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1. Introduction 

Cardiovascular disease (CVD) is the leading cause of death among women worldwide. While the 

incidence of CVD is much lower in premenopausal women compared with men of similar age, the 

CVD rate in women rises steadily after the age of 50 1,2. Initially, this increase in CVD incidence later in 

life was ascribed to the menopausal decline of estrogen levels 3. However, throughout the years, 

several observations have brought this theory into question. Studies examining associations between 

endogenous estrogen levels and CVD risk factors have yielded conflicting results 4-6 and available 

data on CVD events indicate a lack of association 7,8. Furthermore, in contrast to other estrogen 

related diseases, the CVD rate does not show a sharp rise at time of menopause 1,2,9. In addition, 

several trials have failed to demonstrate a beneficial effect of estrogen replacement therapy in 

postmenopausal women 10-12, further weakening the estrogen protection hypothesis.  

Due to the controversial role of estrogens in women’s cardiovascular health, recent research has 

gradually turned more focus to the potential effects of androgens. Indirect evidence for a role of 

androgens comes from findings of clinical studies showing an unfavourable cardiovascular risk profile 

in hyperandrogenic conditions such as hirsutism 13 and the polycystic ovary syndrome (PCOS) 14. 

Several studies in postmenopausal women have also demonstrated a positive correlation between 

testosterone and various CVD risk factors 5,15-17. These findings have raised concerns about the safety 

of testosterone administration to postmenopausal women 18. However, reverse associations between 

testosterone and markers of atherosclerosis have been reported as well 19,20. This review aims to 

summarize the current evidence on the role of endogenous testosterone in cardiovascular health in 

postmenopausal women and to highlight potential adverse effects of testosterone therapy. 

 

2. Search strategy and selection criteria 

For this review we searched for English language articles in PubMed and EMBASE using the key 

words “androgens”, “sex hormones”, “sex steroids”, “testosterone”, “sex hormone-binding globulin” in 

combination with “cardiovascular” and “women”. In addition, we checked reference lists of retrieved 

articles. To exclude confounding by postmenopausal hormone therapy (HT), we excluded 

observational studies that included postmenopausal women on HT. For reviewing the association 

between hormones and cardiovascular risk factors, we further focused on studies that excluded 
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subjects with prevalent metabolic and cardiovascular conditions (e.g. diabetes, heart disease and 

stroke) or studies that adjusted for these conditions in their analyses. 

 

3. Testosterone production in women 

In women, testosterone circulates in levels that are about 5% of those observed in men. There are 

three main sources of testosterone production in women: 1. the ovary, 2. the adrenal cortex, 3. 

peripheral conversion of androgen precursor hormones (androstenedione, dehydroepiandrosterone 

(DHEA), dehydroepiandrosterone sulphate (DHEA-S)). The secretion of testosterone from the ovary is 

stimulated by luteinizing hormone (LH), with estradiol exerting negative feedback. In the adrenal 

cortex, the secretion of testosterone is stimulated by adrenocorticotropic hormone (ACTH) with 

negative feedback by cortisol. In premenopausal women, 25% of testosterone is derived from the 

ovary, 25% from the adrenals and 50% is produced by peripheral conversion. These 3 sources of 

circulating testosterone are slightly redistributed in postmenopausal women, due to the menopause 

and age-related atrophy of the adrenal cortex 21.  

 

Figure 1.  Testosterone production in postmenopausal women. 

 

 

Abbreviations: ACTH, adrenocorticotropic hormone; LH, luteinizing hormone; DHEA, dehydroepiandrosterone; DHEA-S, 
dehydroepiandrosterone sulphate. +, stimulatory; -, inhibitory. 
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With the follicular depletion during menopause, estradiol production decreases rapidly, leading to a 

loss of negative feedback at the pituitary. The resulting increase in LH levels drives the ovarian 

production of testosterone 22,23. Despite the persistent ovarian activity in naturally postmenopausal 

women, testosterone levels decrease gradually 24,25 due to the age-related atrophy of the adrenal 

cortex which causes a decline in adrenocortical secretion of testosterone and androgen precursor 

hormones. This explains the lower proportion of testosterone that is derived from the adrenal cortex 

(10%) and peripheral conversion (40%) in postmenopausal women (Figure 1).  

 

4. Measuring testosterone levels 

Given the low circulating levels of testosterone, highly sensitive and accurate assays are required to 

obtain reliable measurements. Mass spectrometry is the gold standard for measurement of total 

testosterone (TT). Nowadays, direct immunoassays are widely used across laboratories. While being 

more rapid and economical, their reliability in female samples has been questioned because of their 

high imprecision in the lower end of the testosterone range 26,27. Direct immunoassays assays often 

suffer from calibration and specificity problems, which generally result in an overestimation of TT 

levels in women 26. Specificity problems can be partly solved by adding an extraction or 

chromatography step prior to the immunoassay, which removes some of the interferences by cross-

reacting substances 28,29.  

