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Abstract

In this thesis we will go through what a Lie group and a Lie algebra is. How they
are linked to one another and we will have a look at their representations. The
main focus will be towards matrix Lie groups and their associated Lie algebras. In
particularly we will be looking into the matrix Lie groups SO(3) and SU(2) with
their associated Lie algebras so(3) and su(2), resp. This is to describe the spin of
a particle. Since the representations of SO(3) can only describe particles with an
integer spin, i.e. bosons, we will look at the matrix Lie group SU(2) and show that
this Lie group can describe particles of half-integer spins through representations,
fermions. The main motivations was to understand the spin of an electron. The
electron is a fermion and has spin-1

2 . Therefore we will be focussing on theorems
which will assist us to achive our quest to understand the spin.
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Introduction

The Stern-Gerlach experiment was done in 1922 by O. Stern and W. Gerlach. In this
experiment they send silver atoms flying through an inhomogenous magnetic field
and caught them on a detection screen. They observed two distinct spots instead
of an oval blur as one would expect from a classical point of view. This raises
quenstions. Why a distrete number of possible values? And, why is this discrete
value two? This has to do with spins of particles. The silver atoms has the spin of
an electron, and we know the electron has spin half.

For us to describe this spin of an electron, or any particle in three dimensions, we
have to look at the three dimensional special orthogonal matrix Lie group, SO(3).
This group describes all the rotations in three dimensional real space, R3. This group
is a matrix Lie group and to understand this group, we will dive into properties of
Lie groups and in particular matrix Lie groups. We will also consider the two
dimensional special unitary group, SU(2). As it turns out we can only describe
integer spins with the matrix Lie group SO(3). To describe also the half-integer
spins, we have to look at SU(2).

To further describe these (matrix) Lie groups, one has to look at Lie algebras.
In the case of matrix Lie groups there is a beautiful connection between matrix
Lie groups and their Lie algebra. This connection is done through the matrix-
exponential. From there we will study the Lie algebras so(3) and su(2) of the
matrix Lie groups SO(3) and SU(2), respectively. These Lie algebras are on some
fronts easier to work with then the Lie groups. What is also confient is that the Lie
algebras so(3) and su(2) are isomorphic, while the matrix Lie groups SU(2) and
SO(3) not.

We will look into representations of SO(3) and SU(2) as well as the representa-
tions of the associated Lie algebras. We will start with the irreducible representations
of the Lie algebra so(3). From there we will look at the corresponding representa-
tions of the matrix Lie group SO(3). As it turns out this matrix Lie group doesn’t
allow us to look at all the dimensions through (irreducible) representations. It only
desribes systems of boson particles. To do this we go to the matrix Lie group SU(2),
which can describe every dimension through an irreducible representation. These
irreducible representations are linked to projective representations of SO(3).

Notation: In this thesis we will consider N ∶= {1,2,3, . . .}. And for the case
where we want to include 0, we will define N0 ∶= {0,1,2, . . .}.
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Chapter 1

The Big Motivation: The
Stern-Gerlach Experiment

The Stern-Gerlach experiment is one of the most important experiments concerning
quantum mechanics and spin. This experiment is the big motivation from a physical
standpoint why we, physicists and mathematicians with an interest in physics, would
like to study the Lie group SU(2) together with the associated Lie algebra su(2)
to create a basic understanding for the description of the electron. This experiment
was developed by Otto Stern in 1921 and performed by him in collaboration with
Walther Gerlach in 1922 in Frankfurt. In this chapter I mainly follow Chapter 1.1
of [2].

1.1 The Setup

We will go over the setup of this experiment. To do that I will refer to Figure 1.1,
where you can see a sketch of the setup, by using the numbers 1 to 5 in this picture.
One uses a furnace (1) with a small cavity in it and the furnace is filled with silver
atoms and heated. In the furnace the temperature will be so high that the silver
atoms will have a great amount of energy. In general the more energy the particle
has the more kinetic energy the particle has. The atoms will bounce around against
the walls of the furnace and can only leave through the small cavity.

The leaving silver atoms create a beam that will travel through the collimating
slits (2) to narrow down the width of the beam and making the atoms travel as
parallel to each other as possible. In general there are multiple collimating slits in
a row.
After the collimating slits the beam will go through a parallel electromagnet with an
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Chapter 1 - Stern-Gerlach Experiment

Figure 1.1: A sketch of the setup used in the Stern-Gerlach experiment.
This URL of this picture can be found by the References under [3]

inhomogeneous magnetic field (3). To achieve this inhomogeneous field one might
make the north pole pointy, like an axe head, and the south pole flat or concave. One
uses an inhomogeneous magnetic field to deviate the particles with different mag-
netic moments. After leaving the inhomogeneous magnetic field the silver atoms
will reach a detection screen (4&5).

One might wonder why they, Stern and Gerlach, used silver atoms. Back in the
1920’s there was no simple and cheap way create an controlled amount of free elec-
trons and to use free electrons in experiments. And there might have been a problem
with detecting the electrons. Furthermore silver atoms are a lot easier to get, and to
make free particles from. One only has to have a furnace with a small cavity in it to
create a beam of silver atoms. Silver atoms are a cheap and practical alternative of
electrons. This is also because a silver atom behaves as an electron in an magnetic
field. Since a silver atoms has 47 electrons around the nucleus, where the first 46
are filling up the first 3 shells and subshell 4p. This will leave us with 1 electron free
in the subshell 5s. The 5s subshell is invariant under angular rotation and has only
variations in the radial component. Which leaves the electron to move freely in the
spherical directions. So the orbital angular momentum of the electron is zero and
hence the angular momentum of the electron equals the spin angular momentum of
the electron.
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1.2 - The Physics

Furthermore, the magnetic moment of the inner 46 electrons equals zero. Since
these electrons fill in complete electron shells and subshells. And these electrons
are distributed evenly over the shells and hence symmetrical. Thus the orbital and
spin angular momentum of the electrons cancel each other out. So the 46 electrons
combined have no angular momentum. The spin of the nucleus can be neglected
since it is very small in comparison to the 47th free electron. Thus we can view the
inner 46 electrons together with the nuclear as a sphere with no orbital or spin an-
gular momentum. since these electrons fill in complete electron shells and subshells.
The magnetic field of the nuclear and the 46 electrons can be set to zero. The mass
of the nucleus is around 2 ⋅ 105 times the mass an electron. Hence the heavy atom
inherits the magnetic moment properties of the 47th free electron, in particular the
spin magnetic moment. In conclusion the magnetic field of a silver atom is mostly
the same as that of a free electron, i.e. a silver atom behaves like a free electron in
a magnetic field.

1.2 The Physics

We have conducted that the magnetic moment of the atom equals the spin magnetic
moment of the 47th electron, i.e. the magnetic moment of the silver atom µ⃗ is pro-
portional to the spin magnetic moment of the free electron S⃗. The precise relation,
with an accuracy of about 0,2%, is

µ⃗ = e

mec
S⃗ (1.1)

where e < 0 is the electric charge of an electron, me is the mass of an electron at rest
and c is the speed of light. The interaction energy E from the magnetic moment
with the magnetic field is −µ⃗ ⋅ B⃗ and the interaction force F⃗ is the negative of the
gradient of the interaction energy E, so F⃗ = −∇⃗E. We will now have a look at the
z-component of the interaction force is:

Fz = − [∇⃗ (−µ⃗ ⋅ B⃗)]
z
= ∂

∂z
(µ⃗ ⋅ B⃗) = µz

∂Bz

∂z
+Bz

∂µz
∂z

≃ µz
∂Bz

∂z
.

(1.2)

It is important to note that we have neglected the differential of Bx and By to z. We
have noticed earlier that the silver atom, compared to the electron, is really heavy,
so we would expect the clasical trajectory rules to hold up. This can be shown
though Heisenbergs uncertainty relation. Furthermore, the differential of µ⃗ to z is
zero since the magnetic moment of the silver atom is in proportions to the spin of
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Chapter 1 - Stern-Gerlach Experiment

the electron and the spin of the electron is a constant vector.
When we look at Figure 1.1 we can deduce that the silver atom travels upwards
when the sign of Fz is positive hence µz < 0 and S > 0, and on the contrary the
atom experiences a downward motion when the sign of Fz is negative hence µz > 0
so S < 0.

1.3 The Results and Conclusion

The silver atoms are heated to such a temperature that one would expect the mag-
netic moments of the silver atoms to be completely randomly orientated. So one
would expect a smooth oval blurish spot, like at (4) in Figure 1.1 , but Stern and
Gerlach, they detected two distinct circular spots, like at (5) in Figure 1.1. This
means there are only two possible values of the magnetic moment in the z-direction
of the silver atom, hence only two possible values for the spin (angular moment)
in z-direction of the electron, since for every silver atom the differential of Bz to
z at the same spot are identical. Since the magnetic moment of the silver atom is
identical to the magnetic moment of the electron, the possible values of the spin in
the z-direction are also quantized to two distinct values.
The spin angular momentum can be expressed, like the orbital angular momentum,
as a 3-dimensional vector in real space, so it is only logical to look at a irreducible
representation of the Lie group SO(3) to describe this group of the spin. But as we
have seen in the previous chapter, the Lie group SO(3) has only irreducible repre-
sentations of odd dimensions. For us to get even dimensions we have to look at the
Lie group SU(2). With the irreducible representation of dimension 2 of SU(2), we
get a spin of 1

2 , in physics the electron is called a spin-1
2 particle and is a fermion.
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Chapter 2

Brief Introduction to Group
Theory

This chapter is based on my knowledge of group theory which I got by a course I
followed at the University of Utrecht. In that course we followed the book [4]. I
have used chapter 1 of the book [5] to check all the defintions, this book makes use
of an mirrored notation. Keep that in mind if you are reading that book.

Definition 2.1. A group is a pair (G,∗), where G is a set and ∗ is the so called
product operator of the group, or is called the group operator. This set with operator
have to fulfill the folowing properties, also know as the group axioms:

1. g ∗ h ∈ G for every pair g, h ∈ G,

2. (g ∗ h) ∗ k = g ∗ (h ∗ k) for every g, h, k ∈ G, i.e. the order of applying the
operator should not matter,

3. there exists an element e ∈ G such that g ∗ e = g = e ∗ g for every g ∈ G. This
element e is called an identity of the group,

4. for every g ∈ G there exists an element g−1 ∈ G such that g ∗ g−1 = e = g−1 ∗ g.
This element g−1 is called an inverse of g in G.

An additional property can be that a group is commutative, i.e. for every two el-
ements a, b ∈ G the have the property a ∗ b = b ∗ a. But when one has this prop-
erty, this group is called an Abelian group or commutative group. Every finite
group, the set G is finite, can be denoted by a finite number of elements of the
group, called the generators of the group or group generators, from which
one can construct every element of the group G by a finite amount of the group
generators with the use of the product operator. Since this group G is finite, ev-
ery subset is also finite. Some groups have additional properties where the product
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Chapter 2 - Brief Introduction to Group Theory

operator must fulfil upon, also called additional group axioms. Most of the
time one would take the minimum amount of elements required to form the set
of group generators. The group G can then be defined by the following notation:
G = ⟨’group generators’ ∣’additional group axiom(s)’ ⟩.

Proposition 2.2. 1. An identity element of a group is unique.

2. An inverse of an element of a group is unique

Proof. 1. Let e and f be identities of the group G. So we have g ∗ e = g = e ∗ g
for every g ∈ G and g ∗ f = g = f ∗ g for every g ∈ G. Then we can see that
f = f ∗ e = e, hence the identity element is unique in G.

2. Let g−1 and h−1 be inverses of the element g the group G. So we have g ∗g−1 =
e = g−1 ∗ g and g ∗ h−1 = e = h−1 ∗ g Then we can see that h−1 = h−1 ∗ e =
h−1 ∗(g ∗g−1) and by group axiom 2, we get h−1 = (h−1 ∗g)∗g−1 = e∗g−1 = g−1,
hence the inverse of every element of G is unique in G.

∎

We will now co over a nice example for the definitions above.

Example 2.3. Consider the quaternion group (Q8,∗), where Q8 ∶= {±1,±i,±j,±k}
with the properties:

a. i4 = 1,

b. i2 = j2 = k2 = −1,

c. i ∗ j = k, j ∗ k = i and k ∗ i = j,

where an ∶= a ∗ a ∗ ⋅ ⋅ ⋅ ∗ a for a ∈ Q8, where there are n a’s in total. Note that
in = i4 ∗ in−4 = 1 ∗ in−4 = in−4 and since j2 = i2 and k2 = i2 we have simiar relations
for j and k.
From this we can see that group axiom 1 is fulfilled. Before we go on, we will
quickly look at the generators of this group. Let us look at i and j. And we have
the additional group axioms i4 = 1 and i2 = j2 = −1 and j ∗ i ∗ j−1 = i−1. The
first couple are copied from above, we only need to check the last one. We have
1 = i4 = i2 ∗ i2 = j2 ∗ j2 = j ∗ j3 = j3 ∗ j, hence j−1 = j3. We will now construct every
element q of Q8 with these two elements i and j and these additional properties as
q = in ∗ jm, where 0 ≤ n ≤ 3 and 0 ≤m ≤ 1:

i4 = 1 and i2 = −1 and k = i ∗ j.

i3 = i2 ∗ i = −1 ∗ i = −i and i2 ∗ j = −1 ∗ j = −j and i3 ∗ j = i2 ∗ (i ∗ j) = −1 ∗ k = −k.
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Hence we can write Q8 = ⟨i, j∣i4 = 1, i2 = j2 = −1, j ∗ i ∗ j−1 = i−1⟩. From the last
property we can see that j ∗ in ∗ j−1 = (j ∗ i ∗ j−1)n = i−m, the inverse of im. We will
now check the other group axioms.

2. Let in ∗ jm, ia ∗ jb, ik ∗ jl ∈ Q8. Then

(in ∗ jm ∗ ia ∗ jb) ∗ ik ∗ jl =
⎧⎪⎪⎨⎪⎪⎩

in+a ∗ jb ∗ ik ∗ jl if m = 0,

in−a ∗ jb+1 ∗ ik ∗ jl if m = 1,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

in+a+k ∗ jl if m = 0 and b = 0,

in+a−kjl+1 if m = 0 and b = 1,

in−a−kjl+1 if m = 1 and b = 0,

in−a+k+2 ∗ jl if m = 1 and b = 1,

(2.1)

and

in ∗ jm ∗ (ia ∗ jb ∗ ik ∗ jl) =
⎧⎪⎪⎨⎪⎪⎩

in ∗ jm ∗ ia+k ∗ jl if b = 0,

in ∗ jm ∗ ia−k ∗ jl+1 if b = 1,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

in+a+k ∗ jl if b = 0, and m = 0,

in−a−k ∗ jl+1 if b = 0 and m = 1,

in+a−k ∗ jl+1 if b = 1 and m = 0,

in+k−a+2 ∗ jl if b = 1 and m = 1.

(2.2)

Hence we can conclude that (in ∗ jm ∗ ia ∗ jb)∗ ik ∗ jl = in ∗ jm ∗(ia ∗ jb ∗ ik ∗ jl).
We have used above that j2 = i2.

3. We have for 1 that i ∗ 1 = i = 1 ∗ i and 1 ∗ j = j = j ∗ 1, so 1 ∗ in ∗ jm = in ∗ jm =
in ∗ jm ∗ 1 for all 0 ≤ n ≤ 3 and 0 ≤m ≤ 1. Thus 1 is the identity of Q8.

4. Let in ∗ jm be a random element of Q8.
If m = 0, then (in)−1 = i4−n = i−n. Since we have i4−n ∗ in = i4 = 1 and
in ∗ i4−n = i4 = 1.
If m = 1, then j−1 = in−2∗j. Since we have in−2∗j∗in∗j = i−2∗j2 = i2∗i2 = i4 = 1
and in ∗ j ∗ in−2 ∗ j = i2 ∗ i2 = i4 = 1.

