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Abstract 

The results from a developed model in Utrecht University are used to investigate the effect of 

particle attachment on pore hydraulic conductivity. The model was developed to simulate 

particle attachment on a micro-scale to the pore surface of a constricted pore. Fluid mechanics 

were modeled using the lattice Boltzmann method of fluid simulations, and particles were 

simulated as smooth body forces acting as an external force within the Lattice Boltzmann 

equation using the smoothed profile method. DLVO forces were simulated between particles, 

and between particles and the pore surface. A sensitivity analysis has been performed 

regarding four different variables influential to DLVO and hydrodynamic interactions that 

govern particle attachment. The variables analyzed include: particle radius, zeta potential, ionic 

strength and flow velocity. 

   The resulting data of the model has been applied to investigate potential porosity-

permeability relations at the micro-scale using attached particles as a proxy for porosity. The 

resulting profiles have been fitted using a generalized Kozeny-Carman and power law relation. 

Furthermore, coefficient analysis of said equations has been performed to investigate trends 

between changes in variables and coefficients. Although the fitted equations provide an 

adequate fit to the modeled system, further research are recommended to provide conclusive 

results on the coefficient analysis. 
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Introduction 

Motivation 

Colloid transport and deposition has been a widely researched subject, because it is important 

in many industrial and environmental applications, ranging from waste water filtration to paints 

and coatings [1,2,3]. For applications like waste water filtration, high particle retention is 

preferred. For other applications particle deposition may be undesirable [4]. 

   The way colloids are deposited to solid surfaces is determined through the interaction 

between hydrodynamic and colloidal interaction forces [5]. The colloidal interaction forces are 

described by what is known as DLVO theory. Hydrodynamic forces are often modeled through 

the use of the Navier-Stokes equations. 

   The practical use of colloid transport and retention are most often on a field scale. However, 

the interactions that allow attachment and detachment on solid surfaces to occur in porous 

media are active at much smaller scales. That is why it is vital to have a thorough 

understanding in the processes that happen on a micro scale, which in turn might be translated 

to effects on a much larger scale. 

   The model presented in this study may be used for various different kinds of results that arise 

from particle attachment in pore spaces. For example the rate of coagulations, or changes in 

surface coverage. This study will focus on porosity-permeability relations. Permeability is one 

of the main variables describing fluid flow in groundwater applications, and is highly sensitive 

to changes in scale [6].  

   The main question in this study is, if on such a small scale, porosity may be used to predict 

permeability through the use of known relations, similar to the way this can be done on larger 

scales. Other questions will include if there is any correlation in the changes in porosity-

permeability profiles and changes in model variables. 
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Overview 

In this study a model will be presented that simulates particle attachment on a single pore 

scale. The method of fluid simulation is the Lattice Boltzmann Method. This way of modeling 

groundwater flow is based on the probability of particle populations streaming to equilibrium 

conditions, and will be covered in the first Section of this work. 

   Section 2 will go over the way particles are simulated within the model. Particle simulation is 

done through the Smooth Profile Method, which overlays a ,density field over an existing fluid 

flow field. This in combination with the Lattice Boltzmann Method allows for particles to 

experience the hydrodynamic force of the fluid, but the fluid will be also be affected by the 

particles suspended in it.  

   DLVO theory and how it describes the colloid and surface interactions is laid out in Section 

3. It describes the theory and how this has been implemented in the model presented in this 

study. 

   The focus in this study is on porosity-permeability relations, which is why Section 4 gives a 

description of porosity-permeability in groundwater and porous media, as well some 

information about relevant relations.  

   The next section will give a description on how the previously presented equations and 

interactions are assimilated into the model. Furthermore, optimization through parallel 

computing is discussed, and all the conditions required for the model setup are given. 

   The last few sections will include the results, a discussion of set results, and a concluding 

summary of the study. 
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The Lattice Boltzmann Method 

The model presented in this study is based on a way of simulating fluid flow called the Lattice 

Boltzmann Method  (LBM).  This part will go into more detail on the origins of this method and 

how it can be used to simulate fluid mechanics, as well as the different boundary conditions 

necessary to simulate proper flow with the LBM. 

 

Kinetic Theory and the Boltzmann Equation 

The science on which the LBM is based is called kinetic theory. Originally kinetic theory was 

designed to simulate fluids (mostly dilute gasses) at a mesoscopic scale. This mesoscopic 

scale being the scale between microscopic and macroscopic. Where macroscopic 

corresponds to a scale in which the fluid is considered a continuum, as is the case with the 

traditional Navier-Stokes Equations (NSE). And where the microscopic scale is considered the 

scale of tracking individual particles or molecules [7 p.12]. 

   On this mesoscopic scale, not the individual particles are followed, but the distribution of a 

large number of particles. It is based on the idea that gas molecules constantly collide with 

each other. At any point in time the collective collisions of molecules or particles will determine 

an average direction and velocity that the collective particles will travel in. 

   This is one of the key concepts of kinetic theory and is represented by the distribution function 

𝑓(𝒙, 𝝃, 𝑡). It represents the density of particles as well as their velocity components at a given 

time 𝑡 and point 𝒙. It has the units of  
𝑘𝑔 𝑠3

𝑚6  as it represents a certain mass of particles (𝑘𝑔) in 

space (
1

𝑚3), given their velocities (
1

(𝑚𝑠−1)3) [7 p.16].Given enough time, a gas will revert back to 

a uniform distribution, which in terms of the distribution function is denoted as equilibrium 

distribution 𝑓𝑒𝑞(𝒙, 𝝃, 𝑡). 

   To use the distribution function its evolution in time has to be evaluated. Because the 

distribution function is dependent on 𝒙, 𝝃 and 𝑡, the total rate of change is determined by: 

 
𝑑𝑓

𝑑𝑡
= (

𝜕𝑓

𝜕𝑡
)

𝑑𝑡

𝑑𝑡
+ (

𝜕𝑓

𝜕𝒙
)

𝑑𝒙

𝑑𝑡
+ (

𝜕𝑓

𝜕𝝃
)

𝑑𝝃

𝑑𝑡
 1 
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This can be simplified to: 

 
𝑑𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝑡
+ 𝝃

𝜕𝑓

𝜕𝒙
+

𝑭

 𝜌

𝜕𝑓

𝜕𝝃
 2 

As 
𝑑𝑡

𝑑𝑡
= 1, 

𝑑𝒙

𝑑𝑡
= 𝝃 and 

𝑑𝝃

𝑑𝑡
=

𝑭

𝜌
. The last being body force coming from Newton’s second law, 

which has the units 
𝑁

𝜌
 [7 p.21]. The total rate of change between a given time interval is called 

the collision operator [7 p.21, 8 p15]. This brings the distribution function to: 

 
𝜕𝑓

𝜕𝑡
+ 𝝃

𝜕𝑓

𝜕𝒙
+

𝑭

 𝜌

𝜕𝑓

𝜕𝝃
= Ω(𝑓) 3 

Where Ω(𝑓) is the collision operator, which will have to be some function dependent on 𝑓. The 

first two terms can be seen as an advection term, which determines the direction and velocity 

of the particles, and the second term is represent forces that act on this velocity. The collision 

operator represents a source term. This source term embodies the local redistribution of 𝑓 

because of collisions [7 p.21].  The equation as given in equation 3 is called the Boltzmann 

Equation. 

   The next step in kinetic theory is to find the collision operator and solve equation 3. The 

original collision operator solved by Boltzmann himself is a complicated double integral that 

solves for all possible outcomes of all possible forces acting on two colliding particles. 

However, when using the LBM an approximation is used as a collision operator. 

   This approximation is called the BGK collision operator, and takes the form of: 

 Ω(𝑓) =  −
1

𝜏
(𝑓 − 𝑓𝑒𝑞) 4 

In this collision operator the distribution function is relaxed to its equilibrium state trough the 

relaxation time 𝜏, which determines the speed of the relaxation to equilibrium. 

 

The Lattice Boltzmann Equation 

To implement equation 3 numerically it has to be discretized, which is done in the following 

way. Consider the Boltzmann equation without external forces, with the BGK collision operator: 
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𝜕𝑓

𝜕𝑡
+ 𝝃 ∙ ∇𝑓 = −

1

𝜏
(𝑓 − 𝑓𝑒𝑞) 5 

This is the equation that needs to be solved in order to simulate fluid flow. The equation is 

discretized in a way that particle population can only flow in certain directions, which gives the 

following discretized equation:  

 𝑓𝑖(𝒙 + 𝒄𝒊Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝒙, 𝑡) +
Δ𝑡

𝜏
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) 6 

Here 𝒙 are points on a chosen square lattice, 𝒄𝒊 are discrete velocities, with specific directions 

depending on the chosen lattice grid, and 𝑓𝑖 is defined only on the points of 𝒙 and between 

time steps Δ𝑡. 

   The unknown in this equation is the computation of the equilibrium distribution 𝑓𝑖
𝑒𝑞

. This is 

given by: 

 𝑓𝑖
𝑒𝑞(𝒙, 𝑡) = 𝜔𝑖𝜌 (1 +

𝒖 ∙ 𝒄𝒊

𝑐𝑠
2 +

(𝒖 ∙ 𝒄𝒊)2

2𝑐𝑠
4 −

𝒖 ∙ 𝒖

2𝑐𝑠
2 ) 7 

Here 𝜔𝑖 is a collection of weights associated with the different velocity directions. The weight 

associated with each direction depends on the lattice grid that is chosen, which will be 

discussed soon. 𝜌 is the density of the fluid at the lattice, 𝒖 is the fluid velocity at the node, 

where 𝒖 = (
𝑢
𝑣

) for 2-dimensional flow, and 𝑐𝑠 is the speed of sound which is related to 𝑐 through 

𝑐𝑠
2 =

𝑐2

3
. From equation 6, it is possible to obtain the Navier-Stokes equation for incompressible 

flow by using the Chapman-Enskog expansion. From this derivation follows that the shear 

viscosity 𝜈 is related to the relaxation time 𝜏 and the speed of sound 𝑐𝑠 through 𝜈 = 𝑐𝑠
2 (𝜏 −

Δ𝑡

0.5
) 

[7 p.65, 9]. Equation 7 is selected in such a way that this derivation to the Navier-Stokes 

equation is possible. 

   It is necessary to determine the lattice spacing and the time step. The most commonly used 

unit for this is the lattice unit, an artificial unit such that Δ𝑥 = 1 and Δ𝑡 = 1. The streaming speed 

𝑐 is determined through 𝑐 =  
Δ𝑥

Δ𝑡
 . Because the lattice units are 1, the streaming speed will be 1 
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as well, which in turn implies that 𝑐𝑠
2 =

1

3
  [9]. An in-depth look and discussion on the derivation 

of the Navier-Stokes equation from equation 6 can be found at  [10, 11]. 