For economic and logistic reasons, most researchers use single blood samples for testosterone 

analyses. Although this may cause a larger degree of measurement error (due to diurnal variation), a 

single measure obtained by extracted immunoassays is thought to be reliable for ranking 

postmenopausal women in epidemiological studies 30,31. 

In the circulation, testosterone is specifically bound to SHBG (~66%) and non-specifically to albumin 

(~33%), leaving only a small fraction unbound (~1-2%). Unbound free testosterone is considered to be 

the bioactive fraction able to diffuse across cellular membranes. However, bioactive roles for albumin 

and even SHBG bound testosterone have also been suggested by studies showing cellular uptake of 

bound testosterone fractions 32,33. Since SHBG is present in such a large excess in postmenopausal 

women, free testosterone levels are primarily driven by SHBG. The hepatic production of SHBG is 

positively regulated by estradiol and negatively regulated by testosterone. Therefore, increased TT 



 - 5 - 
     

 

levels in hyperandrogenic conditions not only raise free testosterone levels directly, but also indirectly 

by lowering SHBG levels. 

Accurate measurements of free testosterone and bioavailable testosterone (free and albumin bound 

testosterone) rely on the accuracy of TT assays. Equilibrium dialysis and the ammonium sulphate 

precipitation technique are the gold standards for measurement of free testosterone (FT) and 

bioavailable testosterone (BT). Both methods are not routinely used as they are time-consuming and 

expensive. As an alternative, several algorithms based on the law of mass action (Sodergard 34 and 

Vermeulen 35) have been proposed to calculate FT and BT using concentrations of total testosterone, 

SHBG and albumin. These algorithms have been shown to correlate well with FT and BT measured by 

the gold standards 35,36. Free testosterone can also be measured directly using radioimmunoassay. 

The reliability of this assay, however, is uncertain due to its lack of accuracy and precision 35,36. 

Another way to estimate bioavailable testosterone (BT) is the free-androgen index (FAI) which 

represents the ratio of total testosterone (nmol/L) to SHBG (nmol/L). In contrast to men, this index is a 

reliable indicator of the amount of bioavailable testosterone in women 29,35,37.  

 

5. Cardiovascular risk factors and disease 

Over the past years, several observational studies have examined the relationship between 

endogenous testosterone and cardiovascular disease and its risk factors. Tables 1 - 5 summarize the 

reported associations of TT, SHBG, BT and FT with various indicators of cardiovascular disease risk. 

It is important to emphasize the limitations of the observational studies being summarized here. Study 

populations were heterogeneous and selection criteria diverse. For example, the type of menopause 

(surgical, natural or mixed) varied between study populations. Furthermore, adjustment for potential 

confounding factors was not always adequate. The majority of studies did not adjust for estradiol (E2), 

which could be a potential confounder because postmenopausal estradiol is mainly derived from 

peripheral aromatization of testosterone. Another limitation is that most studies used direct 

immunoassays (without extraction) which are suboptimal for the measurement of TT levels in 

postmenopausal women. Furthermore, the selection of poorly matched controls may have introduced 

bias in case-control studies because cardiovascular disease patients are more likely to be on 

medication and to have modified their lifestyle. Finally, atherogenic changes may cause a decline in 
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serum testosterone levels in patients with cardiovascular disease, increasing the likelihood of spurious 

associations in case-control studies. 

 

5.1 Body composition and blood pressure 

Obesity and hypertension are important predictors of cardiovascular morbidity and mortality in 

postmenopausal women 38,39. Cross-sectional findings on the relationship between TT and markers of 

obesity are somewhat conflicting with either an increase or no change in body mass index (BMI), waist 

circumference and waist to hip ratio (WHR) with increasing TT levels (Table 1). None of the studies, 

however, suggested that high TT levels were associated with decreased obesity. Associations with 

SHBG, BT and FT seem to be more consistent: increased BMI, waist circumference and WHR are 

related to an increase in BT and FT levels, and a decrease in SHBG levels. It has been suggested that 

testosterone and SHBG are more strongly related to abdominal obesity than general obesity 40,41. In 

the study of Kaye et al. 40, the association between SHBG and WHR remained significant after 

adjusting for BMI.  

Since all studies used a cross-sectional design, the causal direction of the reported associations 

cannot be ascertained. The reversal direction, for instance, is supported by studies showing a 

decrease in testosterone levels following weight and body fat loss in overweight women 42,43. 

Furthermore, adipose tissue, with its 17β-hydroxysteroid dehydrogenase activity, has been suggested 

to be an important site of peripheral testosterone production 44,45. On the other hand, androgen 

treatment has been reported to increase visceral fat in healthy obese postmenopausal women 46. 

