2m−1 , ti2m). (3.28)

Since the moments now consist of combinations X(ti), which are values of a random function,
they will be called correlation functions. This is to distinguish the functional case from the rest,
since moments are calculated for random variables at the same point in time, while correlation
functions are (in general) calculated at different times. In the same sense, the cumulants are
defined by the functional generalization of Eq. (3.21), through a cumulant generating functional
K[J ]. The cumulants are now called connected correlation functions, which will make sense later in
Section 3.2.2. The last equality in Eq. (3.28) follows from the fact that the generating functional is
quadratic in the source function J(t). Hence, the only nonzero correlation functions are the ones
with an even number of terms X(ti). Then, the functional derivatives should be paired up in an
appropriate way to get a nonzero result. This is called Wick’s theorem [88].

The correlation function for X(t) at two different times is called the two-point correlation function.
This is exactly equivalent to an autocorrelation function, which was used to define white and colored
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noise, respectively, in Eq. (2.3) and (2.4). Obtaining the autocorrelation of a quantity X(t), like for
example Eq. (2.25) for the velocity v(t) of a Brownian particle, can be very useful for understanding
the behavior of a system. Using Wick’s theorem, one obtains

〈X(t1)X(t2)〉 =
1

Z[0]

δ

δJ(t1)

δ

δJ(t2)
Z[J ]

∣∣∣∣
J=0

= G(t1, t2). (3.29)

Hence, the function G(t, s) is the two-point correlation function, with inverse G−1(t, s). Just as
the mean, the two-point function is an interesting quantity to calculate analytically, since it can
also be measured experimentally. Hence, this yields an experimental test to see if the proposed
theory for a system, from which the correlation functions arise, is reliable. Correlation functions
also characterize the PDF of the system under consideration. As the PDF describes the complete
(evolution of) a stochastic system, it is therefore important to find expressions for these correlation
functions.

3.2.2 Connection to quantum mechanics

Stochastic effects also arise in quantum mechanics, as was already mentioned in the introduction of
this section, due to its inherent unpredictability. Richard Feynman independently developed a func-
tional formalism, called the Feynman path integral [8], without using the path integral introduced
by Wiener. This approach to quantum mechanics is equivalent to the Schrödinger and Heisenberg
pictures [87]. However, it turns out that the path integral description is easier to generalize to
relativistic quantum mechanics and quantum field theory (QFT) [88], which will be discussed later.
The concepts introduced in the last section all originate from the Feynman’s functional formalism,
or at least have a quantum mechanical counterpart.

The goal of the Feynman path integral is to calculate the quantum mechanical transition amplitude
Q(rf , tf | rb, tb) of a particle to go from position r(tb) = rb to r(tf ) = rf . This is the quantum
mechanical equivalent of the transition probability P (rf , tf | rb, tb). The Feynman path integral is
actually a generalization of the classical Lagrange formalism to quantum mechanics. Therefore, it is
useful to first define an action S, which governs the dynamics of the system of interest. The action
is a functional of the degrees of freedom of the system, in this case the position, defined by

S[r] =

∫ tf

tb

L(r(t), ṙ(t), t) dt, (3.30)

where L(r(t), ṙ(t), t) is the Lagrangian. In classical mechanics, the classical path rcl(t) from rb to
rf is determined by minimizing the action along that path, i.e. by putting the functional derivative
of S[r] with respect to r(t) to zero along r(t) = rcl(t). This is called the principle of least action [1],
that results in the Euler-Lagrange equations, which are the (classical) EoM of the system. These
equations are deterministic, hence classically only the path rcl(t) contributes to the transition prob-
ability. In the quantum mechanical case, all other paths also contribute to Q(rf , tf | ri, ti), according
to some weighting that determines their probability. Therefore, in calculating the transition am-
plitude, one has to sum over all possible paths. By applying the meanwhile familiar time-slicing
procedure26, this becomes a path integral in the continuum limit

Q(rf , tf | rb, tb) = N
∫ r(tf )=rf

r(tb)=rb

exp

{
i

~
S[r]

}
Dr(t), (3.31)

26This can be interpreted as the quantum mechanical equivalent of the Chapman-Kolmogorov equation.
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where N is a normalization constant, i =
√
−1 and ~ is Planck’s constant divided by 2π [87]. Hence,

the weighting functional is given by an exponent of the action S[r]. In the classical limit ~ → 0, the
only nonzero contribution is indeed given by the classical path rcl(t), as this minimizes the action.
This is a useful reality check.

To give a first illustration of the connection between quantum and stochastic systems, the Schrödinger
picture for quantum mechanics can be considered. In this approach, the wave function ψ(r, t) of
a one-dimensional non-relativistic free particle with mass m in the position representation, evolves
according to the Schrödinger equation, yielding

−~2

2m

∂2

∂r2
ψ(r, t) = i~

∂

∂t
ψ(r, t). (3.32)

This has the same form as the diffusion equation (2.31) for the PDF P (r, t). In fact, by setting
the diffusion constant equal to D = −~/2m and performing a Wick rotation t → −it [87], the
diffusion equation transforms into the Schrödinger equation. This procedure can be extended to
the Fokker-Planck equation (2.17), which contains also a first-order derivative. This results in a
Schrödinger equation with a non-Hermitian Hamiltonian [83].

With Eq. (3.31), the connection of quantum systems with stochastic systems can be generalized.
Since the stochastic systems that are considered here are classical, their fluctuations are of a non-
quantum nature. Therefore, one has to perform a (backward) Wick rotation −it→ t. This is done
to describe the evolution of a classical stochastic system instead of the evolution of a quantum
system. Then, the transition amplitude in Eq. (3.31) is directly related to the classical transition
probability in Eq. (3.13), so the PDF P[r] can be read of as

P[r] = e−Seff [r], (3.33)

where Seff [r] is an effective classical action of the stochastic system. From this expression, the
generating functional follows by using the functional generalization of Eq. (3.19), as was done in
Eq. (3.27), to obtain

Z[J ] =

∫
e
∫
J(t)r(t) dtP[r]Dr(t),

=

∫
e−Seff [r]+

∫
J(t)r(t) dtDr(t). (3.34)

It can now be seen that all expressions inside the exponents in Eqs. (3.11), (3.14) and (3.27) are in
fact actions depending on the random function over which the functional integration is performed.

3.2.3 Extension to quantum field theory

The functional formalism can also be applied to quantum field theory (QFT), where the quantities
of interest are quantum fields, which are usually functions of both space and time. This framework
is an alternative for the operator formulation of quantum mechanics, which is especially convenient
for describing quantum many-body systems [87]. It allows for important techniques, which can also
be applied to classical stochastic systems. By denoting the classical fields of a stochastic system as
ϕ(r, t), the generating functional in Eq. (3.34) can easily be generalized to field theory as

Z[J ] =

∫
e−Seff [ϕ(r,t)]+

∫
J(r,t)ϕ(r,t) dnr dtDϕ,

=

∫
e
∫
J(r,t)ϕ(r,t) dnr dtP[ϕ]Dϕ, (3.35)
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where n is the spatial dimension. Again, this seems like an extra complication, but next to the tools
already discussed in the last section, this allows for other helpful methods.

For a vanishing source field J(r, t) = 0, the generating functional Z[J = 0] in Eq. (3.35) is just the
integrated PDF . However, after a Wick rotation, Z[0] becomes an important quantity in (quantum)
statistical mechanics, called the partition function. This contains all equilibrium properties of a
many-body system [87].

It is interesting to compare Eq. (3.34) with the expression in Eq. (3.27) for a generating functional
of a Gaussian PDF . This shows that there should be some kind of relation between the action Seff
and the two-point correlation function G(t, s). By the principle of least action, the EoM can be
derived from the action. The function G(t, s) is exactly the fundamental solution of these EoM, in
the sense that

LG(t, s) = δ(t− s) (3.36)
for some differential operator L that represents the EoM. G(t, s) is now called a Green’s function.
This can be generalized to field theory by adding a n-dimensional Dirac delta function δ(r1 − r2)
in Eq. (3.36). Note that the generating functional (3.27) itself contains the inverse G−1(t, s) of
the Green’s function, before completing the square. The notion of a Green’s function becomes
particularly useful when the random function Y (t) or field ϕ(r, t) obeys some SDE, as will be
the case in Section 3.3. It can even be shown that the Green’s function satisfies a convolution
product, which is similar to the Chapman-Kolmogorov equation for transition probabilities [83]. As
an example of a Green’s function, consider the diffusion equation (2.31). The solution found by
Wiener in Eq. (3.5), that determines the probability to move from r(0) = 0 to r(t) ∈ [A,B], is in
fact a Green’s function of the differential operator that corresponds to the diffusion equation.

Related to this is the transition amplitude Q(rf , tf | rb, tb) in Eq. (3.31), that determines the quan-
tum mechanical probability for a particle to propagate from r(tb) = rb to r(tf ) = rf . Therefore,
Q(rf , tf | rb, tb) is usually also called the (one-particle) propagator. The propagator can be defined
as the Green’s function for the EoM of the ’free’ fields, so without interactions, but it can also
be generalized to interacting field theories. Assuming no interactions implies that the effective ac-
tion Seff [ϕ(r, t)] is at most quadratic in the fields ϕ(r, t). Then, the encountered integrals are of a
Gaussian form, and therefore much easier to solve. In that case, the two-point correlation function
G(t, s) is proportional to the propagator, and can be obtained by taking functional derivatives of
the free generating functional Z0[J ] as in Eq. (3.29), where the subscript 0 indicates a free field
theory.

Suppose that the action is not quadratic, i.e. it can be written as Seff [ϕ] = S0[ϕ] + SI [ϕ] =∫
{L0[ϕ] + LI [ϕ]} dnr dt. Here, S0 is the free action and SI is the interacting action, containing

higher powers of ϕ(r, t). Then, one can write the complete generating functional Z[J ] in terms of
Z0[J ] as

Z[J ] =

∫
e−S0[ϕ(r,t)]−SI [ϕ(r,t)]+

∫
J(r,t)ϕ(r,t) dnr dtDϕ,

=

∫
e
−

∫
LI

[
δ

δJ(r,t)

]
dnr dt

e
∫
{−L0[ϕ(r,t)]+J(r,t)ϕ(r,t)} dnr dtDϕ, (3.37)

= e
−

∫
LI

[
δ

δJ(r,t)

]
dnr dt

Z0[J ].

By expanding the exponent in the last line, a perturbation theory around Z0[J ] is obtained. Note
that the free generating functional Z0[J ] contains the two-point correlation functions G(r1, t, r2, s)



3 FUNCTIONAL APPROACH TO STOCHASTIC SYSTEMS 38

in L0[ϕ(r, t)], as in Eq. (3.27), and the other exponent contains the interactions. To conveniently
organize the perturbative terms, it is useful to draw them as Feynman diagrams [88], in which the
correlation functions and interactions are represented by lines and vertices according to Feynman
rules. This can be done for any field theory that contains interactions. In the next section, an
example will be presented for a nonlinear Langevin equation.

The expansion above is useful when interaction terms are small. In the case of SDEs, one could
also expand in orders of the autocorrelation amplitude of the noise, if the noise effects are small
compared to the deterministic evolution. This weak noise expansion is also called a semiclassical or
loop expansion, for reasons that will become clear in the next section. Furthermore, it is insightful
to also expand the cumulant generating functional K[J ]. It can be shown that this expansion
only contains connected diagrams [88]. This explains why the corresponding cumulants are called
connected correlation functions.

3.3 Martin-Siggia-Rose (MSR) formalism

For a random variable X or a random function Y (t), it is now clear how to calculate a generating
functional and derive the corresponding correlation functions. However, what if an observable Y (t)
of a stochastic system is governed by a SDE? As mentioned earlier, functional methods were used to
study stochastic systems near a phase transition. Around that point, the order parameter satisfies
a (nonlinear) Langevin equation, so it can be interpreted as a random variable. This was realized in
1973 by Martin, Siggia, and Rose, who were the first to use techniques of QFT to describe classical
stochastic systems [11]. They developed a method in the operator formalism, which would later
be called the Martin-Siggia-Rose formalism, to study classical fluctuations. It was extended to
functional integrals by Janssen [12] and de Dominicis [13] in 1976, which is why in some literature
it is called the MSRJD formalism. In this work, it will be referred to as the MSR formalism.

3.3.1 Derivation of the general formalism

The goal of the MSR formalism is to write the dynamics of the observable Y (t) as a stochastic
field27 theory by means of path integrals. This is done by finding a generating functional for Y (t),
which obeys a SDE. Consider a general Langevin equation

Ẏ = C(Y, t) +D(Y, t)η(t), (3.38)

as in Eq. (2.2), with initial condition Y (t0) = y0. For simplicity, only one observable Y (t) is
considered, resulting in a one-dimensional Langevin equation. This expression can be nonlinear
through the functions C(Y, t) and D(Y, t), which respectively28 govern the deterministic evolution
and noise coupling. The noise η(t) is assumed to be Gaussian white noise with autocorrelation
amplitude Ξ. Later, the formalism will be generalized to Gaussian colored noise. Depending
on the form of D(Y, t), η(t) can be either additive or multiplicative noise. In the latter case,
the interpretation of Eq. (3.38) depends in general on the chosen prescription, as explained in
Section 2.3.3. Since η(t) is assumed to be white noise, it is appropriate to use the Itô prescription.
So, the general Langevin equation can be written as an Itô SDE [4]

dY = C(Y, t)dt+D(Y, t)dW (t) + y01t0(t), (3.39)
27Although the random function Y (t) does not necessarily depend on the position r, it can still be interpreted as a

field, as the MSR formalism requires path integrals.
28This is valid for external noise. For internal noise, these functions can have another interpretation, see Sec-

tion 2.3.3.
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where W (t) is a Wiener process, which arises from integrating the Gaussian white noise η(t). By
adding an indicator function29 1t0(t), the initial condition Y (t0) = y0 is fixed in the SDE. This
turns out to be useful in the functional formalism.

To find a generating functional for Y (t), it is first convenient to derive its PDF . This can be done
properly by applying a time-slicing procedure, to obtain a discretization of Eq. (3.39). In the Itô
prescription, the N -step discretization on the interval t ∈ [t0, tf ] is given by

yj+1 − yj = C(yj , tj)∆t+D(yj , tj)wj
√
∆t+ y0 δ0,j , (3.40)

where tj = t0+ j∆t, ∆t = tf/N and yj = Y (tj). wj is a Gaussian distributed random variable with
zero mean and variance Ξ, since η(t) has autocorrelation amplitude Ξ. This follows from the third
property of a Wiener process. The multiplication factor

√
∆t arises from the same property. Note

that, by using the Itô prescription, yj+1 only depends on quantities at time tj . It is now possible
to write down the PDF of the vector y = (y1, ..., yN ), conditioned on w = (w0, ..., wN−1) and y0, as

P (y|w, y0) =
N∏
j=0

δ(yj+1 − yj − C(yj , tj)∆t−D(yj , tj)wj
√
∆t− y0 δ0,j). (3.41)

Hence, the PDF is obtained by multiplying N Dirac delta functions, each enforcing the discretized
SDE (3.40) as a constraint on yj+1. This is an example of the Faddeev-Popov trick [89], that
implements constraints, such as gauge invariance, in path integrals. In this case, it ensures that
every yj+1 that has a nonzero contribution to the PDF obeys the discretized SDE. A Fourier
transformation of the Dirac delta functions yields

P (y|w, y0) =
∫ N∏

j=0

e−i
∑

j qj [yj+1−yj−C(yj ,tj)∆t−D(yj ,tj)wj

√
∆t−y0 δ0,j ]dqj

2π
, (3.42)

for some auxiliary variable qj . To obtain the conditional PDF P (y| y0), the random variables wj
need to be integrated over. Since wj is a Gaussian distributed random variable with mean zero and
variance Ξ, this gives

P (y| y0) =
∫
P (y|w, y0)

N∏
j=0

P (wj) dwj ,

=

∫ ∫ N∏
j=0

e−i
∑

j qj [yj+1−yj−C(yj ,tj)∆t−D(yj ,tj)wj

√
∆t−y0 δ0,j ] dqj

2π

N∏
j=0

e−
1
2Ξ
w2

j
dwj√
2πΞ

,

=

∫ N∏
j=0

e−i
∑

j qj [yj+1−yj−C(yj ,tj)∆t−y0 δ0,j ] dqj
2π

∫ N∏
j=0

eiqjD(yj ,tj)wj

√
∆t− 1

2Ξ
w2

j
dwj√
2πΞ

,

=

∫ N∏
j=0

e−i
∑

j qj [(yj+1−yj)/∆t−C(yj ,tj)−y0 δ0,j/∆t]∆t−
∑

j
1
2
Ξ q2jD

2(yj ,tj)∆t dqj
2π

, (3.43)

where the last line followed from completing the square and performing the Gaussian integrals for
all wj . It is important to note that the resulting PDF is independent of the random variables wj .

29The indicator function 1t0(t) satisfies 1t0(t0) = 1 and 1t0(t) = 0, ∀t 6= t0.
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As before, the continuum limit ∆t→ 0 and N → ∞ can be taken such that tf = N∆t, to arrive at
a functional description for the PDF

P[y(t)| y0, t0] = Nq

∫
e−

∫
q(t)[ẏ(t)−C(y(t),t)−y0 δ(t−t0)] dt+

∫
1
2
Ξ q2(t)D2(y(t),t) dtDq(t). (3.44)

This requires a transformation of the discrete variables yj to a continuous function or field y(t),
which is a realization of Y (t). The auxiliary variables iqj transform to an auxiliary field q(t), which
has normalization Nq. By using Eqs. (3.33) and (3.34), it is now possible to write down the MSR
action [12, 13] as

S[y, q] =

∫ {
q(t) [ẏ(t)− C(y(t), t)− y0 δ(t− t0)]−

1

2
ΞD2(y(t), t)q2(t)

}
dt. (3.45)

This does not contain a factor i due to the definition of the imaginary auxiliary field q(t). As this is
independent of the noise η(t), by performing the Gaussian integrals, this can be interpreted as an
effective action. Therefore, the MSR formalism can be seen as a method for deriving an effective
field theory. The corresponding generating functional is given by

Z[Jy, Jq] =

∫
e−S[y,q]+

∫
Jy(t)y(t) dt+

∫
Jq(t)q(t) dtDq(t)Dy(t), (3.46)

where the normalization Nq is neglected for later convenience. Note that, in this case, two source
functions Jy(t) and Jq(t) have to be introduced, since the functional integral is over two fields y(t)
and q(t). Since all correlation functions of Y (t) can be derived from the generating functional, it can
be seen as the solution of the SDE (3.38). This is the MSR formalism for writing a Langevin equation
in terms of functional integrals [11–13]. From here on, all kinds of field-theoretical methods, like
perturbation theory and renormalization group treatments [90], can be used to further investigate
the dynamics and correlation functions.

The formalism can be summarized in a continuous description for averages of functionals O[y(t)].
If, for a noise realization η(t), the unique solution of the SDE (3.38) is written by yη, the functional
average is given by

〈O[y| y(t0) = y0]〉 =
∫
O[y]P[y| y0, t0]Dy,

=

∫
O[y]δ[y − yη]P[η(t)]DyDη(t),

= Nη

∫
O[y]δ[ẏ − C(y, t)−D(y, t)η(t)− y0 δ(t− t0)] e

−
∫

1
2Ξ
η2(t)dtJ DyDη(t),

= NηNq

∫
O[y]e−

∫ [
q(ẏ−C(y,t)−D(y,t)η(t)−y0 δ(t−t0))+ 1

2Ξ
η2(t)

]
dtJ DqDyDη(t),

= Nq

∫
O[y]e−S[y,q]J DqDy, (3.47)

where the time dependence of the fields y(t) and q(t) is suppressed for notational convenience. The
Dirac delta functional in the second line illustrates again that the functional integral is restricted to
paths allowed by the dynamics, such that only solutions y(t) of the Langevin equation contribute
to the expectation value. In the third line, a change of variables y(t) → ẏ(t) is performed in the
argument of the Dirac delta functional, to substitute the SDE for ẏη(t). This gives rise to a Jacobian
J ∝ (detD(y, t))−1 in the Itô prescription, for which an exact expression is derived in Appendix A.
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In the Stratonovich interpretation, the expression for the Jacobian also contains other contributions.
For additive noise, this Jacobian does not depend on y, but for multiplicative noise it can give rise
to extra (nonlinear) contributions to the effective action as Seff = S[y, q] +Tr[logD]. The Gaussian
PDF P[η] with normalization constant Nη is also inserted in the third line. In the last lines, the
MSR action S[y, q] is derived by Fourier transforming the Dirac delta functional, completing the
square in the exponent and performing the functional integration over η(t). For O[y] = y, this
expression reduces to the first moment 〈y(t)〉, which can also be obtained by taking the familiar
functional derivative of Z[Jy, Jq] with respect to Jy(t).

Once again, the different prescriptions result in minor but important changes, since it affects the
measure of the path integrals and consequently the Jacobian. The Stratonovich convention seems to
be more physical, since the autocorrelation time τc is small but nonzero and it allows for the usual
transformation of variables. However, due to its discretized SDE (A.2), which differs slightly from
the Itô case (3.40), this prescription gives rise to difficulties in calculations. From this perspective,
the Itô prescription is more convenient, since it allows for intuitive simulations and easier calculations
due to the simpler Jacobian. Therefore, Itô’s convention will be used throughout the rest of this
work. In Section 3.3.3, it will be seen that both prescriptions result in a different condition on the
Green’s function, where Itô’s choice is again more intuitive.

The derivation of the MSR formalism above is only valid for Gaussian white noise. Nevertheless,
it is also possible to generalize this to Gaussian colored noise that has autocorrelation function
〈η(t)η(t′)〉 = ξ(t− t′). Then, the PDF P[η] is given by

P[η] = N e−
1
2

∫
η(t)ξ−1(t−t′)η(t′) dtdt′ , (3.48)

where ξ−1(t − t′) can be interpreted as a generalization of 1/Ξ. Indeed, for ξ(t − t′) = Ξδ(t − t′),
Eq. (3.48) reduces to the regular Gaussian PDF . Following the same procedure as for white noise,
the resulting MSR action can be obtained [72] as

S[y, q] =

∫
q(t)[ẏ(t)− C(y(t), t)− y0 δ(t− t0)] dt−

1

2

∫
q(t)D(y(t), t)ξ(t− t′)q(t′)D(y(t′), t′) dt dt′.

(3.49)
Expectation values 〈O[y]〉 and the generating functional Z[Jy, Jq] follow from this action through
similar calculations as above.

Now that the formalism is set up properly, it is useful to see what interesting quantities can be
obtained. Just as before, all correlation functions 〈

∏
i y(ti)〉 can be calculated directly from the gen-

erating functional Z[Jy, Jq] by taking functional derivatives with respect to Jy(ti), as in Eq. (3.28).
However, the MSR action S[y, q] also contains the auxiliary field q(t), for which the source function
Jq(t) arises in the generating functional. Therefore, it is possible to construct coupled correlation
functions, that contain combinations of y(t) and q(t), such that〈

m∏
i=1

n∏
k=1

y(ti)q(tk)

〉
=

1

Z[0, 0]

m∏
i=1

n∏
k=1

δ

δJy(ti)

δ

δJq(tk)
Z[Jy, Jq]

∣∣∣∣
Jy ,Jq=0

. (3.50)

For both cases, it is also possible to calculate the cumulants or connected correlation functions, by
taking functional derivatives of the cumulant generating functional K[Jy, Jq].

Another important quantity is the response function R(t, t′), defined by

R(t, t′) =
δ〈y(t)〉
δf(t′)

∣∣∣∣
f(t′)=0

, (3.51)
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where t > t′ by causality. The response function determines the response of the average 〈y(t)〉 to an
external force f(t′), which is applied to the SDE governing y(t). Hence, the Langevin equation (3.38)
becomes

ẏ = C(y, t) + f(t) +D(y, t)η(t). (3.52)

This gives rise to a new action Sf [y, q] = S[y, q]−
∫
q(t)f(t) dt and generating functional Zf [0, 0] =∫

e−SfDqDy, where the source functions are put to zero for convenience. Calculating the expectation
value 〈y(t)〉 with respect to this generating functional Zf and taking the functional derivative with
respect to f(t′) then yields for the response function

R(t, t′) =
δ

δf(t′)

[
1

Zf

∫
y(t)e−Sf DqDy

] ∣∣∣∣
f(t′)=0

,

= Θ(t− t′) [〈y(t)q(t′)〉 − 〈y(t)〉〈q(t′)〉], (3.53)
= Θ(t− t′)

〈
y(t)q(t′)

〉
c
,

where Θ(t− t′) is a Heaviside step function that arises from the causality condition. The correlation
functions in the second and third line are determined with respect to the non-perturbed generating
functional Z[Jy, Jq], since the external force f(t′) is put to zero. Since the correlation function in the
last line is connected, the response function is directly related to the cumulant generating functional
K[Jy, Jq] via functional differentiation. This also shows that the auxiliary field q(t) is not just added
for convenience, but it actually determines the response function. Due to this connection, q(t′) is
often also called the response field. Hence, when computing a (connected) correlation function of
some observable O[y] multiplied by q(t′), one actually calculates the response of O[y] to a small
and instantaneous external force at time t′. For Gaussian white noise, it can be shown [14] that the
response function can be written in terms of a noise average as

R(t, t′) =

〈
δy(t)

δη(t′)

〉
η

. (3.54)

This is a case of the fluctuation-dissipation theorem, since it relates the dissipating energy, due to
the external force f(t′), directly to the fluctuations η(t′).

