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Abstract

In recent decades, machine learning methods have seen increased inter-
est by physicists to solve physics problems. In this thesis we will discuss
two different machine learning methods and apply them to predict the
evolution of the magnetisation direction described by the Landau-Lifshitz
equation. We find that the machine learning methods are successful at
predicting the evolution of the magnetisation direction within reasonable
error, and with one method we will find that it is possible to extract the
dynamical equations from the training data. In the future we would like
to apply these methods to more complicated systems like the colinear and
antiferromagnetic systems. Furthermore, the methods could be improved
to work with the Landau-Lifshitz-Gilbert equation.
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1 Introduction

Machine learning has become an important research field in the last decades.
Machine learning is different from classical programming where the rules and
data are known up front. With machine learning we don’t know the rules at first,
but we only have the data and the answers, while the machine is supposed to
figure out the rules. These rules could for example also be physical equations.
Therefore, machine learning also has a huge potential for physics problems.
In this thesis we will apply machine learning techniques to the magnetisation
of a solid. The magnetisation direction will be determined by the Landau-
Lifshitz equation. In spintronics the Landau-Lifshitz equation and Landau-
Lifshitz-Gilbert equation are important equations. They have many applications
in for example magnetisation switching or manipulating magnetic textures [1].
Previous work has applied machine learning to magnetisation, by trying to
find the ground states of magnetic systems [2, 3]. It has not yet been applied
to predicting the magnetisation evolution or finding the dynamic equations.
Therefore, the main goal of this research is to see if a machine can learn to
predict the magnetisation direction described by the Landau-Lifshitz equation
and if it actually learns the equation or if it learns something else. By studying
the simple cases first, we hope to apply the same methods to more complex
systems, where the machine learning method may be quicker at calculating
the magnetisation evolution. To investigate this, we use two different machine
learning techniques that we will discuss. We will find that the machine is indeed
able to learn to predict the evolution of the magnetisation direction with the first
technique. With the second technique we will find that it is able to extract the
dynamical equations from the time series data. The remainder of this thesis is
structured as follows. We will first discuss some of the theory of magnetism and
machine learning. Then after that, we will discuss the results of two different
machine learning methods.

2 Magnetism

2.1 Magnetic interactions

Magnetic materials consist of many smaller regions of magnetic spins. For these
materials we can define a vector field M(r, t) [1]. This vector field is the mag-
netisation direction at place r and is dependent on time t. Below the Curie
temperature, the direction of the magnetisation is the only relevant degree of
freedom. Later we will only use the unit vector m(r, t) = M(r, t)/Ms, where Ms

is the saturation magnetisation, which is the point where all spins would align
exactly. Neighbouring magnetic regions can interact and influence each other
through anistropy fields. They can also be influenced by an external magnetic
field Hext. The relaxation of magnetisation towards its equilibrium states is
determined by damping mechanisms.
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Figure 1: Magnetisation vector for the x, y and z direction over time for a mag-
netic element starting in the y-direction and magnetic field in the z-direction.
It is visible that over time the magnetic element aligns with the magnetic field.

Figure 2: The precession of the magnetisation direction described by the
Landau-Lifshitz-Gilbert equation [4].

2.2 Dynamic equations

The Landau–Lifshitz (LL) equation is a differential equation that describes the
motion of a magnetic spin in three dimensions

∂m

∂t
= −m×H + αm× (H×m), (1)

where m is the magnetisation vector (mx,my,mz), such that m2
x+m2

y+m2
z = 1.

H is the effective magnetic field and α is a damping factor that depends on the
material. A numerical solution of this equation is shown in figure 1. An example
of the precession of the magnetisation direction is shown in figure 2. The LL
equation was proposed in 1935 [5] by Landau and Lifshitz. Anisotropies can
arise in the effective magnetic field. In this case the effective magnetic field
is for example H = Hextêz − Kxmxêx + Kzmz êz. Here Hext is the external
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field in the z-direction, and Kx,Kz are two positive constants determining the
anisotropy. If there are anisotropies like this, the precession of the spin is an
ellipsoid instead of a spiral. This equation is accurate for small damping factors
α. Later the equation was improved by Gilbert to be more accurate for larger
damping terms [6]. This is the Landau–Lifshitz-Gilbert (LLG) equation

∂m

∂t
= −m×H + α′m× ∂m

∂t
. (2)

The LLG equation is very similar to the LL equation. The difference is the
(H×m) term that is replaced with ∂m

∂t and a different damping constant α′.