Likewise, high doses of exogenous testosterone increase BMI and visceral fat mass in female 

cynomolgus monkeys 47. Recent findings from the study of Zang et al. 48 also support a causal role for 

testosterone in postmenopausal obesity. In this study testosterone was found to down-regulate 

hormone sensitive lipase expression in subcutaneous adipose tissue. Additionally, testosterone 

increased the expression of phosphodiesterase-3B, an enzyme involved in the anti-lipolytic action of 

insulin in adipocytes.  

The relationship between androgenicity and blood pressure has been studied less frequently and with 

less consistent results (Table 1). Two large cross-sectional studies failed to demonstrate an 

association between testosterone and blood pressure. In contrast, Haffner et al. 17 found a positive 

association of TT with systolic and diastolic blood pressure. Furthermore, high FT and low SHBG 
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levels have been reported in postmenopausal women with hypertension 49,50. Testosterone may 

influence blood pressure through induction of obesity. However, several studies 17,49 have 

demonstrated that the association between testosterone and blood pressure is independent of BMI, 

suggesting a direct effect on the renin-angiotensin-aldosterone system (RAAS). Experimental data 

also support a direct effect of testosterone. In female rats, testosterone treatment increases renin 

activity and angiotensinogen expression 51,52. Moreover, high testosterone levels have been 

associated with increased vasoconstriction in sucrose fed female rats 53 and increased levels of 

endothelin, a potent vasoconstrictor 15.  

 
 
Table 1.  Associations of endogenous testosterone and SHBG levels with body composition and blood pressure: 
results from observational studies. 
 

 BMI Waist circumference WHR DBP SBP 
      

TT 
 

↑ [15,41,54-57]  
= [40,58-61] 

↑ [15,41,54] 
= [55,59,60] 

↑ [54] 
= [40,58-60] 

↑ [15,17] 
= [5,59] 

↑ [15,17,62
] 

= [5,59] 
SHBG 
 

↓ [41,50,54-58,60,61,63-68] ↓ [40,41,54,55,60,63,64] ↓ [40,54,58,60,63,64,67,69] 
= [65] 

↓ [5,17] 
= [70] 

↓ [5] 
= [17,70] 

BT 
 

↑ [54,58,59,65,68] ↑ [54,59] ↑ [54,58,59,65] ↑ [59] 
= [5

] 
= [5,59

] 

FT 
 

↑ [55,56,60] 
= [61] 

↑ [55]  
= [60] 

= [60] = [17] ↑ [49,62] 
= [17] 

 
Abbreviations: TT, total testosterone; SHBG, sex hormone-binding globulin; BT, bioavailable testosterone; FT, free testosterone; 
BMI, body mass index; WHR, waist to hip ratio; DBP, diastolic blood pressure; SBP, systolic blood pressure.  ↑, positive 
association; ↓, negative association; =, no significant association. 
 
 

5.2 Glucose and insulin metabolism 

Table 2 summarizes the cross-sectional and longitudinal studies that examined the association 

between testosterone, SHBG and markers of glucose and insulin metabolism. In most studies no 

significant association with TT was found. Some of these studies, however, may have been limited by 

a small sample size and lack of control for confounders. Lambrinoudaki et al. 5 observed an 

independent association between TT and insulin resistance in a large study of  598 postmenopausal 

women. Similarly, another study including a large number of incident diabetes cases showed a 

significant association between TT and type 2 diabetes after multivariable adjustment 71. Unlike TT, 

SHBG and bioactive fractions of testosterone show stronger associations with markers of glucose and 

insulin metabolism.  BT, FT and SHBG have repeatedly been associated with type 2 diabetes, 
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although one study failed to demonstrate an association with SHBG 62. This study may have been 

underpowered (n = 49) to detect an association. 

The underlying nature of the observed associations appears to be complex. The associations may in 

part be mediated by obesity. Although the associations of SHBG with insulin sensitivity and type 2 

diabetes seem to be independent 16,50,61,63, data on the independence of associations with BT and FT 

are less consistent. In several studies associations of BT and FT with type 2 diabetes 59,71,75 and 

insulin resistance 5,59,61 remained significant after controlling for measures of obesity (e.g. BMI, waist 

circumference), whereas others could not demonstrate an independent association 16,73. 

 

Table 2.  Associations of endogenous testosterone and SHBG levels with measures of glucose and insulin 
metabolism: results from observational studies. 
 

