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Abstract

The capability to model responsibility and blameworthiness is becom-
ing more important as automated systems increase in complexity. So, in
this literature review the causal model described by Halpern [7, 9] and
the logical model based on ATL-style semantics [10, 11, 12, 13] are com-
pared in their approach to modeling responsibility and blameworthiness.
Further, the causal models’ definitions are translated in logic and vise
versa. First an example situation described, which the models will be
based upon. Next the literature is explained and the models and their
approaches to modeling responsibility and blameworthiness are defined.
This is followed by comparing their modeling results and expressing the
the causal models’ definitions in logic. So we can see how a causal model
can be expressed in logic when modeling responsibility and blameworthi-
ness.
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1 Introduction

Everyone is familiar with concepts such as responsibility and blame. You proba-
bly have been punished by your parents for doing something wrong or have been
responsible for a task or event. Because the notions of responsibility and blame
are such a common thing for us, their definitions are consistently reviewed[1, 2].
Furthermore, because the definitions are consistently reviewed, there is a lot of
discussion about the definitions. Interestingly, Frankfurt noticed a dominant
role in these discussions is what he calls the “Principle of Alternative Possibili-
ties” which states that: ”a person is morally responsible for what she has done
only if she could have done otherwise”[3]. The principle of alternative possi-
bilities, which is also referred to as “counterfactual possibility”[4], is also used
when defining causality[5, 6].

The principle of alternative possibilities speaks about a person being re-
sponsible for their actions. However with us creating more capable AI, we also
need to start looking at agents being responsible and blamable. For with the
introduction of self-driving cars, instances where agents are responsible for their
action start to appear. Take the following example for instance.

We take a t-split crossroad like the one in Figure 1, agent A is headed
towards the crossroad and has full vision over it. At the same time, agent B is
also headed towards the crossroad, but from the opposite direction of agent A.
From the right of agent B is agent C nearing the crossroad. Agents B and C
cannot see one another, for there is an obstruction preventing vision between
the two. If both agents B and C keep heading towards the crossroad, they will
collide. But if either or both brakes collision can be prevented.

In this case though, suppose agents B and C would collide it is easy to
conclude both are partially responsible for the event, but neither of them is to
blame. For neither did know and despite agent A knowing what was about to
happen, it cannot intervene in any sense so is also not responsible nor to blame.

However, nowadays, communication is possible between self-driving cars. So
let’s assume all the agents are self-driving cars. From this assumption three new
scenarios arise; the first scenario is where agent A communicates with neither,
the second scenario is where agent A communicates with either of the agents
and the third instance is where agent A communicates with both agents.

The first scenario of the above would mean that agent A communicated with
neither of the other agents despite capable of doing so. However, if consequently
a collision is to happen, agent A is neither responsible nor blamable for agent
A can not prevent the actions that agents B and C will make. For, agent A
could have influenced their actions, but not prevented them. Still, because an
accident happened, agents B and C are responsible for the collision. However,
not blamable, for neither knew the consequence of their actions would result
into a collision.

In the second scenario, agent A sends a warning to either agent B or C.
This makes it possible for the other agent to respond accordingly and prevent
the collision. However, assume an instance where the receiving agent does not
respond accordingly, suppose due to a system or brake failure, then agents B and
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Figure 1: Example Case

C are responsible. For agent A can not prevent the collision, he cannot be held
responsible nor to blame for the collision. But the signal receiving agent is to
blame for the collision. Since, the receiving agent should be capable enough to
prevent collision. The non-receiving agent is still responsible for it has collided
but did not know and is therefore not to blame.

In the third scenario, agent A sends a warning to both agents. As a result,
agent A cannot be called responsible or be blamed for the collision, since he
acted optimally to prevent the accident and cannot intervene directly. But if a
collision still happened, then agent B and C are both responsible and to blame,
assuming they want to prevent the collision.

Based on this example, agent A does not seem to be responsible for any of
the results, which is correct. For this paper’s intend is to look at responsibility
and blame and not review positive actions. So, the positive effects of agent A’s
action are ignored.

The exact intent of this literature review, is to compare between causal
models and logical models in their approaches to modeling responsibility and
blameworthiness and further answer the question if it is possible to express a
causal models’ definitions in logic and vise versa. Thus, we want to compare
the approaches to modeling responsibility and blameworthiness between the two
models. Further, we want to translate a causal models’ definitions in ATL-style
logic and vise versa.

