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Abstract

Artificial electronic lattices are quickly coming to the forefront of nan-
otechnological research. One form of particular interest for its low- resis-
tance conductive properties is the topological insulator. In this thesis we
consider the creation of a topological insulator in the shape of the Kekulé
lattice. Using scanning tunnelling microscopy (STM) we were able to ma-
nipulate singular carbon-monoxide (CO) atoms on a copper (111) surface
to confine the existing copper surface state into artificial atoms shaped
into the Kekulé lattice. The Kekulé lattice was built in multiple variations
to test for the existence and qualities of topological edge states based on
the ratio of the nearest-neighbour hopping parameter Tp/71 and the in-
fluence of lattice geometry on the topological edge states. The existence
of the topological edge state was confirmed using differential conductance
mapping and spectroscopy and tested for robustness by introducing de-
fects into the lattice. The lack of a topological edge state for the lattices
designed to have none was confirmed using differential conductance map-
ping and spectroscopy. These practical results align strongly with theory
and simulations done using tight binding (TB) and muffin tin (MT) cal-
culation methods. With these results we hope to provide a basis for the
realisation of artificial topological insulators and other conductive artifi-
cial systems.
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1 Introduction

Advancements in the field of scanning tunnelling microscopy (STM) have opened
up many new avenues of research. Beginning with studies of the shape of sur-
faces and the surface state in the 1980’s [1][2], STM had grown into a discipline
capable of manipulating individual atoms by the 1990’s [3]. Using these manip-
ulation techniques has allowed for the creation of many nano-scale structures
made out of electron scatterers on conductive surfaces that reverberate through-
out the scientific world such as possible electronic gates [4], artificial lattices such
as molecular graphene [5], and from there even electronic fractal structures [6].
These artificial lattices are the focus of this research, as the electronic properties
of nano-scale structures have become a subject of great interest in recent years,
for which artificial lattices are a promising method of study.

The artificial lattices display a number of properties that push them to the front
of the field. Foremost there is the tunability of these lattices. The electronic
properties of graphene have been well documented [7] and are known to depend
on the lattice parameters such as size of the unit cell. These same parameters
can be varied to a high degree in artificial lattices, allowing for research into the
electronic properties of different shapes and sizes. Research was done by Gomes
et al. [5] into the creation of such an artificial lattice using carbon monoxide
(CO) as an electronic scatterer on a copper (111) surface. The Cu(111) surface
hosts a surface state in the energy range accessible using STM. This surface
states forms a 2D electron gas (2DEG) with STM. Using the scattering prop-
erties of CO molecules, the 2DEG was confined into a molecular honeycomb
shape, where electronic sites were substituted for the carbon molecules to form
a honeycomb lattice akin to graphene. From this is was shown that the molec-
ular graphene shows the same electronic structure found in “regular” graphene,
namely the presence of Dirac-fermions. Matching of density of states (DOS)
with tight-binding calculations for graphene show this method of artificial lat-
tice creation to be viable for artificial graphene, and alludes to the same for
many different structures [5]. In this research, we will focus on the topology
of artificial lattices. Topology is the study of the shape of a space under con-
tinuous deformation. The topology of a system is one of many factors in the
conductivity of the lattice on a conductive surface, as the deformation of space
can be extended to the deformation of the band structure. Recent research in
the field shows that this extends to artificial lattices by creating robust metallic
edge states while maintaining insulating bulk to form the topological insula-
tor. Such a material has almost zero-resistance conductivity in its edge-states,
which opens up new areas in spintronics [8], nanoelectronics [9], and quantum
computing [10]. A relatively simple graphene deformation that shows the influ-
ence of different topologies is the Kekulé distortion. Here the basic honeycomb
symmetry is broken to create two classes of nearest-neighbour hopping; Ty and
T, where based on the assignment of these parameters one hopping will be
larger than the other [Fig. 1]. This difference in parameter size will create a
distinction between a pure insulator, and a topological insulator [5].



Figure 1: Schematic of lattice conversion from the triangular lattice (left) to
the Kekulé distortion lattice. Artificial atoms are marked in green. Hopping
parameters are shown between artificial atoms with equal hopping parameters
in the triangular lattice and hoppings Tj in red and 77 in black in the Kekulé
lattice.

The topological system is thus ripe for practical research. As defined by Gomes
et al. and Kariyado and Hu, we will consider an artificial topological lattice one
where the geometry of the lattice creates a variety in inter-molecular bonds. If
this results in an artificial lattice that is insulating in the bulk and conductive at
the edge, we consider the lattice to be a topological insulator[5][11]. While the
first reviewed class of topological insulator was an alloyed material, for instance
Biy_, Si, [12], the transition to purely artificial lattices for topological systems
has great implications for the field as a whole.

The Kekulé lattice follows the described system of varying nearest-neighbour
hopping parameters between artificial atoms. Gomes et al. demonstrated the
principle by creating a “Mercedes”-arrangement within the basic graphene lat-
tice made out of four CO-molecules [5], allowing for tuning of the nearest-
neighbour hopping between hexagon-surrounding sites (intra-hexagon hopping)
(red bonds in [Fig 1]), and nearest-neighbour hopping between two sites around
different hexagons (inter-hexagon hopping) (black bonds in [Fig 1]). A detailed
explanation of the topological phase in this system will be given in section 2.5.
This method of creating a topological phase was followed in this research to re-
main consistent with the current standard, and to show the possible applications
of the artificial CO lattice.



2 Theory

Here we will describe the theoretical basis of the research, starting with the
basis of STM and adatom manipulation techniques, and take a close look at the
process behind building lattices and specifically the Kekulé lattice.

The scanning tunnelling microscope has been in use since its creation in the
1980’s [2][13][14] and has since been used for a wide variety of research. Recently
interest in the creation of artificial lattices has grown rapidly, with the creation
of the artificial graphene by Gomes et al. [5], the artificial Lieb lattice [15],
and even the creation of electronic fractals using a CO lattice on a Cu(111)
surface [6]. The Kekulé lattice is an interesting system with this progress in
mind as a system that is producible in the STM and open to many different
forms. Here we first focus on the armchair-edged Kekulé lattice before moving
towards more advanced considerations with regard to topology such as not only
the nearest-neighbour hopping parameters, but the shape of the edge as well.
The artificial atoms created in these lattices are so defined as a representation
of actual atoms by a confinement of the Cu(111) surface state by CO scatterers.
This modification and resulting properties of the surface state was shown by
Gomes et al. to transform the massless Dirac fermions of the regular graphene
lattice into massive Dirac fermions in the Kekulé lattice, which has been theo-
retically proposed to be a quantum phase transition [5][16] [17]. Combining the
observed and prospected properties of the Kekulé lattice with research done by
Kariyado et al. [18] into the origin of the topology and the influence of the edge
shape of a lattice on the topology we are ready to bring the theory into reality.