 Fasting glucose Fasting insulin Insulin resistance HbA1c Type 2 diabetes 
      

TT 
 

= [16,58,59,72,73] = [58,59,61,73] ↑ [5] 
= [16,58,59,61,73] 

= [17,74] ↑ [71*] 
= [16,59,62,65,75] 

SHBG 
 

↓ [16,58,66,70,72] 
= [63] 

↓ [58,61,66,67,70] 
= [63] 

↓ [5,16,58,61,68] ↓ [17,74] 
= [50] 

↓ [16,50,63,65,75
] 

= [62] 
BT 
 

↑ [58,59,65,72] 
= [16,59,73] 

↑ [58,59,73] 
= [59,61] 

↑ [5,16,58,59,61,73,76]  ↑ [74] ↑ [16,59,65,75] 

FT 
 

= [73] ↑ [73] 
= [61] 

↑ [73] 
= [61] 

= [17] ↑ [62,71*] 

 
Abbreviations: TT, total testosterone; SHBG, sex hormone-binding globulin; BT, bioavailable testosterone; FT, free 
testosterone.; HbA1c, glycated hemoglobin. ↑, positive association; ↓, negative association; =, no significant association; *, 
longitudinal study. 
 
 

The temporal nature of the associations is also not completely resolved. Longitudinal studies support a 

causal role for testosterone and SHBG in glucose and insulin metabolism. Androgen administration to 

healthy women reduces insulin sensitivity 77 and peripheral glucose uptake in female to male 

transsexuals 78. Likewise, anti-androgen therapy partially improves insulin sensitivity in 

hyperandrogenic women 79,80. In addition, rat experimental data show that testosterone impairs insulin-

mediated glucose uptake at the skeletal muscle by reducing the expression of glycogen synthase 81,82. 

There is, however, also some evidence that hyperinsulinemia could give rise to increased androgen 

levels. Insulin inhibits hepatic SHBG production in vitro 83. Simultaneously, insulin stimulates ovarian 

testosterone production 84 and LH release from pituitary cells 85. Furthermore, suppression of insulin 

levels by metformin therapy reduces androgen levels in PCOS women 86. These observations suggest 

that the association of androgenicity with insulin resistance and type 2 diabetes may be an 
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epiphenomenon, with insulin determining circulating levels of SHBG and testosterone. Remarkably, 

none of the studies relating testosterone or SHBG to type 2 diabetes adjusted for this potential 

confounding effect of insulin. However, in middle aged women lower SHBG levels have been 

associated with type 2 diabetes risk independent of fasting insulin levels 87. Recent findings from a 

mendelian randomization study show an association between SHBG polymorphisms and type 2 

diabetes, further supporting a causal role of SHBG in glucose and insulin metabolism 50. 

 

5.3 Lipid profile   

Results from observational studies do not support a major role for TT in lipid metabolism. A few 

studies reported an inverse association of TT with high-density lipoprotein cholesterol (HDL-C) and a 

positive association with total cholesterol, low-density lipoprotein cholesterol (LDL-C) and trigylcerides, 

but in most studies no significant correlation between TT and lipid parameters was found (Table 3). In 

contrast, low levels of SHBG have consistently been associated with a pro-atherogenic lipid profile, 

namely increased triglyceride and decreased HDL-C levels. The mechanisms behind these 

associations are not completely understood, but there are some indications for a direct regulatory 

effect of SHBG on hepatic and lipoprotein lipases.  

Hepatic lipase (HL) and lipoprotein lipase (LPL) are involved in the regulation of plasma triglycerides 

and HDL-C with opposing effects: LPL activity is associated with a decrease in triglycerides and an 

increase in HDL-C, whereas HL activity increases triglyceride and decreases HDL-C levels. In the 

HERITAGE family study 91 a strong inverse association between SHBG and HL activity was found. In 

the same study, high SHBG levels were found to be associated with increased LPL activity.  

The relationship of SHBG with triglycerides and HDL-C may also be mediated indirectly through their 

associations with obesity. Yasui et al. 73 found that associations of SHBG with HDL-C and triglycerides 

were no longer significant after controlling for BMI. In another study, a similar lack of independence 

was observed for the association with HDL-C 89. Conversely, in several studies associations between 

SHBG and triglycerides 5,6,69,89 and HDL-C cholesterol 5,17 persisted after adjustment for BMI or WHR. 

Another possible mediator is insulin. Insulin is known to exert a direct regulatory effect on hepatic 

lipase (HL) and lipoprotein lipase (LPL) 92,93. Interestingly, only a few studies 6,67,70 adjusted for the 

effect of insulin. Mudali et al. 6 demonstrated that adjustments for insulin, BMI and other covariates did 

not significantly influence associations of SHBG with HDL-C and triglycerides. On the other hand, 
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Soler et al. 67 found that associations between SHBG and triglycerides were lost after controlling for 

WHR, insulin and estradiol. In the study of Haffner et al 70 the association of SHBG with HDL-C was 

independent of fasting insulin levels, but the relationship with triglycerides lost significance after 

adjusting for insulin.  