This will be achieved by comparing the causal model of Halpern [7, 9] with
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the logical approach based on ATL-style semantics [10, 11, 12, 13]. We start
with explaining both structures in this paper. First the causal model, then
followed by the ATL-style model. Which we then follow with comparing the
responsibility and blameworthiness modeling results of both approaches and
then finally translate the causal models’ definitions in ATL-style logic and vise
versa.

The causal model will be explained first in Section 2 followed by the expla-
nation of the logical approach 3. In both Sections, the structures are applied
to the example situation. The resulting models are used to make a comparison
and to translate the causal models’ result to the ATL-style model and vise versa
in Section 4. Which will be followed by our results and discussion.

2 Causal Approach

In this section, we review the causal models we are going to use. The models
used are the same models described by (Alechina, Halpern & Logan [9]), which
is an extension of the model described by (Chockler & Halpern [7]) with a
corrected definition of causality[8]. So, in this section we follow main definitions
described in the corresponding section in (Alechina, Halpern & Logan [9]).

2.1 Causal Models

Formally, a causal model M is a pair (S,F), where S is a signature that is, a
tuple (U ,V,R), where U is a finite set of exogenous variables, V is a finite set
of endogenous variables, and R associates with every variable Y ∈ U ∪V a finite
nonempty set R(Y ) of possible values for Y (i.e., the set of values over which Y
ranges), and F is a function that associates with each endogenous variable X ∈ V
a function denotes FX such that FX ∶ (×U∈UR(U))×(×Y ∈V−{X}R(Y )) → R(X).
That is, FX describes how the value of the endogenous variable X is determined
by the values of all other variables in U ∪ V.

Given a signature S = (U ,V,R), a primitive event is a formula of the form
X = x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 ← y1, ..., Yk ← yk]ϕ, where ϕ is a Boolean combination of primitive events,
Y1, ..., Yk distinct variables in V, and yi ∈ R(Yi). Such a formula is abbreviated
as [Y⃗ ← y⃗]ϕ. The special case where k = 0 is abbreviated as ϕ. Intuitively,
[Y1 ← y1, ..., Yk ← yk]ϕ says that ϕ would hold if Yi were set to yi, for i = 1, ..., k.

Following from Halpern’s[8] definition, we restrict attention to acyclic causal
models, where there is a total ordering ≺ of the endogenous variables (the ones
in V) such that if X ≺ Y , then X is independent of Y , that is, FX(x⃗, y, z⃗) =
FX(x⃗, y′, z⃗) for all y, y′ ∈ R(Y ). If X ≺ Y , then the value of X may affect the
value of Y , but the value of X cannot be affected by the value of Y . So, if M
is an acyclic causal model, then given a context, which is a setting u⃗ for the
exogenous variables in U , there is a unique solution for all the equations: we
simply solve for the variables in the order given by ≺.
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A pair (M, u⃗) consisting of a causal model and a context is called a causal
setting. A causal formula ψ is true or false in a causal model, given a context.
We write (M, u⃗)] ⊧ ψ if the causal formula ψ is true in causal model M given
context u⃗. The ⊧ relation is defined inductively. (M, u⃗)] ⊧X = x if the variable
X has value x in the unique (since we are dealing with acyclic models) solution
to the equations in M in context u⃗ (i.e., the unique vector of values for the
exogenous variables that simultaneously satisfies all equations in M with the
variables in U set to u⃗). The truth of conjunctions and negations is defined
in the standard way. Finally, (M, u⃗)] ⊧ [Y⃗ ← y⃗]ϕ if (MY⃗ =y⃗, u⃗) ⊧ ϕ. Thus,

[Y⃗ ← y⃗]ϕ is true in (M, u⃗) if ϕ is true in the model that results after setting
the variables in Y⃗ to y⃗.

2.2 Definition of Causality

Using this as background, we can now give the definition of causality. Causes
are conjunctions of primitive events, abbreviated as X⃗ = x⃗. Arbitrary Boolean
combinations of primitive events are what can be caused. So, in other words,
X⃗ = x⃗ is a cause of ϕ if, X⃗ = x⃗ had not been the case, ϕ would not have
happened. To deal with many well-known examples, the actual definition is
somewhat more complicated.

