Machine Learning tense classification in Dutch
conditional sentences

Sep Keuchenius
6594190
Bachelor Kunstmatige Intelligentie, UU
Begeleider: Jos Tellings
Tweede beoordelaar: Maeghan Fowlie
7.5EC

02-07-2021

Abstract

In Time in Translation, a project currently researching the transla-
tion of tenses in conditional sentences, tenses are annotated manually to
serve as data for the research. This paper researches the performance of
Machine Learning algorithms to automate this classification, specifically,
the classification of tenses of the antecedent part in Dutch conditionals.
Four algorithms were trained using previously annotated conditionals and
features that were found to be relevant to the tense, after which the algo-
rithms were tested with some variation of parameters. MLP, K-NN and
SVM performed the classification with an accuracy of around 93%, us-
ing cross-validation, while NB performed at 80%. The features that were
found to be positively influential all measured the occurrences or presence
of certain types of verbs in the antecedent, in some way. Consequently,
the implication is made that these algorithms, requiring only a little data
set and several simple features, can be used to classify the tenses for the
research and that they might get better when provided with feedback.

Contents

1 Introduction
2 Linguistics

3 Input Data
4 Algorithms

5 Features

5.1 Antecedent Features
5.2 Consequent Features

6 Training & Testing
6.1 Varying parameters. oo e

7 Results

8 Conclusion
8.1 Features . .
8.2 Algorithms
8.3 Performance

9 Discussion

10 References

10

12
12
13

15
15

17

20
20
20
21

22

23

1 Introduction

Text classification in natural language
(also known as Natural Language Pro-
cessing, NLP) is an area where much
ground has been covered and much
more is yet to be covered. Text clas-
sification is a task that, when done
correctly, can help give insight to the
semantic and syntactic difference be-
tween languages. This paper is con-
cerned with the classification of tenses
of sentences in Dutch. More specif-
ically, the domain will be limited to
conditional sentences.

Conditional sentences in Dutch have
interesting structures, because they
are made up out of two clauses, each
with their own tense, that largely de-
termine the function of the conditional.
Whether it is a general truth (if a bear
is white, it’s a polar bear), or some fu-
ture possibility (it might get better, if
we keep going), the function is denoted
by the use of the tense. Research in
the department of tense translation is
being done by a project called ”Time
in Translation” (Van Der Klis et al,
2017). This project analyzes the way
that tenses in sentences are translated
from language to language. This anal-
ysis helps us gain insight to the use of
tenses and semantic difference between
tenses in languages.

Currently, the project is focused on
conditional sentences, mainly because
the use of tenses is interesting in condi-
tionals. Often, for example, past tense
is used, when there is actually a refer-
ence to a point in the future, such as if
it were to rain tomorrow. This incon-
gruence between the use of tense, and
the actual meaning of the sentence is

unique. If it were a normal sentence
(not a conditional one) it would have a
past tense for a reference to the past:
1t rained yesterday.

The aim of the research of this pa-
per is to find an efficient method of
classifying Dutch tenses in conditional
sentences to help speed up the study
that Time in Translation is carrying
out. Currently, the researchers are
manually entering the tenses of the
sentences is several languages to an-
alyze that data later. The research
of this paper aims to help them in
automatically annotating those tenses
efficiently in order to take away some
of their effort.

This annotation can not be based on
simple rules, considering the complex-
ity of the sentences and the fact that
language rules are often semantic, and
the semantics of a sentence are hard for
simple algorithms to interpret. There-
fore, machine learning algorithms will
be used to classify the tenses. Hence,
the main question of this research:
How well can a machine learning
algorithm perform in classifying
the tenses of Dutch conditional
sentences?

Conditional sentences are sentences
that have the form if this then that
(EN) - als dit dan dat (NL). They
have an antecedent clause (the part af-
ter this, denoting the condition) and
an consequent clause (the part after
that, denoting whatever consequence
the condition has), that both have a
separate tense.

The data for this research will con-
sist of sentences from the European
Parliament (Europarl), where profes-
sionals write down the translation (or
original sentence) of the sentence car-
ried out in the Parliament. These sen-
tences are structured in XML-form,
along with some annotated features
such as part of speech and lemma. The
antecedent part of the sentence has
been annotated (marked) along with
its tense by the researchers of Time
in Translation. The algorithms will be
trained to determine the tense of the
antecedent, assuming that it has been
annotated which part of the sentence
is the antecedent.

There has been done very little re-
search in the area of Dutch tense clas-
sification. There has been, however, a
similar research within Time in Trans-
lation. This research claimed to find
the best method to automatically an-
notate the tenses of several languages
with a decision tree (Westmijer, 2018).
Note that these sentences were not
conditional. In short, the decision tree
was not optimized to work as well as
humans could. The performance of the
decision tree was significantly worse
that the human performance. The au-
thor of that paper did give a sugges-
tion as to how it might have been done
better, insinuating the use of Neural
Networks or other types of ML. This
seems to be hopeful, given that Neu-
ral Networks are often used for Natural
Language classification.

