
Opleiding Natuur- en Sterrenkunde

Using Machine learning to study nucleation
in a model system of soft polymer colloids

Bachelor Thesis

Steven Bos

Supervisor:

Prof. Dr. Ir. Marjolein Dijkstra
Debye Institute for Nanomaterials Science

January 22, 2021



Abstract

Despite the amount of work devoted on nucleation, the mechanism of nucleation is still not well
understood. Many scenarios have been proposed such as a classical one-step nucleation mechanism or a
non-classical two-step crystallization process, but both scenarios are still heavily debated. In this thesis,
we investigate the crystal nucleation mechanism of Gaussian core particles using computer simulations,
and quantify the results using machine learning. Using a Principal Component Analysis we will shed light
on the nucleation mechanism of Gaussian core particles in the presence of different competing crystal
structures.
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1 Introduction

Colloidal suspensions like blood, milk and paint, are familiar to everyone. These liquids with colloidal
particles suspended in it, can form various structures and exhibit corresponding transitions between these
structures. A famous example is the clotting of blood, where through a complex process, the liquid blood
changes to a gel, forming blood clot to prevent blood loss and heal wounds ultimately. The process of blood
clotting requires endothelium lining the blood vessel after an injury to the blood vessel, making it a process
which, luckily, will not happen spontaneous. There exists processes in which colloids change structure spon-
taneously, a process called self-organization. For example due to a temperature and or pressure change, a
colloidal suspension can form a highly organized structure known as a colloidal crystal.

The formation of crystalline structures in colloidal suspensions is a heavily studied subject, but not yet
well understood. What makes these types of systems self-organize is due to the forces between the particles
in the system. The repulsive part of the inter-molecular forces, which becomes significant when particles are
at close separation, is crucial for fluid-solid phase transitions[1, 12, 6, 4]. The particles, and their respective
repulsive forces, take up volume in the system, which influences neighbouring particles, and in turn drives
the system to self-organise, ultimately resulting into crystallization.
This process, known as crystal nucleation, does not always occur immediately at freezing conditions. For
instance, the freezing of water into ice occurs if water is below 0◦ Celsius, but water cooled only slightly
below this transition temperature often stay free of ice for long periods of time, sometimes not nucleating at
all. Classical Nucleation Theory states that small crystalline clusters can be formed spontaneously due to
thermal fluctuations in a supercooled liquid. These clusters exhibit an energetically unfavorable interface,
creating a barrier between the liquid and crystal particle, stagnating further crystal growth when the crystal
nucleus size is smaller than its critical size. For sufficiently large clusters, the barrier can be overcome,
allowing the nucleus to further grow.

Nucleation can also occur in a non-classical way, e.g. Ostwald’s step rule states that crystallization from
a solution occurs in steps, in such a way that often thermodynamically unstable phases occur first, followed
by the transformation to the thermodynamically stable phase[10]. This possibility was later theoretically
investigated by Alexander and McTague in 1978. On the basis of a Landau theory, they argued that an
expansion of the Landau free energy favors nucleation of a body-centered cubic (bcc) phase in the early stage
of a weak first-order phase transition of a simple liquid.[2] Despite the focus of research on the existence of
an intermediate crystal step, Kawasaki and Tanaka demonstrated that not just intermediate crystal states
should be considered, but that it is equally important to consider hidden ordering in the super-cooled liquid
which may be regarded as the intermediate state from the liquid phase.[5]
Simulations of particles with simple repulsive forces, like charged colloidal particles which stabilize multiple
crystalline structures, can be insightful on solidification transitions in particle systems. However, simulations
have so far not shown to give conclusive evidence of what type of crystals are formed during crystal nucleation.

Russo et al.[13] showed that in simulations on a system of Gaussian core particles, the nucleation path-
way does not follow Ostwald’s step rule of crystallization. They found the bcc phase to be favoured during
nucleation despite the underlying phase diagram, this opposes Ostwald’s step rule which predicts for instance
at a pressure of Pσ3/ε = 0.05 the nucleation to happen through the face-centered-cubic (fcc) phase before
forming the final bcc phase. For a lennard-Jones fluid, Ten Wolde et al. showed that during nucleation the
nucleus is primarily structured as a fcc in the core, and that the surrounding particles forming the interface
between solid and liquid, is primarily structured as bcc.[16] The process of nucleation is still up for debate,
therefore the nucleation process will be re-investigated in this thesis, trying to shed light on this intricate
process.
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Figure 1: Gaussian core model (GCM) pair potential u(r) as a function of distance r in reduced units of
diameter σ and energy ε.