Definition 2.1. (Cause): X⃗ = x⃗ is an actual cause of ϕ in (M, u⃗) if the fol-
lowing three conditions hold:

AC1. (M, u⃗) ⊧ (X⃗ = x⃗) and (M, u⃗) ⊧ ϕ

AC2m. There is a set W⃗ of variables in V and settings x⃗′ of the variables in
X⃗ and w⃗ of the variables in W⃗ such that (M, u⃗) ⊧ W⃗ = w⃗) and

(M, u⃗) ⊧ [X⃗ ← x⃗′, W⃗ ← w⃗]¬ϕ

AC3. X⃗ is minimal; no subset of X⃗ satisfies conditions AC1 and AC2m.

AC1 just says that for X⃗ = x⃗ to be a cause of ϕ, both X⃗ = x⃗ and ϕ have to
be true. AC2m (the “m” is for modified; the notation is taken from Halpern[8])
captures the counterfactual. The counterfactual is, the idea that A is a cause
of B and if, had A not happened, B would not have happened[5]. This is the
standard “but-for” test used in the law: but for A,B would not have occurred.
The old model definition used by Chockler & Halpern[7] did satisfy the condition
as well, but was brittle for more contingencies. So in Halpern[8]’s paper, he
placed more stringent restrictions on the contingencies that can be considered.
Resulting in the current AC2m. Which says that if the value of X⃗ is changed
from x⃗ to x⃗′, while possibly holding the set W⃗ , which contains the values of the
variables in some (possibly empty), fixed at their values in the current context,
then ϕ becomes false. We say that (W⃗ , x⃗′) is a witness to X⃗ = x⃗ being a cause of
ϕ in (M, u⃗). If X⃗ = x⃗ is a cause of ϕ in (M, u⃗) and X = x is a conjunct of X⃗ = x⃗,
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then X = x is part of a cause of ϕ in (M, u⃗). As for AC3, it is a minimality
condition, which ensures that only the conjuncts of X⃗ = x⃗ that are essential are
parts of a cause. In general, there may be multiple causes for a given outcome.

2.3 Example Model

It is possible to make a causal model from the Example 1 and model we de-
scribed. From the example it is clear there is only one end state which either can
be true or false. We define it as C = 1 for collisions and C = 0 for no collision.
Because C is dependent of either agent B or C braking, we have two states that
imply C defined as BB and BC being 1 if the agents used the brakes and 0 if
not. Because agent A can pass information to the other agents just before they
act, we add a state called IT representing agent A transferring its information.
We add two states to represent if information is given to the agents called TB
and TC being 1 if information is received and 0 if not.

IT

TB

TC

BB

BC

C

Figure 2: Causal Example Model

Following from the description, we get Figure 2. The model itself is not
complex, but when we start assigning responsibility and blame we take each
possible action for each case into account. The whole model can be considered
complex.

2.4 Responsibility and Blame

To describe responsibility for causal models Chockler and Halpern[7] introduced
the notion of degree of responsibility. It is intended to capture the intuition that
if everybody is responsible for a failure, that each person is less responsible for
the failure than if one person is responsible for a failure. So, the degree of
responsibility X = x for ϕ, in order to make make ϕ counter factually depend
on X = x, measures the minimal number of changes and number of variables
that must be held fixed. We use the formal definition by Halpern[6], which is
appropriate for the modified definition of causality used here.

Definition 2.2. (Responsibility) The degree of responsibility of X = x for ϕ
in (M, u⃗), denoted dr((M, u⃗), (X = x), ϕ), is 0 if X = x is not part of a cause of
ϕ in (M, u⃗); it is 1/k if there exists a cause X⃗ = x⃗ of ϕ and a witness (W⃗ , x⃗′)
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to X⃗ = x⃗ being a cause of ϕ in (M, u⃗) such that (a) X = x is a conjunct of
X⃗ = x⃗, (b) ∣W⃗ ∣ + ∣X⃗ ∣ = k, and (c) k is minimal, in that there is no cause X⃗1 = x⃗1
for ϕ in (M, u⃗) and witness (W⃗ ′, x⃗′1) to X⃗1 = x⃗1 being a cause of ϕ in (M, u⃗)
that includes X = x as a conjunct with ∣W⃗ ′∣ + ∣X⃗1∣ < k.