Another research concerning natural
language classification (Narayanan et
al, 2009) aimed to classify the senti-
ments of conditional sentences in En-
glish. The method used there was a

Support Vector Machine (SVM), us-
ing several interesting features to dis-
tinguish the sentiment of the sentence.
SVM’s are known to require less data
and parameter adjustment, and can
perform quite well and quickly, where
NN'’s take longer to train because they
use more data. NN’s are, on the other
hand, much better - when used cor-
rectly - at the classification task at
hand. To train the classifiers correctly,
an efficient and relevant set of features
must be acquired that the classifiers
will use to distinguish the tenses by.
These features must be quick to ex-
tract from the sentence and linguisti-
cally relevant to the types of tenses of
the conditionals.

These two algorithms seem to be the
best candidates for the classification
task at hand, but there is still a lot
to be found out about how well they
can be used, and how they should be
used. Therefore, the sub questions will
be:

1 What are the best algorithms
and their parameters for the clas-
sification task?

2 What are the most important
features of the sentences in the
classification task?

3 How well do the algorithms clas-
sify the tenses in comparison to
humans?

In the coming chapters I will begin
to analyze the way that conditional
sentences are built and how they use
tenses, to find out what features are
best to use to train the algorithms on
the input data. The results will be
compared to human annotation and I

will conclude by evaluating the perfor-
mance of the algorithms. Finally, the
implications of this research and the
further discussion will make way for
further research in this area.

2 Linguistics

Dutch conditionals are a field with-
out much background literature. Many
papers about conditionals are con-
cerned with very particular instances
and occurrences of certain types of
conditionals, such as conditionals that
start with particular modals like
“mocht” or “mits” (Boogaart, 2007;
Daalder, 2009). These conditionals ap-
pear in the dataset that was used for
this paper, but the domain is much big-
ger than that.

Conditionals in Dutch always have
an antecedent and a consequent clause,
that can appear in either order. To de-
note the start of the antecedent, some-
times words such as als, mocht, mits,
indien are used, but they are not re-
quired. Dan can be used to denote
the start of the consequent, but is also
not required. Conditionals can form
the entire sentence, which would mean
that the sentence has an antecedent
and a consequent and nothing else.
Contrarily, they can also be embed-
ded in a sentence, meaning that there
are multiple clauses in addition to the
antecedent and consequent clause, like
so: Howewver, I agree with the previous
speaker that, if paragraph 9 were chal-
lenged, this motion would clearly lose
its substance. In this example it is
not hard to see that the conditional
part of the sentence begins after an-
other clause.

Dutch sentences can contain two
types of clauses. The main clause
(hoofdzin) and sub-ordinate clauses
(bijzinnen). Main clauses contain
verbs, and most of the sub-clauses do
as well, while some do not (beknopte

bijzin). In an antecedent or consequent
could be multiple clauses that are not
the main clause, and therefore do not
determine its tense, while containing
verbs. By merely knowing the verbs
in the antecedent clause, one does not
necessarily know the tense of the an-
tecedent, because it is first required to
know which verbs are relevant to the
tense, and which are merely verbs of
sub-clauses.

Another interesting aspect of Dutch
conditionals, which does not apply to,
for example, English conditionals, is
that in both the antecedent and the
consequent clause the word zou can ap-
pear. Zou is a modal verb, usually
translated as would in English. The
appearance of zou also partially deter-
mines the tense of the clause. The
use of these modal verbs has been
annotated in the data, so that can
contribute to the classification of the
tense.

Moreover, since that part of the data
is already available as modality the
tense annotation itself has been sim-
plified as opposed to how tenses are
usually denoted. The tenses for this
paper will be annotated as one of the
following:

OTT Ik ben

OVT Ik was

VTT Ik ben geweest

VVT Ik was geweest
VT Ik zou zijn geweest

INF Ik zou zijn

As mentioned above, not all of these
are usually denoted as such. The
last two traditionally have different la-
bels, but combined with the modal-
ity of the antecedent, it can be de-
duced what tense is meant. VT stands
for Voltooide Tijd, representing tenses
that have a modal verb such as zou,
and contain a hulpwerkwoord and a
participium. INF stands for Infini-
tief and indicates the combination of
a hulpwerkwoord and an infinitief.

English conditionals have distinct
types that, in theory, denote the tenses
of the antecedent and consequent and
the function of the conditional (Imre,
2017). For example, a type I con-
ditional is used for general truths,
such as if the sun shines, the sky is
clear. The tense in both the antecedent
and the consequent is present sim-
ple. There are 3 known types that all
have a certain function and a tense-
combination (Imre, 2017). These com-
binations of tenses between the con-
sequent and antecedent are beneficial,
because when a certain tense appears
in the consequent, it means that the
antecedent tense has to be one of the
tenses that the consequent tense com-
bines with. Knowing that the tense of
the consequent is present simple, for
example, means that the antecedent’s
tense is most likely also present sim-
ple, because that combination appears
often.