The crystal nucleation will be studied with computer simulations consisting of particles with a repulsive
Gaussian core potential, from now on referred to as the Gaussian core model (GCM), originally proposed by
Stillinger[15]. The GCM is less extensively studied as the popular hard-sphere model and the Lennard-Jones
particle model. Despite being less studied, the Gaussian core model deserves attention for several reasons.
The similarity between the stable crystal phases of the Gaussian core model and of charged colloidal particle
crystals is evident when considering the cause of stability of both, being the repulsive forces in the respective
models. The relative softness of the interaction compared to that of, for instance the hard-sphere model,
suggests the behaviour is similar to that of polymeric blobs. Polymeric particles usually involve globular
poly-atomic molecules such as camphene and cyclohexane which, when pressed together, can mutually de-
form and rotate to fit ”bumps” into ”holes”.

Using computer simulations of Gaussian core particles spontaneous crystallization can be simulated. To
study the crystal structures formed during nucleation the Steinhardt-Nelson bond orientational order pa-
rameters[14] are calculated, which is a common method for identifying and classifying the present crystal
configuration. These bond order parameters describe the symmetry of the local neighbourhood of a particle
in terms of spherical harmonics. Certain bond order parameters resemble the structure of a crystalline phase,
therefore it is possible to identify crystalline structures using the spherical harmonics of a particle. There
are an infinite amount of spherical harmonics and thus bond order parameters, however the first 12 bond
order parameters are conclusive enough to describe the symmetry of the local neighborhood of a particle.
To classify the crystalline structure that is present there is a set of 4 bond order parameters which are of
interest, l = 4 distinguishes the bcc from the other configurations, l = 6 has minor overlap of the fluid phase
with respect to crystalline ordering, in general a fluid phase has lower bond orientational order and thus
lower values for the bond parameters.

Instead of looking at individual bond-orientational order parameters to do the analysis, we use a Prin-
cipal Component Analysis to construct a lower dimensional representation of a much larger set of bond-
orientational order parameters. By doing so we expect to accurately detect and distinguish different crys-
talline structures. The remainder of this thesis is structured as follows: in section 2 the simulation techniques
used to simulate nucleation events of a GCM fluid are described. Afterwards, the methods used to deter-
mine the crystal structures formed during nucleation. In section 3 the results are presented and compared
to earlier results of GCM investigations. Finally in section 4 we conclude and give an outlook.
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2 Theory and method

2.1 Monte Carlo Simulations

We consider a system consisting of N particles that is described by the Hamiltonian:

H(rN ,pN ) =

N∑
i=0

(
p2
i

2m
+ U(rN )), (1)

which corresponds to the total energy of the system, being the sum of both the kinetic and potential energy.
The Hamiltonian defines the behaviour of the system, describing the motion and potential energy of the
particles. Macroscopic properties of the material are due to the microscopic interactions between particles.
In statistical physics, canonical ensemble averages of momentum-independent observables A of a system of
N particles in a volume V and temperature T can be calculated in the following manner:

〈A〉 =

∫
drNA(rN )exp[−βU(rN )]∫

drNexp[−βU(rN )]
, (2)

Here β = 1/kBT is the inverse temperature and U(rN ) is the total potential energy of the system for
N particles. Observable A, a quantity only dependent on the inter-particle distances rN of all particles,
since the inter-particle forces are velocity independent, the integration over the momenta can be ignored.
Calculating these ensemble averages of the system cannot be done by numerical integration techniques, since
for N = 2000 particles, and 10 grid points in each direction, there are mDN = 106000 points at which the
integrand has to be evaluated which is not possible within a lifetime by current day computational power.
To circumvent this problem the Monte Carlo method can be employed. Using the Monte Carlo method
the ensemble average is calculated by integrating over a random sampling of points instead of a regular
array of points. When an infinite amount of sampling points is considered for integration, we would end
up at the continuous case. Intuitively a lot of configurations will not add up to the ensemble average, due
to the high probability to find a low Boltzmann weight for a configuration, especially for close-packed or
overlapping configurations. Metropolis et al.[9] proposed an algorithm to simulate configurations according
to their Boltzmann weight. First a random configuration of N particles is made without consideration of
the Boltzmann weight, after which each particle is moved according to the following acceptance rule[3]:

acc(0→ n) = min(1, exp[−β(U(n)− U(0))]), (3)

where U(n) is the potential energy of configuration n. New configurations with a higher energy are to
be accepted with a probability that depends on the Boltzmann weight of the new and old configuration.
For a proposed configuration move with a lower total energy, the move is always accepted. Generating
configurations of particles rNi with a probability proportional to its Boltzmann weight exp[−βU(rNi )] the
ensemble average(2) reduces to:

〈A〉 = lim
n→∞

∑N
i=0A(rNi )

n
, (4)

where n is the number of trial moves. After each trial move in a Monte Carlo Simulation the ensemble
average is calculated considering it is now a new configuration, even if the trial move is not accepted. The
same acceptance rule(3) can be applied to a volume change of the simulation box after making N Monte
Carlo steps, where on average every particle is moved once. By moving the particles, changing the simulation
box volume and keeping the amount of particles and pressure fixed, an isobaric-isothermal NPT ensemble
simulation is performed.

