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Abstract
The Free Choice problem is a problem that arises when translating certain sentences pertaining

to permission from natural language to logic. A solution to this problem was proposed by

Franke called Iterated Best Response. Fox and Katzir recently pointed out a flaw in this solution.

In this research, I approached this problem and managed to construct a solution that allowed the

IBR algorithm to once again be a viable solution to the Free Choice problem. This solution is

then also critically examined to see if it definitively solves the Free Choice problem.
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1 Introduction

Intelligent agents make a lot of choices. A significant portion of these choices is made as a

response to input given in natural language by humans. To allow the agent to make the correct

choices according to the given input, it is important the agent is able to correctly interpret the

given input.

To interpret a sentence in natural language the sentence has to be converted to logic formu-

las, after which the agent can interpret the input and make its next choice accordingly. When

translating natural language sentences to logic, several problems can arise that lead to an agent

interpreting sentences in a different way than the person originally giving it intended. In this

research, one of these problems will be discussed, namely the Free Choice problem. The Free

Choice problem arises when translating a sentence with a modal modifier and a disjunction

from natural language to logic. Finding a solution to this problem would allow agents to better

interpret natural language the way we want them to, and make their choices accordingly.

The Free Choice Problem was first proposed in Kamp (1973). This is a problem regarding the

interpretation of sentences pertaining to permissions. When reading sentence (1) below, the

conclusion that sentence (2) holds, as well as sentence (3) can generally be made in natural

language by humans. Should sentence (2) hold, but not sentence (3) for example, sentence (1)

would not be uttered, but rather just sentence (2).

However, when we look at the logical equivalents of these sentences, this conclusion does

not follow. When we know the statement ♦(a∨b) holds it does not follow that ♦a holds or that

♦b holds (or better yet, that ♦a∧♦b holds). This is because the statement ♦(a∨ b) only tells
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us that there is a possibility that a∨ b holds, which does not guarantee that a and b are both

possible since it is feasible that only a is possible, for instance.

(1) You may eat an apple or a banana. ♦(a∨b)

(2) You may eat an apple. ♦a

(3) You may eat a banana. ♦b

Because this conclusion does not follow through Kripke semantics we will need to find a dif-

ferent method to interpret sentences such as (1).

Franke (2010) proposes a solution to this problem. This solution involves an iterative process

called Iterated Best Response (IBR) using a game-theoretical approach. This solution uses two

players; the player sending the message and the player receiving the message and interpreting

the meaning. These players first use the logical meanings of the possible messages according to

Kripke semantics but evolve their response according to what facilitates the best response from

the other player. This iterative process eventually converges and is able to interpret sentences

(1), (2), and (3) the same as humans interpret these sentences.

Fox and Katzir (2020) criticize Franke’s approach. They showed that, although Franke’s

IBR reaches the correct conclusion for sentences such as sentence (1), it fails to do so for

sentences containing a disjunction made up of more than two disjuncts, such as sentence (4).

(4) You may eat an apple, a banana, or a cherry.

In sentence (4) the interpretation found by humans would be that you are allowed to eat an

apple, a banana, as well as a cherry, but perhaps not all at once. When there are more alternative

interpretations possible, IBR halts too soon and is not able to interpret every sentence correctly

anymore. IBR is able to correctly interpret sentences (2) and (3) but converges before it can

reach an interpretation for sentences (1) and (4).

In chapter two Franke’s model will be explained in further detail, as well as the problem as

described by Fox and Katzir.

The main goal of this research is to attempt to solve this problem described by Fox and Katzir.

The research question I will aim to answer is the following: “Is the problem Fox and Katzir
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present a general problem for Iterated Best Response or just for Franke’s version of Iterated

Best Response?”. I will answer this question by seeing if this problem can be circumvented by

adjusting the assumptions made by Franke’s IBR. I will show that, with some new assumptions,

we can construct a solution that is not impaired by the problem from Fox and Katzir. Subse-

quently, the follow-up question to this will be “how sufficient is the solution I suggest?”. I will

first outline how the IBR algorithm operates and demonstrate the problem with IBR that Fox

and Katzir described. Then I will investigate possible adjustments to the IBR algorithm and as-

sess whether these adjustments help solve the problem. I will show that, with some adjustments

to the IBR algorithm, the problem Fox and Katzir pose can be resolved. Lastly, I will analyse

my suggested solution and discuss whether this can be seen as a feasible solution to the Free

Choice problem as a whole.
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2 Current solution and problem

2.1 Franke’s Iterated Best Response

2.1.1 Model framework

Franke’s proposal (2010) uses an interpretation game. In this game, a sender has to convey

information to the receiver. The sender has the information which state t the world is in, which

the receiver does not. The sender can send a message m to the receiver and from this message

the receiver has to derive the correct world state t.

To put this into some context, we can construct an interpretation game for the sentences

mentioned in section 1.2.