Unfortunately, in Dutch, condition-
als don’t follow this same principle.
There are no widely-known types that
can be distinguished. Antecedent and
consequent tenses are not known to be
correlated as much as in English con-
ditionals, meaning they should not be

as useful for classification tasks as in
English, as will be examined later on
in the study. This examination will in-
clude the use of data from the conse-
quent, to help predict the tense of the
antecedent.

Building a classifier to find the
tenses of the antecedent clause of the
conditional requires finding properties
of the sentence that can help determine
the antecedent clause tense. These
properties have to be computationally
available, meaning that the algorithm
has access to them. This seemingly
excludes the ability to distinguish fea-
tures such as sentiment or semantics,
because they are not so easy to classify
and require much data, and the time
scope for this project does not allow
for such inquiries. Properties that are
available and relevant are ones such as
’how many plural verbs does the an-
tecedent contain’. Parts of speech are,
as mentioned, part of the data and can
be accessed easily.

These properties are to be features
for the classifiers, meaning that the
classifiers will use them to learn to dis-
tinguish between tenses. These fea-
tures will have to be of numerical val-
ues, as they will be used to train clas-
sifiers that mostly use calculations of
vectors.

The linguistic features of the con-
ditional sentences that are relevant to
the tense seem to be quite apparent.
They mostly concern the verbs in the
conditional sentences, mostly the ones
in the antecedent, as that is the tense
that we are after. If the antecedent
and consequent tense are somewhat
correlated after all, it would be valu-

able also to consider the verbs of the
consequent tense. Mostly, the linguis-
tic difficulty lies within distinguishing
which verbs are important, and which
are not. The ones that are not im-
portant are ones that don’t contribute
to the tense of the antecedent, mostly
the ones that are in sub-clauses, there-
fore it seems valuable to be able to
distinguish which parts of the sen-
tence are main- and sub-clauses. How-
ever, to do this precisely it requires
more information than just the tagged
POS’s. Sub-clauses can be introduced
with comma’s, conjunctions, connec-
tives, which are not all tagged as such
in the data. Humans could rather
easily distinguish clauses if they knew

what they were, because they under-
stand the meaning of the sentence.
With the data at hand, it seems nearly
impossible to train a classifier to un-
derstand the meaning of the sentence.

There is of course the possibility
to use other sources, such as corpora
as NLTK, that have large amounts
of data in them, and can parse sen-
tences better and distinguish clauses of
the sentence. However, unfortunately,
there are not many of these parsers
trained in Dutch, and considering that
the data are quite specific, it seems to
be more logical and interesting to train
classifiers without help from big cor-
pora.

3 Input Data

As there has not been done much re-
search in this area, there is also not
much data available. The data that is
used for this paper consists of the data
also used in Time in Translation. This
is a relatively small dataset (=~ 800)
of sentences, extracted from a larger
set from Europarl, structured in XML.
The XML contains some linguistically
relevant data per word, such as part
of speech (POS), lemma (LEM) and,
obviously, the word itself. The sente-
ces were also manually annotated by
researchers of Time in Translation and
contain the following information:

1 Which part of the sentence is the
antecedent

2 Antecedent tense
3 Conditional modality

Unfortunately, there is no data avail-
able that could help distinguish
phrases or clauses in the sentences.
If there were, it would be easier to
determine what clause a verb belongs
to. Consequently, finding the tenses
will become significantly more diffi-
cult. Furthermore, the dataset is quite

small for a ML algorithm to train on.
Usually much larger sets are used, but
these were not available. Of course,
as the research of Time in Translation
grows, so will their data. Considering
the small amount of data, ML algo-
rithms such as SVM or Naive Bayes
(NB) should work best, as they re-
quire much less data. In addition,
the research methods will be focused
on enlarging the accuracy of the clas-
sification task, without deeming the
possibility of perfection a realistic one.

The conditional modality of a sen-
tence denotes what modal verbs are
in the antecedent and the consequent,
such as zou or mocht. The modality
can, for example, be presented as als
zou, dan zou, denoting that in both
the antecedent and the consequent the
modal verb zou is present.

Note that the output data consists of
multiple possibilities (the tenses shown
in the previous paragraph). These pos-
sibilities are known as classes. The
classification algorithms aim to assign
a class to each sentence.

4 Algorithms

Considering the available data, the
most useful algorithms seem to be the
ones that require few data and are
easily trained. The data is labeled
with the target output value, therefore
a supervised algorithm can be used.
The data has multiple possible output
values, classes, so the algorithms do
have to be able to classify to multiple
classes, unlike some (such as linear re-
gression, which is a binary classifier).