A simulation of a finite volume would suffer dramatically from surface effects. The fraction of particles
residing at the surface of a cubic box is given by 6N (2/3) making the fraction of surface particles significant:
60% for N = 1000 particles. Using periodic boundaries for the simulation box, the effect of surfaces can be
avoided. Periodic boundary conditions are implemented by adding duplicates of the simulation box to all
sides of the simulation box. When a particle leaves the central box, it will reappear on the opposite site in
the central box, fixing the number of particles in the simulation and making the simulation volume infinitely
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large. The particles are free to move over the boundaries of the box avoiding any surface effects. The
distance between particle i and j is calculated with consideration of the nearest image convention stating a
particle i can only interact with the nearest image of particle j, either in one of the neighbouring boxes or
in the central box, therefore minimizing the distance between particles.

We consider the Gaussian core particle model, in which the particles interact with the pair potential:

u(r) = ε exp (− r
2

σ2
), (5)

with σ the diameter of a particle and ε the energy. The potential is truncated at Rcut = 3.7σ. By employ-
ing reduced units the variables are dimensionless, and will never take very small or large numerical values,
minimizing errors caused by rounding of the initial values of a variable, which extrapolates over several
integration steps.

2.2 Simulation details

To study the different stages of nucleation, various simulations of N = 2000 particles in the NPT -ensemble
will we conducted, using the state points shown in the phase diagram by Russo et al.[13] in figure 2.

The phase diagram is presented in the reduced temperature T ∗ =
kβT
ε and pressure P ∗ = Pσ3

ε plane. The
pressure is kept at a constant value of P ∗ = 0.002 or P ∗ = 0.005 for all the simulations, and we study
nucleation at varying temperatures.

Figure 2: Phase diagram of the GCM in the pressure P ∗-temperature T ∗ plane adapted from Russo et
al.[13] reproduced from data in [11]. The state points used in the Monte Carlo Simulations are marked by
the crosses, for pressures of P ∗ = 0.02 and P ∗ = 0.05, and temperatures of T ∗ = 0.002, 0.003, 0.004, 0.005,
0.006 and T ∗ = 0.007. The squares denote the state points which nucleated.

According to Classical Nucleation theory, nucleation occurs as a spontaneous process starting from a
meta-stable phase. The nucleation starts with one cluster forming and growing large enough to not imme-
diately melt back into the liquid phase due to thermal fluctuations. The nucleus has to grow large enough
to overcome the nucleation barrier which is associated with a critical nucleus size. The Gibbs free energy at
the top of the nucleation barrier is given by:

∆G∗ =
16πσ3

3|∆µv|2
, (6)
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with ∆µ the chemical potential difference between the thermodynamically stable phase and the supercooled
metastable phase, and σ the surface tension of the interface between the nucleus and its surroundings.

For a lower nucleation barrier, the nucleation process will obviously occur more likely opposed to a large
nucleation barrier. For the brute fore simulation we require a reasonably fast nucleation rate to make sure
nucleation will take place within the span of our simulation time. Therefore not all state points will be useful
for this study.

2.3 Measuring crystal structure

To study the different crystals formed during nucleation, the configurations are analysed by the bond-
orientational order parameters proposed by Steinhardt et al. in 1983[14]. Firstly the nearest neighbours
of each particle are determined, describing the surroundings of the particles. The nearest neighbours of
a particle can be defined in multiple ways, to be able to have a parameter-free calculation which can be
performed on-the-run, the solid angle nearest neighbour (SANN)[8] algorithm is used. The SANN attributes
to each possible neighbour of a particle, a solid angle for which the cutoff radius is calculated restricting
the sum of the solid angles θi,j to be 4π. First, the particles {j} surrounding i are to be ordered such that

ri,j ≤ ri,j+1 relating the number of neighbours m and the shell radius R
(m)
i by the relation:

ri,m ≤ R(m)
i < ri,m+1. (7)

Starting with the particle closest to i we calculate for each potential neighbour {j} an angle θi,j based on

the distance between the particles ri,j = |~rj − ~ri| and the shell radius R
(m)
i which is yet to be determined.