(5) You may eat an apple or a banana. m♦(a∨b)

(6) You may eat an apple. m♦a

(7) You may eat a banana. m♦b

We can then select a subset of these messages for each world state possible such that the mes-

sages are true in that world state according to Kripke semantics:

ta = {m♦a,m♦(a∨b)}

tb = {m♦b,m♦(a∨b)}

tab = {m♦a,m♦b,m♦(a∨b)}
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Here, ta is the world state where you may take an apple, but not a banana, tb is the world state

where you may take a banana but not an apple and tab is the world state where you may take

an apple and a banana. Note that ta does not contain mb as a valid message since that message

directly contradicts the state. Similarly, the state tb does not contain ma as a valid message.

Now we can look at a possible strategy for the sender and receiver. A strategy is a function

from states to messages for the sender and from messages to states for the receiver. Here, s is

the sender’s strategy and r is the receiver’s strategy.

s =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦(a∨b)


r =


m♦a 7→ ta

m♦b 7→ tb

m♦(a∨b) 7→ tab


This can be read as follows: if the sender is presented with the state ta, they will give the receiver

the message ma. If the receiver is presented with message ma, they will guess they are in world

state ta, which would be correct. These two strategies work well together; in every possible

state the sender sends a message that allows the receiver to correctly deduce the world state.

2.1.2 The model

In Franke’s model, the strategies from the receiver and sender are both based on the strategy

of the other player and adapt over several iterations. Every new strategy iteration is generated

in such a way to maximize the chance of a world state being deduced correctly, to optimize

success. This process iterates until it reaches an equilibrium and does not change over iterations.

This is reached when either a receiver strategy is the same as a previous receiver strategy or a

sender strategy is the same as a previous sender strategy. Below is an example of the model for

the world states and messages we looked at earlier in 2.1.1, accompanied by tables displaying

the different probabilities of each message being sent in a certain state.

R0 =


m♦a 7→ ta, tab

m♦b 7→ tb, tab

m♦(a∨b) 7→ ta, tb, tab


S1 =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦a,m♦b


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R2 =


m♦a 7→ ta

m♦b 7→ tb

m♦(a∨b) 7→ ta, tb, tab


S3 =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦(a∨b)



R4 =


m♦a 7→ ta

m♦b 7→ tb

m♦(a∨b) 7→ tab


S5 =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦(a∨b)


R0 m♦a m♦b m♦(a∨b)

ta 1/2 0 1/3

tb 0 1/2 1/3

tab 1/2 1/2 1/3

S1 m♦a m♦b m♦(a∨b)

ta 1 0

tb 0 1

tab 1/2 1/2

R2 m♦a m♦b m♦(a∨b)

ta 1 0 1/3

tb 0 1 1/3

tab 0 0 1/3

S3 m♦a m♦b m♦(a∨b)

ta 1 0 0

tb 0 1 0

tab 0 0 1

R4 m♦a m♦b m♦(a∨b)

ta 1 0 0

tb 0 1 0

tab 0 0 1

S5 m♦a m♦b m♦(a∨b)

ta 1 0 0

tb 0 1 0

tab 0 0 1

Table 1. The probability distributions at different strategy iterations for a situation with two disjuncts

To read these tables it is important to distinguish between the tables for the receiver and the

tables for the sender. The tables for the receiver, table R0 for instance, can be read as follows:

The receiver is presented a message, corresponding to a column. They have to evaluate which

state the message is most likely to portray. In R0, which is based solely on Kripke semantics,

the message m♦a is true in states ta and tab so both these states would get a probability of one

in two for the message m♦a. Whereas message m♦(a∨b) is true in all three states. Thus, this
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message gets a probability of one in three for all three states. The tables for the sender are the

other way around. The sender is given a state and has to evaluate which message is best to send.

In S1, which is based on R0, it is calculated that in state ta it is best to send message m♦a since

this message has a one in two chance to be guessed as state ta as opposed to message m♦(a∨b)’s

lower one in three chance. Here, in state tab, it is actually best to send message m♦a or message

m♦b, rather than message m♦(a∨b) as these first two messages will have a one in two chance to

be guessed as state tab, whereas message m♦(a∨b) once again only has a one in three chance.

As I mentioned the process starts with the receiver strategy R0. This strategy only takes

the semantic meaning of the messages into account. We can see that it assumes every message

could imply the world state tab and the message m♦(a∨b) could imply every possible world state.

The sender strategy S1 is then generated according to R0. The next receiver strategy R2 is in

turn based on the sender strategy S1. We can see that the message m♦(a∨b) is not included

for any world state in strategy S1. This means the sender will never send message m♦(a∨b).

Should the receiver still receive this message anyway, it is then called a surprise message. If the

receiver receives a surprise message, they will simply interpret it to be true according to Kripke

semantics. This means that, for message m♦(a∨b), the receiver will still hold all world states as

equally possible options. After this, strategy S3 is based on R2 and then strategy R4 is based on

S3. At this point the model reaches an equilibrium, the next sender strategy, S5, is the same as

the previous sender strategy, S3. Because of this, the next receiver strategy will also be the same

as the previous receiver strategy R4, since this strategy was already based on S3.