SVM. Following the article by
Narayanan et al (2009), where con-
ditional sentences are also classified,
an SVM seems a reasonable candi-
date. An SVM is a vector-driven
classifier that attempts to distinguish
classes by making hyperplanes in n-
dimensional spaces (where n is the
amount of features). These hyper-
planes are supposed to separate the
classes that are, when the features are
chosen correctly, divided into sections
in the n-dimensional space (Jakkula,
2006). The kernel in an SVM deter-
mines the mathematical process by
which the feature vectors, the list of
features of a data point, are mapped
into the n-dimensional space. For this
classification task an RBF (radial ba-
sis function) kernel will be used, which
maps the features in such a way that
the SVM is able to distinguish the
features not just by linear, but also
curved hyperplanes.

K-NN. A similar approach to deter-
mining which class a vector belongs to
in the space, is K-nearest neighbours,
in which the algorithm places the vec-
tor in the space and calculates which
k other nodes (vectors in the train-

10

ing data) are closest to it, to decide
which class it belongs to. The biggest
difference between K-NN and SVM is
that SVM assumes that the distinc-
tion between the classes in the space is
some boundary line, and draws a line
there. K-NN makes no such assump-
tions and does not attempt to make
any boundaries in the space. It looks
at the training examples that are clos-
est and counts which classes they be-
long to and finds the class that appears
most often in the k£ examples.

Depending on the characteristics of
the data and the geometric separabil-
ity of the classes, K-NN could perform
reasonably well (Kim et al, 2012).

NB. Naive Bayes, a probability
based algorithm, will be tried as well.
The algorithm is often used for simple
text classification, and not expected to
work as well as the others in this clas-
sification task. However, it will be in-
teresting to see how the accuracy of
this algorithm differs from the others.
NB works by updating the probabili-
ties of certain events occurring, based
on the events in the training data, so
that the probability of the all the possi-
ble classes, given some data point, can
be determined.

MLP. Lastly an attempt should be
made to train a Neural Network to
classify the tenses. Neural Networks
are known to require a large data set to
be trained to have a deep understand-
ing of the data and be able to very pre-
cisely predict the classes of test data.
A Multi-Layered Perceptron (MLP) is
an NN that takes as input a set of

features and has an x-amount of lay-
ers to process the numerical values of
those features. Training involves up-
dating weights of the edges that con-

11

nect the nodes in the NN, until either
some limit is reached or the weights

are converging to some value (Jakkula,
2006).

5 Features

Perhaps the most important part of
training a classifier is finding the
right features to distinguish the output
classes by. Features are attributes of
the input data that can be translated
to numerical values, that can be inter-
preted by the classifier. Depending on
what type of classifier is used, the fea-
tures will represent the first nodes, or
a vector used to update weight values.

To find the most relevant and effi-
cient features, it is important to con-
sider their individual contribution to
the accuracy of the classifier, but also
how well they work together with the
others. Two features that have a high
correlation, don’t both have to be used
because they would both train the clas-
sifier the same patterns, simply put
(Hall, 1999).

To determine the best set of features
to maximize the accuracy of the al-
gorithm, each of them needs to rep-
resent linguistically relevant data, be
convertible to a numerical value and
increase the accuracy of the classifier
when tested together with the other
features. To have a decent effect, each
feature needed to at least increase the
accuracy of the algorithm by 0.5%. To
test this, an SVM was used with stan-
dard parameters (gamma = auto , test-
size = 0.1, as will be explained in the
Training & Testing section). The fea-
tures below are distinguished by a pos-
itive (pos), negative (neg) or neutral
(neu) effect on the accuracy, where
respectively, they caused an increase
> 0.5%, < —0.5% or somewhere in be-
tween, in combination with the other
so far selected features.

12

5.1 Antecedent Features

modality_contains_modal_verb
(pos)

Modalities of conditionals contain in-
formation about the presence of modal
verbs in the conditional. This feature
extracts the binary value of whether or
not there is an a modal verb in the an-
tecedent, by looking at the annotated
modality of the sentence. The presence
of modal verbs limits the possibilities
of tenses to a select group of classes.

modality_contains_zou (neu)

Likewise, it checks presence of “zou”
in the first part of the antecedent, at-
tempting to discover a correlation be-
tween a tense and the use of “zou”,
but found that it is too closely corre-
lated to the former feature, resulting in
a neutral influence. Note that it is not
the same as the former feature, because
it specifically focuses on the modality
verb “zou”, and not any of them.

n_ant_verbs (neu)

The amount of verbs in the antecedent,
attempting to distinguish between sen-
tences that seemingly have multiple
sub-clauses and sentences that have
only a simple main clause

n_verb_ant (pos) (4 features)

For each type of verb (present simple
(pres), past simple (past), past partici-
ple (papa), infinitive (inf)) the occur-
rence in the antecedent was counted.

n_modal_verbs_ant (pos)

This feature represents the sum of the
occurrences of certain verbs in the an-
tecedent (zullen, hebben, mogen, gaan,

zign). This feature was inspired by the
occurrence of the modal verbs (zullen,
mogen), but appeared to be more posi-
tively influential when expanded to in-
clude gaan, hebben, zijn. The verbs
can appear in any form in the sentence,
because they are compared to the LEM
of all the words in the sentence.

verb_placement_ant (neu)
Attempting to find a relation between
the placement of the verbs (beginning
or end in the antecedent) and the
tense, this feature represents whether
or not the average index of the verbs,
within the antecedent, is over halfway
of the antecedent. This feature was
also tried by outputting the average in-
dex as a number, instead of the binary
value of whether it was over halfway.
Neither attempts were positively influ-
ential.