3.3.2 Applications of the MSR formalism

The MSR formalism yields an analytical description in terms of fields for dynamics governed by
SDEs. As this allows field-theoretical tools such as perturbation theory and renormalization group
theory, this can be applied to a wide variety of systems. Originally, the formalism was used in
the operator language by Martin, Siggia and Rose to study classical fluctuations near phase transi-
tions [11]. Later, it was translated to path integrals by Janssen [12] and de Dominicis [13] to study
Langevin dynamics for disordered systems. They applied it to the Random Field Ising model and
the Ising spin glass. They also realized the physical importance of the auxiliary field q(t) as more
than just a useful tool. This description was used by Hertz et al. [14] to investigate systems with
quenched interactions, such as soft and hard spin models. They also derived a supersymmetric form
for the MSR formalism.

Next to these theoretical models, there are also other complex systems for which the MSR for-
malism turns out to be useful. Via the RFD model, which describes the dynamics of Lagrangian
velocity gradients, the functional integral approach can be used to obtain a stochastic model of
turbulence [72]. The instanton method applied here is equivalent to the semiclassical approach
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that will be discussed in Section 3.4.1. Stochastic neurodynamics and neural network activity were
studied by Bressloff [16] and Buice & Chow [17, 18]. In Ref. [19], they looked at a stochastic neuron
model, called the Fitzhugh-Nagumo model, using path integrals. The analytical results for the
correlation functions obtained from the MSR generating functional were compared with numerical
simulations of the model, which fit well for small noise amplitudes. Buice & Chow also used the
MSR approach for a network of coupled oscillators described by the Kuramoto model [91].

Section 3.2.2 already showed the analogy between quantum mechanics and stochastic systems. Here,
the relation between the Schrödinger equation and the Fokker-Planck equation was discussed briefly.
This relation can also be extended to the MSR formalism. The Schrödinger equation can be seen
as the differential equation corresponding to the quantum mechanical Feynman path integral. It
can be shown [15] that, in the same sense, the Fokker-Planck equation is the dynamical equation
corresponding to the MSR path integral. This follows directly from the derivation procedure of
the MSR path integral from the general Feynman path integral. In fact, the MSR formalism
can be interpreted as the classical limit of the Keldysh formalism, which can be used to describe
nonequilibrium quantum systems.

A last interesting application of the MSR formalism is in the description of population dynamics
subject to random effects. This is studied by Sidhom & Galla in Ref. [24, 92], where they look
at an N species Lotka-Volterra model with random interactions. This N -dimensional system of
coupled differential equations describes the evolution of the population of each species. In their
work, Sidhom & Galla study the ecological communities and stability in this model, under the
influence of random effects. They take the limit of the number of species N → ∞ to arrive at a
continuous description for the populations in terms of a stochastic process. The MSR approach is
also applied by Täuber [25] to a spatial version of the Lotka-Volterra model for only two species,
which are a predator and a prey species. These examples will be discussed more elaborately in
Section 5.1, as they form the inspiration for the application of the MSR formalism to the two
species Lotka-Volterra model in this work.

To put the MSR formalism to work and observe its usefulness directly and easily, two examples
are considered here. First, a linear Langevin equation is studied in the following section. Later, in
Section 3.4, a nonlinear Langevin equation is investigated, which requires perturbation theory due
to the higher-order interactions.

3.3.3 MSR approach to a linear Langevin equation

One of the simplest SDEs that can be considered is a linear Langevin equation, with C(y, t) = −γy(t)
and D(y, t) = 1, yielding

ẏ(t) = −γy(t) + η(t), (3.55)

with initial condition y(t0) = y0 and noise amplitude Ξ. This corresponds to the Langevin equa-
tion (2.22) for Brownian motion, or an equivalent Ornstein-Uhlenbeck process. Although this
equation has been solved twice already, it is still an insightful example and validity check for the
MSR formalism. Here, the derivation follows the one in Ref. [19]. The MSR action can be obtained
directly from Eq. 3.45 as

S[y, q] =

∫ {
q(t)[ẏ(t) + γy(t)− y0 δ(t− t0)]−

Ξ

2
q2(t)

}
dt,

=

∫
q(t)G−1(t− t′)y(t′) dtdt′ − y0

∫
q(t)δ(t− t0) dt−

Ξ

2

∫
q2(t) dt, (3.56)
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where G−1(t− t′) is an inverse Green’s function in the sense of Eq. (3.36), defined by

G−1(t− t′) =

(
d

dt
+ γ

)
δ(t− t′). (3.57)

Before this equation is solved to find an explicit form for the Green’s function G(t− t′), it is useful
to exploit this general form of the action. The generating functional Z[Jy, Jq] follows directly from
Eq. (3.46), which consequently also contains G−1(t − t′). Since S[y, q] is quadratic in the fields,
the Green’s function is non-interacting, so the functional integrals in Z[Jy, Jq] could be evaluated
exactly as Gaussian integrals, just as before. However, to already connect to the perturbation
theory, which will be discussed in the next section, it is more convenient to first define the free part
of the action as

S0[y, q] =

∫
q(t)G−1(t− t′)y(t′) dtdt′. (3.58)

It is now possible to expand Z[Jy, Jq] around the free generating functional

Z0[Jy, Jq] =

∫
e−S0[y,q]+

∫
Jy(t)y(t) dt+

∫
Jq(t)q(t) dtDq(t)Dy(t),

= e
∫
Jy(t)G(t,t′)Jq(t′) dtdt′ . (3.59)

The second line follows from completing the square, like for Eq. (3.27), which can be used since
the free action is quadratic. By using Eq. (3.37), the expansion around Z0 yields for the complete
generating functional

Z[Jy, Jq] = exp

{
y0

∫
q(t1)δ(t1 − t0) dt1 +

Ξ

2

∫
q(t2)

2 dt2

}
Z0[Jy, Jq],

=exp

{
−
∫
LI

[
δ

δJq(t1(2))
,

δ

δJy(t1(2))

]
dt1(2)

}
Z0[Jy, Jq],

=exp

{
y0

∫
δ(t1 − t0)

δ

δJq(t1)
dt1 +

Ξ

2

∫ (
δ

δJq(t2)

)2

dt2

}
Z0[Jy, Jq], (3.60)

=exp

{
y0

∫
Jy(t)G(t, t0) dt+

Ξ

2

∫
Jy(t)G(t, t2)Jy(t

′)G(t′, t2) dtdt
′ dt2

+

∫
Jy(t)G(t, t

′)Jq(t
′) dtdt′

}
,

where the expression for the interacting Lagrangian LI , which is also quadratic in this case, follows
from taking functional derivatives of Z0[Jy, Jq] with respect to the source fields, to obtain the
right terms. For the last step, the first exponent in the third line should be written as a Taylor
expansion, to properly apply the functional derivatives to Z0[Jy, Jq]. This can result in a lot of extra
contributions. However, due to Wick’s theorem and LI being only quadratic in the fields y(t) and
q(t), the nonzero contributions are summable, yielding again an expansion that can be written as
an exponent [19]. So, effectively, the functional derivatives are applied directly to expression (3.59)
for Z0, to obtain the last line. In Section 3.4, an example with a higher-order interaction will be
studied, for which this last step is generally not possible. Instead, this requires a perturbative
expansion in terms of Feynman diagrams.

Now that an expression for the generating functional is derived, an explicit form for G(t, t′) is
required to calculate correlation functions. From Eq. (3.57), it is clear that the Green’s function is
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the solution of (
d

dt
+ γ

)
G(t, t′) = δ(t− t′), (3.61)

which is given by
G(t, t′) = Θ(t− t′)e−γ(t−t

′). (3.62)

The exact form of this function depends on the chosen prescription. The Heaviside step function
Θ(t − t′) has the property that limt→t′ Θ(t − t′) = 1, for t > t′. For Itô’s, choice ΘI(0) = 0, while
for the Stratonovich case, ΘS(0) = 1/2 [80]. This corresponds to the physical interpretation of
both prescriptions. Again, Itô’s choice guarantees that y(t) is not correlated with η(t′) for t > t′.
Since it is also more convenient in calculations, this is another argument to use the Itô prescription.
So, as stated earlier, this interpretation is used and the index I on the Heaviside step function is
discarded. This distinction is directly related to the retarded and advanced Green’s functions [88],
of which the difference is the full Green’s function. The causal retarded part gives the important
contributions to physical quantities, while the anti-causal advanced part is usually ignored.

With the expression for G(t, t′), it is straightforward to calculate (connected) correlation functions
from the generating functional via Eq. (3.50). By taking the logarithm of Eq. (3.60), the cumulant
generating functional is given by

K[Jy, Jq] =y0

∫
Jy(t)G(t, t0) dt+

Ξ

2

∫
Jy(t)G(t, t2)Jy(t

′)G(t′, t2) dt dt
′ dt2

+

∫
Jy(t)G(t, t

′)Jq(t
′) dtdt′. (3.63)

From the form of K[Jy, Jq], it can already be observed that the only nonzero connected correlation
functions contain either one or two fields. The average of y(t) is

〈y(t)〉 = y0G(t, t0) = y0Θ(t− t0)e
−γ(t−t0). (3.64)

The response function R(t, t′) from Eq. (3.53), which is equivalent to the connected correlation
function 〈y(t)q(t′)〉c for t > t′, directly follows as

R(t, t′) = 〈y(t)q(t′)〉c,

=
δ

δJy(t)

δ

δJq(t′)
K[Jy, Jq]

∣∣∣∣
Jy=Jq=0

,

= G(t, t′), (3.65)

= Θ(t− t′)e−γ(t−t
′).

The second cumulant or the covariance of y(t) is obtained by

〈y(t)y(t′)〉c =
δ

δJy(t)

δ

δJy(t′)
K[Jy, Jq]

∣∣∣∣
Jy=Jq=0

,

= Ξ

∫
G(t, t2)G(t

′, t2) dt2,

= Ξ

∫ t′

t0

Θ(t− t2)Θ(t′ − t2)e
−γ(t−t2)e−γ(t

′−t2) dt2, (3.66)

= Ξ
eγ(t−t

′) − e−γ(t+t
′−2t0)

2γ
,
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for t′ ≥ t ≥ t0. For t′ = t, this reduces to the connected equal-time correlation function

〈y2(t)〉c = Ξ
1− e−2γ(t−t0)

2γ
, (3.67)

which is in fact the connected part of the second moment of y(t).

These results give important insights. Both the average and the response function are exponentially
decaying with a decay constant γ, which is exactly the damping coefficient for Brownian motion.
This indicates a dissipative system, which is intuitive for Brownian motion. For t0 = 0, the av-
erage 〈y(t)〉 is equal to the expression derived in Eq. (3.17) by using Chandrasekhar’s functional
approach to Brownian motion. Furthermore, this is also equivalent to Langevin’s result derived
in Section 2.3.1. The same holds for the covariance 〈y(t)y(t′)〉c, which is contained in Langevin’s
expression (2.27) for the second moment of the velocity of a Browian particle. Therefore, this can
be seen as a validation of the MSR formalism for SDEs that have analytic solutions. However,
as mentioned before in Section 2.3.3, problems arise in the Langevin approach to nonlinear SDEs,
which are usually not exactly solvable. Here, the fruitfulness of the MSR formalism becomes clear,
since it can be applied to SDEs without analytical solution, by means of perturbation theory. This
will be discussed in the next section.

3.4 Perturbative methods for nonlinear Langevin equations

As was already demonstrated in Eq. (3.37) for a generic action Seff = S0 + SI , it is possible to
express the generating functional Z[J ] in terms of functional derivatives with respect to the source
field J(t) acting on the free generating functional Z0[J ]. For the linear Langevin equation, this
resulted in exactly solvable integrals and consequently in Eq. (3.60) for Z[Jy, Jq], since the MSR
action S[y, q] is quadratic in the fields y(t) and q(t). This is not possible in general when the
action contains higher-order interactions, i.e., the interacting part of the action SI contains cubic
or higher-order contributions. Luckily, if the higher-order interactions are small with respect to the
linear and quadratic terms, it is possible to perform a perturbative expansion around Z0[Jy, Jq].
Usually, this is done by assigning a (small) coupling constant to the interactions. The exponent,
containing the functional derivatives acting on Z0, can then be written as a Taylor expansion in
orders of this coupling constant.

To see how this general perturbative approach works in the MSR formalism, a nonlinear Langevin
equation with a quadratic contribution is taken as an example. This is given by

ẏ(t) = −γy(t) + β

2
y2(t) + η(t), (3.68)

for some constant β. Just as for the linear case, the initial condition is y(t0) = y0 and the noise
η(t) is additive, with noise amplitude Ξ. As the nonlinear contribution is simple, this equation is
still tractable even though perturbation theory is required. This nonlinear equation is also studied
in Ref. [19], but here it is formulated in a more structured way by using different Feynman rules.
The corresponding MSR action can again be obtained from Eq. (3.45), yielding

S[y, q] =

∫ {
q(t)[ẏ(t) + γy(t)− β

2
y2(t)− y0 δ(t− t0)]−

Ξ

2
q2(t)

}
dt,

= S0[y, q]−
β

2

∫
q(t)y2(t) dt− y0

∫
q(t)δ(t− t0) dt−

Ξ

2

∫
q2(t) dt. (3.69)
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Again, the free action S0 only contains the contribution from the Green’s function, which results in
Eq. (3.59) for the free generating functional Z0, just as in the linear case. All other contributions
are considered as a part of the interacting action SI . Below it will be clear that this choice is
more convenient for drawing the Feynman diagrams corresponding to the terms in the perturbative
expansion. Eq. (3.69) shows that the quadratic term in the nonlinear Langevin equation (3.68) gives
rise to a cubic contribution to the MSR action, i.e., SI contains a cubic interaction. In general,
nonlinear terms in the SDE translate to cubic or higher-order interactions in the corresponding
effective field theory that is derived via the MSR formalism.

The perturbative expansion of Z[Jy, Jq] around the free generating functional (3.59) is now obtained
by writing the interacting contributions in terms of functional derivatives with respect to the sources
Jy(t) and Jq(t), acting on Z0[Jy, Jq]. This yields

Z[Jy, Jq] = exp

{
β

2

∫
q(t1)y

2(t1) dt1 + y0

∫
q(t2)δ(t2 − t0) dt2 +

Ξ

2

∫
q2(t3) dt3

}
Z0[Jy, Jq],

=exp

{
β

2

∫
δ

δJq(t1)

(
δ

δJy(t1)

)2

dt1 + y0

∫
δ(t2 − t0)

δ

δJq(t2)
dt2

+
Ξ

2

∫ (
δ

δJq(t3)

)2

dt3

}
exp

{∫
Jy(t)G(t, t

′)Jq(t
′) dt dt′

}
, (3.70)

=
∞∑
V=0

1

V !

[
β

2

∫
δ

δJq(t1)

(
δ

δJy(t1)

)2

dt1 + y0

∫
δ(t2 − t0)

δ

δJq(t2)
dt2

+
Ξ

2

∫ (
δ

δJq(t3)

)2

dt3

]V ∞∑
P=0

1

P !

[∫
Jy(t)G(t, t

′)Jq(t
′) dtdt′

]P
,

where in the last step both exponents are written as a Taylor expansion. Note that there is a
clear distinction between the time points at which the functional derivatives act on Z0, as this is
important for the proper calculation of correlation functions and corresponding Feynman diagrams.
In the expansions, V represents the number of vertices and P the number of propagators. The
terms or vertices in the V -expansion act on the sources Jy(t) and Jq(t) in the P -expansion through
functional differentiation, annihilating some of them. Since the vertices are different, it is convenient
to assign each a separate value. This can be done by splitting the V -expansion in three separate
expansions, yielding a total number of vertices given by Vβ+Vy0 +VΞ. The remaining sources, after
taking all functional derivatives, are called external legs. Their numbers Ey and Eq are, for fixed V
and P , given by

Ey = P − 2Vβ, (3.71)
Eq = P − Vy0 − Vβ − 2VΞ. (3.72)

These expressions can be combined into

Eq − Ey = Vβ − Vy0 − 2VΞ. (3.73)

To find extra conditions for the number of vertices and external legs, next to this consistency rela-
tion, the expansion in orders of β and other interaction terms in Eq. (3.70) should be considered.
Taking the coupling constant β to be small30 is equivalent to assuming a small nonlinear disturbance

30Small with respect to the other parameters γ and Ξ that determine the evolution of y(t).
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to the linear dynamics (3.55) of y(t). By using this assumption, the expansion up to first order in
β can be considered as a justified approximation to the exact generating functional. Hence, in this
approximation, Vβ ≤ 1. Furthermore, the same correlation functions as for the linear case will be
calculated. To have a non-vanishing contribution to one of these quantities, the functional deriva-
tives acting on Z[Jy, Jq] should exactly annihilate the remaining sources. All other contributions
vanish, either by setting Jy = Jq = 0 for the remaining external legs, or by a vanishing functional
derivative. So, the only nonzero contributions to the correlation functions of interest have one or
two external Jy legs, and zero or one external Jq leg. This sets Ey = 1, 2 and Eq = 0, 1. By
using these conditions for Ey, Eq, Vβ and the consistency relation (3.73), all possible other values
for Vy0 , VΞ and P can be calculated.

Writing down the expansion of the generating functional Z[Jy, Jq] up to first order in β explicitly
will result in a lengthy expression, even up to two external sources. Therefore, this is done in an
organized way in terms of Feynman diagrams, which are graphical representations of the lengthy
integral expressions. The Feynman rules for the Green’s function and external sources of this
interacting field theory are given by

G(t, t′) = ,

∫
Jq(t)dt = ,

∫
Jy(t)dt = . (3.74)

The three different terms in the V -expansion give rise to three kinds of vertices in the diagrammatic
expansion31. These vertices are represented by

β

2

∫
dt = , Ξ

∫
dt = , (3.75)

y0

∫
δ(t− t0)dt = , (3.76)

where the dotted lines represent incoming and outgoing sources and propagators, that should be
attached to the vertices.

The conditions derived above for Ey, Eq, Vβ and the consistency relation (3.73) now determine all
possible Feynman diagrams, up to first order in β, that have a non-vanishing contribution to the
correlation functions. Using the Feynman rules above, the expansion of the generating functional
Z[Jy, Jq], up to first order in β and up to two external source fields, is given by

Z[Jy, Jq] = exp[ ]

[
1 + +

1

2
+

1

2
+

1

2

+
1

2
+ + disconnected diagrams + ...

]
. (3.77)

31For this reason, it was convenient to assign each vertex a separate value, that counts the number of appearances
of that kind of vertex.
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The first exponent corresponds to Z0[Jy, Jq], with the rest of the expansion written in orders of
β and terms of the V -expansion. The prefactors of some diagrams arises from their symmetry
factor. Note that only the connected diagrams are shown explicitly. All other disconnected diagrams
are combinations of the connected ones, since a general diagram consists of products of connected
diagrams [88]. Usually, these disconnected diagrams drop out when physically interesting quantities
are calculated, so only the connected ones are relevant. For example, a connected correlation
function consists only of the connected contributions to the correlation function, hence the name.

To obtain the same quantities as for the linear case, one should take the appropriate functional
derivatives with respect to the source fields Jy(t) and Jq(t). In terms of the Feynman rules (3.74)
defined above, this corresponds to taking away a filled dot. As usual, any remaining source fields
are put to zero after the differentiation. This translates nonzero contributions to diagrams with
zero filled dots. The resulting correlation functions up to first order in β become

〈y(t)〉 = +
1

2
+

1

2
+ ..., (3.78)

〈y(t)y(t′)〉c = + + ..., (3.79)

R(t, t′) = 〈y(t)q(t′)〉c = +
1

2
+ ... (3.80)

For the average of y(t), only the connected contributions are shown. The other quantities contain
only connected diagrams by definition. These diagrammatic expressions can be compared directly
to the results (3.64)-(3.66) obtained for the linear Langevin equation, by writing the diagrams
back into integral expressions using the Feynman rules (3.74)-(3.76). This shows that the first
contribution to these correlation functions, which is of zeroth order in β, is the exact result for the
linear case. The other contributions contain the corrections up to first order in β, due to the small
nonlinear disturbance of the dynamics. Hence, in the limit of β → 0, the results for the linear case
are retrieved, which confirms the validity of this perturbative approximation.

The results above show that the MSR formalism can also be applied to SDEs without analytical
solution, via perturbation theory. Therefore, this approach is very useful for nonlinear differential
equations, such as the Lotka-Volterra model, to which a noise term is added.

3.4.1 The semiclassical approach

Instead of expanding around the coupling constant β of the nonlinearity, it is also possible to perform
an expansion around the noise amplitude Ξ. This is equivalent to assuming a weak noise effect on
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the dynamics. The general MSR action (3.45) can be rescaled by transforming the auxiliary field
q(t) → Ξq(t) = q̃(t), yielding

S[y, q̃] =
1

Ξ

∫ {
q̃(t) [ẏ(t)− C(y(t), t)− y0 δ(t− t0)]−

1

2
q̃2(t)D2(y(t), t)

}
dt. (3.81)

In the weak noise limit Ξ → 0, the generating functional Z[Jy, Jq] ∝ e−S[y,q] = e−
1
Ξ
S[y,q̃] is dominated

by the saddle points of the exponent. These saddle points can be obtained by solving

δS[y, q̃]

δy(t)

∣∣∣∣
y=ys

= Jy(t),
δS[y, q̃]

δq̃(t)

∣∣∣∣
q̃=q̃s

= Jq̃(t), (3.82)

which are called the saddle-point equations [80]. In general, these equations can have multiple
solutions. The field configurations ys(t) and q̃s(t), which are the solutions of Eq. (3.82), exactly
correspond to the trajectory of a (stochastic) system that has the largest probability. In QFT, these
fields correspond to the classical path, which are the solutions to the Euler-Lagrange equations32 [87].
For this reason, this method is called the semiclassical approach. It will not be performed explicitly
for the nonlinear Langevin equation, but only discussed briefly in general.

The saddle-point expansion of the action is given by

S[y, q̃] = S[ys, q̃s] +
1

2

∫ (
δy(t) δq̃(t)

)( δ2S
δy2

δ2S
δyδq̃

δ2S
δq̃δy

δ2S
δq̃2

)∣∣∣∣∣y=ys
q̃=q̃s

(
δy(t′)
δq̃(t′)

)
dtdt′ + ..., (3.83)

where it is assumed that there is only one saddle point. This is just a Taylor expansion around the
saddle point solutions ys(t) and q̃s(t), with fluctuations δy = y− ys and δq̃ = q̃− q̃s. The first-order
term is not included, since this cancels the source fields Jy(t) and Jq(t) by definition (3.82) of the
fields ys(t) and q̃s(t). The generating functional Z[Jy, Jq] can now be approximated by using the
expansion above, via the method of steepest descents [93]. In the literature, this is usually called a
WKB approximation [94].

In general however, it is difficult to solve the saddle-point equations analytically. As an example,
consider the nonlinear Langevin equation with action (3.69). The saddle-point equations reduce to
coupled ODEs for ys(t) and q̃s(t), given by

ẏs(t) = q̃s(t)− γys(t) +
β

2
y2s(t) + y0δ(t− t0) + Jq̃(t), (3.84)

˙̃qs(t) = q̃s(t)[γ − βys(t)]− Jy(t). (3.85)

These are nonlinear differential equations which do not have an analytic solution. There exist
methods, like the cumulant expansion from statistical field theory [95], to approximate the resulting
action.

Since this method is only valid in the weak noise limit, it is necessary to compute for each contri-
bution its order in Ξ. Just as for the earlier perturbative expansion, this can be done conveniently
in terms of Feynman diagrams. By rescaling the action, also the Feynman rules change. Each edge
now contributes a factor Ξ, while every vertex has a factor 1/Ξ [19]. If the number of external edges
is E, internal edges I and vertices V , then a connected diagram is of order ΞE+I−V . The number of

32These are the classical EoM that follow from the principle of least action [1].
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loops L in a connected diagram is given by L = I − V + 1 [80], which can be proven by induction.
Hence, the order33 of a connected diagram is ΞE+L−1. For a connected correlation function, E is
fixed, so the expansion in Ξ scales with L. Therefore, this semiclassical approach is often called
the loop expansion. As can be seen from the Feynman rules (3.74)-(3.76), the loops arise from the
possible connection between the β- and Ξ-vertices, i.e. the coupling between the nonlinearity and
the noise. Note that the semiclassical approach is a perturbation theory up to all orders in β, so all
contributions of the nonlinear interaction are taken into account.

The generating functional and correlation functions can now be calculated up to some order in Ξ,
by taking into account all diagrams with the same number of loops L. Consider for example the
mean 〈y(t)〉, which is given by Eq. (3.78) for the nonlinear Langevin equation. The second term
in this expansion contains one loop, which has indeed a factor βΞ/2. Taking into account only
contributions without loops, which are called tree diagrams, is equivalent to an approximation of
〈y(t)〉 up to zeroth order in Ξ. This corresponds to a perturbative expansion of the solution to
the nonlinear equation (3.68) without noise. Similarly, consider Eq. (3.84) up to zeroth order in Ξ.
This results in disgarding q̃s(t), which is first order in Ξ due to the transformation rule. Setting
the source fields to zero, as is necessary to calculate correlation functions, the nonlinear Langevin
equation is retrieved for the saddle point field ys(t). This shows that, up to zeroth order in the
noise, the solution ys(t) of the saddle-point equation is indeed the average solution 〈y(t)〉. As the
saddle-point equations can have multiple solutions, this procedure corresponds to picking a saddle
point with qs(t) = 0, which results in S[ys, qs] = 0. It can be shown [15] that such a choice generally
yields a solution to the classical34 EoM, and thus recovers the average solution 〈y(t)〉.