So Q8 is a group with the product operator ∗ and has generators i and j such that
Q8 = ⟨i, j∣i4 = 1, i2 = j2 = −1, j ∗ i ∗ j−1 = i−1⟩.

Definition 2.4. A subgroup H of a group G is a subset of G and forms a group
with the endowned product operator.
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Chapter 2 - Brief Introduction to Group Theory

The elements in a group which are abelian to every other element of the group
form a subgroup of the group. So

Definition 2.5. The set of all commutative elements of the group, defined by:

Z(G) = {z ∈ G∣z ∗ g = g ∗ z for all g ∈ G}, (2.3)

is a subgroup of G, this is easily verifiable. This subgroup Z(G) is called the center
of the group G.

Definition 2.6. Let N be a subgroup of G, then N is a normal subgroup of G
if for every g ∈ G we have gN = Ng or equivalently N = gNg−1. Where we define
gN ∶= {g ∗ n∣n ∈ N}, which is named the left coset of N in G, and analogously
Ng ∶= {n ∗ g∣n ∈ N}, which is named the right coset of N in G, and thus gNg−1 ∶=
{g ∗ n ∗ g−1∣n ∈ N}.

Definition 2.7. A discrete normal subgroup N of G is a normal subgroup of
G with the additional property that there is a neighbourhood U of e in G such that
N ∩U = {e}.

Definition 2.8. Let us have two groups (G,∗) and (H, ⋅), then a group homo-
morphism of G to H is a function ϕ ∶ G→H such that

ϕ(g1 ∗ g2) = ϕ(g1) ⋅ ϕ(g2) (2.4)

for all g1, g2 ∈ G.
When this group homomorphism is inversable, and the inverse is also an group
homomorphism, then we say that ϕ is group isomorphism.

This requirement of the function gives us an interesting result.

Proposition 2.9. Let us have two groups (G,∗) and (H, ⋅), and a group homomor-
phism ϕ ∶ G → H. Then the identity of the group G, denoted eG, will be sent to the
identity of group H, denoted eH .

Proof. This can be seen by the following trick. We know from group axiom 3 that
for g ∈ G,

ϕ(g) = ϕ(eG ∗ g) = ϕ(eG) ⋅ ϕ(g). (2.5)

Since φ(g) ∈ H, by group axiom 4 there exists an inverse in H, namely φ(g)−1. We
will multiply from the right with this inverse and we get

eH = ϕ(g) ⋅ ϕ(g)−1 = ϕ(eG) ⋅ ϕ(g) ⋅ ϕ(g)−1 = ϕ(eG) ⋅ eH = ϕ(eG). (2.6)

∎
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What if you have three groups and you have a group homomorphism from group
1 to group 2 and a group homomorphism from group 2 to group 3? Can you then
construct a group homomorphism from group 1 to group 3 through group 2? The
answer is: ’Yes!’

Theorem 2.10. Let (G1,∗), (G2, ⋅) and (G3,×) be three groups. Let ϕ ∶ G1 → G2

and φ ∶ G2 → G3 be two group homomorphisms. Then the composition ψ = φ ○ ϕ,
defined by ψ ∶= φ(ϕ(g)) for all g ∈ G1, is again a group homomorphism.
We call ϕ the composed function and φ the composing function.

Proof. Let (G1,∗), (G2, ⋅) and (G3,×) be three groups. Let ϕ ∶ G1 → G2 and
φ ∶ G2 → G3 be two group homomorphisms. Let g, h ∈ G1. The composition of two
functions where the range of the composed function is a subset of the domain of the
composing fuction is a fucntion. Hence ψ is a function. We will now look at the
ψ(g ∗ h):

ψ(g ∗ h) = φ(ϕ(g ∗ h)) = φ(ϕ(g) ⋅ ϕ(h))
= φ(ϕ(g)) × φ(ϕ(h)) = ψ(g) × ψ(h). (2.7)

Since g and h are random in G1, this result holds for every two elements of G1.
Hence ψ = φ ○ ϕ is a group homomorphism from G1 to G3. ∎

Definition 2.11. Let us have two groups (G,∗) and (H, ⋅) with a group homomor-
phism ϕ ∶ G→H. The kernel of ϕ homomorphism is defined as all the elements in
G that are sent to the identity eH of H. More compactly

ker(ϕ) = {g ∈ G∣ϕ(g) = eH} . (2.8)

Proposition 2.12. Let us have two groups (G,∗) and (H, ⋅) with a group homo-
morphism ϕ ∶ G→H. The kernel of ϕ is a normal subgroup of G.

Proof. It is evident that ker(ϕ) ⊆ G. We will now check all the requirements from
Defintion 2.1 to prove that ker(ϕ) is a group of with the induced operator from
(G,∗).

1. Let g, h ∈ ker(ϕ), then ϕ(g ∗ h) = ϕ(g) ⋅ ϕ(h) = eH , thus g ∗ h ∈ ker(ϕ).

2. This is evident, since the operator works the same. Thus since G is a group,
it holds that (g ∗ h) ∗ k = g ∗ (h ∗ k) for g, h, k ∈ ker(ϕ).

3. From Proposition 2.9 we see that ϕ(eG) = eH , thus eG ∈ ker(ϕ). Since ker(ϕ) ⊆
G, we have that g ∗ eG = g = eG ∗ g for all g ∈ ker(ϕ).
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Chapter 2 - Brief Introduction to Group Theory

4. Let g ∈ ker(ϕ) ⊆ G, then there exists a g−1 ∈ G such that g ∗ g−1 = eG = g−1 ∗ g.
Look at ϕ(g−1) = ϕ(g−1) ⋅ eH = ϕ(g−1) ⋅ ϕ(g) = ϕ(g−1 ∗ g) = ϕ(eG) = eH . Thus
we have g−1 ∈ ker(ϕ).

This makes ker(ϕ) into a subgroup of G.
Now we have to check that it is normal. Let g ∈ G and let k ∈ ker(ϕ). Then look at
ϕ(g ∗ k ∗ g−1) = ϕ(g) ⋅ϕ(k) ⋅ϕ(g−1) = ϕ(g) ⋅ eH ⋅ϕ(g−1) = ϕ(g) ⋅ϕ(g−1) = ϕ(g ∗ g−1) =
ϕ(eG) = eH . Thus g ∗ k ∗ g−1 ∈ ker(ϕ) for every k ∈ ker(ϕ) and every g ∈ G. Thus for
every g ∈ G we have g ker(ϕ)g−1 ⊆ ker(ϕ).
We now want to proof that for every g ∈ G we have ker(ϕ) ⊆ g ker(ϕ)g−1. This
is equivalent to saying g−1 ker(ϕ)g ⊆ ker(ϕ) for every g ∈ G. This is equivalent to
saying hker(ϕ)h−1 ⊆ ker(ϕ) for every h ∈ G, where we have substituted g−1 by h.
This is the result we have already proven above. So we ker(ϕ) = g ker(ϕ)g−1 for
every g ∈ G. Hence ker(ϕ) is a normal subgroup of G. ∎

Proposition 2.13. Let G be a group and N be a normal group of G. Let us denote
set of all right cosets of N in G by G/N . This set G/N is a group and is called the
quotient group of G by N .

Proof. Let us look at two elements of the set G/N . These elements are right coset of
N in G, so there exist g, h ∈ G such that these element are Ng and Nh. We will define
a product between two cosets as following: (Ng)(Nh) ∶= {x ∗ y∣x ∈ Ng, y ∈ Nh}.
x ∈ Ng and y ∈ Nh if and only if there exist n,m ∈ N such that x = n ∗ g and
y =m ∗ h. We will look at the product of x and y:

x ∗ y = (n ∗ g) ∗ (m ∗ h) = n ∗ g ∗m ∗ (g−1 ∗ g) ∗ h
= n ∗ (g ∗m ∗ g−1) ∗ g ∗ h
= n ∗m′ ∗ (g ∗ h) ∈ Ngh.

(2.9)

Where m′ ∶= g ∗m∗ g−1 ∈ N and Ngh ∶= N(g ∗h). Now we have (Ng)(Nh) = Ngh =
Nf ∈ G/N for some f = g ∗ h ∈ G. And thus we can devine the product operator of
G/N by (Ng)(Nh) ∶= Ngh. The group axioms will follow from the fact that G is a
group. ∎

Theorem 2.14. Let us have two groups (G,∗) and (H, ⋅) with a group homomor-
phism ϕ ∶ G→H. Then G/ker(ϕ) is isomorphic to im(ϕ).

This theorem is known as the First Isomorphism Theorem.

Proof. The proof of this theorem can be found at the bottom of page 86 of [4], in
this book it is the proof of Theorem 16.1. ∎
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For simplicity from now on we will write g ∗ h as gh for g, h ∈ G. We will do the
same for other groups, so you have to be carefull about knowing in which group we
are working and which group operation we are dealing with. Furthermore, we will
therefore only refer to a group by the set alone. So we will talk about a group G
instead of (G,∗).
Luckily from a certain point we will only look at matrix Lie groups which have,
usually, the standard matrix multiplication as group operator.
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Chapter 3

Lie Groups and Lie Algebras

In this section we will go over the basic definitions to create a basis of knowledge
where we can build upon. We will also introduce some specific cases of Lie groups,
namely SO(3) and SU(2). It is also important to look at some of the properties
that these Lie groups posses.

In section 3.1 I follow paragraph 16.2, in section 3.2 I follow paragraph 16.3, in
section 3.3 I follow paragraph 16.4 all from [6].

3.1 Lie Groups

Definition 3.1. The space of all the n × n-matrices with entries from a field F is
denoted by Mn(F ).

Definition 3.2. The general linear group, denoted by GL(n,F), is the group of
n × n invertible matrices with entries from the field F. The special linear group,
denoted by SL(n,F), is the group of n×n-matrices with entries from the field F such
that the determinant of these matrices are 1.

Remember a matrix is invertible if and only if the determinant of the matrix is
not equal to zero. So when a matrix has determinant 1, the matrix is invertible.
This gives us that SL(n,F) is a subgroup of GL(n,F). In most cases this field F
will be either the real numbers R or the complex numbers C. Note that both of
these fields are continuous manifolds. For R this statement is trivial and for C this
means we can see C localy as Rm for some m. This m is 2, which is no suprise.
In this thesis we will mainly consider matrix Lie groups. We will start with some
important definitions.

Definition 3.3. A subgroup G of GL(n,C) is closed if for every sequence Am in
G that converges to a matrix A, either A is in G or A is not in GL(n,C).
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Chapter 3 - Lie Groups and Lie Algebras

Definition 3.4. A matrix Lie group is a closed subgroup of GL(n,C) for some
n ∈ N.

For completeness it is good to know the general definition of a Lie group.

Definition 3.5. A Lie group G is a smooth manifold G which is also a group and
such that the group product

G ×G→ G

and the inverse map G→ G are smooth.

This definition is Definition 1.20 of [7].
This smoothness properties makes the Lie group a valid group construction to de-
scribe continuous symmetry, such as the rotations in 3 dimensions. We will see later
that this Lie group is the SO(3) group, see Theorem 3.12 for defintion of SO(3).

Definition 3.6. If G1 and G2 are two Lie groups, a map from G1 to G2 is called
a Lie group homomorphism of G1 into G2 if this map is a continuous group
homomorphism of G1 into G2. If this map is also bijective and has a continuous
inverse, then this map is called a Lie group isomorphism. If such a Lie group
isomorphism exist, we say G1 and G2 are isomorphic or isomorphic to each other.

Since a Lie group is a group as in defintion 2.1 and a Lie group homomorphism
is a group homomorphism as in 2.8, we can use all the results from Chapter 2 onto
Lie groups and Lie group homomorphisms.
We will now look at some important examples of Lie groups which will be the basis
of the Lie groups discussed in this thesis.

Definition 3.7. A complex n × n-matrix U is called unitary if U∗U = UU∗ = I.

Here we have used the transpose-conjugate of U and it is denoted by U∗. When
we use the standard complex inner product, namely ⟨v,w⟩ ∶= v∗w, for v,w ∈ Cn, we
obtain the following result.

Corollary 3.8. A complex n×n-matrix U is unitary if and only if ⟨Uv,Uw⟩ = ⟨v,w⟩
for all v,w ∈ Cn.

Proof. Let U ∈ Mn(C) and let ⟨Uv,Uw⟩ = ⟨v,w⟩ for all v,w ∈ Cn. We have
⟨Uv,Uw⟩ = (Uv)∗Uw = v∗U∗Uw and ⟨v,w⟩ = v∗w, so v∗U∗Uw = v∗w for all
v,w ∈ Cn. Hence U∗U = I. When we now take the determinant of this, we
get det(U∗U) = det(U∗)det(U) = (det(U))2 = det(I) = 1. From U∗U = I and
∣det(U)∣ = 1 and the fact that n is finite we can conclude that U∗ is the inverse of
U and thus UU∗ = I.
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3.1 - Lie Groups

Conversely, let a complex n × n-matrix U be unitary, so U∗U = UU∗ = I. Take
v,w ∈ Cn completely abitrary, and have a look at ⟨Uv,Uw⟩. We can write this
inner product out, since it represents the standard complex inner product. Hence
⟨Uv,Uw⟩ = (Uv)∗Uw = v∗U∗Uw = v∗Iw = v∗w = ⟨v,w⟩ for all v,w ∈ Cn. ∎

Theorem 3.9. The set of complex n × n unitary matrices with the standard matrix
multiplication forms a group, denoted by U(n) and it is called the unitary group.
The subset of U(n) of the matrices with determinant equal to 1 forms a group under
the standard matrix multiplication and hence it is a subgroup of SU(n). This group
is denoted by SU(n) and it is called the special unitary group.

Proof. We will first proof that U(n) is a group for n ∈ N, with the standard matrix
multiplication.

1. If X,Y ∈ U(n), then we know X∗X = XX∗ = I = Y ∗Y = Y Y ∗. We have
(XY )∗XY = Y ∗X∗XY = Y ∗Y = I and similarly XY (XY )∗ = I. So XY is an
element of U(n).

2. If X,Y,Z ∈ U(n), then (XY )Z =X(Y Z), since the standard matrix multipli-
cation is associative.

3. Look at the identity matrix I. It is trivial that I∗ = I. Since we have I∗I = I
and II∗ = I, the identity matrix is unitary. Hence I ∈ U(n) and is the identity
element since for all X ∈ U(n) we have XI = IX =X.

4. If X ∈ U(n), then we also have that X∗ ∈ U(n) since (X∗)∗ = X. Since
XX∗ =X∗X = I, the matrix X−1 =X∗ ∈ U(n) is an inverese of X.

So we have proven that U(n) is a group with the standard matrix multiplication as
multiplication. We will now proof that SU(n) is a subgroup of U(n).

1. If X ∈ SU(n), then X is unitary and the determinant equals one, so therefore
X ∈ U(n), and thus SU(n) ⊆ U(n).

2. If X,Y ∈ SU(n), then XY ∈ U(n) and the determinant equals one since
det(XY ) = det(X)det(Y ) = 1 ⋅ 1 = 1. So XY ∈ SU(n).

3. If X ∈ SU(n), then we know XX∗ = X∗X = I and det(X) = 1, and that an
inverse of X is X−1 = X∗, which is an element of U(n). Now look at the
determinant of XX∗ and we get det(XX∗) = det(X)det(X∗) = det(X∗) and
also det(XX∗) = det(I) = 1, so det(X−1) = det(X∗) = 1. Thus X−1 = X∗ is an
element of SU(n).
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Thus SU(n) is a subgroup of U(n). ∎

Note, for U ∈ U(n) we have the property U∗U = I, which demands that ∣det(U)∣ =
1. This is since 1 = det(I) = det(U∗U) = det(U∗)det(U) = det(U)det(U) =
∣det(U)∣2.

Definition 3.10. A real n × n-matrix O is called orthogonal if OTO = OOT = I.

Analogly to the previous lemma when we use the standard real inner product,
so ⟨v,w⟩ ∶= vTw, for v,w ∈ Rn, we can obtain the following lemma.

