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Chapter 1

Introduction

In modern cosmology weak lensing has been used to constrain cosmological pa-
rameters. Weak lensing is a phenomenon where small distortions in how galaxies
look are caused by the gravitational field in between the source of the light and
the receiver of that light. These distortions are measured as shape (shear) and
size (magnification) correlations between galaxies that lie in the same region,
because their light travels through the same field. These correlations are then
used to tune cosmological parameters. Similar shape correlations can, however,
be caused by the intrinsic alignment of galaxies (Ciarlariello and Crittenden
2016). In much the same way, the size correlations of these galaxies can also
be different from the weak lensing signal by having intrinsic size correlations
between galaxies (Joachimi, Singh, and Mandelbaum 2015). These correlations
would, in that case, find their origin in other factors than gravitational lensing,
and thus contaminate the tuning of parameters.

A good way of seeing whether an elliptical galaxy is magnified is the Fun-
demental Plane (FP). This is a relation between two measurable factors and the
size of a galaxy, which can be used as a guideline for actual size and compared to
observations. Even so, if a galaxy deviates from the FP because of other factors
than the lensing, lensing measurements might be impacted. As has been seen
in previous research intrinsic size correlations do cause galaxies to significantly
deviate from the FP (Joachimi, Singh, and Mandelbaum 2015).

In this thesis we aim to see whether this effect that has been measured in
observations from the Sloan Digital Sky Survey (Joachimi, Singh, and Mandel-
baum 2015) can also be measured in simulations. We use data obtained from the
Horizon-AGN simulations to recreate results from Joachimi, Singh, and Mandel-
baum 2015 and compare these with the observations. We find evidence for a
positive correlation between the position of galaxies and the deviation of their
size from the FP in the simulation, but not for intrinsic size auto-correlation.
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This is in disagreement with measurements of the real sky (Joachimi, Singh, and
Mandelbaum 2015), which might by explained by systematic errors or difference
in datasets.
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Chapter 2

Data

2.1 Horizon-AGN Simulation

Our data are gathered from the Horizon-AGN simulation. This gave us the
advantage of not having to take in to account several factors that might impact
the values measured for certain properties when using real life measurements.
For example we did not have to compensate for gravitational lensing or for
peculiar velocity when looking at distances. The first would change the observed
size (and shape) of galaxies, the second would make line-of-sight distance
measurements by redshifts imprecise. The simulation comes with a downside
however, because its minimum resolution is 1 kpc (Y. Dubois et al. 2014). Sizes
nearing that value are thus not reliable.

The Horizon-AGN simulation is run in a periodic cube where each side is
100Mpc/h long. In the simulation a ΛCDM model is used, so a universe
dominated by a cosmological constant and cold dark matter. The total
matter density Ωm = 0.272, the dark energy density ΩΛ = 0.728, the baryon
density Ωb = 0.045 and the Hubble constant H0 = 70.4kms−1Mpc−1, so that
h = H0

100kms−1Mpc−1 = 0.704. In total there are 10243 dark matter particles and
6.6 × 109 gas particles. These are started off at the time of emission of the
cosmic microwave background and are evolved until now, with snapshots taken
at different ages (Yohan Dubois et al. 2016). The snapshot that was used in this
thesis is snapshot 761 which has a redshift of 0.06.

When enough gas particles are close enough to each other, stars are formed
which can lead to both type Ia (where the energy source is fusion of carbon (and
oxygen) to iron) and type II (where the energy source is gravitational potential
energy) (Ryden and Peterson 2010) supernovae and to the creation of black
holes (Yohan Dubois et al. 2016). From which active galactic nuclei (AGN) are
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stimulated. An AGN is a black hole whose surroundings send out energy lost
by falling into the black hole. In the simulation this is done by either isotropic
injection of thermal energy into the surrounding gas, or by sending a cylinder of
energy in two directions with a speed of 104kms−1. These supernovae and AGN
provide the otherwise empty intergalactic medium with warm and metal-rich
gas (Y. Dubois et al. 2014). The AGN are necessary to form elliptical galaxies,
without AGN these galaxies reform discs instead (Yohan Dubois et al. 2016).