The examples for the (non)linear Langevin equation are insightful, but remain simple as they are
one-dimensional. As mentioned earlier, the MSR formalism was applied to a Lotka-Volterra model
consisting of N species with random interactions [92]. However, this approach has never been
used to describe a two species Lotka-Volterra system with fixed interactions and a direct stochastic
effect. In Section 5, the MSR formalism will be applied explicitly to a stochastic version of the two
species predator-prey Lotka-Volterra equations, which describe the dynamics of interacting predator
and prey populations. The stochastic perturbation added to this two-dimensional system models
random environmental effects that influence these populations. In a similar way as for the examples
above, analytical expressions for the correlation functions will be derived, which give a clear view
on general stochastic effects in this system. Also, as the noise perturbation is small with respect to
the deterministic evolution of the populations, a semiclassical approach will be used.

33In QFT, this leads to an expansion in ~, which again clarifies why this is called the semiclassical approach.
34In the quantum mechanical interpretation of the semiclassical approach. From a probabilistic point of view, this

would be the noise-averaged EoM.
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4 Deterministic Lotka-Volterra model
In Section 2.4.2, we studied the Verhulst model, which describes the dynamics of a single species
population N(t) with logistic growth. It turned out that including stochastic effects in terms of
multiplicative noise still allowed for a quantitative description of the model, as it was possible
to derive an expression for the stationary probability distribution Peq(N) via a Fokker-Planck
equation. In the following sections, we consider the Lotka-Volterra equations, which is another
population model describing multiple interacting species. First, the deterministic version of the
model is studied in this section, before turning to a stochastic case in Section 5. To become familiar
with the model, an introduction to and an interpretation of these equations are discussed. Then,
the two species case with one predator and one prey is analyzed by means of the dynamical systems
methods from Section 2.4.1.

4.1 Introduction to the Lotka-Volterra equations

The original model was proposed by Lotka [26] in 1910 for studying periodic chemical reactions,
which he later extended to predator-prey systems [20]. The same equations were published inde-
pendently by Volterra in 1926, to explain fluctuating fish catches in the Adriatic Sea [21]. The
original Lotka-Volterra equations describe the evolution of an ecological system, consisting of two
interacting species. These are one prey and one predator species, like for example rabbits and foxes.
This is modeled by a coupled two-dimensional system of nonlinear differential equations, given by

u̇(t) = ruu(t)− αu(t)v(t)

v̇(t) = −rvv(t) + βu(t)v(t). (4.1)

Here, u(t) ≥ 0 represents the number of prey and v(t) ≥ 0 represents the number of predators at
time t. These equations describe the change of these populations u̇ and v̇ in time. In this model, it
is assumed that the prey population grows exponentially with growth rate ru without the presence
of predators. The predators on the other hand, are assumed to die or emigrate exponentially fast
with a loss rate rv in the absence of prey, i.e. food. The coupling −αuv describes the predation
on the prey, which is assumed to be proportional to the meeting rate of both species. The other
coupled contribution βuv represents the growth of the predator population due to the consumption
of prey. Note that the predation rate α is not necessarily equal to the growth rate β, as eating
one rabbit does not necessarily result in the birth of one fox. As the model parameters ru, rv, α
and β are all rates, they are related to the time t as 1/t. As the Lotka-Volterra model is analyzed
in a general way without considering any ecological application, the choice of the unit of time is
arbitrary and will therefore not be specified.

As will turn out in the next section, the solution to Eq. (4.1) is periodic for all initial populations
u0 = u(0) > 0 and v0 = v(0) > 0. An example solution for u0 = 80 and v0 = 40 is shown in
Figure 4.1. Figure 4.2 shows the corresponding phase space for the same solution. This parametric
plot clearly illustrates how the same periodic cycle is traversed multiple times in counterclockwise
direction by the blue trajectory. Also, it contains the fixed points of the dynamical system. At
(0, 0), there is a saddle point that represents extinction of both species. The fixed point (20, 40)
is a center, at which the species coexist. The stability of these fixed points and the periodicity
of the solutions will be discussed quantitatively in the next section. The periodic behavior of the
populations, represented by the blue trajectory in Figure 4.2, can already be understood intuitively
from an ecological point of view. Starting with a population of 80 prey and 40 predators, the
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predators have enough food, as the prey population is at its maximum35. This allows the predator
population to grow, at the expense of the prey. This continues until there are approximately 115
predators and 20 prey, at which point the prey population has reduced so much that the predators
grow hungry. As there are still a lot of predators, the prey population keeps decreasing almost up to
extinction, resulting in an even faster decay of the predators. Only when there are approximately
5 prey and 10 predators left, the prey population is able to grow again due to rare encounters with
predators. Both populations now keep growing, with a delay for the predators, until the system
arrives again at the maximum prey population of 80. Then, the periodic cycle starts over again.
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Figure 4.1: A periodic solution of the two species
predator-prey Lotka-Volterra model, with pa-
rameters ru = 2, rv = 1, α = β = 0.05 and initial
conditions u0 = 80, v0 = 40. The green line rep-
resents the prey population, while the red line
represents the predator population. The time t
is in units of 1/rv.
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Figure 4.2: The corresponding phase space of the
Lotka-Volterra model, with the blue trajectory as
the periodic solution. The trajectory traverses
the cycle multiple times, in counter clockwise di-
rection. The green dot at (20, 40) represents the
center, while the red cross is extinction. The or-
ange dot are the initial populations (u0, v0).

From an ecological perspective, the predator-prey Lotka-Volterra model has a couple of unrealistic
assumptions. The prey species grows exponentially in the absence of predators, which means that
they have limitless food. Even if the prey species are herbivores, this is not the case for large
enough populations. To take finite resources into account, it is possible to include a quadratic
contribution −ruu2/Ku in Eq. (4.1). Similarly as for the Verhulst model in Section 2.4.2, this
gives rise to a carrying capacity Ku for the prey. Furthermore, the populations u(t) and v(t)
only depend on time and not on the position of the animals. This automatically yields unrealistic
predation, as predators should meet the prey somewhere in their environment. There are spatial
extensions that apply lattice Lotka-Volterra models to reaction-diffusion systems with chemical
reactions [22]. This spatial independence requires assumptions for the food supply of the predators.
It is assumed that predators are always hungry, and that their food depends only on the size of the
prey population. To model the predation realistically, the consumption rate should be a function of
the prey density. For ecological systems, this is called the functional response [96], which resulted
in the Rozenzweig-MacArthur model [97]. Both this model and the Lotka-Volterra model have
been used to analyze the dynamics of predator-prey populations in nature, despite the unrealistic

35This statement depends heavily on the model parameters. Only in this specific case, the maximum prey population
is 80.
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features. Two cases are a wolf and moose system in the Isle Royale National Park [98] and lynx and
snowshoe hare populations [99]. Lotka-Volterra-like equations also appear in economic theories,
such as the Goodwin model [100].

Another inherent feature of the model that is not very likely to occur in real-life ecosystems, is the
behavior at small prey population. For initial conditions far away from the fixed point, e.g. like
in Figure. 4.2, the prey population can become very small, while the predator population remains
much larger, before decreasing rapidly. Yet, the prey species still recovers. In realistic populations,
the prey species would get extinct, due to predation or external environmental effects. In fact,
environmental effects are not taken into account at all, since all model parameters do not depend
on time. This also implies that the (interaction of) the species themselves do(es) not change.
Including time-dependent parameters increases the complexity of the model rapidly. Also, a lot of
different external effects play a role in real-life ecological systems. Therefore, it would be easier to
include (partially) unknown environmental factors through a stochastic approach, by introducing
stochastic contributions as small perturbations to the deterministic model (4.1). Depending on
the type of fluctuations, the effects can be modeled by additive or multiplicative noise, yielding
an SDE of the form (2.2). This stochastic Lotka-Volterra model, which gives rise to interesting
new behavior, will be the topic of Section 5. The question remains if such a stochastic model is
ecologically more realistic. In this work, the general (stochastic) features of this model are studied
by using the MSR formalism, for which the results are compared with simulations. Therefore, the
ecological interpretation and applications are of less importance.

Figure 4.3: Phase space of a two species compet-
itive Lotka-Volterra system, consisting of rabbits
and sheep. As the species are competing for the
same resources, only one can survive in the end.
This is also reflected by the instability of the sad-
dle point at coexistence. At (0, 0) there is now an
unstable node. The other two fixed points, where
one of the species is extinct, are stable. The stable
manifold is the part of phase space that leads to
a fixed point, the saddle point in this case. This
figure has been extracted from Ref. [101].

So far, only species with predator-prey inter-
action have been considered. There are how-
ever other types of interactions between species
in nature, such as competitive and mutualistic
interactions. Variations of the Lotka-Volterra
equations (4.1) exist, with different types of in-
teractions. A generalized model for the dynam-
ics of N interacting species can be written as

dxi(t)

dt
= rixi(t)

Ki +
N∑
j=1

aijxj(t)

 , (4.2)

for each species xi. The type of interaction is
captured by the interaction matrix A, which has
entries aij . When species i and j show competi-
tive interactions, the coefficients are aij , aji < 0.
If species i hunts species j, this predator-prey
relation corresponds to aij > 0 and aji < 0.
When the relation is mutualistic, i.e. both
species benefit from the interaction, aij , aji > 0.
This model also includes a carrying capacity,
which is given by Ki if aii = −1, to account for
limited resources for each species. This gener-
alized Lotka-Volterra model is discussed exten-
sively in Ref. [27].
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As an example, consider a system with two competitive species, as in Figure 4.3. It is clear that in
the long term, only one of these species can survive. Indeed, when carrying capacities are included,
the coexisting fixed point36 is a saddle point, which is unstable. The extinction point (0, 0) is an
unstable node in this case. There also appear two other fixed points for this system, at which one of
the species is extinct. These points are stable, and are exactly equal to the carrying capacity of the
surviving species. A complete phase diagram of this system can be found in Ref. [61]. A complete
classification of Lotka-Volterra models for N = 2 species is performed by Bomze in Ref. [102],
with every possible combination of growth rates and interactions. Another interesting case is one
with two predators and one prey [27, 103]. This results in the famous Lotka-Volterra principle.
This ecological exclusion principle states that the more succesful predator will win from the other,
yielding an effective two species system. In this case, more ’succesful’ means that the species requires
less food to reproduce itself. Interestingly, when stochastic effects are included, Zhang et al. [104]
found that coexistence of two predators and a single prey is possible.

4.2 Analysis of the two species Lotka-Volterra model

Now, we focus again on the original Lotka-Volterra model. The deterministic predator-prey Lotka-
Volterra equations for two species are given by

u̇ = ruu− αuv (4.3)
v̇ = −rvv + βuv. (4.4)

It is not possible to write down an analytical solution in terms of known functions for this coupled
system of nonlinear equations. Nevertheless, one can analyze the phase diagram of this system by
using the dynamical systems methods described in Section 2.4.1. In addition, by recombining the
differential equations, a solution of the system can be found in terms of a constant of motion that
only depends on the initial populations at t = 0. These solutions are also found numerically.

From a mathematical perspective, it would be convenient to rescale these equations by setting
u → βu/rv and v → αv/ru, which is similar to a gauge transformation. As a consequence, the
only free parameters will be the growth rates rv and ru. All other parameters are absorbed in the
normalization of t, u(t) and v(t). However, this transformation is not applied here because of the
noise that will be introduced later. To determine the direct effect of this noise, the noise amplitude
has to be compared with the other parameters in this model. Therefore, it is more useful to keep
all original parameters, which also allows for a more intuitive interpretation of the results.

4.2.1 Solution & Dynamics

To characterize this model, the first thing to do is to calculate the fixed points, where u̇ = 0 = v̇.
These are easily found to be

(u∗, v∗) =

{
(0, 0)(
rv
β ,

ru
α

)
.

(4.5)

The first fixed point represents extinction for both species, while the second represents coexistence37.
These fixed points are also depicted in Figure 4.2. As was explained in Section 2.4.1, the Jacobian

36Note that this is the same point as for the predator-prey case.
37In a periodic solution, the species also coexist, but this case is special as the populations remain constant while

coexisting.
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J (u, v) of the model should be evaluated at the fixed points (u∗, v∗), to determine their stability.
This is given by

J (u, v) =

(
ru − αv −αu
βv βu− rv

)
. (4.6)

The Jacobian for the (two species) Lotka-Volterra model evaluated at a fixed point is called the
community matrix [105]. For the fixed point (u∗e, v

∗
e) ≡ (0, 0), where both species are extinct, the

community matrix is given by

J (0, 0) =

(
ru 0
0 −rv

)
. (4.7)

Hence, its eigenvalues are λ1 = ru and λ2 = −rv < 0. According to the classification of fixed points
in Figure 2.5, (0, 0) is a saddle point, hence it is unstable. So, extinction is not an attractive fixed
point in this model. As a consequence, the system will still recover even if populations are very
close to zero. As mentioned above, this is not a realistic assumption. For the coexisting fixed point
(u∗, v∗) = (rv/β, ru/α), the community matrix yields

J
(
rv
β
,
ru
α

)
=

(
0 −αrv

β
βru
α 0

)
. (4.8)

This community matrix has eigenvalues λ1,2 = ±i√rvru. Inspecting Figure 2.5 again, it is observed
that (rv/β, ru/α) is a center or an elliptic fixed point. Such a point is neutrally stable, so it is
neither attracting nor repelling.

To study the behavior of the model close to the fixed points, we may linearize the system around
these points. For the Lotka-Volterra model, this linearization is given by(

u̇
v̇

)
= J (u∗, v∗)

(
u− u∗

v − v∗

)
, (4.9)

as in Eq. (2.41). Around the fixed point (u∗e, v
∗
e) = (0, 0), this yields a simple uncoupled set of

equations {u̇ = ruu, v̇ = −rvv}, which are respectively solved by exponential growth and decay.
This makes sense intuitively, since for u, v ' 0, the species rarely meet. Hence, this results in the
Lotka-Volterra model without interactions. Close to (u∗, v∗) = (rv/β, ru/α), the linearized model
is given by

u̇ =
αrv
β

(ru
α

− v
)
, (4.10)

v̇ =
βru
α

(
u− rv

β

)
. (4.11)

These coupled equations describe a simple harmonic motion around the fixed point (rv/β, ru/α),
where the prey and predator populations have a phase difference of π/2. This linearization can
be interpreted as neglecting the self-interaction of the species, i.e., neglecting the contributions
from their own respective exponential growth and death. The only contribution taken into account
here is the (linearized) interaction, so how one species affects the other. As the linearized equations
describe simple harmonic motion, their solutions are periodic and perfectly circular. These solutions
have a frequency ω =

√
λ1λ2 =

√
rvru [61]. Hence, the populations oscillate with a period

Tlin =
2π

ω
=

2π
√
rurv

. (4.12)
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To investigate solutions of the two species Lotka-Volterra model, the nonlinearized behavior should
also be analyzed. If one assumes that u > 0 and v 6= ru/α, the coupled equations (4.3) can be
combined as

dv

du
=
v

u

βu− rv
ru − αv

. (4.13)

By performing a separation of variables and integrating, we obtain

βu(t) + αv(t)− rv log u(t)− ru log v(t) = βu0 + αv0 − rv log u0 − ru log v0,

F (u, v) =M, (4.14)

where u0 = u(0) and v0 = v(0) are the initial prey and predator populations, and M is a constant
of motion. It is clear that F (u, v) is a conserved quantity for each solution {(u(t), v(t)) |u(0) =
u0, v(0) = v0} of the model, that is equal to the value of the constant of motion

M = F (u0, v0) = βu0 + αv0 − rv log u0 − ru log v0. (4.15)

The function F (u, v) diverges both for u, v → 0 and for u, v → ∞. It attains its minimum in the
center (rv/β, ru/α), given by F (rv/β, ru/α) = rv + ru − rv log rv/β − ru log ru/α ≡ M∗. As the
model is conservative, it can be translated to a Hamiltonian system with Hamiltonian H(u, v) =
F (u, v)−M∗ and energy E =M−M∗ ≥ 0. This is done by performing a coordinate transformation
p = log(u), q = log(v). This translates the Lotka-Volterra equations (4.3) to Hamilton’s equations
q̇ = ∂H/∂p, ṗ = −∂H/∂q, for generalized position q and conjugate momentum p. From the structure
of the nondiagonal interaction matrix A, it can even be proven that there should be a conserved
quantity [101], which results in a conservative system. According to the theory of conservative
systems [61], every energy E > 0 defines a periodic solution around the fixed point (rv/β, ru/α),
where E = 0. As the energy E depends on the initial populations u0 and v0 through M∗, every
set of initial populations yields a periodic solution. This can also be observed in Figure 4.4, which
shows the phase space of the system with numerically obtained periodic solutions, for different initial
populations. A geometric proof for the periodicity of solutions of the two species Lotka-Volterra
model is given in Ref. [27].

So, as expected from the linearization, the solutions close to the center are periodic38. In general,
solutions of conservative systems close to a center are closed curves around it, which have a period
close to the period Tlin = 2π/

√
rurv of the linearized case. However, this only holds close to the

center. Further away from the fixed point, the linearization breaks down, and the period increases.
Integral expressions for the period T (E) of solutions of the Lotka-Volterra model with energy E are
derived in Ref. [106].

Exponential growth of the prey species in the absence of predators is one of the unrealistic features of
the two species Lotka-Volterra model. When limited resources are taken into account, by introducing
a carrying capacity for the prey species, its growth becomes logistic instead of exponential, due to
the negative quadratic contribution. Adding such a self-interaction to the system transforms the
neutrally stable center to a stable spiral, resulting in spiraling solutions towards the fixed point [103].
This can be observed in Figure. 4.5, where the prey are rabbits and the predators are foxes. From
the perspective of conservative systems, the interpretation is that the carrying capacity breaks the
symmetry of the interaction matrix. Hence, there is no conserved quantity, and the system becomes
dissipative. However, if the parameters of the model are time dependent and other conditions are
obeyed, the system can still have a unique, globally attracting periodic orbit [101].

38In fact, this expectation is tricky, as centers are not hyperbolic, hence the Hartman-Grobman theorem [64] does
not apply. However, for conservative systems it can be proven that nonlinear centers also have periodic solutions
around it [61].
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Figure 4.4: Phase space of the Lotka-Volterra
model, with seven numerically calculated periodic
solutions (blue) for different initial populations u0 =
v0 = 40, ..., 64. Model parameters are ru = 2,
α = β = 0.05 and rv = 1. At the fixed point (green)
there is a center where the species coexist in equi-
librium.

Figure 4.5: Phase space of a Lotka-Volterra
model with carrying capacities. Parameters are
ru = 4, α = 2, β = 1, rv = 1 and Ku = 2,
Kv = 2. Solutions are shown for two different
initial populations. Including Ki transforms
the fixed point from a center to a stable spiral.
This figure has been extracted from Ref. [101].

4.2.2 Numerical implementation

As the solutions of the two species predator-prey Lotka-Volterra equations can not be expressed
in terms of known functions, the equations have to be solved numerically. A naive way of doing
this would be by using the explicit or implicit Euler method. For this model, this will respectively
result in outward or inward spiraling solutions [107], instead of the periodic solutions that should
be obtained. Hence, by using these methods, the populations either explode or collapse in the fixed
point. As a solution to this problem, symplectic Euler methods can be applied, for which one variable
is treated as explicit and the other as implicit. This still leaves us with two possible numerical
schemes, which both give periodic solutions that move around the actual periodic solutions [107].
Taking the average of these two symplectic Euler methods yields a good approximation of the
solutions of the system. This procedure already points out that this system is difficult to solve
numerically without a significant error.

For the reasons above, it is better to make use of a standard solver of differential equations that
is already optimized. In Python, this could be ode or odeint, which again use different methods,
depending on the type of ODE. As the Lotka-Volterra model will be extended to a stochastic
version later, it is better to use the package sdeint, which is already optimized for SDEs [108].
This solver has two algorithms for Itô SDEs, itoint and itoEuler. Just as for the definition of
a general SDE (2.2), the algorithms require a separate deterministic and stochastic part of the
evolution. Hence, to study the deterministic Lotka-Volterra equations numerically using these
algorithms, the stochastic part can simply be put to zero. Other specifications of this integrator
will be discussed later in Section 5.2. Our Python code for the numerical solutions and calculations
for the deterministic Lotka-Volterra model can be found in Ref. [109].

To explore the solutions of the model in a structured way, it is convenient to choose a fixed set
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of parameters, which in our case will be the same as used earlier for Figures 4.1-4.4: ru = 2,
α = β = 0.05 and rv = 1. A first reason for this choice is that it yields reasonable population sizes
of 10-100 predators and prey. Although we do not give priority to the ecological interpretation of
the model, it is useful to have realistic population sizes, such that a proportional noise amplitude
can be chosen in the stochastic case later. Furthermore, these parameters are used by Vadillo [29]
to study different stochastic Lotka-Volterra models. Therefore, to compare with his results, the
same model parameters must be used. The standard initial populations are chosen as u0 = v0 = 40,
which is relatively close to the fixed point (rv/β, ru/α) = (20, 40).

To determine an appropriate simulation time, the period T (E) of one cycle should be obtained,
which depends on the energy E of the periodic trajectory. Formulas for this period are provided in
Ref. [106]. However, as the goal is to simulate only a few cycles, the period can be approximated
by the period of the linearized solution around the fixed point (4.12), which is given by Tlin = π

√
2

for the standard parameters. This is slightly smaller than one complete period T (E) for E > 0, but
it is not necessary to calculate an exact integer number of cycles. The total simulation time is then
given by Tsim = mTlin, for some integer m ' 5 that represents the number of linear cycles.

As the numerical solutions of the Lotka-Volterra equations show an inaccuracy, it is useful to perform
an error estimation of the different possible algorithms. This can be done by using the energy E or
constant of motion M . Because it only depends on the choice of parameters and initial populations
through Eq. (4.15), the constant of motion can be determined for every numerical solution. Since
this should be conserved along any solution of the deterministic Lotka-Volterra model, a deviation
from this constant implies an error in the numerical solution. To give a quantitative measure to
this error, it can be defined as

∆M =

∣∣∣∣M(Tsim)−M0

M0

∣∣∣∣ · 100%, (4.16)

where M(Tsim) = F (u(Tsim), v(Tsim)) is the constant of motion at the end of the numerical calcula-
tion, following from Eq. (4.14), and M0 = F (u0, v0) is its initial value. The value of M at the end of
the numerical trajectory is chosen, as the error grows with the total simulation time Tsim. The main
cause of this error, however, is the size of the time step ∆t that is used for the numerical solution of
a differential equation. For the standard integrators ode and odeint, this time step is determined
by the algorithm itself, which yields errors around 0.0001%. These cases are useful for comparison,
as the time step for the sdeint package has to be determined manually. Because the total runtime
of the code scales linearly with the number of time steps, ∆t has to be as large as possible, while
still providing accurate solutions. For a time step ∆t = 0.002, the error in the itoEuler algorithm
is already around 0.4%, while the error in the itoint algorithm is only 2 · 10−6%. Hence, it makes
sense to use the itoint algorithm. Even for ∆t = 0.2, the error in the itoint algorithm is only
0.2%. In the code [109], the time step size is determined as ∆t = Tsim/N , where N = nm is the
total number of time steps, yielding ∆t = Tlin/n = π

√
2/n. Setting the number of time steps per

linear cycle as n = 100, yields ∆t ' 0.04 and an error of 7 · 10−3% for m = 5. This is considered
to be an accurate numerical solution.

Using this error measure, it can be explained why it is important to have initial populations rela-
tively close to the fixed point. The inaccuracy of the numerical solution becomes larger when the
nonlinear effects are more prominent, which occurs for solutions far away from the fixed point, as
the linearization breaks down there. This inaccuracy causes the numerical solution to spiral inward
for the sdeint algorithm, which is the same effect occurring for several explicit numerical methods.
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An example of a numerical solution with a small error (blue), starting close to the fixed point, and a
solution with a large error (red), starting far away from the fixed point, are depicted in Figure 4.6.
The respective errors are 0.033% and 58.5%, after a total simulation time of Tsim = 25Tlin and
n = 100. This also justifies the choice of m ' 5, as the error also scales with the total simulation
time. Furthermore, the red trajectory allows for the extreme case with almost extinct prey pop-
ulation and still significant predator population. As discussed in the introduction of this section,
this is ecologically unrealistic. So, there is both a numerical and ecological argument to study so-
lutions with initial populations close to the fixed point. For the chosen parameters, the fixed point
is (20, 40), justifying the standard initial populations to be (u0, v0) = (40, 40).
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Figure 4.6: An illustration of the numerical error for a solution far away from the fixed point (20, 40),
after a total simulation time of 25Tlin. The blue solution starts in the orange dot at (40, 40), showing
periodic motion as the error is only 0.033%. The red solution starts in the cyan dot at (120, 120),
showing inward spiraling motion with an error of 58.5%.
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5 Stochastic Lotka-Volterra equations
The previous section considered the deterministic Lotka-Volterra model. External effects in this
predator-prey system can be investigated through the addition of noise to the deterministic equa-
tions. Stochastic versions of this model were studied by Vadillo [29], Liu & Fan [31] and Arnold et
al. [32]. Noise effects were also investigated for extensions of the two species Lotka-Volterra model
by Zhang et al. [104], Sidhom & Galla [24] and Mobilia et al. [22]. In this work, the stochastic two
species Lotka-Volterra model with additive noise is studied, which is given by

u̇(t) = ruu(t)− αu(t)v(t) +
√
Ξu ηu(t),

v̇(t) = −rvv(t) + βu(t)v(t) +
√
Ξv ηv(t). (5.1)

The parameters ru, rv, α and β represent the same quantities as in the deterministic case (4.3). ηu(t)
and ηv(t) are independent Gaussian white noise processes with respective amplitudes Ξu and Ξv.
Independent in this case means that all combined correlation functions, like 〈ηu(t)ηv(t′)〉, vanish.
Note that the noise amplitudes are written explicitly in the noise coupling matrix in these SDEs,
instead of contained in the autocorrelation functions of the noises. From a simulation perspective,
this is convenient. The noise coupling matrix is given by the function D(y, t) in Eq. (2.2). As the
noise contribution in the MSR action scales with D2(y, t), the square roots are canceled.