5.2 Consequent Features

Considering the English types of con-
ditionals, where the tense of the an-
tecedent correlates with the tense of
the consequent (Imre, 2017), some
features attempting to represent data
about the consequent were examined.
Unfortunately none of those features
had a positive effect. Several examples
are demonstrated below.

n_cons_verbs (4 features) (neg)
Similar to n_ant_verbs, counting occur-
rences of types of verbs in the conse-
quent

cons_modal_contains_modal_verb
(neg)

cons_contains_papa (neu)
Whether or not there is a past partici-
ple among the verbs in the consequent.
The past participle verb is a clear sign
that the clause is of one of two tenses,
narrowing the amount of possibilities
for the consequent tense. This is an at-
tempt to vary the n_cons_verbs which
just counts the verbs (including papa),
and make it binary, to make it easier
for the algorithms to distinguish.

modal_cons_verbs (neu)

This feature calculates how many
modal verbs are in the consequent
clause of the sentence, by going
through the whole sentence, checking
whether a word is a verb, not in the
antecedent and its lemma is one of the
predefined modal verbs.

The fact that none of these features
had any positive influence can be seen
as evidence that the consequent is not
correlated closely to the antecedent, in
terms of tenses.

What must be mentioned is that the
consequent clause was not annotated
as the antecedent, meaning it was not
clear from the data which part of the
sentence was the consequent. So when-
ever a sentence contained more clauses
than just the antecedent and conse-
quent, the verbs from the remaining
clauses were also counted as conse-
quent verbs. Therefore the features
might have been less precise than the
antecedent features.

As mentioned in the Linguistics sec-

Similar to modality_contains_modal_verbtion, distinguishing which verbs be-

but looking in the second part of the
modality

long to which clauses in the conditional
sentence should be of great help to

13

the classification task. By determin-
ing which verbs are in the main part of
the antecedent, it would be much eas-
ier to determine the tense of the an-
tecedent. However, any attempts to
include features that tried to distin-
guish the clauses resulted in a neutral
or negative influence on the accuracy.
Among these features were, for exam-

14

ple, ones that counted only verbs that
seemed to be in the main clause of the
antecedent, by looking at the comma’s
and connectives of the sentence.

All features were, just as the data,
processed in Python 3 using packages
Pandas en Numpy.

6 Training & Testing

Extracting the features from the data
requires an algorithmic approach to
processing the data. In Python 3,
some small methods were built to do
this, and the features were placed in a
pandas data frame (McKinney, 2011)
as either numerical, categorical or bi-
nary values. These values were then
processed by the OneHotEncoder al-
gorithm to translate the binary and
categorical values to numerical ones.
These values were then split by a mod-
ule from sci_kit_learn into training
and test data, randomly, and using a
value between 0 and 1, test_size, to de-
termine the size of the partition that
would be the test data.

Training data, when developing a
classifier, is used to train the algorithm
to classify the data, while the test data,
the residual data, is used to see how
well the algorithm performs. When
putting the classifier to real practi-
cal use, the algorithm will be as well
trained as it can be. Considering the
size of the data set, the partition of the
training set should be as large as pos-
sible to be able to train the algorithms
well.

Unfortunately, making the training
data partition large, would mean that
the test set is very small, and the re-
sults of testing the algorithms would
be variable, and highly dependent of
which vectors were chosen as the test
data. To balance this, all algorithms
were tested by using varying partitions
of test data, but were tested multiple
times with different sets to ensure an
accurate result. All results of the ac-
curacy of the classifiers were stored in

15

a list and the averages, as well as stan-
dard deviations were calculated to de-
termine the exact accuracy of the algo-
rithm. All algorithms were also tested
using cross-validation, where the data
is partitioned into n sets, after which
all sets are used once for testing and
n — 1 times as training data.

Different sets of features should be
beneficial to different algorithms. For
example, using many features with
many different categorical values can
be exhausting for an algorithm such as
SVM that classifies based hyper-planes
or other mathematical-visual distinc-
tions. For NN’s however, these fea-
tures can be very helpful, considering
that the amount of nodes (neurons)
can be incredibly high, and that the
weights that determine the importance
of a node can be adjusted to make the
accuracy of the classification as high as
possible.

Considering that the features have
already been chosen, and that it would
take too much time and much more
data to produce a set of features that
is more suitable to an NN, the NN will
be tested with the same features as
the other algorithms. The NN might
benefit from more complicated features
with more possible values, but that
will be left to other studies. The goal
of this paper is not to build an algo-
rithm that understands the sentence,
but rather to extract basic features of
the sentence that can optimize the ac-
curacy of the classification.