A program called the AdaptaHOP finder (Aubert, Pichon, and Colombi
2004, updated by Tweed et al. 2009) was used to make a catalogue of the
galaxies. In this, 20 neighbours of each star particle are used to compute the
local density. If the density is high enough (178 times the average total matter
density), the structure big enough (2 kpc radius) and it consists of at least 50
stellar particles, it is added to the galaxy catalogue (Y. Dubois et al. 2014). In
the snapshot we used 126361 galaxies were identified.

The information about these galaxies includes their mass (expressed in amount
of stellar particles), their galaxy level (whether the galaxy is a substructure of a
larger one or not), the position in the box, the effective radius, the radial velocity
divided by the radial velocity dispersion, the r-band absolute magnitude, the
velocity dispersion itself and the length of the three axes of the galaxy. The
effective radius being equal to the half-mass radius since each stellar particle
emits approximately the same amount of light (as can be seen in Figure 2.1) and
has the same weight. These physical quantities are known exactly whereas data
from observations is contaminated by light or dust, projection on our night sky
or gravitational lensing.

2.2 Data Cuts
In order to put this data to use, we needed to select which galaxies we wanted.
We wanted to select the elliptical galaxies because we could use the Fundamental
Plane to estimate their size (more on this in section 3.1). Elliptical galaxies
are galaxies that look roughly like an ellipse, in contrast to spiral or irregular
galaxies. Ellipticals consist mainly of older stars and are thus redder. They
can withstand their own gravitational pull by being pressure supported. This
means that the random movements of the stars within the galaxy keep it from
collapsing. Since pressure supported galaxies have a more random distribution
of star speeds than other types of galaxies, a good way to find them is selecting
for a lower average speed over velocity dispersion (v/σ) (Carroll and Ostlie 2013).
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Figure 2.1: Amount of particles vs luminosity. Only galaxies with more than
4000 particles are shown, which is only one of the cuts made to the general
computation. Luminosity is calculated via the formula L = L0 × 10−0.4×M , with
L0 the zero point of the absolute magnitude scale 3.01 × 1028W, and M the
r-band absolute magnitude of the galaxy, obtained from the simulation. This
graph shows an approximate linear relation between the amount of particles and
the luminosity of a galaxy in the simulation.
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Other factors that needed selection were the galaxy level (no substruc-
tures), minimal mass (amount of particles) and minimal size (radius). The
reason for the last two cuts is the resolution of the simulation being 1 kpc
(Y. Dubois et al. 2014). Any galaxies nearing that could not be fairly measured.

The following data cuts were eventually implemented, histograms of all galax-
ies and the selection can be seen in figure 2.2:
Galaxy level < 2
Circular velocity divided by velocity dispersion < 0.6
Amount of stellar particles > 3000
Measured radius > 6kpc/h
These parameters were chosen because they best selected elliptical galaxies and
gave a good fit for the fundamental plane. As can be seen in image 2.3, the
selected galaxies are mostly distributed over galaxy dense regions. This means
the selection is not a good representation of the whole space, but this is not an
issue we could avoid. After these cuts 2431 galaxies remained.
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Figure 2.2: Histograms of the properties on which was selected. All 126361
galaxies in the simulation are graphed, except the 10016 galaxies which con-
tained more than ten thousand particles which are excluded from the bottom left
histogram. The red dotted lines show a maximum and the green dotted lines show
a minimum for the selection. It is clear to see that elliptical, pressure supported
galaxies are relatively rare.
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Figure 2.3: All galaxies in the simulation and the selected ones. All galaxies in
the simulation are plotted in purple and the selected galaxies are plotted in lime.
This is ignoring the z-axis and is thus a projection on the x-y plane. This is also
clearly showing that the selected galaxies only cover the galaxy dense regions.
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Chapter 3

Method

3.1 The Fundamental Plane

In order to explain how these selected galaxies were further processed, some more
background information on how the Fundamental Plane works is first needed.
The Fundamental Plane (FP) is a relation between the effective radius (Reff),
the central radial velocity dispersion (σ) and the surface brightness of a galaxy
(I). It can be used to predict the size of a galaxy based on these measurable
parameters. Size correlations can be measured by comparing the measured size
of a galaxy to the size predicted by the FP. Because we wanted to see whether
these size correlations are also present in an unlensed sample, we need to also
calculate the FP, which is the following relation:

logReff = a logσ + b log I + c (3.1)