Corollary 3.11. A real n×n-matrix O is orthogonal if and only if ⟨Ov,Ow⟩ = ⟨v,w⟩
for all v,w ∈ Rn.

The proof of this Corollary 3.11 is very similar to the proof of Corollary 3.8.

Proof. Let O ∈ Mn(R) and let ⟨Ov,Ow⟩ = ⟨v,w⟩ for all v,w ∈ Rn. We have
⟨Ov,Ow⟩ = (Ov)TOw = vTOTOw and ⟨v,w⟩ = vTw, so vTOTOw = uTw for all
v,w ∈ Rn. Hence T TOI. When we now take the determinant of this, we get
det(OTO) = det(OT )det(O) = (det(O))2 = det(I) = 1. From OTO = I and ∣det(O)∣ =
1 and the fact that n is finite we can conclude that OT is the inverse of O and thus
OOT = I.
Conversely, let a real n × n-matrix O be Orthogonal, so O∗O = OOT = I. Take
v,w ∈ Rn completely abitrary, and have a look at ⟨Ov,Ow⟩. We can write this
inner product out, since it represents the standard real inner product. Hence
⟨Ov,Ow⟩ = (Ov)TUw = vTOTOw = vT Iw = vTw = ⟨v,w⟩ for all v,w ∈ Rn. ∎

Theorem 3.12. The set of real n×n orthogonal matrices with the standard matrix
multiplication forms a group, denoted by O(n) and it is called the orthogonal
group. The subset of O(n) of the matrices with determinant equal to 1 forms a
group under the standard matrix multiplication and hence it is a subgroup of O(n).
This group is denoted by SO(n) and it is called the special orthogonal group.

Proof. This proof is very similar to the proof of Theorem 3.9. We will first proof
that O(n) is a group for n ∈ N, with the standard matrix multiplication.

1. If X,Y ∈ O(n), then we know XTX = XXT = I = Y TY = Y Y T . We have
(XY )TXY = Y TXTXY = Y TY = I and similarly XY (XY )T = I. So XY is an
element of O(n).

2. If X,Y,Z ∈ O(n), then (XY )Z =X(Y Z), since the standard matrix multipli-
cation is associative.

Page 16



3.1 - Lie Groups

3. Look at the identity matrix I. it is trivial that IT = I. Since we have IT I = I
and IIT = I, the identity matrix is orthogonal. Hence I ∈ O(n) and is the
identity element since for all X ∈ O(n) we have XI = IX =X.

4. If X ∈ O(n), then we also have that XT ∈ O(n) since (XT )T = X. Since
XXT =XTX = I, the matrix X−1 =XT ∈ O(n) is an inverse of X.

So we have proven that O(n) is a group with the standard matrix multiplication as
multiplication. We will now proof that SO(n) is a subgroup of O(n).

1. If X ∈ O(n), then X is orthogonal and the determinant equals one, so therefore
X ∈ O(n), and thus SO(n) ⊆ O(n).

2. If X,Y ∈ SO(n), then XY ∈ O(n) and the determinant equals one since
det(XY ) = det(X)det(Y ) = 1 ⋅ 1 = 1. So XY ∈ SO(n).

3. If X ∈ SO(n), then we know XXT = XTX = I and det(X) = 1, and that an
inverse of X is X−1 = XT , which is an element of O(n). Now look at the
determinant of XXT and we get det(XXT ) = det(X)det(XT ) = det(XT ) and
also det(XXT ) = det(I) = 1, so det(X−1) = det(XT ) = 1. Thus X−1 =XT is an
element of SO(n).

Thus SO(n) is a subgroup of O(n). ∎

Note, forO ∈ O(n) we have the propertyOTO = I, which demands that ∣det(O)∣ =
1 hence det(O) = ±1. This is since 1 = det(I) = det(OTO) = det(OT )det(O) =
det(O)det(U) = det(U)2.

Definition 3.13. A set R is connected if for all A,B ∈ R there is a continuous
path, which is a function A(⋅) ∶ [0,1] → R such that:

1. A(0) = A

2. A(1) = B.

Definition 3.14. A set R is simply connected if every continuous loop can be
continuously shrunken to a single point in R, as demonstrated on S2 in Figure 3.1.
Here a continuous loop is a special case of a coninuous path from Definition 3.13,
with the requirement A = B.
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Figure 3.1: A demonstration of a loop being continuously shrunken down to a single
point on the 2 dimensional sphere S2.
The URL of this picture can be found in the Bibliography under [8]

To give you a clear view what the difference is between connected and simply
connected have a look at Figure 3.1.

Figure 3.2: A demonstration of the dif-
ferences between sets that are or are not
connected and are or are not simply con-
nected.
The top left set R is connected and sim-
ply connected. The top right set R is con-
nected, but not simply connected. The
bottom left set R is not connected, but it
is simply connected. And lastly, the bot-
tom right set R is neither connected nor
simply connected.
The URL of this picture can be found in
the Bibliography under [9].

Example 3.15. Let us have a look at the Lie group SO(3). In the bottom of
page 293 of [10] we can see that SO(3) is isomorphic to the projective 3-real space
RP 3. This set is the set of all lines going through the origin and through a point
on the 3 dimensional sphere. The Lie group SO(3) represents all the rotations in 3
dimensions. Every rotation in 3 dimensions has a rotation axis and a rotation angle
α. One can express the rotation axis as a vector in α⃗ ∈ R3 and let the magnitude of
the vector be the rotation angle, α = ∣α⃗∣, and the normalized rotation axis be α̂ = α⃗/α.
For clarification we will denote the rotation matrix of a rotation around axis α̂ with
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angle α as R(α⃗) = R(α̂, α). Now we can express some properties for v⃗ ∈ R3 and
α ∈ R:

1. R(v̂, α) = R(−v̂,−α), note v⃗ = αv̂ = (−α) ⋅ (−v̂).

2. R(v̂, α) = R(v̂, α + 2π).

This notation is commonly used in physics and sometimes also in mathematics.
The Lie group SO(3) is topologically isomorphic to the real projective space RP3,
which is topologically isomorphic to the 3 dimensional sphere with antipolar inden-
tity, S3/{±1}. Antipolar identity means that we view two elements x and y the same
when y = −x. This isomorphism is quite easy to see. One can view the elements of
RP3 as lines that go through the origin and through a point on the three dimensional
sphere. These lines have no direction. And when a line goes through the origin and
through a point x on S3 then this line will also go through the point −x on S3. Thus
this line is equal to the line that goes through the origin and through −x. With this
visualisation, we have connected x and −x on S3 by a line and we view these points
as the same. When a line goes throught the origin then it has only two intersections
with S3 and these two points are antipolars of each other. With this in mind there
is a bijection between RP3 and S3/{±1}. This bijection sents a line from RP3 that
goes through a point x of S3/{±1} to x in S3/{±1}.

Lemma 3.16. The matrix Lie group SU(2) can be written as follows:

SU(2) = {(α −β̄
β ᾱ

) ∣α,β ∈ C, ∣α∣2 + ∣β∣2 = 1} . (3.1)

Proof. If X ∈ SU(2), then X∗X = XX∗ = I and det(X) = 1. We can write X as a
2 × 2-matrix, where we use 2 column vectors u⃗, w⃗ ∈ C2, such that X = (u⃗ w⃗). Now
we will use the relation X∗X = I:

X∗X = ( u⃗
∗

w⃗∗
)(u⃗ w⃗) = ( u⃗

∗u⃗ u⃗∗w⃗
w⃗∗u⃗ w⃗∗w⃗

) = (⟨u⃗, u⃗⟩ ⟨u⃗, w⃗⟩
⟨w⃗, u⃗⟩ ⟨w⃗, w⃗⟩) = (1 0

0 1
) = I. (3.2)

So we see that u⃗ as well as w⃗ are unit vectors in C2 and that the are perpendicular to

each other. Let α,β ∈ C such that u⃗ ∶= (α β)T . Then we have ⟨u⃗, u⃗⟩ = ∣α∣2+∣β∣2 = 1.

There are two possibilities for w⃗, namely w⃗ = ±(−β̄ ᾱ)T . To determine the sign
infront of the vector, we can use the property that det(X) = 1, so

det(X) = det (u⃗ w⃗) = det(α ∓β̄
β ±ᾱ) = ±αᾱ ± ββ̄

= ±(∣α∣2 + ∣β∣2) = ±⟨u⃗, u⃗⟩ = ±1.

(3.3)
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To get the determinant of the matrix X to be equal to 1, we have to choose w⃗ =
(−β̄ ᾱ)T . And hence X = (α −β̄

β ᾱ
), for α,β ∈ C, and we now know

SU(2) ⊆ {(α −β̄
β ᾱ

) ∣α,β ∈ C, ∣α∣2 + ∣β∣2 = 1} . (3.4)

Let X ∈ {(α −β̄
β ᾱ

) ∣α,β ∈ C, ∣α∣2 + ∣β∣2 = 1}, then for some α,β ∈ C, we have X =

(α −β̄
β ᾱ

). We will check the three properties that a 2×-matrix must satisfy:

X∗X = ( ᾱ β̄
−β α

)(α −β̄
β ᾱ

) = ( ᾱα + β̄β −ᾱβ̄ + β̄ᾱ
−βα + αβ ββ̄ + αᾱ )

= (∣α∣
2 + ∣β∣2 0

0 ∣β∣2 + ∣α∣2) = I

XX∗ = (α −β̄
β ᾱ

)( ᾱ β̄
−β α

) = ( αᾱ + ββ̄ −αβ̄ + β̄α
−βᾱ + ᾱβ ββ̄ + αᾱ )

= (∣α∣
2 + ∣β∣2 0

0 ∣β∣2 + ∣α∣2) = I

det(X) = det(α −β̄
β ᾱ

) = αᾱ + β̄β = ∣α∣2 + ∣β∣2 = 1.

(3.5)

So X satisfies all the properties related to SU(2), and we can conclude X ∈ SU(2).
This result combined with the result which we found earlier, we have proven that:

SU(2) ⊆ {(α −β̄
β ᾱ

) ∣α,β ∈ C, ∣α∣2 + ∣β∣2 = 1} . (3.6)

∎

Theorem 3.17. The Lie group SU(2) is connected and simply connected.

Proof. Since SU(2) ≅ S3 we can use the little example below Proposition 11 of
[11] to conclude that SU(2) is connected. Note we have used the definition of
path-connected in stead of connected, Corollary 14. of [11] tells us that: ’Every
path-connected space is connected.’. So SU(2) is indeed connected.
We can see from Lemma 3.16 that every element of SU(2) can be written as

(α −β̄
β ᾱ

) , (3.7)
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where ∣α∣2+∣β∣2 = 1 with α,β ∈ C ≅ R2. Let α = a+ ib and β = c+ id, with a, b, c, d ∈ R,
then the requirement ∣α∣2 + ∣β∣2 = 1 transforms into a2 + b2 + c2 + d2 = 1. With
this one can see that SU(2) is topologically isomorphic to the 3 dimensional unit
sphere, S3, inside C2 ≅ R4. In Proposition 1.14 of [10] they say that Sn has a trivial
fundamental group for every n ≥ 2, hence Sn is simply connected for every n ≥ 2.
Thus in particular S3 is simply connected.
Furthermore, S3 is also connected, between every two points runs at least one circle
line to connect them. Since simply connectedness is a topological property, SU(2)
is simply connected.

∎

Theorem 3.18. The Lie group SO(3) is connected but not simply connected.

Proof. We have seen that the matrix Lie group SO(3) is isomorphic to RP3, which
is isomorphic to S3/{±I} (see Example 3.15). We also know from Lemma 3.16 that
SU(2) is isomorphic to S3. Thus we can conclude that SO(3) is isomorphic to
SU(2)/{±I}. Theorem 3.17 tells us that SU(2) is connected. Further more S3 is
compact, i.e. closed and bounded. So we can use Proposition 2 of [12] to conlcude
that SO(3) is connected, and compact.
In the bottom of page 293 of [10] we can see that SO(3) is isomorphic to the
projective 3-real space RP 3. Furthermore, in Example 1.43 there is proven that
the fundamental group of RP n equals Z2, this is the group of two elements, for
n ≥ 2. This means that for n ≥ 2 the RP n is not simply connected. Since simply
connectedness is a topological property, it will be caried on by an isomorphism.
Thus SO(3) is also not simply connected. ∎

We will later see that this result is of utmost importance to the mathematical
argument why we would be interested in studying Lie group and Lie algebra to
further understand and describe the spin and thereby the electron.

3.2 Lie Algebras

Since we have developed a basic understanding of Lie groups, we can now dive into
the concept of Lie algebras. We will start with a definition where on first glance
there is no connection to Lie groups, in the next paragraph we will introduce a very
common relation between a Lie group and its Lie algebra.

Definition 3.19. A Lie algebra over a field F is a vector space g over F, together
with a bracket map [⋅, ⋅] ∶ g × g→ g, which has the following properties:
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1. [⋅, ⋅] is bilinear.
This means that [W +λX,Y +µZ] = [W,Y +µZ]+λ[X,Y +µZ] = [W +λX,Y ]+
µ[W + λX,Z] holds for all λ,µ ∈ F and for all W,X,Y,Z ∈ g.

2. [X,Y ] = −[Y,X] for all X,Y ∈ g.

3. [X,X] = 0 for all X ∈ g.

4. For all X,Y,Z ∈ g we have the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (3.8)

Note that from bilinearity of this bracket it follows that [W + λX,Y + µZ] =
[W,Y ] + λ[X,Y ] + µ[W,Z] + λµ[X,Z], for λ,µ ∈ F and W,X,Y,Z ∈ g. One can
check this with first applying linearity in the rightside of the bracket and then in
the left side.

Proposition 3.20. Let A be an associative algebra and let g be a subspace of A
such that for all X,Y ∈ g we have that XY − Y X is again in g. Then by defining
the bracket map by:

[X,Y ] ∶=XY − Y X, (3.9)

we have made g into a Lie algebra.

Proof. Since g is a subspace of A, it is a vector space on its own. To further prove
that g is a Lie algebra, one has to check the 4 requirements for the bracket map
from Definition 3.19.

1. Let λ,µ ∈ F and let W,X,Y,Z ∈ g, now look at [W + λX,Y + µZ].

[W + λX,Y + µZ] = (W + λX)(Y + µZ) − (Y + µZ)(W + λX)
=W (Y + µZ) − (Y + µZ)W
+ λ (X(Y + µZ) − (Y + µZ)X)

= [W,Y + µZ] + λ[X,Y + µZ]
[W + λX,Y + µZ] = (W + λX)(Y + µZ) − (Y + µZ)(W + λX)

= (W + λX)Y − Y (W + λX)
+ µ ((W + λX)Z −Z(W + λX))

= [W + λX,Y ] + µ[W + λX,Z]

(3.10)

2. Let X,Y ∈ g, then [X,Y ] =XY − Y X = −(Y X −XY ) = −[Y,X].

3. Let X ∈ g, then [X,X] =XX −XX = 0.
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4. Let X,Y,Z ∈ g, then

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = [X,Y Z] − [X,ZY ] + [Y,ZX]
− [Y,XZ] + [Z,XY ] − [Z,Y X]
=XY Z −XZY +XZY −XY Z
− Y ZX + Y ZX − Y XZ + Y XZ
+ZY X −ZXY +ZXY −ZY X
= 0

(3.11)

Thus the subspace g with the bracket map [X,Y ] = ZY −Y Z, where X,Y ∈ g, forms
a Lie algebra. ∎

At a later point we will see that every Lie algebra is isomorphic to such a Lie
algebra from Lemma 3.20. This follows from the Poincaré-Birkhoff-Witt theorem

Definition 3.21. If g1 and g2 are two Lie algebras, a map φ ∶ g1 → g2 is called a
Lie algebra homomorphism if φ is linear and φ satisfies

φ([x, y]) = [φ(x), φ(y)] (3.12)

for all x, y ∈ g1. A Lie algebra homomorphism is called a Lie algebra isompor-
phism if it is bijective.