6.1 Varying parameters

Testing the algorithms requires some
parameter settings that can alter the

outcome of the classification. Below is
a list of parameters that will be varied
during the testing.

Test-size. As mentioned, the parti-
tion of the data that is used for the
testing of the algorithms can vary in
size. Varying it can give insight to
how much data is necessary to train
the algorithm and how precise the al-
gorithm is at that point. The test-size
does need to remain big enough to be
able to form a reliable accuracy result.

MLP: Max Iterations. In an NN,
each time that a data point trains
the network, the error of the outcome
is measured and used to update the
weights of the edges connection the
neurons. These updates of the weights
tend to converge to an optimal setting
of the weights, however, they do not al-
ways do that (Jakkula, 2006). To en-
sure that the NN stops iterating, the
max-iterations is set. This can also
help find out when the NN starts to
converge and stops to produce better
results.

MLP: Hidden Layers. Apart from
the input layer and the output layer,
there are neurons in the network that
are not defined as feature neurons,
meaning they don’t represent a specific
feature. They are rather a point to
which numbers from other nodes are
mapped and summed up. These nodes

16

are in layers that are called "hidden lay-
ers’. The amount of hidden layers that
a network has can influence how well
the network can cope with the com-
plexity of the data and provide a rea-
sonable output and how long the al-
gorithm takes to train (Panchal et al,
2011).

K-NN: k. In K-Nearest Neighbors
the classifier looks for the k closest ex-
amples in the training set to determine
which group the test data point be-
longs to. The more neighbors the algo-
rithm has to check, the longer it takes
for it to classify, but speed generally is
not an issue for K-NN, it is the simplest
of these algorithms. Following the arti-
cle by Kim et al (2012), k will be tested
around k = 5.

SVM: Gamma. Using the RBF ker-
nel in the SVM means that the hyper-
planes will be curved when segregating
the classes in the vector space. The de-
gree of the curves can be determined by
the parameter Gamma, which will be
varied.

SVM: C. (' is another SVM param-
eter that influences the hyperplanes of
the SVM. C' is a regularization param-
eter that influences how much error
can be permitted when training the al-
gorithm. Usually allowing a large C
means that much training error is per-
mitted, but this can result in a greater
accuracy when testing the algorithm.

7 Results

The performance of the algorithms was
quite surprising. The best classifiers
turned out to be the SVM and the
MLP, which both scored around 93%
accuracy at best. In table 1 the results
can be found for the best mean score of
the algorithms, tested using cross vali-
dation with 21 folds.

Alg | Mean SD
SVM | 92.9% | 3.0%
MLP | 93.1% | 3.8%
K-NN | 91.3% | 3.3%

NB | 80.0% | 5.83%

Table 1: Optimal algorithm results

These results were measured when
testing the algorithms (with their opti-
mal settings, as will be demonstrated)
with cross-validation over 21 groups,
using the features that were found to
have a positive influence in the accu-
racy of the standard SVM algorithm.
These features are:

1. modality_contains_x
2. first_ant_verb_pos
3. n_past_ant

4. n_pres_ant

5. n_papa_ant

6. n_modal_ant

7. n_inf_ant

The algorithm performing worst is
the Naive Bayes algorithm, by a large
margin. The standard deviation of
the Naive Bayes is also visibly higher,

meaning that it varies a lot, between it-
erations, how well the algorithm classi-
fies, insinuating that it depends highly
on what type of test data it is tested
on.

Test size: Mean. The results from
the table are from cross-validation of
21 groups, meaning that the algo-
rithms trained 21 times and tested 21
times on 21 groups of data in the
data set. That means that the test
size of the data is quite small, and
the training set quite big, leading to
the most precise classifications. This
choice seems to be fair, considering the
small data set that is used. When
changing the test-size, the accuracy de-
creases in all algorithms, as to be seen
below, where cross-validation was not
used, but rather a test and training set
randomly generated for a 1000 itera-
tions, to get the mean accuracy.

a7 — S/M
NB
K-NN

—— MLP

AN

Precision

@ 8B E R B B8

=
F

01 0z 03 04 05 06 o7 08
Test-size

Interestingly, the decrease is not so
large, until the test size starts to be
less than half of the total data set.

Test size: SD. To determine the
degree that the algorithms are fitting
the data, the same circumstances were
tested, but this time the standard devi-

17

ations of the accuracy between all the
iterations were inspected.

— =M
45 NB

— KNN
40 — MLP

Precision SD
w
=y

01 02 03 0.4 05 06 0.7 0.8
Test-size

A low SD points to little variation
in the accuracy of the classifications.
This means that the algorithm is con-
sistent in its classification and does not
depend highly on which data is used to
test it. SVM and MLP clearly have
the lowest SD, insinuating that they
are the best fitters for the data.

All the following tests were per-
formed using cross-validation with 21
rounds.