This relation has been used to describe elliptical galaxies because their pres-
sure supported nature lends weight to the assumption that their sizes can be
represented by the virial theorem. Derivations from the virial theorem can lead
to a similar plane in R− σ− I-space. These derivations would give us a = 2 and
b = −1 for a and b in equation 3.1 (Saulder et al. 2013). In practice these values
are an inaccurate representation of the actual relations between the quantities.
Departures from the virial theorem expectation could be due to underlying as-
sumptions like having a galaxy in virial equilibrium, the effective radius being the
same as the virial radius or the line-of-sight velocity dispersion being equal to the
velocity dispersion (Bernardi et al. 2003). This is however still a matter of debate
(Saulder et al. 2013). Selection of the samples also impacts the parameters and
this is why the Fundamental Plane is generally fitted to the sample, and sample
specific. (Saulder et al. 2013)
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3.2 The Pipeline
To convert the data obtained from the simulation into useful information we
have written a Python file to process the data, a so called pipeline. The pipeline
consists of a few parts: reading and selecting the data, fitting the Fundamental
Plane, calculating the terms of the correlations for different measurements, calcu-
lating the correlation functions, estimating the error bars for the correlations and
finally plotting the correlations. The selection of the data was already discussed
in section 2.2. In this section I will elaborate on most other parts of this pipeline.

3.2.1 The Fundamental Plane

A few approximations were made when fitting the FP, mostly for ease of com-
puting and because of time constraints. To start with, although the FP uses the
surface brightness (I) instead of the surface mass (µ), the mass to light ratio is
linear (as can be seen in Figure 2.1). So these are the same except for a factor
which will be absorbed by the fitted coefficient, so we used µ. Furthermore, the
approximation was made that all galaxies are circular, so surface mass was cal-
culated by dividing the mass of the galaxy by π times the square of the galaxy
radius. As can be seen in figure 3.1, most ellipticities are on the lower end, so we
feel this was not too bold of an assumption. These ellipticities were calculated
via the formula e = a−b

a
where e is the ellipticity, a is the major axis and b is the

intermediate axis of the galaxy.

3.2.2 Fitting the Fundamental Plane

The Fundamental Plane was fitted using a function which uses non-linear least
squares to fit a function to data. This fit was done with the formula for the
FP, equation 3.1, with surface mass (µ) instead of surface brightness (I). The
parameters from this fit were then used to calculate the expected sizes of the
galaxies, based on the Fundamental Plane. The ratio λ between the actual size
and the size predicted by the Fundamental Plane was then calculated and centered
on zero. A positive (negative) deviation from λ = 0 would then signify a galaxy
that is bigger (smaller) than predicted by the FP. This method of quantifying a
deviation from the FP is taken directly from Joachimi, Singh, and Mandelbaum
2015.

λ =
Rmeas

RFP
− 1 (3.2)

The parameters obtained for the fit of the FP are:
a = 38.99± 0.41

b = −12.97± 0.22
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Figure 3.1: Histogram of the ellipticities of the selected galaxies. Less than
five percent of selected galaxies have an ellipticity higher than 0.5, more than 77
percent have ellipticities has an ellipticity lower than 0.3. An ellipticity of 0.3
would mean the surface mass is off by a factor of 1

7
.
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Figure 3.2: Correlation matrix for the three parameters of the Fundamental
Plane fit.

c = 39.57± 1.72

The correlation matrix between these parameters can be seen in image 3.2.
Comparing this to the expectation we see that, like we expected from the virial
theorem derivation, there is a negative correlation between the radius and the
surface brightness. We also see that there is a positive correlation between the
radius and the velocity dispersion. These are very different parameter values
than predicted via the viral theorem (which were a = 2, b = −1 (Saulder et al.
2013)), but still give a good fit as can be seen in figure 3.3. The corresponding λ

values can be seen in figure the inline graph in figure 3.3.