 

Table 3.  Associations of endogenous testosterone and SHBG levels with plasma lipids: results from observational 
studies. 
 

 Total cholesterol LDL cholesterol HDL cholesterol Trigylcerides 
     

TT 
 

↑ [5,17,62] 
= [6,54,67,69,73,88] 

↑ [5,62] 
= [6,54,69,73,88,89] 

↓ [5,59] 
= [6,17,54,67,69,73,88,89] 

↑ [5] 
= [6,59,67,69,73,88,89] 

SHBG 
 

↓ [6,17] 
= [5,54,69,70,73,90] 

↓ [6,50] 
= [5,54,69,70,73,89,90] 

↑ [5,6,17,50,54,67,69,70,73,89,90] 
 

↓ [5,6,50,67,69,70,73,89] 
= [90] 

BT 
 

↑ [5,54] 
= [6,73] 

↑ [5,6,54] 
= [73] 

↓ [5,54] 
= [6,59,73] 

↑ [5] 
= [6,59,73] 

FT 
 

↑ [62] 
= [17,67,73] 

= [73,89] ↓ [17] 
= [67,73,89] 

= [67,73,89] 

 
Abbreviations: TT, total testosterone; SHBG, sex hormone-binding globulin; BT, bioavailable testosterone; FT, free testosterone; 
LDL cholesterol, low density lipoprotein cholesterol; HDL cholesterol, high density lipoprotein cholesterol. ↑, positive association; 
↓, negative association; =, no significant association. 
 
 

5.4 Other cardiovascular risk factors  

Besides traditional risk factors, a growing number of studies have started to examine associations with 

other markers of cardiovascular risk such as C-reactive protein (CRP), fibrinogen and white blood cell 

count (WBC) (Table 4). CRP is an inflammatory marker and independent predictor of cardiovascular 

events in postmenopausal women 94. In several studies, higher BT levels and lower SHBG levels 

50,54,95,96 have been associated with an increase in CRP levels. In addition, a positive association 

between TT and CRP has been reported in healthy postmenopausal women 15,54. Conversely, Joffe et 

al. 97 found an opposite association in women referred to coronary angiography, with low testosterone 

levels being associated with an increase in CRP levels. Interestingly, this inverse association with 

testosterone was not present in women who remained CVD-free. These findings suggest that the 

association between testosterone and CRP depends on CVD status, with a potential confounding 

effect of subclinical cardiovascular disease. Early atherogenic changes may affect testosterone 

production by the ovaries and adrenals through restriction of the blood supply. This may explain the 

presence of the reverse association among women with subclinical CVD. 
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Data on the association between testosterone and the clotting factor fibrinogen are inconclusive. In 

two small studies 15,98, TT levels were not related to plasma fibrinogen levels. However, in a larger 

study including 317 postmenopausal women 96, fibrinogen levels were approximately 10% higher in 

highest TT quartile compared with the lowest quartile, but no association between SHBG and 

fibrinogen was found. Interestingly, high TT levels in this study were also associated with an increase 

in WBC, another promising marker for cardiovascular disease.  

 

Table 4 . Associations of endogenous testosterone and SHBG with C-reactive protein, fibrinogen and white blood 
cell count: results from observational studies. 
 

 C-reactive protein Fibrinogen White blood cell count 
    

TT 
 

↑ [15,54] 
↓ [97] 
= [89,95,96] 

↑ [96] 
= [15,98] 
 

↑ [96] 

SHBG 
 

↓ [54,95-97] = [96] = [96] 

BT 
 

↑ [95,97]   

FT 
 

= [89]   

 
Abbreviations: TT, total testosterone; SHBG, sex hormone-binding globulin; BT, bioavailable testosterone; FT, free testosterone.  
↑, positive association; ↓, negative association; =, no significant association. 
 

5.5 Atherosclerosis 

Studies investigating the relation between testosterone and atherosclerotic indices (carotid, aortic, 

coronary and peripheral atherosclerosis) have yielded contradictory results (Table 5). 