3.3 The Matrix Exponential

The well-known exponential function ex or exp(x) is defined by taking the xth-power
of Eulers number e where x is a scalar of R or C. However, we are mainly working
with matrices, so therefore we are interested in developing a well-defined manner
to calculate the exponential of a matrix such that the case of a 1 × 1-matrix, hence
a scalar, gives us the same answer as the traditional scalar exponential function.
Matrix multiplication and matrix addition are well-defined and for the case of 1×1-
matrix it gives the same results as scalar multiplication and scalar addition. Hence
defining the matrix exponential as a power series gives us a natural extension from
the scalar domain to a matrix domain.

Definition 3.22. The matrix exponential of a matrix X ∈Mn(F) is given by:

exp(X) = eX ∶=
∞

∑
k=0

Xk

k!
, (3.13)

where X0 = I.
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Where the field F is the real or complex numbers, R or C. From here on we
will take F = C. It is not important to know everything about a field. Especially
since we will only look at R and C and you can just look at them as usual. But if
you are interested you could have a look at [13]. Since we will be taking primarily
the exponentials of matrices we will refer to the matrix exponential simply by the
exponential.

Proposition 3.23. For X ∈Mn(C) the power series from Definition 3.22 converges
for all X ∈Mn(C) and eX is a continuous function.

Proof. The proof of this proposition can be found in [7] under the proof of Propo-
sition 2.1. ∎
Theorem 3.24. The matrix exponential has the following properties for all X,Y ∈
Mn(C):

1. e0 = I.

2. eX
T = (eX)T and eX

∗ = (eX)∗.

3. If A is an invertible n × n-matrix, so A ∈GL(n,C), then

eAXA
−1 = AeXA−1. (3.14)

4. det(eX) = etr(X).

5. If XY = Y X, then eX+Y = eXeY .

6. eX is invertible and (eX)−1 = e−X .

7. We have

eX+Y = lim
k→∞

(eX/keY /k)k . (3.15)

This result is known as the Lie product formula.

Property 7 is in particular interesting when XY /= Y X, since in that case we can
not use property 5. Property 4, 5 and 7 are of this Theorem are Exercises 5, 6 and
7, resp. of Chapter 16 from [6].

Proof. 1. We assumed X0 = I for any X ∈ Mn(C)

e0 = lim
X→0

eX = lim
X→0

∞

∑
k=0

Xk

k!
= lim
X→0

(X
0

0!
+

∞

∑
k=1

Xk

k!
)

= lim
X→0

(I +X
∞

∑
k=1

Xk−1

k!
) = I + lim

X→0
X

∞

∑
k=1

Xk−1

k!
= I.

(3.16)
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3.3 - The Matrix Exponential

Since ∣∑∞
k=1

Xk−1

k!
∣ ≤ ∣∑∞

k=0

Xk

k!
∣ = ∣eX ∣, and we know from Proposition 3.23 that

eX converges, than also ∣eX ∣ and hence ∑∞
k=1

Xk−1

k!
is finite.

2. For X1, . . . ,Xn ∈ Mn(C) the following hold: (X1 + ⋅ ⋅ ⋅ +Xn)T = XT
n + ⋅ ⋅ ⋅ +XT

1 ,
(X1 + ⋅ ⋅ ⋅ +Xn)∗ = X∗

n + ⋅ ⋅ ⋅ +X∗
1 , (X1 . . .Xn)T = XT

n . . .X
T
1 and (X1 . . .Xn)∗ =

X∗
n . . .X

∗
1 . Since here we are dealing with Xi = Xj for 1 ≤ i, j ≤ n we have

(Xn)T = (XT )n and (Xn)∗ = (X∗)n. So when plugging this into the power
series we find:

eX
T =

∞

∑
k=0

(XT )k
k!

=
∞

∑
k=0

(Xk)T
k!

= (
∞

∑
k=0

Xk

k!
)
T

= (eX)T , (3.17)

and

eX
∗ =

∞

∑
k=0

(X∗)k
k!

=
∞

∑
k=0

(Xk)∗
k!

= (
∞

∑
k=0

Xk

k!
)
∗

= (eX)∗ . (3.18)

3. Let A ∈ GL(n,C), hence A has an inverse denoted by A−1. Let us look
at (AXA−1)k = AXA−1AXA−1 . . .AXA−1 every A−1 and A are next to each
other expect the outer ones, and A−1A = I. Hence we get (AXA−1)k =
AXIXI . . . IXA−1 = AXkA−1. When we fill this into the power serie of the
exponential of AXA−1 we get:

eAXA
−1 =

∞

∑
k=0

(AXA−1)k

k!
=

∞

∑
k=0

A (X)kA−1

k!
= A(

∞

∑
k=0

Xk

k!
)A−1 = AeXA−1. (3.19)

4. Let X ∈ Mn(C) be diagonalizable, then there exists Y ∈ Mn(C) and A ∈
GL(n,C) such that X = AY A−1. Then we have det(eX) = det(eAY A−1) =
det(AeYA−1) = det(A)det(eY )det(A−1) = det(eY ) where we used the property
3. Since Y is diagonalizable, the indices at on the diagonal are the eigenvalues
λ1, . . . , λn ∈ C, so

det(eX) = det(eY ) = det

⎛
⎜⎜⎜
⎝

exp

⎛
⎜⎜⎜
⎝

λ1 0 . . . 0
0 λ2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . λn

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜
⎝

eλ1 0 . . . 0
0 eλ2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . eλn

⎞
⎟⎟⎟
⎠
= eλ1eλ2 . . . eλn = eλ1+λ2+⋅⋅⋅+λn

= etr(Y ) = etr((AA−1)Y ) = etr(AY A−1) = etr(X).

(3.20)
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Note that the trace of the product of two matrices A,B ∈ Mn(C) is commu-
tative, i.e. tr(AB) = tr(BA).
Now let X not be diagonalizable, then there exists a sequence (Xk)k∈N ⊆
Mn(C) such that limk →∞Xk = X and every Xk is diagonalizable. This
sequence exists because the diagonalizable matrices are dense in Mn(C). So
for the sequence (Xk)k∈N we have two other sequences (Yk)k∈N ⊆ Mn(C) and
(Ak)k∈N ⊆ GL(n,C), such that for every k ∈ N they satisfy Xk = AkYkA−1

k .
Then we can apply the result from above on Xk, and hence we get det(eXk) =
etr(Xk) for every k ∈ N. Now we will take the limit and get the following result

det(eX) = lim
k→∞

det(eXk) = lim
k→∞

etr(Xk) = etrY . (3.21)

Since the determinant, trace and exponential are continous functions as they
can be expressed as polynomials, one can move the limit in and out the func-
tions.

5. Let XY = Y X, and let us have a look at eX+Y . We will first write it out as a
power series

eX+Y =
∞

∑
k=0

(X + Y )k
k!

. (3.22)

Here we can use the binomial Theorem, which tells us, when XY = Y X, then

(X + Y )k = ∑kn=0

k!

n!(k − n)!X
nY k−n. So when applying this we will get

eX+Y =
∞

∑
k=0

1

k!

k

∑
n=0

k!

n!(k − n)!X
nY k−n

=
∞

∑
n=0

∞

∑
k−n=0

Xn

n!

Y k−n

(k − n)!

= (
∞

∑
n=0

Xn

n!
)(

∞

∑
m=0

Y m

m!
)

= eXeY ,

(3.23)

where we have substituted k − n by m since k − n ≥ 0 and an integer.

6. Since X ∈ Mn(C), so is −X ∈ Mn(C), and we can apply previous property
where we take X = X and Y = −X, since X(−X) = −XX. And with the use
of the first property one gets: eXe−X = eX−X = e0 = I

7. We will prove this part in three steps. Before that we will first define the
logarithm of A ∈ Mn(C) by the powerseries:

log(A) ∶= A − I − (A − I)2

2
+ (A − I)3

3
+ ⋅ ⋅ ⋅ =

∞

∑
k=1

(I −A)k
k

, (3.24)
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3.3 - The Matrix Exponential

whenever the series converges. Theorem 2.8 from [7] tells us when A is suffi-
ciently close to I, then log(A) is defined and we have the relation elog(A) = A.
The norm ∥⋅∥ we will be using is defined a bit above Thoerem 2.8 in Definition
2.2 in [7]. This norm is called the Hilbert-Schmidt norm.

i We will prove there exists a constant C ∈ R such that for all A with
∥A − I∥ < 1

2 we have ∥ log(A) − (A − I)∥ ≤ C∥A − I∥2.
Let A ∈ Mn(C) such that ∥A − I∥ < 1

2 , then

∥ log(A) − (A − I)∥ = ∥
∞

∑
k=1

−(I −A)k
k

− (A − I)∥

= ∥
∞

∑
k=2

−(I −A)k
k

∥

= ∥−(I −A)2
∞

∑
k=0

(I −A)k
k + 2

∥

= ∥
∞

∑
k=0

(I −A)k
k + 2

∥ ∥A − I∥2

≤
∞

∑
k=0

∣∣I −A∣∣k
k + 2

∥A − I∥2

≤
∞

∑
k=0

1

(k + 2)2k ∥A − I∥2

≤ C∥A − I∥2.

(3.25)

Where we have chosen 0 < C = ∑∞
k=0

1

(k + 2)2k ≤ ∑
∞
k=0

1

2k
= 2. The sequence

( 1

(k + 2)2k)
k≥0

has only positive elements and the summation has an upper

limit, namely 2, hence the sum converges. ◻
From this we can conclude that

log(A) = A − I +O (∥A − I∥2) . (3.26)

ii We will now prove that for all X,Y ∈ Mn(C) and sufficiently large k ∈ N
one has

log (eX/keY /k) = X
k
+ Y
k
+O ( 1

k2
) . (3.27)

Here one choses the X and Y and then pick a k ∈ N. With this process X
and Y are finite, with this we mean the norm is finite, and the k is chosen

big enough such that O ( 1

k2
) is finite.

Page 27



Chapter 3 - Lie Groups and Lie Algebras

Let X,Y ∈ Mn(C) and let k ∈ N be sufficiently large such that eX/keY /k is
sufficiently close to I so that log (eX/keY /k) is defined.

log (eX/keY /k) = eX/keY /k − I − (eX/keY /k − I)2

2
+ . . . . (3.28)

Now we will plug in the power series of the exponential, and we get

log (eX/keY /k) = (I + X
k
+O ( 1

k2
))(I + Y

k
+O ( 1

k2
)) − I +O ( 1

k2
)

= X
k
+ Y
k
+O ( 1

k2
) .

(3.29)

◻
iii Lastly, let X,Y ∈ Mn(C) and let k ∈ N be sufficiently large enough such

that we can use the result of part ii. We will now combine the two results
from above

lim
k→∞

(eX/keY /k)k = lim
k→∞

(elog(eX/keY /k))
k

= lim
k→∞

(eX/k+Y /k+O(1/k2))
k

= lim
k→∞

(eX+Y +O(1/k))

= eX+Y .

(3.30)

∎

Proposition 3.25. The derivative of the matrix exponential function of tX over
t ∈ R is given by

d

dt
etX =XetX = etXX, (3.31)

where X ∈Mn(C).
And if one takes t = 0, one gets

[ d

dt
(etX =XetX)]

t=0

=X, (3.32)

where X ∈Mn(C).

Proof. The proof of this proposition can be found at the top of page 34 of [7], in
this book it is the proof of Proposition 2.4. ∎
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Chapter 4

The Connection between Matrix
Lie Groups and Lie Algebras

In previous chapter we have created the foundation to understand this chapter. In
this chapter we will be mainly focussing on matrix Lie groups and their properties.
We will also go over the connections between matrix Lie groups and their Lie algebra.
Furthermore, we will introduce the Lie algebras so(n) and su(n) of the matrix Lie
groups SO(n) and SU(n), respectively, with a specific look at the case where n = 3
and n = 2, respectively.

In this chapter I follow paragraphs 16.5 and 16.6 from [6].

4.1 The Lie Algebra of a Matrix Lie Group

Definition 4.1. If G ⊆ GL(n,C) is a matrix Lie group, then the set g defined as
follows:

g ∶= {X ∈Mn(C)∣etX ∈ G for all t ∈ R} (4.1)

is the Lie algebra of G.

One can wonder if this Lie algebra of G is indeed a Lie algebra. Proposition 4.2
tells us: ’Yes!’. The definition of a Lie algebra of a matrix Lie group might be quite
abstract. For that reason have a look at Figure 4.1.
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Chapter 4 - Lie Group to Lie Algebra

Figure 4.1: A demonstration of the relation between the Lie algebra and Lie group
SO(3). Here one can see that the Lie algebra so(3) is the tangent space t the identity
of the Lie group SO(3). One can use this picture to visualize the Lie algebra and
its connection to the Lie group. Lemma 4.11 tells us there is a diffeomorphism from
a neighbourhood of 0 of the Lie algebra to a neighbourhood of I of the matrix Lie
group. Thus this lemma back up this way of visualizing the Lie algebra.
The URL of this picture can be found in the Bibliography under [14]

Figure 4.1:

Proposition 4.2. For any matrix Lie group G, the Lie algebra g of G has the
following properties:

1. The zero matrix 0 is an element of g.

2. If X ∈ g, then tX ∈ g for all t ∈ R.

3. If X,Y ∈ g, then X + Y ∈ g.

4. If A ∈ G and X ∈ g, then AXA−1 ∈ g.

5. If X,Y ∈ g, then the commutator [X,Y ] ∶=XY − Y X belongs to g.

Proof. 1. From Definition 3.3 a Lie group is a subgroup of GL(n,C), hence it
contains the identity element of this group, the identity matrix I. When we
use the defintion of a Lie algebra of a group G and choose X = 0, where 0 is
the zero matrix, then with the use of property 1 of Theorem 3.24, we get that
the zero matrix is an element of the Lie algebra g.

2. Let X ∈ g, and look at tX with t ∈ R. Now look at the exponential et
′(tX) =

e(t
′t)X = et′′X with t, t′′ ∈ R, and since X ∈ g, we have that et

′′X ∈ G. Hence
tX ∈ g for all t ∈ R.
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4.1 - The Lie Algebra of a Matrix Lie Group

3. Let X,Y ∈ g and let XY = Y X. Then by property 2 we have tX, tY ∈ g
for all t ∈ R and with the use of property 5 of Theorem 3.24 we have that
etXetY = etX+tY = et(X+Y ) for all t ∈ R, hence X + Y ∈ g.
On the otherhand, assumeXY /= Y X. SinceX,Y ∈ g, we have that etX/k, etY /k ∈
G, for k ∈ N and for all t ∈ R. Now we look at the product of these two el-

ements to the power k of the Lie group, Ak = (etX/ketY /k)k = (eX′/keY
′/k)k,

where X ′ = tX and Y ′ = tY . The set of these elements makes a sequence
(Ak)k∈N in G. Since G is a Lie group and hence it is closed, we have that if a
sequence converges, then either the limit is an element of G or the limit is not
in GL(n,C) for some n ∈ N. We can use property 7 of Theorem 3.24:

lim
k→∞

Ak = lim
k→∞

(eX′/keY
′/k)k = eX′+Y ′ = et(X+Y ),

for all t ∈ R.
Note that X,Y have a finite norm, hence X +Y has a finite norm. So when we
look at the power series of the exponential we find a finite value for et(X+Y ).
This results in et(X+Y ) being invertible to e−t(X+Y ). Hence et(X+Y ) ∈ GL(n,C)
and hence also in the Lie group G. Hence X + Y ∈ g.

4. Let A ∈ G ⊆ GL(n,C), for some n ∈ N, and X ∈ g. Then by property 3 of
Theorem 3.24 we have etAXA

−1 = eA(tX)A−1 = AetXA−1, where etX ∈ G, with
t ∈ R, hence eA(tX)A

−1 ∈ G and AXA−1 ∈ g.