2.1 Scanning Tunnelling Microscopy

Scanning tunnelling microscopy (STM) was first developed by Binnig and Rohrer
[1] as a method to do high resolution surface studies. STM relies on the concept
of electron tunnelling [1][2] as opposed to electron scattering or absorption in
conventional electron microscopes. We assure a clean measuring surface in our
STM by operating under ultra-high vacuum conditions, around 1 x 10~!° mbar
or lower. The further underlying principle of STM is relatively straightforward;
a conductive needle, or tip, is moved at a constant tunnel current or tip height
over a conductive surface. The tip is connected to a piezoelectric drive, altering
the height of the tip to maintain constant current, or the current to maintain
constant height, resulting in a topographical image of the scanned surface. The
relation between the current and distance of the tip to the surface is given as;

I o e=2rd (1)

Where [ is the tunnel current, x is a decay constant, and d is the distance, show-
ing the exponential relation between current and distance. The distance of this
tip to the surface is typically in the order of Angstroms, making a variation of
one atom up or down greatly impact the tunnelling current. The topographical
signal is visualised to show a reproduction of the scanned surface [1]]2][13][14].



When the tip is terminated with a single atom, we consider it to be atomically
sharp. An atomically sharp tip allows for atomic resolution, where one can see
the individual atoms making up the surface.

Control voltages for piezotube

Tunneling Distance control
current amplifier  and scanning unit

Piezoelectric tube
with electrodes

Data processing
and display

Figure 2: Schematic of an STM tip near a surface. Image by Md Nurul Huda
[19]

2.2 Scanning Tunnelling Spectroscopy

A potent feature of the STM is the ability to perform in situ spectroscopy of
samples using the basics of the scanning functionality with the addition of a
lock-in amplifier. STM spectroscopy is a measure of differential conductance
dI/dV[20], which is given as;
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With f; and fs as functions of the tip and sample, respectively, and I defined
as;
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In (1) and (2) we define (V) as the sample voltage relative to the tip, and F as
the Fermi energy[20]. Where the first term in (1) is a counting term stemming
from the change in tunnelling interval induced by a change in voltage [20]. The
second term concerns the Fermi energies of the tip and sample, and the integrals
disappear at vanishingly small voltages, leaving us with a single expression for
the Fermi energies. If we sum over all such energies and assume spherical s waves
for the tip, we find that this conductivity is proportional to the local density
of states (LDOS) in the measured sample[20] [21]. An increase in the dI/dV
thus indicates an increase in present electrons per area, which corresponds to a
higher LDOS. The LDOS is a strong measure for conductance in the artificial
lattices and thus valuable to measure. One downside to LDOS measurements



is that only the complete LDOS of a location can be measured, with no regard
for the LDOS of the Cu(111) sample interference. This can be circumvented by
taking spectra on a clean surface with the same tip and dividing the spectrum
on an artificial atom by the obtained background. It is paramount to measure
the background and desired spectra with the same tip, as the shape of the tip
influences the measurements greatly as indicated via f; in (1) and (2).

The DOS within the lattice of artificial atoms can also be visualised using differ-
ential conductance mapping, rather than differential conductance spectroscopy.
Here a scan is made at a constant bias voltage, forming a topograph where areas
of higher LDOS show clearly with higher intensity. This allows for identifica-
tion of edge states by eye. We do not consider the presence of edge states in
differential conductance mapping to be conclusive evidence of the presence of
these edge states, or other states, but the visualisation is a clear indicator and
should be indicative of their presence.

2.3 Adatom Manipulation

Atom manipulation using STM is done using what is termed a “tunable chemical
bond”[22][23]. This bond is made between the end of the STM tip and the
adatom, and can be tuned by the distance between the tip and adatom. The
bond between the tip and adatom is established by the induced tunnel current
through the tip. The adatom will be bound to both the tip and the substrate
at first, allowing for so called lateral manipulation of adatoms [22][24][25]. The
bond strength between the adatom and the tip might be increased to the point
where the bond between the substrate and the adatom is broken, thus allowing
the tip to carry the adatom separately as vertical manipulation[22][25]. While
vertical manipulation is a less reliable method of manipulation, one can still
build simple nanostructures using this method [22].

Three methods of lateral manipulation are possible; an adatom can be either
pushed or pulled by the STM tip, or continuously drawn over the substrate sur-
face as dragging[22][24][25]. Pulling an atom is done by inducing an attractive
force between the STM tip and adatom through varying of the current, resis-
tance, and tip-adatom distance. The tip is moved towards the desired direction
in close proximity to the surface[24][25], inducing strong tip movement when
moving over surface atoms and into appropriate adsorption sites. As the tip
moves suddenly over a surface atom and into an adsorption site the adatom
hops after it to fill the site [24][25]. Pushing of adatoms is done by using a
repulsive force, induced in the same manner as the attractive force. Continu-
ous manipulation is done using an attractive current once more. Here the tip
is placed directly above the adatom and drags it over the substrate surface.
For this project we use the dragging method of adatom manipulation for its
reliability and further ease of use.
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Figure 3: Schematic of (a) lateral (dragging) and (b) vertical adatom manipu-
lation. In (a) step 1 is the approach of the STM tip into close enough proximity
to bind the adatom. Step 2 is the induction of an attractive current and the
dragging of an adatom along the surface. Step 3 is the retraction of the tip and
final placement of the adatom. In (b) Step one is only positioning of the tip
above the adatom without the approach seen in (a). Step two is the induced
attractive tunnel current to lift the adatom from the surface, and placing the
tip in the desired position. Step 3 is the release of the tunnel current, depositing
the adatom at the new site. Image from Invited Article: Autonomous assembly
of atomically perfect nanostructures using a scanning tunnelling microscope by
R. Celotta et al.[22]




2.4 The Copper Surface State

The copper surface in use for these experiments was chosen for its present 2DEG.
This 2DEG forms from the Cu(111) terminated surface exposed to the vacuum
of the STM. As stated in 2.2, this electron gas can be confined neatly by the
use of scatterers to form artificial atoms of concentrated electrons on the copper
surface. The copper surface has a clear DOS onset around -0.45V [Fig 4] and a
heightened DOS over the entire voltage range, resulting in the need to normalise
spectra taken on structures positioned on copper.