We assume with this definition of responsibility that everything relevant for
the model and how it works is known. Overall though, there are uncertainties
both about the context as about the causal model. This is taken into account
in the notion of blame. An agent’s uncertainty is modeled by a pair (K,Pr),
where K is a set of causal settings, which are pairs of the form (M, u⃗), and Pr is
a probability distribution over K. We call such a pair an epistemic state. Note
that with such a distribution, we can talk about the probability that ⃗X = x⃗ is a
cause of ϕ relative to (K,Pr): it is just the probability of the set of pairs (M, u⃗)
such that X⃗ = x⃗ is a cause of ϕ in (M, u⃗). We also define the degree of blame
of X = x for ϕ to be the expected degree of responsibility:

Definition 2.3. (Blame) The degree of blame of X = x for ϕ relative to the
epistemic state (K,Pr) is

∑
(M,u⃗)∈K

dr((M, u⃗),X = x,ϕ)Pr((M, u⃗)).

2.5 Responsibility Example

We use the definitions of responsibility and blame for the causal model stated
in Section 2.4 to assign responsibility and blame to our example causal model
described in Section 2.3.

2.5.1 Examples Responsibility

We can assign responsibility to the model by simply using Definition 2.2. Since
the Definition 2.2 of responsibility is dependent of Definition 2.1 of causality, we
define which states are the cause of the collision. We cannot assign responsibility
for an event that did not happen, so in all instances when C = 0 there is no one
responsible. Based on Definition 2.1, we discover that only states BB and BC

are the cause of state C = 1. From which we conclude that agent B and C are
1/2 responsible for the collision and agent A is not responsible in any case.

2.5.2 Examples Blame

To assign blame using Definition 2.3 to the model, we need to create an epis-
temic state for it. To create an epistemic state, we need to assign a probability
distribution over the model, we do not need to change the models structure.
For our example we use the following probability relations:

• IT = 1→ TB∨C = 0.9 and IT = 0→ TB&C = 0

• TB&C = 1→ BB&C = 0.1 and TB&C = 0→ BB&C = 0.8
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So, if agent A transfers information to another agent there is a one in ten chance
that the information is not received and when agent B or C has received the
information the chance of breaking increases from twenty percent to eighty.

Using this as our probability distribution and the responsibility definition
given in the previous section, the degree of blame of agents B and C is equal to
94%. However, with the probability distribution it came apparent that of the
94%, 64% was the cause of agent A not providing information. But since agent
A is not responsible, it cannot be blamed for it.

3 Logical approach

In this section, we take a look at the logical approach we are going to use. We
will be using alternating-time temporal logic(ATL)[10] as the core of our logical
approach. For ATL is interpreted over concurrent game structures(CGS), we
will be describing both. We start by describing the syntax of ATL followed by
the semantics, which is dependent on the concurrent game structures. In this
section we follow main definitions described in Ågotnes, et al.[11]

3.1 Alternating-Time Temporal Logic

As described at the start of this section we will first describe the syntax of ATL,
which is then followed by concurrent game structures. Which is used to describe
the semantics of ATL

3.1.1 Syntax

The language of Alternating-Time Temporal Logic (ATL)[10] is built from the
following components: Agt = a1, ..., an a set of n agents and Π a set of proposi-
tions. Formulas of the language LATLare defined by the following syntax:

ϕ,ψ ∶∶= p∣¬ϕ∣ϕ ∧ ψ∣⟪C⟫◯ϕ∣⟪C⟫ϕUψ∣⟪C⟫ ◻ ϕ

where p ∈ Π is a proposition, and C ⊆ Agt is a coalition of agents. Informally,
ATL operators be interpreted as follows:

• ⟪C⟫◯ϕ: means that the coalition C has a collective strategy to ensure
that the next state satisfies ϕ

• ⟪C⟫ϕUψ: means that the coalition C has a collective strategy to ensure
satisfying ψ while maintaining the truth of ϕ

• ⟪C⟫ ◻ ϕ: means that the coalition C has a collective strategy to ensure
that ϕ is always true.