2.3 Magnetic textures

Magnetic materials can have microscopic structures. One example of such a
structure are skyrmions [7, 8]. A Hamiltonian with which skyrmion structures
can arise is

H = −
∑
i<j

JSi · Sj −
∑
i<j

Dij · (Si × Sj)−
∑
i

BSz
i . (3)

Here J is the exchange interaction, Dij is the Dzyaloshinskii-Moriya vector
and B is the magnitude of the magnetic field in the z-direction. Possible mag-
netic structures for this Hamiltonian are the ferromagnetic, Skyrmion and Spiral
states shown in figure 4. A phase diagram is known in which regions for B and
D the three different structures exists [7].

3 Machine Learning

There are multiple ways to make a machine ’learn’. We will discuss two methods
in this project. One of these methods is by using neural networks. The second
is a regression method.

3.1 Neural networks

A neural network is a grid of neurons that can communicate as shown in figure
3. The circles are the neurons of the network and the arrows are the weights of
the model [9]. Furthermore, each neuron can have a bias. There are different
kind of layers shown here. The input layer is the layer that takes the data
you want to learn something from as input. The input data can be anything,
for example the colour values of the pixels of an image or any other kind of
data. For this layer it is important that you always normalise the data to be
in between (0,1) in order to have the most optimal results. Secondly, we can
have any number of hidden layers. In the example of figure 3 there is a single
densely connected hidden layer. This neural network is densely connected if
each neuron in each row is connected with an arrow to each neuron in the row
in front and back. Another kind of hidden layer we will use in this project is
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Figure 3: Neural network with one input layer, one hidden layer and one output
layer. Circles present neurons and lines a connection between neurons.

a layer with LSTM (Long Short Term Memory) neurons. These neurons work
significantly better at prediction tasks than normal neurons [10]. The last layer
is the output layer. If you want the neural network to predict a single value, you
can have just one neuron for the output layer. As another example, if you want
your neural network to classify states, you can have multiple output neurons
for each state. Depending on the activation function that you use, the value of
each output neuron can be the probability that a system is in a certain state.
The weights of the neural network can be optimised. This is called the training
process. As a formula each arrow in figure 3 looks like:

output = f(w ∗ input+ b), (4)

where f(x) is the activation function, w is a matrix containing the weights and
b is a vector containing biases. We call the input data X and the data from
the output layer y. The goal of the training process is to have all connections
in the network have the right weights, such that the network can make good
predictions. The network changes these weights according to a loss function.
The loss function calculates the difference between the real answer and answer
from the neural network. At first the weights are chosen completely randomly, so
the network is not expected to perform any better than just randomly guessing.
In order to find the most optimal values for the weights and biases, we need
an optimiser. Often, this is a gradient descent based optimiser like Adam [11].
At each training step, the loss is calculated and then each weight is changed
by a bit. Then the loss is calculated again, and the weights are moved in the
opposite direction of increased loss. You can run the training data multiple
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Figure 4: z-component of the magnetisation direction of Skyrmion (a), Spiral
(b) and ferromagnetic (c) phases. This are the three possible phases for the
Hamiltonian in equation 3.

times through the neural network in the training process. The number of times
you do this is the number of epochs. Multiple epochs might make the model
perform better, but with too many epochs the model can overfit, making it less
accurate.

3.2 Example: Skyrmions

As an example of what machine learning can do, we first look at network that
can recognise skyrmion phases. We study a system where three phases can
exist. A pure ferromagnetic phase, where all particles are pointing in the same
direction. A skyrmion phase and a spiral phase. This system is described by
the Hamiltonian in equation 3.