0.5
T LB A O B T
-1.0 -0.5 0.0 0.5 1.0
Voltage (V)

Figure 4: Differential conductance of a flat Cu(111) surface. The smooth line is
a calculated conductance, the erratic line measurements showing great overlap.
[20]

The structures we wish to create, as mentioned in 1, are made as an arrangement
of CO molecules. The CO arrangement is the inverse of the lattice we wish to
create. The CO confines the surface state of the Cu(111) surface to a limited
space, creating a cluster of electrons reminiscent of the electron cloud around
a regular atom. In a triangular CO lattice on a Cu(111) surface, these atoms
would form the honeycomb structure. This creates the molecular graphene
lattice as shown by Gomes et al.[5]. For the Kekulé distortion, these clustered
electrons take on the properties of a Dirac fermion at the edge of the structure,
while not acquiring any radical new properties in the bulk of the lattice, and
form a topological edge state [5][11].
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2.5 The Kekulé Lattice

The Kekulé lattice, modelled after the original model of benzene as thought up
by August Kekulé, gives us a system where we can easily tune the topology [5].
The basis of the topological phase is found in the alternating nearest-neighbour
hopping parameters strength [Fig 5]. The hopping parameters are tuned with
regard to the hopping found in regular graphene to be either stronger or weaker.
Using a hexagonal CO configuration as centre to tune intra-hexagon hopping
and a tetrapod configuration to tune inter-hexagon hopping, we create two
opposite lattices that differ from graphene [5].

... L/ YY) ...
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Figure 5: Schematic display of the hopping parameters in lattices with intra-
hexagon hopping (red) smaller than inter-hexagon hopping (a), continuously
equal hopping in the molecular graphene lattice (b), and intra-hexagon hop-
ping (red) greater than inter-hexagon hopping (black) (c). Weaker hopping is
indicated as dashed lines.

The correct ratios between these hopping parameters allows for the existence of
a topological edge state. In literature [26] we find that a system is a topological
insulator when the intra-hexagon hopping, henceforth Tj, is smaller than the
inter-hexagon hopping, henceforth T;

< 1—topological
To/ Ty .
> 1—trivial

Where a trivial system is a total insulator. As shown by Gomes et al., a topo-
logical insulator can be built using the Kekulé lattice as a basis by exchanging
singular CO molecules in a hexagon around a central CO with tetrapods [Fig
5a], tuning the nearest-neighbour hopping down between hexagonal sites. The
hopping parameter relation created by Gomes et al. creates the mentioned dis-
persion in hopping strength in such a way that an energy gap is created and the
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normally conductive properties of the molecular graphene lattice are suppressed
[5].

Using the structure shown by Gomes et al. we devised to build both the topo-
logical and trivial Kekulé lattices on the Cu(111) surface. The artificial atoms
created are defined by the Hamiltonian;

H = echci + Th Z c;rcj + T Z cj,cj/ (4)
@ (i,5) (i",5")

where c;r is an operator that creates an electron at site ¢, with on site energy e,

(i,7) and (¢', ') run over all nearest neighbour sites, with intra-hexagon hopping
energy Ty and inter-hexagon hopping energy 77 respectively. Here, the unit
cell is defined as in [Fig 6] [26]. In the hexagonal unit cell, the middle four
eigenstates form emergent orbitals that have pseudo spin and have pseudo-TR
symmetry, resulting in a topological phase for 77 > Ty. Note that the effective
spin-orbit coupling, for small differences ||tg—t1|| = 0.1¢¢ in this system is ~3000
times larger than the spin-orbit coupling in real graphene [26], resulting in a
large topological gap, which is well suited for hosting the non-trivial topological
system.

Figure 6: Detuned hopping in the honeycomb lattice. The lattice has primitive
cells denoted by the grey hexagons and lattice vectors @y, ds. NN-hopping
energies in the unit cell Ty, denoted with red bonds are detuned from the those
out of the unit cell 773 which are coloured black.

Combining the works by Gomes et al. and Wu et al., we designed a trivial and
non-trivial lattice suited for building on the Cu(111) surface [Fig 7].
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Figure 7: Schematic design for the trivial (a) and non-trivial (b) Kekulé lat-
tices on a Cu(111) surface. The CO-scatterers are marked in black and show
the anti-lattice. In both images the artificial atoms are marked in green, with
the intra-hexagon hopping Ty marked in red, and the inter-hexagon hopping
T marked in black. Large red dots at the edges in (a) and (b) give an easy
view of the armchair-edge of these lattices. In (a) the intra-hexagon sites are
strongly coupled, while the inter-hexagon coupling is weak as a result of tetra-
pod configuration showing a trivial lattice. In (b) the inter-hexagon hopping
is markedly stronger than the intra-hexagon hopping, showing a topological
insulator-lattice.

In (a) we show the topologically trivial lattice. Here the tetrapods as devised by
Gomes et al. are arranged in a closed configuration, limiting nearest-neighbour
hopping via T7, creating the topologically trivial system, as Ty around the single
CO scatterer remains strong. We inverse these hopping strengths in (b) by re-
placing the central CO scatterer with a hexagon of CO’s, effectively weakening
Ty, and replacing the tetrapods with single CO molecules, strengthening 73 to
the desired ratio Tp/T7 < 1, thus creating a theoretically topological insulator.
Using these designs is highly advantageous for their high tunability, as the con-
version from one lattice to another can be done swiftly without the need for
higher CO coverage on the copper surface. With this we hope to show the basic
viability of the topological lattice.
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While the design so far shows great promise to have an insulating bulk and
conductive edge states, the conductance via an edge instead of a large bulk
area raises the question of the effect of edge shape on these states. The same
question was raised by Kariyado and Hu [18] with regard to the shape of the
edge of an infinite ribbon with tunable hoppings, and the origin of topologically
insulating behaviour. Kariyado and Hu introduce us to new variables concerning
the existence of the topological edge state, namely § and the mirror winding
number([18]. We define ¢ as;

T

Where a system with § = 0 has no topological edge state. We define the mirror
winding number as[18][27];

0

1 (> d
n(k)) = 7%/0 %arg(detkakH)dkl (6)

With k| the momentum parallel to the unit vector a;, k1 the momentum per-
pendicular to the unit vector @; [Fig 8, and Qj, the off diagonal factors of the
Hamiltonian established by Kariyado and Hu for the vector kj = 0 [18]:

0 Qk
H:
’“’QLO

(7)

The factor @Q is dependant on the hopping parameter ratio Ty /T and the choice
of unit cell made [18]. Here the Hamiltonian anticommutes with the chiral opera-
tor v = (1, —1), establishing a sublattice symmetry necessary for the calculation
of the winding number. Considering only momenta perpendicular to @i, and
mirror symmetry about k|, we can decompose () into even and odd sections
Qt, which we can plug into (6) to find the separate mirror winding numbers

(ny,n_).