   To be able to solve the equations, a square lattice grid with a set of velocity directions must 

be chosen. The discrete velocity directions 𝒄𝒊 combined with the associated weights 𝜔𝑖 are 

called velocity sets. There are several different velocity sets available to solve equations 6 and 

7, but the one this study uses is called the 𝐷2𝑄9. Where the 𝐷 represents the spatial 

dimensions and 𝑄 the number of velocities. In this case there are 9 different velocities. The 

directions are exemplified in Figure 1, where: 

 

𝑐𝑖 =  {

(0,0)
(1,0), (0,1), (−1,0), (0, −1)
(1,1), (−1,1), (−1, −1), (1, −1)

 
𝑖 = 0
𝑖 = 1,2,3,4
𝑖 = 5,6,7,8

 

 

𝜔𝑖 =  {

4/9 
1/9
1/36

 
𝑖 = 0
𝑖 = 1,2,3,4
𝑖 = 5,6,7,8

 

 

       

   To determine the equilibrium distribution 𝑓𝑖
𝑒𝑞

, macroscopic variables like density 𝜌 and 

velocity field 𝒖 are required. Using the D2Q9 model, macroscopic variables can be obtained 

through weighted moments of 𝑓𝑖. Density and velocity are related in the following way to the 

distribution function [7 p.63]: 

 𝜌(𝒙, 𝑡) = ∑ 𝑓𝑖(𝒙, 𝑡)

8

𝑖=0

 8 

 𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) = ∑ 𝒄𝒊𝑓𝑖(𝒙, 𝑡)

8

𝑖=0

 9 

Solving one time step is done in two main parts, known as the LBGK scheme: collision and 

streaming. The collision step calculates the distribution function after the particle populations 

Figure 1. The direction from which particles can stream from node to node for the D2Q9 model. 
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have collided, based on the relaxation time 𝜏 and the equilibrium distribution 𝑓𝑖
𝑒𝑞

, which is 

determined through  equation 7. First the macroscopic variables 𝒖 and 𝜌 are required to 

calculate the equilibrium distribution function 𝑓𝑖
𝑒𝑞

. This can be done using the aforementioned 

equations 8 and 9, using the distribution function 𝑓𝑖. The collision function would be 

implemented as follows: 

 𝑓𝑖
∗(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) +

Δ𝑡

𝜏
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) 10 

Where 𝑓𝑖
∗(𝒙, 𝑡) is the distribution function after collisions [book 1 p.66 4]. 

   Following collision is the streaming step, where particle populations move – or stream – to 

their neighboring cells according to their directions: 

 𝑓𝑖(𝒙 + 𝒄𝒊Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖
∗(𝒙, 𝑡) 11 

Once the streaming process is completed, one full time step is finalized.  Next the new 

macroscopic variables can be obtained and the process can be repeated  [7 p.66 4]. 

 

Boundary Conditions 

To setup a flow simulation boundary conditions are required. The LBM has its own set of 

boundary conditions that have to implemented a certain way, such that the distribution function 

at the boundary nodes properly represent the macroscopic fluid properties of that boundary 

condition.  

   There are many ways to simulate different boundary conditions with the LBM. This study 

however, utilizes four different boundary conditions: half way bounce-back boundary 

conditions, bounce-back boundary conditions for curved surfaces, constant pressure boundary 

condition, and a constant velocity boundary condition 

    

When modelling a pore space, a no-slip boundary condition can be applied to the top and 

bottom walls of the pore. A no-slip boundary conditions states that adhesion forces of the fluid 

particles against the solid particles is larger than the cohesion forces of the fluid particles. This 
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force imbalance cause the fluid velocity to become practically zero at the fluid-solid interface 

[12].  

   To achieve a no-slip condition with the LBM, a bounce-back scheme can be used. The basis 

of a bounce-back scheme is that during the streaming process, when particle populations hit 

a rigid wall, they are reflected back to where they came from. This means that their average 

momentum will be zero (Figure 2). For this study a halfway bounce-back scheme is used.  This 

implies that during the streaming process, the particle population is bounced back to its original 

starting point (Figure 3). From Figure 3 it becomes clear that the physical wall that separates 

the fluid nodes from the solid nodes, is located somewhere in the middle between the nodes 

[book 1 p.176 4]. 

 

    

   

 

 

 

 

 

 

 

Bounce-back boundary conditions are some of the easiest boundary conditions to implement 

within the LBM. To implement the halfway bounce-back scheme, the standard streaming step 

for the fluid nodes is replaced with a different function specifically for all boundary nodes: 

 𝑓𝑖(𝒙, 𝑡 + Δ𝑡) = 𝑓𝑖
∗(𝒙, 𝑡) 12 

The streaming step for the fluid solid interface depicted in Figure 3, going from node 𝑥𝑓 to 𝑥𝑠, 

would look like: 

Figure 2. Schematic overview of the 
bounce-back principle (inspired by 
[book 1 p176 figure  5.10]) 

Figure 3. Schematic overview of the 
halfway bounce-back scheme. 



13 
 

 

𝑓3(𝑥𝑓 , 𝑡 + Δ𝑡) = 𝑓1
∗(𝑥𝑓 , 𝑡)

𝑓7(𝑥𝑓 , 𝑡 + Δ𝑡) = 𝑓5
∗(𝑥𝑓 , 𝑡)

𝑓6(𝑥𝑓 , 𝑡 + Δ𝑡) = 𝑓8
∗(𝑥𝑓 , 𝑡)

 13 

   Curved boundary conditions are necessary when the geometry of the model domain is more 

complex. The bounce-back scheme proposed previously works well in geometries where the 

boundary wall is consistently halfway between the fluid and solid nodes. In the case of curved 

geometries, the physical boundary will not always lie halfway Figure 4.  

    A solution to this problem is a special bounce-back scheme as proposed by [13]. The first 

step is to determine the location of the wall between the fluid and the solid node through: 

 𝑞 =
|𝐴𝐶|

|𝐴𝐵|
 14 

Where 𝑞 is the location of the wall between the fluid and solid node, and |𝐴𝐶| and |𝐴𝐵| are the 

distance between the fluid node and the wall, and the fluid node and the solid node 

respectively. Then, depending on the value of 𝑞, with linear interpolation, the values of the off-

grid distributions functions are determined, and pushed back to the nearest fluid node: 

 𝑓−𝑖(𝒙𝒇, 𝑡 + Δ𝑡) = 2𝑞𝑓𝑖
∗(𝒙𝒇, 𝑡) + (1 − 2𝑞)𝑓𝑖

∗(𝒙𝒇 − 𝒄𝒊, 𝑡), 𝑞 <
1

2
 15 

 𝑓−𝑖(𝒙𝒇, 𝑡 + Δ𝑡) =
1

2𝑞
𝑓𝑖

∗(𝒙𝒇, 𝑡) +
2𝑞 − 1

2𝑞
𝑓−𝑖(𝒙𝒇, 𝑡), 𝑞 ≥

1

2
 16 

Where 𝑓−𝑖 means the distribution function at the reversed velocity of 𝑖. The values of 𝑓𝑖
∗ on the 

right hand side of equations 15 and 16 are taken after collision and before streaming. The 

values on the left hand side will be used after streaming. Relating Figure 4 to equations 15 and 

16, 𝒙𝒇 becomes the fluid node 𝐴 and 𝒙𝒇 − 𝒄𝒊 becomes the fluid node 𝐸.  
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Figure 4. Schematic overview of 
bounce-back of curved surfaces (from 
[Boudhazie]) 

 

   Moving on from wall boundary conditions to inlet/outlet boundary conditions. The first 

detailed here is the constant velocity boundary condition. To set up a constant velocity 

boundary condition, a method called the non-equilibrium bounce-back is used [7 p.196, 14] 

Using this method, given the velocity at the boundary nodes (the inlet boundary nodes in this 

example), the density 𝜌 can be extrapolated using the known distribution functions: 

 𝜌 =
1

1 − 𝑢𝑖𝑛
(𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓3 + 𝑓6 + 𝑓7)) 17 

And the missing distribution functions are determined through: 

 𝑓1 = 𝑓3 +
2

3
𝜌𝑢𝑖𝑛 18 

 𝑓5 = 𝑓7 −
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑢𝑖𝑛 +

1

2
𝜌𝑣𝑖𝑛 19 

 𝑓8 = 𝑓6 +
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑢𝑖𝑛 −

1

2
𝜌𝑣𝑖𝑛 20 

With this method, the incoming velocities can be specified and used to extrapolate the 

corresponding incoming distribution functions [8 p.77, 14]. 

   The same way density can be extrapolated from velocity, so can velocity be extrapolated 

from density. To apply a constant pressure (density) boundary conditions, the following 

equations can be used for nodes at the outlet boundary: 
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 𝑢 = −1 +
𝑓𝑜 + 𝑓2 + 𝑓4 + 2(𝑓1 + 𝑓5 + 𝑓8)

𝜌𝑜𝑢𝑡
 21 

  𝑓3 = 𝑓1 −
2

3
𝜌𝑜𝑢𝑡𝑢 22 

 𝑓7 = 𝑓5 +
1

2
(𝑓2 − 𝑓4) −

1

6
𝜌𝑜𝑢𝑡𝑢  23 

 𝑓6 = 𝑓8 −
1

2
(𝑓2 − 𝑓4) −

1

6
𝜌𝑜𝑢𝑡𝑢  24 

  



16 
 

Particle Simulation 

There are several ways to simulate particles with the LBM. The most direct way is to impose 

moving bounce-back boundary conditions on the simulated particles, which can be done in 

several different ways [15, 16]. The particle interface is then represented by the linked 

boundary nodes. However, using this method the particle will not move smoothly in space, as 

a square lattice inherently cannot simulate a circular particle correctly. This can be partly solved 

by locally increasing mesh resolution like done in [17]. For systems with more particles this 

method  becomes more and more computationally heavy. 

 

Smoothed-Profile Method 

Another way of simulating particle populations is used in this study. This method is called the 

smoothed-profile method (SPM) it treats the particles as smooth body forces within the Navier-

Stokes equation instead of imposing boundary conditions on each particles [9, 18]. This way a 

single set of fluid dynamic equations needs to be solved, and the forces acting on the fluid and 

the fluid on the particles is determined through a smoothed layer over the model domain which 

represents the boundaries between fluid motion an particle motion  [9].  

   This smoothed profile is represented by the density field: 

 𝜙(𝒙, 𝑡) =  ∑ 𝜙𝑖(𝒙, 𝑡)

𝑁𝑝

𝑖=1

 25 

Where 𝜙𝑖(𝒙, 𝑡) ∈ [0,1] is the density profile of the 𝑖th particle up to 𝑁𝑝 number of particles [9]. 

This implies that where there is only fluid, 𝜙(𝒙, 𝑡) = 0, and where there is a particle 𝜙(𝒙, 𝑡) = 1. 

Previously a sharp discontinuous interface between the fluid and the solid particle was used. 

In numerical sciences, discontinuous profiles often give rise to numerical inaccuracies. That is 

why the SPM proposes that between the fluid and particle density profile, there is a smooth 

continuous profile connecting the two (Figure 5).  
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The function by which the density profile 𝜙(𝒙, 𝑡) transitions from 0 to 1 is arbitrary [19], but one 

way, used in this study, verified by [9], and exemplified in Figure 5 provides it the following 

way: 

𝜙𝑖(𝒙) = 𝑠(𝑅 − |𝒙 − 𝑹𝒊|), 

 𝑠(𝒙) =  {

 0,

 
1

2
sin (

𝜋𝒙

𝜉
+ 1) ,

 1,

   

𝒙 <  −𝜉/2 
|𝒙|  < 𝜉/2 
𝒙 > 𝜉/2 

 26 

Using equation 26, the density profile of a particle 𝜙𝑖(𝒙) is determined by the distance between 

the particle center 𝑹𝒊 and a given point 𝒙 on the lattice grid, and the radius of the particle 𝑅. 