When we assess these resulting strategies we can see they perform quite well. In every

possible world state the message sent by the sender is deduced as the correct world state by the

receiver. Furthermore, we can note that this works in a way that humans would find intuitive;

the messages the sender uses are not seen as inappropriate for any given world state.

2.2 A problem for Iterated Best Response

As mentioned before, Fox and Katzir described a problem of Franke´s Iterated Best Response

(2020). This problem arises when the sentence contains a disjunction made up of more than

two disjuncts. An example of this, along with the corresponding messages, can be seen below.
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(8) You may eat an apple, a banana, or a cherry. m♦(a∨b∨c)

(9) You may eat an apple or a cherry. m♦(a∨c)

(10) You may eat a cherry. m♦c

If we attempt to run the model on this new situation we get the following iterations of strategies:

R0 =



m♦a 7→ ta, tab, tac, tabc

m♦b 7→ tb, tab, tbc, tabc

m♦c 7→ tc, tac, tbc, tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc



S1 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦a,m♦b

tac 7→ m♦a,m♦c

tbc 7→ m♦b,m♦c

tabc 7→ m♦a,m♦b,m♦c



R2 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc



S3 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tac 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tbc 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tabc 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)



R4 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦(a∨b) 7→ tab, tac, tbc, tabc

m♦(a∨c) 7→ tab, tac, tbc, tabc

m♦(b∨c) 7→ tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc



S5 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tac 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tbc 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)

tabc 7→ m♦(a∨b),m♦(a∨c),m♦(b∨c)


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R0 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1/4 0 0 1/6 1/6 0 1/7

tb 0 1/4 0 1/6 0 1/6 1/7

tc 0 0 1/4 0 1/6 1/6 1/7

tab 1/4 1/4 0 1/6 1/6 1/6 1/7

tac 1/4 0 1/4 1/6 1/6 1/6 1/7

tbc 0 1/4 1/4 1/6 1/6 1/6 1/7

tabc 1/4 1/4 1/4 1/6 1/6 1/6 1/7

S1 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1 0 0 0 0 0 0

tb 0 1 0 0 0 0 0

tc 0 0 1 0 0 0 0

tab 1/2 1/2 0 0 0 0 0

tac 1/2 0 1/2 0 0 0 0

tbc 0 1/2 1/2 0 0 0 0

tabc 1/3 1/3 1/3 0 0 0 0

R2 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1 0 0 1/6 1/6 0 1/7

tb 0 1 0 1/6 0 1/6 1/7

tc 0 0 1 0 1/6 1/6 1/7

tab 0 0 0 1/6 1/6 1/6 1/7

tac 0 0 0 1/6 1/6 1/6 1/7

tbc 0 0 0 1/6 1/6 1/6 1/7

tabc 0 0 0 1/6 1/6 1/6 1/7

S3 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1 0 0 0 0 0 0

tb 0 1 0 0 0 0 0

tc 0 0 1 0 0 0 0

tab 0 0 0 1/3 1/3 1/3 0

tac 0 0 0 1/3 1/3 1/3 0

tbc 0 0 0 1/3 1/3 1/3 0

tabc 0 0 0 1/3 1/3 1/3 0

R4 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1 0 0 0 0 0 1/7

tb 0 1 0 0 0 0 1/7

tc 0 0 1 0 0 0 1/7

tab 0 0 0 1/4 1/4 1/4 1/7

tac 0 0 0 1/4 1/4 1/4 1/7

tbc 0 0 0 1/4 1/4 1/4 1/7

tabc 0 0 0 1/4 1/4 1/4 1/7

S5 m♦a m♦b m♦c m♦(a∨b) m♦(a∨c) m♦(b∨c) m♦(a∨b∨c)

ta 1 0 0 0 0 0 0

tb 0 1 0 0 0 0 0

tc 0 0 1 0 0 0 0

tab 0 0 0 1/3 1/3 1/3 0

tac 0 0 0 1/3 1/3 1/3 0

tbc 0 0 0 1/3 1/3 1/3 0

tabc 0 0 0 1/3 1/3 1/3 0

Table 2. The probability distributions at different strategy iterations for a situation with three disjuncts

We can see that the model is able to link messages m♦a, m♦b, and m♦c to states ta, tb, and tc

respectively, rather quickly. Yet after this, it fails to reach a distinction for the other messages

and world states. Because the sender strategy S5 is the same as the previous sender strategy S3,

the model halts after this iteration. If we evaluate the found strategies S5 and R4 we see that

sadly, it does not perform well. States tab, tac, tbc, and tabc do not have a definitive solution.

In each of these states there is only a one in four chance of the state being guessed correctly.