Now we define the CGS our logical structure works upon.
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3.1.2 Concurrent Game Structures

The model which ATL is interpreted over are Concurrent Game Models (CGM)[10].
An CGM is a Concurrent Game Structure (CGS) with assigned variable values,
therefore we first describe what a CGS is.

Concurrent Game Structures: Formally, a concurrent game structure (CGS)
is a tuple S = ⟨Agt,Q,Act, d, o⟩ where:

• Agt = a1, ..., an is a finite, non-empty set of agents; subsets of Agt are
called coalitions C

• Q is a finite, non-empty set of states

• Act is a finite set of atomic actions

• action manager function d ∶ Agt×Q↦ P(Act) specifies the sets of actions
available to agents at each state. An action profile is a tuple of actions
α = ⟨α1, ..., αi⟩ ∈ Act

k.

• o is a transition function that assigns the outcome state q′ = o(q,α1, ..., αn)
to state q and a tuple of actions αi ∈ d(i, q) that can be executed by Agt
in q.

Having defined what a structure is, we extend the structure (CGS) to a Con-
current Game Model (CGM) with a labeling function L ∶ Q → P(Π), such that
the states of Q are labeled by sets of atomic propositions from a fixed set Π.
The labeling describes which atomic propositions are true at a given state.

We use the following auxiliary notions to represent and start reasoning about
strategies and outcomes. (References to elements of M are to elements of a
CEGSM modeling a given multiagent system, e.g., we write Q instead of Q in
M.)

Successors and Computations: For two states q and q′, we say q′ is a suc-
cessor of q if there exist actions αi ∈ d(i, q) for i ∈ {1, ..., n} in q such that
q′ = o(q,α1, ..., αn), i.e., agents in Agt can collectively guarantee in q that q′ will
be the next system state. A computation of a CEGSM is an infinite sequence of
states λ = q0, q1, ... such that, for all i > 0, we have that qi is a successor of qi−1.
We refer to a computation that starts in q as a q−computation. For i ∈ {0,1, ...},
we denote the i’th state in λ by λ[i], and λ[0,1] and λ[i,∞] respectively denote
the finite prefix q0, ..., qi and infinite suffix qi, qi+1, ... of λ. We refer to any two
arbitrary states qi and qi+1 as two consecutive states in λ[i,∞]. Finally, we say
a finite sequence of states q0, ..., qn is a q − history if qn = q, n ≥ 1, and for all
0 ≤ i < n we have that qi+1 is a successor of qi. We denote a q-history that starts
in qi and has n steps with λ[qi, n]

Strategies and Outcomes: A positional (aka. memoryless) strategy in S
for an agent a ∈ Agt is a function sa: Q ↦ Act, such that sa(q) ∈ d(q, a).
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For a coalition C ⊆ Agt, a collective strategy ZC = {sa∣ a ∈ C} is an indexed
set of strategies, one for every a ∈ C. Then, out(q,ZC) is defined as the set
of potential q-computations that agents in C can enforce by following their
corresponding strategies in ZC . We extend the notion to sets of states ω ⊆ Q in
the straightforward way: out(ω,ZC) = ∪q′∈ωout(q′, ZC).

3.1.3 Semantics

We described CGS for the semantics of ATL since it is defined relative to a
CGM M and state q, where the truth of ATL-formulae at a state q ∈ Q is
defined inductively as follows:

• M, q ⊧ p iff q ∈ L(p)

• M, q ⊧ ¬ϕ iff M, q ⊭ ϕ

• M, q ⊧ ϕ ∧ ψ iff M, q ⊧ ϕ and M, q ⊧ ψ

• M, q ⊧ ⟪C⟫◯ϕ iff there exists a stratagy ZC such that for all computa-
tions λ ∈ out(q,ZC), M, λ[1] ⊧ ϕ

• M, q ⊧ ⟪C⟫ϕUψ iff exists a strategy ZC such that for all computations
λ ∈ out(q,ZC), for some i,M, λ[i] ⊧ ψ, and for all j < i,M, λ[j] ⊧ ϕ

• M, q ⊧ ⟪C⟫ ◻ ϕ iff exists a strategy ZC such that for all computations
λ ∈ out(q,ZC), for all i,M, λ[i] ⊧ ϕ

3.2 Concurrent Example Model

We make a CGM out of Example 1’s logic. There are three agents: a, b and
c. From the example we conclude the set of states Q consists four states: state
S0 which is the initial state, splitting into state S1 where collision happened
and state S2 where collision did not happen. For S0 is the initial state and