The m nearest neighbours of particle i such that their solid angles associated with θi,j equals 4π:

4π =

m∑
j=1

2π[1− cos(θi,j)] =

m∑
j=1

2π(1− ri,j/R(m)
i ). (8)

The number of nearest neighbours m and the shell radius R
(m)
i are not known yet, but since they are not

independent of one another, can be determined when the sum of the solid angles is calculated. The method
is parameter free and computer cost efficient, making it ideal for on-the run particle simulations. A minimum
amount of nearest neighbours m for a particle should be at least 3, since for a single neighbour the solid
angle contribution is always less than 2π. Eqs. 7 and 8 can be combined to determine the neighbour shell
radius,

R
(m)
i =

1

m− 2

m∑
j=1

ri,j < ri,m+1 (9)

To solve the inequality (9) and therefore finding the set of nearest neighbours Nb(i), m is increased iteratively
until Eq. 9 is satisfied. Nearest neighbours are not always vice versa, however this issue is to be resolved by
removing particles which are not reversed nearest neighbours from the total set of nearest neighbours.

2.4 Bond-orientational order parameters

The Steinhardt bond-orientational order parameters can be calculated, given by:

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij), (10)

where Ylm(rij) denotes the spherical harmonics for l and m ∈ [−l, l], both integers, rij the distance
vector from particle i to particle j and Nb(i) the set of nearest neighbours of particle i. The orientation of
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the coordinate system matters for these bond-orientational order parameters qlm(i) but by constructing a
rotational invariant bond order parameters, this is avoided:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2. (11)

Based on the Steinhardt bond-orientational order parameter, Lechner and Dellago introduced an averaged
bond order parameter in 2008, to increase the accuracy of the classification of crystalline structures:

q̄lm(i) =
1

Nb(i)

Nb(i)∑
j=0

qlm(j). (12)

By averaging the bond order parameter over the neighbouring particles, the surrounding particle structures
are of influence for the particle being considered, resulting in a more accurate classification of the structure
at hand. The crystalline environment around particles can be analysed with averaged and non-averaged
rotational invariant bond-orientational order parameters. By comparing the bond order parameters of a
configuration with those of a known crystalline structure, the configuration can be classified. Generally
the q4 and q6 values are of interest when classifying crystals. To distinguish between solid-like and fluid-like
particles, Ten Wolde et al.[16] proposed in 1996 a method where the correlation between the local symmetries
of two particles is measured, by defining first a normalized complex vector for each particle as:

d6m(i) =
q6m(i)√∑6
m=−6 |q6m|2

, (13)

and then using this complex vector to define a scalar product for two neighbouring particles i and j as:

Sij =

6∑
m=−6

d6m(i) · d∗6m(j). (14)

When this scalar product Sij for particle i and j exceeds a threshold of 0.7, the two particles are considered
to be connected. However this still does not distinguish solid from liquid phase particles, since fluid particles
also sporadically exceed this threshold value. Therefore a minimum number of connected neighbouring par-
ticles is introduced in order to classify the particle as solid-like. A reasonable minimum number of connected
particles for a solid-like behaviour of a particle is set to 7, which identifies more than 99%[16] particles in
an fcc structure as being solid-like. By setting this minimum, we can group solid-like and fluid-like particles
and create clusters of connected particles, where solid-like particles that are neighbours belong to the same
cluster. These clusters determine the phase of regions of the simulation box.

2.5 Principal component Analysis

To make sense of the bond-orientational order parameters of the simulation, Principal Component Analysis
(PCA) is used to find linear combinations of parameters best describing the essence of the dataset. The
axes along which the dataset has the most variation is considered to be the first principle component of the
dataset, thus describing the data best. All principal components should be orthogonal. To apply PCA we
need to solve an eigendecomposition problem for N particles with j parameters, forming a N × j matrix X.
To center the dataset we subtract the mean value of every parameter from the dataset. The principal com-
ponents of X are given by the eigenvectors of XXT . The eigenvector corresponding to the largest eigenvalue
is the first principal component. In order to classify a configuration among different crystalline structures,
a PCA is performed on the main crystalline structures, bcc, fcc and hcp such that a linear space of the
principal components is spanned on which the dataset is projected. The crystalline configurations used to
span this linear space are first equilibrated at a temperature of T ∗ = 0.002 and pressure of P ∗ = 0.05, the
fluid configuration used for the PCA is equilibrated at temperature of T ∗ = 0.006 and P ∗ = 0.01.
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To make sense of the projection in the PCA space, a measure is required to what order the configuration
agrees with the crystal phases. The measure used is the Mahalanobis distance first introduced by Maha-
lanobis in 1936[7] which is a generalization of distance, how many standard deviations away a datapoint is
from the mean of the dataset. To put the distance in perspective for our dataset the Mahalanobis distance is
calculated from the center of a phase cloud in the PCA space to the center of the configuration phase cloud
in the same PCA space. The center of a phase cloud in the PCA space is calculated by taking the mean of
all the BOP values of all the particles in the configuration, projected on the principal component in both
axes. Another method that could be used is taking the circumference of all the datapoints, and to take the
center of said circumference, however this method would be very sensitive to outliers in the dataset, which
are common for the PCA phase cloud. The Mahalanobis distance for a datapoint X is calculated by:

DM (x) =
√

(x− µ)S−1(x− µ), (15)

S−1 is the inverse of the co-variance matrix, x the middle of the phase cloud in the principal component
space which we want to compare with µ the middle of the phase cloud.