This can be explained as the model not being able to make a distinction between the messages

m♦(a∨b), m♦(a∨c), and m♦(b∨c) regarding the states tab, tac, tbc, and tabc.
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Because of the addition of this newly introduced third disjunct, the model fails to reach a

correct solution. This means we need to change the way this model works in order for it to be

able to deal with more disjuncts.
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3 Adjusting the IBR algorithm

3.1 Background

The algorithm initially fails to distinguish between the states tab, tac, tbc, and tabc; all states that

would require disjunctions in natural languages. The outcome of the IBR algorithm is highly

dependent on what is initially entered into it. For instance, what messages are taken into account

and in what way they are interpreted. Because of this, it might be an option to add new messages

that aid it in distinguishing between these aforementioned states. For instance, if I perhaps add

a message that says ”You may eat an apple or a banana but not a cherry”, it could be found to

be state tab, as we would interpret it.

3.2 Disjunct Negations

The first messages added were messages that stated that certain disjuncts are not true. These

were chosen since they could possibly help distinguish between the states mentioned before.

(11) You may not eat an apple. ¬♦a m¬♦a

(12) You may not eat a banana. ¬♦b m¬♦b

(13) You may not eat a cherry. ¬♦c m¬♦c
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If we run the IBR algorithm together with these three new messages, we get the following

iterations:

R0 =



m♦a 7→ ta, tab, tac, tabc

m♦b 7→ tb, tab, tbc, tabc

m♦c 7→ tc, tac, tbc, tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m¬♦a 7→ tb, tc, tbc

m¬♦b 7→ ta, tc, tac

m¬♦c 7→ ta, tb, tab



S1 =



ta 7→ m¬♦b,m¬♦c

tb 7→ m¬♦a,m¬♦c

tc 7→ m¬♦a,m¬♦b

tab 7→ m¬♦c

tac 7→ m¬♦b

tbc 7→ m¬♦a

tabc 7→ m♦a,m♦b,m♦c



R2 =



m♦a 7→ tabc

m♦b 7→ tabc

m♦c 7→ tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m¬♦a 7→ tbc

m¬♦b 7→ tac

m¬♦c 7→ tab



S3 =



ta 7→ m♦(a∨b),m♦(a∨c)

tb 7→ m♦(a∨b),m♦(b∨c)

tc 7→ m♦(a∨c),m♦(b∨c)

tab 7→ m¬♦c

tac 7→ m¬♦b

tbc 7→ m¬♦a

tabc 7→ m♦a,m♦b,m♦c


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R4 =



m♦a 7→ tabc

m♦b 7→ tabc

m♦c 7→ tabc

m♦(a∨b) 7→ ta, tb

m♦(a∨c) 7→ ta, tc

m♦(b∨c) 7→ tb, tc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m¬♦a 7→ tbc

m¬♦b 7→ tac

m¬♦c 7→ tab



S5 =



ta 7→ m♦(a∨b),m♦(a∨c)

tb 7→ m♦(a∨b),m♦(b∨c)

tc 7→ m♦(a∨c),m♦(b∨c)

tab 7→ m¬♦c

tac 7→ m¬♦b

tbc 7→ m¬♦a

tabc 7→ m♦a,m♦b,m♦c



Strategy S5 is the same as strategy S3 so the model converges here. If we evaluate the found

strategies R4 and S5 we find that this solution does not perform well. The world states ta, tb

and tc only have a one in two chance to be evaluated correctly. More importantly though, the

interpretation of the messages does not correspond with the interpretation of humans when read

in natural language. For instance, m♦a, m♦b, and m♦c are all interpreted by the receiver as world

state tabc. Humans would not interpret these messages this way but rather as states ta, tb, and tc,

respectively.

Another method with negations embedded in the original messages was also tested (see

appendix A). In this method the receiver was able to deduce all states correctly, but the model

failed to reach an interpretation that was in line with the human interpretation.

3.3 Conjunctions

The next four messages added are similar to the messages used originally but use conjunctions

instead of disjunctions. These messages were chosen since humans, in natural language, might

use the word ‘and’ to specify when several options are allowed.

(14) You may eat an apple and a banana. ♦(a∧b) m♦(a∧b)
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(15) You may eat an apple and a cherry. ♦(a∧ c) m♦(a∧c)

(16) You may eat a banana and a cherry. ♦(b∧ c) m♦(b∧c)

(17) You may eat an apple and a banana and a cherry. ♦(a∧b∧ c) m♦(a∧b∧c)

If we run the IBR algorithm together with these four new messages, we get the following itera-

tions:

R0 =



m♦a 7→ ta, tab, tac, tabc

m♦b 7→ tb, tab, tbc, tabc

m♦c 7→ tc, tac, tbc, tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m♦(a∧b) 7→ tab, tabc

m♦(a∧c) 7→ tac, tabc

m♦(b∧c) 7→ tbc, tabc

m♦(a∧b∧c) 7→ tabc



S1 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∧b)

tac 7→ m♦(a∧c)

tbc 7→ m♦(b∧c)

tabc 7→ m♦(a∧b∧c)


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R2 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m♦(a∧b) 7→ tab

m♦(a∧c) 7→ tac

m♦(b∧c) 7→ tbc

m♦(a∧b∧c) 7→ tabc



S3 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∧b)

tac 7→ m♦(a∧c)

tbc 7→ m♦(b∧c)

tabc 7→ m♦(a∧b∧c)



This version of the model converges rather quickly and when we evaluate it we find that it

performs well in the game-theoretical sense. Take note that this only means that, in every world

state, the message sent by the sender is interpreted as the correct world state by the receiver.