S0

S1 S2

Figure 3: Concurrent Example Model

there is no follow states after S1 and S2, we only need to describe the available
actions from S0. We specify the actions of the agents as follows: doing nothing
is N , transferring information to one agent is T1, to both is T2, and breaking
is represented by B. Resulting the set of actions based of the example is:
a ∶ {N,T1, T2}, b ∶ {N,B}, c ∶ {N,B}. Following this we get the transition
function o:

• o(S0, (N,N,N)) = S1, o(S0, (T1,N,N)) = S1, o(S0, (T2,N,N)) = S1
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• o(S0, (N,B,N)) = S2, o(S0, (N,N,B)) = S2, o(S0, (N,B,B)) = S2,
o(S0, (T1,B,N)) = S2, o(S0, (T1,N,B)) = S2, o(S0, (T1,B,B)) = S2,
o(S0, (T2,B,N)) = S2, o(S0, (T2,N,B)) = S2, o(S0, (T2,B,B)) = S2,

With this we have described the CGM fitted for the example.

3.3 Responsible ATL

In order to assign responsibility and blame to the ATL structure, we extend the
structure with the formulae described by Naumov & Tao and Yazdanpanah, et
al. [12, 13] From their definition the following syntax gets added:

ϕ ∶∶= ⟪C⟫RCϕ∣⟪C⟫BCϕ

Formula ⟪C⟫Rϕ means ”coalition C can enforce that it is responsible for ϕ” and
formula ⟪C⟫Bϕ means “coalition C can enforce that it is blamable for ϕ”. The
addition of this syntax allows us to start speaking about responsibility and blame
in ATL. We do not use the notions of Forward and Backward responsibility
described by Yazdanpanah, et al.[13] because the definitions given by Naumov
& Tao define responsibility sufficiently.

We also extend the model to an epistemic model. For epistemic uncertainty
must be considered when analyzing responsibility. As the ability of agents to ex-
ecute a strategy depends on their knowledge of the environment. So, the CGS we
defined gets extended into a Concurrent Epistemic Game Structure(CEGS)[11]
by adding an epistemic indistinguishability relation ∼a⊆ Q × Q for each agent
a ∈ Agt. We assume that ∼a is an equivalence relation, where q ∼a q

′ indicates
that states q and q′ are indistinguishable to a.

As a result of this addition, our strategy definition needs to be updated as
well to handle the equivalence effect of ∼. Thus, the definition of our strategy
sa in S for an agent a ∈ Agt is turned into: for all q ∈ Q (1) sa(q) ∈ d(q, a),
and (2)q ∼a q

′ → sa(q) = sa(q
′). When referring collective strategies we also use

the new strategy definition in the collective. Furthermore we include an extra
strategy definition that will be used:

Uniform Strategies: A uniform strategy is a strategy in which agents se-
lect the same actions in all states where they have the same information avail-
able to them. In particular, if agent a ∈ Agt is uncertain whether the current
state is q or q′, then a should select the same action in q and in q′. A strat-
egy sa for agent a ∈ Agt is called uniform if for any pair of states q, q′ such
that q ∼a q

′, sa(q) = sa(q′). A strategy ZC is uniform if it is uniform for every
a ∈ C ⊆ Agt. Realistic modeling of strategic ability under imperfect information
requires restricting attention to uniform strategies only.

With this the semantic meaning of the syntax that was just added can be
explained. For this is an extension on the original CGM, all other semantics
statements also hold. So, the semantics of ATL defined relative to a CEGMM
and state q, where of ATL-formulae at a state q ∈ Q is defined inductively as
follows:
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• M, q ⊧ ⟪C⟫Rϕ iff the following conditions hold

1. M, q ⊧ ⟪C⟫◯ϕ

2. there exists a strategy ZC and state q such that there exists a com-
putation λ ∈ out(q,ZC),M, λ[1] ⊭ ϕ

3. for each proper subset D ⊂ C and each strategy ZD there exists a
computation λ ∈ out(q,ZD),M, λ[1] ⊧ ϕ