The profile then transitions over the region thickness 𝜉 from 0 to 1 and back. Equation 26 is 

valid for 1 particle. The total density field of all particles is given by: 

 𝜙(𝒙, 𝑡) = ∑ 𝑠(𝑅 − |𝒙 − 𝑹𝒊|)

𝑁𝑝

𝑖=1

 27 

The velocity of the particles in the SPM is determined by the position 𝑹𝒊, the translational 

velocity 𝑽𝒊 and the angular velocity 𝛀𝒊 of the particles, where again 𝑖 is the number of particles 

up to 𝑁𝑝. The velocity field is given by: 

Figure 5. Overview of smoothed profile (solid 
line), from [saeed  jafari & yamamoto]. 



18 
 

 𝜙(𝒙, 𝑡)𝒖𝑃(𝒙, 𝑡) = ∑  𝑠(𝑅 − |𝒙 − 𝑹𝒊|) × (𝑽𝒊(𝑡) + 𝛀𝐢(𝑡) × (𝒙 − 𝑹𝒊(𝑡)))

𝑁𝑝

𝑖=1

 28 

The particle velocity field is required to determine the forces acting between the fluid and the 

solid interface. The force that the fluid acts on the solid particles 𝝓𝒇𝒑 is given by: 

 ∫ 𝜙(𝒙, 𝑡)𝒇𝑷(𝒙, 𝑡)𝑑𝑠 = 𝜙(𝒙, 𝑡)(𝒖𝑷(𝒙, 𝑡) − 𝒖(𝒙, 𝑡))
𝑡+Δ𝑡

𝑡

 29 

Where 𝒖(𝒙, 𝑡) and 𝒖𝑝(𝒙, 𝑡) are the fluid velocity and particle velocity at point 𝒙 and time 𝑡 

respectively. The force that the solid particles act on the fluid nodes is accordingly: 

 𝒇𝑯(𝒙, 𝑡) =  − ∫ 𝜙(𝒙, 𝑡)𝒇𝑷(𝒙, 𝑡)𝑑𝑠
𝑡+Δ𝑡

𝑡

 30 

Recall the lattice Boltzmann equation for fluid flow simulation in the previous part of this study. 

The hydrodynamic force can be added as an additional force term in the collision function:  

 𝑓𝑖
∗(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) +

Δ𝑡

𝜏
(𝑓𝑖

𝑒𝑞
− 𝑓𝑖) + [

𝜔𝛼𝛥𝑡

𝑐𝑠
2 (𝒇𝑯(𝒙, 𝑡) ∙ 𝒄𝒊)] 31 

This will update the flow field to include the effect that the particles have on the fluid flow. The 

next step is to update the particle positions. This is done by making use of the conservation of 

momentum law to find the force 𝑭𝑖
𝐻 and torque 𝑵𝑖

𝐻 applied by the fluid: 

 ∫ 𝑭𝑖
𝐻 𝑑𝑠 =  ∫ 𝜌𝜙𝑖(𝒙, 𝑡)(𝒖(𝒙, 𝑡) − 𝒖𝑷(𝒙, 𝑡)) 𝑑∀𝑃

∀𝑃

𝑡+Δ𝑡

𝑡

 32 

 ∫ 𝑵𝑖
𝐻 𝑑𝑠 = ∫ (𝒙 − 𝑹𝒊(𝑡)) × 𝜌𝜙𝑖(𝒙, 𝑡) × (𝒖(𝒙, 𝑡) − 𝒖𝑷(𝒙, 𝑡)) 𝑑∀𝑃

∀𝑃

𝑡+Δ𝑡

𝑡

 33 

Where the particles are integrated over the volume integral 𝑑∀𝑃. With updated force and torque 

the new translational and angular velocities of the particles can be determined through: 

 𝑽𝑖(𝑡 + Δ𝑡) = 𝑽𝑖(𝑡) + 𝑀𝑃
−1 ∫ (𝑭𝑖

𝐻 + 𝑭𝑖
𝑒𝑥𝑡) 𝑑𝑠

𝑡+Δ𝑡

𝑡

 34 

 𝛀𝒊(𝑡 + Δ𝑡) = 𝛀𝒊(𝑡) + 𝑰𝑃
−1 ∫ (𝑵𝑖

𝐻 + 𝑵𝑖
𝑒𝑥𝑡) 𝑑𝑠

𝑡+Δ𝑡

𝑡

 35 

Where 𝑭𝑖
𝐻 is the hydrodynamic force on the 𝑖th particle, and 𝑭𝑖

𝑒𝑥𝑡 and 𝑵𝑖
𝑒𝑥𝑡 are the external 

force and torque on the 𝑖th particle respectively. Here 𝑀𝑃 and 𝑰𝑃 are the mass of the particle 
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and the moment of inertia of the particle respectively. The position of the particle is updated 

through the translational velocity of the particle through: 

 𝑹𝑖(𝑡 + Δ𝑡) = 𝑹𝑖(𝑡) + ∫ 𝑽𝑖 𝑑𝑠
𝑡+Δ𝑡

𝑡

 36 

The new density field can now be calculated by means of the updated positions, translational 

and angular velocities.  

   Buoyance forces are considered when particles have a different density than the fluid. This 

force term can be added as an external force term in equation 34. The buoyancy force or 

gravity force can be implemented using the following equation: 

 𝑭𝑖
𝐺 =  𝜌𝑖𝑉𝑖𝑔 (1 −

𝜌

𝜌𝑖
) 37 

Where 𝜌𝑖 and 𝑉𝑖 are the particle density and volume respectively, and 𝜌 is the fluid density. 
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DLVO Theory 

The main aim of this study is to determine the effect of DLVO forces on the deposition of 

particles, and in particular the influence of different DLVO variables on deposition rates. This 

chapter will cover DLVO theory and the equations used in the model.  

   DLVO theory is the mathematical description of  the attractive and/or repulsive forces 

particles experiences when interacting with other particles or surfaces in a liquid medium. 

DLVO stands for Derjaguin-Landau-Verwey-Overbeek, the names of the scientists that 

pioneered this theory. It combines two different forces governing the attraction or repulsion of 

particles: 

 𝜙𝐷𝐿𝑉𝑂(ℎ) = 𝜙𝐸𝐷𝐿(ℎ) + 𝜙𝑉𝐷𝑊(ℎ) 38 

Where 𝜙𝐸𝐷𝐿(ℎ) is the electric double layer energy, 𝜙𝑉𝐷𝑊(ℎ) is the Van der Waals energy, and 

ℎ is the separation distance. The separation distance defines the distance between the two 

interacting entities. However, to simulate the DLVO interactions in the model, not the energy 

but the force is necessary. The DLVO force can simply be computed by taking the derivative 

of equation 38 with respect to the separation distance ℎ [20]: 

 𝑭𝐷𝐿𝑉𝑂(ℎ) = −
𝑑𝜙𝐷𝐿𝑉𝑂

𝑑ℎ
 39 

Electric Double Layer 

The electric double layer is key in the concept of charged solid surfaces in liquids. Water is the 

most important liquid for the electric double layer, because of its high dielectric constant, and 

its prevalence in environmental problems. Charged surfaces suspended in water create an 

electric field, which in turn attracts counter ions dissolved in the medium. This layer, which 

combines the surface charge and the counter ions, is called the electric double layer (EDL) 

[21].  

   Several different EDL models have been proposed. The Helmholtz model proposed that the 

counter ions would directly bind to the surface charge. This means that the double layer would 

only be one molecule thick. This managed to capture some of the observed features of charged 

surfaces in suspension, but failed to capture the easily measurable capacitance of the EDL. 
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The next model describes the layer of counter ions as a diffuse layer, which takes into account 

the movement of ions in the medium. This is how the EDL is usually described and works for 

most common applications, and is called the Gouy-Chapman model [21]. A schematic 

overview of the two models is given in Figure 6. 

 

Figure 6. a) Schematic representation of Helmholtz EDL model. b) Schematic overview of Gouy-Chapman EDL 

model. 

   The models in Figure 6 are based on the EDL of a flat surface[reference in book]. In the 

model of this study, particle simulation is of key importance, which are considered spherical. 

As the particles will have a charge of their own, they will also have a ELD when suspended in 

water. Debye and Hückel calculated the ELD properties for spherical surfaces . 

   In this study two different 𝜙𝐸𝐷𝐿 need to be computed. One for particle-particle interaction 

(𝜙𝑃−𝑃
𝐸𝐷𝐿 ) , and one for particle-wall (𝜙𝑃−𝑊

𝐸𝐷𝐿 ) interaction, given by [20, 22]: 

 Φ𝐸𝐷𝐿
𝑃−𝑊 =   2𝜋𝜖𝑜𝜖𝑟𝑅𝜁𝑊𝜁𝑃 (ln [

1 + 𝑒−𝜅ℎ

1 − 𝑒−𝜅ℎ
] +

𝜁𝑊
2 +  𝜁𝑃

2

2𝜁𝑊𝜁𝑃
∙  ln[1 − 𝑒−2𝜅ℎ]) 40 

And 

 Φ𝐸𝐷𝐿
𝑃−𝑃 = 64𝜋𝜖0𝜖𝑟𝑅𝑒𝑓𝑓 (

𝐾𝐵𝑇

𝑍𝑒
)

2

∙ tanh (
𝑍𝑒𝜁𝑖

4𝐾𝑇
) ∙  tanh (

𝑍𝑒𝜁𝑗

4𝐾𝑇
) ∙ 𝑒−𝜅ℎ 41 

The equivalent forces for the respective interaction energies are obtained using equation 39 

and look like: 

 𝑭𝑃−𝑊
𝐸𝐷𝐿 =  4𝜋𝜖0𝜖𝑟𝜅𝑅𝜁𝑊𝜁𝑃 (

𝑒−𝜅ℎ

1 − 𝑒−2𝜅ℎ
−

(𝜁𝑊 + 𝜁𝑃)2

2𝜁𝑊𝜁𝑃
∙

𝑒−2𝜅ℎ

1 − 𝑒−2𝜅ℎ) 42 

And 

 𝐅𝑃−𝑃
𝐸𝐷𝐿 = −64𝜋𝜖0𝜖𝑟𝜅𝑅𝑒𝑓𝑓 (

𝐾𝐵𝑇

𝑍𝑒
)

2

∙  tanh (
𝑍𝑒𝜁𝑖

4𝐾𝑇
) ∙ tanh (

𝑍𝑒𝜁𝑗

4𝐾𝑇
) ∙ 𝑒−𝜅ℎ 43 
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Equations 40 and 41 give the interaction energy, and equations 42 and 43 give the force of the 

EDL particle-particle and particle-wall interactions respectively. Here 𝜖𝑟 and 𝜖0 are the relative 

permittivity and dielectric permittivity in a vacuum respectively, 𝜁𝑊 and 𝜁𝑃 are the zeta potential 

of the wall and particle respectively when considering particle-wall interaction, 𝜁𝑖 and 𝜁𝑗 are the 

zeta potentials of different particles when considering particle-particle interaction, 𝑅 is the 

radius of the particle, 𝑅𝑒𝑓𝑓 is the effective radius between two particles 𝑖 and 𝑗, given by: 
𝑅𝑖𝑅𝑗

𝑅𝑖+𝑅𝑗
, 

𝑍 is the valence of the particle, 𝑒 is the charge of an electron, 𝑇 is the absolute temperature, 

𝐾𝐵 is the Boltzmann constant, and 𝜅 is the inverse Debye length. The inverse of the Debye 

length 𝜅 is given by: 

 𝜅 = (
𝜖0𝜖𝑟𝐾𝐵𝑇

2000 ∗ 𝑒2𝑁𝐴𝐼
)

−(
1
2

)

 44 

Here 𝑁𝐴 is Avogadro’s number and 𝐼 is the ionic strength. These equations determine the 

influence the EDL will have on the particles.  