The phases are calculated using Monte Carlo simulations (See appendix A).
These simulations consist of a N ×N grid of particles, where N = 16 and each
particle has a spin in three dimensions. Only nearest neighbour interactions are
taken into account and periodic boundary conditions are used. From the phase
diagram in earlier research [7] the values of the Dzyaloshinskii-Moriya vector
and magnetic field that are needed for each phase are used. The temperatures
in the system are gradually lowered so that it can equilibrate. These Monte
Carlo simulations generate almost perfect phases that can be used to train a
Feed-Forward Network (FNN). The network that we use has every lattice site
as input, one densely connected hidden layer of 64 neurons and an output layer
of 3 neurons. The Sigmoid function is used as an activation function for the
first layer:

S(x) =
1

1 + e−x
, (5)

and the Softmax function for the output neurons [12, 13]. Furthermore, as a
loss function, the ’sparse categorical crossentropy’ is used. This network is built
using the TensorFlow library for Python. Each output neuron corresponds to
one of the possible phases. 300 states of each phase type are used as training
data. After the network is trained, it can be used to classify data it has never
seen before. On this testing data, the model reaches almost 100% accuracy,
which is not surprising, given the states are almost pure. If you introduce noise
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into the model or use mixed states, it gets more interesting to see what the
model does. However, we will not do that in this thesis.

3.3 Identification of Dynamic equations (SINDy)

A way to extract the dynamical equations from time-series data is the SINDy
(Sparse Identification of Nonlinear Dynamical Systems) algorithm [14, 15]. This
algorithm is quite different from the Neural network approach, but nevertheless
also machine learning. For the calculations in this project, we use the PySINDy
package for Python [16]. This algorithm assumes the equation can be written
in the form

∂x(t)

∂t
= f(x(t)), (6)

where x(t) is the state of the system at time t and f(x(t)) is a nonlinear function
determining the dynamical equations. This condition is true for the LL equation
1. The training data is then arranged as

X =


xT (t1)
xT (t2)

...
xT (t3)

 , (7)

and similar for Ẋ. The data for Ẋ can be either given explicitly if it is known
or calculated numerically. Furthermore, we define a library Θ(X) containing all
the possible polynomial functions up to a certain order

Θ(X) = [1,X,XP2 , . . . ], (8)

where XPn contains all n− th order polynomials. These polynomials are all the
possibilities of functions that are present in equation 6. Finally, the following
equation is constructed:

Ẋ = Θ(X)Ξ. (9)

Here Ξ is a sparse matrix containing the coefficients of the equations, determin-
ing which terms in the polynomial library are relevant. These coefficients can
be found using a sparse regression method. For our simulations we use the ’Se-
quentially thresholded least squares’ (STLSQ) algorithm. Once the coefficients
are found the dynamical equations can be constructed. To score the accuracy
of the found equations we use the R2 score given by

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

, (10)

where yi is the true value of the i-th sample, ŷi the predicted value of the i-th
sample and ȳi = 1

n

∑n
i=1 yi. With this scoring system a value of 1.0 is the best

possible score giving a perfect prediction [17].
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Figure 5: Magnetisation for the x, y and z direction over time for a magnetic
element starting in the y-direction and magnetic field in the z-direction. It is
visible that over time the magnetic element aligns with the magnetic field.

4 Predicting the magnetisation evolution

We want to feed the machine a limited set of training data. We chose to take the
first 400 timesteps of magnetisation evolution as training data and we want the
machine to predict the next timesteps as shown in figure 5. Relevant parameters
we will use are the damping constant of α = 0.15 and for the anisotropies we use
the constants Kx = 0.2, Kz = 0.3. The external magnetic field Hext = 1.0. For
the neural network, we use timestep ∆t = 0.05 for the integration. In a typical
magnetic system, this corresponds to a magnetic field of 1T for the external field
and an anisotropy field of 0.2/0.3T in the x, z-direction. ∆t = 0.05 corresponds
to about 0.3ps.

4.1 Data generation

The data that is used for the learning process, is calculated numerically using
the LL equation (equation 1) and the Runge-Kutta integration method [18]. So
as training data N = 400 discrete time steps are used. Test data is then also
calculated in the same way for the next 600 time steps. We start the magnetisa-
tion in our training data in the y-direction. The Runge-Kutta algorithm works
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by calculating four separate terms k1, k2, k3, k4:

k1 = ∆tf(x, t),

k2 = ∆tf(x +
1

2
k1, t+

1

2
∆t),

k3 = ∆tf(x +
1

2
k2, t+

1

2
∆t),

k4 = ∆tf(x + k3, t+ ∆t),

where f(x, t) is, for our training data, the right-hand side of equation 1. The
next time step is then calculated by adding the terms in the following way:

x(t+ ∆t) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4). (11)