5. This point is proven in detail in paragraph 16.5 of [6] in the proof of Proposition
16.20.
In this proof, it is used that

[X,Y ] = [ d

dt
(eXtY e−Xt)]

t=0

. (4.2)

For completeness, we will prove this claim here with the use of Proposition
3.25:

[ d

dt
(eXtY e−Xt)]

t=0

= [ d

dt
(eXt)Y e−Xt]

t=0

+ [eXtY d

dt
(e−Xt)]

t=0

= [XeXtY e−Xt]
t=0

+ [eXtY ⋅ (−X)e−Xt]
t=0

=XY − Y X = [X,Y ].

(4.3)

∎

Property 1 upto 3 make the Lie algebra g of G a linear space, in fact a subspace
of Mn(C). From property 5 together with Proposition 3.20 we can conlude that the
Lie algebra of G is indeed a Lie algebra as we have defined earlier in Defintion 3.19
with as the bracket map [X,Y ] =XY − Y X.
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4.2 Important Examples of Lie Algebras

It is a good idea to look at some Lie algebras. For our purpose we will look at the
Lie algebra of SO(n) and SU(m), since they are of the big importance to latter
chapters. We will also look at specific cases of these Lie algebras, namely in the case
that n = 3 and m = 2.

Corollary 4.3. The Lie algebras u(n),su(n), o(n) and so(n) of U(n), SU(n),
O(n) and SO(n), respectively, are given by:

1. u(n) = {X ∈Mn(C)∣X∗ = −X}
2. su(n) = {X ∈ u(n)∣ tr(X) = 0}
3. so(n) = o(n) = {X ∈Mn(R)∣XT = −X}

(4.4)

Proof. 1. Let X∗ = −X, then by property 2 of Theorem 3.24 we have

(etX)∗ = etX∗ = e−tX = (etX)−1, (4.5)

where t ∈ R. So etX ∈ U(n) and hence {X ∈ Mn(C)∣X∗ = −X} ⊆ u(n). In
the other direction, let etX be unitary for all t ∈ R, then etX

∗ = e−tX for all
t ∈ R. With the use of Proposition 3.25, we differentiate around t = 0 using

[ d

dt
etX]

t=0

= X, we get X∗ = −X and hence u(n) ⊆ {X ∈M ∣X∗ = −X}. Thus

combining the two inclusions we can conclude that u(n) = {X ∈ Mn(C)∣X∗ =
−X}.

2. Let etX ∈ u(n), then det(etX) = et tr(X) for all t ∈ R, by property 4 of Theorem
3.24. So if det(etX) = 1 for all t ∈ R, then et tr(X) = 1 for all t ∈ R, hence
tr(X) = 0. So su(n) ⊆ {X ∈ u(n)∣ tr(X) = 0}. Conversely, let X ∈ {X ∈
u(n)∣ tr(X) = 0}, so tr(X) = 0. Then by property 4 of Theorem 3.24 we have
det(etX) = et tr(X) = e0 = 1 for all t ∈ R, hence X ∈ su(n). Since this X was
chosen arbitrarily, we can conclude {X ∈ u(n)∣ tr(X) = 0} ⊆ su(n). This result
combined with the previous result implies su(n) = {X ∈ u(n)∣ tr(X) = 0}.

3. Similarly, let XT = −X, then by property 2 of Theorem 3.24 we have

(etX)T = etXT = e−tX = (etX)−1, (4.6)

where t ∈ R. So etX ∈ O(n) and hence {X ∈ Mn(R)∣X∗ = −X} ⊆ o(n). In
the other direction, let etX be orthogonal for all t ∈ R, then etX

T = e−tX for all
t ∈ R. With the use of Proposition 3.25, we differentiate around t = 0 using

[ d

dt
etX]

t=0

= X, we get XT = −X. Hence with the previous result we have
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o(n) = {X ∈ Mn(R)∣XT = −X}.
The proof that X ∈ o(n) is in so(n) if and only if tr(X) = 0 is analogous to
the proof for X ∈ su(n) since we did not use any specific matrix Lie group
or algebra properties. Note when we have XT = −X, then for every diagonal
element of X, xjj, satisfies xjj = −xjj = 0 so tr(X) = 0. This means o(n) ⊆
so(n), and since so(n) is a subgroup of o(n) we have so(n) = o(n).

∎

We will now look at two specific cases of Lie algebra, namely su(2) and so(3).
We will start with su(2).

Example 4.4. We know from Corollary 4.3 that every X in the Lie algebra su(2)
must satisfy X∗ = −X. So we have for the diagonal entries that Xjj = ia with
a ∈ R since X∗

jj = −Xjj. The other two entries, are linked in the following manner:
X∗
jk = −Xkj. We can now deduce that X12 = b + ic and X21 = −b + ic with b, c ∈ R.

So we can describe every element of the Lie algebra su(2) with the use of only 3
variables:

su(2) = {( ia b + ic
−b + ic −ia ) ∣a, b, c ∈ R} . (4.7)

We can contstruct the following basis of the Lie algebra su(2), by taking one variable
equal to 1 and the rest equal to zero and then normalize the matrix:

E1 ∶=
1

2
(i 0

0 −i) , E2 ∶=
1

2
( 0 1
−1 0

) , E3 ∶=
1

2
(0 i
i 0

) . (4.8)

When applying the commutator function [X,Y ] =XY −Y X to matrices in the basis,
we obtain the following relations:

[E1,E2] = E1E2 −E2E1

= 1

4
(i 0

0 −i)( 0 1
−1 0

) − 1

4
( 0 1
−1 0

)(i 0
0 −i)

= 1

4
(0 i
i 0

) − 1

4
( 0 −i
−i 0

) = 1

2
(0 i
i 0

)

= E3,

[E2,E3] = E1,

[E3,E1] = E2.

(4.9)

The second and third equation can be derived similarly as the first one.
Now we will look at the Lie algebra so(3). From Corollary 4.3 we know that every
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element X in the Lie algebra so(3) satisfies XT = −X, so the diagonal entries xjj
are zero. And the other entries must satisfy the following xjk = −xkj for j /= k. So we
can describe every element of the Lie algebra so(3) with the use of only 3 variables:

so(3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 a b
−a 0 c
−b −c 0

⎞
⎟
⎠

RRRRRRRRRRR
a, b, c ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (4.10)

We can construct the following basis of the Lie algebra so(3), by taking one variable
equal to 1 and the rest equal to zero:

F1 ∶=
⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠
, F2 ∶=

⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
, F3 ∶=

⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠
. (4.11)

When applying the commutator function [X,Y ] =XY −Y X to matrices in the basis,
we obtain the following relations:

[F1, F2] = F1F2 − F2F1

=
⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎟
⎠

=
⎛
⎜
⎝

0 0 0
1 0 0
0 0 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠

= F3,

[F2, F3] = F1,

[F3, F1] = F2.

(4.12)

The second and third equation can be derived similarly as the first one. One can also
use an index notation with Lêvi-Civita epsilon and gain the above relations in one
equation [Fi, Fj] = ∑3

k=1 εijkFk. Here you sum over k = 1,2,3 on the right handside
to let both sides only depend on i and j. And εijk is 0 if i = j, j = k or i = k, if this
is not the case, then it is 1 if (ijk) is an even permutation, so conjugate to (123),
or it is −1 if (ijk) is an odd permutation, so conjugate to (132).

4.3 From a Lie Group Homomorphism to the Lie

Algebra Homomorphism

Definition 4.5. A one-parameter subgroup of GL(n,V ) is a continuou homo-
morphism of (R,+) into GL(n,C). So by Definition 2.8, it is a continuous function
A ∶ R→GL(n,C) such that A(s + t) = A(s)A(t) for all s, t ∈ R.
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From Proposition 2.9, we know that the identity of the group (R,+) has to be sent
via A(⋅) to the identity of the group GL(n,C), with standard matrix multiplication,
i.e. A(0) = I.

Lemma 4.6. If A(⋅) is a one-parameter subgroup of GL(n,C), there exists a unique
X ∈Mn(C) such that

A(t) = etX (4.13)

for all t ∈ R.

Proof. The proof of this lemma can be found at the bottom of page 41 of [7], in this
book it is the proof of Theorem 2.14. ∎

Theorem 4.7. Suppose G1 and G2 are matrix Lie groups with Lie algebra g1 and
g2 respectively, and suppose Φ ∶ G1 → G2 is a Lie group homomorphism. Then there
exists a unique linear map φ ∶ g1 → g2 such that:

Φ (etX) = etφ(X), (4.14)

for all t ∈ R and X ∈ g1. This linear map has the following additional properties:

1. φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g1.

2. φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all A ∈ G1 and X ∈ g1.

3. φ(X), with X ∈ g1, may be computed by

φ(X) = [ d

dt
Φ (etX)]

t=0

(4.15)

Note that property 1 makes the map φ into a Lie algebra homomorphism.

Proof. The first thing we need to prove is the existence and uniqueness of φ. The
Lie group homomorphism Φ is continuous and this makes A ∶ R→GL(n,C) defined
by A(t) = Φ(etX) into an one-parameter subgroup og G2. By Lemma 4.6, there
exists a unique Y ∈ Mn(C) such that A(t) = Φ(etX) = etY . Now let us define for
every X that φ(X) = Y .
By putting t = 1, we get Φ(eX) = eφ(X) for all X ∈ g1. By property 2 of Proposition
4.2, we have sX ∈ g1 for every s ∈ R. So we also have Φ(esX) = eφ(sX). Combining
these results we get for every t, s ∈ R it must be that etsφ(X) = Φ(etsX) = etφ(sX).
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Hence φ(sX) = sφ(X) for every s ∈ R. Since Φ is continuous, we can use the Lie
product formula (3.15) (property 7 of Theorem 3.24) in the following way:

etφ(X+Y ) = Φ(et(X+Y )) = Φ( lim
k→∞

(etX/ketY /k)k)

= lim
k→∞

(Φ (etX/k)Φ (etY /k))k = lim
k→∞

(etφ(X)/ketφ(Y )/k)k

= et(φ(X)+φ(Y )),

(4.16)

for every t ∈ R and X,Y ∈ g1. So we get that for every X,Y ∈ g1 we have φ(X +Y ) =
φ(X) + φ(Y ). So the map φ is a linear map.
Now we will proof the properties, and we start with proving property 2 and 3 and
end with property 1, since we will use property 2 in the proof of property 1.

2. Let A ∈ G1 and X ∈ g1, then by property 4 of Propositon 4.2 AXA−1 ∈ g1.
With using property 3 of Theorem 3.24 twice, we get

etφ(AXA
−1) = Φ (etAXA−1) = Φ (AetXA−1) = Φ (A)Φ (etX)Φ (A−1)

= Φ (A)Φ (etX)Φ (A)−1 = etΦ(A)φ(X)Φ(A)−1 .
(4.17)

Taking the derivative at both sides and setting t = 0, we get

φ(AXA−1) = Φ(A)φ(X)Φ(A)−1. (4.18)

3. Let X ∈ g1, then with the use of Proposition 3.25, we get

[ d

dt
Φ (etX)]

t=0

= [ d

dt
etφ(X)]

t=0

= [φ(X)etφ(X)]
t=0

= φ(X). (4.19)

1. Let X,Y ∈ g1. By property 5 of Proposition 4.2 we will consider [X,Y ] ∶=
XY −Y X for X,Y ∈ g1 and for X,Y ∈ g2. To proof this result we are going to
use the claim formulated in equation (4.2) which we have proven in property
5 of Proposition 4.2. For clearifications we will use the curly brackets for the
curved brackets in this equation.

φ([X,Y ]) = φ([ d

dt
{eXtY e−Xt}]

t=0

) = [ d

dt
φ (eXtY e−Xt)]

t=0

= [ d

dt
{Φ (etX)φ (Y )Φ (e−tX)}]

t=0

= [ d

dt
{etφ(X)φ (Y ) e−tφ(X)}]

t=0

= [φ(X), φ(Y )].

(4.20)
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Note we have used property 2 of this Theorem and property 6 of Theorem
3.24. We have also used the commutation property between a linear function
and the derivative.

∎

4.4 From a Lie Algebra Homomorphism to the

Lie Group Homomorphism

Theorem 4.8. Suppose that G1 and G2 are matrix Lie groups with Lie algebras g1

and g2, respectively, and suppose that φ ∶ g1 → g2 is a Lie algebra homomorphism. If
G1 is connected and simply connected, then there exists a unique Lie group homo-
morphism Φ ∶ G1 → G2 such that Φ and φ are related as in equation (4.14).

Proof. The proof of this theorem can be found at the bottom of page 119 of [7], in
this book it is the proof of Theorem 5.6. ∎

Corollary 4.9. The Lie algebras su(2) and so(3) are isomorphic, but the groups
SU(2) and SO(3) are not isomorphic.

Proof. First we will proof that the Lie algebras su(2) and so(3) are isomorphic to
each other.
From Example 4.4 we know that the Lie algebra su(2) has a basis {E1,E2,E3} and
the commutation relations [E1,E2] = E3 with cyclic permutation one finds the other
two relations. Similarly we have for the Lie algebra so(3) a basis {F1, F2, F3} and
the commutation relations [F1, F2] = F3 with cyclic permutation one finds the other
two relations.
We can construct a map φ ∶ su(2) → so(3) such that φ(Ej) = Fj, for j = 1,2,3,
more generally φ(aE1 + bE2 + cE3) = aF1 + bF2 + cF3 for all a, b, c ∈ R. Since we have
the linearity and both Lie algebras satisfy the same commutation relations, this
map φ is according to Definition 3.21 a Lie algebra homomorphism. We know that
{E1,E2,E3} form a basis of su(2) and the same is true for {F1, F2, F3} for so(3).
So these matrices are linearly independent and the space they span has a unique
composition of a, b, c ∈ R to become the zero matrix. In both of these Lie algebras,
the only way to get the zero matrix is by taking a = b = c = 0. Hence the kernel of φ
is the trivial kernel, i.e. it only contains the zero matrix. Hence φ is injective.
Let x ∈ so(3), then there exists a unique way to construct x with the use of three real
variables, namely a, b, c ∈ R, in the following manner x = aF1 + bF2 + cF3. For every
element y in su(2) there is a unique way to write it as an sum of the basis matrices
multplied by a real number. These real numbers have no restrictions to them, so we
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can take a, b, c ∈ R as above. Hence φ(y) = φ(aE1 + bE2 + cE3) = aF1 + bF2 + cF3 = x.
Hence φ is surjective, we already found it was injective, so φ is bijective. And by
Definition 3.21 φ is a Lie algebra isomorphism. Hence this map is also a Lie algebra
homomorphism and hence φ ∶ su(2) → so(3) is a Lie algebra isomorphism.
If SU(2) and SO(3) are isomorphic, then SU(2) is simply connected if and only
if SO(3) is simply connected. This is since simply connectedness is a topological
property, and two isomorphic spaces have the same topological properties. But we
have seen in Theorem 3.17 that SU(2) is simply connected, and we seen in Theorem
3.18 that SO(3) is not simply connected. Hence they are not isomorphic. ∎

Note that we also obtain a Lie algebra isomorphism when we sent Ej to F(123)j,
meaning (aE1 + bE2 + cE3) ↦ aF2 + bF3 + cF1 for all a, b, c ∈ R. We will define this
Lie algebra isomorphism by φ(123). We can do the same for φ(aE1 + bE2 + cE3) =
aF3 + bF1 + cF2 for all a, b, c ∈ R and we will define this Lie algebra isomorphism by
φ(321). Since the commutation relations are invarient under this transformation. One
can easily check this by the Lêvi-Civita epsilon and get the commutation relations:
[Fi, Fj] = ∑3

k=1 εijkFk. As you might guess, the corresponding unique Lie group
homomorphism of Lie algebra isomorphisms φ(123) and φ(321) will be denoted by
Φ(123) and Φ(321), respectively.

Definition 4.10. Suppose G is a connected matrix Lie group with Lie algebra g.
A universal cover of G is an ordered pair (G̃,Φ) consisting of a connected and
simply connected matrix Lie group G̃ and a Lie group homomorphism Φ ∶ G̃ →
G, such that the associated Lie algebra homomorphism φ ∶ g̃ → g is a Lie algebra
isomorphism of the Lie algebra g̃ of G̃ to g. The map Φ is called the covering map
for G̃.