Comparing these equations with earlier obtained SDEs, they can be interpreted as a coupled two-
dimensional system of nonlinear Langevin equations. As this model contains multiple interacting
species, it is not possible to derive a closed-form expression for the stationary probability distri-
bution. Therefore, this requires methods for nonlinear systems like the MSR formalism. Using
this field-theoretical approach, expressions for correlation functions will be determined analytically,
and compared with results of simulations of Eq. (5.1). As this model is nonlinear, the analytical
calculations will make use of the semiclassical approach and perturbation theory. Before diving into
these calculations, it is insightful to give an interpretation to this model and to see what results
have already been investigated in the literature.

5.1 Interpretation and literature

The deterministic Lotka-Volterra is a very simple model in population ecology. However, despite
some unrealistic biological features that were discussed in Section 4.1, it already includes the most
important features like the growth, decay, and interactions of an isolated two species predator-prey
system. Because it can also be easily extended by incorporating carrying capacities or functional
responses, it is an interesting starting point for modeling the evolution of predator and prey popu-
lations.

In real life, ecosystems are never completely isolated. External factors due to environmental vari-
ability always influence the populations and their interactions. As there are usually a lot of external
effects of which the exact influence on the populations is unclear or unknown, it makes sense to
model these as a stochastic term in the system. Because the environment varies on a time scale
much shorter than the macroscopic evolution of the populations, this stochastic contribution can
be assumed to be Gaussian white noise. Furthermore, the habitat is global and interacts with both
species in a way that does not depend on the state of the system. Usually, such a stochastic effect
is modeled by additive noise. The effect of the environment can be different for both species, which
justifies the choice of two independent Gaussian white noises ηu(t) and ηv(t). In real ecosystems,
these stochastic fluctuations can arise from changes in the weather or climate in the habitat of the



5 STOCHASTIC LOTKA-VOLTERRA EQUATIONS 62

species, or even more drastic events like natural disasters. The random effects can also describe
immigration to somewhere outside the habitat.

From a mathematical point of view, additive noise is one of the simplest random influences that can
be studied. Incorporating this in the simple ecological Lotka-Volterra model allows for a general
study of noise effects in the evolution of populations, which can easily be extended to more difficult
systems. External noise effects are particularly interesting for this model. As the system of SDEs is
nonlinear, it yields a nontrivial phase portrait that can be influenced by the noise. When applying
the MSR formalism to this model, this nonlinearity requires the use of perturbation theory in
terms of Feynman diagrams. The Feynman rules for the additive noise case are not so intricate
and yield tractable calculations that can be extended to other kinds of noise. This could, for
example, be multiplicative noise, which can arise from a varying birth rate ru and dying rate rv
in the model, or from stochastic interactions due to seasonal changes. Multiplicative noise can
model a larger variety of realistic ecological factors in the populations, but as the main interest
is to study general noise effects in this model that are state-independent, this work will focus
on additive noise. A more elaborated interpretation of noise in ecosystems is given in Ref. [33].

Figure 5.1: The phase space of a spatio-temporal
Lotka-Volterra model with carrying capacities
and additive noise, at fixed coordinates. The ar-
row indicates the direction of the trajectory and
the dot represents the initial populations. This
figure has been extracted from Ref. [30].

The two species Lotka-Volterra model with
stochastic effects has been studied widely, es-
pecially for multiplicative noise. One of the
first analyses was done by Arnold et al. [32].
They found that for multiplicative white noise,
there exists no stationary solution of the model,
although the explosion to infinite population
has zero probability. For multiplicative colored
noise, stationary solutions can exist, depending
on the spectral density of the noise. In more
recent mathematical studies, Liu & Fan [31]
proposed a new definition for permanence in
stochastic Lotka-Volterra models with multi-
plicative white noise and carrying capacities.
Tian et al. [30] were one of the few that studied
additive noise in Lotka-Volterra equations with
a carrying capacity. Next to the evolution in
time, they also included spatial diffusion of both
species. By looking at phase transitions in the
spatial domain, they found that the noise has a
destabilising effect on the dynamics through a
Hopf bifurcation. The resulting phase space for a fixed spatial location is shown in Figure 5.1. At
this point, the system shows an outward spiraling motion, until it reaches a limit cycle.

A paper by Vadillo [29] is one of the few that considers Lotka-Volterra models without carrying
capacities. Although he considers multiplicative noise, this makes it easier to compare his results
with the simulations performed for this work. Therefore, as mentioned earlier in Section 4.2.2, the
parameters chosen by Vadillo will also be used in the analytical calculations and simulations in
Section 5.4. In Ref. [29], these are given by a prey growth rate ru = 2 and a predator decay rate
rv = 1. The predation rate α and predator growth rate β are given by the same value α = β = 0.05.
These parameters result in reasonable population numbers of several tens for each species. Vadillo
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considers three different stochastic Lotka-Volterra models, each with a different multiplicative noise
coupling function D(y, t), for which the mean extinction time is calculated. The phase space of the
averaged simulations for 103 noise realizations for these three models is shown in Figure 5.2. The
red and blue lines depict trajectories of models that are not suited to compare with model (5.1).
The green line shows the trajectory of a Lotka-Volterra model given by

ṙ = r(2− αf)− σ1r η1(t),

ḟ = f(αr − 1)− σ2f η2(t). (5.2)

Here, r represents the number of prey (rabbits) and f represents the number of predators (foxes).
η1(t) and η2(t) are independent Gaussian white noises with respective amplitudes σ1 and σ2. These
equations are similar to Eq. (5.1), except for the multiplicative noise. Because the three models are
only simulated for 0 ≤ t ≤ 12, the trajectories remain close to each other and the red and green
ones even overlap, despite the different kinds of noise used in the models.

Figure 5.2: Phase space for averaged numerical
simulations for 103 noise realizations for 0 ≤ t ≤
12, for three stochastic Lotka-Volterra models
with multiplicative noise. Each color represents
a different model. Initial populations are r(0) =
150 prey and f(0) = 50 predators. For the green
line, the noise amplitudes are σ1 = σ2 = 0.001
and α = 0.05. This figure has been extracted
from Ref. [29].

Figure 5.3: Phase space of a stochastic Lotka-
Volterra model with multiplicative noise. The
blue line corresponds to the deterministic model,
while the black line is a simulation of the stochas-
tic model for one noise realization for 0 ≤ t ≤ 20.
The green line is the average of 100 noise realiza-
tions for 0 ≤ t ≤ 12. Initial populations are
R(0) = 100 and F (0) = 150, and α = 0.01. This
figure has been extracted from Ref. [28].

A different stochastic model is considered by de la Hoz & Vadillo [28], for R rabbits and F foxes,
where the noise coupling functions are given by D(R, t) =

√
R(2 + αF ) and D(F, t) =

√
F (αR+ 1).

This is a slightly more difficult multiplicative noise, which also has no explicit amplitude σ. The
parameters are the same as in Ref. [29], except for α = β = 0.01. The phase space of this model
in Figure 5.3 shows an interesting feature. Although the average green trajectory is only simulated
for 0 ≤ t ≤ 12, it seems to show an inward spiraling motion towards the fixed point (100, 200) of
the model. This behavior will be investigated further in Section 5.2.1.

When generalizations of the two species Lotka-Volterra model are considered, the theory of statis-
tical physics and disordered systems becomes useful. This is, for example, used in Altieri et al. [23],
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where a disordered multiple species Lotka-Volterra model similar to Eq. (4.2) with multiplicative
noise and carrying capacities is studied. The disorder in the system arises from a random interaction
matrix A, which has independent and identically distributed elements aij . This model is studied
using ensemble methods from statistical physics and the replica formalism. They show that for
sufficiently heterogeneous interactions measured by σ and small noise amplitude proportional to an
effective temperature T , the system has multiple equilibria (see Figure 5.4). The number of stable
equilibria is exponential in the number of species. For even smaller noise amplitudes, there is a
Gardner transition to a marginally stable state. Such a transition is also observed in jamming of
amorphous materials [110].

Figure 5.4: A phase diagram of the temperature T , representing the noise amplitude, versus the
degree of heterogeneity σ. The three possible phases are a single equilibrium, multiple equilibria
and a Gardner phase. This figure has been extracted from Ref. [23].

Sidhom & Galla also investigate a multispecies disordered Lotka-Volterra model in Ref. [24], which
contains a random interaction matrix, to which they later add additive Gaussian colored noise.
To derive expressions for correlation functions for this N species system, they use field-theoretical
methods, one of which is the MSR formalism. First, they perform a disorder average over all
possible realizations of the random interaction matrix entries aij in the limit N → ∞. This yields
an effective SDE, to which the MSR formalism is applied. This is later used to study the dynamics
of ecological communities and stability in this model. The approach that they adopt is somewhat
different from a direct use of the MSR formalism to an SDE. Nevertheless, this was the inspiration
for this work, to study stochastic Lotka-Volterra models by using the MSR formalism.

Functional methods are not restricted to multispecies Lotka-Volterra models and can be applied
to other generalizations. In Ref. [25], which is a continuation of Ref. [22], Täuber uses a field-
theoretical approach to study a spatio-temporal stochastic Lotka-Volterra model for two species.
This model includes carrying capacities and multiplicative noise. As this is an extension in space, it
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also contains spatial diffusion of both species. He also makes use of the MSR formalism39 to derive
the action of the model. It is shown that population oscillations result in spatio-temporal structures
in this model. The analytical results are compared with Monte Carlo lattice simulations.

One thing that all Lotka-Volterra models have in common is that the species interact. This yields
nonlinear differential equations for the evolution of the populations. It is usually difficult, or even
impossible, to find a stationary PDF for such a system. Therefore, the intuitive Langevin and
Fokker-Planck approach are not applicable to study general noise effects in these systems. As the
work by Sidhom & Galla [24] and Täuber [25] shows, field-theoretical methods are well suited to
analyze these kind of models. One of those methods is the MSR formalism. It has, however,
never been applied to the simple two species predator-prey case (5.1) with additive noise. As extra
effects like carrying capacities are not included, the deterministic version of this model results in the
periodic solutions found in Section 4.2. Using the MSR formalism, a description of the noise effects
on these periodic solutions can be derived in terms of correlation functions for the fluctuations
around these solutions. Furthermore, it is interesting to see if this field-theoretical approach is also
useful in the case of a more difficult model than the nonlinear Langevin equation.

Because the MSR formalism has never been applied to this simple model, our results must be verified
via other methods. This is done by comparing the analytical findings with results from simulations.
These latter are already interesting by themselves, as simulations of this specific stochastic model
have never been done in the limit of long time. In the next section, it is explained how these
simulations are performed.

5.2 Simulations

The stochastic Lotka-Volterra model with additive noise in Eq. (5.1) can be solved numerically in
Python, in a similar way as the deterministic case. There is, however, a fundamental difference
between both models. The deterministic one is a system of ODEs, which has a unique solution for
every initial population (u0, v0). Hence, its numerically calculated solution is unique, despite the
small numerical inaccuracy. The stochastic case consists of coupled SDEs, which by definition do no
have a unique solution, as the solution is a functional of the noises ηu(t) and ηv(t). Only for a fixed
noise realization (hu(t), hv(t)), the system reduces to ODEs. Hence, every numerical solution of this
stochastic system will be different. This is why several simulations of this model are performed,
each using a different noise realization. To obtain reliable results for the general behavior of this
stochastic system, ensemble averages have to be calculated over a large number of simulations. Our
code for the simulations is given in Ref. [109]. Below, we discuss the important features of these
simulations and show some preliminary results, before comparing with the analytical calculations.

The stochastic simulations make use of the same Python package sdeint as the deterministic case,
as this is already optimized for the solution of SDEs [108]. The itoint algorithm from the sdeint
package is used to perform the numerical integration for each noise realization, using Itô’s principle.
This choice is based on the error considerations calculated in Section 4.2.2. In this algorithm, SDEs
are separated in a deterministic function C(y(t), t) and a noise coupling function D(y(t), t). For the
Lotka-Volterra model, y(t) = (u(t), v(t)) and C(y(t), t) contains the deterministic Lotka-Volterra
equations (4.1). The noise coupling matrix only contains the noise amplitudes. As both species are
perturbed by independent Gaussian white noises, this is given by a diagonal matrix

D(y(t), t) =

(√
Ξu 0
0

√
Ξv

)
. (5.3)

39Rather, he makes use of the extension of the formalism by Janssen [12] and de Dominicis [13].
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In the algorithm, this two-dimensional function automatically couples to the noises, which are
Gaussian and white by default. To generate the noise as a stochastic process, the package makes use
of random.normal, which is a pseudo-random number generator40 that draws independent random
variables from a Gaussian distribution. At each point in time that the integrator is called, the
function random.normal draws a random number that represents the value of the noise realization
at that moment. Next to independent noise values at each point in time in one simulation, this
method also ensures that the noise realization is different for another simulation. Hence, the system
of SDEs is solved by numerically calculating the combined evolution resulting from the deterministic
function C(y(t), t) and the stochastic contribution, at every point in time for a fixed number of
time points with separation ∆t. The deterministic solution is also calculated, in the same way as
explained in Section 4.2.2. For both models, the solution is then given by a discrete array in time.
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Figure 5.5: Periodic solution (ud, vd) of the de-
terministic model represented by the solid lines
and a simulation for one noise realization (un, vn)
represented by the dotted lines. The simulations
are performed with the standard parameters and
noise amplitudes Ξu = 0.2,Ξv = 0.4, for 5Tlin.
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Figure 5.6: Corresponding phase space for de-
terministic solution (blue) and simulation of one
noise realization (green) of the stochastic Lotka-
Volterra model. The orange dot represents the
initial populations (u0, v0) = (40, 40). The black
dot is the fixed point (20, 40) of the model.

Figure 5.5 shows the simulated result for the evolution of both populations in time, (ud(t), vd(t))
for the deterministic case and (un(t), vn(t)) for one noise realization. It can be observed that the
populations for the stochastic model deviate only slightly from the deterministic solutions. The
simulations are performed for a time Tsim = 5Tlin with noise amplitudes Ξu = 0.2 and Ξv = 0.4.
The model parameters are the standard parameters, given by ru = 2, α = β = 0.05 and rv = 1.
These will also be used for all other simulations, unless stated otherwise. The fluctuating behavior
around the deterministic solution is better visible in the phase space in Figure 5.6, corresponding to
the same solutions. Both the deterministic and stochastic solution have the same (standard) initial
populations (u0, v0) = (40, 40), which are also fixed for most simulations. The green trajectory,
representing the stochastic simulation for one noise realization, fluctuates around the deterministic
solution given in blue. This visual argument strengthens the interpretation of the noise perturbing
the deterministic solution at every point in time. As the noise amplitudes are small compared to

40Pseudo-random number generators appear to generate random numbers, but are inherently deterministic. Yet,
the deterministic behavior can only be observed for extremely large amounts of random numbers. For most problems
that make use of random numbers, like the stochastic Lotka-Volterra model, this method is well-suited.
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the actual populations and thus small compared to the deterministic contributions to the evolution,
the stochastic trajectory remains close to the deterministic one.

Just as for the numerical solutions of the deterministic model, the simulation time is chosen to be
Tsim = mTlin, where m is the number of linear cycles with period Tlin = 2π/

√
rurv = π

√
2. Since

a solution of the stochastic model is not periodic due to the fluctuations, this justifies using Tlin
as the characteristic time scale of the system. For most simulations, the number of linear cycles
is taken to be m ≤ 10, such that the system completes a few cycles. The total number of time
steps in each simulation is given by N = nm. As n = 100 yielded an accurate numerical solution
in the deterministic case, this is also used for the stochastic case. This gives a time step size of
∆t = π

√
2/n ' 0.04. The total runtime of the simulation depends on the choice for m and n. Both

are sufficiently small, such that a large amount of noise realizations (104) can be performed in a
reasonable amount of time, which is a few hours.

The most important parameters in the stochastic model are the noise amplitudes Ξu for the prey
and Ξv for the predators. For most simulations, these are fixed as Ξu = 0.2 and Ξv = 0.4. The
noise amplitude for the predators is twice as large as for the prey, as the fixed point of the system is
(20, 40) for the standard parameters. Hence, the ratio between the noise amplitudes is the same as
the ratio between the stationary populations. This is to ensure that the effect of the noise on both
species is of a comparable size. Also, similar values for the noise amplitude are used in other studies
of stochastic Lotka-Volterra models. Vadillo [29], who uses the same standard model parameters,
uses multiplicative noise with an amplitude of σ = 0.001. However, as this noise is multiplicative,
this leads to a total amplitude of 0.01 − 0.1 for the same population sizes. Tian et al. [30] set the
noise amplitude to σ = 0.01, but also their model parameters yield population sizes around 0.1− 1.
Liu & Fan [31] use σ ' 0.3 for multiplicative noise, but as their population sizes are also of order
1, this barely changes the total noise amplitude. Hence, the noise amplitudes used in this work are
comparable to the ones used in other studies. Another important consideration to take into account
when determining an appropriate noise amplitude, are the field-theoretical methods used for the
analytical calculations. Perturbation theory is only applicable if the coupling constants, in this case
the interaction coefficients α and β and the noise amplitudes Ξu and Ξv, are small compared to the
coefficients of the linear contributions. For the standard parameters and the noise amplitudes used
here, this condition is satisfied.

The solutions of the deterministic Lotka-Volterra model are periodic and positive for all initial pop-
ulations (u0, v0) > 0. Hence, both species never go extinct in this ecological system in equilibrium.
However, when noise is added, fluctuations can give rise to a sudden extinction of one or both of the
species. For the standard noise amplitudes and initial populations, extinction almost never happens,
as the noise effect is only small and the populations do not get close to zero. Nevertheless, this
should be taken into account in the simulations. The original Lotka-Volterra model is only defined
for nonnegative populations, as a negative number of prey of predators does not have any biological
meaning. Also mathematically, negative u(t) or v(t) would yield a completely different evolution,
which would not be periodic. Therefore, the simulations should also be defined for nonnegative
populations only. If one of the species goes extinct, a simple solution is to just keep this population
at zero in the simulation, while the evolution of the other species can continue indefinitely. If the
prey goes extinct, the predator growth represented by βuv vanishes, as there is no food. Hence, the
predator population decays exponentially with rate rv. However, when the predator goes extinct,
this allows for exponential growth of the prey with rate ru. Next to the fact that this is biologically
unrealistic, this also results in an exploding number of prey, which will have a large influence on
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the average result after many simulations. Therefore, the prey is set to remain constant when the
predator goes extinct. In this way, extinction for both species is accounted for in the simulations.

To describe the noise effects, the main goal is to analyze the corresponding phase space and calculate
correlation functions for both populations. These quantities are interesting as they show properties
of the PDF and the structure of the time evolution in the system. This is especially useful if
the PDF can not be computed or analyzed explicitly, which is the case for this Lotka-Volterra
model. To obtain reliable results for the correlation functions through simulations, a large amount
of simulations has to be performed, each with a different noise realization41. For each simulation,
the trajectories u(t) and v(t) are determined at each point in time, as well as products like u(t)v(t)
by multiplying the states of the populations at each point in time. Summing the results of all
simulations at every time point and dividing by the number of simulations then yields ensemble
averages of the correlation functions, like 〈u(t)〉, 〈v(t)〉 and 〈u(t)v(t)〉. Note that these are indeed
ensemble averages in the sense of Eq. (2.7) instead of time averages, as the results are still time
dependent and the (unknown) PDF is taken into account through the Gaussian PDF of the noise.
Usually, the number of simulations is taken to be 103 or 104. These numbers are based on the
observation that in this case, the average results for the correlation functions only show small
deviations when the code runs a second time. Hence, these can be considered accurate ensemble
averages.

As is shown in Figure 5.5, a stochastic trajectory fluctuates around the deterministic one for small
noise amplitudes. Hence, it is interesting to study the fluctuations w(t) ≡ u(t)− ud(t) in the prey
and z(t) ≡ v(t)−vd(t) in the predators. The average total prey population is then given by 〈u(t)〉 =
ud(t) + 〈w(t)〉, as the deterministic trajectory ud(t) remains the same for every noise realization.
So, the average fluctuations in the prey 〈w(t)〉 can easily be obtained from the average total prey
population 〈u(t)〉. The two-point correlation function is given by 〈u(t)u(t′)〉 = u2d(t)+ud(t)〈w(t′)〉+
ud(t

′)〈w(t)〉 + 〈w(t)w(t′)〉, so this can also be calculated directly. With these expressions, the
following interesting relation for the connected contributions can be derived

〈u(t)u(t′)〉c ≡ 〈u(t)u(t′)〉 − 〈u(t)〉〈u(t′)〉 = 〈w(t)w(t′)〉 − 〈w(t)〉〈w(t′)〉 ≡ 〈w(t)w(t′)〉c. (5.4)

Hence, the covariance in the total prey population is equivalent to the covariance in its fluctuations.
Similar relations can be derived for the total predator population v(t) and its fluctuations z(t).

The analytical expressions for the two-point correlation functions 〈i(t)j(t′)〉 for i, j ∈ {u, v} will be
calculated at different points t, t′ in time. For both the simulations and the analytical calculations,
the two-point correlation functions will be determined at different points in time and at equal
times t = t′. The response functions can also be calculated analytically via the MSR formalism
and Eq. (3.53). However, this expression is not useful for the simulations, as the auxiliary fields
do not arise here. It could be possible to obtain these from the simulations via their definition
Eq. (3.51), but this is outside the scope of this work. Therefore, only analytical results for the
response functions are obtained.

5.2.1 Simulation results

To see if the simulations give reliable results and all effects are implemented correctly, it is useful
to reproduce results that were found in other studies. Unfortunately, a stochastic Lotka-Volterra
model with additive noise and without carrying capacities is barely considered in earlier research.

41This condition is taken care of by the random.normal function.
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The ones that get closest to the model (5.1) studied in this work are the models used by de la Hoz
& Vadillo in Refs. [28] and [29]. Their models, like Eq. (5.2), include multiplicative noise, but this
can easily be implemented by changing the structure of the noise coupling matrix D(y, t) (5.3) in
the itoint algorithm. Simulating these models with the same parameters42 as were used by de la
Hoz & Vadillo yields Figures 5.7-5.8. Only the simulation time is Tsim = mTlin ' 13.3 instead of
12, used by them. This is due to a restriction in the code that only allows integer values for the
number of linear cycles m.
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Figure 5.7: Phase space for averaged simula-
tions for 103 noise realizations of a stochastic
Lotka-Volterra model with multiplicative noise,
represented by the green line in Figure 5.2 of
Vadillo [29]. The simulation time is Tsim =
mTlin ' 13.3. This figure is produced with our
own Python code [109], for the same parameters
as in Ref. [29].
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Figure 5.8: Phase space of simulations of a
stochastic Lotka-Volterra model with multiplica-
tive noise as in de la Hoz & Vadillo [28]. The
blue line corresponds to the deterministic model,
while the green line is the average of 103 noise
realizations for Tsim = mTlin ' 13.3. This figure
is produced with our own Python code [109], for
the same parameters as in Ref. [28].

These results, obtained with our code, can be compared to the original results in Figures 5.2-5.3
found by de la Hoz & Vadillo. In Figure 5.7, only the model represented by the green line in
Figure 5.2 is simulated, as this has the most similarities with model (5.1) and it has explicit noise
amplitudes given by Ξu = Ξv = 0.001. The results in both figures are almost completely equivalent.
Figure 5.3 shows a trajectory for one noise realization in black, which is not reproducible, as every
noise value is drawn randomly. In both Figures 5.3 and 5.8, the blue line corresponds to the
deterministic solution, while the green line represents an average trajectory of stochastic simulations.
First of all, the deterministic trajectory is the same in both figures. The average stochastic trajectory
also shows the same general behavior in both cases. However, as the simulation time Tsim ' 13.3 is
slightly larger than 12, used by de la Hoz & Vadillo, the stochastic trajectory in Figure 5.8 traverses
the phase space slightly longer. The green trajectories in both figures show comparable general
behavior, but they are not entirely similar. As the average in Figure 5.3 from Ref. [28] is only
calculated for 100 noise realizations, this does not yield a reliable ensemble average. The average
trajectory in Figure 5.8 is computed over 103 noise realizations, which gives a more reliable ensemble
average. Over all, the simulations used here are able to reproduce the results found by these other
studies, so the algorithm can be assumed to yield reliable results.