Phillips et al. 99 examined the correlation between testosterone and the degree of coronary 

atherosclerosis in a cross-sectional design among 60 patients with coronary artery disease (CAD). In 

this study, increasing FT levels were associated with CAD severity, independent of estradiol, BMI and 

other cardiovascular risk factors. In the WISE study 100 positive associations of TT and FT with CAD 

turned significant after adjustment for estradiol levels. Ouyang et al. 101 focused on a population of 

postmenopausal women without clinically evident CVD and found that high TT and BT levels and low 

SHBG were associated with subclinical atherosclerosis. The associations with TT and BT were 

independent of age, BMI and cardiovascular risk factors, but the association with SHBG lost 

significance after adjustment for HDL and LDL cholesterol. In the Rotterdam Study 102, higher levels of 

TT also tended to be associated with atherosclerosis in postmenopausal women, although this 

association was diluted after adjustments for cardiovascular risk factors.  
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On the other hand, several studies have reported opposite results. Bernini et al. 19 demonstrated an 

inverse association between FT and carotid intima media thickness (cIMT) in 44 postmenopausal 

women. Similar findings were reported by Debing et al. 20 who found that cases with carotid 

atherosclerosis had lower levels of FT than atherosclerotic free controls. In another case-control study 

103 carotid atherosclerosis was also found to be more common in women in the lowest TT quartile than 

in the highest TT quartile. However, results from this latter study need to be interpreted with caution, 

as extreme outliers in hormone levels (which are likely to result from measurement errors) were not 

removed from analyses and may have caused spurious relations. Furthermore, it should be noted that 

reverse causality is a bigger issue in case-control studies. Atherosclerosis may affect testosterone 

production by impairing the blood flow to androgen producing organs. This could partly explain the 

discrepancy in results. Alternatively, the contradictory findings may indicate the presence of a U-

shaped relationship in which very low testosterone levels (below the physiological range) and high 

testosterone levels compromise arterial function. This theory is supported by studies showing impaired 

endothelial function in postmenopausal women with low testosterone levels 104 and increased carotid 

atherosclerosis and endothelial dysfunction in PCOS women with supraphysiological testosterone 

levels 105,106.  

 
 
Table 5.  Associations of endogenous testosterone and SHBG levels with indices of atherosclerosis: results from 
observational studies. 
 

 Carotid atherosclerosis Aortic atherosclerosis Coronary atherosclerosis Peripheral atherosclerosis 
     

TT 
 

↑ [101] 
↓ [19,20,103] 

↑ [102*] ↑ [100] 
= [99] 

= [107] 

SHBG 
 

= [19,20] 
↓ [101,103] 

 = [99] = [107] 

BT 
 

↑ [101] = [102*]  = [107] 

FT 
 

↓ [20]  ↑ [99,100]  

 
Abbreviations: TT, total testosterone; SHBG, sex hormone-binding globulin; BT, bioavailable testosterone; FT, free testosterone.  
↑, positive association; ↓, negative association; =, no significant association; *, longitudinal study.  
 
 

Results from experimental studies show a similar pattern. Bruck et al 108 demonstrated an increase in 

plaque size following testosterone treatment in female rabbits on an atherogenic diet. This increase 

was independent of changes in plasma lipids. Similarly, testosterone treatment doubled the extent of 

coronary atherosclerosis in female cynomolgus monkeys fed an atherogenic diet for 24 hours 47. In 
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addition, testosterone has been reported to increase vasoconstriction and to decrease vasodilatation 

in surcrose fed female rats, suggesting an adverse effect of testosterone on endothelial function 53. In 

vitro data further suggest that testosterone may increase monocyte adhesion to the vascular 

endothelium 109. On the other hand, testosterone has been reported to induce relaxation in rabbit 

coronary artery and aorta rings 110. In addition, administration of physiological testosterone levels to 

androgen deficient female rats improves the vasodilatory reserve of the vascular endothelium 111. 

 

5.6 Cardiovascular events and mortality 

Relatively few data are available on the relationship between endogenous testosterone and 

cardiovascular events and mortality in postmenopausal women, which may indicate publication bias. 

In the Rancho-Bernardo Study 8, TT and BT levels did not differ between cases with and without CVD 

at baseline and did not predict cardiovascular mortality over a 19-year follow-up. Although the number 

of cardiovascular deaths was relatively high in this study (n = 176), stratification for estrogen 

replacement therapy may have reduced power to detect an association. Contrary to the data on CVD 

risk factors, Haffner et al. 112 found that diabetic women in the lowest TT quartile had an increased risk 

of ischemic heart disease (IHD) mortality, although this association was no longer significant in 

multivariable adjusted analyses. As the authors pointed out, the lack of a positive association may 

result from a plateau effect in which variations in testosterone levels may not contribute to IHD 

mortality in diabetic women who are already androgenized. In contrast, in a large nested case-control 

study 7 higher BT levels were associated with an increased risk of cardiovascular events, although this 

association was not independent of BMI, hypertension and diabetes. Data on the relationship between 

SHBG and CVD are also mixed. Haffner et al. 112 failed to demonstrate an association between SHBG 

and IHD mortality in diabetic women. In the Gothenburg Study 113, a U-shaped association between 