MLP: Max. It. The MLP is sur-
prisingly well at classifying the tenses,
even though the data is not very elab-
orate. To maximize the accuracy of
the MLP, two parameters were exam-
ined. The first parameter that was var-
ied, was the maximum amount of iter-
ations.

93.0

929

Precision

92.8

927

100 200 300 400 500 600 700 8OO 900 1000 1100
Iterations

18

Clearly, after 800 iterations, the al-
gorithms converges to weights in the
network, meaning that the weight do
not update anymore. This is also when
the algorithm performs best, at 93.1%

MLP: Hidden Layers. The other
parameter that is important to the al-
gorithm is the amount of hidden layers.
All hidden layers have 100 nodes. Fol-
lowing the former result, the MLP has
been set to iterate 800 times to ensure
convergence.

100.0

97.5
%0
L e

0.0

Precision

875

8.0

85

Layers

The amount of layers does not in-
fluence the accuracy, as long as it is
higher than 0. It can be concluded that
most likely the values of the features in
the data are not so diverse that they
can not be distinguished easily with
one hidden layer.

SVM: Gamma.
from 0.001 to 0.299

Varying gamma

935

930

925

9z.0

Precision

915

1.0

905

000 005 010 015 020 025 030
Gamma

A clear correlation between gamma
and the accuracy can not be spotted,
but around 0.15, the accuracy is high-
est.

SVM: C Using the former result
(gamma = 0.15 at the highest accu-
racy), the parameter C' was varied
from 0.1 to 30

940

935

93.0

92.5

92.0

Precision

91.5

9.0

80.5

50 15 100 125 150 175 200
C

The accuracy was highest at C =
0.9, concluding that SVM has its high-
est score at 92.9% with gamma = 0.15
and C = 0.9

K-NN: k£ Varying k from 1 to 29

Precision

10 15

Neighbors

0 5

19

K-NN is best when k = 3 and k£ = 4,
at 91.3% accuracy. When k gets larger,
the accuracy quickly decreases.

Having established the parameters
for the highest accuracy of all the algo-
rithms, and their corresponding accu-
racies, the difference can be calculated
to find out whether there was a signifi-
cant difference between the algorithms.

Performing paired t-tests on the
scores of the algorithms using 21-fold
cross-validation returns that none of
the top-3 algorithms is significantly
better than the others, because of the
high variance between the validations.
Even though it’s visible that the MLP
performs almost 2% better than the K-
NN, it can not be concluded, after 21
validations with around 3% SD, that
the MLP is significantly better than
the K-NN, and the same goes for the
SVM - MLP and SVM - K-NN combi-
nations (p > 0.05 in all cases). Only
when comparing to the NB algorithm,
we can conclude that all three are sig-
nificantly better than NB (p < 0.005
in all cases).

8 Conclusion

In this research several different fea-
ture sets and algorithms were tested
to find out how well machine learning
algorithms can perform in classifying
tenses in Dutch conditional sentences.
From the start it has been a challeng-
ing task, considering the size of the
data set and the amount of annotated
features that came with the data set.
It has become clear that none of the
machine learning algorithms, with the
features that were deemed to perform
best, could classify the tenses as well
as any human at the Time in Transla-
tion project can. Below, all sub ques-
tions of this thesis are answered and
concluded.

8.1 Features

Feature selection in text classifica-
tion is closely related to the linguis-
tic behavior of the data. The fact
that none of the consequent features
were successful leads to believe that
the consequent tense does not deter-
mine, influence, or is even related to
the antecedent tense. However, as
mentioned, these features might not
have been as precise as the others, due
to a lack of annotation.

Also interesting was the result of
the features that attempted to distin-
guish the clauses in the sentences, of
which none were successful. The at-
tempt was optimistic and may simply
require much more data and perhaps
pre-trained algorithms. However, if it
had worked, it would have been incred-
ibly valuable.

The features that turned out to be
successful were none other than obvi-

20

ous. The occurrences of the types of
verbs in the antecedents are closely re-
lated to its tense, logically. Counting
the modal verbs and considering the
modality of the antecedent also posi-
tively influenced the accuracy, leading
to believe that they are highly corre-
lated to the tense of the antecedent.

8.2 Algorithms

As it has been determined that the
algorithms do not have a significant
difference in their performance it can
not be concluded that one is better
than the others. However, it can be
deduced that the differences in per-
formances is of some anecdotal value,
even if only to determine where to start
in a next inquiry, perhaps with more
data.

Having resolved that the top three
algorithms performed significantly bet-
ter than the last, it can be concluded
that those three at least outperform
any ‘dumb’ algorithm, and might per-
form even better, provided with more
data.

MLP The parameters of the algo-
rithms that performed best helped to
gain accuracy and made, in some cases,
a significant impact. The MLP per-
formed best when most weights con-
verged to a value, using 1 hidden layer.
Logically, this means that the data was
not that complex and the classes could
be segregated rather easily. However,
considering that the features do not
directly determine the class (two sen-
tences can have the same features, but
not the same class), adding any hidden

layers could never result in a higher
performance. To get the performance
higher, the MLP would need to under-
stand the data on a deeper level.