42For the model used in Ref. [29], these are the standard parameters also used in other simulations in this work.
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Now, the stochastic Lotka-Volterra model (5.1) of interest with additive noise will be analyzed. Fig-
ures 5.5-5.6 showed a stochastic trajectory for one noise realization, compared to the deterministic
trajectory. Averaging over 104 noise realizations results in the time evolution of the populations in
Figure 5.9 and the phase space in Figure 5.10. For each simulation, the standard parameters and
initial conditions are used, with noise amplitudes Ξu = 0.2 and Ξv = 0.4. The simulation time is
again Tsim = 5Tlin. Both figures show that the average stochastic trajectory (〈un(t)〉, 〈vn(t)〉), which
consists of the average total populations after 104 noise realizations, remains close to and almost
completely overlaps with the deterministic solution (ud(t), vd(t)). A naive explanation of this behav-
ior can be given as follows. As the noise has a zero mean value and a Gaussian distribution, which
is a symmetric distribution, the probability of having a negative noise value is equal to the proba-
bility of a positive value. This holds for both species at each point in time. Therefore, a stochastic
trajectory for a single noise realization can propagate inside the curve enclosed by the deterministic
periodic evolution or outside this curve, both with equal probability. This also explains why a
single stochastic trajectory shows fluctuations both inside and outside the deterministic solution,
as in Figure 5.6. So, after averaging over a large number of simulations, one could expect that the
average stochastic evolution exactly follows the deterministic evolution of the system. This seems to
be the case for a few cycles, up to m = 3, but after a larger amount of time, the average stochastic
trajectory in Figure 5.10 shows inward spiraling motion. So, this explanation is not sufficient.
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Figure 5.9: Periodic solution (ud(t), vd(t)) of
the deterministic model represented by the
solid lines, and an average of simulations
(〈un(t)〉, 〈vn(t)〉) for 104 noise realizations repre-
sented by the dotted lines. Simulations are per-
formed with the standard parameters and noise
amplitudes Ξu = 0.2,Ξv = 0.4, for Tsim = 5Tlin.
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Figure 5.10: Corresponding phase space for de-
terministic solution (blue) and average of simu-
lations (green) for 104 noise realizations of the
stochastic Lotka-Volterra model. The orange
dot represents the initial populations (u0, v0) =
(40, 40). The black dot is the fixed point of the
model, which is (20, 40) for these parameters.

To observe and analyze this inward spiraling motion better, the simulations are performed for the
same parameters, but for a longer simulation time Tsim = 10Tlin. This yields Figure 5.11 for the
time evolution and Figure 5.12 for the corresponding phase space. The evolution of the average
stochastic populations seems to follow the deterministic results for a while, until the amplitude
of the stochastic populations starts to decrease around t = 5Tlin. This also slightly decreases the
period T (E) of the motion, as this decreases for a smaller energy E = M −M∗. The phase space
in Figure 5.12 confirms the smaller amplitude in the evolution of both species. Also, it seems here
that the inward spiraling motion is directed towards the fixed point (20, 40).
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Figure 5.11: Periodic solution (ud(t), vd(t)) of
the deterministic model (solid), and an aver-
age of simulations (〈un(t)〉, 〈vn(t)〉) (dotted) for
104 noise realizations. The simulations are per-
formed with the same parameters as in Fig-
ure 5.9, for Tsim = 10Tlin.
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Figure 5.12: Corresponding phase space for de-
terministic solution (blue) and average of simu-
lations (green) for 104 noise realizations of the
stochastic Lotka-Volterra model (5.1). The sim-
ulations are performed with the same parameters
as in Figure 5.10, for Tsim = 10Tlin.
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Figure 5.13: Average fluctuations 〈w(t)〉 =
〈un(t)〉−ud(t) in the prey population of 104 noise
realizations, for Tsim = 10Tlin.
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Figure 5.14: Average fluctuations 〈z(t)〉 =
〈vn(t)〉 − vd(t) in the predator population of 104
noise realizations, for Tsim = 10Tlin.

It is interesting to study the average fluctuations in both species for this longer time behavior,
shown for the prey as 〈w(t)〉 in Figure 5.13 and for the predator as 〈z(t)〉 in Figure 5.14. These
fluctuations show the same periodicity as both the simulation43 and deterministic trajectories, as
the difference between two periodic trajectories is also periodic. Also, both figures show periodic
behavior around 0, as inside the deterministic curve both populations are larger for half of the
period, and smaller for the other half. Furthermore, it is interesting to see that fluctuations spend a
relative large amount of time around zero, especially for the prey. This can be explained by the fact

43Although the period T (E) of the average simulations is slightly smaller than the period of the deterministic
trajectory, due to the inward spiraling motion.
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that this happens when both populations have lower numbers. This results in a slower evolution
of both species, hence the system, and thus the small fluctuations, spend a larger amount of time
in this part of the phase space. The general behavior of the fluctuations can be described as an
exponentially growing envelope. The amplitude of negative and positive fluctuations in the prey is
approximately equal, while for the predators larger negative fluctuations occur. This is represented
in the phase space by the larger deviation in the upper right part of Figure 5.12. This can be due
to the fact that the noise is scaled through the fixed point, which does not yield exactly the same
effect of the noise on each species.

A possible explanation of this inward spiraling motion could be that the noise gives rise to a
bifurcation in the phase space of the system, which changes the character of the fixed point. Such
a bifurcation is called a noise-induced transition. In the deterministic system, the fixed point is a
center, which is neither attracting nor repelling. In the stochastic system, the fixed point appears
to be a stable spiral, which would cause the average stochastic trajectory to spiral towards the fixed
point. To determine the character of the fixed point for the stochastic Lotka-Volterra model, a linear
stability analysis has to be performed. This yields exactly the same Jacobian44 (4.8) evaluated in
the fixed point (u∗, v∗) as for the deterministic model. This results from the additive nature of the
noise, which does not depend on the populations and therefore does not contribute to the Jacobian.
The fixed point is also a center for the stochastic system (5.1); hence this does not explain the
inward spiraling motion. Note that this behavior is also completely different from the outward
spiraling motion observed by Tian et al. [30], as their model also describes the spatial evolution of
both species and it includes carrying capacities.

To find an explanation for this inward spiraling motion, it should first be investigated if it is directed
towards the fixed point. An average of 103 noise realizations45 for the same standard parameters
and a simulation time Tsim = 25Tlin yields the phase space in Figure 5.15. It shows that the average
stochastic trajectory indeed spirals towards the fixed point, around which it keeps fluctuating, as
the deterministic evolution vanishes at the fixed point. This figure also shows the last result of each
simulation as an orange dot, which are distributed widely in phase space.

This spreading of the endpoints is caused by the individual stochastic trajectories that deviate from
the deterministic trajectory due to the noise. As the noise is small compared to the deterministic
contribution, each simulated trajectory still evolves around the periodic solution. The fluctua-
tions cause each stochastic trajectory to either ’accelerate’ or ’delay’, by respectively moving faster
towards or staying for a larger amount of time in a part of phase space than the deterministic
trajectory. Because each noise value is drawn independently from a Gaussian distribution at each
point in time, on average these effect should be the same for each simulation, so they should not
spread out through phase space. However, the period T (E) of a deterministic trajectory is shown
to depend on the ”energy” E = M −M∗ of the solution [106]. As M∗ is the constant of motion
in the fixed point (4.15), the energy scales with the distance of the trajectory from the fixed point.
Hence, the period of a stochastic trajectory changes when it deviates from the deterministic one.
As this period T (E) is a nonlinear function of the energy E, this effect is not averaged out by the
Gaussian distribution of the noise. So, this indeed yields an effective delay or acceleration for each
simulated trajectory, which causes them to diffuse in phase space. This effect increases with the

44For the two species Lotka-Volterra system, the Jacobian evaluated at the fixed point is called the community
matrix.

45The number of noise realizations is set to 103 to have clearly distinguishable endpoints. As the general features
of the average results do not change for 103 compared to 104 simulations, this is justifiable.
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simulation time Tsim. The effect on the period of the average stochastic trajectory is small, but this
spreading is what causes the behavior of the average trajectory.
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Figure 5.15: Phase space for deterministic so-
lution (blue) and average of simulations (green)
for 103 noise realizations. The simulations are
performed with the same parameters as in Fig-
ure 5.10, for Tsim = 25Tlin. The orange dots rep-
resent the endpoints of each simulation.

0 20 40 60 80 100 120
Population

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Prey
Predators

Figure 5.16: Corresponding histogram of the
endpoints of the 103 simulations, for Tsim =
25Tlin. The blue bins represent the prey, while
the red bins represent the predators. At t = Tsim,
the average number of prey is 20.2 and the aver-
age number of predators is 41.5.

The question remains why this diffusive behavior of the simulations results in the inward spiraling
motion towards the fixed point. As the spreading of the simulations increases with the simulation
time, Figure 5.15 shows the endpoints at t = Tsim of each simulation. The deterministic function
C(y, t) contributes the most to the evolution, so the simulations diffuse around the deterministic
trajectory. The spreading of these endpoints in phase space shows some interesting features. To
analyze the distribution of the endpoints, the corresponding histogram is shown in Figure 5.16. The
distribution of the prey is peaked around 12 and skewed, while the predator distribution seems to
be more symmetric. This skewness can again be explained by the slower evolution of the system for
smaller populations, which causes the system to spend more time in this area of the phase space.
The reversed effect can also be observed. For larger populations, the nonlinear contributions increase
and accelerate the evolution of the system. This affects every stochastic trajectory through larger
fluctuations at larger populations, which are also observable in the average stochastic trajectory.
This explains the larger negative fluctuations for the predators in Figure 5.14, as the predator
population consists of larger numbers.

The difference in distributions indicates that the effect of the noise on the predator species is
larger, due to the different amplitudes. But, most importantly, these distributions confirm that the
endpoints are widely spread through phase space. That this effect increases in time can be observed
by comparing the histogram for Tsim = 25Tlin in Figure 5.16 with the result for Tsim = 10Tlin
in Figure 5.17, which is also obtained for 103 simulations. For a smaller simulation time, the
distribution of the endpoints is even more skewed. Also, the distributions in Figure 5.17 have a
small variance compared to Figure 5.16, indicating that the diffusion of the simulations is still small
at this point in time.

By calculating the average population of the deterministic trajectory after a large simulation time
(Tsim = 25Tlin), it can be shown that this average is exactly given by the fixed point (20, 40).
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Calculating the average of the endpoint distributions in Figure 5.16 yields an average endpoint of
(20.2, 41.5), which is very close to the fixed point. After a large amount of time, the (ensemble)
average of the simulations follows the (time) average of the deterministic solution, as they are
spread around this trajectory. So, in some sense, the simulation endpoints in Figure 5.15 mimic
a deterministic solution. The average of the endpoint distributions in Figure 5.17 is given by
(12.2, 29.2), which is also caused by the small diffusion at time Tsim = 10Tlin. This average is far
below the fixed point, as at this point in time the simulations are in the area of phase space with
small populations.
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Figure 5.17: Histogram of the endpoints of 103

simulations, for Tsim = 10Tlin. The blue bins rep-
resent the prey, while the red bins represent the
predators. At t = Tsim, the average number of
prey is 12.2 and the average number of predators
is 29.2.
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Figure 5.18: Phase space for deterministic solu-
tion (blue) and average of simulations (green) for
104 noise realizations. Simulations are performed
with the same parameters as in Figure 5.10, ex-
cept for the initial populations (u0, v0) = (22, 40)
and the simulation time Tsim = 25Tlin.

Hence, as the diffusion increases with the simulation time, the average stochastic trajectory prop-
agates after a larger amount of time towards the fixed point, which is the average population of
the deterministic trajectory. This explains the inward spiraling motion towards the fixed point.
Although other studies, like de la Hoz & Vadillo [28], seem to observe this behavior46, it has never
been analyzed or explained before, for this particular type of stochastic Lotka-Volterra models.
Therefore, this is one of the new findings in this work.

One of the reasons that the individual simulations can distribute through phase space, is that the
deterministic solution for fixed initial populations (u0, v0) is not an attractor of this system, but a
saddle point. Hence, although this trajectory contributes to the evolution through the deterministic
function C(y, t), the general evolution with noise is not attracted towards this periodic curve. As
also the fixed point (20, 40) is still a center, there is no attractor in this system. Due to the large
deterministic contribution to the evolution, the simulations remain close to this periodic trajectory,
but without this the distribution of the simulations would become uniform without any structure.
This is also important for the semiclassical approach in Section 5.3, as it makes use of a saddle-point
expansion. A more detailed explanation is given in Appendix B.

46In their case, although the noise is multiplicative, the same inward spiraling motion is observed. It is however not
analyzed in their work.



5 STOCHASTIC LOTKA-VOLTERRA EQUATIONS 75

It could also be that a numerical inaccuracy partially causes the inward spiral of the average
stochastic trajectory. This inaccuracy could be similar to the one for the deterministic solutions for
different initial populations observed in Figure 4.6. Therefore, simulations are performed with the
same standard parameters except for the initial populations, which are set to (u0, v0) = (22, 40).
Also, the simulation time is set to Tsim = 25Tlin. The resulting phase space is depicted in Figure 5.18.
Indeed the inward spiraling motion is less for these initial populations compared to Figure 5.12, as
the simulation time is more than twice as large in this case. However, the difference in behavior for
both initial conditions is not as large as for the numerical inaccuracies in the deterministic solutions
Figure 4.6. Also, in this case the fluctuations seem to grow exponentially in time, as is confirmed
by Figures 5.13-5.14. This does not occur for the numerical inaccuracies in the deterministic case.
Instead, this behavior for initial populations closer to the fixed point can be explained in a different
way. For (u0, v0) = (22, 40), the system evolves closer to the fixed point, where it can be linearized
by Eq. (4.10). So, the nonlinear contributions are small in this case, and the period of the system
is given by T (E) ' Tlin. This causes a smaller diffusion of the stochastic solutions, which reduces
the inward spiraling motion. Hence, the nonlinear evolution also contributes to the strength of the
inward motion.
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Figure 5.19: Periodic solution (ud(t), vd(t)) of
the deterministic model represented by the
solid lines, and an average of simulations
(〈un(t)〉, 〈vn(t)〉) for 104 noise realizations repre-
sented by the dotted lines. Simulations are per-
formed with the standard parameters and noise
amplitudes Ξu = 2.0, Ξv = 4.0, for Tsim = 10Tlin.
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Figure 5.20: Corresponding phase space for de-
terministic solution (blue) and average of simu-
lations (green) for 104 noise realizations of the
stochastic Lotka-Volterra model (5.1). The sim-
ulations are performed with the standard param-
eters and noise amplitudes Ξu = 2.0, Ξv = 4.0,
for Tsim = 10Tlin.

The noise amplitudes Ξu and Ξv have a large influence on the velocity of the inward spiraling motion.
This is depicted in Figures 5.19-5.20, which show the average results for 104 noise realizations with
noise amplitudes Ξu = 2.0 and Ξv = 4.0. The phase space in Figure 5.20 shows faster inward
spiraling motion. However, in this case, this is not directed towards the fixed point. This is caused
by the simulations that go extinct due to the larger noise amplitudes. Out of the 104 simulations,
1689 have gone extinct. In the implementation of extinction in the algorithm, this either contributes
a completely extinct population or a constant prey and zero predators to the average. Hence, the
average stochastic trajectory does not converge to the fixed point, but slightly more to the lower
left. This can also be observed in the time evolution of the populations in Figure 5.19. At first, the
periodic behavior of the average simulations of both species is symmetric around the fixed point
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value. At later times, the inward motion reduces the amplitude of the average stochastic trajectory,
but the extinct simulations also cause the trajectory to decay towards smaller populations.

Although the noise amplitudes scale as Ξv = v ∗Ξu/u∗, the effect of the noise on both species turns
out to be different. It would be difficult to determine noise amplitudes that yield equal effects,
as both noises induce fluctuations in the other species indirectly through interactions. Therefore,
slightly changing the noise scaling does not have a large influence on the general behavior. Taking
extreme cases, like for example Ξu = 0 and Ξv = 0.4 or the other way around, show that the noise
effect is delayed in one of the species, but still occurs at later times. This should be expected, as the
system is nonlinear, so noise effects in one of the species should affect the other. Another interesting
test to verify the results is by implementing negative noise amplitudes. As the noise has a Gaussian
distribution, which is symmetric, this should not influence the results. This indeed does not yield
any difference.

5.3 MSR approach for additive noise

The simulations discussed in the previous section already yield some insights on the effects of additive
noise on the populations in the stochastic Lotka-Volterra model. Here, the same equations will be
analyzed using the MSR formalism discussed in Section 3.3. This method allows for an analytical
approach to the stochastic model via the calculation of (connected) correlation functions. The
two-dimensional system of SDEs (5.1) will be studied in a similar way as is done for the Langevin
equation in Sections 3.3.3 and 3.4. As ηu(t) and ηv(t) are external white noises that are added to
the deterministic EoM, it is justified to apply the MSR formalism in the Itô interpretation, as it
was derived in Section 3.3.1. Also, as the noise is additive, both interpretations should yield the
same results, as was explained in Section 2.3.3. The results obtained via the MSR formalism are
compared with the simulations.

In order to write down the correct MSR action, the initial number of prey u(t0) = u0 and predators
v(t0) = v0 have to be included in Eq. (5.1) in the form of Dirac delta functions as

u̇(t) = ruu(t)− αu(t)v(t) + u0δ(t− t0) +
√
Ξu ηu(t),

v̇(t) = −rvv(t) + βu(t)v(t) + v0δ(t− t0) +
√
Ξv ηv(t). (5.5)

In later calculations, the initial time is set to t0 = 0. Now we define the two-dimensional population
vectors y(t) = (u(t), v(t))T , y0 = (u0, v0)

T , the deterministic evolution vector C(y, t) = (ruu −
αuv,−rvv + βuv)T , the noise vector η(t) = (ηu(t), ηv(t))

T and the noise coupling matrix

D(y, t) =

(√
Ξu 0
0

√
Ξv

)
. (5.6)

Note that this matrix D(y, t) determines the character of the noise. This separation of the determin-
istic and stochastic part is exactly similar to the simulations. The stochastic Lotka-Volterra model
in Eq. (5.5) can be written in terms of these quantities as a two-dimensional nonlinear Langevin
equation

ẏ(t) = C(y, t) + y0δ(t− t0) +D(y, t)η(t), (5.7)

similar to Eq. (3.38). The corresponding auxiliary vector for the MSR action is given by ϕ(t) =
(qu(t), qv(t))

T , which consists of the auxiliary fields qu(t) and qv(t), for the prey and predator
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population respectively. The MSR action for the stochastic Lotka-Volterra model with additive
noise can now be obtained directly from Eq. (3.45) as

S[y,ϕ] =

∫ {
ϕ(t)

[
ẏ(t)− C(y, t)− y0δ(t− t0)

]
− 1

2
D2(y, t)ϕ2(t)

}
dt,

=

∫ {
qu
[
u̇− ruu+ αuv − u0δ(t− t0)

]
− Ξu

2
q2u (5.8)

+ qv
[
v̇ + rvv − βuv − v0δ(t− t0)

]
− Ξv

2
q2v

}
dt,

where the time dependence of the fields is neglected for notational convenience.

5.3.1 Semiclassical approximation

The simulated trajectory shown in Figure. 5.6 is the solution of the SDEs (5.5) for a single noise
realization. It fluctuates around the periodic solution of the corresponding deterministic system.
Therefore, it is interesting to study the stochastic Lotka-Volterra model in terms of fluctuations
around the deterministic solution, for fixed initial populations u0 and v0. This can be done by
applying the semiclassical approach. So, the MSR action is written as an expansion around a saddle
point (ys,ϕs) = (us, vs, qus , qvs), with the perturbation parameters given by the noise amplitudes Ξu
and Ξv. Disregarding the source fields47, the saddle-point equations (3.82) for this Lotka-Volterra
model are given by

δS[y,ϕ]

δu(t)

∣∣∣∣
u=us

= −q̇us − ruqus + αqusvs − βqvsvs = 0, (5.9)

δS[y,ϕ]

δv(t)

∣∣∣∣
v=vs

= −q̇vs + rvqvs − βqvsus + αqusus = 0, (5.10)

δS[y,ϕ]

δqu(t)

∣∣∣∣
qu=qus

= u̇s − ruus + αusvs − u0δ(t− t0)− Ξuqus = 0, (5.11)

δS[y,ϕ]

δqv(t)

∣∣∣∣
qv=qvs

= v̇s + rvvs − βusvs − v0δ(t− t0)− Ξvqvs = 0. (5.12)

As the initial conditions of the auxiliary fields qu0 and qv0 are not fixed, these equations have multiple
solutions. To determine an appropriate saddle-point configuration around which the expansion can
be performed, these initial values are set to qu0 = 0 = qv0 . Using the first two saddle-point equations,
this results in ϕs = (qus , qvs)

T = (0, 0)T . This choice might seem arbitrary, but it can actually be
justified. The equations for the real fields vanish for ϕs = 0, but the ones for the auxiliary fields
yield the deterministic Lotka-Volterra equations with initial populations (u0, v0). Hence, this choice
for the auxiliary fields qus and qvs exactly retrieves the deterministic evolution of the populations,
which is the behavior that can be expected in the limit of zero noise. As also the simulations show
trajectories and average results close to this deterministic trajectory, it is a good starting point to
study fluctuations around this periodic solution due to the noise. Defining the deterministic solution
of the system as (ud(t), vd(t)), the saddle point is given by (us, vs, qus , qvs) = (ud, vd, 0, 0) = (yd,ϕd).
Note, however, that this is not the only possible saddle point, as nonzero initial conditions for the
auxiliary fields would yield a different saddle point. As the saddle-point expansion is performed
in order of the noise amplitudes Ξu and Ξv, it follows automatically that the saddle point itself

47This is possible, as there are no actual sources in this system. The source fields only appear as a tool to calculate
correlation functions, and are put to zero afterwards.
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should be of zeroth order in both these amplitudes. Therefore, as this retrieves the deterministic
system, it is legitimate to set the saddle point to the corresponding deterministic evolution. Also,
the contributions of qus and qvs in the equations for the auxiliary fields are of first order in the
noise amplitude, which is another argument for neglecting these fields in determining the saddle
point. In the quantum mechanical interpretation of the semiclassical approach, these saddle points
are the classical solutions of the system. Consequently, the zero noise limit for stochastic systems
is equivalent to the classical limit for quantum systems. A more elaborate discussion on the saddle-
point approximation and this particular choice for the stochastic Lotka-Volterra equations is given
in Appendix B.

The arguments above also justify why regular perturbation theory is not a suitable first approach
to this model, instead of the semiclassical approach. As explained in Section 3.4, this would yield
an expansion in orders of the coupling constants of the nonlinear contributions, which are α and
β for the Lotka-Volterra model. However, these nonlinear contributions to the equations describe
the interaction of the species, which is exactly the behavior that results in the periodic solutions
of the system. A perturbative expansion up to first or second order in these coefficients would
therefore not include this nonlinear behavior. Hence, the semiclassical approach in the form of
the saddle-point expansion around (ud, vd) is a more natural technique to describe the effect of
noise on the deterministic evolution. Nevertheless, perturbation theory is still required later, as the
Lotka-Volterra model contains quadratic contributions, which yield cubic terms in the MSR action.

The general saddle-point expansion of the action up to third order in the fluctuations (δy, δϕ) ≡
(y − yd,ϕ−ϕd) can be written as

S[y,ϕ] =S[yd,ϕd] +
1

2

∫
δ2S[y,ϕ]

δ(y,ϕ)2

∣∣∣∣∣y=yd
ϕ=ϕd

(
δy
δϕ

)2

dt dt′

+
1

3!

∫
δ3S[y,ϕ]

δ(y,ϕ)3

∣∣∣∣∣y=yd
ϕ=ϕd

(
δy
δϕ

)3

dtdt′ dt′′. (5.13)

The contribution S[yd,ϕd] of the action evaluated at the saddle point vanishes, because ϕd = 0.
This also yields δϕ ≡ ϕ − ϕd = ϕ. For the prey and predator fields, it is convenient to write the
fluctuations as δy = (δu, δv) = (u − ud, v − vd) ≡ (w, z) ≡ ψ. The first-order contribution is zero
by definition of a saddle point. So, the first nonzero contribution to the saddle-point expansion of
the MSR action for the Lotka-Volterra model is given by the second-order term, which contains the
Hessian

δ2S[y,ϕ]

δ(y,ϕ)2

∣∣∣∣∣yd
ϕd

=


0 0 δu̇

δu

∣∣
ud

− ru + αvd −βvd
0 0 αud

δv̇
δv

∣∣
vd

+ rv − βud
δu̇
δu

∣∣
ud

− ru + αvd αud −Ξu 0

−βvd δv̇
δv

∣∣
vd

+ rv − βud 0 −Ξv

 δ(t−t′).

To get rid of the functional derivatives, the following tricks are useful:

δẋ(t)

δx(t′)
=

∂

∂t

δx(t)

δx(t′)
= δ′(t− t′), (5.14)∫

δ′(t− t′)f(t′) dt′ = f ′(t). (5.15)
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Applying these rules for functional differentiation to the second-order contribution results in deriva-
tives ẇ and ż of the fluctuations. The third-order contribution follows from taking another functional
derivative of the Hessian. This yields a (4, 4)-tensor, of which each part gives similar contributions.
Applying the Dirac delta functions, two of the time integrations are canceled, resulting in an action
that is local in time48

S[ψ,ϕ] =

∫ {
qu[ẇ − ruw + αvdw + αudz] + qv[ż + rvz − βudz − βvdw]

+ αwzqu − βwzqv −
Ξu
2
q2u −

Ξv
2
q2v

}
dt, (5.16)

where time dependence is omitted for notational convenience. This expression actually has a similar
structure as the original action in Eq. (5.8). This is no coincidence. The saddle-point expansion up
to third order in the fluctuations is equivalent to transforming the original action in terms of the
perturbations w = u− ud and z = v − vd, because there are no higher-order contributions. Hence,
this expansion really is an exact expression for the MSR action in terms of the fluctuations. This
holds in general for SDEs that have no cubic or higher-order contributions.