SHBG and myocardial infarction was found, with a high incidence of myocardial infarction (MI) in the 

lowest decile of SHBG. However, this study did not adjust for BMI. In the Rancho Bernardo study 114, 

which adjusted for BMI, no significant association between SHBG and CVD mortality was found; 

however, women with higher SHBG levels had slightly lower CVD and IHD mortality rates. Similarly, 

Rexrode et al.7 found that low SHBG levels increased the risk of CVD events, although this 

relationship was not independent of BMI. 
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6. Testosterone replacement therapy 

There is increasing interest in the use of testosterone as part of postmenopausal hormone therapy. In 

several studies addition of testosterone to estrogen therapy has been reported to have beneficial 

effects on sexual function and bone mineral density in postmenopausal women 115,116. In some of 

these studies, possible adverse effects of this combination therapy were also examined. Overall, the 

cardiovascular effects of testosterone supplementation appear to depend on the route of 

administration and duration of exposure (Table 6). No significant change in lipid parameters has been 

observed after co-administration with testosterone patches or implants 115,117-120, whereas oral methyl- 

testosterone 121-123 and testosterone undecanoate therapies 124 have been associated with a decrease 

in HDL-cholesterol levels. In addition, an increase in fibrinogen levels has been reported with methyl 

testosterone therapy 125. These differential effects may be attributed to a first-pass liver effect, which is 

bypassed by implants and transdermal patches. Interestingly, oral preparations of methyltestosterone 

cause a favourable decrease in triglyceride levels 121-123,125, an effect which is not observed with 

transdermal testosterone and testosterone undecanoate. Available data on body composition are 

mixed. An increase in lean body mass and decrease in fat mass have been reported after co-

administration with oral methyltestosterone 123 and testosterone implants 116. In contrast, Leao et al 126 

described an increase in body weight and visceral fat mass after the addition of 1.25 mg methyl- 

testosterone to percutanous estradiol.  

In long-term studies including naturally postmenopausal women more adverse effects have been 

reported. In the study of Penotti et al. 124 8-month supplementation of 40 mg testosterone undecanoate 

counteracted the beneficial effect of estrogen on cerebral vascular reactivity, by increasing the 

pulsatile index (PI) of the middle cerebral artery. In a retrospective study, Hak et al. 127 found an 

adverse effect of long-term, high dose intramuscular estrogen-testosterone therapy on aortic 

atherosclerosis. These findings indicate that high dose testosterone replacement may affect naturally 

postmenopausal women more adversely than surgically postmenopausal women. 

Despite the large number of studies examining the side effects of testosterone co-administration, the 

long-term cardiovascular safety of testosterone supplementation is not well established. The follow-up 

period in most studies was less than 6 months. Furthermore, the co-administration with estrogens may 

have counteracted possible adverse effects of exogenous testosterone. Estrogen therapy causes an 

increase in SHBG levels and a decrease in testosterone levels by suppressing luteinizing hormone 
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(LH) secretion 128,129. For this reason, the effects of combined estrogen and testosterone use may not 

adequately represent the individual testosterone-related risks. Only recently, the effect of single 

testosterone administration was investigated in the APHRODITE study 130. In this study, no difference 

in lipid profiles and carbohydrate metabolism was observed between women treated with 150 and 300 

µg transdermal testosterone compared with placebo.  

 

Table 6.  Trials examining the effect of exogenous testosterone on cardiovascular risk parameters in healthy 
postmenopausal women.  
 

Trial Menopause Drug Route Dose Follow-up Cardiovascular effect 

Co-administered with estrogen/progesterone replacement therapy 

Shifren et al, 2000 117 Surgical T Transdermal 
(patch) 

150/300 
µg/day 

12 weeks - 

Buster et al, 2005 118 Surgical T Transdermal 
(patch) 

300 µg/day 24 weeks - 

Braunstein et al, 2005 119 Surgical T Transdermal 
(patch) 

150/300/450 
µg/day 

24 weeks - 

Simon et al, 2005 120 Surgical T Transdermal 
(patch) 

300 µg/day 24 weeks - 

Davis et al, 2006 131 Surgical T Transdermal 
(patch) 

300 µg/day 24 weeks - 

Shifren et al, 2006 115 Natural T Transdermal 
(patch) 

300 µg/day 24 weeks - 

Davis et al, 2006 132 Surgical T Transdermal 
(gel) 

2 mg 16 weeks - 

Nathorst-Boost et al, 
2006133 

Natural T Transdermal 
(gel) 

10 mg 3 months - 

Burger et al, 1987 134 Natural/ 
Surgical 

T Implant 50 mg 6 weeks - 

Davis et al, 1995 116 Natural/ 
Surgical 

T Implant 50 mg 24 months ↓ fat mass 

Hickok et al, 1993 135 
 

- MT Oral 1.25 mg/day 6 months ↓ HDL-C 

Watts et al, 1995 136 Surgical MT Oral 2.5 mg/day 24 months ↓ HDL-C, triglycerides 
 