 

Van der Waals Force 

The other term used to determine the total interaction energy Φ𝐷𝐿𝑉𝑂 between a particle and a 

particle, or a particle and the surface, is called the Van der Waals energy Φ𝑉𝐷𝑊, or Van der 

Waals force 𝑭𝑉𝐷𝑊. This is the usually attractive force between atoms or molecules because of 

the attraction of polar and non-polar parts of the atom or molecule in question.  

   The Van der Waals forces are explained by quantum mechanics. Quantum mechanics 

suggest that electrons in an atom are constantly moving. This implies that there is a probability 

that an excess of electrons is present in one part of the atom, or a shortage at another part . 

This creates a positive and negative pole on each side of the atom. When atoms get close 

enough to each other, these poles will attract each other [23]  

   For Van der Waals forces we once again consider two scenarios. The particle-particle 

interaction, and the particle-wall interaction. The Van der Waals force between two particles is 

determined through the following equation [24, 25]: 
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𝑭𝑃−𝑃

𝑉𝑑𝑊 =
32𝐻𝑎

3
∙ 𝐷𝑖𝑗 ∙

𝑅𝑖
3𝑅𝑗

3

 (((𝐷𝑖𝑗 + 𝑅𝑖)
2

− 𝑅𝑗
2) ((𝐷𝑖𝑗 − 𝑅𝑖)

2
− 𝑅𝑗

2))
2 

45 

Here 𝐻𝑎 is the Hamaker constant, 𝐷𝑖𝑗 is the center to center distance between the two 

particles, and 𝑅𝑖 and 𝑅𝑗 are the radii of the two interacting particles. When the separation 

distance becomes much smaller than the radius of the particles, equation 45 can be simplified 

to [25]: 

 𝑭𝑃−𝑃
𝑉𝑑𝑊 =

𝐻𝑎𝑅𝑒𝑓𝑓

6ℎ2
 46 

Van der Waal force interactions between particles and surfaces will start acting when a particle 

becomes significantly close enough to the surface, and is given similarly to equation 46 as: 

 𝑭𝑃−𝑊
𝑉𝑑𝑊 =

𝐻𝑎𝑅𝑖

6ℎ2
 47 

Where 𝑅𝑖 is the radius of the particle interacting with the surface. The Hamaker constant is a 

constant which is dependent on the bulk properties of the two interacting entities, either the 

two particles or the particle and the wall, as well as the medium they are suspended in. 

   Due to the electrodynamic nature of Van der Waals forces, a magnetic retardation term has 

to be implemented [26]. This factor is a correction term on the total Van der Waals force, which 

implies that equations 45-47 obtain an additional factor given by: 

 𝑓𝑚 =
𝜆(𝜆 + 22.24ℎ)

(𝜆 + 11.12ℎ)2
 48 

Where 𝜆 is the characteristic wavelength. This wavelength is usually taken to be 100nm. 

   The force equations are taken from the cited sources. The forces are calculated through 

equation 39 similarly to the EDL forces. The energy equations Φ𝑃−𝑃
𝑉𝑑𝑊 and Φ𝑃−𝑊

𝑉𝑑𝑊  are given by: 

 Φ𝑃−𝑃
𝑉𝑑𝑊 =

𝐻𝑎𝑅𝑒𝑓𝑓

6ℎ 
 49 

And 

 Φ𝑃−𝑊
𝑉𝑑𝑊 =

𝐻𝑎𝑅𝑖

6ℎ
 50 

 The magnetic retardation factor can be implemented as: 
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 𝑓𝑚 =
1

1 +
11.12ℎ

𝜆

 51 

Interaction Energy Profiles 

The DLVO energy interactions between particles and surfaces are key in determining if a 

particle is deposited on a surface, or if particles will stick together. To determine the effect of 

the DLVO energies on the potential deposition of particles, so called interaction energy profiles 

can be constructed. These energy interaction profiles plot the interaction energy against the 

separation distance.  

   There are several possible profile types, depending on the magnitude of attraction or 

repulsion by the EDL and Van der Waals forces. In the present study, the Van der Waals force 

is always attractive. The EDL force however, can be attractive or repulsive, depending on the 

zeta potentials of the particles and surface. The double layer force is attractive if the particles 

and surfaces are oppositely charged [27]. When a particle approaches a surface in this 

environment, there are only attractive DLVO forces present, which allow the particles to 

favorably deposit (Figure 7 a). 

   When a situation is presented where the EDL forces are repulsive, the regime of depositions 

becomes more complex. The interaction between attractive Van der Waals forces and 

repulsive EDL forces can produce different deposition regimes. The most common situation is 

one where there is a deep primary minimum and a high energy barrier. This implies that a 

particle  that wants to attach or settle on a given surface, has to overcome a repulsive energy 

barrier through hydrodynamic or other forces to be able to fall into the attractive part of the 

DLVO regime. The reverse this is true if the particle wants to detach from the given surface. 

   Other scenarios include a secondary minimum. This occurs under certain physicochemical 

conditions. Particles may be retained at a small distance from the surface when they cannot 

overcome the energy barrier to reach the primary minimum, and will instead be retained at a 

secondary minimum, given that attractive energy of the minimum is large enough. Figure 7 b, 

c, and d give several scenarios with different combination of energy barriers and secondary 

minima. 
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   The shape of the energy profile is determined through the interaction energy given in 

equation 38, which in turn depend on the definitions of the Van der Waals energy and EDL 

energy.  

     

 

 

 

 

 

 

 

 

 

 

  

Figure 7. a) Attractive DLVO regime 
with only a primary minimum, b) 
DLVO regime with a secondary 
minimum and high energy barrier, c) 
DLVO regime with a deep secondary 
minimum and low energy barrier, d) 
DLVO regime with a low secondary 
minimum and high energy barrier. 
From: [27] 
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Porosity-Permeability Relation 

The model presented in this study may be used to provide a wide spectrum of data usable for 

research. This study will focus in particular on the possibility of porosity-permeability relations 

which may arise in the system. This section will cover how porosity-permeability will be 

approached in this study. 

   Permeability is a parameter used when defining flows through porous media. It indicates the 

ability of a fluid to flow through a medium, or more specifically, the resistance a medium 

provides to a fluid flowing through it, as permeability is a property of the medium, not the fluid. 

It is used as a constant in Darcy’s law in the following way: 

 𝒖 =
𝐾

𝜇
(

Δ𝑃

𝐿
− 𝜌𝒈) 52 

Where 𝐾 is the permeability, Δ𝑃/𝐿 is the pressure gradient and 𝒈 is the gravitational 

acceleration. Porosity is defined as the fraction of void space occupied by a fluid within a bulk 

volume. This can be shown most simply as: 

 𝜙 =
𝑣𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑏𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒
 53 

Upscaling 

Both permeability and porosity are variables that are inescapably linked to upscaling. When 

modeling groundwater flow, the interaction of the pore interface with the fluid on the smallest 

scale influences pore geometry or morphology, and influences fluid flow at a larger scale. To 

model larger scale groundwater flow however, all these processes cannot be modeled at their 

own scale, and simplifications have to be made to give averages over larger scales.  

   A difference in scale can be exemplified in Figure 8. Here the REV is defined as the 

representative elementary volume. The REV is the smallest volume where a property does not 

change when the dimensions are incremented gradually (bear 1988).  
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   From Figure 8 it becomes clear that porosity cannot always be accounted for the same way 

on different scales. On a large scales, average porosity is usually used, with heterogeneities 

in average porosity. On pore network scale, void fraction can clearly be estimated, however, it 

becomes clear that pore structure and morphology altering processes have a more profound 

effect on the pore network structure, which are not even visible on a larger scale. This is why 

these processes have to be estimated through upscaling. 

   Permeability as used in equation 52 can be obtained on larger scales, by upscaling the 

viscous effects of the Navier-Stokes equation on the pore scale [6]. Given permeability is a 

necessary variable for many practical applications, but not simple to obtain, many methods 

have been attempted to quantify or estimate permeability using more easily measured 

properties. 

 

Figure 8. Different scales of porous media. From: [6]. 
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Kozeny-Carman 

The original equation by Kozeny (1927) and modified by Carman (1937) describes a way to 

calculate pressure for a given flow velocity 𝑢 and porous medium length 𝐿. This is given by: 

 
Δ𝑃

𝐿
=

180𝜇

Φ𝑠
2𝐷𝑝

2

(1 − 𝜙)2

𝜙3
𝑢 54 

Where Φ𝑠 is the sphericity, 𝐷𝑝 is the characteristic particle diameter and 𝜙 is the porosity. 

Using equation 52 this can be rewritten to provide an equation for permeability: 

 𝐾𝐾𝐶 =
Φ𝑠

2𝐷𝑝
2

180

𝜙3

(1 − 𝜙)2
 55 

This  can also be rewritten to use more relevant parameters to naturally occurring porous 

media like: 

 𝐾𝐾𝐶 =
𝜙3

𝜏(1 − 𝜙)2𝑆2
 56 

Where 𝜏 is tortuosity and 𝑆 is the specific surface area [28]. 

   For the present study however, we are considering smaller than usual scale of one 

constricted pore. The porosity of the system is still defined as in equation 53, however, the bulk 

volume fraction is derived from the amount of particles that attach to the pore walls. To identify 

if there are permeability-porosity relations present in systems on this scale, a generalized  

version of the Kozeny-Carman equation is suggested, using the dimensionless permeability 

𝐾/𝐾0: 

 
𝐾

𝐾0
= 𝑎

𝜙𝑏

(1 − 𝜙)𝑐
 57 

This general equation will first of all try to fit the porosity- permeability data obtained from the 

simulations, and secondly will try to identify if any of the coefficients relate to changes in 

specific parameters on this smaller scale.  
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Model Description  

The equations governing the major processes of fluid flow and DLVO interactions have been 

discussed in the previous section. This section will go through how these equations are 

integrated into an all including model, as well as optimizing the model to increase efficiency by 

multithreading the model using the parallel computing tool OpenMP.  

 

Subroutines 

The model consists of 10 different subroutines which all encompass a different aspect of the 

model domain. This section will cover the different subroutines and how they implement the 

different equations outlined in the previous section of the study. The model consist of 10 

subroutines, of which 8 are inside the main loop of the model Figure 9. 

 

 

Figure 9. Model overview of different the different subroutines. 

    

   The first two subroutines are to initialize the model (Figure 9). A constants subroutine is used 

and linked to all other subroutines, and functions as a separate block of code of constants that 

are needed in other computations ranging from geometric constants to the Boltzmann 

constant. The second subroutine finalizes the initialization through the setup of a initial 

condition for the model. 3 different initial scenarios may be selected to suit the type of 
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simulation required. The first is a simulation from a zero velocity flow field, where the model 

will build a flow field according to the given geometry and particles present. The second needs 

existing data files for flow fields and particle properties such as particle positions , acceleration, 

velocity and torque, and uses these files to simulate an already set up situation. The last option 

is to only give data files of flow fields and particle positions. The model then applies the fluid 

velocity at the particles location to the particles. 

   Independent of whichever initialization scenario is selected, the model will continue into the 

main loop of the program. This loop will span the total time-steps of the model, and each loop 

covers one time-step.  