The results of the projections and calculations will be further discussed in the next section where all the
results and findings of the simulations are laid out.
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3 Results

During the simulation we kept track of the particle configurations every 10k Monte Carlo steps, this way we
were able to calculate the number of solid-like particles over time. A visualization of the fraction of solid-like
particles in the system is shown in figure 3, from which it is clear which state points nucleated or stayed
fluid like.

Figure 3: Fraction of solid-like particles as a function of Monte Carlo steps.

Spontaneous crystallization did not occur for all the state points at which the Monte Carlo simulation
was running, when looking at the crystallinity of the system at the end of the simulation time. For pressure
P ∗ = 0.02, only for temperatures T ∗ = 0.002 and T ∗ = 0.003 crystallization occurred, for the other state
points at this pressure the amount of solid-like particles remained negligible and thus these state points will
not be considered for the analysis of the crystal nucleation. For a reduced pressure P ∗ = 0.05 and temper-
atures of T ∗ = 0.002, 0.003, 0.004 and T ∗ = 0.005 the number of solid-like particles increased during the
simulation, and thus some sort of nucleation occurred which we will further investigate. At the remainder
of the state points no nucleation occurred and thus these state points are not taken into consideration for
the analysis of crystal nucleation.
The state points at which no nucleation occurred within the time-frame of the simulation, the phase diagram
by Russo[13] did predict a stable crystal phase, except for state points (T ∗ = 0.006 and 0.007, P ∗ = 0.02).
However there is a slight difference for a phase diagram to predict a stable phase and for the system to
transform to this state, in the case of crystal nucleation the aforementioned nucleation barrier 6 may prevent
spontaneous nucleation. When after roughly 3 million Monte Carlo steps, we concluded that the nucleation
rate at these state points is very low. The nucleation barrier is too large to observe nucleation in a brute
force Monte Carlo simulation. In future studies we could make use of Umbrella sampling, where the system
is biased towards a nucleation event, enabling us to analyse nucleation at state points with a relatively high
nucleation barrier.
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Figure 4: Snapshots of the Gaussian core model particle configurations during the Monte Carlo simulation.
The figure on the left is a configuration of the state point (T ∗ = 0.003, P ∗ = 0.02) after 3 million Monte
Carlo steps. The figure on the right is a configuration of the state point (T ∗ = 0.002, P ∗ = 0.05) after
1 million Monte Carlo steps. The fluid like particles are displayed as small black spheres, together with
the fcc-like (red) particles, bcc-like particles (blue) and the hcp-like (green) particles. The green region is
dominated by hcp-like particles and the blue region by bcc-like particles. Due to the different orientation of
the fluid-like particle clusters compared to the rest of the simulation volume they are not considered to be
solid-like due to equation 14.

Looking at the state points where solid-like particles did form, the graph for state point (T ∗ = 0.003, P ∗ = 0.02)
immediately stands out from the rest. For the state point crystallization did not happen at once, the con-
figuration does not go near complete crystallinity, and the amount of solid-like particles seems to fluctuate
between roughly 400 and 1200. An equilibrium is reached at which the system is not completely turned into
solid-like particles. To get a better understanding of what happens during the simulation, a snapshot of
the configuration is visualized in figure 4 on the left. Notably a large cluster of fluid-like particles is formed
which is not considered solid-like, due to the averaging over the q6 value of the neighbouring particles with a
different orientation by equation 14. Two regions are formed with one being predominantly bcc-like and one
being hcp-like suggesting two separate clusters of solid-like particles started forming during the simulation,
instead of one cluster forming and growing as would be expected in Classical Nucleation theory. Therefore
this state point might not be appropriate to study crystal nucleation.

The simulation at state point T ∗ = 0.002, P ∗ = 0.05 seemed to nucleate at once but abruptly stopped
nucleating after reaching a crystallinity of about 80%, after which it gradually but slowly continued forming
solid-like particles towards complete nucleation. To gain a better understanding of what made the system
stop nucleating, the particle configuration is plotted in figure 4 on the right, displaying the simulation after
1 million Monte Carlo Steps which is during the period of stuttering nucleus growth. The fluid-like particles
show a second nucleus started growing with a slightly different orientation from the main nucleus which
is a predominantly a mixture of bcc-like and hcp-like particles, slowing down the initial nucleus growth.
This again is not in line with what is expected from nucleation growth, as described in Classical Nucleation
theory, rendering this state point not appropriate for further crystal nucleation studies.