3.2.3 Correlation Estimators

We were interested in how this measure λ correlates both with itself (wλλ) and
with the positions of galaxies (wgλ) to see whether galaxies with certain λs cluster
more. In other words: we wanted to see whether there was a statistical relation
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Figure 3.3: Radius as predicted by the Fundamental Plane versus radius mea-
sured. Each blue point is a galaxy that adheres to the selection made in section
2.2. The orange line indicates the x = y line we expect the points to be centered
around. The reason for the flat bottom is the requirement for the selected galaxies
to at least have a radius of 6 kpc/h. The inset graph shows the associated λ val-
ues as calculated in equation 3.2. Nine outliers that had λ bigger than 1 are not
shown, but are included in analysis. This distribution of λs can be approximated
by a gaussian distribution with σ = 0.15 as shown with the red line.
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between these statistics. We also looked at the clustering of galaxies (wgg) to help
with interpretation of the results. To calculate the correlation functions, we fol-
lowed Joachimi, Singh, and Mandelbaum 2015 and used the following estimators:

wgg =
DD − 2DR +RR

RR
(3.3)

wgλ =
FλD − FλR

RR
(3.4)

wλλ =
FλFλ

RR
(3.5)

Where D is the set of galaxies used and R are a set of points which are
randomly distributed over the same area D. The random points are used to
compare the possible clustering signal to the random chance that that many
pairs were close together and to normalise the signal to make it independent of
the sample size. To reduce noise, five times as many random points as galaxies
are used which was then re-normalised.

XY means a count of all pairs with one galaxy from X and one galaxy from
Y that fall within a certain bin in transverse separation. For XY with two sets
of random points (RR) equation 3.9 was used for computing efficiency.

FλX and FλFλ are defined by the formulas below where the sums are over all
galaxies in the respective samples and where [j|i] is equal to one if two galaxies
are within the transverse separation bin and zero otherwise.

FλX =
∑

i∈F,j∈X

λi[j|i] (3.6)

FλFλ =
∑

i∈F,j∈F

λiλj[j|i] (3.7)

All of these bins are in practice logarithmic bins of 0.32 in logarithmic space
so we can see the correlations at different scales. The precise bin size of 0.32 was
chosen to more closely resemble the figures in Joachimi, Singh, and Mandelbaum
2015.

The reason why transverse separation is used is because the positions on
the projection on the sky are easier to obtain than the distance. The distance
would have to be computed by measuring the redshift of a galaxy and con-
verting that to distance within the context of an assumed cosmological model.
Transverse separation is also not influenced by redshift space distortion, which
line-of-sight separation is influenced by. The line-of-sight distance to a galaxy
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might be bigger or smaller than the redshift suggests. This can be caused by the
peculiar motion of the galaxy, which is called redshift space distortion.

Since we use a simulation we can get the actual positions and shapes
and thus would not experience these problems. We however chose to use the
transverse distance because this makes our results more easily comparable to
the results in Joachimi, Singh, and Mandelbaum 2015 which uses observations.
Using three-dimensional separation might be an interesting study for future work.

The transverse distance is taken as the distance in the x-y plane of the
simulation, but each pair count described above also takes into account a
maximum line-of-sight distance, which is the separation in the z direction of
the simulation. Previous work has employed linear bins for the line-of-sight
distance, which are then integrated over (Joachimi, Singh, and Mandelbaum
2015), but since this is equivalent to using a maximum and minimum distance,
we simply restrict to pairs within a maximum line-of-sight separation. This
binning followed by integrating would however be necessary for non-linear (e.g.
logarithmic) bins.

The correlation functions were calculated using k-dimensional trees, which
are a data structure used to order points. These can be used to find which
points are within a certain distance of each other more rapidly than a brute
force method would. An example of the code can be seen in figure 3.4.

The clustering signal wgg was taken for both positive and negative λ to see
any systematic differences in clustering between galaxies with λ < 0 and λ > 0,
using the statistic:

∆gg =
wgg(λ > 0)

wgg(λ < 0)
− 1 (3.8)

3.2.4 Comparison Between Methods

To make sure these computations were done correctly we compared the amount
of points counted within bins of transverse separation for randomly distributed
points counted by three methods: using the tree functions, using a brute force
method we built and using the value one would expect analytically from randomly
distributed points.