If one has a universal cover (G̃,Φ) of a connected matrix Lie group G, then by
Theorem 4.8 are the Lie group homomorphism Φ and the Lie algebra isomorphism
related as in equation (4.14), and is the Lie group homomorphism Φ unique.

Lemma 4.11. Let G be a matrix Lie group with Lie algebra g. Then there exists a
neighbourhood U of 0 in Mn(C) and a neighbourhood V of I in Mn(C) such that the
matrix exponential maps U diffeomorphically onto V and such that for all X ∈ U ,
we have that X belongs to g if and only if eX belongs to G.

A map maps diffeomorphically if the map is differentiable and bijective and the
inverese of the map is also differentiable.

Proof. The proof of this Lemma can be found in [7] as the proof of Corollary 3.44. ∎

This lemma has a corollary that we will use later in Section 5.1 to proof Propo-
sition 5.7.
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Corollary 4.12. If a matrix Lie group G is connected, then for all A ∈ G there
exists a finite sequence (Xk)1≤k≤n ⊆ g such that

A = eX1eX2 . . . eXn . (4.21)

Proof. The proof of this Corollary can be found in [6] as the proof of Corollary
16.28. ∎

Lemma 4.13. If G is a connected matrix Lie group and N is a discrete normal
subgroup of G, see Definition 2.7. Then N is contained in the center of G, also
denoted by Z(G).

This Lemma is Exercise 1 of Chapter 16 from [6].

Proof. Let G be a connected matrix Lie group and N be a discrete normal subgroup
ofG. Let n ∈ N be fixed and g ∶ [0,1] → G be a path, see Defintion 3.13, from g(0) = e
to g(1) = g. Then for every t ∈ [0,1] we have h(t) ∶= g(t)ng−1(t) ∈ N , with for t = 0
we have h(0) = g(0)ng−1(0) = ene−1 = n ∈ N . This path g(t) is continuous and
the path g−1(t) from g−1(0) = e to g−1(1) = g−1 is also well-defined and continuous,
hence h(t) is well-defined and continious over the entire domain [0,1]. Since N is
a discrete normal subgroup of G, there exists a neighbourhood U of e in G, that is
an open subset of G that contains e, such that N ∩ U = {e}. Look at h(t)n−1. We
have h(t)n−1 ∈ N for all t ∈ [0,1] with h(0)n−1 = nn−1 = e ∈ U and is conitnuous
over [0,1]. Since h(t)n−1 is well-defined and continuous over [0,1], h(0)n−1 ∈ U and
h(t)n−1 ⊆ N for all t ∈ [0,1] and U ∩N = {e}, it must be that h(t)n−1 = e for all
t ∈ [0,1]. So h(t) = g(t)ng−1(t) = n for all t ∈ [0,1] and hence h(1) = gng−1 = n.
This construction can be done for every n ∈ N and g ∈ G, so we have that for every
n ∈ N and for every g ∈ G it is that gng−1 = n, hence N is a subset of the center
Z(G). ∎

Lemma 4.14. Let U,V ∈ SU(2). If U is in the center of SU(2), then U = I or
U = −I. In other words Z(SU(2)) = {I,−I}.

This Lemma is Exercise 2 of Chapter 16 from [6]. The eigenspace of an eigen-
value of a matrix corresponds to the space span by all eigenvectors with that exact
eigenvalue.

Proof. Let U and V commute, i.e. UV = V U . Let V be arbitrarily in SU(2).
We will look at two cases, one where U is diagonalizable and one where U is not
diagonalizable.
If U is diagonalizable, then there exists P ∈ GL(2,C) and A ∈ Mn(C) such that
U = PAP −1. Let us define W ∶= P −1V P , since this will give us the convinient result
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of V = PWP −1. Before we can calculate with these matrices, we will first define the
entries of these matrices:

A = (λ 0
0 µ

) and W = (α β
γ δ

) , (4.22)

where α,β, γ, δ, λ, µ ∈ C. We will now compute UV and V U to then apply the
commutation property of U and V .

UV = PAP −1PWP −1 = PAWP −1 = P (λ 0
0 µ

)(α β
γ δ

)P −1 = (λα λβ
µγ µδ

) , (4.23)

V U = PWP −1PAP −1 = PWAP −1 = P (α β
γ δ

)(λ 0
0 µ

)P −1 = (λα µβ
λγ µδ

) . (4.24)

Since UV = V U and V is completely random in SU(2), it must be that λ = µ and
we get A = λI. This results in U = PAP −1 = PλIP −1 = λI. From Equation (3.1) of
Lemma 3.16 we can see that λ must be real and ∣λ∣2 = λ2 = 1. Therefore λ = ±1 and
thus U = ±I. Since V is arbitrarily in SU(2), we have that U commutes with every
element of SU(2) and thus U is in the center of SU(2).
Let U be not diagonalizable. We will be using Theorem 3.2 of [15], which is the
Jordan canonical form theorem. From this theorem we can conclude that we can
write every U ∈ SU(2), since SU(2) ∈ M2(C), as PAP −1, where A is the block-
diagonal matrix of Jordan-blocks and P the matrix with the corresponding basis of
the (generated) eigenvectors of U as columns.
Let P ∈ GL(2,C) and A ∈ Mn(C) such that U = PAP −1. Then A can be a diagonal
matrix, which would contradict our assumption of U being not diagonalizable, or A
is a Jordan canonical form, this form is as in equation (4.25) or more generally as in
equation (3.16) of [15], where you can find more details if you are interested. Since
the first option is not possible, we will look at the second option. Furthermore, let
us define W ∶= P −1V P , since this will give us the convinient result of V = PWP −1.
Before we can calculate with these matrices, we will first define the entries of these
matrices:

A = (λ 1
0 λ

) and W = (α β
γ δ

) , (4.25)
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where α,β, γ, δ, λ ∈ C. We will now compute UV and V U to then apply the com-
mutation property of U and V .

UV = PAP −1PWP −1 = PAWP −1

= P (λ 1
0 λ

)(α β
γ δ

)P −1 = (λα + γ λβ + δ
λγ λδ

) ,
(4.26)

V U = PWP −1PAP −1 = PWAP −1

= P (α β
γ δ

)(λ 1
0 λ

)P −1 = (λα λβ + α
λγ λδ + γ) .

(4.27)

Since UV = V U and V is completely random in SU(2), it must be that γ = 0 and
α = δ.
If β = 0, then we have W = αI and then V = PWP −1 = PαIP −1 = αI. From the first
case we know α = ±1 and thus V = ±I.
If β /= 0, then we can write

W = Q(µ 1
0 µ

)Q−1 = QXQ−1, (4.28)

where µ ∈ C and Q ∈ GL(2,C). But then we can write V = (PQ)X(PQ)−1. X has
only one eigenvalue, namely µ, so V also has only one eigenvalue. Since there are
also elements in SU(2) which have 2 eigenvalues, we have that V can not be any
element of SU(2). This is a contradiction, since we demanded that V is completely
random in SU(2).
So it must be that every element of Z(SU(2)) equals I or −I. Hence Z(SU(2)) =
{I,−I}. ∎

Theorem 4.15. Let φ ∶ su(2) → so(3) be the unique Lie algebra homomorphism
which satifies φ(Ej) = Fj for j = 1,2,3. Then there exists a unique Lie group
homomorphism Φ ∶ SU(2) → SO(3) such that Φ(etX) = etφ(X), where X ∈ su(2) and
r ∈ R, such that ker(Φ) = {I,−I} and (SU(2),Φ) is a universal cover of SO(3).

Proof. We know from Corollary 4.9 that the Lie algebras su(2) and so(3) are isomor-
phic. We now only have to check that there exists a Lie group homomorphism from
the Lie group SU(2) to the Lie group SO(3). In Corollary 4.9 we have constructed
the Lie algebra isomorphism φ ∶ su(2) → so(3) such that φ(Ej) = Fj, for j = 1,2,3.
To construct the corresponding Lie group homomorphism Φ ∶ SU(2) → SO(3) we
will use Theorem 4.8, since SU(2) is connected and simply connected, so we can de-
fine a unique Φ as in equation (4.14), so Φ(etX) = etφ(X) where X ∈ su(2). The basis
{E1,E2,E3} from su(2) and {F1, F2, F3} from so(3). We have set E1 = 1

2 diag(i,−i),
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this results in e2πE1 = −I. Let us now have a look at the one-parameter subgroup
with generator F1:

eaF1 = exp
⎛
⎜
⎝

0 0 0
0 0 −a
0 a 0

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 cos(a) − sin(a)
0 sin(a) cos(a)

⎞
⎟
⎠
. (4.29)

So when we take a = 2π, we get e2πF1 = I. Combining these two results we get

Φ(−I) = Φ(e2πE1) = e2πφ(E1) = e2πF1 = I. (4.30)

This means that {I,−I} is a subset of the kernel of Φ.
We know from Corollary 4.9 that φ is bijective, thus in particular injective. Lemma
4.11 tells us there exists a neighbourhood U of 0 in Mn(C) and a neighbourhood V
of I in Mn(C) such that the matrix exponential maps U diffeomorphically onto V
and such that for all X ∈ U , we have that X belongs to g if and only if eX belongs
to G. Let A,B ∈ SU(2) ∩ V be distinct, then there exist two distinct elements
X,Y ∈ su(2) ∩ U such that A = eX and B = eY . Since X and Y are distinct and
φ is injective, then also φ(X) and φ(Y ) are distinct. We can now apply Lemma
4.11 again and get that Φ(A) = eφ(X) and Φ(B) = eφ(Y ) are distinct. Hence Φ is
injective in a neighbourhood of I. Using this and Proposition 2.12 we can conclude
that ker(Φ) is a discrete normal subgroup of SU(2). We can now apply Lemma
4.13 on the kernel of Φ and we get that ker(Φ) ⊆ Z(SU(2)). From Lemma 4.14,
we know that Z(SU(2)) = {I,−I}. When we combine all these results we get that
{I,−I} ⊆ ker(Φ) ⊆ Z(SU(2)) ⊆ {I,−I}, thus ker(Φ) = {I,−I}.
We know that we can express every element A ∈ SO(3) as A = eX with X ∈ so(3).
Since φ is injective and Φ(A) = Φ(eX) = eφ(X), the map Φ is surjective. We
know from Theorem 3.17 that SU(2) is connected and simply connected, hence
we (SU(2),Φ) is the universal cover of the Lie group SO(3). ∎

With the same arguments as under the proof of Corollary 4.9, this result also
holds for φ(123) and Φ(123) instead of φ and Φ, respectively, and for φ(321) and Φ(321)

instead of φ and Φ, respectively.
From this Theorem and Theorem 2.14 we can conclude that the Lie group SO(3)
is isomorphic to SU(2)/{I,−I}. This is since im(Φ) = SO(3) and ker(Φ) = {I,−I}.
We know from the proof of Theorem 3.17 that SU(2) is isomorphic to S3, hence
SO(3) is isomorphic to S3/{I,−I}. This can help with visualizing the SO(3).
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Chapter 5

A Brief Introduction to
Representation Theory

A representation is a way to view a group G in the world of matrices. The map
that sends this group into that world of matrices has to be a group homomorphism,
since this map has to carry the properties of the group. These matrices, where the
elements of the group will be sent to, have to be invertible. This is because we have
demanded this map to be a group homomorphism and in the defintion of a group,
see Chapter 2, every element of the group is invertible. One might also wonder
if there are multiple representations of a group, and wether some are similar i.e.
describe the same structures. We will go over the different types of representations
in more detail. For the more general definitions, theorems, propositions, etc. I will
refer to [5]. And for the more specific definitions, theorems, propositions, etc. I will
follow Chapter 16.7 of [6].
We will also be defining representations of Lie algebras. For these definitions I will
refer to Chapter 16.7 of [6]. In standard representation theory one only defines
a representation for groups. But we will be defining and looking at Lie algebra
representations. Be aware of the difference and when we are refering to a (Lie)
group representation or a Lie algebra representation.

5.1 Representations of (Lie) Groups and Lie Al-

gebras

Definition 5.1. Let G be a group, a representation of G over a field F is a group
homomorphism from G into the group of invertible n×n-matrices, GL(n,F). Where
n ∈ N and F is the field of the matrices.
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This is Defintion 3.1 from [5]. Sometimes we will denote GL(n,F) by GL(V )
where V = Fn. Note that a representation is a special case of a group homomor-
phism, and hence all the results involving group homo- or group isomorphisms we
got in Chapter 2 also hold for representations. There is an similar defintion for a
representation of a matrix Lie algebra.

Definition 5.2. A finite-dimensional representation of a Lie algebra g is a Lie
algebra homomorphism of g into gl(V ), the space of all linear transformations of V .
Here gl(V ) is considered as a Lie algebra with bracket given by [X,Y ] =XY −Y X.

Example 5.3. The quaternion group Q8 from Example 2.3 is a group generated
by two elements i and j such that i4 = e, i2 = j2 and jij−1 = i−1. Let us define a
representation by ρ ∶ Q8 →GL(2,C) by ρ(i) = 2E1 and ρ(j) = 2E2, where E1 and E2

are defined as in equation (4.8). We can see this from Example 4 on page 4 of [5]. So
we have for q = injm ∈ Q8, with 0 ≤ n ≤ 3 and 0 ≤m ≤ 1, that ρ(injm) = 2n+mEn

1E
m
2 .

One could wonder if there exists another representation which carries the same
properties, i.e. is similar as the respresentation above. And are they related?

Definition 5.4. Let ρ, σ ∶ G→GL(n,F) be two representations of the group G over
the field F. We say ρ is equivalant to σ if there exists a T ∈GL(n,F) such that

ρ(g) = Tσ(g)T −1 (5.1)

for all g ∈ G.

This is Definition 3.3 of [5]. We can construct a similar definition for Lie algebra
representations. This definition also holds up for Lie algebra representations. This
is since if X ∈ g and A ∈ G with G a matrix Lie group, then AXA−1 ∈ g, see property
4 of Proposition 4.2.

Proposition 5.5. The equivalence of representations is an equivalence relation. In
other words, for all representations ρ, σ and τ of a group G over a field F, we have:

1. ρ is equivalent to ρ;

2. if ρ is equivalent to σ, then σ is equivalent to ρ;

3. if ρ is equivalent to σ and σ is euivalent to τ , then ρ is equivalent to τ .

This is Excercise 3.4 of [5].

Proof. Let ρ, σ and τ be representations of a group G over a field F. We will now
check the properties.
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1. I ∈ GL(n,F ) and ρ(g) = Iρ(g)I−1 for all g ∈ G. Hence ρ is equivalent to ρ.

2. Let ρ be equivalent to σ. Then there is a T ∈ GL(n,F) such that ρ(g) =
Tσ(g)T −1 for all g ∈ G. Since T ∈ GL(nF), there exists a T −1 ∈ GL(n,F) and
we get σ(g) = Iσ(g)I = (T −1T )σ(g)(T −1T ) = T −1(Tσ(g)T −1)T = T −1ρ(g)T for
all g ∈ GL(n,F). Hence σ is equivalent to ρ.

3. Let ρ be equivalent to σ and let σ be euivalent to τ . Then there is a T ∈
GL(n,F) such that ρ(g) = Tσ(g)T −1 for all g ∈ G and there is a S ∈ GL(n,F)
such that σ(g) = Sτ(g)S−1 for all g ∈ G. Since T,S ∈ GL(nC) and GL(n,C) is
a group, we have that TS ∈ GL(n,F) and thus ρ(g) = Tσ(g)T −1 = TSτ(g)S−1T −1 =
TSτ(g)S(TS)−1 for all g ∈ G. Hence ρ is equivalent to τ .

Similarly one can proof all these properties also for equivalency of Lie lagebra rep-
resentations. Thus the equivalence of representations is an equivalence relation. ∎

From now on we will when we are talking about (group) representations, we will
consider the entire equivalent class of representation. We will do this by refering to
such a class by a representation from within that class. Since, when we have two of
representations which are equivalent, then they have the same structure and we can
view them as ’the same’ representation.