4.2 Sliding window method

A method to let the machine learn the data is the sliding window method [19].
This method uses a window of width w time steps to train and uses the next time
step as the output it should predict. This window ’slides’ from the beginning
to the end of the data. For example, if we have a window width of w = 3, the
first two training data points look like:

X(1) = {f(t1), f(t2), f(t3)}, y(1) = f(t4), (12)

X(2) = {f(t2), f(t3), f(t4)}, y(2) = f(t5). (13)

With this training method, there are w input neurons needed and one output
neuron for the prediction. After the training process, the window can go on
to predict the time steps it doesn’t know yet. A downside of this method is
that after you’re a window length w of time steps after the original data, the
machine only uses data that is has predicted itself to predict the further values.
If there is any error in this predicted data, the error will only get worse for the
new predicted data. One could extend the y-values to have multiple timestep
predictions at the same time. This way not just the correlations between x-
values are learned, but also correlations between y-values. We will not do this
in this thesis.

4.3 Used network

We will use two different neural networks. Both networks have an input layer
of w neurons and an output layer with 3 neurons (One each for the x, y, z-
coordinates of the prediction). The first network has two hidden dense layers
with 3w neurons while the second network has a single LSTM layer with 6w
neurons. For the first network w = 65, and for the second network w = 31,
unless stated otherwise. The first network will be used for the isotropic case,
whereas the second network will be used for the for anisotropic case.
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Figure 6: Prediction of the x-component of the magnetisation direction in the
isotropic case using the neural network. Blue line is the exact solution, while
the yellow line is the prediction. We see that the predicted solution follows the
exact solution with a slight offset.

4.4 Results & Discussion

In figure 6 and 7 we see how the neural network performs on the isotropic LL
equation. For the x-coordinate we see that the period of the oscillations is
learned correctly. However, there is a slight offset for the equilibrium. For the
z-coordinate we see that, in this case, the equilibrium is also estimated wrong
by about 0.8% (Although this error may vary). We also see some oscillation
that isn’t present in the numerical solution. Although the machine is able to
learn some of the features of the LL equation, it doesn’t learn them all exactly
right.

Next, we look at the anisotropic case, for which we use the LSTM hidden
layer. The results are shown in figures 8 and 9. We see that the neural network
is better able to predict the x-coordinate. If we look at the z-component, we see
that here also the prediction has a slight offset in the equilibrium. As said earlier,
the norm of the magnetisation should remain constant (m2

x + m2
y + m2

z = 1).
We look at the norm of the predicted data, to see if the neural network learns
this physical property. This is shown in figure 10. We see that the norm is not
equal to 1 throughout the prediction, so it seems like the neural network does
not learn this physical constraint.

One might wonder how the number of neurons affects the prediction quality.
We let the hidden layer have f ∗ w LSTM neurons, where f is varied from 1 to
9. The results are shown in figure 11. In this range, we see that the number of
neurons doesn’t seem to matter that much for the error in the prediction.

Another property for the neural network discussed earlier is the window
width w. It is reasonable to assume there is an optimal width for the neural
network. To see how the width affects the prediction quality, we train the
network for various widths and calculate the mean average error. For the FFN
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Figure 7: Prediction of the z-component of the magnetisation direction in the
isotropic case using the neural network. Blue line is the exact solution, while
the yellow line is the prediction. We see that the predicted solution follows the
exact solution with a slight offset.
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Figure 8: Prediction of the x-component of the magnetisation direction in the
anisotropic case using the neural network. Blue line is the exact solution, while
the yellow line is the prediction. We see that the predicted solution follows the
exact solution with a slight offset.
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Figure 9: Prediction of the z-component of the magnetisation direction in the
anisotropic case using the neural network. Blue line is the exact solution, while
the yellow line is the prediction. We see that the predicted solution follows the
exact solution with a slight offset.
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Figure 10: Evolution of the norm of the magnetisation direction over time in
the anisotropic case. The norm should remain 1, but the neural network does
not seem to learn this constraint.
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Figure 11: The mean absolute error in the prediction of the isotropic case as
a function of f ∗ w neurons in the hidden layer, where w is the window width,
and f is a factor. We see that for the prediction quality, the amount of hidden
layer neurons doesn’t matter much in this range.

network the results are shown in figure 12. We see that the prediction quality
gets worse for about w < 40 and w > 100.