This does not mean that the messages are interpreted similar to the human interpretation. In

this case, most of the messages are interpreted similar to how humans interpret their natural

language equivalents. However, all the messages still containing disjunctions (m♦(a∨b), m♦(a∨c),

m♦(b∨c) and m♦(a∨b∨c)) are all surprise messages since they are not used by the sender in any

state and as such, have the truth-conditions of Kripke semantics. They still have not reached a

definitive interpretation.

Although this version performs well, we cannot say that it can be seen as a correct solution

to the Free Choice problem. The Free Choice problem arises because a sentence containing a

disjunction such as “You may eat an apple or a banana” is not interpreted correctly and in these

found strategies those sentences are still not being interpreted correctly, if we can even say they

are being interpreted at all. If we choose to ignore these messages and instead only focus on

the messages containing conjunctions instead it still does not offer a fitting solution since these

sentences do not carry the implication that, although more than one disjuncts are allowed, you
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perhaps are not allowed to eat more than one at the same time. This point is in line with Chemla

and Bott’s outlook (2014). It is important the original sentences, particularly the sentences with

disjunctions, are interpreted correctly, rather than new messages taking over their role.

3.4 Implied negation

The problem with adding new messages seems to be that, by adding new messages, IBR does

not reach new interpretations for the old messages. Despite the fact that reaching interpreta-

tions for particularly these messages is what is needed to provide a solution to the Free Choice

problem. Instead of adding new messages, it might be required to adapt the way the original

messages are first interpreted. If the original semantic reading of the messages is adjusted it

could possibly allow the algorithm to distinguish between the states mentioned in section 3.1.

A possible way of adjusting the semantic reading of the messages I constructed, I will label

implied negation. In this reading it is assumed that, if a disjunct is not mentioned in a certain

message, it is implied that that disjunct is not true. For example, the sentence “You may eat an

apple or a banana” is interpreted here as “You may eat an apple or a banana but not a cherry”.

Or in other words ♦(a∨b) is interpreted as ♦(a∨b)∧¬♦c. Because of this, message m♦(a∨b)

is now originally interpreted to be true in only states ta, tb, and tab and not states tac, tbc, and

tabc anymore. This exhaustive implicature can be compared to the exhaustive interpretation

constructed by Schulz and Van Rooij (2006).

Running IBR with this new reading gives us the following iterations:

R0 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦(a∨b) 7→ ta, tb, tab

m♦(a∨c) 7→ ta, tc, tac

m♦(b∨c) 7→ tb, tc, tbc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc



S1 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∨b)

tac 7→ m♦(a∨c)

tbc 7→ m♦(b∨c)

tabc 7→ m♦(a∨b∨c)


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R2 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦(a∨b) 7→ tab

m♦(a∨c) 7→ tac

m♦(b∨c) 7→ tbc

m♦(a∨b∨c) 7→ tabc



S3 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

tab 7→ m♦(a∨b)

tac 7→ m♦(a∨c)

tbc 7→ m♦(b∨c)

tabc 7→ m♦(a∨b∨c)


Note that the IBR algorithm still operates the same. The new reading only changes the first

strategy R0. If we now evaluate this outcome it looks quite promising. The model performs

well and, more importantly, in a way that directly mimics the human interpretation. The receiver

interprets every message the same way humans would interpret the natural language equivalent.

If we are to use implied negation, it should also work for the original case where we had a

sentence containing a disjunction made up of only two disjuncts. Let us test IBR with implied

negation for the original sentences (1), (2), and (3) mentioned in chapter 1:

R0 =


m♦a 7→ ta

m♦b 7→ tb

m♦(a∨b) 7→ ta, tb, tab


S1 =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦(a∨b)



R2 =


m♦a 7→ ta

m♦b 7→ tb

m♦(a∨b) 7→ tab


S3 =


ta 7→ m♦a

tb 7→ m♦b

tab 7→ m♦(a∨b)


We find that implied negation still works for sentences containing disjunctions made up of only

two disjuncts. Here, it finds the same solution as before with these messages, albeit slightly

faster. We can conclude that IBR still finds the ‘correct’ solution (i.e. in line with human

interpretation) using implied negation.
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IBR with implied negation also operates well with sentences containing disjunctions made

up of four disjuncts (see Appendix B). Here, the algorithm still finds the interpretation humans

find.