The function for the analytical expectation was constructed as follows: It was
assumed that, with enough points, a random distribution would net the same
result as a uniform distribution and thus the latter could be assumed. This meant
that the amount of pairs in a certain bin would be equal to the total amount of
points times the average amount of other points within a circle around a point
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Figure 3.4: A code snippet showing the process of counting how many pairs of
galaxies are within a certain transverse separation bin. It returns a list of the
amount of pairs that have a separation between 10i and 10i+stepsize, where i goes
from low to high in steps of stepsize. DeDList is used to store the count of
pairs for each bin in a list. The variables shell1 and shell2 both store a list of
lists of indices. Each of the sublists refers to a galaxy in the group of galaxies
in tree1. Each sublist consists of the indices of galaxies in the group of galaxies
in tree2 that is closer than h × 10i or h × 10i+stepsize respectively to the galaxy
in tree1 that sublist is associated with. indx then stores which galaxies are only
in either shell1 or shell2 (where shell1 is always a subset of shell2) and are
also within the maximum line-of-sight distance. zs is a list of sets where each set
corresponds to a galaxy in the group of galaxies in tree1 and each set contains the
galaxies in the group of galaxies in tree2 that are within maximum line-of-sight
separation (30Mpc) of the corresponding galaxy from tree1. DeD is a counter
for the amount of pairs within a certain bin and is added to the end of DeDList
after a loop over all galaxies in tree1 is completed..
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with radius equal to the upper limit of the bin, minus the same calculation but
with the radius being the lower limit of the bin. We wanted this function to also
be useful when calculating how many objects of one sample lie within a bin of
transverse separation with another sample and we wanted to make exclude the
point itself in the average amount of points within a circle around that point.
This led us to equation 3.9:

C =
(N1 − 1)×N2

d2
× π(r21 − r22) (3.9)

Where C is the amount of pairs in the bin, N1 the amount of points in sample
1, N2 the amount of points in sample 2, d the length of the side of the box, r1
the maximum range of the bin and r2 the minimum range. This equation is also
used for computing RR in functions 3.3, 3.4 and 3.5.

The comparison of different counting methods at first led us to believe
the tree method and the analytical method were in agreement, as can be seen
in figure 3.5. This prompted us to conclude we were computing the amount of
pairs in the bins correctly and that the brute force method would need more
development. We continued using the tree method for everything except the
counts of pairs which used two random samples (RR in equations 3.3, 3.4, 3.5).
In those cases we used equation 3.9.

However, a later recreation of this graph, with updates to most parts of the
code used, gave us figure 3.6. As the figure shows, the by tree and analytically
method are no longer in agreement. The fact that the deviation between both
methods is a constant logarithmic separation suggests a systematic error in either
our usage of the tree functions or our analytical calculations. We used both of
those methods to calculate our results and thus conclude there is most likely a
systematic error in our results. Since both methods seem to scale correctly with
the size of the bins, we still believe our results to have value, just that they might
be off by a factor.

3.2.5 Error Calculation

The standard error of the correlations was calculated using jackknife resampling.
Jackknife resampling is a technique in which a part of the data is removed, after
which the statistic of interest (x) is calculated with the available data and then
the data are placed back. This is repeated for all subsamples of the data and
these are then treated as individual measurements (xi in the error calculation.
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Figure 3.5: The amount of points within bins of transverse separation, the
upper limit of which is on the x-axis, calculated by three different methods. An
arbitrary amount of points were randomly distributed over a 100/h by 100/h
square. The three different methods are the brute force method we designed
ourselves, the method by using tree functions as shown in figure 3.4 and the
analytical expectation as described in equation 3.9. The blue points cannot be
seen for the last three points as they are under the green ones, which shows us
agreement between the two associated methods. This is an older version of the
graph shown in figure 3.6 which uses updated code and a different amount of
points.
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Figure 3.6: The amount of points within bins of transverse separation, the up-
per limit of which is on the x-axis, calculated by three different methods. An
arbitrary amount of points were randomly distributed over a 100/h by 100/h
square. The three different methods are the brute force method we designed
ourselves, the method by using tree functions as shown in figure 3.4 and the an-
alytical expectation as described in equation 3.9. The blue and green points are
not in agreement and thus show an inconsistency in computation. The inconsis-
tency suggests a bug in either computation method (or in both). This is a newer
version of the graph shown in figure 3.5 which uses older code and a different
amount of points.
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The Jackknife error is expressed as: (McIntosh 2016)