For the remaining state points spontaneous complete nucleation did occur using the brute force Monte
Carlo simulation, all in about the same time-frame after 400k Monte Carlo steps. These state points will be
the focus of the remainder of this work. To better describe the nucleation process the averaged bond order
parameters of the configurations are calculated for which Principal component Analysis is done.
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3.1 PCA projection

The method used for classifying the crystalline structures in the configurations during simulations is Princi-
pal Component Analysis of the Bond order parameters. First a PCA is done of the basic crystal structures,
fcc, bcc and hexagonal close packed (hcp) and the fluid phase configuration to gain a better understanding
of how to classify the different crystal phases formed during nucleation. The results of the PCA of the fluid,
fcc, hcp and bcc configuration of the GCM particles are displayed in 5, where the absolute values of the
coefficients of the first and second principal components are displayed. Clearly the 4th and 6th averaged
bond order parameter are of importance in describing the crystalline structures, as expected, however the 8th
and 12th averaged bond order parameter also have a high absolute value for the PCA thus these components
are also of significance when describing the data set. As can be seen in the bar plot the first three averaged
bond order parameters are negligible when describing the crystalline structures, as expected since the first
three spherical harmonics are too simple to accurately describe the positions of point particles. Using the
coefficients of the eigenvectors of the data set, or principal components, the four configurations are projected
on the two-dimensional principal component space as can be seen in figure 5a.

(a) Absolute values of the coefficients of the first and
second principal component for the averaged
bond order parameter.

(b) q̄l of the fluid, hcp, fcc and bcc configurations projected
on the first two principal components of the dataset.

Figure 5: Principal Components analysis of averaged bond order parameters of the fluid, fcc, bcc and hcp
GCM particle configurations.

The projections of the phase clouds are well separated in the PCA space, which makes it possible to
distinguish the different crystalline structures for the configurations obtained from simulations. The fluid
phase is completely separated from the crystalline phases, and also the bcc phase is nicely separated from the
hcp and fcc phase. Therefore the PCA plane of the first two principal components is suitable for identifying
crystal structures from the fluid phase during nucleation, and also the bcc crystal structure can be identified
from the other crystal phases. However to identify whether a hcp or fcc crystal structure is present the
projection should be more seperated. By introducing the 3rd principal component, and therefore projecting
the configurations on the second and third principal component, the fcc phase and hcp phase are seperated
by the third component in figure: 6.
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Figure 6: q̄l of the fluid, hcp, fcc and bcc configurations projected on the second and third principal compo-
nent of the dataset.

Using the second and third principal component the fcc phase is nicely seperated from the hcp space
in the PCA space making the third component more suitable for classifying hcp structures from the fcc
structures. To map the overlap between the different principal components we calculated the probability
distribution of the first four principal components displaying the results in figure: 7.
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Figure 7: Probability distributions of the first four Principal components using the averaged bond order
parameters of the fluid, fcc, bcc and hcp phase of Gaussian core particles. From left top to right bottom in
order, the first, second, third and fourth Principal component.

The first principal component has very steep and sharp peeks in the probability distribution for all the
different configurations. The fluid phase has no overlap with the crystal phases, as expected. Also the bcc
and fcc phase show little overlap when using the first principal component. We can conclude that the fluid,
bcc and fcc phase are different in principle. The fcc and hcp phase are very similar in structure according to
the first principal component. When looking at the second principal component, the bcc phase has the most
affiliation with this component, distinguishing itself from the other phases. The graph for the fluid phase
shows a relatively wider peak making it more difficult to distinguish the fluid phase from the other phases
just by the second principal component. The aforementioned similarity in structure between the hcp and
fcc crystal structure is resolved by the third principal component where still relatively sharp peeks in the
probability distribution for both structures are well seperated. To accurately distinguish the hcp structures
from the fcc structures we predict the third principal component will be crucial. The bcc and fluid phase fail
to show characteristics in the third principal component probability graph. Each phase is predicted to be
able to accurately be distinguished using the right set of principal components, however this does not stop us
from looking further into the probability distributions of the other principal components. The other principal
components, for example the fourth, are all not interesting when describing the crystalline structures. The
phases almost completely overlap and get wider for each iteration of higher principal component. For the
remainder of this work we will focus on the first three principal components.
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Figure 8: Projection of averaged bond order parameters of simulations onto PCA space of first two principal
components. The PCA space is spanned by running Principal Component Analysis on configurations of
fluid, fcc, bcc and hcp ordered particles. Left-top state point T = 0.002, P = 0.02 after 3640k Monte Carlo
steps, right-top state point T = 0.003, P = 0.05 after 3290k Monte Carlo steps, Left-bottom state point
T = 0.004, P = 0.05 after 1990k Monte Carlo steps, right-bottom state point T = 0.005, P = 0.05 after 1990k
Monte Carlo steps. The light grey cloud denotes all the configurations during the duration of the simulation,
to get an understanding of the regions of phase space the configuration passed through. The dark points are
the configuration at the final snapshot of the simulation.