3.5 Proof for any number of disjuncts

We can take the number of disjuncts a step further and prove that IBR with implied negation

works for sentences containing a disjunction made up of any number of disjuncts. We will show

that IBR with implied negation will end with every message being interpreted the way humans

would. This will be done by proving that, when the first sender strategy S1 is generated, it will

find the correct, and only the correct message, at this iteration. Here, ‘the correct message’

means the message that humans would give. To show this, we will need to prove that, for every

state, the correct message will have the highest probability for that state in R0 out of all possible

messages.

Let us take a situation with an arbitrary number of disjuncts. Take an arbitrary state t where

the number of disjuncts allowed is n. The disjuncts allowed in state t can be gathered into a set

At . When the first sender strategy S1 is generated, it will find the correct, and only the correct

message mc, at this iteration. This will be the message that includes all disjuncts allowed in

state t and no more (i.e. set At). We will take an arbitrary message m. The disjuncts mentioned

in message m can be gathered into a set Dm. We will show that message m will only be linked

to state t in S1 if it mentions those disjuncts, and only those disjuncts, mentioned in state t (i.e.

if Dm = At). We proceed with a proof by cases. Every message falls into one of three cases:

the message does not contain all disjuncts allowed in state t, the message contains exactly those

disjuncts allowed in state t, and the message contains all disjuncts allowed in state t, as well as

others. Here, the second case is the correct message mc. We want to show this case will have

the highest probability for state t. We will compare the probability for state t in all cases and

show that this second case will provide us with the highest probability for state t in R0.

Case 1: The message does not contain all disjuncts allowed in state t (At * Dm).

If message m does not contain all disjuncts mentioned in state t, it follows that there is at least
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one allowed disjunct d ∈ At such that d /∈ Dm. This means At * Dm and likewise At 6= Dm.

Since this disjunct d is not mentioned in message m, it is assumed to be false through implied

negation. This leads to state t not being a valid state from message m in R0.

Case 2: The message contains exactly those disjuncts allowed in state t (At = Dm).

If message m contains exactly those disjuncts allowed in state t, we know that At = Dm. In other

words, message m is the correct message mc for state t. Since message m contains all disjuncts

allowed in state t, it also follows that message m entails state t in R0, among other states.

We can calculate the probability for state t from message mc (P(t|mc)) in R0. To do this,

we need the amount of states that could be true given message mc. Message mc contains only

those disjuncts allowed in state t, so message mc contains n disjuncts. The number of states that

would be valid given message mc would then be 2n− 1 (here, −1 is included since there is no

state where no disjuncts are allowed). Since every state is assumed to have an equal probability

the probability for state t, given message mc, would then be 1
2n−1 in R0.

Case 3: The message contains all disjuncts allowed in state t, as well as others (At ⊂ Dm).

If message m contains all disjuncts allowed in state t, as well as other disjuncts it follows that

At 6= Dm: There is at least one mentioned disjunct d ∈Dm that is not allowed in state t, and thus,

is not present in At . Since d ∈ Dm and d /∈ At it follows that At 6= Dm. However, since every

disjunct allowed in state t is also mentioned in message m, it follows that At ⊂ Dm. This means

state t will still be a valid state for message m in R0.

Similar to in case 2, we can also calculate the probability for state t from message m

(P(t|mc)) in R0. We do not know the specific amount of disjuncts mentioned in message m,

however, we do know it is more than the number of disjuncts allowed in state t. Let x be the

number of disjuncts mentioned in message m. It then follows that n < x. The number of states

that would be valid given message m would be 2x−1. Since every state is assumed to have an

equal probability the probability for state t, given message m (P(t|m)), would then be 1
2x−1 in

R0.
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Now compare this probability with the probability for state t given message mc:

n < x

2n < 2x

2n−1 < 2x−1

1
2n−1

>
1

2x−1

P(t|mc)> P(t|m)

We see that P(t|mc) > P(t|m). This means that, although message m does entail state t,

message mc will entail state t with a higher probability.

We see that in R0 message mc (seen in case 2) is the message that gives the highest probability

for state t. All other messages either have a lower probability (seen in case 3) or cannot entail

state t at all (seen in case 1). When generating strategy S1 it then follows that the only message

the sender will send in state t will be the desired message mc, since this message has the highest

probability in R0 to be guessed as state t of all messages. Since state t was arbitrary this will be

the case for every possible state. This means that in S1 the sender will send the desired message

and only the desired message in every state. After this, the receiver strategy R2 is generated

according to strategy S1. Every possible message will have exactly one state associated with it

in S1. This means that every message in R2 will link to the state that originally linked to it in S1.

Since every state in S1 is linked to the desired message, this means every message in R2 will be

linked to its corresponding desired state. The same happens when the next sender strategy S3 is

generated according to R2. Because of this, strategy S3 will be the same as strategy S1 and the

IBR algorithm will stop.