Definition 5.6. If Π ∶ G → GL(V ) is a representation of a (Lie) group G, then a
subspace W of V is called an invariant subspace if Π(g)w ∈ W for every g ∈ G
and every w ∈ W . Similarly, if π ∶ g → gl(V ) is a representation of a Lie algebra
g, then a subspace W of V is called invariant subspace if π(X)w ∈W for every
X ∈ g and every w ∈W . A representation of a (Lie) group or a Lie algebra is called
irreducible, and denoted as an irreducible representation, if and only if the
invariant subspaces of V are W = V and W = {0}.

It looks like we have defined twice what an invariant subspace is: one way through
a group representation and the other through a Lie algebra representation. When we
are dealing with a Lie group and its associated Lie algebra one would expect there
be a connection between invariant subspaces of the Lie group and the Lie algebra.
When we are dealing with matrix Lie groups, there is indeed a connection between
these invariant subspaces: they are the same!
If the Lie group G is a matrix Lie group with a representation Π, then we can use
Theorem 4.7 to construct a unique Lie algebra homomorphism π of the associated
Lie algebra g such that Π(etX) = etπ(X) for X ∈ g.

Proposition 5.7. Suppose G is a connected matrix Lie group with Lie algebra g.
Suppose Π ∶ G → GL(V ) is a finite-dimensional representation of G and π ∶ g →
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gl(V ) is the associated Lie algebra representation. Then a subspace W of V invari-
ant under the action of G if and only if it is invariant under the action of g. In
particular, Π is irreducible if and only if π is irreducible. Furthermore, two represen-
tations of G are equivalent if and only if the associated Lie algebra representations
are equivalent.

Proof. Let W ⊆ V such that W is invariant under π(X) for all X ∈ g. Then W is
also invariant under π(X)m for all X ∈ g and m ∈ N. This is since for all w ∈ W
and X ∈ g we have π(X)w ∈ W . If π(X)nw ∈ W for every m ≥ n ∈ N, then
π(X)m+1w = π(X) (π(X)mw) ∈ W . So by the principle of complete induction we
can conlude that π(X)mw ∈W for every m ∈ N and X ∈ g and w ∈W . Since V is a
finite dimensional space, any subspace of V is finite dimenisonal and thus a closed
subspace. Let w ∈W and let X ∈ g. Then

Π(eX)w = eπ(X)w = (
∞

∑
k=0

π(X)k
k!

)w

=
∞

∑
k=0

π(X)kw
k!

∈W.
(5.2)

Since W is a subspace , we have for every k ∈ N0, that
π(X)kw

k!
∈W and also that

the finite sums of these fractions are again in W . Since W is closed and the sequence

(∑nk=0

π(X)k
k!

)
n∈N

converges, see Proposition, and eπ(X) has an inverse, we have that

Π(eX)w ∈ W . 3.23 Corollary 4.12 tells us we can write every element A of G as
A = eX1eX2 . . . eXn where Xj ∈ g for all 1 ≤ j ≤ n, since G connected matrix Lie group.
Then

Π(A)w = Π (eX1eX2 . . . eXn)w
= Π (eX1)Π (eX2) . . .Π (eXn)w ∈W.

(5.3)

Hence the subspace W is also invariant under Π(A) for all A ∈ G.
Conversely, let W ⊆ V such that W is invariant under Π(A) for all A ∈ G. Have a
look at:

π(X) = π0(X) = lim
h→0

πh(X) = lim
h→0

ehX − I
h

. (5.4)

For every value of h > 0 this πh(X) is defined and it is invariant under W , since
ehX ∈ G and I ∈ G and W is a subspace. Take X fixed, then the sequence (πh(X))h>0

converges and since W is closed. The limit π(X) = limh→0 πh(X) is an element of g.
W is invariant under π(X).
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Thus a subspace W of V is invariant under Π(A) for all A ∈ G if and only if W is
invariant under π(X) for all X ∈ g.
Let Π1 and Π2 be two representations of G and let π1 and π2 be their associated Lie
algebra representation, resp.
Π1 and Π2 are equivalent, if and only if there exists a T ∈ GL(n,C) such that
Π2(A) = TΠ1(A)T −1 for all A ∈ G. If and only if eπ2(X) = Π2(eX) = TΠ(eX)T −1 =
Teπ1(X)T −1 = eTπ1(X)T−1 for all X ∈ g. If and only if π2(X) = Tπ1(X)T −1 for all
X ∈ g if and only if π1 and π2 are equivalent.
Here we have used Corollary 4.12 again in the same manner to go from the equiva-
lency on the Lie algebra representation to the equivalency on the matrix Lie group
representation. This is done by describing every A ∈ G as A = eX1eX2 . . . eXn where
Xj ∈ g for all 1 ≤ j ≤ n. This can be achieved through the following steps:

Π2(A) = Π2(eX1eX2 . . . eXn) = Π2 (eX1)Π2 (eX2) . . .Π2 (eXn)
= TΠ1 (eX1)T −1TΠ1 (eX2)T −1 . . . TΠ1 (eXn)T −1

= TΠ1 (eX1)Π1 (eX2) . . .Π1 (eXn)T −1

= TΠ1(eX1eX2 . . . eXn)T −1

= TΠ1(A)T −1.

(5.5)

Conversely, from the equivalency on the matrix Lie group representation to the
equivalency on the Lie algebra representation is trivial. Since for every X ∈ g we
have eX ∈ G, see Definition 4.1. ∎

5.2 Projective Unitary Representations

An important piece of quantum theory is the Hilbert space. Some would say it is
the language in which quantum theory can be described. For this reason we will
have a quick look at it.

Definition 5.8. A Hilbert space is a vector space H over F, where F = R or F = C,
equipped with an inner product ⟨⋅, ⋅⟩ ∶ H ×H → F, with the following properties.

1. For all φ,ψ ∈ H, we have ⟨φ,ψ⟩ = ⟨ψ,φ⟩.

2. For all φ ∈ H, ⟨φ,φ⟩ is real and non-negative, and ⟨φ,φ⟩ = 0 if and only if
φ = 0.

3. For all φ,ψ ∈ H and c ∈ F, we have ⟨cφ,ψ⟩ = c̄⟨φ,ψ⟩ and ⟨φ, cψ⟩ = c⟨φ,ψ⟩.

4. For all φ,ψ,χ ∈ H, we have ⟨φ+χ,ψ⟩ = ⟨φ,ψ⟩ + ⟨χ,ψ⟩ and ⟨φ,ψ +χ⟩ = ⟨φ,ψ⟩ +
⟨φ,χ⟩.
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Such that H is complete in the norm given by ∥φ∥ =
√

⟨φ,φ⟩.

This is definition is a combination of Definitions A.42 and A.44 and with Equa-
tion (A.7) from Proposition A.43 of [7].

Definition 5.9. Suppose V is a finite-dimensional Hilbert space over C. Denote
by U(V ) the group of invertible linear transformationsof V that preserve the inner
product. A (finite-dimensional) unitary representation of a matrix Lie group G
is a continuous homomorphism Π ∶ G → U(V ), for some finite-dimensional Hilbert
space V .

Proposition 5.10. Let Π ∶ G → GL(V ) be a finite-dimensional representation of
a connected matrix Lie group G. Let π be the associated representation of the Lie
algebra g of G. Furthermore, let ⟨⋅, ⋅⟩ be an inner product on V . Then Π is unitary
with repsect to ⟨⋅, ⋅⟩ if and only if

π(X)∗ = −π(X) (5.6)

for all X ∈ g.

Proof. The proof of this Proposition can be found in [6] as the proof of Proposition
16.42. ∎

In quantum mechanics we view two unit-states, φ and ψ, as the same when there
is some constant on the unit sphere in C, i.e. eiθI, that connects the two states, i.e.
ψ = eiθφ. One could see this action as a rotation of the state φ onto the state ψ.
For this reason it is only logical to only look at states are really different from each
other. To achieve this goal, we will construct an equivalence relation: two states
φ and ψ of a Hilbert space are equivalent if and only if there exists some θ ∈ R
such that ψ = eiθφ. With this equivalent relation we will construct a new type of
representation.

Definition 5.11. Suppose V is a finite-dimensional Hilbert space over C. Then the
projective unitary group over V , denoted by PU(V ), is the quotient group

PU(V ) =U(V )/{eiθI}, (5.7)

where {eiθI} denotes the group of matrices of the form eiθI with θ ∈ R.

This definition is well-defined, since the subgroup {eiθI} is a normal subgroup of
U(V ). One can construct a group homomorphism from U(V ) to PU(V ) where one
sents two states to the same state if and only if they are equivalent to each other.
With that we have a group homomorphism with kernel {eiθI} and image PU(V ),
and applying Theorem 2.14 we get Equation (5.7).
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Definition 5.12. A finite-dimensional projective unitary representation of a
matrix Lie group G is a continuous homomorphism Π of G into PU(V ), where
V is a finite-dimensional Hilbert space over C. A subspace A of V is said to be
invariant under Π if for every A ∈ G, W is invariant under U for each U ∈U(V )
such that U = eiθΠ(A) for some θ ∈ R. A projective unitary representation is said
to be irreducible if the only invariant subspaces are V or {0}.
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Chapter 6

Spin

In this chapter we will combine our knowledge of the matrix Lie groups SO(3) and
SU(2) and of the Lie algebras so(3) and su(2) that we have collected in Chapters
3, 4 and 5.

In this chapter I follow paragraph 17.2 in Section ??, paragraph 17.4 in Section
6.1, paragraph 17.5 in Section 6.2 and paragraph 17.8 in Section 6.3. All these
paragraphs come from the book [6].

6.1 Irreducible Representations of the Lie Alge-

bra so(3)
In Example 4.4 we have looked at the Lie algebra so(3) where we defined the
basis {F1, F2, F3} of this Lie algebra. We will continue using this basis. All of the
upcoming representation will be over the complex numbers as their field.

Theorem 6.1. Let π ∶ so(3) → gl(V ) be a finite-dimensional irreducible represen-
tation of so(3). Define operators L+, L− and L3 on V by

L+ = iπ(F1) − π(F2)
L− = iπ(F1) + π(F2)
L3 = iπ(F3).

(6.1)
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Let l = 1
2(dim(V ) − 1), so dim(V ) = 2l + 1. Then there exists a basis v⃗0, v⃗1, . . . , v⃗2l of

V such that

L+v⃗j =
⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)v⃗j−1 if 2l ≥ j > 0

0 if j = 0
(6.2)

L−v⃗j =
⎧⎪⎪⎨⎪⎪⎩

v⃗j+1 if 0 ≤ j < 2l

0 if j = 2l
(6.3)

L3v⃗j = (l − j)v⃗j. (6.4)

Proof. We have the finite-dimensional irreducible representation π, so any relations
on the basis of so(3) must also hold in the basis {π(F1), π(F2), π(F3)} in gl(n,V ).
So we have [π(Fi), π(Fj)] = ∑3

k=1 εijkπ(Fk). With this knowledge we can look at the
commutations of the operators L+, L− and L3:

[L3, L
+] = [iπ(F3), iπ(F1) − π(F2)]

= −[π(F3), π(F1)] − i[π(F3), π(F2)]
= iπ(F1) − π(F2) = L+

(6.5)

[L3, L
−] = [iπ(F3), iπ(F1) + π(F2)]

= −[π(F3), π(F1)] + i[π(F3), π(F2)]
= −iπ(F1) − π(F2) = −L−

(6.6)

[L+, L−] = [iπ(F1) − π(F2), iπ(F1) + π(F2)]
= −[π(F1), π(F1)] + i[π(F1), π(F2)]
− i[π(F2), π(F1)] − [π(F2), π(F2)]
= i[π(F1), π(F2)] − i[π(F2), π(F1)]
= iπ(F3) + iπ(F3) = 2L3.

(6.7)

We can construct a complex function to find a (complex) eigenvalue with L3, we can
do this with the function det(L3−λI). The main theory of algebra states that every
complex function has at least one zero. So when we put this function to zero, we
will find at least one eigenvalue λ. To find the corresponding eigenvector v⃗ one has
to solve L3v⃗−λv⃗ = 0⃗, there are exactly n equations and the vector v⃗ has n variables,
so there exists at least one solution. With the use of equation (6.5), we can derive

L3L
+v⃗ = (L+ +L+L3)v⃗ = L+v⃗ +L+L3v⃗ = L+v⃗ +L+(λv⃗) = (λ + 1)L+v⃗. (6.8)

Then either L+v⃗ = 0⃗ or L+v⃗ is an eigenvector of L3 with eigenvalue λ + 1. From
equation (6.8) we can conclude that L+ raises the obtained eigenvalue of L3 by the
eigenvector by 1. Since L+v⃗ is also an eigenvector, we can repeat this proces with the
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eigenvector L+v⃗ and get L3(L+)kv⃗ = (λ+k)L+v⃗. Since L3 can only have a maximum
of n distinct eigenvalues, there has to be a maximum number for this k ∈ N such that
L3(L+)kv⃗ /= 0⃗, let this maximum be l. So we have L3(L+)l+1v⃗ = 0⃗. For convenience
define v⃗0 ∶= (L+)kv⃗ /= 0⃗ and µ ∶= λ + l, which satisfies L+v⃗0 = 0⃗ and L3v⃗ = µv⃗.
To find the other eigenvectors we will use a similar trick as we have preformed above,
but now with equation (6.6). But first we have to define a series of vectors:

v⃗j = (L−)j v⃗0, for j = 0,1,2, . . . . (6.9)

With the use of this notation we can derive:

L3v⃗j = L3(L−)j v⃗0 = (L−L3 −L−)(L−)j−1v⃗0 = L−L3(L−)j−1v⃗0 − (L−)j v⃗0

= L− (L3(L−)j−1v⃗0) − (L−)j−1v⃗0 = L− ((L−L3 −L−)(L−)j−2v⃗0) − (L−)j−1v⃗0

= (L−)2L3(L−)j−2v⃗0 − (L−)j v⃗0 = ⋅ ⋅ ⋅ = (L−)j(L3v⃗0) − (L−)j v⃗0 = (L−)j(µ − j)v⃗0

= (µ − j)v⃗j.
(6.10)

We have found µ distinct eigenvalues so the corresponding eigenvectors are also
distinct, and note for v⃗µ we have L3v⃗µ = 0⃗. We now know the effect of the interaction
of v⃗j with L3 and L−. To get the interaction of v⃗j with L+, where j = 1,2,3, . . . , we
can use equations (6.7), (6.9) and (6.10):

L+v⃗j = L+L−v⃗j = (2L3 +L−L+) v⃗j−1 = 2L3v⃗j−1 +L−L+v⃗j−1

= 2(µ + 1 − j)v⃗j−1 +L−L+(L−v⃗j−2)
= 2(µ + 1 − j)v⃗j−1 +L− (2L3v⃗j−2 +L−L+(L−v⃗j−3))
= 2(µ + 1 − j)v⃗j−1 + 2(µ + 2 − j)v⃗j−1 + (L−)2L+(L−v⃗j−3) = . . .

=
j−1

∑
i=0

2(µ − i)v⃗j−1 + (L−)jL+v⃗0 = j(2µ + 1 − j)v⃗j−1 + (L−)jL+v⃗0

= j(2µ + 1 − j)v⃗j−1.