For the linear Langevin equation in Section 3.3.3, it was possible to calculate the generating func-
tional exactly by performing the Gaussian integrals for the quadratic contributions. As the MSR
action (5.16) for the Lotka-Volterra model contains contributions that are cubic in the fluctuations,
the generating functional can not be computed exactly. Therefore, just as for the nonlinear Langevin
equation in Section 3.4, perturbation theory is required. The action can be split in a quadratic free
part S0, that only contains the terms on the first line of Eq. (5.16), and an interacting part SI ,
that contains the cubic and noise contributions on the second line of Eq. (5.16). In the correspond-
ing Feynman diagrams, the contributions to S0 and SI are, respectively, given by propagators and
vertices. Note that the noise contributions in SI are also quadratic, and could be included in S0.
However, as the semiclassical approach is performed in the order of the noise amplitudes, it is more
convenient to treat the noise contributions as vertices.

For the free part of the action S0, it is useful to define a Green’s function. As there are multiple
quadratic contributions, such a Green’s function is not unique and the different possibilities should
be examined carefully. A first guess can be to define an inverse Green’s function

G−1
B (t, t′) =

(
d
dt − ru 0

0 d
dt + rv

)
δ(t− t′), (5.17)

which yields a free action

SB0 [ψ,ϕ] =

∫ [
ϕT (t)G−1

B (t, t′)ψ(t′) dt′ +ϕT (t)

(
αvd(t) αud(t)
−βvd(t) −βud(t)

)
ψ(t)

]
dt,

=

∫
ϕT (t)QB(t, t

′)ψ(t′) dt′ dt, (5.18)

where the matrix QB(t, t′) is given by

QB(t, t
′) = G−1

B (t, t′) +

(
αvd(t) αud(t)
−βvd(t) −βud(t)

)
δ(t− t′). (5.19)

48This only holds in the case of white noise, when the autocorrelation function of the noise is δ(t− t′). If this is not
the case, the autocorrelation function and hence the action are nonlocal in time.
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Using its definition and Eq. (5.17) for the inverse Green’s function G−1
B (t, t′), it can be seen that the

bare Green’s function GB(t, t′) is also diagonal, with nonzero entries GBu (t, t′), GBv (t, t′) satisfying(
d

dt
− ru

)
GBu (t, t

′) = δ(t− t′), (5.20)(
d

dt
+ rv

)
GBv (t, t

′) = δ(t− t′). (5.21)

This is a set of uncoupled differential equations that is easily solved by

GB(t, t′) =

(
GBu (t, t

′) 0
0 GBv (t, t

′)

)
= Θ(t− t′)

(
eru(t−t

′) 0

0 e−rv(t−t
′)

)
. (5.22)

Note that GBu,v(t, t) = 0 in the Itô interpretation. The expression for GBv (t, t′) can be recognized as
the Green’s function for the Langevin equation, obtained in (3.62). Here, these Green’s functions
describe the linearized solution of the Lotka-Volterra system around the fixed point for extinction
(u∗e, v

∗
e) = (0, 0), as described in Section 4.2. Around this point, the populations are so small that

the species almost do not interact, resulting in a decoupled system. This also justifies calling this
the bare Green’s function. So, the predator and prey populations show only the noninteracting part
of their evolution, which is, respectively, exponential decay and growth.

However, this decoupled behavior would only occur in the case of small populations. The saddle-
point expansion is performed around the deterministic solution (ud, vd), which is a periodic trajec-
tory with nonzero populations. Even if the initial populations are chosen such that they get close to
extinction, there are also other points in time where the populations are too large to neglect their
interactions. Consequently, the assumption that around the deterministic saddle point the evolu-
tion of the system is given only by the bare contributions is in contradiction with the saddle-point
expansion.

Luckily, the free action also includes other quadratic contributions in the second part of the matrix
QB, which already contains some part of the interactions of both species. These can be called
mean-field contributions, as for each term one of the species obeys its deterministic trajectory,
which is the field configuration without noise perturbations. To better describe the interacting
behavior of the species, a different choice could be to also include these mean-field contributions
in the Green’s function. As the second contribution to QB in Eq. (5.19) has nonzero off-diagonal
entries, this would result in four coupled differential equations that should be solved to obtain the
Green’s function. This system is solvable, but yields intractable and uninsightful solutions. An
intermediate possibility is to only include the contributions that still result in a diagonal inverse
Green’s function, given by

G−1
M (t, t′) =

(
d
dt − ru + αvd(t) 0

0 d
dt + rv − βud(t)

)
δ(t− t′), (5.23)

for which the corresponding mean-field Green’s function is

GM (t, t′) =

(
GMu (t, t′) 0

0 GMv (t, t′)

)
,

= Θ(t− t′)

(
eru(t−t

′)−α
∫ t
t′ vd(t1) dt1 0

0 e−rv(t−t
′)+β

∫ t
t′ ud(t1) dt1

)
. (5.24)



5 STOCHASTIC LOTKA-VOLTERRA EQUATIONS 81

As for the bare case, also GMu,v(t, t) = 0 in the Itô interpretation. For the prey part GMu , the
interaction with the predators is fixed by the deterministic trajectory vd, while for the predator
part GMv , the interaction is fixed by the prey trajectory ud. Hence, this can be interpreted as a
Green’s function where the interactions are fixed by the mean-fields ud and vd. As this description is
more realistic than the bare one, the rest of the calculations will be performed using the mean-field
approach. The mean-field free action SM0 is equivalent to the bare case SB0 (5.18), only that the
matrix QM is now written as

QM (t, t′) = G−1
M (t, t′) +

(
0 αud(t)

−βvd(t) 0

)
δ(t− t′). (5.25)

For the Feynman diagrams, the contributions to S0 are drawn as propagators, while the contri-
butions to SI are given by vertices. As the choice of the Green’s function does not affect this
separation, the Feynman rules for the bare and mean-field case will be the same. This also yields
the same diagrams for both cases, where only the propagators correspond to different expressions.
Hence, this allows for a comparison of both methods with the simulations. Since the bare description
is less realistic, it is interesting to verify if this also yields correlation functions that deviate more
from the simulation results than for the mean-field approach. This comparison will be performed
in Section 5.4.

The complete MSR action for the stochastic Lotka-Volterra model with additive noise is now given
by

S[ψ,ϕ] =S0[ψ,ϕ] + SI [ψ,ϕ],

=

∫ [
ϕT (t)G−1

M (t, t′)ψ(t′) dt′ +ϕT (t)

(
0 αud(t)

−βvd(t) 0

)
ψ(t) (5.26)

+ αwzqu − βwzqv −
Ξu
2
q2u −

Ξv
2
q2v

]
dt.

With this expression, it is possible to calculate the generating functional Z[Jy,Jϕ] in a convenient
way. Here, the source fields are defined by Jy = (Ju, Jv)

T and Jϕ = (Jqu , Jqv)
T . The definition of

the MSR generating functional in Eq. (3.46) now yields

Z[Jy,Jϕ] =

∫
exp

{
−S[y,ϕ] +

∫
JTy (t)y(t) dt+

∫
JTϕ (t)ϕ(t) dt

}
DyDϕ,

=

∫
exp

{
−S[ψ,ϕ] +

∫
JTy (t)[ψ(t) + yd(t)] dt+

∫
JTϕ (t)ϕ(t) dt

}
DyDϕ, (5.27)

= Zcl[Jy]Zψ[Jy,Jϕ].

By using that y(t) = ψ(t)+yd(t) and δϕ(t) = 0, the generating functional is split in a deterministic
part Zcl and a contribution for the fluctuations Zψ. The classical49 generating functional Zcl[Jy],
containing only the contribution from the deterministic saddle point, is given by

Zcl[Jy] = exp

{∫
JTy (t)yd(t) dt

}
. (5.28)

49Classical here means in the quantum-mechanical interpretation of the semiclassical approach. Here, the zeroth-
order contribution to the generating functional is obtained from the deterministic solutions.
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Zψ[Jy,Jϕ] contains the contributions of the fluctuations around the saddle point. As the saddle
point yd(t) is a fixed trajectory in phase space, it is possible to write Dy = D(yd+ψ) = Dψ. Thus,
the contribution of the deviations is

Zψ[Jy,Jϕ] =

∫
exp

{
−S[ψ,ϕ] +

∫
JTy (t)ψ(t) dt+

∫
JTϕ (t)ϕ(t) dt

}
DψDϕ,

=exp

{
−
∫ [

ϕT (t1)

(
0 αud(t1)

−βvd(t1) 0

)
ψ(t1)−

Ξu
2
q2u(t1)−

Ξv
2
q2v(t1) (5.29)

+ αw(t1)z(t1)qu(t1)− βw(t1)z(t1)qv(t1)

]
dt1

}
Z0[Jy,Jϕ].

This expression introduces the free generating functional Z0[Jy,Jϕ], just as was done for the
Langevin equation (3.59). This can be written in terms of the free action S0[ψ,ϕ], which only
contains the contribution from the (inverse) Green’s function, as

Z0[Jy,Jϕ] =

∫
exp

{
−
∫
ϕT (t)G−1

M (t, t′)ψ(t′) dt dt′ +

∫
JTy (t)ψ(t) dt+

∫
JTϕ (t)ϕ(t) dt

}
DψDϕ,

= exp

{∫
JTy (t)G

M (t, t′)Jϕ(t
′) dtdt′

}
. (5.30)

In the last line, the Green’s function arises from completing the square and performing the Gaussian
path integrals. Again, the nonlinear contributions in Zψ[Jy,Jϕ] can now be written as functional
derivatives with respect to the source fields, acting on the free generating functional Z0[Jy,Jϕ] as

Zψ[Jy,Jϕ] = exp

{
−
∫ [(

δ

δJϕ

)(
0 αud(t1)

−βvd(t1) 0

)(
δ

δJy

)
− Ξu

2

(
δ

δJqu

)2

− Ξv
2

(
δ

δJqv

)2

+
δ2

δJuδJv

(
α

δ

δJqu
− β

δ

δJqv

)]
dt1

}
Z0[Jy,Jϕ]. (5.31)

The off-diagonal quadratic contributions from the matrix QM remain in Zψ as functional derivatives.
These should be contained in the free part Z0, as this corresponds to the free action S0, and therefore
to the propagators of this field theory. Applying these functional derivatives explicitly gives rise to
the mean-field Green’s matrix

B(t, t′) =

(
GMu (t, t′) −α

∫ t
t′ G

M
u (t, t1)ud(t1)G

M
v (t1, t

′) dt1
β
∫ t
t′ G

M
v (t, t1) vd(t1)G

M
u (t1, t

′) dt1 GMv (t, t′)

)
,

≡
(
Buu(t, t

′) Buv(t, t
′)

Bvu(t, t
′) Bvv(t, t

′)

)
, (5.32)

such that the free generating functional Z0 transforms to the mean-field generating functional

ZM0 [Jy,Jϕ] = exp

{∫
JTy (t)B(t, t′)Jϕ(t

′) dtdt′
}
. (5.33)

It is important to note that each entry Bij(t, t) = 0 for all i, j ∈ {u, v}. This follows directly from
the fact that GMu,v(t, t) = 0, as Θ(t− t) = 0 in the Itô interpretation. The generating functional of
the fluctuations becomes

Zψ[Jy,Jϕ] = exp

{∫ [
δ2

δJuδJv

(
β

δ

δJqv
− α

δ

δJqu

)
+

Ξu
2

(
δ

δJqu

)2

+
Ξv
2

(
δ

δJqv

)2
]
dt2

}

exp

{∫
JTy (t)B(t, t′)Jφ(t

′) dt dt′
}
. (5.34)
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5.3.2 Perturbative calculations

Now that an expression is obtained for both the classical and fluctuation part of the complete
generating functional Z[Jy,Jϕ] = Zcl[Jy]Zψ[Jy,Jϕ] in terms of a Green’s function, it is possible to
calculate correlation functions that describe the average and variance in the populations. This will
be done by applying perturbation theory to the contribution of the fluctuations Zψ. The classical
part Zcl[Jy] only contains contributions from the deterministic Lotka-Volterra system. As this
system is already solved by the saddle point yd, calculating correlation functions from Zcl does not
yield any new information on the stochastic system. Also, the main interest is to look at deviations
from this deterministic evolution. This justifies calculating the average fluctuations 〈w(t)〉, 〈z(t)〉,
and their covariances through the two-point functions 〈w(t)w(t′)〉, 〈z(t)z(t′)〉 and 〈w(t)z(t′)〉. This
requires only the part of the generating functional that contains these fluctuations, which is Zψ.
The total average populations can easily be retrieved by also taking into account the deterministic
evolution. Writing the exponents in Eq. (5.34) as a Taylor expansion yields

Zψ[Jy,Jϕ] =

∞∑
V=0

1

V !

{∫ [
δ2

δJuδJv

(
β

δ

δJqv
− α

δ

δJqu

)
+

Ξu
2

(
δ

δJqu

)2

+
Ξv
2

(
δ

δJqv

)2
]
dt2

}V
∞∑
P=0

1

P !

{∫
(Ju(t), Jv(t))

(
Buu(t, t

′) Buv(t, t
′)

Bvu(t, t
′) Bvv(t, t

′)

)(
Jqu(t

′)
Jqv(t

′)

)
dtdt′

}P
. (5.35)

In the expansions, V represents the number of vertices and P the number of propagators. This
expression shows that there are four different vertices and four different propagators in this field
theory. As for the nonlinear Langevin equation, it is convenient to assign each a separate value.
This can be implemented in Zψ by writing separate expansions for the four vertices and four
propagators, instead of only one for both as in Eq. (5.35). For notational convenience, this will
not be done explicitly. The total number of propagators is given by Puu + Puv + Pvu + Pvv, where
each contribution corresponds to one of the entries of the matrix B(t, t′). The number of vertices
is separated in cubic vertices Vc = Vα + Vβ, where the subscript corresponds to the coefficient of
the cubic interaction, and noise vertices N = Nu +Nv that correspond to the interaction with the
prey and predator noise amplitudes as coefficients. Hence, the total number of vertices is given by
Vc+N . The number of remaining external legs after applying the functional derivatives is then for
each field given by the following consistency relations

Eu = Puu + Puv − Vα − Vβ,

Ev = Pvu + Pvv − Vα − Vβ,

Equ = Puu + Pvu − Vα − 2Nu, (5.36)
Eqv = Puv + Pvv − Vβ − 2Nv.

As only one- and two-point correlation functions will be calculated for the populations in this model,
the number of external legs for the prey and predator fields can be restricted to 1 ≤ Eu+Ev ≤ 2. The
auxiliary fields themselves do not describe a physically interesting quantity, but they do contribute
to the response functions, as these are obtained from the two-point correlation functions that couple
one real field to one auxiliary field. Looking at the structure of ZM0 [Jy,Jϕ], it can be seen that this
free part already contains the required coupling of source functions that yields nonzero contributions
to the response functions, even for V = 0. Hence, it is justified to set Equ = Eqv = 0 and calculate
only these contributions to the response functions, which are zeroth order in the perturbation50.

50This is reasonable because the auxiliary fields do not arise in the simulations. Hence, the analytical results can
not be compared to any simulated response function. In addition, allowing nonzero values for Equ and Eqv would
give rise to many more Feynman diagrams, which would not contribute to the correlation functions.
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As stated earlier, the saddle-point expansion can be performed in orders of the noise amplitudes, to
analytically describe the effect of random noise in the system through the fluctuations. Therefore,
the number of noise vertices N should be restricted to fix the order of the noise. For this work, the
fluctuations are studied up to first order in the noise amplitudes, so N = Nu+Nv ≤ 1. Subtracting
the equations for Eu and Ev from Equ + Eqv yields

Vα + Vβ = 2(Nu +Nv)− (Eu + Ev) ≤ 2 · 1− 1 ≤ 1. (5.37)

Hence, the consistency relations together with the conditions for the external legs and noise vertices
also restrict the number of cubic vertices Vc ≤ 1. Conditions for the number of propagators now
follow directly from each consistency relation. Using these restrictions, all possible combinations
of propagators, vertices, and external legs can be calculated. The diagrams are then given by
rearrangements of these combinations. This also justifies why the expansion is done up to first
order in the noise amplitudes. This is to keep the calculation of diagrams tractable, as the second-
order correction already gives rise to 40 possible combinations of propagators, vertices, and external
legs, for 〈w(t)〉 only. As the diagrams consist of all rearrangements of these combinations, the total
number of diagrams will be even larger. Despite the fact that several of these diagrams vanish,
because Bij(t, t) = 0 due to Itô’s convention, second-order corrections will not be considered in this
work.

A short note can be made on the number of loops arising in these diagrams. As stated in Sec-
tion 3.4.1, the number of loops in a connected diagram is given by L = I − V + 1, where I is
the number of internal legs. This relation holds for any field theory. For the nonlinear Langevin
equation, it was also shown that a connected diagram was of order ΞE+I−V . This is not valid for the
stochastic Lotka-Volterra equations. Using the consistency relations, one finds that the total noise
order is N = E+2I−3Vc. Hence, for this model, the noise order can not be expressed conveniently
in terms of the number of loops L, as this depends on the kind of vertices in a diagram. Further-
more, due to the different kinds of vertices and propagators, there are several different possible
loops. Therefore, the expansion will be performed in orders of the noise amplitudes instead of the
number of loops.

To draw the Feynman diagrams corresponding to the contributions to the correlation functions,
Feynman rules have to be defined for this stochastic field theory. For the external sources and
propagators, these are given by

=

∫
Ju(t) dt, = Buu(t, t

′),

=

∫
Jqu(t) dt, = Buv(t, t

′),

=

∫
Jv(t) dt, = Bvu(t, t

′),

=

∫
Jqv(t) dt, = Bvv(t, t

′).

The prey fields are depicted by straight lines, while the wiggled lines represent the predator fields.
An arrow pointing towards the source indicates a ’real’ prey or predator field, while arrows pointing
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away from the sources correspond to the auxiliary fields. Each propagator represents an entry of the
mean-field Green’s matrix B(t, t′). The diagonal entries contain only prey or only predator Green’s
functions, so they are depicted by a complete straight or wiggled line. In the off-diagonal entries
in Eq. (5.32), the different Green’s functions couple, so these are represented by mixed lines. Note
that these contributions already include an integration over time t1, which is the point in time when
the Green’s functions couple to one of the deterministic fields. This is not shown explicitly in the
Feynman diagrams.

The Feynman rules for the four vertices of this field theory are given by

= Ξu

∫
dt, = Ξv

∫
dt,

= β

∫
dt, = −α

∫
dt.

There are two noise vertices with a crossed and open dot for the noise amplitude of the prey and
predators, respectively. The factor 1/2 in both these interactions in Eq. (5.35) cancels the symmetry
factor for the vertices. For the cubic vertices, the interaction with coefficient β is depicted by the
filled square, while the interaction with coefficient −α is represented by the dashed dot. The vertices
also show the incoming and outgoing lines that connect to the propagators and external sources. It
is important to note that the noise vertices can only have outgoing lines.

Using the conditions for the number of external legs, propagators, and vertices, it is possible to
write down a complete expression for Zψ in terms of Feynman diagrams, up to first order in the
noise amplitudes. The main goal is to derive correlation functions for the fluctuations from this
generating functional. Therefore, only these correlation functions will be expressed as Feynman
diagrams here. To determine all diagrams that have a nonvanishing contribution to these quantities,
all rearrangements of the different combinations of external legs, propagators, and vertices that can
contribute should be taken into account. Consider for example the average fluctuations in the prey
species 〈w(t)〉. By definition of the generating functional, this is given by

〈w(t)〉 = δ

δJu(t)
Zψ[Jy,Jϕ]

∣∣∣∣
Jy=Jϕ=0

. (5.38)

Hence, to obtain a nonzero contribution, the external legs should be set to Eu = 1 and Ev = 0. It can
be shown that up to first order in the noise amplitudes, this gives rise to six possible combinations
for the remaining propagators and vertices. All possible rearrangements then yield twelve different
Feynman diagrams. Several of these diagrams include loops that connect the cubic vertex to itself.
Take for example Pvv = 1, Puv = 2, Vβ = 1 and Nv = 1, for which one possible diagram is

. (5.39)
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As the cubic vertices are local in time, the propagator in these loops is also local, i.e. it is given by
Bij(t, t) for some i, j ∈ {u, v}. As mentioned earlier, Bij(t, t) = 0 in the Itô interpretation. Hence,
all diagrams with loops that connect the cubic vertex to itself vanish. There are nine of these
diagrams for 〈w(t)〉, so this leaves only three nonzero contributions. Hence, the average fluctuations
in the prey up to first order in the noise are

〈w(t)〉 = + + .

(5.40)
The average fluctuations in the predator species can be calculated in a similar way as 〈z(t)〉 =
δZψ/δJv(t), by setting Ev = 1 and Eu = 0. This also yields three nonvanishing diagrams up to first
order in the noise,

〈z(t)〉 = + + .

(5.41)
All contributing diagrams contain a loop that connects one of the noise vertices to one of the cubic
vertices. This can be interpreted as the noise (amplitudes) coupling to the interactions in the
system, which scale with the coefficients α and β. A similar coupling was also observed in the one-
point function (3.78) for the nonlinear Langevin equation. These loops also contain an interaction
with one of the deterministic fields, through the off-diagonal entries of B(t, t′). For the average
prey fluctuations, two diagrams include an empty dot, which contains the noise amplitude Ξv of
the predators. This is interesting, as there is only one diagram with a crossed dot, representing the
noise Ξu in the prey itself. For the predator diagrams, this is reversed. Fluctuations due to random
effects in one species affect the other species via the interaction in the system. Therefore, the noise
effects in one species have an indirect effect on the other species.

The two-point correlation functions for the fluctuations can be calculated in a similar way, by fixing
again the number of external legs Eu and Ev, which should satisfy Eu + Ev = 2. This gives no
diagrams with cubic interactions, as Eq. (5.37) yields that Vα + Vβ ≤ 0 for a noise order of N = 1.
Hence, every diagram only contains one noise vertex and two external legs. All two-point correlation
functions are then given by

〈w(t)w(t′)〉 = + , (5.42)

〈z(t)z(t′)〉 = + , (5.43)

〈w(t)z(t′)〉 = + . (5.44)

The different endpoints in the diagrams describe different points t, t′ in time. Hence, when t = t′

for the comparison with the simulations, this corresponds to a loop in the Feynman diagrams.
Each two-point function contains one contribution for each noise vertex. Just as for the one-point
functions, this can be expected due to the indirect effect of noise in one species on the other species,
through their interactions.
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The obtained correlation functions, which only contain connected diagrams, describe the behavior
of the fluctuations in the populations. To find expressions for the correlation functions of the total
populations u(t) and v(t) in terms of Feynman diagrams, also disconnected diagrams should be
included. Hence, this also contains contributions from the classical generating functional Zcl[Jy],
as the total generating functional is given by Z[Jy,Jϕ] = Zcl[Jy]Zψ[Jy,Jϕ]. Luckily, these dis-
connected contributions can simply be derived by looking at the one- and two-point functions for
the total populations. The average total prey population is given by 〈u(t)〉 = ud(t) + 〈w(t)〉, so it
can be obtained from 〈w(t)〉 by just adding the deterministic evolution. Its two-point function is
given by 〈u(t)u(t′)〉 = u2d(t)+ud(t)〈w(t′)〉+ud(t′)〈w(t)〉+ 〈w(t)w(t′)〉, so this can also be calculated
directly. The covariance 〈u(t)u(t′)〉c is then obtained via Eq. (5.4). Similar relations hold for the
total predator population v(t) and its fluctuations z(t).

As the correlation functions for the fluctuations are compared with the simulations, they need to be
calculated explicitly. Using the Feynman rules, the diagrams in Eq. (5.40)-(5.44) can be converted
back into integral expressions. For the average fluctuations in the prey, this yields

〈w(t)〉 =Ξvβ

∫ t

0
Buv(t, t2)Buv(t2, t1)Bvv(t2, t1) dt2 dt1 − Ξvα

∫ t

0
Buu(t, t2)Bvv(t2, t1)Buv(t2, t1) dt2 dt1

−Ξuα

∫ t

0
Buu(t, t2)Buu(t2, t1)Bvu(t2, t1) dt2 dt1. (5.45)

Calculating these integrals is not an easy task. First of all, every integral contains at least one off-
diagonal entry of the matrix B(t, t′). These elements already contain an integration in time, which
also includes the deterministic population trajectories ud(t) and vd(t). These periodic solutions are
also contained in each Green’s function. As stated in Section 4.2, there is no analytical expression for
these periodic solutions of the deterministic Lotka-Volterra model. So, they can only be computed
numerically at discrete points in time, with a separation given by the simulation time step ∆t.
Therefore, it is not possible to perform these integrals symbolically. A solution to this problem
could be to determine an interpolation of these numerical deterministic solutions, but this turned
out to result in extremely large runtimes in both Mathematica and Python. A different possibility
is to calculate the Fourier transforms of the deterministic solutions, ûd(ω) and v̂d(ω). As ω is the
frequency, one could expect that these Fourier transforms are peaked around the frequency ωd =
2π/T of the deterministic evolution with period T . It turns out that taking into account only this
frequency is not enough to get well-behaving Fourier transformed functions. This resulted in nonzero
imaginary contributions to the correlation functions. Furthermore, this also gives large runtimes.
As these methods do not work, it is better to use the discrete numerical solutions for ud(t) and vd(t).
This requires all integrals to be calculated numerically as explicit Riemann sums, with a discrete
time step ∆t. This approach, which is also contained in our code in Ref. [109], solves the integrations.
Another issue might be that the mean-field Green’s functions can be exponentially increasing. As
the integrations are done for t ∈ [0, Tsim] to compare with the results of the simulations, this can
lead to exponential behavior that grows quickly in time. This will be discussed elaborately in the
following section.