When evaluating the found strategies R2 and S3 we can conclude that the model reached

the interpretation directly in line with the human interpretation. The receiver interprets every

message the way humans would as well. Since the number of disjunctions in this situation was

arbitrary, we can conclude that IBR with implied negation finds the correct interpretation for

sentences containing a disjunction with any number of disjuncts.
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4 Discussion

By using the implied negation reading I was able to adjust the IBR algorithm in such a way that

it was able to reach the interpretation of the messages in line with human interpretation. Since

the original messages that caused the Free Choice problem in the first place are now interpreted

correctly, it could be argued that this solves the Free Choice problem for sentences containing

disjunctions made up of any number of disjuncts.

Let us recall our research question: “Is the problem Fox and Katzir present a general prob-

lem for Iterated Best Response or just for Franke’s version of Iterated Best Response?”. I have

shown that the problem argued by Fox and Katzir (2020) can be solved by changing the ini-

tial reading of the messages to be more in line with human implicatures. This shows that the

problem argued by Fox and Katzir only presents a problem for Franke’s version of IBR and not

for IBR as a whole. If we go further and look at the follow-up question “how sufficient is the

solution I suggest?”, I can argue my solution is quite satisfactory, although some criticisms can

be made.

Firstly, it can be argued that implied negation takes away of the original strength of IBR. IBR

originally reaches the implied negation reading on its own; ♦a∧¬♦b is assigned to ♦a before,

but now we explicitly include this implication ♦a→♦a∧¬♦b. This exhaustivity is often aimed

to be emergent behaviour, rather than explicitly taught (Franke, 2011). Franke’s IBR is initially

able to reach the desired interpretations based on Kripke semantics alone, without any additional

modification. Now that implied negation is added explicitly it does lessen this strength.

Secondly, it can be argued that adding the implied negation could be seen as similar to
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simply adding the Free Choice implication; ♦(a∨ b)→ ♦a∨♦b, which we would prefer to

avoid. We wish to construct a method for finding interpretations of natural language sentences

that finds the solution to these cases itself, without explicitly being told how to handle them.

A method where finding these interpretations is emergent behaviour stemming from relatively

‘simple’ rules would be favored over adding these rules specifically. We can note, however, that

the addition of implied negation does cause the conjunctive reading of disjunctions to emerge,

without adding the rule itself. The Free Choice implication is not a direct consequence of

implied negation; ♦(a∨b) does not entail that ♦a∧♦b under implied negation. It only entails

that other disjuncts are false.

Reflecting on my work I can conclude that IBR can still be seen as a valid approach to

the Free Choice problem. Although it seems to have some flaws, these can be addressed by

adjusting what is put into the algorithm to begin with. In this research I approached a problem

with IBR and managed to solve it. I also observed that adding new messages does not seem to

be as suitable as they do not assist in finding a correct interpretation of problem-messages but

rather take over those messages altogether. We cannot say for certain that IBR is now without

flaw as it is still very much possible unforeseen issues can arise. However, IBR does seem to be

a promising approach to the Free Choice problem.

Future research could assess if there are any problems with IBR and implied negation not

seen here. For instance, I only demonstrated that this method works for sentences that require

a Free Choice reading, but this is not the case for every sentence containing a disjunction.

Because of this, future research could analyze how IBR with implied negation operates on other

sentences containing disjunctions and see if problems emerge there. Future research could also

apply this method for interpreting free choice sentences to an agent and assess if it operates well

together with humans or if misunderstandings arise.
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5 Appendix

A. Adding negations in original messages

R0 =



m♦a 7→ ta, tab, tac, tabc

m♦b 7→ tb, tab, tbc, tabc

m♦c 7→ tc, tac, tbc, tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m♦(a∧¬b) 7→ ta, tac

m♦(a∧¬c) 7→ ta, tab

m♦(a∧¬b∧¬c) 7→ ta

m♦(b∧¬a) 7→ tb, tbc

m♦(b∧¬c) 7→ tb, tab

m♦(b∧¬a∧¬c) 7→ tb

m♦(c∧¬a) 7→ tc, tbc

m♦(c∧¬b) 7→ tc, tac

m♦(c∧¬a∧¬b) 7→ tc

m♦((a∨b)∧¬c) 7→ ta, tb, tab

m♦((a∨c)∧¬b) 7→ ta, tc, tac

m♦((b∨c)∧¬a) 7→ tb, tc, tbc



S1 =



ta 7→ m♦(a∧¬b∧¬c)

tb 7→ m♦(b∧¬a∧¬c)

tc 7→ m♦(c∧¬a∧¬b)

tab 7→ m♦(a∧¬c),m♦(b∧¬c)

tac 7→ m♦(a∧¬b),m♦(c∧¬b)

tbc 7→ m♦(b∧¬a),m♦(c∧¬a)