(6.11)

Note we have seen earlier that L+v⃗0 = 0⃗. Furthermore, L3 has a finite number of
eigenvalues, there must be a N ∈ N such that v⃗N+1 = 0⃗ and v⃗N /= 0⃗. Using this and
equation (6.11), we get

0 = L+v⃗N+1 = (N + 1)(2µ −N)v⃗N . (6.12)

Since N > 0 and v⃗N /= 0⃗, it must be that 2µ − N = 0, and thus µ = 1
2N . When

we put l = µ = 1
2N the found interactions of L+, L−, and L3 with v⃗j are the same

as in equations (6.2), (6.3) and (6.4). The found eigenvectors v⃗j all have different
eigenvalues with L3, so they are all distinct, and even linearly independent. Hence
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the space they span has dimension 2l + 1. The representation is irreducible, so
every invariant subspace of V is either V or {0⃗}. From the equations (6.2), (6.3)
and (6.4), we see that the span of the vj’s is invariant under L+, L− and L3. One
can write a linear expression to get π(Fk) for k = 1,2,3, so L+, L− and L3 form a
basis for the representations of so(3) in gl(n,V ). Hence the the span of the vj’s
are invariant under every element so(3) and is thus an invariant subspace of V of
nonzero dimension, so the subspace spanned by the v⃗j’s is the entire space V and
thus {v⃗0, v⃗1, . . . , v⃗2l} is a basis of V and 2l + 1 = dim(V ), i.e. l = 1

2(dim(V ) − 1). ∎

Definition 6.2. If (π,V ) is an irreducible fininite-dimensional representation of
so(3), then the spin of (π,V ) is the largest egeinvalue of the operator L3, from
Theorem 6.1.

If we have a representation as in Theore 6.1, the largest eigenvalue of L3 is l. So
the spin equals l.

Theorem 6.3. For any l = 0, 1
2 ,1,

3
2 , . . . there exists an irreducible representation of

so(3) with dimension 2l + 1. Any two of these irreducible representations of so(3)
with dimension 2l + 1 are isomorphic.

Proof. We will construct a space V and show it is a representation of so(3) and
irreducible. The space V is spanned by the basis {v⃗0, v⃗1, . . . , v⃗2l} and we will define
actions on it by the equations (6.2)), (6.3) and (6.4). In the proof of Theorem
6.1 we have shown that the commutation relations of Fi’s are equivalent to the
commutation relations of (6.5), (6.6) and (6.7). To show these relations we have to
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use an arbitrary basis vector v⃗j,

[L3, L
+]v⃗j = L3L

+v⃗j −L+L3v⃗j = L3

⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)v⃗j−1 if 2l ≥ j > 0

0 if j = 0
− (l − j)L+v⃗j

=
⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)(l + 1 − j)v⃗j−1 − j(2l + 1 − j)(l − j)v⃗j−1 if 2l ≥ j > 0

0 if j = 0

=
⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)v⃗j−1 if 2l ≥ j > 0

0 if j = 0

= L+v⃗j−1

(6.13)

[L3, L
−]v⃗j = L3L

−v⃗j −L−L3v⃗j = L3

⎧⎪⎪⎨⎪⎪⎩

v⃗j+1 if 0 ≤ j < 2l

0 if j = 2l
− (l − j)L−v⃗j

=
⎧⎪⎪⎨⎪⎪⎩

(l − j − 1)v⃗j+1 − (l − j)v⃗j+1 if 0 ≤ j < 2l

0 if j = 2l

=
⎧⎪⎪⎨⎪⎪⎩

−v⃗j+1− if 0 ≤ j < 2l

0 if j = 2l

= −L−v⃗j

(6.14)

[L+, L−]v⃗j = L+L−v⃗j −L−L+v⃗j

= L+
⎧⎪⎪⎨⎪⎪⎩

v⃗j+1 if 0 ≤ j < 2l

0 if j = 2l
−L−

⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)v⃗j−1 if 2l ≥ j > 0

0 if j = 0

=
⎧⎪⎪⎨⎪⎪⎩

(j + 1)(2l − j)v⃗j if 0 ≤ j < 2l

0 if j = 2l
−
⎧⎪⎪⎨⎪⎪⎩

j(2l + 1 − j)v⃗j if 2l ≥ j > 0

0 if j = 0

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(j + 1)(2l − j)v⃗j if j = 0

(j + 1)(2l − j)v⃗j − j(2l + 1 − j)v⃗j if 0 < j < 2l

−j(2l + 1 − j)v⃗j if j = 2l

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2lv⃗0 if j = 0

2(l − j)v⃗j if 0 < j < 2l

−2lv⃗2l if j = 2l

= 2L3v⃗j.

(6.15)
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Since the v⃗j’s span the space V , we have that the above relations are true for all
v⃗ ∈ V , and hence we have the commutation relation of [L3, L+] = L+, [L3, L−] = −L−
and lastly [L+, L−] = 2L3. This makes V into a representation of so(3).
Now we have to proof this representation is irreducible, i.e. that V is irreducible or
if W /= {0⃗} is an invariant subspace of V , then W = V . Let w⃗ ∈W be nonzero, then
we can write w⃗ = ∑2l

k=0 akv⃗k. Let N be the largest index such that aN /= 0. When we
apply L+ to any of the vectors v⃗1, v⃗2, . . . , v⃗2l we get 2lv⃗0,2(2l− 1)v⃗1, . . . ,2lv⃗2l−1 back,
note that none of these vectors are zero. Let us now apply L+ N -times on w⃗, then
we get a nonzero multiple of v⃗0. Since W is an invariant subspace it must be that
v⃗0 ∈ W . Remember how we have generated all the other basis vectors v⃗j’s, we did
that by v⃗j = (L−)j v⃗0, and thus with the same argument for all j = 0,1,2, . . . ,2l it
must be that v⃗j ∈ W . Since V is the span of these v⃗j’s, it follows that W = V and
thus V is irreducible.
Theorem 6.1 states that when one has a (2l + 1)-dimensional irreducible represen-
tation of so(3), then there exists a basis that satisfies the relations (6.2), (6.3) and
(6.4). When we have two of these representations of dimension 2l+1 with bases {v⃗j}
and {w⃗} with j = 0,1, . . . ,2l, we can construct a bijective linear map which sents v⃗j
to w⃗, hence we have a isomorphism and the two representations are isomorphic. ∎

6.2 Irreducible Representations of the Lie Group

SO(3)
Theorem 6.3 is of great importance. Sicne for every spin, l, there exists an irre-
ducible representation πl from so(3) to a space V of dimension 2l + 1. One might
wonder if there is a corresponding representation Πl of the Lie group SO(3) to this
representation of the Lie algebra. If there is such a representation Πl of SO(3), how
is it related to the representation πl of the Lie algebra so(3)? Before we can give
answers to these questions, we have to proof the following lemma.

Lemma 6.4. Let G1, G2 and G3 be matrix Lie groups with Lie algebras g1, g2 and
g3, respectively. Let Φ ∶ G1 → G2 and Ψ ∶ G2 → G3 be Lie group homomorphisms with
associated unique Lie algebra homomorphisms φ and ψ, repsectively, which satisfy
equation (4.14) of Theorem 4.7. Then Ψ○Φ ∶ G1 → G3 is a Lie group homomorphism
and the associated Lie algebra homomorphism is ψ ○ φ and also satisfies equation
(4.14) of Theorem 4.7.

This Lemma is Exercise 10 of Chapter 16 from [6].

Proof. Let G1, G2 and G3 be matrix Lie groups with Lie algebras g1, g2 and g3,
respectively. Let Φ ∶ G1 → G2 and Ψ ∶ G2 → G3 be Lie group homomorphisms with
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associated unique Lie algebra homomorphisms φ and ψ, repsectively, which satisfy
equation (4.14) of Theorem 4.7. Then by Theorem 2.10, Ψ ○ Φ ∶ G1 → G3 is a
Lie group homomorphisms, since G1 and G3 are matrix Lie groups. We will define
Π ∶= Ψ ○Φ. With the use of Theorem 4.7, there is a unique Lie algebra π such that
Π(etX) = etπ(X) for all t ∈ R and X ∈ g1. We will now use property 3 of this theorem.

π(X) = [ d

dt
Π (etX)]

t=0

= [ d

dt
(Ψ ○Φ) (etX)]

t=0

= [ d

dt
Ψ{Φ (etX)}]

t=0

= [ d

dt
Ψ{etφ(X)}]

t=0

= [ d

dt
etψ{φ(X)}]

t=0

= [ d

dt
et(ψ○φ)(X)]

t=0

= (ψ ○ φ)(X),

(6.16)

for every X ∈ g1. The last step is done through the use of Proposition 3.25. Hence
we can concluse that π = ψ ○ φ. ∎

Theorem 6.5. Let πl ∶ so(3) → gl(V ) be an irreducible representation of so(3),
with spin l = 1

2(dim(V ) − 1). If l is an integer, then there exists a representation
Πl ∶ SO(3) → GL(V ) such that Πl and πl are related as in equation (4.14) of
Theorem 4.7. If l is a half-integer, then there does not exists such a representation
Πl.

Proof. Let l be a half-integer and let πl ∶ so(3) → gl(V ) be an irreducible represen-
tation of so(3). Then L3 is diagonal in the basis {vj} with on the diagonal l − j,
where j is an integer, thus l − j is an half-integer. From Definition 6.2 we can see
that L3 ∶= iρ(F3), where ρ is an irreducible finitie-dimensioal representation of so(3).
Thus in our case, we will take ρ to be πl. Thus we get,

e2ππl(F3) = e−2πiL3 = −I. (6.17)

On the other hand, we can see that e2πF3 = I by a similar way as in equation (4.29)
of the proof of Theorem 4.15. If a corresponding representation of SO(3) existed,
then we would get

Πl(I) = Πl (e2πF3) = e2ππl(F3) = −I. (6.18)

This is a contradiction, since a representation sends the identity to the identity.
Thus such a representation Πl of SO(3) does not exist for l being a half-integer.
Let l be an integer and let πl ∶ so(3) → gl(V ) be an irreducible representation of
so(3). Let us use the isomorphism φ(321) ∶ su(2) → so(3) from the nore below
Corollary 4.9, where φ(321)(aE1 + bE2 + cE3) = aF3 + bF1 + cF2 for all a, b, c ∈ R.
Remember that {E1,E2,E3} is a basis of su(2) and {F1, F2, F3} is a basis of so(3).
Let us now define a representation π′l of su(2) by a compostion of πl on φ(321) by
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π′l(X) ∶= π(φ(321)(X)) for X ∈ su(2). By Theorem 2.10 we know that this is again a
representation. Since SU(2) is connected and simply connected, see Theorem 3.17,
we can apply Theorem 4.8. This theorem tells us there exists a unique representation
Π′
l such that it is related to π′l as in equation (4.14). We can now compute that

Π′
l(−I) = Π′

l (e2πE1) = e2ππ′l(E1)

= e2ππl(F3) = e−2πiL3 = I.
(6.19)

Since πl is a finite-dimensional irreducible representation of so(3), we can use
Theorem 6.1 and conclude from equation (6.4) that L3 is diagonal in the basis
{v⃗0, v⃗1, . . . , v⃗2l}. The entries on the diagonal are l − j and it is an integer, since l
is an integer and j = 0,1, . . . ,2l is an integer. So this means that e−2πiL3 = I. And
from Theorem 4.15 we know that there is a surjective homomorphism Φ(321) from
SU(2) to SO(3), for which the associated Lie algebra homomorphism is φ(321), and
ker(Φ(123)) = {I,−I}. Since the set {I,−I} is a subset of the kernel of Π′

l, the group
homomorphism Π′

l goes through SO(3). This gives us a representation Πl of SO(3)
such that Π′

l = Πl ○Φ(321). By Theorem 4.7 there exists a unique Lie algebra homo-
morphism σl such that Πl and σl are related as in equation (4.14). With the use of
Lemma 6.4 we know that the associated Lie algebra representation σl of Πl satisfies
π′l = σl ○φ(321). Since φ(321) is a Lie algebra isomorphism, it has an inverse φ−1

(321)
, so

that σl = π′l ○ φ−1
(321)

= πl. And thus Πl is the desired representation of SO(3). ∎

6.3 Spin

From Theorem 4.15 we know that SU(2) is the universal cover of SO(3) and that
there is a Lie algebra isomorphism φ from su(2) to so(3) with a corresponding Lie
group homomorphism Φ from SU(2) to SO(3). This Lie group homomorphism is
unique and it is related to the Lie algebra isomorphism φ of su(2) to so(3) as in
equation (4.14) in Theorem 4.7, i.e. Φ(etX) = etφ(X) for every X ∈ su(2).
We can now construct a representation from su(2) to gl(V ) through so(3) by the
composition of the irreducible representation πl of so(3) on the Lie algebra isoomor-
phism φ. This composition results in an irreducible representation π′l from su(2)
to gl(V ) and thus is defined by π′l ∶= πl ○ φ. Since φ is an isomorphism and πl is
irreducible, the composition π′l is also irreducible. With the use of Theorem 4.8, we
have that for every spin l there exits a unique Lie group homomorphism Π′

l from
SU(2) to GL(V ) which is related to the Lie algebra homomorphism, in this case an
irreducible representation, as in equation (4.14). And when we apply Proposition
5.7, we can see that this representation Π′

l of the Lie group SU(2) is irreducible
for every l being an integer or half-integer. These irreducible representations Π′

l

of SU(2) are in one-to-one correspondence to the projective representations of the
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matrix Lie group SO(3). We have seen in the proof of Theorem 6.5 that a repre-
sentation of SO(3) to an even dimensional space is not well defined. This is since it
sents I to −I. But this is not a problem when we look at the projective representa-
tions. Since in PU(V ) the elements I and I are equivalent. Thus such a projective
representation of SO(3) to an even dimensional space is a well-defined function. In
other words, when we want to describe half-integer spins from SO(3), we have to
look at the projective representations in stead of the ’ordinary’ representations.
We have discussed integer spins and half-integer spins, there are also spins that are
neither one of these, for instance spin 1

3 .

Definition 6.6. Let l be a positive number. When a particle has an integer spin
we call it a boson. When a particle has a half-integer spin, we call it a fermion.
Otherwise, we call the particle an anyon.

It is important to note that anyons only appear in 2 dimensions. And since Since
we where working in three dimensional spaces, these anyons where of no importance.
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Chapter 7

Conclusion, Discussion & Future
Research

7.1 Conclusion & Discusion

We have proven that the Lie algebras so(3) and su(2) are isomorphic to each other.
By using that we have proven that matrix Lie group SU(2) is the universal cover
of the matrix Lie group SO(3). Furthermore we have seen that since SU(2) is the
universal of SO(3) that for every Lie algebra homomorphism of so(3) to some Lie
algebra g associated to a matrix Lie group G, we can compose it with the Lie algebra
isomorphism from su(2) to so(3) to get a Lie algebra homomorphism of su(2). And
then by applying Theorem 4.8 we can construct a Lie group homomorphism from
SU(2) to the G.
More specifically, we can do this with irreducible representations of so(3). For
every dimension of V there exists an irreducible representation of so(3) to gl(V ).
Theorem 6.5 tells us there are only (irreducible) representations of SO(3) to GL(V )
when W is of odd dimenion. But with the conclusions from above, we can conclude
that there are in fact representations of SU(2) to GL(V ) with dimension of V
being even. These representations are irreducible since the Lie algebra represenation
from su(2) to gl(V ) is irreducible and SU(2) is a connected matrix Lie group. It
is, however, also possible to describe the actions on these even-dimensional spaces
through projective representations of SO(3). So for us to describe systems of boson
particles, it is sufficient to only consider the matrix Lie group SO(3). But when we
want to look at systems describing fermion particles, such as an electron, we have
to consider unitary groups, in particular the matrix Lie group SU(2). Or one could
also consider projective representations of the matrix Lie group SO(3) to describe
the systems of half-integer particles.
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7.2 Future Research

For the enthusiastic reader I have listed some interesting topics that are related to
the topic of this thesis and I was not able to tread or tread to the extend they
deserve.

1. Anyons:
These are particles which live in two dimensional space. The group that de-
scribes the actions on these particles are braid groups. It is also possible to
look at the relativistic case.

2. Projective representations:
We have discussed projective representations really shallow. There is a lot
more to these representations and one could investigate this much more thor-
oughly.

3. Lorentz group:
With the Lorentz group one can express the spin actions in a relativistic man-
ner. One has to include the Minkowksi metric and look at the Poincaré group.
The Lorentz group is a subgroup of the Poincaré group.

4. Other dimensions of SO(n) and SU(n): We have restricted ourselfs to
the matrix Lie groups SO(3) and SU(2). It might be really interesting to
look at higher dimensions of these groups.
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