   As discussed in the first section of this study, the LBM has a particular order of operations, 

and this is translated into the subsequent subroutines. The first subroutine covers the 

computation of the macroscopic hydrodynamic variables, as well as the density field 𝜙. This is 

then used to determine the total velocity field and body force. The variables computed are then 

used in the collision step of the LBM, which is its own separate subroutine. Here the collision 

term is calculated using the equation 7 and 10.  

   Before the streaming step is implemented, the boundary condition of the curved boundary 

has to be set up. The model reads a data file, created by a separate script that calculates 

equation 14 for all boundary nodes, to determine the appropriate bounce back scheme 

according to equations 15-16. After this the particles densities are streamed to their proper 

locations through the streaming process in the next subroutine. 

   After the streaming process is complete the model applies a further set of boundary 

conditions, which include a boundary condition for the inlet and outlet boundary; a combination 

of velocity and pressure boundary conditions at either the inlet and outlet boundary.  

   These 5 subroutines conclude the fluid dynamical component of the model. The next 

subroutine is the computationally heaviest and most intricate subroutine of the model. This 

subroutine governs the computations of particle interactions. It first calculates the 

hydrodynamic force and torque on particles according to equations 34 and 35. Then the DLVO 

forces are calculated between the particles and the bottom wall, particles and the top wall, and 
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particles and particles according to the appropriate DLVO equations for these interactions. At 

the end of the subroutine the particle positions are updated according to the forces acting on 

them. 

   The second to last subroutine consists of particle generation. The model can be allowed to 

generate particles on a timed basis, it can also ensure that there are always a set number of 

particles in the system, by generating a new particle if one particle is deposited, or it can 

generate a combination of both. To generate a particle the model checks if there is room for a 

particle to be generated at given initial locations. If there are obstacles, either curved 

boundaries or another particle, the model will try and find the next potential location. 

   The last subroutine is a print routine, which saves all the necessary data to data files. The 

flow fields 𝑢 and 𝑣, density 𝜌, and density field 𝜙 are saved using proper format to be instantly 

read and processed using Paraview.  

 

Parallel Computing 

The previous section outlines the way the model is run for each time iteration. To improve the 

model, parallelization can be applied. Parallelizing is done to increase the speed of a 

sequential model on multicore processors, by instead of using only one thread which uses one 

core of the processor, different threads can be created that run the model simultaneously on 

multiple processor cores. 

   Depending on the amount of logical processor cores that is being used, the speed of the 

model can be significantly increased. Apart from the number of processing cores, the increase 

in efficiency depends on the percentage of parallelized code as well. Given a percentage of 

parallelized code, and the number of possible threads that can be generated, the theoretical 

increase in model efficiency can be determined through Amdahl’s Law [29]: 

 𝐼 =
1

𝐹 +
1 − 𝐹

𝑁

 58 

Where 𝐹 is the fraction of code that remains serial, 𝑁 is the number of threads that the 

processor can create, and 𝐼 is the theoretical factor in increased speed. 
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   Theoretical speed increase however is almost never accomplished for larger models or 

codes, because not every block of code can be parallelized. To efficiently parallelize a given 

code, parts of the code have to be found that can either be run independently from each other, 

or can be done simultaneously without affecting results of the other threads that run parallel to 

each other. 

 

Intel Fortran for Visual Studios supports OpenMP 4.0 for FORTRAN, and provides several 

different work-sharing directives. These directives divide up a workspace into several chunks, 

which are then executed by different threads. The work-sharing directives used in the study’s 

model are the do and sections directives. The do directive is the most often used directive. 

This directive specifies that the iterations of the next do loop are executed in parallel. The 

sections directive is used to assign one thread to specified blocks of code. The sections 

directive is used on blocks of code that can run independently from one another. 

   There are several synchronization directives available as well. These directives synchronize 

all threads to properly save variables and data so that none will be overwritten. Of importance 

in this study are the barrier and critical directives. The barrier directive synchronizes all threads, 

and is an implied directive after every work-sharing directive. The critical directive defines a 

region which can only be executed by one thread at a time. This directive helps to prevent race 

conditions and the overwriting of data and variables. 

   Within the work-sharing directives different clauses can be attached. The most important 

clauses are the designation of private and shared variables. By assigning variables as private, 

OpenMP creates a separate variable for the specific thread. This is essential when calculating 

different loop-specific variables. The shared clause indicates that these variables are to be 

used by all executing threads. These include constants and variables not changing within a 

given loop and do directive. 

   Another important clause is the schedule clause. This determines the way iterations within a 

do construct are executed. There are three different kind of schedules: static, dynamic, and 

guided. For a static schedule, each thread is assigned a chunk of iterations depending on the 
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chunk size, and when they are all executed, are assigned the next chunk of iterations. The 

dynamic schedule assigns a chunk  of iterations to each thread, but when one thread 

completes a chunk of iterations, it requests the next chunk of iterations. The guided schedule 

starts off with large chunks, but decreases its chunk size when more chunks are being 

completed. Any of the schedules will work, but some will work more effectively with different 

kind of codes. For a code where iterations take approximately the same amount of work, static 

scheduling would work most efficiently. For codes where different iterations take different 

amounts of time, dynamic scheduling works better. Guided scheduling is a trade-off between 

the static and dynamic scheduling schemes. The way the model’s do directives are setup up, 

allow for similar computation times over the shared workspaces. Therefore static scheduling 

has been applied to most of the do directives within the model. 

   The last important clause, exclusive to the do construct, is the collapse clause. This clause 

collapses two or more nested do loops into one large iteration space, which is then executed 

through the specified schedule clause. 

 

The model uses the LBM to simulate fluid flow. The relative ease of parallelization with the 

LBM is one of the reasons it is becoming more popular [30]. The LBM calculates fluid flow at 

each node or grid point independently. This implies that macroscopic fluid flow variables can 

be determined for each node without needing information from other nodes. This is important 

when working with multiple threads, because it eliminates dependencies which can create race 

conditions and improper synchronization of shared variables.  
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Figure 10. Overview of the different subroutines, with parallelized subroutines highlighted in green 

    

   Figure 6 shows in green the parallelized subroutines of the model. There is no need to 

parallelize the first two subroutines, as they are no part of the main loop, and only consist of a 

neglible fraction of computation time. For subroutines involving the computation of the fluid 

flow, and in patricular the subroutines not regarding boundary conditions, the do directive is 

the work-sharing directive of choice. Because these subroutines consists of two nested do-

loops which cover the x and y range of possible fluid nodes, the collapse clause is used to pool 

all nodes into one large iteration space. 

   As the whole iteration space consists of roughly 40000 nodes, the chunk sizes used in the 

static scheduling clause can be taken as large chunks. A large chunk size does not necessarily 

improve the speed of the model, but saves on memory use. Instead of each thread needing a 

copy of each private variable for 1 iteration (default chunk size), they now only need a copy 

every 500 iterations. Within the first main subroutine are several critical directives to prevent 

any possible race conditions as well. 

   For the boundary condition subroutines simple do directives are implemented as well. 

However because the number of boundary nodes is significantly lower than the total fluid 

nodes, the chunk size has to be adjusted. If chunk size is significantly larger than the total 

amount of iterations required, some threads will remain unused and will lower model efficiency. 
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    For the particle subroutine the do directive encompasses the main loop of all the particles. 

As there are a different number of particles in the system at any time, the default chunk size 

of 1 is assigned to this directive. Again, to prevent race conditions and dependencies, several 

critical directives are added in this subroutine. 

   The particle generation subroutine is a relatively light subroutine with a large amount of 

potential race condition scenarios. For this reason this subroutine is left unparalleled, for it to 

be effectively parallelized, a large part of this subroutine would fall in a critical directive, which 

forces the model to use only one thread. The print subroutine is not parallelized as well. The 

print subroutine has a relatively low impact on the model runtime, because it is not necessary 

to print the results each time step, but only on intervals. 

 

Model Setup 

This section will go over the variables and constants used in the model to provide the data that 

has been used in this study. To determine the effect of various conditions on the attachment 

rate of particles, and subsequently changes in porosity and permeability, a sensitivity analysis 

was performed using four different variables: particle radius 𝑅, zeta potential 𝜁𝑊 and 𝜁𝑃, ionic 

strength 𝐼 and horizontal flow velocity 𝑢. Besides variables the model requires a significant 

amount of constants and constant variables. 

Table 1 shows all constants and variables used in the model.  

 

 

 

 

 

 

 
Table 1 Overview of all parameters necessary for model setup. 
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DIMENSIONS: FLUID DYNAMICS: 

𝑳 200 (𝜇𝑚)  𝝂 1 ∗ 10−6 (𝑚2/𝑠) 

𝑯 50 (𝜇𝑚) 𝝆𝒘  1000 (𝑘𝑔/𝑚3) 

𝑯/𝑯∗  0.4 (−) 𝝆𝒑 1055 (𝑘𝑔/𝑚3) 

𝑹𝟏 5 (𝜇𝑚) 𝒖𝟏 10 (𝑚/𝑑𝑎𝑦) 

𝑹𝟐 2.5 (𝜇𝑚) 𝒖𝟐 5 (𝑚/𝑑𝑎𝑦) 

𝑹𝟑 1.5 (𝜇𝑚) 𝒖𝟑 1 (𝑚/𝑑𝑎𝑦) 

    

DLVO:    

𝝐𝒓 80.2 (−) 𝑰𝟏 0.3 (𝑀) 

𝝐𝟎 8.85419 ∗ 10−12 (𝐹/𝑚) 𝑰𝟐 0.05 (𝑀) 

 𝑲𝑩 1.38 ∗ 10−23 (𝑚2𝑘𝑔/𝑠2𝑇) 𝑰𝟑 0.001 (𝑀) 

𝒆 1.6 ∗ 10−19 (𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠) 𝜻𝑷𝟏 −0.06 (𝑉) 

𝑵𝑨 6.02 ∗ 1023 𝜻𝑷𝟐 −0.04566 (𝑉)  

𝑻 293 (𝐾) 𝜻𝑷𝟑 −0.0175 (𝑉) 

𝒁 1 𝜻𝑾 −𝜁𝑃 

𝑯𝒂 0.4 ∗ 10−20 (𝐽)   

 

In order to appropriately apply the chosen variables to the model, the variables have to be 

converted to units usable for the LBM. In order to do this variables inside the LB model have 

to be related to real physical variables. This is done through dimensionless equations like the 

ratio 𝐻/𝐻∗ or the Reynolds number: 

 𝑅𝑒 =
𝐿𝑢

𝜈
 59 

Where 𝐿 is the characteristic length (i.e. pore diameter), 𝑢 is flow velocity and 𝜈 is viscosity. 

From Chapter 1 it is determined that the lattice time step and lattice spacing (Δ𝑡 and Δ𝑥 

respectively) are 1. This implies that converting domain length is done through 

𝐷𝑜𝑚𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ/𝐷𝑜𝑚𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ𝐿𝐵. To find other variables, several approaches can be used.  
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   The real physical units for 𝜈 an 𝑢 and 𝐿 are known, which implies that the Reynolds number 

is known as well. As the conversion for length units is known, to determine the other units, only 

𝑢 or 𝜈 has to be determined, as the Reynolds number should be equivalent in both real and 

LB units. From chapter 1 it is known that in the LB regime 𝜈 is related to the relaxation 

frequency 𝜏 through (when Δ𝑡 = 1 and Δ𝑥 = 1): 

 𝜈 =
1

3
(𝜏 + 0.5) 60 

Now the first option is to choose 𝑢𝐿𝐵 and obtain 𝜈𝐿𝐵 from equation 59 and 𝜏 from equation 60, 

The second option is to choose 𝜈𝐿𝐵 and similarly find 𝑢𝐿𝐵 from equations 59 and 𝜏 from 

equation 60. The last option is to choose 𝜏 and subsequently find 𝜈𝐿𝐵 from equation 60 and 

then 𝑢𝐿𝐵 from equation 59. The conversion rates can then simply be found relating the LB and 

physical variables to each other.  