Finally, it is important to make sure we are not overfitting. To make sure
we’re not using too many epochs, we plot the mean absolute error against the
number of epochs. The result for the FFN network is shown in figure 13. We
see that there appears to be some kind of minimum for the x, y coordinates.
However, this is not visible for the z-coordinate. After 9 epochs, the prediction
quality doesn’t seem to significantly improve anymore. The prediction quality
also doesn’t seem to get worse with more epochs, so we’re not overfitting.

5 Dynamic equations

In the previous chapter we discussed the neural network method for machine
learning. Unfortunately, it is not obvious what exactly the network learns to
predict the evolution. It is also not possible to extract the actual dynamical
equations. In this chapter we will discuss the SINDy method with which it is
possible to get the dynamical equations.

5.1 Training

The same method to generate training data is used as for the neural network in
chapter 4. We will also use the same constants for the damping and anisotropies,
but we will vary the timestep ∆t.
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Figure 12: The mean absolute error in the prediction of the isotropic case as a
function of the window width w, where w is also the amount of input neurons.
There seems to be a minimum in the error between 60 and 80.
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Figure 13: The mean absolute error in the prediction of the isotropic case as a
function of the amount epochs that the neural network has been trained. The
number of epochs stands for the number of times the neural network has seen the
training data. After 10 epochs the error doesn’t seem to change much anymore.
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5.2 Results & Discussion

First, we look at the isotropic case. In figure 14 we see the R2 error as a
function of dt. We see a drop in the prediction quality at around dt ≈ 0.005.
The most optimal learned equations are shown in table 1. We see that the
learned equations are the same as the exact equations with no error. In figure
15 we see the R2 error for the anisotropic case with no damping (α = 0). In
this case we see the prediction quality drop off at around dt ≈ 0.05. The same
is shown in figure 16, but with damping α = 0.15. The drop off in prediction
quality happens here with a much lower dt. For the case with damping and
Kx = 0 or Kx = 0.2, we show the most optimal learned equation in tables 2 and
3 respectively. In this case there is an error in the learned equations. We observe
that the error can be written in the form of a factor times (1−m2

x−m2
y −m2

z).
Which should be equal to zero. Therefore, it is likely that the error comes from
a differentiation or integration error and only has a very small impact on the
prediction quality of the learned equation.

Now we want to know how robust the algorithm is to noise. We add a Gaus-
sian noise with factor η to the training data and compare the prediction accu-
racy. This Gaussian noise may imitate the measurement noise that is present
in real-world measurements of the magnetisation orientation. The results are
shown in figure 17. The case with no damping is more resilient to the noise in
the system. The case with damping doesn’t recognise the dynamics anymore
with noise levels higher than η = 10−4. We did the same for the neural network
and compare the results in figure 18. We see that the neural network is much
better at dealing with noise, where the accuracy is still good at noise levels of
η = 10−2.

Table 1: Comparison between the exact dynamic equations and the best learned
equations for an isotropic magnet.

Exact equation Learned equation Error
∂tmx = my + 0.15mxmz ∂tmx = my + 0.15mxmz 0
∂tmy = mx + 0.15mymz ∂tmy = mx + 0.15mymz 0
∂tmz = −0.15(m2

x +m2
y) ∂tmz = −0.15(m2

x +m2
y) 0
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Figure 14: R2 error (closer to one is better) for the isotropic case with damping
α = 0.15. We see that the prediction accuracy drops at timesteps above dt ≈
0.005.
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Figure 15: R2 error (closer to one is better) for the anisotropic case with no
damping (α = 0) as a function of integration timestep dt. We see that the
prediction accuracy drops at timesetps dt ≈ 0.05.
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Figure 16: R2 error (closer to one is better) for the anisotropic case with damp-
ing α = 0.15 as a function of integration timestep dt. We see that the prediction
accuracy drops at timesteps above dt ≈ 0.02. In this case, we also see that for
timesteps below dt ≈ 4 ∗ 10−4, the accuracy drops.
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Figure 17: R2 error (closer to one is better) for the anisotropic case with and
without damping as a function of noise η added to the training data. We see
that the case without damping holds up better against the noise, but both have
a sharp drop off where the prediction becomes unreliable.
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Figure 18: One minus the mean absolute error (closer to one is better) for the
neural network for the anisotropic case as a function of noise η added to the
training data (dotted line is for the case with no noise η = 0). We see that the
neural network can handle approximately two orders of magnitude more noise
as compared to the SINDy algorithm.