• M, q ⊧ ⟪C⟫Bϕ iff the following conditions hold

1. M, q ⊧ ⟪C⟫◯ϕ

2. for all states q′ there exists a uniform strategy ZC such that q ∼C q′

there exists a computation λ ∈ out(q′, ZC),M, λ[1] ⊭ ϕ

3. for each proper subset D ⊂ C and each strategy ZD there exists a
computation λ ∈ out(q,ZD),M, λ[1] ⊧ ϕ

The first item of both definitions state that they can enforce to be responsible or
blamable. The second item of the first definitions stands for: if the coalition had
an other option then they are responsible. The second definitions stands for: if
the coalition had an other option and knew about it then they are blamable.
As for the third item guaranties that every member should have an action that
contributes to the event.

3.4 Examples Logical Responsibility

Based of the examples CGM and the additional definitions for ATL, we can
now start assigning responsibility and blame to the model. For starters there
is no indistinguishable state between any of the states in our old model. Thus,
we need to extend by adding possibly indistinguishable states, which we have
dependent on the information given by agent A. The initial state S0 can be
dived into four states for each scenario, S0N , S0PB , S0PC and S0F which refer
to: S0N is the initial state where agent A did not provide information to the
agents, S0PB is where agent A provided information to agent B, S0PC is where
agent A provided information to agent C, and S0F is where agent A provided
information to both agents. So our renewed model looks as follows:

S0N S0PB S0PC S0F

S1F S2F

Figure 4: Concurrent Epistemic Example Model
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Because of agents B and C do not know of one another in S0N and only
partially know in states S0PB and S0PC , are the states S0N and S0PB indistin-
guishable for agent B and the states S0N and S0PC indistinguishable for agent
C. However, since agents B and C know the scenario in S0F and partially know
in states S0PB and S0PC , are also the states S0PB and S0F indistinguishable for
agent B and the states S0PC and S0F indistinguishable for agent C. However, the
states S0PB and S0F are also indistinguishable for agent B and agent C likewise
cannot distinguish the states S0PC and S0F . Since, since agents B and C know
the scenario in S0F and partially know in states S0PB and S0PC . The indistin-
guishable states for agent B are connected with red and the indistinguishable
states for agent C are connected with green.

Since by the definition of responsibility, agent A does not have an option to
prevent collision as for agents B and C are the only cause of it. Because there
is a way for agents B and C to enforce a collision by both not using the brakes
and being able to prevent the collision by not braking, is ⟪B,C⟫RB,CS1. Agents
B and C are all the agents responsible for the case collision happens, because
no knowledge is required to be responsible. Further we assume that there is no
obvious solution to the collision such that the agents know that braking is the
solution to the collision. The information that agent A can provide however,
makes agents B and C additionally to responsible when a collision happens
also blamable. For when an agent knows how to prevent the collision, the
formula ⟪Co⟫BCoS1 becomes true. In other words, if a collision happens but
agent A provided information, then that agent with knowledge will also become
blamable as well as being responsible. So, agents B and C are responsible for the
collision from state S0N but not blamable for could not distinguish the states
resulting into ⟪∅⟫B∅S1. From S0PB however, agent B is knows how to prevent
the collision so ⟪B⟫BBS1 is true. Same goes for agent C in S0PC from which
follows that ⟪C⟫BCS1 is true. As in state S0F the formula ⟪B,C⟫BB,CS1 holds
and are therefore both agents B and C blamable.

4 Causal Responsibility in Logic

In this section, we compare the models and their results from Sections 2 and
3 and try to logically express the causal definition with the ATL-style logical
approach and vise versa. We start by comparing the results of the models, such
that we have an understanding what the similarities and differences are between
the models. So, when we logically express the causal definition with the logical
approach and vise versa. We use the comparison results for the translations in
definitions.

4.1 Comparing Models

Here we compare the results of models described in Sections 2.1 and 3.4. We
start by looking at the similarities and followed by looking at the differences of
the models.
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First of the similarities, we noticed that both structures are used to describe
the order of actions. It might seem trivial since both describe actions in time,
but it still relevant enough when we look at the model structures. Another
similarity is that both models agree about the interpretation that agent A is
not involved enough in the collision for it to be responsible for the accident.
Also, both agree about the fact that both agents B and C are always partially
responsible for the collision, if we take into account that every member in a
coalition is responsible as defined in Section 3.3.