SE(x)jack =
(n− 1

n

n∑
i=1

(xi − x(.))
2
)1/2

Where x(.) is the avarage of the Jackknifed samples and n is the amount of
Jackknifed samples.

In our case, eight subsamples were taken by removing a cube with sides of
50 Mpc/h from a different corner of the simulation box (which has sides of 100
Mpc/h) for each subsample. Correlations were then computed for each jackknifed
set of data after which the covariance matrix between the subsets was computed.
The diagonal of this matrix is the variance (P.J.S. van Capel 2020) and this
easily gave us the jackknife errors by normalising the covariance and then taking
the square root of the variance.
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Chapter 4

Results

4.1 Correlation Estimators

The correlation estimators described in equations 3.3, 3.4 and 3.8 are plotted in
figure 4.1. The last seven points of the bottom graph are also plotted in figure
4.2 to better see their actual values.

wgλ is positive, which suggests that intrinsically large galaxies (λ > 0 are
more likely to be located in galaxy-dense regions than intrinsically small galaxies
(λ < 0). Comparing this to the graph showing the same estimators in Joachimi,
Singh, and Mandelbaum 2015, we see that they concluded the opposite: Their
wgλ is negative and shows a much more significant deviation from zero.

We see that R×wλλ does not clearly deviate from zero and fluctuates to both
sides of zero. We thus conclude there is no evidence that smaller-than-expected
(λ < 0) galaxies are closer to other smaller-than-expected galaxies or that bigger-
than-expected (λ > 0) galaxies are closer to other bigger-than-expected galaxies.
When comparing this to Joachimi, Singh, and Mandelbaum 2015 we see that they
did find a significant positive signal that does suggest galaxies with λ values of
the same sign are closer together.

We do see similar trends between R × wλλ and R × wgλ in that from the
fourth point, they trend upwards with significant errors, than briefly back down,
and then up again. This might suggest that there is one or two specific ranges
in which there is a relation between λ and clustering. But since we are unsure
whether this signal is significant, we are hesitant to conclude this.

The most notable thing about ∆gg is that it clearly trends towards zero, as
can also be seen in 4.2. Except for the first three bins, it can be concluded that
there is no significant difference in clustering between galaxies with positive and
negative λs. This is consistent with the absence of a high amplitude signal for
either wλλ or wgλ Comparing this to Joachimi, Singh, and Mandelbaum 2015
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again, we see that they did find a positive correlation between clustering and
negative λs.

4.2 Concerns
The three bins with smallest R have most likely too small of an maximum distance
between galaxies to have them be useful. For these bins only 2, 20 and 80 pairs
were counted respectively. This is in line with expectations according to the
analytical solution for randomly distributed galaxies of equation 3.9, which gives
us 3, 15 and 80 respectively. In future work this might be remedied by using a
broader selection of galaxies, thus also giving significant data for closer pairs.

The last bin, with biggest R, might also have to be ignored, since its maximum
R (100Mpc) is nearing the box size of the simulation (100Mpc/h ≈ 142Mpc).
This might lead to pairs being counted more than once.

All of these results are preliminary because the inconsistency between the
expectation of what our counting methods should result in and what we
analytically expect to see, as outlined in section 3.2.4. A continuation of this
study might find more conclusive results or results closer to those found in
Joachimi, Singh, and Mandelbaum 2015. For now, we can only speculate on the
impact of the difference between the analytical formula and our counting method.