Figure 8: unit cells for the molecule-zigzag (a) and partially-bearded (b) edged
lattices on an infinite ribbon with hopping parameters T in red and 7T} in black

To demonstrate the effect of the edge geometry on a topological insulator,
Kariyado and Hu created two types of edge, dubbed the molecule-zigzag and
partially-bearded edges [Fig 9][18].
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Figure 9: Schematic display of the molecule-zigzag (a) and partially-bearded (b)
edges on infinite ribbons. In both artificial sites are marked, with size correlation
according to expected DOS [18]. The bulk sites are marked in grey, the edge
sites are marked in colour with same-type sites assigned the same colour.

It is shown that for both these edges an edge state appears when the correct ratio
of hopping parameters Ty and 77 is applied via lattice adaptation. Considering
the hopping ratio Tp/T7 we find that for § < 0, the bearded edge is topological
with ny = (—1,1), thus giving a total mirror winding number 0 with non-
zero individual winding numbers[18]. Here we also find ny = (0,0) for the
molecule-zigzag edge, implying that it has no topological edge state. If we find
0 > 0, the winding numbers for the molecule-zigzag edge will be ny = (1, 1),
and we find the winding numbers ny = (0,0) for the partially-bearded edge.
This corresponds to a topological edge state for the molecule-zigzag edge when
To/Ty < 1, and a topological edge state for the partially-bearded edge when
To/T1 > 1. Kariyado and Hu postulate that it is not just the ratio of hopping
parameter that determines the existence of topological edge states, but the shape
of the unit cell, and per extension the edge, as well. With this in mind we set
out to create a lattices with the proposed edge shapes. For the sake of symmetry
we chose to create a triangle-shaped lattice in these instances, as a diamond-
shaped lattice following the molecule-zigzag or partially-bearded edges could
not be achieved [Fig 10] as in the armchair-edged Kekulé [Fig 7]. We propose
the lattices shown in [Fig 10] will show an edge state for (a), and lack thereof for
(b), as the proposed designs for the trivial and topologically non-trivial lattices
in [Fig 7).
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Figure 10: Schematic design of the molecule-zigzag (a) and partially-bearded
(b) edges on a Cu(111) surface.Shown are the Ty (red) and Ty (black) nearest-
neighbour hopping parameters from atomic site to atomic site (green).

In both designs the nn-hopping is tuned in the same way to give the same ratio
of To/T1 < 1, that would in theory produce a topological edge state in the
armchair-edged lattice, indicating the effect the shape of the edge has on the
topology of the system. Note that to ensure the edge states do not mingle with
the surface state of the 2DEG blockers are introduced along the edge, confining
the LDOS stronger than in the armchair-edged Kekulé. Kariyado and Hu note
that there is no mirror operation for kj = 0 for the armchair edge, and no
mirror symmetry [18]. The mirror winding number can not be calculated from
(5). This brings to doubt the topological qualities of the proposed armchair-
edged Kekulé lattice. Would this lattice show no topological edge state, we can
confirm the mirror winding number as a determining factor in the creation of
topological insulators.
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3 Methods

In this project we used the Low-Temperature Scanning Tunnelling Microscope
(LT-STM) built by Scienta Omicron. Operations in the chamber were performed
at ultra-high vacuum conditions (UHV) with a pressure range between 1 X
1072 and 3 x 10~!2 mbar. We do not consider this variation in pressure to be
of influence on the experiments. The LT-STM operations were performed at
4.5 K. Two (111)-surface terminated pure copper crystals were used to build
lattices on. Lattice building was done using a Pt-Ir tip coated in copper as a
result of tip-sharpening. Control of the STM was held via MATRIX-software
developed by Scienta Omicron. The Cu(111) crystals were cleaned with argon-
sputtering/annealing cycles. For Ar-sputtering we used a voltage of 3kV with
an emission current of 10 mA at 3.5 x 10~% mbar pressure. For annealing a
bias of 19.99 V with a current of 1.43 A was used. Sputtering/annealing cycles
were set on 20 minute sputter, 5 minute anneal rotation and repeated until a
clean surface was obtained. CO scatterers were added to the Cu(111) crystal
by leaking of CO gas into the 4.5 K chamber to a pressure of 1.3 x 10~ mbar
for four minutes. STM topography was taken at a 0.1V bias with a current
setting between 1 nA and 30 pA. Differential conductance maps were obtained
by disengaging the feedback loop at a 1 nA current setpoint with a bias of 50 mV,
after which the tip was approached in z-direction until a current of 200 pA was
reached, then adjusting the bias to the desired value. Differential conductance
mapping was done using an oscillating bias with integration time 7, = 20 ms.
The sensitivity was set to 20 mV, and the oscillation amplitude A, set at 10
mV scanned at a frequency of 273 Hz. Differential conductance spectroscopy
was conducted using a raster time setting of 150 ms, scanning over a variation
of bias ranges with a varying number of points at lock-in settings T, = 50 ms,
sensitivity 10 mV, A, = 10 mV at a frequency of 273 Hz.

Figure 11: The LT-STM ’Dirac’ system.
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4 Results and Discussion

Using the STM, the various forms of the Kekulé lattice were built using CO
as an electronic scatterer on a Cu(111) surface. Building was done following
the design laid out in section 2.5 and following simulations using the muffin-tin
method and the tight binding model discussed below.

4.1 Simulations
4.1.1 The Armchair Kekulé

Before physical building, Tight Binding (TB) and Muffin Tin (MT) calcula-
tions on various forms of the Kekulé lattice were done. First, calculations on
the armchair-edged lattices for both the trivial and topological case were done
to simulate both on a copper potential [Fig 12]. These calculations show an
apparent edge state as was assumed from theory.
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Figure 12: MT simulated image of the proposed topological Kekulé lattice (left),
and a simulation of the LDOS (right). Here the spectrum in the bulk is shown
as black, the spectrum on the edge is shown in red

In [Fig 12] we show the apparent edge state as a higher LDOS (red) within
the projected gap for the bulk (black) of the Kekulé lattice at -0.065 eV. The
same calculations for the trivial design as in [Fig 7(a)] show a DOS at the
edge that matches the LDOS of the bulk, indicating that there are no edge
states present. This is in line with the results produced by Gomes et al.[5] and
the proposed influence of the tuning of the hopping parameter as a method to
engineer topological edge states.
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Figure 13: Simulation of the LDOS in the bulk (black) and at the edge (red) of
the trivial Kekulé lattice.