   Because the time step Δ𝑡 is 1, it is important to obtain a conversion factor for the time. This 

can be done by relating different conversion factors to each other. For example the conversion 

factor for time can be determined through the relation of 𝑢𝐿𝐵 and 𝑢, or their subsequent 

conversion factor 𝑐𝑢, and the conversion factor 𝑐ℎ. 

𝑐𝑢 =
𝑐ℎ

𝑐𝑡
, 𝑐𝑡 =

𝑐ℎ

𝑐𝑢
 

   The time conversion factor is of significant importance not only to determine the physical 

time that has passed within the model domain, but also to guarantee that particles cannot jump 

over the interaction energy barrier. If the time step is too large, the distance a particle may 

travel within one time step can exceed the range in separation distance in which the interaction 

energies may be active, and thus may get falsely attached to the pore surface.  

   The dimensions of the model domain are chosen such that particles have sufficient 

opportunity to attach, while also guaranteeing the influence of the pore constriction. 𝐻/𝐻∗ 

provides the ratio between the largest and smallest pore diameter. Viscosity and density 𝜈 and 

𝜌𝑤 are chosen such that they approximately represent the viscosity and density of water at 20° 

C. The density of the particles is chosen such that they are still affected by a density difference 
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between the water and the particle, but not dominated by it. DLVO constants are used for 

temperatures of 20°C or 293 K. The Hamaker constant is chosen such that it may roughly 

represent particles suspended in water [31, 32, 33].  

   The different variables used in the sensitivity analysis are chosen in such a way that 

combinations of different variables will create different types of attachment regimes, and 

consequently provide different porosity-permeability relations. The charges of 𝜁𝑃 and 𝜁𝑊 are 

chosen opposite to create an attractive DLVO regime. A repulsive regime is not considered in 

this study.  

   Using the physical value of 𝜈, and the set dimensions of the model domain, the rest of the 

LB units are obtained such that when running the model with no particles, a steady state flow 

field may be established, and the time step is small enough to allow proper particle-particle 

and wall-particle interactions. 

   To obtain permeability from model data, the model saves the pressure gradient as well as 

the mean velocity. This allows for the use of Darcy’s Law: 

 𝑢 =
𝐾

𝜇

Δ𝑃

Δ𝑥
 61 

Where 𝐾 is permeability, 𝑢 is flow velocity, 𝜇 is viscosity and 
ΔP

Δx
 is the pressure gradient. Simply 

rewrite to solve for 𝐾: 

 𝐾 = 𝑢
𝜇Δ𝑥

Δ𝑃
 62 

Using data obtained from the model implies that when calculating permeability this way, the 

permeability will be in LB units. This can either be converted into physical units, or, as has 

been done in this study, convert to the regularly used dimensionless permeability 𝐾/𝐾0, which 

needs no conversion from LB to physical units. 𝐾0 here is taken to be the initial permeability. 

   Porosity is determined similarly to equation 53, using the void volume and bulk volume. 

However, for each time data is saved in the model, the porosity is defined as: 

 𝜙 =
(𝑃𝐴 − 𝑃𝐴 ∗ 𝜋𝑅2)

𝑃𝐴
 63 
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Where 𝑃𝐴 is the area of the pore, 𝑃𝐴 equals the number of attached particles that contribute to 

the solid phase of the system, and 𝑅 is the radius of the particles. Particles are considered 

attached particles when they are attached to the pore wall, or are attached to the pore wall 

through other particles. 
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Results 

This section will cover the data obtained by the model which is used in this study. The 

sensitivity analysis runs simulations of 4 different variables over a range of 3 values, which 

results in 81 different runs.  

   Although only positive-negative DLVO regimes are considered in this study, positive-positive 

regimes have been simulated. For that reason, the 81 runs are saved as all even numbers 

from 2-162. Table 2 gives an overview of the numbered runs corresponding to their proper 

parameter combinations, and will serve as a key, which may be referenced when discussing 

individual simulations. 

 

Table 2 Overview of the different parameter combinations with their corresponding simulation number. Here the 
different values of 𝜻, 𝑰, 𝑼 and 𝑹 were shown during the model setup section (Table 1). 

 

 𝜻𝟏𝑰𝟏 𝜻𝟐𝑰𝟏 𝜻𝟑𝑰𝟏 𝜻𝟏𝑰𝟐 𝜻𝟐𝑰𝟐 𝜻𝟑𝑰𝟐 𝜻𝟏𝑰𝟑 𝜻𝟐𝑰𝟑 𝜻𝟑𝑰𝟑 

𝑼𝟏𝑹𝟏 2 8 14 20 26 32 38 44 50 

𝑼𝟐𝑹𝟏 4 10 16 22 28 34 40 46 52 

𝑼𝟑𝑹𝟏 6 12 18 24 30 36 42 48 54 

𝑼𝟏𝑹𝟐 56 62 68 74 80 86 92 98 104 

𝑼𝟐𝑹𝟐 58 64 70 76 82 88 94 100 106 

𝑼𝟑𝑹𝟐 60 66 72 78 84 90 96 102 108 

𝑼𝟏𝑹𝟑 110 116 122 128 134 140 146 152 158 

𝑼𝟐𝑹𝟑 112 118 124 130 136 142 148 154 160 

𝑼𝟑𝑹𝟑 114 120 126 132 138 144 150 156 162 

 

   To prevent this section from becoming cluttered, and to keep it clear and concise, three runs 

have been selected to represent how the data has been collected and processed to provide 

the corresponding results necessary for porosity-permeability analysis. 
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   The three runs that are selected are runs that use the all the average parameters (Table 2: 

28,82,136), but have different particle radii. For each simulation, every time the write 

subroutine (see Section Subroutines) saves data, a snapshot of the system was saved. These 

snapshots can be edited together to provide a video of the system. This provides a great 

visualization of the way particles are attached to the pore wall, and gives insight to the 

processes that may lead to any anomalies in the data, and will be referenced if needed. From 

the bulk data saved by the model, the porosity and permeability is read by a MATLAB script 

and processed further from there.  

     

    

 

 

 

 

 

 

 

 

Figure 11. a,b,c) Permeability-porosity profile for runs 
28,82 and 136 respectively 
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Figure 11 shows three different permeability-porosity profiles. In all cases as more particles 

attach to the pore surface, the permeability decreases. The distribution of the data points are 

significantly different from each other. Their differences can be well justified by having a visual 

representation as well.  

 

   Comparing the video snapshots of run 28 and 82 (Figure 13 and Figure 12), and comparing 

Figure 11 a) and b), it shows how visual data can contribute to the understanding of the 

differences in permeability-porosity data distribution. During simulation 28 the pore throat gets 

clogged quickly in part because of the large particles.  After it becomes clear that the 

hydrodynamic forces acting on the clogged area are not sufficient to break the blockage, the 

simulation is terminated. This firstly results in comparatively significantly less data points, and 

secondly in the permeability of simulation 28 dropping to effectively zero rapidly. More in depth 

discussion between differences in permeability-porosity distributions will follow in the upcoming 

Section. All permeability-porosity distributions may be found in the included Appendix A. 

  

Figure 13. a) Snapshot at t=5600000 (2.24s). b) 
Snapshot at t=9000000 (3.6s). c) Snapshot at 
t=15600000 (6.24s). Snapshots are from run 28. 
 

Figure 12. a) Snapshot at t=6800000 (2.72s). b) 
Snapshot at t=16000000 (6.4s). c) Snapshot at 
t=35600000 (14.24s). Snapshots are from run 82. 
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Discussion 

This section of the report will elaborate on the obtained results. Firstly, differences and/or 

trends between the porosity-permeability results of the sensitivity analysis will be explored 

briefly. Secondly, the equation given by equation 57 will be applied to the porosity-permeability 

data. Thirdly, potential trends between equation coefficients and model variables will be 

considered. And lastly, improvements and further research will be reviewed. 

 

Sensitivity Analysis 

Because porosity is directly related to the attachment of particles, it is of vital importance to 

discuss the differences in particle attachment. This model considers an attractive DLVO 

regime, which implies that particle attachment is based on the relative power of the DLVO 

forces and hydrodynamic forces. If the hydrodynamic forces are large enough, they can 

overcome the attractive DLVO forces and prevent from being attached to the pore surface. 

   The different variables have different effects on the DLVO regime. Ionic strength 𝐼 has a 

direct impact on the size of the Debye length 𝜅 (equation 44). This in turn has a large impact 

in determining the EDL energy. The zeta potential for the pore surface and particles, 𝜁𝑊 and 

𝜁𝑃 determine the electric potential of the EDL. The zeta potential is an indicator of stability of 

colloids as well. High zeta potential indicates higher stability, and less capability of coagulation 

and flocculation [34]. 

   The hydrodynamic forces are determined by the flow velocity 𝑢. A higher flow velocity will 

provide a larger hydrodynamic force and will make it harder for the DLVO forces to capture 

particles. The particle radius is a high impact variable. Not only are the DLVO forces affected 

by the radius of the particles, but due to the pore constriction, particles size has a relatively 

large influence on the straining and clogging of the pore. As will also be discussed later, 

straining and clogging of pores have high consequences for the porosity-permeability profiles. 

Furthermore, increasing particle size increases particle mass, making it harder for 

hydrodynamic forces to move the particle. 
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The highest impact on the porosity-permeability profiles arises when particles attach near the 

pore constriction, and subsequently clog the pore. The permeability becomes practically zero. 

This is why the relative effective impact of the different variables here will be largely based on 

the clogging of the pore. Table 3 is a copy of Table 2, however, in red are the simulations in 

which the pore gets clogged, and the hydrodynamic pressure building up is not sufficient to 

unclog the pore. In green are the simulations where no clogging occurs. 

 

Table 3 Overview of clogging (red) that occurs at any given combination of variables. Here the different values of 
𝜻, 𝑰, 𝑼 and 𝑹 were shown during the model setup section (Table 1) 

 

 𝜻𝟏𝑰𝟏 𝜻𝟐𝑰𝟏 𝜻𝟑𝑰𝟏 𝜻𝟏𝑰𝟐 𝜻𝟐𝑰𝟐 𝜻𝟑𝑰𝟐 𝜻𝟏𝑰𝟑 𝜻𝟐𝑰𝟑 𝜻𝟑𝑰𝟑 

𝑼𝟏𝑹𝟏 2 8 14 20 26 32 38 44 50 

𝑼𝟐𝑹𝟏 4 10 16 22 28 34 40 46 52 

𝑼𝟑𝑹𝟏 6 12 18 24 30 36 42 48 54 

𝑼𝟏𝑹𝟐 56 62 68 74 80 86 92 98 104 

𝑼𝟐𝑹𝟐 58 64 70 76 82 88 94 100 106 

𝑼𝟑𝑹𝟐 60 66 72 78 84 90 96 102 108 

𝑼𝟏𝑹𝟑 110 116 122 128 134 140 146 152 158 

𝑼𝟐𝑹𝟑 112 118 124 130 136 142 148 154 160 

𝑼𝟑𝑹𝟑 114 120 126 132 138 144 150 156 162 

 

Table 1 is constructed from observing data from Appendix A and visual data. In all simulations 

with the largest particle size, pore clogging occurs. This is primarily due to the geometry of the 

system. The ratio of the pore throat to pore constriction 𝐻/𝐻∗ is 0.4. This implies that on a 50 

𝜇𝑚 pore throat, the constriction is 20 𝜇𝑚 wide. The largest particle diameter is taken to be 10 

𝜇𝑚. This, in combination with particles being funneled into the constriction results in all the 

simulations with that size of particle to become clogged. 