tabc 7→ m♦a,m♦b,m♦c


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R2 =



m♦a 7→ tabc

m♦b 7→ tabc

m♦c 7→ tabc

m♦(a∨b) 7→ ta, tb, tab, tac, tbc, tabc

m♦(a∨c) 7→ ta, tc, tab, tac, tbc, tabc

m♦(b∨c) 7→ tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m♦(a∧¬b) 7→ tac

m♦(a∧¬c) 7→ tab

m♦(a∧¬b∧¬c) 7→ ta

m♦(b∧¬a) 7→ tbc

m♦(b∧¬c) 7→ tab

m♦(b∧¬a∧¬c) 7→ tb

m♦(c∧¬a) 7→ tbc

m♦(c∧¬b) 7→ tac

m♦(c∧¬a∧¬b) 7→ tc

m♦((a∨b)∧¬c) 7→ ta, tb, tab

m♦((a∨c)∧¬b) 7→ ta, tc, tac

m♦((b∨c)∧¬a) 7→ tb, tc, tbc



S3 =



ta 7→ m♦(a∧¬b∧¬c)

tb 7→ m♦(b∧¬a∧¬c)

tc 7→ m♦(c∧¬a∧¬b)

tab 7→ m♦(a∧¬c),m♦(b∧¬c)

tac 7→ m♦(a∧¬b),m♦(c∧¬b)

tbc 7→ m♦(b∧¬a),m♦(c∧¬a)

tabc 7→ m♦a,m♦b,m♦c



When we evaluate this we see that it does perform well, in every state the correct state is de-

duced, although not intuitively to humans. Here, tabc can send the messages m♦a, m♦b, and m♦c.

Additionally, the state tab sends the messages m♦(a∧¬c) and m♦(b∧¬c) although humans would

sooner use message m♦((a∨b)∧¬c).
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B. IBR with implied negation with four disjuncts

R0 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦d 7→ td

m♦(a∨b) 7→ ta, tb, tab

m♦(a∨c) 7→ ta, tc, tac

m♦(a∨d) 7→ ta, td, tad

m♦(b∨c) 7→ tb, tc, tbc

m♦(b∨d) 7→ tb, td, tbd

m♦(c∨d) 7→ tc, td, tcd

m♦(a∨b∨c) 7→ ta, tb, tc, tab, tac, tbc, tabc

m♦(a∨b∨d) 7→ ta, tb, td, tab, tad, tbd, tabd

m♦(a∨c∨d) 7→ ta, tc, td, tac, tad, tcd, tacd

m♦(b∨c∨d) 7→ tb, tc, td, tbc, tbd, tcd, tbcd

m♦(a∨b∨c∨d) 7→ ta, tb, tc, td, tab, tac, tad, tbc, tbd,

tcd, tabc, tabd, tacd, tbcd, tabcd



S1 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

td 7→ m♦d

tab 7→ m♦(a∨b)

tac 7→ m♦(a∨c)

tad 7→ m♦(a∨d)

tbc 7→ m♦(b∨c)

tbd 7→ m♦(b∨d)

tcd 7→ m♦(c∨d)

tabc 7→ m♦(a∨b∨c)

tabd 7→ m♦(a∨b∨d)

tacd 7→ m♦(a∨c∨d)

tbcd 7→ m♦(b∨c∨d)

tabcd 7→ m♦(a∨b∨c∨d)


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R2 =



m♦a 7→ ta

m♦b 7→ tb

m♦c 7→ tc

m♦d 7→ td

m♦(a∨b) 7→ tab

m♦(a∨c) 7→ tac

m♦(a∨d) 7→ tad

m♦(b∨c) 7→ tbc

m♦(b∨d) 7→ tbd

m♦(c∨d) 7→ tcd

m♦(a∨b∨c) 7→ tabc

m♦(a∨b∨d) 7→ tabd

m♦(a∨c∨d) 7→ tacd

m♦(b∨c∨d) 7→ tbcd

m♦(a∨b∨c∨d) 7→ tabcd



S3 =



ta 7→ m♦a

tb 7→ m♦b

tc 7→ m♦c

td 7→ m♦d

tab 7→ m♦(a∨b)

tac 7→ m♦(a∨c)

tad 7→ m♦(a∨d)

tbc 7→ m♦(b∨c)

tbd 7→ m♦(b∨d)

tcd 7→ m♦(c∨d)

tabc 7→ m♦(a∨b∨c)

tabd 7→ m♦(a∨b∨d)

tacd 7→ m♦(a∨c∨d)

tbcd 7→ m♦(b∨c∨d)

tabcd 7→ m♦(a∨b∨c∨d)


When we evaluate R2 and S3 we find that the interpretations are perfectly in line with

the human equivalents.


	Introduction
	Current solution and problem
	Franke's Iterated Best Response
	A problem for Iterated Best Response

	Adjusting the IBR algorithm
	Background
	Disjunct Negations
	Conjunctions
	Implied negation
	Proof for any number of disjuncts

	Discussion
	Appendix