The principal components of the averaged bond order parameters can distinguish the different crystal
phases for the configurations. To track what type of crystal structures form during the nucleation of our
simulations the averaged bond order parameters of the configurations are projected onto the PCA space
spanned by the first two principal components. This way it is possible to accurately distinguish solid-like
from fluid-like particles, and to distinguish the bcc phase from the fcc and hcp phase. Afterwards the hcp
and fcc phase can be distinguished using the third principal component.

The result of the projection of the state point T ∗ = 0.002, P ∗ = 0.02 is shown in figure 8 top-left where
snapshots of the configuration during the nucleation are projected on the PCA space. From the snapshot it
is not clear at what crystalline phase the configuration ended at, the projected PCA cloud ends up between
the bcc and fcc,hcp clouds, only slightly overlapping with the crystal phases. The projected cloud of this
configuration is relatively large and sparse compared to the other phase clouds. This indicates the structure
for the configuration consists of a wide range of BOP values which is not as expected for a bulk crystal
structure, but the configuration does consist of solid-like particles. The expected behaviour for the state
point T ∗ = 0.002 and P ∗ = 0.02 is to nucleate to a bcc crystal first before nucleating as a fcc crystal like
Russo et al.[russo] and others found.
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The snapshot for state point T ∗ = 0.003, P ∗ = 0.05 for which the bcc phase is the stable phase, displayed in 8
shows a similar behaviour, the PCA cloud does not overlap well in the first and second principal component
space. Running the simulation for a longer period of time does not seem to change the structure of the
configuration when looking at the PCA cloud which does not seem to change anymore. To make a better
distinction between the hcp and fcc like particles in the configuration, the set of averaged BOP values is
projected onto the first and third principal component in figure 9:

Figure 9: Projection of averaged BOP onto the first and third Principal Component. State point
T = 0.002, P = 0.02 (left) and T = 0.003, P = 0.05 (right). The light grey cloud denotes all the configu-
rations during the duration of the simulation, to get an understanding of the regions of phase space the
configuration passed through. The dark points are the configuration at the final snapshot the simulation.

In projecting onto the third component, the distinction between the fcc and hcp structure became more
clear. However the projections of the state points did not have a better overlap with the phase clouds. For
the state point (T ∗ = 0.003, P ∗ = 0.05) the configuration cloud is more compact than that of state point
(T ∗ = 0.002, P ∗ = 0.02), suggesting the BOP values are more representative than the more sparse phase
cloud. Still the results from the projections for these state points have very few overlap with the known
stable crystal structures, and most of the projected BOP values ended up in between the predicted phase
clouds. We suggest that the used stable structures of the PCA space are too different in structure than the
formed crystal configuration of the simulations, since the overlap of the configuration is minimal. With the
present PCA projection it is not suitable to quantify the degree of bcc, hcp or fcc ordering for these two
state points. Considering we had only one simulation in the stable fcc region to successfully nucleate, we
suggest more simulations should be done less close to the border between the fcc and bcc stable region. For
example a state point T ∗ = 0.001, P ∗ = 0.01 could be insightful.

The state points T ∗ = 0.004, P ∗ = 0.05 and T ∗ = 0.005, P ∗ = 0.05 display similar behaviour in the PCA
space as displayed in figure 8 bottom-left and bottom-right resp. The configuration has a good overlap with
the bcc phase cloud in the PCA space after nucleating from the fluid phase. After 2 million Monte Carlo
steps we conclude the state points have nucleated to the meta stable bcc phase. The fluid phase quickly
nucleated to the bcc phase without much of a diversion, but rather a straight line towards the bcc phase. To
better understand how much the different configurations overlap with the phases, the Mahalanobis distance
is calculated from the center of the configuration PCA cloud towards the center of the respective phase
clouds. The distance is displayed over time in figure 10.
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3.2 Mahalanobis distance

Figure 10: Mahalanobis distance in the first and second Principal Component space. The distance is
calculated from the middle of the relatives phase clouds. State points T = 0.002, P = 0.02 (top-left),
T = 0.003, P = 0.05 (top-right), T = 0.004, P = 0.05 (bottom-left) and T = 0.005, P = 0.05 (bottom-right)