   The first 27 simulations, up to run 54, include the largest particle size. After that, it can be 

seen that clogging still occurs, but not exclusively. With particles of intermediate size, and small 
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size, a strong ionic strength appears to be the controlling factor of whether the pore becomes 

clogged or not. Whereas at larger particle size, the geometry of the system guaranteed 

clogging, at smaller particle sizes, the geometry has a lesser influence and the attachment is 

controlled through hydrodynamic and DLVO forces. Because the particles are smaller, more 

particles need to be deposited in order for clogging to occur. 

   When the ionic strength is high enough, the attractive forces are high enough to overcome 

the hydrodynamic forces even at high flow rates. Eventually enough particles will attach to the 

pore surface to cause clogging of the pore. Simulation runs with intermediate ionic strength 

show that the attractive DLVO forces are unable to overcome the hydrodynamic forces, except 

for when the flow velocity is lowest. Simulations with the lowest ionic strength are free of 

clogging regardless of flow velocity or zeta potential. 

   There are several other patterns that can be observed regarding porosity-permeability 

profiles and a change in variables. When the ionic  strength is lowest, although there may be 

flocculation and coagulation, there is little attachment of particles. The particles in suspension 

will however have an impact on the pressure gradient within the system. This results in 

porosity-permeability profiles which have a very small range in porosity, and a  high variability 

in permeability on similar porosities. 

   With intermediate ionic strength, observations show an increase in the range in porosity, as 

more particles get attached. Although there is no clogging, permeability in these profiles tends 

to decrease more than in low ionic strength simulations. This is due to further constriction of 

the pore by attached particles. 

   Although flow velocity is not the main influencer in terms of likelihood of clogging, there is a 

notable influence flow velocity has on particle attachment and subsequent data point spread. 

Comparing for example sets of changing zeta potential and flow velocity (specifically 

comparing the sets of 146/152/158, 148/152/158 and 150/156/162), there is striking similarity 

in the spread of data points between scenarios in which zeta potential changes while flow 

velocity remains constant. This suggests that flow velocity has a larger influence on the 
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attachment of particles then zeta potential. Lower flow velocities imply that DLVO forces may 

more easily overcome the hydrodynamic forces and allow particle attachment. 

   An anomaly can be observed in 126, which, given high ionic strength and low zeta potential, 

has a high likelihood of enough particle attachment to clog the pore. During this run particles 

seems to mostly attach far enough away from the pore constriction to allow enough room for 

other particles to pass. Given more time, there is a significant chance that this pore would be 

constricted as well. 

   Simulation 144 seems to be an anomaly as well, but when observing the porosity-

permeability profile of 132 and 138, combined with visual data, there is near clogging at later 

time steps (Figure). Similarly to run 126, given more computation time, the chances of clogging 

become significantly higher.  

 

Porosity-Permeability Relation  

Next the general Kozeny-Carman relation has been applied to the porosity-permeability 

profiles. The applied equation as mentioned in the previous section: 

 
𝐾

𝐾0
= 𝑎

𝜙𝑏

(1 − 𝜙)𝑐
 57 

The Kozeny-Carman equation in this form (equation 56) is mainly applied to porous media on 

the pore network scale. This implies that there will never be a porosity of 1. However, due to 

the definition of porosity in this study (equation 63), the porosity will be 1 until a particle has 

deposited. Therefore, data in the porosity-permeability profiles have omitted any entry of a 

porosity of 1.  

Figure 14. Overview of particle attachment at t=119200000 (47.68s) snapshot from run 132. 
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   Appendix B will show all applicable fit results for equation 57. Several will be highlighted here 

and discussed. A proper fit in this study is defined by two criteria. The first being if the curve 

conforms to realistic expectations of the behavior of permeability and porosity based on the 

model domain and setup. The second being if within the confidence intervals the fitted 

coefficients are still necessary for the data to be fitted. One example is if the 95% confidence 

interval for coefficient 𝑎, 𝑏 or 𝑐 in equation 57 crosses the value of 1. In this case, the coefficient 

will have no real influence on the outcome of the curve, as 𝑥1 = 𝑥, and 1 ∗ 𝑓(𝑥) = 𝑓(𝑥). Another 

example is when the confidence interval of either 𝑏 or 𝑐 crosses a value of 0. This implies that 

the variable or part of the equation to which it is the power of, is unnecessary in its entirety, as 

𝑥0 = 1. 

   A clear distinction can be observed when comparing fit results between different simulations. 

In general, when the pore becomes clogged, the general Kozeny-Carman relation will not 

provide a proper fit. The curve provided by the fit function for the unclogged pores follows the 

given data significantly better. There are fringe cases where clogging occurs, but relatively 

slow, or where momentary clogging occurs. In these cases, the equation will provide a proper 

fit. However, when the pore gets clogged rapidly, there a near guarantee that the equation will 

not yield a proper fit. 

    There may be several factors controlling this observation. The first is the type of  slope the 

fit function has to provide for the given data. When pores get clogged, 𝐾/𝐾0  > 0.1 in a relatively 

small amount of registered data points. This is well visualized in several simulations.  
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   Figure 15 shows four different results of fitting equation 57 for simulation 52, 64, 70 and 90. 

During simulation 52, it is worth noting that the particle radius is largest. It takes a relatively 

long time with relatively little particle attachment before the pore becomes clogged. Therefore 

a large amount of high porosity and high permeability data points have been collected. 

However, because of the clogging of the pore, very low permeability data has been collected 

as well. Due to the data points being concentrated in specific areas, the equation becomes 

increasingly hard to fit to the data. During simulation 70, a similar pattern may be observed, 

although less pronounced.  

   When observing Figure 15Error! Reference source not found., the fits of the simulations 

look promising. The fits underestimate lower permeabilities, which may be justified by the fact 

Figure 15. Result of data fitting of run 52 (a), run 64 (b), run 70 (c), and run 90 (d). All these simulations represent clogged scenarios. 
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that after clogging, the practical permeability becomes zero anyway. The main issue with the 

fits is the bend in the curve at higher dimensionless permeabilities. Given the model domain 

Figure 16. Result of data fitting of run 78 (a), run 88 (b), run 98 (c), run 132 (d), run 150 (e), run 156 (f). All of these simulations 
represent unclogged scenarios. 
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and setup, the dimensionless permeability should be unable to decrease with an increase in 

porosity. Although not universally, this erroneous curve is exclusively observed in simulations 

where pore clogging develops. This bend is caused by coefficient 𝑐. If this coefficients drops 

below zero, then the shape of the curve changes. This can be resolved by setting the lower 

bound for coefficient 𝑐 to zero, which will be discussed shortly. 

   In contrast to clogged scenarios, an unclogged pore provides a significantly better fit. This is 

mainly due to the spread of data points. Not only is the slope of the curve less steep, with a 

higher average minimum permeability, but there are comparatively more data points between 

the higher and lower permeabilities (Figure 16). From Appendix B can be observed that for all 

unclogged simulation (Table 3, green), equation 57  presents a visually acceptable prediction 

of the porosity-permeability data. 

   However, regarding the previously mentioned criteria, while the unclogged pores conform to 

the first criteria of a proper fit, several of the runs do not conform to the second criteria. Table 

4 highlights the values of the coefficients and their corresponding confidence intervals. 

Coefficient 𝑏 may well be set to 1 within the 95% confidence interval. Figure 17 shows the 

resulting difference in fit when coefficient 𝑏 is set to 1 in case of simulation 150. This has been 

shown to illustrate the difficulties in providing an equation to universally apply to the provided 

data, or even only data of an unclogged regime. 

 

Table 4 Overview of coefficients for simulation 150 
 

 𝑽𝒂𝒍𝒖𝒆 𝑳𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 𝑼𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 

𝒂 0.704618 0.692602 0.837369 

𝒃 1.295917 0.866969 1.724864 

𝒄 0.051211 0.004491 0.057512 
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Figure 17. Overview of the difference between coefficients b for simulation 150. 

 

   As demonstrated in the previous part of this section, equation 57 works well for unclogged 

scenarios. For clogged scenarios, the equation is unfit for the data provided, therefore an 

alternative equation will be suggested here. Recalling the issue regarding coefficient 𝑐, setting 

lower bounds to zero reduces the denominator in equation 57 to 1. This lower bound of zero 

is reached in most instances of clogged pores. Thus, a simpler power relation will be applied, 

given by [6]: 

 
𝐾

𝐾0
= 𝑎 (

𝜙

𝜙0
)

𝑏

 64 

   There are several general observation to be made when evaluating the resulting curves. The 

first is that they conform to realistic expectations of the modeled system, unlike equation 57 

(Figure 15). The second is that this fails to produce a proper curve when the minimum 𝐾/𝐾0 is 

relatively high. The goal of this equation is to give a better estimate of clogged pores, in which 

it is successful. There are however several other observations that will be highlighted. 
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   If the spread of porosity is relatively large, and the spread of permeability is large, then the 

curve will underestimate permeability at lower porosities. In clogged scenarios it is of larger 

interest to know the evolution the system at higher permeabilities, as when the pore get 

clogged, effective permeability is zero anyway. However, if the spread of porosity is relatively 

small, and the spread of permeability remains large, the curve will overestimate permeability 

at lower porosities. As the spread in data points becomes more gradual, and the change of 

permeability over smaller porosity ranges becomes larger, the overestimation at lower 

porosities becomes higher. An example of these observation can be seen in Figure 18. 

 

 

 

    

 

 

 

    

Figure 18. Comparison between three different 
clogged runs regarding over- and under estimation of 
permeability. 
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Another observation that can be made from the coefficients 𝑎 and 𝑏 from equation 64 relates 

to the confidence intervals and necessity of coefficients. Coefficient 𝑎 allows more flexibility in 

fitting a function, which is convenient when fitting fewer, more spread out data points. These 

kind of data points are mainly observed in the simulations up to and including number 54. It is 

therefore not unexpected to observe that coefficient 𝑎 and their confidence intervals are nearly 

exclusively near or passing the value of 1 after simulation 54. Therefore equation 64 may well 

be simplified further to include only coefficient 𝑏 for clogged pores beyond scenario 54. All fit 

results for equation 64 may be found in Appendix C. 

 

Coefficient Trend Analysis 

Although equation 57 and 64 give a fair estimate of porosity-permeability, it is highly unlikely 

that one or two equations will provide the means to predict the porosity-permeability relations 

in this study, as the data belongs to a highly un-linear system. The system will inevitably 

provide non-monotonic relations between system properties such as porosity and permeability. 

Therefore to qualitatively compare that data as a whole will be more difficult. 