There is, however, the difference in defining knowledge, structure, and inter-
preting blame. Well, the difference in defining knowledge is also a cause to why
the structures differ. For the causal model uses states to represent knowledge of
variable and instances and the states before that current state tell what knowl-
edge is known and what not. As for in an ATL model, the states represents the
knowledge that is known. Therefore, resulting into different structures. More
importantly, there is the difference in interpreting blame. Since, our ATL model
models to full blame or shared blame for a collision, whereas the causal model
represents blame with probability values. This is partially the consequence of
causal models needing the previous states to obtain the knowledge of the fi-
nal state. Still, the value of blame differs from the fact that the causal model
uses a probability distribution to assign its blame and the ATL model uses its
interpreted blame.

4.2 Defining Cause in Logic

For both structures used by the models are so dissimilar, it is necessary to
manually do the translation between them. Since, there is an interesting absence
of results about translations between two approaches which model responsibility
and blame. Still, since we only attempt to express the definition of the causal
model in ATL-style logic, it is not necessary to look at the structures of the
models itself. But if we were to look at the structures, the biggest difference
between the models is that the causal model has the action of agent A integrated
in the actions, as for the ATL model has the actions of agent A integrated as
initial states.

Still, we only intend to translate the causal model’s definitions of responsibil-
ity and blame into logic and vise versa. Well, since the definition of responsibility
is fairly similar between the approaches, we do not need to modify anything.
We do need to, however, add the statement that responsibility in a coalition is
equally shared between members of the coalition.

As for approaching the definition of blame there is the effect in the causal
model that more blame is assigned when the estimation suggests a more probable
collision. So if we are to assign the same probabilistic distribution to the ATL
model, then the results still differ. So, it is necessary to inverse the probability
distribution of the causal model for the ATL model to approach the probability
result. Since the ATL model assumes that only with knowledge can somebody
be blamable and for the causal model states that based of the probabilistic
estimation somebody can be blamable.
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As the result of adding the inverse probability distribution there is a blame
assignment in the case where both agents B and C have no knowledge, this
blame assignment is however a 3% of the total 94% which is ignorable. As for
the rest of the probabilities, those align with both the ATL model in blame is
assigned to those blamable and the percentages with those blames. And with
this we have defined the causal definition of responsibility and blame from a
ATL-style logic approach.

To defined the ATL-style logic definition of responsibility and blame from a
causal approach the probabilities of the distributions and use the results of the
previous states to define blame. So agent B is blamable when TB of Figure 2
is 1 and agent C when TC = 1. With this we have defined the ATL-style logic
definition of responsibility and blame from a causal approach.

5 Results

As the intent of this literature review is to compare between ATL-style logical
and causal models approaches to modeling responsibility and blameworthiness
and to answer the question if it is possible to express a causal models’ definition
in ATL-style logic and vise versa.

We started by comparing the approaches on modeling responsibility and
blameworthiness. The model descriptions in Sections 2.1 and 3.4 are what came
out of the example with the literature definitions. After that, the models were
compared in Section 4, which discovered that responsibility is assigned mostly
in a similar way but blame differently.

Using the comparison results, we translated the definition of the causal model
in ATL-style logic. By adding that responsibility is shared between members
of a coalition and an inverse probability distribution for blame, was the causal
model described in ATL. For the translation of the definition of the ATL-style
logic from the causal model, the probabilistic distribution had to be discarded
and tanking previous states as knowledge had to implemented.

6 Discussion

Showing that a causal definition can be translated from a logical approach and
vise versa is the result of this literature review. However, this can be the result
of the example being too simple and therefore not approach any of the edge
cases, which could prove otherwise. Such as the fact that ATL can be cyclic,
but since the example was so simple this possible conflict did not happen. Since
our chosen causal model was the model defined by Halpern[7, 8, 9], in the case of
using a different model a different result could have been observed. Also, in the
logical approach the definitions of responsibility and blame Naumov & Tao were
taken instead of those defined by Yazdanpanah, et al. [13]. Possibly giving us a
different result. It would even be possible to remove the probability difference
with using ATL which uses probabilistic terms when defining knowledge.[14]
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Furthermore, the logic for our logical approach in our paper is ATL. We could
have taken a different type of logic, which possibly would have resulted into a
different result as well.
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