The last interesting quantities to be considered are the response functions. These determine the
response of the average 〈y(t)〉 due to an external force f(t′) = (fu(t

′), fv(t
′)), for t ≥ t′. Via

Eq. (3.53), these can be calculated in terms of a connected two-point function consisting of one
real field and one auxiliary field. For this two-dimensional system there are four different response
functions, as there are two real fields u(t), v(t) and two auxiliary fields qu(t), qv(t). As mentioned
earlier, the free part ZM0 [Jy,Jϕ] of the generating functional already yields nonzero contributions
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to the response functions. These contributions are exactly given by one of the entries of the matrix
B(t, t′). As the response functions are not simulated, it suffices to only look at these contributions,
which are zeroth order in the perturbation theory. So, for t ≥ t′,

Ruu(t, t
′) = 〈u(t)qu(t′)〉c,

=
δ2

δJu(t)δJqu(t
′)
logZM0 [Jy,Jϕ]

∣∣∣∣
Jy=Jϕ=0

, (5.46)

= Buu(t, t
′),

Rvv(t, t
′) = 〈v(t)qv(t′)〉c = Bvv(t, t

′), (5.47)

Ruv(t, t
′) = 〈u(t)qv(t′)〉c = Buv(t, t

′), (5.48)

Rvu(t, t
′) = 〈v(t)qu(t′)〉c = Bvu(t, t

′). (5.49)

Note that the real fields u(t) and v(t) in the response function determine the coupling constant, α and
β respectively. As the off-diagonal entries of B(t, t′) include integrations containing the deterministic
fields ud(t) and vd(t), the response functions are also calculated numerically via Riemann sums. For
Tsim = 10Tlin, the results are shown in Figure 5.21. The time t′ at which the perturbation or external
force is applied is set to t′ = t0 = 0. The response functions Ruu(t, 0) and Rvv(t, 0), describing
responses of the populations to a perturbation in its own species, show periodic behavior. Hence,
up to zeroth order in the noise and cubic interactions, these responses do not decay to zero, but
remain in the system with a constant amplitude. Although the periodic behavior can be explained by
the periodicity of the deterministic system, the constant amplitude is one of the unrealistic features
of this zeroth order approach, as an interacting system usually reacts to such a perturbation, which
affects the response function later in time. The coupled response functions Ruv(t, 0) and Rvu(t, 0),
describing responses of the populations to a perturbation in the other species, also show periodic
behavior. However, these responses grow in time, respectively in a positive and negative direction.
So, a perturbation in one species amplifies the response in the other species.

Next to the physical interpretation of these response functions, it is also useful to observe the long
time behavior of the elements of the mean-field Green’s matrix B(t, t′) (5.32), as these will be used in
the computation of the Feynman diagrams. The diagonal entries Buu(t, 0) and Bvv(t, 0) are periodic
due to the deterministic fields contained in the Green’s functions GMu (t, t′) and GMv (t, t′). Hence,
including these mean-fields indeed yields more realistic behavior, by diminishing the exponential
growth and decay that was observed in the bare Green’s functions. Also note that these contributions
have an approximate phase difference of π/4, which is the phase difference of the linearized solution
around the fixed point. The off-diagonal entries Buv(t, 0) and Bvu(t, 0) are also periodic due to
the coupling to the mean-fields ud(t) and vd(t). The respective negative and positive growth of
their amplitudes arise from the integration in time in Eq. (5.32). Hence, as all correlation functions
contain at least one off-diagonal element of B(t, t′), which is again integrated in time through the
Feynman rules, this behavior can cause exponential growth or decay in the diagrams. This will be
analyzed further in the following section.
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Figure 5.21: The four response functions (a) Ruu(t, 0), (b) Ruv(t, 0), (c) Rvu(t, 0) and (d) Rvv(t, 0)
of the two species stochastic Lotka-Volterra system, for t′ = t0 = 0 and Tsim = 10Tlin.

5.4 Results & Comparison

The analytical expressions for the correlation functions in this system obtained with the MSR
formalism in the last section are already insightful by themselves. However, to see whether the
MSR formalism is really a useful tool to describe this stochastic system, these analytical results
have to be compared with the averaged simulated results for the same correlation functions. All
calculations are performed with the standard parameters [ru, rv, α, β] = [2, 1, 0.05, 0.05] and initial
populations (u0, v0) = (40, 40). The noise amplitudes are given by Ξu = 0.2 and Ξv = 0.4. All
simulations are performed for 104 noise realizations, unless specified otherwise. The total number
of time steps is N = 100m. The results are shown for different times Tsim = Tlin, 2Tlin and 10Tlin.

Figure 5.22 shows the results for a simulation time Tsim = Tlin. The dashed red lines represent
the correlation functions obtained with the MSR formalism via the mean-field Green’s functions
GM (t, t′). The dotted green lines show the average results from the simulations. The average
fluctuations yield a well-defined measure of the deviation of both stochastic results with respect
to the deterministic fields. However, to give an interpretation for this stochastic model with the
chosen standard parameters, it is better to rescale the absolute fluctuations by the initial populations
(u0, v0). This is to compare the size of the fluctuations with respect to the total populations. Hence,
all correlation functions of fluctuations are relative with respect to the initial populations.
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The relative average fluctuations for both species are depicted in Figures 5.22a-5.22b. As the
simulation time corresponds to only one linear cycle, the averaged simulations only deviate slightly
from the deterministic trajectory, resulting in small average fluctuations of about −0.1% in the prey
and −0.5% in the predators. This indicates again that the noise effect is larger for the predator
species, as its fluctuations are larger. The analytical result for these average fluctuations, given
by the Feynman diagrams in Eq. (5.40)-(5.41), has the same order of magnitude. Hence, even
though the time integrals in the Feynman diagrams show exponential behavior as in Figure 5.21,
for Tsim = Tlin, their order of magnitude is still similar to the simulation results. The predator
fluctuations 〈z(t)〉 obtained from the MSR formalism grow faster in the negative direction than
the simulation results, but the general behavior is similar. Except for a sign change, the prey
fluctuations 〈w(t)〉 are also comparable, which can be seen by inverting the analytical result in
the time axis. So, for short time, the MSR formalism captures the correct general behavior of the
fluctuations with only a sign difference in the prey species.

Figure 5.22c shows the total average populations. The deterministic populations are also shown for
reference, represented by a solid blue line for the prey ud(t) and a solid red line for the predators
vd(t). The dashed lines correspond to the analytical populations, which are obtained from 〈ua(t)〉 =
ud(t)+〈w(t)〉 and 〈va(t)〉 = vd(t)+〈z(t)〉. The averaged simulations are represented by dotted lines.
As the average fluctuations in both species are smaller than 1%, these are not visible in the total
populations. This also indicates that the inward spiraling motion of the average simulations is not
yet observable.

The two-point correlation functions for the total populations at equal times t = t′ are shown in
Figures 5.22d-5.22f. These are depicted instead of the two-point functions of the fluctuations, as
these already show exponential growth that yields much larger fluctuations than found for the
simulated case51. Hence, the fluctuation two-point functions appear to be zero compared to the
analytical ones. The results of the analytical two-point functions for the fluctuations are shown in
Appendix C.1. These are compared with separate results for the simulations. Here, the exponential
behavior of the Feynman diagrams becomes visible. This is mainly due to the behavior of the
coupled propagators, which arise in at least one Feynman diagram of each two-point correlation
function (5.42)-(5.44). These represent the off-diagonal elements Buv(t, t) and Bvu(t, t) of the mean-
field Green’s matrix. This behavior seems to be inherent to every time integration of GMu,v(t, t′).

Nevertheless, it is still interesting to study the total two-point functions. Clearly, the exponential
growth in 〈w(t)w(t)〉 is already large enough that also the analytical result for 〈u(t)u(t)〉 grows
exponentially. This indicates that the largest exponential behavior is caused by the prey Green’s
function GMu (t, 0), as this is the part of the propagator at each end time t in the diagrams for
〈w(t)w(t)〉. Hence, even though the mean-field approach diminishes some of the exponential growth
in GMu (t, 0) compared to the bare Green’s function GBu (t, 0) (5.22), it is still not a good enough
description to obtain correct higher moments. Some of the periodicity of the system arising from
the coupling to the deterministic fields is still contained in 〈u(t)u(t)〉. This periodicity is better
visible in the other two-point correlation functions 〈v(t)v(t)〉 and 〈u(t)v(t)〉. These total two-point
functions show better results compared to the simulations. First of all, they show comparable
orders of magnitude, but also they follow the same periodic behavior. However, also here the
exponential behavior becomes visible close to t = Tsim. Nevertheless, it can be concluded that the
MSR formalism shows general behavior similar to the simulations for these two-point functions.

51This is also the case for the non-equal time correlation functions like 〈w(t)w(t′)〉 for t′ = Tlin/2; thus these are
also not shown here.
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(a) Relative average fluctuations in prey 〈w(t)〉. (b) Relative average fluctuations in predators 〈z(t)〉.
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Figure 5.22: Results for Tsim = Tlin and noise amplitudes Ξu = 0.2, Ξv = 0.4. The dashed red
line represents quantities obtained with the MSR formalism using the mean-field Green’s functions
GM . The dotted green line corresponds to the average of 104 simulations. Figure (c) shows the
total populations, where the solid lines represent the deterministic results ud(t) and vd(t). The
analytical results a (dashed) are obtained from 〈w(t)〉 and 〈z(t)〉, while the simulated results n
(dotted) correspond to the average stochastic trajectories.
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The MSR formalism turns out to show also comparable results for some correlation functions for
Tsim = Tlin, while it breaks down for other quantities. Therefore, it is interesting to compare the same
quantities for a larger time Tsim = 2Tlin. The results are shown in Figure 5.23. The relative average
fluctuations now also start to show the exponential behavior that arises from the coupled propagators
Buv(t, 0) and Bvu(t, 0) and other time integrations in the corresponding Feynman diagrams. While
the fluctuations in the simulations stay around 0.2% for both species, the analytical results for the
prey grow up to 6%. The prey fluctuations also show the same sign difference as was observed for
Tsim = Tlin. For the predators, 〈z(t)〉 remains negative and even becomes 30%. Hence, for larger
time Tsim = 2Tlin the exponential behavior also appears in the analytical average fluctuations, which
causes a deviation from the simulated results.

This effect on the analytical fluctuations now also becomes visible in the total average populations
in Figure 5.23c. The simulated results still follow the deterministic paths (ud(t), vd(t)), but the
analytical total populations represented by the dashed lines start to deviate from these periodic
solutions at larger times. It is also insightful to observe the same behavior in the phase space
representation in Figure 5.23d. Both trajectories for the simulations and for the MSR formalism
follow the deterministic periodic trajectory slightly longer than one linear period Tlin. Right after
passing the initial populations (u0, v0), the analytical trajectory represented by the dashed red line
starts to show inward spiraling motion due to the large negative fluctuations in the predator species.
However, as these fluctuations keep increasing to larger negative numbers and the prey fluctuations
start to become significant, the analytical trajectory evolves outside of the deterministic path. For
this simulation time and noise amplitude, the simulations are not diffused enough to observe the
inward spiraling motion, hence the average simulated trajectory remains close to the deterministic
one. So, the analytical trajectory shows inward spiraling motion for some amount of time, although
much earlier than the simulated case.

The MSR formalism with the mean-field Green’s functions starts to break down for Tsim = 2Tlin.
The results obtained with this mean-field approach can also be compared to an approach using the
bare Green’s functions GB (5.22). As mentioned earlier, these represent the unrealistic exponen-
tial growth and decay of the respective prey and predator species in the case of no interactions.
As the exponential behavior of these Green’s functions is not suppressed at all, it is expected
that this approach yields much worse results. Indeed, this yields an exponential behavior in the
correlation functions that is growing even faster than for the mean-field approach. The MSR for-
malism with bare Green’s functions already breaks down for Tsim = Tlin. To still give a quantitative
comparison between both methods, the logarithm of the absolute average fluctuations is shown in
Figures 5.24a-5.24b, for Tsim = 2Tlin. The results for the bare Green’s functions are depicted by the
solid blue lines. For very short times t < Tsim/4, both methods yield the same order of magnitude
as the simulations, but the bare approach starts to grow exponentially almost immediately. These
figures also show that for short times, the mean-field approach yields an accurate order of magni-
tude compared to the bare method. Also, the growth rate shows some stabilization for GM , while
for GB it keeps growing linearly, which indicates faster exponential growth. The local minima in
both analytical cases are a result from taking the absolute average fluctuations, as the logarithm
is only defined on R>0. This transforms the sign change in the average fluctuations, which arises
from the periodicity of the deterministic model, to a local minimum in the logarithm. In general,
it can be concluded that although deviations are observed in both cases, the MSR formalism with
a mean-field approach is far better comparable to the simulated results than the bare approach.

For completeness, also the results for the total two-point functions are shown in Figures 5.24c-5.24e.
The behavior of the prey two-point function is still showing the same features as for Tsim = Tlin.
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Despite the growth of the amplitude, it still has the same periodicity as the system itself. This can
also be observed in the other two-point functions. Hence, even for larger times, the MSR formalism
captures the correct periodicity of the system. The growing deviations for the analytical predator
two-point function compared to the simulated result observed in Figure 5.22e are suppressed again
at later times, so the general behavior of this total correlation function is still well-described by
the MSR formalism. However, the deviations from the simulated case start to grow for the coupled
two-point function 〈u(t)v(t)〉. This correlation function thus shows an intermediate behavior, with
features from both other two-point functions.

The break down of this approach for larger times can partially be explained by the deviation of the
evolution of the system from the deterministic trajectory. As the Green’s functions use this solution
as mean fields, this method starts to break down further away from the deterministic solution.
This increases for long times and/or large noise amplitudes, but as the system is nonlinear, the
deterministic evolution of the system is also affected by the deviation from the initial deterministic
evolution.
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(a) Relative average fluctuations in prey 〈w(t)〉.
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(b) Relative average fluctuations in predators 〈z(t)〉.
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Figure 5.23: Results for Tsim = 2Tlin and noise amplitudes Ξu = 0.2, Ξv = 0.4. The dashed red line
represents quantities obtained with the MSR formalism using the mean-field Green’s functions GM .
The dotted green line corresponds to the average of 104 simulations. Figures (c) and (d) show the
total populations, where the solid lines represent the deterministic results ud(t) and vd(t).
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Figure 5.24: Results for Tsim = 2Tlin and noise amplitudes Ξu = 0.2, Ξv = 0.4. The dashed red line
represents quantities obtained with the MSR formalism using the dressed Green’s functions GM .
The dotted green line corresponds to the two-point correlations of 104 simulations. Figures (a) and
(b) show the logarithm of the average fluctuations. The solid blue line corresponds to the results
obtained with the MSR formalism using the bare Green’s functions GB. Figures (c), (d) and (e)
show the total two-point correlation functions.
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The average fluctuations for the simulations calculated in Section 5.2.1 also grow, due to the inward
spiraling motion. These fluctuations show periodic behavior, but also grow exponentially52, as
observed in Figures 5.13-5.14. However, this exponential growth reduces and eventually stops, as the
average simulated trajectory will reach the fixed point and will fluctuate around it. The analytical
correlation functions still need to be studied at larger times. As for Tsim = 2Tlin the analytical
trajectory already moves outside of the periodic deterministic trajectory, these quantities do not
seem to take the inward spiraling motion into account for larger times, when Tsim = 10Tlin. This
is confirmed by the average fluctuations in Figures 5.25a-5.25b. This shows that the fluctuations
reach values that are even more than twice as large as the populations themselves, which can not be
expected for a small noise amplitude. Next to the difference in growth rate, the periodic behavior in
both analytical fluctuations is also not centered around zero as in Figures 5.13-5.14. For the prey,
〈w(t)〉 remains positive after t > 3Tlin/2, while for the predator species the fluctuations 〈z(t)〉 are
always negative. However, the periodicity of the system remains accurate even for long times.

The large negative fluctuations even result in negative total predator populations. Next to the fact
that this is biologically not possible, this also destroys the validity of the Lotka-Volterra model,
which is only defined for positive populations u(t) and v(t). This negative predator population is
therefore not shown in the phase space in Figure 5.25c. After evolving outside of the deterministic
trajectory, the analytical trajectory spirals towards larger prey populations and smaller predator
populations, which eventually become negative. This behavior in phase space is consistent with the
behavior of the fluctuations. For Tsim = 10Tlin, the average simulated trajectory now also shows the
inward spiraling motion, which was already observable in the analytical trajectory for Tsim = 2Tlin.

The only total two-point correlation function 〈v(t)v(t)〉 that was showing a similar order of magni-
tude as the simulations for small simulation times, is now also exponentially growing in the negative
direction, which is in line with the result for 〈z(t)〉. Nevertheless this quantity still shows the correct
periodicity of the system. As the behavior of the other two-point correlation functions is similar to
the results for smaller times, these are not shown here.

The logarithm of the absolute average fluctuations for both Green’s functions approaches for Tsim =
10Tlin is shown in Figures 5.25e-5.25f. These show a continuation of the behavior that is observed
in Figures 5.24a-5.24b. The average fluctuations for the bare approach keep growing exponentially,
with a linearly increasing growth rate. Although the average fluctuations for the mean-field approach
are growing much faster than for the simulations, their growth rates are comparable with respect to
the bare approach. In addition, the growth rate stabilizes in both the mean-field and simulated case.
For the simulations, this was expected as the simulated trajectory approaches the fixed point, so the
growth rate stabilizes around zero. For the mean-field Green’s functions, this result indicates that a
renormalization of the Green’s functions or propagators could be useful to obtain results that align
better with the simulations. For the bare case, such a procedure could also work; however it might
be necessary to calculate higher-order contributions to obtain better results. These figures also
show similar local minima as for Tsim = 2Tlin, which arise from the absolute fluctuations required
for the logarithms. These minima show that the periodicity is taken into account by both the bare
and mean-field approach.

52Although their exponential growth is very slow compared to the analytical results.
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Figure 5.25: Results for Tsim = 10Tlin and noise amplitudes Ξu = 0.2, Ξv = 0.4. The dashed red
line represents quantities obtained with the MSR formalism using the mean-field Green’s functions
GM . The dotted green line corresponds to the average of 104 simulations. Figure (d) shows the
phase space, where the solid blue line represent the deterministic results ud(t) and vd(t). Figures
(e) and (f) show the logarithm of the average fluctuations. The solid blue line corresponds to the
results obtained with the MSR formalism using the bare Green’s functions GB.
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The eventual changes in the system for a noise average 〈η(t)〉 6= 0 were also studied. In this case,
the noise still has a white spectrum and a Gaussian distribution, but the average of this distribution
is given by µ 6= 0. This corresponds to a constant noise perturbation on average, which basically
adds an extra deterministic effect to the system. A more elaborate discussion and the results for a
nonzero noise average are given in Appendix C.2. This appendix also contains some results for a
stochastic Lotka-Volterra model with multiplicative noise. As this noise scales with the prey u(t)
and predator v(t) fields, this yields noise contributions to the MSR action that are cubic instead of
quadratic, as for additive noise. Hence, the Feynman rules for the vertices corresponding to these
cubic noise interactions contain three fields instead of two. This quickly increases the number of
nonvanishing diagrams, even up to first order in the noise amplitudes. Changing the character of
the noise from additive to multiplicative in the simulations is however easily done, as it only requires
a different noise coupling matrix D(y, t) (5.3). Therefore, only simulation results for multiplicative
noise are shown in Appendix C.3. Despite that a comparison with analytical results obtained with
the MSR formalism is not possible, this already gives a short view on the stochastic Lotka-Volterra
model with a different kind of noise.

5.4.1 Improvements & Outlook

A possible cause of the deviating results obtained with the MSR formalism for larger simulation
time is the breakdown of the perturbative approximation. To truncate the series expansion of the
generating functional at first order in the noise amplitudes Ξu and Ξv, the coupling constants of the
interacting contributions should be small compared to the coefficients of the free part Z0. For the
standard parameters and noise amplitudes this condition seems to be satisfied, but it is useful to
check this by reproducing the results for Tsim = 2Tlin with 103 noise realizations and noise amplitudes
Ξu = 0.05 and Ξv = 0.1. The results for the relative average fluctuations are shown in Figure 5.26.
The order of magnitude in the relative fluctuations is smaller compared to Figures 5.23a-5.23b for
the noise amplitudes Ξu = 0.2 and Ξv = 0.4. However, this is an obvious effect of implementing a
smaller noise amplitude, as it reduces fluctuations. The same effect is consequently also observed in
the simulated averages. Hence, the general behavior of the analytical average fluctuations compared
to the average fluctuations of the simulations does not change significantly with respect to the larger
noise amplitudes. It can therefore be concluded that the choice of Ξu = 0.2 and Ξv = 0.4 is small
enough to truncate the perturbative expansion up to first order in the noise amplitudes. So, this
does not explain the exponential behavior of the analytical results with respect to the average
simulations. The only difference is observed in Figure 5.26a, where the simulation average shows
a small minimum around t = 5 instead of the maximum depicted in Figure 5.23a. The behavior
of the average of the simulations changes slightly due to the finite number of simulations. As for
short times the fluctuations are also small, this can suddenly change a local minimum to a local
maximum. A larger amount of simulations should be taken into account to reduce this finiteness
effect.

An explanation of the deviating results lies in the saddle-point expansion of the MSR action around
the deterministic solution. As explained in Appendix B, only one solution of the saddle-point equa-
tions (5.9) of this system is taken into account. This saddle point corresponds to the deterministic
trajectory (ud(t), vd(t)), which is not a stable solution of the deterministic Lotka-Volterra model.
Hence, this is not necessarily a minimum of the action and therefore not the (only) dominating
contribution to the generating functional in the weak noise limit. The choice to take only this
saddle point into account was based on the deterministic trajectory and the fluctuations around it
for small noise amplitudes. The assumption that only this saddle point dominates the generating
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Figure 5.26: Simulations and analytical calculations are performed with the standard parameters
for Tsim = 2Tlin with 103 noise realizations and noise amplitudes Ξu = 0.05 and Ξv = 0.1.

functional is therefore only valid for short times t ≤ Tlin. So, the stability character of the deter-
ministic solution affects both the analytical calculations through the saddle-point expansion and
the simulations, which resulted in the inward spiraling motion as explained in Section 5.2.1. To get
a better description of the stochastic effects in this system, other saddle points should be taken into
account in the expansion. This is however outside the scope of this work, as it requires a detailed
analysis of all possible solutions of the saddle-point equations (5.9) and their stabilities.

The logarithmic results in Figures 5.24-5.25 show that the mean-field Green’s functions GM yields
much better results than the bare ones GB. However, this is only relative as the results for the
mean-field approach still deviate from the simulation results for larger times. The general framework
of (quantum) field theory includes more rigorous methods to deal with the exponential behavior
observed in the analytical results. In QFT, divergences appear in Feynman diagrams due to singu-
larities in momentum space. For some systems, these can be renormalized by introducing a cutoff
Λ, which limits the energy or momentum in these calculations [88]. However, the Feynman diagrams
for this stochastic Lotka-Volterra model are not diverging due to singularities, but show exponential
growth due to the integrations in time of the exponential Green’s functions. A constant cutoff Λ
would not work for this behavior, as the renormalization should be time dependent. In such a
case, the Green’s functions could be renormalized by a self-energy Σ. In QFT, this corresponds
to the energy that a particle obtains through self-interactions [87]. Instead of using mean-field
theory by adding extra terms to the Green’s function, the self-energy does this in a rigorous way
by including loop corrections to the two-point correlation functions. These are all one-particle ir-
reducible diagrams. The self-energy Σ can be obtained from the Green’s functions via the Dyson
equation [87]. Implementing Σ in the Green’s functions renormalizes the evolution in time. Effec-
tively, this changes the model parameters ru and rv, such that the evolution occurs at a slower rate.
Also, it renormalizes the evolution time t. This reduces the exponential behavior of the Green’s
functions, and consequently also the behavior of the Feynman diagrams.

There are also interesting extensions of this stochastic Lotka-Volterra model and the corresponding
application of the MSR formalism. First of all, as mentioned above, multiplicative instead of additive
noise can be studied. This yields different Feynman diagrams due to the cubic noise vertices. As
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there are more studies on stochastic Lotka-Volterra equations with multiplicative noise than there
are for additive noise, it would be interesting to compare results obtained with the MSR formalism
with this research. Some simulation results for multiplicative noise are contained in Appendix C.3.

The Gaussian white noises ηu(t) and ηv(t) in this stochastic Lotka-Volterra model are uncorrelated
in time and also independent. Real-life random effects are usually not instantaneous and can also
be correlated with other (random) events. A way to incorporate this is by introducing colored
noise, with an autocorrelation function different from the Dirac delta function. The MSR action for
colored noise is given by Eq. (3.49). Another way to take non-local effects in time into account is
by introducing a fractional time derivative da/dta for some a ∈ (0, 1] [111, 112]. Transforming the
time derivatives in the Lotka-Volterra model to fractional derivatives effectively adds a memory to
the system. This memory could also reduce the exponential behavior of the propagators, without
having to renormalize them. Recent studies of fractional Lotka-Volterra models are performed by
Zibaei & Namjoo [113] and Amirian et al. [114]. A stochastic fractional Lotka-Volterra model has
however never been investigated before.