SVM The parameters in the SVM
ended up only slightly changing the ac-
curacy of the algorithm. In this case
gamma = 0.15 made the algorithm
perform best, but it was a close call.
It does not have to be the case, when
providing new data, that this will still
be the best value for gamma. Look-
ing at the parameter C, however, we
can see that there is a slight decrease
in the accuracy with a higher C' value.
A clear peak in the graph is spotted at
C = 0.9, which is a relatively low C,
meaning that not many errors in the
training were permitted and the SVM
hyperplanes were curved quite closely
around the training data, which leads
to believe that the SVM might have

21

been overfitting.

K-NN The only parameter that was
tested was the amount of neighbors
considered when evaluating which class
a test vector belongs to, k. The highest
performance appeared when k = 3,4,
insinuating that the algorithm looked
rather close by, when evaluating. This
points to the same principle spotted
with C in the SVM. The algorithms
look quite close to the test vector when
predicting a class.

8.3 Performance

All in all, the best feature, algo-
rithm and parameter combinations
performed at around 93% accuracy
with a large, namely 3-4% SD. A rather
high accuracy considering the data,
but a high SD, insinuating some over-
fitting.

9 Discussion

This percentage alone may not suffice
in answering the main question of this
thesis, unfortunately. Machine learn-
ing could perform better when classi-
fying tenses in Dutch conditional sen-
tences, but considering the data at
hand, it performed the way it did.

Implications. The fact that the al-
gorithms mostly scored above 90% ac-
curacy does indicate that classification
can start to be used as a real help
for the research that Time in Trans-
lation is doing. The sentences that
the researchers annotate can be an-
notated much quicker than they were.
While doing so, the researches could
give feedback to the algorithm, supply-
ing it with more data to train from,
most likely increasing its accuracy.

Moreover, any research in the field of
classification of Dutch sentences could
draw information from this paper when
choosing features, algorithms or their
parameters to help with their research.

22

Limitations. The reliability of this
research may be slightly limited due to
the fact that the tenses were annotated
by humans, and can still contain minor
flaws. In addition, the tenses that were
used for the classification do not ex-
haust all the existing tenses in Dutch
language. Adding the missing tenses
to the research could result in different
results for what features, parameters
or algorithms are considered to be op-
timal.

Future possibilities. Using bigger
corpora, when available for Dutch con-
ditional sentences, should result in
a much higher accuracy, if a classi-
fier is trained to classify using much
more than just occurrences of verbs
in the antecedent. It might be able
to segregate the clauses and determine
which verbs are of bigger importance
to the tense than others. Moreover, it
could perhaps look at embedding of the
POS’s in the antecedent, to determine
after or before which POS a verb is
places, or at what position, to find cor-
relations between those features and
the tense.

10

10.

References

. Van Der Klis, M., Le Bruyn, B., De Swart, H. (2017). Mapping the perfect

via translation mining. In 15th Conference of the FEuropean Chapter of
the Association for Computational Linguistics, EACL 2017 (Vol. 2, pp.
497-502). Association for Computational Linguistics (ACL).

Westmeijer, B. M. (2018). Automatische toekenning werkwoordstijden
(Bachelor’s thesis). University of Utrecht, 2018.

Narayanan, R., Liu, B., Choudhary, A. (2009, August). Sentiment anal-
ysis of conditional sentences. In Proceedings of the 2009 conference on
empirical methods in natural language processing (pp. 180-189).

Jakkula, V. (2006). Tutorial on support vector machine (svm). School of
EECS, Washington State University, 37.

Boogaart, R. (2007). Conditionele constructies met moest (en) en mocht
(en) in Belgisch-Nederlands en Nederlands-Nederlands. Neerlandistiek,
2007.

Daalder, S. (2009). Conditional constructions: The special case of modern
Dutch mits. Journal of Germanic Linguistics, 21(2), 231-248.

Imre, A. (2017). A Logical Approach to English Conditional Sentences.
Journal of Romanian Literary Studies, (12), 156-168.

Kim, J. I. N. H. O., Kim, B. S., Savarese, S. (2012). Comparing image
classification methods: K-nearest-neighbor and support-vector-machines.
In Proceedings of the 6th WSEAS international conference on Computer
Engineering and Applications, and Proceedings of the 2012 American con-
ference on Applied Mathematics (Vol. 1001, pp. 48109-2122).

McKinney, W. (2011). pandas: a foundational Python library for data
analysis and statistics. Python for High Performance and Scientific Com-
puting, 14(9), 1-9.

Panchal, G., Ganatra, A., Kosta, Y. P., Panchal, D. (2011). Behaviour
analysis of multilayer perceptrons with multiple hidden neurons and hid-
den layers. International Journal of Computer Theory and Engineering,
3(2), 332-337.

23