A final simulation on these designs included defects in the topological armchair-
edged Kekulé to show the edge state is robust, which is an integral quality of
the topological edge state. Three defect types were introduced in an attempt to
destroy the edge state; hopping blocking, site blocking, and boundary removal
[Fig 14]. In the hopping blocking defect the space between sites has been oc-
cupied by a CO-scatterer to minimise the hopping parameter. A site blocking
defect here shown is a CO-scatterer that occupies an artificial atom site wholly,
removing it from the edge. Boundary removal defects remove the enclosure of
the sites around the CO hexagons and open them up to the 2DEG for inter-
ference. In simulations none of these defects individually or combined caused a
disappearance of the edge state. The simulated LDOS shows that the density of
states remains heightened in the bulk gap when all types of defect are present,
showing the robustness of the non-trivial lattice. From this we assumed the
designs in [Fig 7] to be valid for the initial testing of the engineered topology.
We resolved to use these designs on the copper surface using CO-molecules as
scatterers.
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Figure 14: MT simulated dI/dV map of the non-trivial Kekulé lattice with
defects (left) and a simulated LDOS plot (right). Here three types of defect
are shown; hopping-blocking (cyan), site blocking (red), and boundary removal
(yellow).
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4.1.2 Edge-shape simulations

Using TB and MT methods simulations were done in collaboration with the
Utrecht University department of theoretical physics [28]. These simulations
were done on the different edge shapes as proposed by Kariyado and Hu [18].
From Kariyado and Hu we find not only a proposed shape for the topologi-
cal insulators, but also and edge-related band structure. Band structures for
the armchair, molecule-zigzag, and partially-bearded edges were calculated us-
ing tight-binding, showing expected edge-state presence for the hopping ratio
To/T1 < 1 [Fig 15].
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Figure 15: Simulated bandstructure plots for the armchair, partially-bearded
and molecule-zigzag edge terminations of the topologically non-trivial Kekulé
lattice. Connected to the bandstructure plots are the edges of the represented
lattices, showing Ty in red and 7j in black, these bonds connecting artificial
atomic sites marked green.

From [Fig 15] it shows that for the armchair configuration there appears to
be a gapped bandstructure. This parallels the findings of Kariyado and Hu,
where there were no mirror-winding number calculations possible on the arm-
chair configuration for a lack of symmetry in the lattice [18]. We show that
mirror-symmetry is absent in the armchair edge, showing it has no symmetry
plane perpendicular to @; as the molecule-zigzag and partially-bearded edges
do [Fig 8]. We confirmed this by the bandstructures where it is shown that
the partially-bearded edge has an open gap, indicating no conductance at the
edge as proposed, while the molecule-zigzag edge shows a crossing band from
the lower-to-higher energy and vice-versa, indicating a conductive state and thus
the proposed edge-state. The open band in the armchair-edge points us towards
the findings by Kariyado and Hu that not only the hopping parameter, but also
the mirror winding number is crucial to the existence of the topological edge
state. These findings throw into doubt the topological quality of the edge state
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in the armchair-edged Kekulé. Practical results provide us with more detail on
these findings in 4.2.

a bEG
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Figure 16: TB calculations of the molecule-zigzag-edged Kekulé lattice with
Ty > Tp. (a) shows a simple model of the Kekulé with T in red and Tj in
blue. Four types of sites with distinct LDOS are indicated; corner (green),
neighbour (blue), zigzag (orange), and bulk (purple). (b) shows the LDOS is
arbitrary units on a -0.5 to 0.5 €V energy range. Colours in (b) correspond to
sites indicated in (a)

Following the bandstructure-plots TB calculations on the molecule-zigzag were
performed to show the expected LDOS [Fig 16]. In the bulk site we observe
a lowered LDOS in [Fig 16b] around 0 V, while indicated neighbour (blue)
and zigzag (yellow) sites show a heightened LDOS in this gap, indicating the
presence of the edge state. Corner-type sites (green) do not show higher DOS
around 0 V, instead showing us a definite energy gap. From this we noted the
similarity to the energy solutions for trimer-molecules, and propose a formation
of trimers on the edge of the lattice [Fig 17a]. Trimer molecules would show
peak energy in equal states around 0 V as the corner-type sites show for -0.2
V and 0.2 V, but have a gap around 0 V, which is also shown. In the same
fashion, the neighbour-type sites would show peak energies around 0 V and at
0 V, here displayed as well. In the trimer-model we consider the peak of the
neighbour-type sites to split as an effect of coupling to the bulk, creating two
peaks around 0 V instead of a single one on 0 V. Considering the edge sites
of the molecule-zigzag lattice as a trimer site leads us to believe that we can
consider the edge sites of the armchair-Kekulé as a dimer [Fig 17b].
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Figure 17: Proposed location of the trimer site on the molecule-zigzag edge
(a) and dimer site on the armchair-edge (b) of the respective Kekulé lattices,
indicated in blue.

The energy solution for a dimer is given as;

Ei=a+f (8)

with a the on-site energy and 8 the nearest-neighbour interaction energy terms
of the dimer molecules, and E the energy eigenvalue. This shows the presence
of a bonding and anti-bonding state in the dimer molecule as two separated
energy levels. We expect no crossing takes place between these energy levels in
the dimer. The bandstructure is thus gapped, presenting us with an edge state
that is not topological in origin.

The energy solution for a trimer molecule is given as:

Er=a+V28,Ey=a 9)

With « the on-site energy and 8 the nearest-neighbour interaction energy, and
E the energy eigenvalues. Here the next nearest neighbour hopping is set to 0.
Solving for E shows three energy values indicates the existence of a bonding,
anti-bonding, and 0 energy state. The 0 energy state allows for band crossing
in the trimer and indicates the edge state here is topological in origin. We
also note that the wavefunction of the Fy energy level has a nodal point in the
centre molecule, corresponding to the gap seen in the corner-type site DOS in
[Fig 16D).
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While a simulation for using the TB model shows a clear cut LDOS, the isola-
tionist tendencies of this simulation are not wholly comparative to the reality of
a lattice on a Cu(111) surface. The influence of the 2DEG on the lattice can not
be ignored. A muffin-tin simulation of the lattice in a 2DEG yields a strongly
broadened LDOS with regard to the TB calculations [Fig 18c], wholly obscuring
the features observed in [Fig 16]. The interaction with the copper surface state
can thus not be ignored, and to minimise this we resolved to put in additional
CO scatterers to function as blockers for the surface-state-lattice interaction
[Fig 18b,d]. Multiple iterations of the blocking can be found in supplement 2.
Blocking close to the lattice was found to be most effective, shaping back the
LDOS plot into one we recognise from TB calculations.A variety in intensity
of different corner sites can also be observed in the TB simulated lattice [Fig
18b]. A shift with regard to the TB result still remains, which we prescribe to
the remaining interaction with the 2DEG, which we can wholly tune out in TB
simulations, but not in reality.

LDOS
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Figure 18: LDOS simulations using muffin-tin methods of the molecule-zigzag
terminated Kekulé without blocking added (a) and with blocking added (b). In-
dicated in (a) and (b) are the corner (green), neighbour (blue), zigzag (orange),
and bulk (purple) sites. Corresponding LDOS-spectra are shown in (¢) and (d).
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Figure 19: MT simulated image of the partially-bearded lattice and calculation
of the LDOS of sites on the lattice edge.