Other effects can also be studied by extending the predator-prey model itself. One of the shortcom-
ings of this model is the lack of a maximum population size of the prey species in the absence of
predators. The finite resources in the system should give rise to a carrying capacity, which yields a
finite stable prey population. This changes the stability character of the fixed point from a center
to a stable spiral, as shown in Figure 4.5. The deterministic solutions of the system now spiral
towards the fixed point, similar to the average stochastic trajectory of the stochastic Lotka-Volterra
model with additive noise but without a carrying capacity. A stochastic Lotka-Volterra system with
carrying capacity is, for example, studied by Zhang et al. [104]. As the fixed point is stable, the
problem of the saddle point character of the deterministic solution is solved. This would change the
behavior of the simulations and it could also solve the difficulties that arise from the deterministic
solution used in the saddle-point expansion. Including spatial diffusion of the species in their envi-
ronment would also give a more realistic ecological model. This also allows for a comparison with
the work of Täuber [25].

Next to extensions of the two species predator-prey model, also other Lotka-Volterra models can be
studied with the MSR approach. By taking both interaction coefficients α, β < 0, the interaction
between the species becomes competitive. This yields a phase diagram as shown in Figure 4.3.
The fixed point is now an unstable saddle point, but the system also has two stable fixed points at
which one of the species is extinct. Stochastic competitive Lotka-Volterra models are studied by
Jiang et al. [115]. Instead of two species, one could also add an extra prey or predator species, as is
done in Zhang et al. [104]. This completely alters the phase space of the system, but it would still
be suitable to analyze the noise effects through the MSR formalism by including two extra fields.
Generalizing the model to N species would make it possible to compare the results with Sidhom &
Galla [24].



6 CONCLUSION 100

6 Conclusion
Stochastic systems appear everywhere, either due to unknown microscopic effects that are modeled
by noise contributions, or due to an inherent uncertainty in the system. In this work, we started
with a general introduction to stochastic systems and methods to describe them. These methods
were briefly applied to physical and general complex systems. Especially interesting was the physical
approach of Langevin to describe Brownian motion. This was extended to a functional description
by Wiener and Chandrasekhar, which yielded similar results. This field theoretical approach to
stochastic systems formed the basis for the MSR formalism, which can be used to describe the
dynamics of the observables as a stochastic field theory. This formalism allows for an analytical
description of noise effects in general stochastic systems. To validate this method, correlation
functions for a linear Langevin equation were calculated using the MSR approach. They were found
to be in agreement with the results found by Langevin. The formalism was also applied to a nonlinear
Langevin equation, which required perturbative methods and a semiclassical approximation.

A nonlinear Langevin equation already yields interesting results, but this can be extended to mul-
tidimensional coupled models. A prototypical example is given by the two species Lotka-Volterra
model describing the evolution of interacting predator and prey populations. First, the determin-
istic case was studied elaborately. As this system does not have an explicit analytical solution,
its phase space was investigated through a dynamical system analysis and its periodic solutions
were determined numerically. Stochastic extensions of this model include a noise contribution to
describe external environmental effects. Earlier research studied such a system using simulations or
a mathematical approach. Generalizations of the Lotka-Volterra model are studied by Sidhom &
Galla and Täuber using field-theoretical methods like the MSR formalism.

In this thesis, a stochastic two species Lotka-Volterra model with additive noise was first studied
through simulations. For a single noise realization, the stochastic trajectory fluctuates around the
deterministic periodic trajectory. Averaging over 104 noise realizations yielded an ensemble average
of the trajectory of this stochastic model in phase space. A new result found in this work is that
the average stochastic trajectory shows inward spiraling motion towards the fixed point. This is a
result from the diffusion of the individual simulations in phase space, which is caused by the noise
and the saddle point character of the deterministic solution. As this changes the periodicity of
each simulated trajectory, the simulations spread around the fixed point, causing an average inward
spiraling motion towards this point.

One of the main contributions of this work is the application of the MSR formalism to a stochastic
two species Lotka-Volterra model with additive noise. General noise effects in this simple model have
never before been studied using this functional method. Correlation functions for the fluctuations
and total populations were calculated via a mean-field approach, and compared with simulated
results. For short times t ' Tlin, the general behavior of the one-point correlation functions is
similar, with only a deviating sign for the prey species. Around t ' 2Tlin, the analytical calculations
start to deviate exponentially from the simulations. This causes the inward spiraling motion in phase
space, similar to the observations for the simulations, to evolve outside the deterministic trajectory,
even up to negative populations. Comparison with the bare Green’s function approach reveals that
the mean-field theory shows better behavior, but it is only comparable with the simulations for
short times.

To improve the results obtained with the MSR formalism, the saddle point expansion of the action
should be analyzed carefully, as the deterministic solution is not necessarily the (only) dominant
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contribution to the generating functional in the small noise limit. The time evolution of the Green’s
functions can be renormalized by including a self-energy, which reduces the exponential growth. This
behavior can also be diminished by accounting for non-local effects in time through a fractional time
derivative. Simulated results for multiplicative noise show a similar inward spiraling motion, but
applying the MSR formalism to this kind of noise can lead to new insights. Other extensions of
this model by including a carrying capacity, multiple species, or different interactions can also be
studied using a similar approach. As the MSR formalism can be applied to stochastic systems in
general, this work paves the way to a large amount of potential research topics, after improvements
have been implemented.
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A Jacobian for the MSR formalism
An important note has to be made on the Jacobian J , arising from the change of variables y(t) →
ẏ(t) in Eq. (3.47). This substitution was also implicitly performed in the discetized procedure in
Eqs. (3.41) and (3.43), which therefore also requires a Jacobian. Using the properties of the Dirac
delta functional, one obtains

δ[y − yη] =
δ[ẏ − Lη(y)]
∂y/∂η

= δ[ẏ − Lη(y)]J , (A.1)

where Lη(y) is the differential operator corresponding to the general Langevin equation. It turns
out that this Jacobian J = ∂η/∂y depends on the chosen prescription. To see this, it is insightful to
look at the discretization (3.40) for both the Itô and Stratonovich prescription. It can be shown [116]
that a general discretized Langevin equation is given by

yj+1 − yj =[εC(yj , tj) + (1− ε)C(yj+1, tj+1)]∆t

+ [εD(yj , tj) + (1− ε)D(yj+1, tj+1)]wj
√
∆t+ y0δ0,j . (A.2)

The parameter ε defines the prescription. If ε = 1/2, the Stratonovich interpretation is used, since
the contributions of C(yj+1, tj+1) and D(yj+1, tj+1) are nonzero. The Itô prescription is assumed
when ε = 1, for which Eq. (A.2) reduces to Eq. (3.40). It is convenient to define discretized white
noise values as ηj = wj/

√
∆t, which is also in line with the definition of white noise as time derivative

of a Wiener process. Furthermore, it is useful to write

Bj,j+1 =
(yj+1 − yj − y0δ0,j) /∆t− [εC(yj , tj) + (1− ε)C(yj+1, tj+1)]

εD(yj , tj) + (1− ε)D(yj+1, tj+1)
, (A.3)

such that Eq. (A.2) reduces to
Bj,j+1 − ηj = 0. (A.4)

Now, the discretized Jacobian can be written as

J =
∂(η0, ..., ηN−1)

∂(y1, ..., yN )
= detA, with Aj,k =

∂ηj
∂yk+1

=
∂Bj,j+1

∂yk+1
. (A.5)

From the definition of Bj,j+1, it can be seen that the only nonzero entries of A have indices k =
j−1, j. Since the matrix A has this form, only the diagonal entries Aj,j contribute to its determinant,
which can be calculated via the regular quotient rule for derivatives as

Aj,j =
∂Bj,j+1

∂yj+1
,

=
1
∆t − (1− ε)C ′(yj+1, tj+1)

εD(yj , tj) + (1− ε)D(yj+1, tj+1)
(A.6)

− (1− ε)D′(yj+1, tj+1)

{
1
∆t (yj+1 − yj − y0δ0,j)− [εC(yj , tj) + (1− ε)C(yj+1, tj+1)]

[εD(yj , tj) + (1− ε)D(yj+1, tj+1)]2

}
,

where C ′, D′ denote derivatives with respect to yj+1. For ε = 1 in the Itô prescription, this simplifies
to

J
∣∣
ε=1

= detA =
∏
j

Aj,j =
∏
j

1

∆tD(yj , tj)
. (A.7)

Hence, for additive noise with D(y, t) = D(t), the Jacobian does not depend on y. For multiplicative
noise, when the interpretation actually matters, J ∝ (detD(y, t))−1 in the continuum limit ∆t→ 0.
This is an important result, since it can give rise to extra (nonlinear) contributions to the effective
action Seff = S[y, q] + Tr[logD], which results from using the identity detD = eTr[logD].
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B Saddle point approximation for the stochastic Lotka-Volterra
model

The saddle point approximation for the MSR formalism was explained in Section 3.4.1. This
approximation is a truncated expansion of the MSR action around its saddle points (ys(t), qs(t)),
which can be obtained from the saddle-point equations

δS[y, q]

δy(t)

∣∣∣∣
y=ys

= Jy(t),
δS[y, q]

δq(t)

∣∣∣∣
q=qs

= Jq(t). (B.1)

In the weak noise limit Ξ → 0, these saddle points are the dominant contributions to the gener-
ating functional, so these contributions also determine the behavior of the correlation functions.
This method for approximating the action is a standard field-theoretical technique [15]. In general,
the saddle-point equations can have multiple solutions, corresponding to different saddle points for
the action. Depending on their stability character, a few or all should be taken into account in the
saddle-point expansion, through a summation over all contribution saddle points. In the case of sta-
ble saddle points, which correspond to minima of the action, it is possible to only include these in the
expansion.
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Figure B.1: The phase space of the determinis-
tic Lotka-Volterra model with a periodic solution
starting at initial populations (u0, v0) = (40, 40),
for a simulation time Tsim = 5Tlin. At t = 2Tlin,
5 predators die instantly. The system jumps to a
different periodic solution.

For the stochastic Lotka-Volterra model with
additive noise, the saddle point used for the
expansion is (us, vs, qus , qvs) = (ud, vd, 0, 0) =
(yd,ϕd), which corresponds to the determinis-
tic solution of the Lotka-Volterra system with-
out noise. As the interactions in the predator-
prey system are quadratic, the saddle-point ex-
pansion (5.16) up to third order in the fluctu-
ations (w, z) yields an exact expression for the
MSR action. Nevertheless, there are multiple
solutions of the saddle-point equations (5.9), as
the deterministic one is only found for vanishing
auxiliary fields ϕs = (qus , qvs)

T = (0, 0)T . In
this case, the choice of taking only this saddle
point into account can be justified by the fact
that this governs the deterministic53 evolution
of the system. In the weak noise limit, the fluc-
tuations around this trajectory are small, hence
this can be considered as a dominant contribu-
tion.

The phase space analysis in Section 4.2 of the deterministic two species Lotka-Volterra model showed
that the fixed points (0, 0) and (rv/β, ru/α) are both not stable fixed points. The extinction point is
a saddle point, while the coexistence point is a center, around which the periodic trajectories evolve.
As the center is neither stable nor unstable, there is no attractor in this system. Also the periodic
solutions are neither stable nor unstable. This can be observed by applying a large instantaneous
perturbation to a numerical solution of the system at a time t > 0, and letting it evolve undisturbed
for the remaining amount of the simulation time. The result is shown in Figure B.1. At t = 2Tlin,

53Classical in the quantum mechanical interpretation of the semiclassical approach.
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five predators die instantly. This causes the system to jump from one periodic solution to the other.
For the rest of the simulation time, the system remains in this periodic trajectory. So, perturbing the
system in a direction other than the direction of the evolution of the periodic trajectory causes the
system to change from one deterministic trajectory to another. Therefore, every periodic solution
of the deterministic system can be interpreted as a saddle point solution of the system.

In Section 5.2.1 it is shown that including additive noise does not result in a bifurcation, i.e. it does
not change the stability character of the phase diagram. As all periodic solutions are saddle points,
noise perturbations can cause the system to change to a different solution. As the deterministic
evolution C(y, t) corresponds to the solution for the initial populations (u0, v0), this change is small
for small noise amplitudes. However, it does partially explain how the individual simulations can
distribute through phase space, which causes the inward spiraling motion of the average trajectory.

This can also cause a problem for the saddle-point expansion, as the deterministic solution of the
system is not stable. The corresponding saddle point (ud, vd, 0, 0) is not necessarily a minimum
of the action, so there can be other dominating contributions to the generating functional in the
weak noise limit. The argument that only this saddle point dominates the generating functional is
therefore only applicable for short times t ≤ Tlin, when the stochastic trajectory is still close to the
deterministic one. To verify this, other saddle points should be included in the expansion. These
should have nonzero initial conditions qu0 and qv0 for the auxiliary fields. Taking constant auxiliary
fields would also yield constant populations u0 and v0 to solve Eq. (5.9), so this is not a feasible
solution for this system. The choice of vanishing auxiliary fields was based on the argument that
this yields the solution of the deterministic system. Such an argument is not applicable to saddle
points with time dependent auxiliary fields, so the question remains how to find other contributing
saddle points. This can be determined based on their stability. This requires however a detailed
analysis of the solution space of the saddle-point equations (5.9), which is outside the scope of this
work.
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C Other results for stochastic Lotka-Volterra models

C.1 Two-point correlation functions of fluctuations

In Section 5.4, the two-point functions of the total populations are shown, instead of the two-point
functions of the fluctuations. The reason for this choice is that these quantities for the fluctuations
already show exponential growth in the analytical case, which yields much larger fluctuations than
found for the simulated case. This also holds for the correlation functions at different times. Hence,
the fluctuation two-point functions of the simulations appear to vanish compared to the analytical
ones. The exponential behavior is mainly due to the behavior of the coupled propagators, which
arise in at least one Feynman diagram of each two-point correlation function (5.42)-(5.44). For
completeness, the two-point correlation functions of the fluctuations are shown here.

The relative two-point correlation functions at equal times t = t′ are depicted in Figure C.1. The
analytical results for the predators and the coupling between prey and predators show exponential
behavior in the amplitude of the oscillations, similar to the two-point function for the total predator
population in Figure 5.25d. As this scales with the populations squared, the values at earlier times
appear to be zero compared to the results at later times. Interestingly, the two-point function
for the prey in Figure C.1a shows different behavior. The amplitude of the fluctuations increases
relatively slow, before decreasing again later until it becomes negative. An investigation of the
Feynman diagrams at larger times should clarify what is causing this behavior.

Compared to the analytical results, the two-point correlations calculated from the simulations for
104 noise realizations are negligible. Therefore, these are shown in separate figures next to the
combined results. They also show an increasing amplitude of the oscillatory behavior, but much
slower than for the analytical case. The periodicity for the analytical and simulated results is
similar, as was also observed in earlier results. Hence, also for the two-point correlations, the MSR
formalism captures the correct period of the system. However, for larger times there appears a sign
difference for the predator correlations, while for the prey the sign is correct. This is exactly the
opposite of the sign difference for the one-point functions. Furthermore, all simulated results show
local extrema next to the main peak of each cycle. A possible explanation for this is the changing
periodicity of each simulation that causes the inward spiraling motion of the ensemble average. This
also changes the periodicity of the average and gives rise to multiple contributing frequencies next
to the main frequency 2π/Tlin of the deterministic solution. In the correlation functions, this effect
can appear as local extrema in the correlation functions.

Figure C.2 shows the two-point correlation functions at different times for t ≥ t′, where t′ = Tlin/2
is fixed. In the simulations, this time point corresponds to N = 50, as the number of time points
per linear cycle is taken to be 100. Again, the exponential behavior of the integrations causes the
simulated results to be negligible compared to the analytical results. So, also here the simulated
results for 104 noise realizations are shown separately next to the combined results. In the analytical
results, the amplitude remains approximately the same, except for the predator two-point function,
which decreases and even becomes negative. This behavior seems comparable with the prey two-
point function at equal times in Figure C.1a, so a better analysis of the mean-field approach at
larger times is required to explain this. For the simulated results, the amplitude of the oscillations is
fluctuating, but not increasing. Although this amplitude is much smaller for all two-point functions,
this general behavior is similar. The periodicity of the simulations differs slightly from the period
of the analytical results, however this deviation disappears at later times. This could be due to
setting t′ = Tlin/2, which in some sense changes the initial conditions for both approaches.
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(a) Relative two-point correlation function of the fluc-
tuations in prey 〈w(t)w(t)〉/u20.
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(b) Simulated results for the relative two-point cor-
relation function of the fluctuations in prey.

(c) Relative two-point correlation function of the fluc-
tuations in predators 〈z(t)z(t)〉/v20 .
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(d) Simulated results for relative two-point correla-
tion function of the fluctuations in predators.

(e) Relative two-point correlation function of the cou-
pled fluctuations 〈w(t)z(t)〉/u0v0.
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(f) Simulated results for relative two-point correla-
tion function of the coupled fluctuations.

Figure C.1: Relative two-point correlation functions of the fluctuations at equal times. Simulations
are performed with the standard parameters for Tsim = 10Tlin. The dashed red line represents
quantities obtained with the MSR formalism using the mean-field Green’s functions GM . The
dotted green line corresponds to the average of 104 simulations.
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Figure C.2: Relative two-point correlation functions of the fluctuations at different times t and
t′ = Tlin/2, which is at time point N = 50 in the simulations. Simulations are performed with the
standard parameters for Tsim = 10Tlin. The dashed red line represents quantities obtained with the
MSR formalism using the mean-field Green’s functions GM . The dotted green line corresponds to
the average of 104 simulations.
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C.2 Nonzero noise average

In the stochastic Lotka-Volterra model with additive noise (5.1), the independent stochastic pro-
cesses ηu(t) and ηv(t) are taken to be Gaussian white noise. This is the simplest kind of noise
that can appear in an SDE. It is possible to study other stochastic effects by assuming a different
distribution than a normal distribution, or to use correlated noise with an autocorrelation function
that is no Dirac delta function. A more straightforward extension is to implement a noise aver-
age 〈ηu,v(t)〉 6= 0. Hence, the noises still have a white spectrum and a Gaussian distribution, but
the average of this distribution is given by µ 6= 0. This corresponds to a constant average noise
perturbation, which basically adds an extra deterministic effect to the system. For a nonlinear
Langevin equation like the stochastic Lotka-Volterra model with additive noise one should be care-
ful, as 〈C(y, t)〉 6= C(〈y〉, t). However, it is possible to rescale the noise fields ηu,v(t) → ηu,v(t)− µ.
This yields again Gaussian white noises with a vanishing average, but it also includes a constant
deterministic contribution

√
Ξu,vµ in both equations as

u̇(t) = ruu(t)− αu(t)v(t) +
√
Ξu µ+

√
Ξu ηu(t), (C.1)

v̇(t) = −rvv(t) + βu(t)v(t) +
√
Ξv µ+

√
Ξv ηv(t). (C.2)

This changes the location of the coexistence point ny approximately 1%, depending on the sign of
µ. More importantly, this breaks the periodicity of the deterministic solutions, as this system does
not have a constant of motion. This contribution gives rise to a constant shift in the evolution,
which causes the deterministic solution to spiral inward for µ > 0 and spiral outward for µ < 0.
This is represented by the dashed red lines in Figure C.3. For the simulations represented by the
solid green lines, this effect is amplified. The noise distribution is not symmetric around zero, so at
every time step in each individual simulation, the noise has a higher probability to be either positive
or negative. So, this effect remains also in the average stochastic trajectory. This results in either
faster inward spiraling motion as in Figure C.3a, or in outward spiraling motion as in Figure C.3a.

One might think that for µ < 0, a balance can be found between the inward spiraling motion of
the average stochastic trajectory due to the diffusion of the simulations and the outward motion
due to the noise average, such that the effects annihilate and the periodic deterministic evolution
is followed. It turns out that this is not possible, as the inward motion increases with time, while
the outward motion is a constant effect already arising in the deterministic part of the equation.
Hence, for every µ < 0, there is a time t after which the inward motion becomes stronger than the
outward motion.

The analytical consideration of a nonzero noise average µ through the MSR formalism is similar
to the rescaling of the noise fields. In the derivation of the MSR formalism, the average µ can be
included directly via the PDF of the noise, as used in Eq. (3.47). For the resulting MSR action,
this gives rise to the same extra constant contributions as in Eq. (C.1). Hence, it is also possible
to transform ηu,v(t) → ηu,v(t)−µ directly in the MSR formalism. This constant effect also changes
the solutions of the saddle-point equations (5.9), as it would be equivalent to including constant
source fields Jy(t). For vanishing auxiliary fields, this yields the saddle point that corresponds to
the inward or outward spiraling solution that is represented by the dashed red line in Figure C.3.
A next step for this research could be to see if this changes the comparison between the simulated
and analytical results.
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(a) Phase space for a noise average µ = 0.05.
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(b) Phase space for a noise average µ = −0.05.

Figure C.3: Phase spaces for a stochastic Lotka-Volterra model with additive Gaussian white noise
with 〈ηu,v(t)〉 = µ 6= 0, for Tsim = 5Tlin and noise amplitudes Ξu = 0.2 and Ξv = 0.4. The solid
blue line represents the deterministic solution for µ = 0 and the dashed red line corresponds to the
deterministic solution for µ 6= 0. The solid green line corresponds to the average of 104 simulations
with µ 6= 0.

C.3 Multiplicative noise

One example of a stochastic Lotka-Volterra model with multiplicative noise is given by the following
system

u̇(t) = ruu(t)− αu(t)v(t) +
√
Ξu u(t) ηu(t), (C.3)

v̇(t) = −rvv(t) + βu(t)v(t) +
√
Ξv v(t) ηv(t). (C.4)

As the noises scale with the (square roots of the) prey u(t) and predator v(t) populations, this
kind of noise results in much larger random perturbations compared to additive noise for constant
noise amplitudes Ξu and Ξv. This kind of noise can model effects that scale directly with the size
of the populations, like diseases or seasonal effects that result in fluctuating growth rates ru and
rv. This yields noise contributions to the MSR action that are cubic, instead of the quadratic form
for additive noise. Hence, the Feynman rules for the vertices corresponding to these cubic noise
interactions contain three fields. This increases the number of nonvanishing diagrams, even up to
first order in the noise amplitudes. Also, the Jacobian J given by Eq (A.7) should be included.
Therefore, only results for the simulations are shown here. This requires only a change in the noise
coupling matrix D(y, t) (5.3).

The average results for 104 noise realizations for a simulation time Tsim = 10Tlin and the standard
parameter with noise amplitudes Ξu = 0.2 and Ξv = 0.4 are depicted in Figure C.4. The time evo-
lution of the total populations and the corresponding phase clearly show a similar inward spiraling
motion as for the model with additive noise. Comparing these results with the ones for additive
noise in Figures 5.11-5.12, the inward spiraling motion for multiplicative noise occurs at a much
higher velocity. In this case, the average stochastic trajectory already deviates visibly from the de-
terministic trajectory at t = Tlin, while for additive noise this starts to become visible at t = 5Tlin.
This effect is caused by the larger noise perturbations, as their total amplitudes are increased by
a factor

√
40 ' 6 at the start of each simulation. Even for small populations around 10 prey or
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predators, the multiplicative noise is still three times as large as the corresponding additive noise.
As the inward spiral motion is shown to scale with noise amplitudes in Figure 5.20, this behavior
is in line with the earlier results and therefore not surprising. This is also observed in Figure 5.2,
produced by Vadillo in Ref. [29], and in our own reproduction in Figure 5.7. These simulations
are performed for larger initial populations, different multiplicative noise and less simulation time
(Tsim ' 3Tlin). Nevertheless, these figures already show a similar inward spiraling motion, with a
higher velocity than for additive noise.
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(a) Total populations (ud(t), vd(t)) of the determin-
istic model (solid), and an average of simulations
(〈un(t)〉, 〈vn(t)〉) (dotted).
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(c) Average fluctuations 〈w(t)〉 = 〈un(t)〉 − ud(t) in
the prey population.
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(d) Average fluctuations 〈z(t)〉 = 〈vn(t)〉−vd(t) in the
predator population.

Figure C.4: Results for a stochastic Lotka-Volterra model with multiplicative noise (C.3), for Tsim =
10Tlin and noise amplitudes Ξu = 0.2 and Ξv = 0.4. The solid and dotted green lines correspond to
the average of 104 simulations.

As the noise amplitudes are much larger than in the standard additive case, it is more likely
that a simulation reaches extinction of one of the two species. As explained in Section 5.2, the
implementation of the extinction results in an inward spiraling motion of the average stochastic
trajectory to the lower left of the coexistence point. This is due to the vanishing contribution to the
average of the extinct simulations, which are 634 out of the 104 simulations. This behavior can also
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be observed in the phase space in Figure C.4b. For the total populations in Figure C.4a, this results
in a damping of the oscillation towards stable populations slightly below their fixed point values.
In both these figures, the stochastic trajectory keeps fluctuating around (the lower left of) the fixed
point due to the relatively large noise amplitudes. This can also be seen in the average fluctuations
in both populations in Figures C.4c-C.4d. Up to t = 5Tlin, these fluctuations show the same general
behavior as for additive noise in Figures 5.13-5.14. Only the amplitudes grow much faster due to
the accelerated inward spiraling motion. When the average stochastic trajectory gets close to the
fixed point, the amplitudes of the fluctuations saturate, as the deviation of the coexistence point
with respect to the deterministic solution is fixed for every point in time.

In general, it can be concluded that multiplicative noise does not give any qualitative different
behavior than additive noise. The only observable quantitative change is the different velocity of
the inward spiraling motion. It would be interesting to see if this is also the case for the analytical
results obtained with the MSR formalism.
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