For the state points T ∗ = 0.002, P ∗ = 0.02 and T ∗ = 0.003, P ∗ = 0.05 the Mahalanobis distance in figure:
10 does not clarify any further what type of crystal structure formed during the simulation. The values for
the Mahalanobis distance relative to the bcc, fcc and hcp phase do not variate much although the fcc and
hcp phase do seem to be closer than the bcc crystal phase. Noticeable is the Mahalanobis distance to the
fluid phase decreasing over the first 500k Monte Carlo steps of the simulation, where we expect it to be zero
to the fluid phase at the start, since the nucleation of the configuration starts from the fluid phase. This
means that the averaged BOP values of the fluid phase and the starting configuration do differ apparently,
this discrepancy is probably due to the starting configuration which has a relatively large volume compared
to the fluid phase used in the PCA projection.
The fluid used for the simulations is not an equilibrated metastable fluid at the state point which the
simulation is started at. By running the simulation the fluid is first equilibrated at the state point, making
the the configuraiton better overlap with the fluid phase in the PCA space. While the simulation is running,
the configuration is compressed, decreasing the volume of the simulation box. After the configuration is
compressed enough, the particles start ordering itself in a lower free energy state at which the phase starts
nucleating, and thus the ordering increasing which is reflected in the Mahalanobis distance to the fluid phase
rapidly increasing.
A snapshot of both state points is displayed in figure: 11 as the top two configurations. The hcp-like and
fcc-like particles are much more present than in the bottom two configurations where the bcc-like particles
are dominant. Although the simulation volume does seem to be less homogeneously nucleated, with cluster
of hcp-like and fcc-like particles distributed in clusters over the simulation volume.
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Figure 11: Snapshots of the configurations at the end of the simulation. State points T = 0.002, P = 0.02
(top-left), T = 0.003, P = 0.05 (top-right), T = 0.004, P = 0.05 (bottom-left) and T = 0.005, P = 0.05
(bottom-right). The fluid like particles are displayed as small black spheres, together with the fcc-like
(red) particles, bcc-like particles (blue) and the hcp-like (green) particles. Two top two snapshots showing a
mixture of mostly hcp-like and fcc-like particles, where the bottom two snapshots are dominated by bcc-like
particles.

For the state points T ∗ = 0.004, P ∗ = 0.05 and T ∗ = 0.005, P ∗ = 0.05 the Mahalanobis distance in
figure:10 shows a much clearer picture of the nucleating phase than just the PCA projection of the config-
uration. It is clearly visible, after the formation of solid-like particles, thus the rapid decrease of fluid-like
particles, the bcc-like particles have formed. The Mahalanobis distance of both the configurations to the bcc
phase remain stable, with little fluctuations, but not completely zero. The simulated configuration probably
will never completely overlap with the bcc phase and thus the distance will remain non-zero.
The configurations are displayed in the bottom half of figure 11, with the bcc-like particles being dominantly
present over the other particles. The bcc-like particles seem to homogeneously have distributed itself over
the simulation volume, giving the indication that the majority of the crystal formed is bcc stacked. we
conclude that the configuration for this state point nucleated to a bcc crystal in the bcc stable phase space
without Ostwald step rule[10]. This conclusion is in line with the findings of Russo et al.[russo] who found
in their experiment the particles in the stable bcc phase to nucleate to the bcc phase.
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4 Conclusion and outlook

The understanding of the crystallization process of the GCM particles is important, since these type of
particles are very common in nature and every day life, and should be better understood.
Based on literature we expected the GCM fluid to nucleate via a bcc order structure into a fcc crystal,
and for the nucleation in the bcc phase region to happen straight into a bcc crystal without Ostwald’s step
rule. A principal Component Analysis was performed to distinguish fluid, bcc, fcc and hcp like particles,
which deemed possible when looking at the probability distributions of the different principal components.
However when projecting the simulated configurations for the different state points, only the state points
nucleating in the bcc stable phase region gave convincing results, where the resulting phase cloud overlapped
nicely with the bcc cloud in the PCA space. For the nucleation in the fcc stable phase region, the PCA
projection showed fewer promising results, forming a projection between the known stable crystal structures
in the PCA space, suggesting a mixture of the different crystal structures had formed.
To quantify the results of the PCA projection, the Mahalanobis distance in the PCA space was calculated
between the middle of the configuration cloud and the respective stable phase clouds. Using the results
of the Mahalanobis calculation we concluded the GCM fluid nucleated into a bcc structured crystal in
the bcc stable phase region. Although the PCA projection method deemed insightful in quantifying the
classification of the bcc ordered crystal, the difficulty in identifying the mixture of crystals formed, showed
evidently. More investigation needs to be done to asses the problems and obstacles of crystal ordering
during crystal nucleation. Also more simulations should be run at lower pressure, deeper in the stable fcc
phase region to be more certain it was not a borderline case between the bcc and fcc stable phase region
that was discussed. The problems we faced during the analysis of the results show that the crystallization
process should be assesed with great care, taking into consideration different analysis models to accurately
distinguish the different crystal ordererings.
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