As mentioned in section 3.2.1, we assumed circular galaxies to calculate
the surface mass because of time constraints. Since the shapes of the galaxies are
obtainable, future work might want to calculate the actual surfaces of galaxies.
This would in theory improve the FP fit and with it, the precision of this whole
study.
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Figure 4.1: Top/Middle: Correlation estimators between galaxy density and
galaxy size wgλ as described in equation 3.4 and correlation estimators between
the galaxy size and the galaxy size of nearby galaxies wλλ as described in equation
3.5 respectively. Both are in bins of transverse separation between 10−1.5−102Mpc
and multiplied by the upper limit of their respective bins. Bottom: Ratio between
the clustering correlation of galaxies that are bigger than expected (λ > 0) and
galaxies that are smaller than expected (λ < 0), as described in equation 3.8, in
bins of transverse separation between 10−1.5 − 102Mpc. The last seven points are
also plotted in figure 4.2. These graphs are an attempt at recreating figure 4 in
Joachimi, Singh, and Mandelbaum 2015 with a different data set.
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Figure 4.2: Ratio between the clustering correlation of galaxies that are bigger
than expected (λ > 0) and galaxies that are smaller than expected (λ < 0) as
described in equation 3.8 in bins of transverse separation between 0.76−102Mpc.
These and three points with smaller separations are also plotted in the bottom
graph in figure 4.1.
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Chapter 5

Conclusion

We have shown, with reservation, there is a positive correlation between the
clustering of galaxies and the deviation of their size from the FP in the Horizon-
AGN simulation. This is in contrast with real observations where this correlation
is negative (Joachimi, Singh, and Mandelbaum 2015). We have also found no
evidence for auto-correlation between deviations of size from the FP of nearby
pairs of galaxies in the Horizon-AGN simulation. This again contrasts with real
observation where this correlation was found to be present and positive (Joachimi,
Singh, and Mandelbaum 2015).

To do this we have applied several techniques including: Choosing data
cuts, fitting functions to data, automating processes while still being able to
change parameters, developing analytical calculations for random pair counts,
comparing different methods of computing the same statistic for validation,
computing correlation functions and estimating errors.

Our results suggest the Horizon-AGN simulation is not a good way to re-
search the impact of intrinsic sizes on measurements. Alternatively, it suggests
intrinsic sizes do not necessarily adhere to the correlations as found in Joachimi,
Singh, and Mandelbaum 2015, but that they might vary more per dataset.
More realistically, it means the bugs in our computations have made our results
unreliable and this study is simply a good step in answering whether the above
statements are true.

In future work one could repeat this study without the bugs and see whether
there are intrinsic sizes in the Horizon-AGN simulation. Another good way to
improve upon our results would be to calculate the surface masses using elliptical
surfaces for the galaxies instead of the circular surface approximation we have
used. We believe the difference to be small, but it would be an improvement
because it is closer to reality.
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Future work could also repeat this study with different data constraints.
Looser data constraints (and thus more galaxies) might lead to more detectable
signal, especially at smaller separations.

It might also be interesting to try this method with galaxies that are not
necessarily elliptical. The theory does not suggest other galaxies will follow the
FP, but finding a similar relation or fitting a FP anyway might still lead to finding
intrinsic sizes in other types of galaxies.

Another interesting extension of this study might be to repeat these measure-
ments for snapshots of the simulation with higher redshifts and include a redshift
term in the FP, as done in Joachimi, Singh, and Mandelbaum 2015, and see how
that would impact the computed correlations.

Seeing as a new Horizon simulation with a box size of 1049 comoving Mpc3

was ran (Lee et al. 2020), this study might bear repeating for the new simulation.
The bigger box size would decrease the possible influence of the periodicity and
provide more data for measurements of large scales, such as in this study.

Since we computed our correlations in transverse separation bins, one could
also expand upon our results by using bins that use three dimensional separation.
Using transverse separation is very useful for real life observations as explained
in 3.2.3, but these advantages are not present for simulations. Fully using the
third available dimension will give more information.

Lastly, more information might be gathered on the relation between the cor-
relations and the matter density in the region around the galaxies, not just the
galaxy density. Some model is proposed in Joachimi, Singh, and Mandelbaum
2015, but where they are using theoretical models, one could also use the abun-
dance of information in a simulation to their advantage and measure the matter
density in the simulation directly and compare that to the theoretical density and
look at the correlation between these densities and intrinsic sizes.
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