    To analyze the effect of the different variables on porosity-permeability, the data will be 

broken up into smaller selections. The selection of comparisons will be focused on one variable 

each. There are however several restrictions here to which variables can effectively be 

analyzed. Any scenario where particle radius or ionic strength remains constant, will result in 

at least one of the three scenarios being a simulation where clogging occurs, and the rest of 

the three being simulation(s) where no clogging occurs. An effective analysis of coefficients 

cannot be made when the same equation does not apply to all the data sets. Furthermore, any 

anomalies in the data, caused by for example partial clogging, will inherently shift the fitted 

curve and provide coefficients that are unsuitable for effective analysis. The simulations that 

can ultimately selected are those that when taken in groups of three, consist of either three 

clogged scenarios, or three unclogged scenarios. This results in different sets of simulations 

that are to be compared for the two remaining variables, flow velocity 𝑢 and zeta potential 𝜁. 

The evaluated groups are shown in Table 5, where the enclosed sections in groups of three 
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show possible comparisons between flow velocity, and consecutive simulations similarly in 

color in groups of three show possible combinations between different zeta potentials. 

Table 5. Overview of all evaluated sets of simulations. Possible combinations are sets of three that are all 
clogged(red), or unclogged(green), and that are either sets of three in enclosed sections, or sets of three of 
consecutive runs of the same color. 

 

 𝑰𝟏𝜻𝟏 𝑰𝟏𝜻𝟐 𝑰𝟏𝜻𝟑 𝑰𝟐𝜻𝟏 𝑰𝟐𝜻𝟐 𝑰𝟐𝜻𝟑 𝑰𝟑𝜻𝟏 𝑰𝟑𝜻𝟐 𝑰𝟑𝜻𝟑 

𝑼𝟏𝑹𝟏 2 8 14 20 26 32 38 44 50 

𝑼𝟐𝑹𝟏 4 10 16 22 28 34 40 46 52 

𝑼𝟑𝑹𝟏 6 12 18 24 30 36 42 48 54 

𝑼𝟏𝑹𝟐 56 62 68 74 80 86 92 98 104 

𝑼𝟐𝑹𝟐 58 64 70 76 82 88 94 100 106 

𝑼𝟑𝑹𝟐 60 66 72 78 84 90 96 102 108 

𝑼𝟏𝑹𝟑 110 116 122 128 134 140 146 152 158 

𝑼𝟐𝑹𝟑 112 118 124 130 136 142 148 154 160 

𝑼𝟑𝑹𝟑 114 120 126 132 138 144 150 156 162 

 

For each of the groups of three shown in Table 5 the applicable coefficients (𝑏 for equation 64, 

and 𝑎, 𝑏 and 𝑐 for equation 57) are plotted against their respective changes in variable, implying 

that a change in that specific variable may lead to changes in coefficients. The goal is to find 

trends within the data that may suggest predictability in the modeled system. 

   When trying to obtain trends from individual simulations sets, it becomes clear that there is 

a lack of data to effectively provide any indication of trends. There are however, some 

noteworthy observations when comparing sets of three to each other. First, clogged scenarios 

regarding equation 64 will be evaluated, then unclogged simulations regarding equation 57 will 

be considered.  

   For both flow velocity and zeta potential, the porosity-permeability profile for all combination 

of clogged scenarios with radius 𝑅1 (5 𝜇𝑚) are extremely depended on the time it takes for the 

pore be become clogged. In some instances, pores get clogged within relatively little timesteps, 
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and in others some particles may be deposited before the smallest part of the pore constriction, 

delaying pore clogging. This results in such a wide variety in profiles, that there is no real trend 

to be distinguished when comparing different sets of three. 

   As mentioned previously for clogged pores with a radius smaller than 5 𝜇𝑚, coefficient 𝑎 from 

equation 64 was reduced to 1, which leaves only one coefficient, 𝑏 to be evaluated. Although 

there are no distinguishable trends showing regarding zeta potential (Figure 19), when 

observing changes in flow velocity (Figure 20), a notable similarity of sensitivity to changes in 

flow velocity from the norm may be observed. Coefficient 𝑏 is generally highest at the average 

value, and generally is lower at the extremes. For equation 64, coefficient 𝑏 determines the 

slope of the curve, and the slope is depended on the distribution of the porosity-permeability 

data. Coefficient 𝑏 may be higher at average flow velocities, because different effects occur at 

lower and higher velocities. At higher velocities, clogging becomes increasingly difficult due to 

the increase in hydrodynamic forces, particles will attach less frequently and clogging takes 

longer. However, at low velocities, the relative impact density differences have become larger, 

allowing more particles to attach near the front of the pore constriction. Both these processes 

may result in a more gradual clogging of the pore, and therefore provide a gentler slope than 

on average flow velocities. 

   When analyzing unclogged pores, equation 57 provides three different coefficients. This 

allows for more accurate fitting of the given data, but does increase the difficulty in trend 

analysis. There is however notable observed behavior between the three different coefficients. 

Figure 21 through 26 show the coefficient plots for all coefficients between changes in zeta 

potential and flow velocity. Uniformly, the behavior of coefficients is identical between 

coefficients 𝑎 and 𝑏, and there is an inverse relation between coefficients 𝑎 and 𝑏, and 𝑐. So if 

between two points, coefficients 𝑎 and 𝑏 exhibit an increase, coefficient 𝑐 will decrease. This 

may not necessarily provide insight in the modeled system, and be more depended on the 

nature of the used equation, but it does allow the same qualitive analysis regarding sensitivity 

of changes in coefficients regarding changes in variables zeta potential and flow velocity. 

Similar to the power law used for clogged pores, coefficient 𝑏 determines the main slope of the 
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curve, while 𝑎 mainly calibrates the starting point, and 𝑐 has a small corrective influence on the 

latter end of the curves. As coefficient 𝑏 is the most impactful coefficient, and 𝑎 and 𝑐 respond 

predictably to changes in 𝑏, mainly coefficient 𝑏 will be discussed. 

   For both flow velocity and zeta potential (Figure 22 and Figure 25), changes in coefficients 

from the mean are not guaranteed to increase or decrease. However, regarding flow velocity 

𝑢, generally the absolute change in coefficients from the mean is smaller from high velocities 

to the mean than from low velocities to the mean, implying that low velocities have a higher 

impact than large velocities. 

   Although there is no similar observation that can be made for changes in zeta potential, zeta 

potential does show larger discrepancies between extremes and the mean. This implies that 

extremes in zeta potential have a much larger impact relative to mean values than flow velocity 

does. Hydrodynamic force on particles is modeled relatively linearly through equations 29 

through 32, while zeta potential has a significantly more non-linear implementation through 

equations 42 and 43. This would suggest that changes in changes in flow velocity, and thus 

changes in hydrodynamic force on particles, may behave more linearly to changes in zeta 

potential.  
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Figure 19. Coefficient b for changes in zeta potential in clogged regimes. 

 

 

Figure 20. Coefficient b for changes in flow velocity in clogged regimes. 
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Figure 21. Coefficient a for changes in zeta potential in unclogged regimes. 

  

 

Figure 22. Coefficient b for changes in zeta potential in unclogged regimes. 
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Figure 23. Coefficient c for changes in zeta potential in unclogged regimes.  

 

 

Figure 24. Coefficient a for changes in flow velocity in unclogged regimes. 
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Figure 25. Coefficient b for changes in flow velocity in unclogged regimes. 

 

 

Figure 26. Coefficient c for changes in flow velocity in unclogged regimes. 
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Improvements 

This part of the discussion will focus on the potential improvements and future research that 

may lead to more accurate and conclusive results. There are several reasons why the 

coefficient trend analysis cannot provide conclusive results. The first is the type of system that 

is being modeled. As mentioned before, the types of equations modeled in this study are highly 

non-linear. This implies that any change in variables, may already have relatively unpredictable 

results. 

    The second reason is that way the porosity-permeability data is obtained inherently provides 

a large spread in data points. Fitting data with a large spread in data points increases the 

difficulty of finding a proper fit, and results in a large potential spread in the confidence of the 

fitted coefficients.  

   Especially in simulations where there is little to no attachment, mainly simulations with a low 

ionic strength, the way data points are distributed can become misrepresented. Take for 

example run 160. Here ionic strength, zeta potential and particle radius are at their lowest 

respective values. Flow velocity is average. There is very little particle attachment, as may be 

seen from the snapshots provided by Figure 27. However, besides the existing particles in the 

domain having an impact on the permeability, making the spread in permeability increasingly 

variable. Through the way porosity is calculated (equation 63), anytime a particle or a group of 

particles attach themselves to an already deposited particle, but does not remain attached to 

that deposited particle, the porosity may change disproportionally to the permeability (Figure 

27). Figure 19 shows two snapshots of simulation 160. It can be seen that at both times, several 

particles are attached to already deposited particles, which are counted towards a decrease in 

porosity. However, in both cases, in the next timestep hydrodynamic forces were large enough 

to detach the particles again from the primary deposited particles. 
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Figure 27. a) Snapshot of simulation 160 at t=17200000 (6.88s). b) Snapshot of simulation 160 at t= 19200000 
(7.6s). 

 

Another reason is that when trying to discover trends in data, three data points are not enough 

to justify any trend that may seem to be present. Notably the combination between an already 

spread out data set that provides the coefficients needed for the analysis, and the lack of data 

points in the coefficient analysis make it difficult to provide any evidence for any observable 

trends. 

   When trying to model these kinds of systems, simplifications in the model may lead to more 

predictable results. However, when modeling on this scale with the intend of improving process 

understanding, it is imperative that processes are to be modeled as closely as they would in 

reality. Based on insight obtained on this scale, then through up-scaling to scales useful for 

practical application, simplifications are more easily permitted. 

   To try and resolve misrepresented porosity-permeability data would imply that an improved 

or different way of calculation porosity is required. One suggestion may be that only particles 

or aggregations that are attached for a certain threshold of time-steps, and therefore have had 

significant impact on the permeability are recorded and used in porosity calculations. However, 

the same approach may be used, accepting and acknowledging its shortcomings, as long as 

this method is used consistently in future research. 
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   To resolve the lack of data points, the only option is to expand the sensitivity analysis to 

include a wider range in variables. As the pore constriction seems to have significant influence 

on at least particles of large radii, another suggestion may be to include different sizes of pore 

constrictions. This however means a significant increase in computation time and resources. 

Through this solution trends within coefficients may be observed which would provide more 

predictability of these kinds of systems as well. 

    Future research may include, as mentioned above, a wider range of variables. Furthermore, 

this model is based on a simple instance of a porous medium, with particles of identical size, 

valence and zeta potential. The model may be adjusted to provide a wide range of particle 

radii, differences in valence and different zeta potentials between particles. Properties of the 

pore wall and medium may be adjusted to accommodate to specific problems. Another 

suggestion might be to model non-spherical particles, although this would be relatively more 

difficult than previously mentioned suggestions. 
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Conclusion 

The goal of this study was to evaluate if, on a micro-scale, conventional porosity-permeability  

relations may be used to predict porosity-permeability relations, similar to larger scales. 

Depending two regimes – clogged and unclogged regimes – porosity-permeability may 

accurately be described by a generalized power law or a generalized Kozeny-Carman equation 

respectively. 

   The additional goal of this study was to find any trends between the obtained coefficients of 

the fitted equations on their respective regimes and the change in variable. The data belong 

to a highly un-linear system. Such a system provides non-monotonic relations between system 

properties such as porosity and permeability. Due to this and the lack of data points for 

comparison, no conclusive trends may be found within the given data. However, it may be  

concluded that zeta potential is much more sensitive to changes than flow velocity.  

   Future research might include a wider range in sensitivity analysis, to provide a wider range 

in data points, with which trends might be more easily observed. 
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