MT calculations on the partially-bearded edge show an expected behaviour in
LDOS [Fig 19]. All sites show varying LDOS across the energy range but
display a clear gap around 0 €V, indicating that no topological edge-state exists.
These simulated results are in line with the theoretical findings on the partially-
bearded bearded edge, as well as expectations for the chosen hopping parameter
ratio. The partially-bearded edge has also been blocked from the 2DEG using
extra CO molecules in this model to remain consistent with theory and the
molecule-zigzag-edge.

These simulations show that the creation of the topological forms of the Kekulé
lattice as well as the topologically trivial lattice is possible using CO as a scat-
terer for the 2DEG on a Cu(111) surface. These simulations also show the effect
of the lattice termination to the 2DEG in the form of the edge shape, and how
the topological qualities are affected. Combining these findings with the find-
ings in 4.1.1, we are confident in building these lattices using the STM with
observable results closely related to theory.
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4.2 Practical Results

Below we discuss the practical results from the construction of the armchair,
molecule-zigzag, and partially-bearded Kekulé lattices. While we attempted
construction on the topologically trivial and non-trivial system for the armchair-
terminated Kekulé, time constraints prevented us from the attempted construc-
tion of the molecule-zigzag and partially-bearded lattices with hopping param-
eters so that Tp > T7.

4.2.1 The Armchair Kekulé

Using the STM we were able to create the armchair-edged trivial and non-trivial
Kekulé Lattices [Fig 20], using 220 individual CO molecules for the non-trivial
system, and 305 individual CO molecules for the trivial system. No blockers
were put in place in the building process for these lattices, which would allow
for a coupling to the 2DEG in both. For the trivial design we consider this effect
lesser, as the tetrapod configurations used to tune the hopping parameters act
as an enclosure for the LDOS within the lattice. The LDOS of the edge in the
non-trivial lattice is likely to have broadened as a result of this lack of blockers.
The heightened intensity visible in [Fig 20b] on the outside of the trivial lattice
may lead one to believe in the presence of an edge-state in this capacity, but
we consider this to be a result of electron back-scattering of the 2DEG on the

lattice border.
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Figure 20: Topographs of the non-trivial (a) and trivial (b) Kekulé lattices taken
at 100 mV on a Cu(111) surface. Scale bar displayed as 5 nm.

26



The non-trivial armchair-lattice has the proposed hopping ratio of Ty /T < 1 as
the inter-hexagon hopping as described in section 2 is only curbed via a single
CO-blocker on either side of the bond. The intra-hexagon hopping is curbed
by a central hexagon of CO molecules. Differential conductance mapping at
-0.065V and -0.01V combined with STM spectroscopy over the range -0.6V to
0.5V show a clear presence of an edge state [Fig 21]. At -0.065V, the location in
the experimental differential conductance spectrum where the gap between the
bulk state and the edge state is largest, a clear heightened intensity is shown in
[Fig 21a], while at -0.01V the LDOS of the bulk and edge have converged again
to eliminate a specific edge state, shown as a uniform LDOS in [Fig 21b].
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Figure 21: Differential conductance mapping at -0.065 V (a) and -0.01 V (b) of
the topologically non-trivial Kekulé lattice.

The differential conductance spectroscopy taken on the lattice were averaged
out over multiple spectra at the same location and normalised by dividing over
spectra taken on the bare copper surface to show the LDOS of the lattice [Fig 22].
Here there is a clear difference in LDOS around -0.065V, strongly indicating of
the edge state for this configuration of the Kekulé lattice. The measured dI/dV
spectra also closely follow the simulated spectra shown in [Fig 12], where the
bulk displays a strong peak before becoming gapped between -0.1 eV and 0 V.
The edge maintains a steady LDOS, crossing the DOS of the bulk around -0.1
V and crossing back again around 0 V, remaining in existence in the bulk gap.
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Figure 22: Averaged and normalised differential conductance spectra on the
Kekulé lattice. The LDOS is displayed over a bias range of -0.3 to 0.1 V in
arbitrary units. The spectrum in the bulk is marked black, the spectrum on
the edge is marked red.

The trivial armchair-Kekulé lattice shows no edge state across a multitude of
differential conductance maps [Fig 23]. As indicated by both theory and simula-
tions, no edge state appears anywhere in the differential conductance mapping
of the trivial lattice. Following the simulated LDOS progression in [Fig 13],
varying intensity over the bias range is observed, but an edge state is never dis-
played. The dI/dV spectra of the trivial Kekulé confirm this observation [Fig
24]. The DOS at the edge follows the DOS in the bulk throughout the bias
range, giving no indication of a present edge state. These differential conduc-
tance spectra are averaged out of multiple spectra and normalized against the
copper background. The spectrum for the trivial Kekulé agrees with simulated
LDOS plots from TB as well, showing the same shift in gap from -0.065 V to
0.0 V and same line up of the edge and bulk LDOS.
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Figure 23: Differential conductance mapping of the trivial Kekulé lattice at 0
V bias(a), -0.225 V bias(b), -0.1 V bias(c), and 0.1 V bias(d).
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Figure 24: Averaged and normalised differential conductance spectra on the
trivial Kekulé lattice. The LDOS is displayed over a bias range of -0.3 to 0.1
V in arbitrary units. The spectrum taken in the bulk is marked black, the
spectrum on the edge is marked red.

Following the simulated result, several modifications were made to the non-
trivial Kekulé lattice to show the robustness of the edge [Fig 25]. Three defects
were introduced to the lattice as described in 4.1.1 and marked on the differ-
ential conductance maps in [Fig 25]: Hopping blocking (cyan), site blocking
(red), and boundary removal (yellow). These defects each alter the lattice in a
different way but none show an effect great enough to destroy the edge state of
the lattice. The dI/dV spectra of the defective lattice also show no reduction
in the present edge state, still showing a higher LDOS for the edge than for the
bulk in the bias range -0.1 V to 0 V, as was found in the non-defective lattice
[Fig 26].

Combining the found edge-states of the Kekulé lattice with Ty < T} with pris-
tine, and altered edges, with the lack of an edge state for the Kekulé lattice with
hopping ratio Ty > T, we find a strong case for the possibility of the creation of
artificial edge states using STM. We remain doubtful of the topological qualities
of the armchair-edged Kekulé with regard to the theory and simulations.
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Figure 25: Differential conductance maps of the non-trivial Kekulé lattice unal-
tered (a) and with the introduction of defects (b) taken at -0.065 V bias. Three
types of defects were introduced marked in cyan (hopping blocking), red (site
blocking), and yellow (edge removal)

1.4

—— Bulk

1.34

1.24

on bare Cu(111) (a.u.)

dl
av

1.1

1.0

divided by average

d
v

0.9 1

T T T T T T
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10
Voltage(V)

Figure 26: Differential conductance map of the non-trivial Kekulé lattice with
defects (left) at -0.065 V bias and the corresponding differential conductance
spectrum taken in the bulk (black) and at the edge (orange)
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4.2.2 The Molecule-Zigzag Edge and the Partially-Bearded Edge

The confirmation of the ability to engineer edge states in the artificial lattice of
CO on a Cu(111) surface gives great hope to show that the model by Kariyado
applies as well. Using the same techniques as for the armchair-edged Kekulé
lattice, two additional Kekulé lattices were built; one with a partially-bearded
edge, and one with a molecule-zigzag edge.