Basaria et al, 2002 125 Natural/ 
Surgical 

MT Oral 2.5 mg/day 16 weeks ↓ HDL-C, triglycerides 
↑ fibrinogen 

Dobs et al, 2002 123 Natural/ 
Surgical 

MT Oral 2.5 mg/day 16 weeks ↓ HDL-C, triglycerides,  
   fat mass 

Lobo et al, 2003 121 Natural/ 
Surgical 

MT Oral 1.25 mg/day 16 weeks ↓ HDL-C, triglycerides 

Warnock et al, 2005 122 
 

Surgical MT Oral 1.25 mg/day 8 weeks ↓ HDL-C, triglycerides 

Leao et al, 2006 126 Surgical MT Oral 1.25 mg/day 12 months ↓ HDL-C 
↑ visceral fat mass 

Penotti et al, 2001 124 Natural TU Oral 40 mg/day 8 months ↓ HDL-C,  
↑ pulsatile index  

Without estrogen/progesterone replacement therapy 

Davis et al, 2008 130 Natural/ 
Surgical 

T Transdermal 
(patch) 

150/300 
µg/day 

52 weeks - 

 
Abbreviations: T, testosterone; MT, methyltestosterone, TU, testosterone undecanoate; HDL-C, high density lipoprotein-
cholesterol; CRP, C-reactive protein. ↑, positive association; ↓, negative association. 
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7. Conclusions 

Studies reviewed in this thesis suggest that increased androgenicity (increased testosterone and 

decreased SHBG levels) has a neutral to adverse effect on cardiovascular health in postmenopausal 

women. Most studies, however, have been limited by a cross-sectional design and therefore no firm 

conclusions on the temporal association can be drawn. Furthermore, studies examining potential 

adverse effects of exogenous testosterone are often restricted by a short follow-up period. Since 

testosterone replacement therapy is increasingly being used for the treatment of sexual dysfunction in 

postmenopausal women, its long-term effects on cardiovascular risk markers need to be studied more 

thoroughly. 

The observed associations between increased androgenicity and cardiovascular disease raise 

questions about the mechanisms through which testosterone and SHBG contribute to CVD risk. 

Epidemiological and experimental data support both direct and indirect effects of testosterone and 

SHBG. Part of the observed associations may also be mediated through estrogens, as testosterone is 

the primary source of postmenopausal estradiol. Research into non-traditional CVD risk factors is 

growing and may help identify alternative pathways through which androgens affect cardiovascular 

health.  

Of particular interest is that SHBG is often more strongly related to CVD risk than testosterone itself. 

Although this may imply an important contribution of SHBG to the observed associations, this could 

also reflect the reliability of the current testosterone assays being used. Increasing the accuracy and 

sensitivity of direct testosterone assays remains a challenge, and as long as the use of direct 

immunoassays has not been validated in women, reliable measurements rely on mass spectrometry 

methods. Moreover, despite the strong inverse associations between SHBG and cardiovascular risk, 

the precise role of SHBG remains uncertain. SHBG may influence CVD risk indirectly by modulating 

the biologic effects of testosterone or exert more direct effects through its own SHBG receptor.  

In conclusion, more large-scale longitudinal studies are required to determine the temporal relationship 

between testosterone, SHBG and cardiovascular risk and to ascertain the safety of testosterone 

replacement in postmenopausal women. In addition, mendelian randomization studies may help to 

determine the likelihood of causality. Finally, further elucidation of the underlying mechanisms is   

needed to clarify why postmenopausal women are more prone to CVD risk than their premenopausal 

counterparts, and to indicate potential means of prevention and intervention.   
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8. Abstract 

Cardiovascular disease (CVD) affects men and women differently with women having a lower 

incidence and later onset of disease. Research has recently refocused interest into the cardiovascular 

role of androgens. The purpose of this review is to summarize the evidence available on the 

association between testosterone and cardiovascular health in postmenopausal women. Published 

studies relating testosterone and sex-hormone binding globulin (SHBG) levels to cardiovascular 

disease and its risk factors were reviewed. Studies included in this review suggest that increased 

androgenicity, characterized by high testosterone and low SHBG levels, has a neutral to adverse 

effect on cardiovascular health in postmenopausal women. However, long-term data on cardiovascular 

effects of endogenous and exogenous testosterone are scarce and many studies are limited by the 

use of insensitive and inaccurate testosterone assays. Large-scale, longitudinal studies relating 

testosterone and SHBG levels to cardiovascular risk factors and endpoints are needed to determine 

the temporal relationship between androgenicity and cardiovascular risk and to ascertain the efficacy 

and safety of testosterone therapy in postmenopausal women. 
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