Table 2: Comparison between the exact dynamic equations and the best learned
equations for an anisotropic magnet. kx = 0, kz = 0.3, α = 0.15

Exact equation
∂tmx = my − 0.3mymz −mxmz(0.15− 0.045mz)
∂tmy = mx − 0.3mxmz +mymz(0.15− 0.045mz)
∂tmz = (m2

x +m2
y)(0.15− 0.045mz)

Learned equation
∂tmx = my − 0.3mymz −mxmz(0.15− 0.045mz) + 0.25my(1−m2

x −m2
y −m2

z)
∂tmy = mx − 0.3mxmz +mymz(0.15− 0.045mz) −0.25mx(1−m2

x −m2
y −m2

z)
∂tmz = (m2

x +m2
y)(0.15− 0.045mz)

Error
0.25my(1−m2

x −m2
y −m2

z)
−0.25mx(1−m2

x −m2
y −m2

z)
0
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Table 3: Comparison between the exact dynamic equations and the best learned
equations for an anisotropic magnet. kx = 0.2, kz = 0.3, α = 0.15

Exact equation
∂tmx = 0.03mxm

2
y +my(1− 0.3mz) +mx(−0.15 + 0.075mz)mz

∂tmy = −0.03m2
xmy +mx(−1 + 0.5mz) +my(−0.15 + 0.045mz)mz

∂tmz = −0.2mxmy +m2
x(0.15− 0.075mz) +m2

y(0.15− 0.045mz)

Learned equation
∂tmx = 0.03mxm

2
y +my(1− 0.3mz) +mx(−0.15 + 0.075mz)mz

+0.25my(1−m2
x −m2

y −m2
z)− 0.026mx ∗ (1−m2

x −m2
y −m2

z)
∂tmy = −0.03m2

xmy +mx(−1 + 0.5mz) +my(−0.15 + 0.045mz)mz

−0.25mx(1−m2
x −m2

y −m2
z)

∂tmz = −0.2mxmy +m2
x(0.15− 0.075mz) +m2

y(0.15− 0.045mz)

Error
0.25my(1−m2

x −m2
y −m2

z)− 0.026mx ∗ (1−m2
x −m2

y −m2
z)

−0.25mx(1−m2
x −m2

y −m2
z)

0

6 Conclusion & Outlook

In this thesis we have studied if a machine can learn to predict the magneti-
sation direction described by the Landau-Lifshitz equation. We have shown
that the machine can learn to predict the magnetisation evolution using neural
networks, both in isotropic and anisotropic cases. Furthermore, we have used
the SINDy algorithm to extract the dynamic equations from the training data.
In future research we would like to study more complex magnetic systems with
antiferromagnetic properties or colinear systems. We think that in these cases,
the computation time of the neural network approach might be shorter than
computation time of methods that are currently used to find the magnetisation
direction. In very complicated systems that take a long time to calculate using
micromagnetic simulations, this could be a benefit. We have tried to apply a
two antiferromagnetic spins configuration to the models, but we found that the
SINDy method isn’t suitable anymore for these more complex systems. This is
because the equations get a lot of terms. However, our neural network might
be suitable after some optimisations. Finally, we would also like to test the al-
gorithms on the LLG equation or add extra torque terms to the LLG equation
that are caused by an electric current.
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A Monte Carlo simulations

With Monte Carlo simulations it is possible to find the ground state of a system.
The Monte Carlo simulations in this thesis work as follows. We take a 2D
grid of N × N particles that have a 3D orientation. On this grid we take a
random particle and slightly change its orientation. Then, the energy difference
is calculated over the particle nearest neighbours from before and after the
move using the Hamiltonian in equation 3. The chance that the move gets

accepted is then P = e
− dE

kBT , where dE is the energy difference, kB is the
Boltzmann constant and T is the temperature of the system. Periodic boundary
conditions are used, which means that the particle in position (1, 1) is also a
nearest neighbour of the particles in position (N, 1) and (1, N). This prevents
any effect a boundary could have on the simulations. Over the course of the
Monte Carlo simulation, we gradually lower the temperature of the system. This
also means the chance to accept a move gets smaller. Because it’s generally
desirable to have an acceptance rate of 50%, the movement of a particle from
its initial configuration gets smaller as the temperature decreases.
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