The partially-bearded lattice was constructed to match the design shown in [Fig
19] using 305 individual CO molecules. The lattice follows the hopping relation
Ty < Ty as it was in the armchair edged, non-trivial Kekulé lattice. In 4.1.2 the
minimum in the bulk-gap was shown to be around -0.02 eV, where simulated
spectra taken at the edge over the bias range also show a gapped state instead of
an edge state. Differential conductance mapping at -0.02 V[Fig 27] also show no
visible edge state, displaying relatively uniform intensity throughout the lattice.

Figure 27: Differential conductance map of the partially-bearded-edged Kekulé
lattice taken at -0.02 V. Indicated are different site types; bulk black, centre-
protrusion red, non-protruding-edge green, off-centre-protrusion magenta,
and corner orange.
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Differential conductance spectra taken on the partially-bearded edge show the
same functional LDOS as the simulated result [Fig 28]. The spectra shown are
non-normalised to maintain clarity. The model by Kariyado appears to be a
functional way of determining the topology of a system so far. To expand on
this the partially-bearded lattice was converted to the molecule-zigzag lattice
by adding to the edges of the partially-bearded lattice for a total 522 individual
CO molecules.
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Figure 28: Non-normalised differential conductance spectra taken on the
partially-bearded Kekulé lattice shown in the -0.3 V to 0.3 V bias range. Colours
correspond to colours indicated in [Fig 27].

The molecule-zigzag edged lattice has the same relation of hopping parameters
as the partially-bearded lattice, Ty < T7, thus the topology of the system should
be solely dependant on the symmetry presented by the shape of the edge intro-
ducing the desired opposing mirror-winding numbers for topological behaviour
[18]. Simulated results show the presence of a clear edge state per [Fig 16], with
a greatest difference of LDOS around -0.01 eV [Fig 18d]. Differential conduc-
tance mapping show the clear presence of heightened DOS at this energy [Fig
29], and a comparative image shows a clear presence of the edge state in the
molecule-zigzag edge while it is clearly absent in the partially-bearded lattice.
The intensity of the edge varies throughout the differential conductance map,
showing lower intensity in the lower left corner of [Fig 29] than in the other
corners. We attribute this to a nearby subsurface defect, altering the base cop-
per surface state. Thus it appears the mirror-winding number influences the
presence of the topological edge state as much as proposed by Kariyado. Dif-
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ferential conductance spectra on the molecule-zigzag show the same behaviour
as predicted, with a clearly present edge state in the bulk gap of the lattice
[Fig 30]. The simulated bulk-gap from -0.1 V to 0 V bias is presented in the
molecule-zigzag lattice, as well as the crossing of the edge LDOS above the gap.
The spectra were normalised on the copper background to show a distinct in-
crease in LDOS over the 2DEG and averaged over multiple spectra to achieve
an average LDOS.

Figure 29: Differential conductance mapping of the molecule-zigzag-edged
Kekulé lattice at -0.01 V bias.
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Figure 30: Averaged differential conductance spectra of the molecule-zigzag-
edged Kekulé lattice. Spectra of the bulk are shown in black. Spectra of the
edge are shown in red

On first look, the different types of sites noted in 4.2.2 do not appear to vary as
strongly in intensity as the simulated LDOS plot would imply. While the vari-
ance between a neighbour-type-site and a zigzag-site is predicted to be great but
not overwhelming, the variance in DOS between the corner sites and the other
types was shown to be great, with a steep dip owning to the trimer character
of the edge site. Differential conductance spectra should show a difference in
LDOS on the specific types of site, even if they are not visible in the differential
conductance maps. We observe that, while the edge state is clearly present,
not all edge sites are equivalent [Fig.31] [Fig. 32]. Within the molecule-zigzag-
edged lattice the NN-hopping is not equivalent on all sites as shown in theory
by Kariyado [18] and simulations [Fig. 16]. We see this effect in differential con-
ductance spectra by a light variation in LDOS for the different sites indicated.
While in theory the central-corner type site should have the lowest LDOS, it is
only negligibly different from the LDOS of the neighbour site [18]. The LDOS
of the non-portruding-edge site lies higher than that of the neighbour- and cor-
ner type sites, which is in accordance with theory [Fig 10][18]. We consider the
deviation from theory on the neighbour and corner sites to be an effect of the
triangular lattice used. Where theoretical calculations by Kariyado are done on
ribbons of artificial lattices, the confined structure of the artificial Kekulé ef-
fects next-nearest-neighbour hopping, which is neglected in theory for its overall
equality throughout the theoretically infinite ribbon [18].
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Figure 31: Averaged differential conductance spectra of the molecule-zigzag on
sites indicated in [Fig. 32]. Every site was averaged over multiple spectra and
normalised against the copper background.

Figure 32: Topograph of the molecule-zigzag edged Kekulé lattice with different
site-types indicated in green (central corner), blue (neighbour) and orange
(non-portruding edge)
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Further, we note that the simulations in [Fig 18c] do show a greater match
to the differential conductance spectra taken than [Fig 18d]. On a lattice of
this form without blocking the LDOS of the corner, neighbour, and zigzag sites
matches far more than when blockers are introduced, which would case a more
defined splitting of the individual sites. We must consider the possibility that
even with blockers the sites at the edges experience the effects of interactions
with the 2DEG, forming a more uniform edge state. Aside from the qualities in
the lattice itself, the effect of a tip that was less than optimal for spectroscopy
should not be neglected. The influence of the tip shape was shown in 2.2, and
variations there in can have far reaching consequences for the spectral shape
obtained.

The topology of the lattice was checked for robustness via the introduction
of defects at the edge, with three different defects introduced; a single site
blocking in a corner site, blocking of two neighbour sites, and blocking of a
single neighbour site [Fig 33 a-d]. On all dI/dV maps the edge state appears
to persist, differing in intensity throughout the lattice. The single defect on the
corner site does not alter the the presence of an edge with regard to the pristine
lattice, showing the same heightened intensity along the edge indicative of an
edge state. The intensity shown appears lesser in the lower left corner of the
lattice, congruent with the lowered intensity due to a present subsurface defect
seen in the pristine lattice [Fig 29]. The single defect here was placed first on a
corner-type site as a site-blocking defect[Fig 33b]. The edge state was observed
to be intact after the introduction of this defect. Blocking of two neighbour-sites
while the corner-site remained intact also allowed the edge state to remain intact
[Fig 33c|, again showing only lower intensity of the edge around the lower-left
corner adjacent to the subsurface defect. The final defect introduced was again
a single scatterer, placed to remove any form of local symmetry in the lattice
[Fig 33d]. The placement of a single CO removes all symmetry-axis, breaking
local symmetry completely. This defect also shows no influence on the edge
state, which is still comparable to its form in both the pristine lattice and with
other defects introduced.
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Figure 33: differential conductance maps of the molecule-zigzag-edged Kekulé
lattice at -0.04 V bias with no defect (a), one corner-site blocking scatterer
(b), two neighbour-site blocking scatterers (c), and a single neighbour blocking
defect (d).

The molecule-zigzag-edged Kekulé thus appears to be a robust topological in-
sulator from differential conductance mapping. To verify this differential con-
ductance spectra on all defects were taken, as well as differential conductance
spectra on opposite sites of each defected lattice to show the persistence of the
edge state across the lattice. Here we see that heightened LDOS of the edge
remains for the gapped state of the bulk, both around the defects and on the
opposite sites of the lattice. For all defects the edge state is visible in the dI/dV
spectroscopy as in dI/dV mapping. We find the presence of edge states in the
artificial lattices depending on the hopping parameters and edge termination
satisfactorily supported by experiments.
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While it would have been prudent to test for topological edge states in the lat-
tices with the partially-bearded and molecule-zigzag edge with inverted hopping
parameter ratios as described by Kariyado, time constraints withheld us from
doing so. While this is a crucial part of the research into the topological insu-
lator, we do not believe that findings on these lattices will disprove the findings
above, but only strengthen these. The findings above were done with a great
eye for consistency, but the methodology behind an STM does not always allow
for pure consistency. A wide array of variables in the STM may influence the
results achieved by virtue of being, while the researcher has no control over these
variables. We consider the main variables such as pressure and temperature to
be of negligible influence on the results achieved, while variations in tip-shape
and specific variations in the surface have been normalised for as much as possi-
ble to reduce their specific influence. The great agreement of the experimental
results with theory and simulations was expected for a system that is invariably
lifted from the realm of theory into reality. We attempted to remain as true
to the theory as possible. Designs for lattices that were based on theory never
strayed from theory. The designs were kept consciously and consistently close
to the theory to be able to employ the theory as best we could.
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5 Conclusion

The artificial armchair-Kekulé lattices were built using CO molecules as electron
scatterers on the 2DEG present on a Cu(111) surface. The lattices were built in
configurations with hopping parameter ratio Ty /T3 tuned to be greater and lower
than 1 to attempt to achieve the creation of topological edge states. Differential
conductance mapping and spectroscopy on both Kekulé lattices confirmed the
presence of edge states for the hopping parameter ratio Tp/T7 < 1, and the
absence of edge states for hopping parameter ratio 7y /T; > 1. These results are
in line with theoretical findings and are considered a confirmation of proposed
engineering methods for edge states. In accordance with simulations of the
bandstructure of the armchair-edged lattice with edge states present, we do
not consider this lattice to have topological edge states. This is in accordance
with theory on the influence of the mirror winding number on the topological
edge state. Using the same methods, artificial Kekulé lattices with hopping
parameter ratios Tp/77 < 1 with both partially-bearded and molecule-zigzag
edges were built on the 2DEG of the Cu(111) surface to assess the influence of
the mirror-winding number on the presence of topological edge states. Using
differential conductance mapping and spectroscopy the partially-bearded lattice
was determined to contain no topological edge states, in accordance with theory.
The molecule-zigzag edged lattice was shown to contain topological edge states
at a -40 mV bias. These edge states were robust when introducing defects to
the lattice and show that in addition to the hopping parameter ratio Ty /7 the
mirror-winding number is crucial in the engineering of topological edge states.
We find the building of artificial lattices with topological edge states viable in
practice and in strong agreement with theory.
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6 Outlook

While we consider it convincingly shown that it is possible to engineer topo-
logical edge states in lattices by adjusting the internal hopping parameters of
artificial lattices, as well as tuning the edge to adjust the mirror winding num-
ber, the journey into the unexplored fields of topological insulators is far from
over. Time fell short to apply final tests on the mirror winding numbers, and it
is suggested to complete the experiments on the partially-bearded and molecule-
zigzag edges. Here we should invert the hopping parameters to create lattices
with the hopping ratio Ty/77 > 1, which should not have a topological edge
state for the armchair edge but promises one for the partially-bearded edge,
while removing it for the molecule-zigzag edge [18]. This would confirm the
strong influence of the mirror-winding number on the topological insulator. The
topological insulator, and artificial lattices as a whole are still in their infancy,
but shows promise to rapidly become one of the hottest topics in modern day
science. With the ability to create nano-scale highly conductive systems, highly
theoretical concepts such as quantum computing are brought closer to reality
than they have ever been before. While the topic remains fundamental at its
core for the foreseeable future, we hope to have joined the first steps made in
theory with practical results to function as a basis for further study into this
infinitely fascinating field.
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9 Supplementary information

Supplementary 1: Topographic images of the armchair-edged Kekulé lattice

with hopping ratio Tp/Ty < 1 at -0.1 V (a), -0.075 V (b), -0.01 V (c), and -0.4

V (c). While the edge state is not clearly shown as in differential conductance
mapping, clear distinctions in intensity at varying energies can be seen.
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Supplementary 2: Progression of the spectral shape with the introduction of
blockers to the molecule-zigzag edged Kekulé lattice. With a closer proximity
of CO blockers to the artificial sites the spectral shape is reshaped to match
the TB-calculated LDOS in the lattice.
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Supplementary 3: Energy solutions for dimers and trimers

To find the eigenvalue for the energy of the dimer molecule, one only needs to
solve a simple determinant;

a—F 15}

det 3 o_E

‘ =0 (10)

Where the solution FL = « £ (3 is easily obtained. The dimer shows two
distinct energy levels that are separated far from each other, with no trivial
solution Fy. In a trimer molecule we apply the determinant;

a—F B8 0
det| p a—F 0 [=0 (11)
0 I} a—F

Where to remain consistent with TB for our simulations we set the
next-nearest-neighbour hopping to 0. Here we obtain energy solutions for
E # 0 and a solution for £ =0 as E4 = a + /28 and Fy = a. The existence
of an Ej state requires the band crossing for conductance and thus shows a
topological edge state for the system applied.
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