
UTRECHT UNIVERSITY

THESIS REPORT

How can the knowledge of lottery tickets
be used to adapt SynFlow to early pruning

after pre-training?

Author:
Cas Bolwerk
6231489

First supervisor:
Dr. M. (Thijs) van Ommen

Second supervisor:
Dr. K. (Krisztina) Szilagyi

Thesis report for 7.5EC for the Artificial Intelligence bachelor

July 2, 2021

ii

Abstract

This research focuses on adapting an early-pruning algorithm called SynFlow to
prune after pre-training. Adapting in this way was inspired by work around the
Lottery Ticket Hypothesis by Frankle et al. We show that the instability analysis is a
way to determine the stability of a network at an iteration k, after which post-training
a subnetwork will result in it matching a full network’s accuracy.

While this still reduces complexity and training time during training as the orig-
inal SynFlow, it also improves accuracy significantly. In the current training setup,
a full ResNet-20 network is able to achieve accuracies as high as 90.14%. SynFlow
on average gets up to a 80% accuracy, sometimes reaching the low 80 percentages.
This research presents AdSynFlow, where we consistently achieve higher accuracies
than SynFlow, with a high of 85.27%. Though not yet matching the full network,
AdSynFlow promises a bright future for early pruning methods.

Keywords: Pruning, lottery tickets, pre-training, SynFlow

iii

Contents

Abstract ii

1 Introduction 1

2 Theoretical background 3
2.1 Convolutional neural networks . 3
2.2 Pruning . 4

2.2.1 History of pruning . 4
2.2.2 The workings of pruning . 4
2.2.3 Lottery ticket hypothesis . 4
2.2.4 Synaptic Flow . 5
2.2.5 Linear mode connectivity . 6

Linear interpolation . 6

3 Methodology 8
3.1 Adapting SynFlow . 8

3.1.1 Instability analysis . 9
3.2 Training setup . 9

3.2.1 Previous repositories . 9
3.2.2 Model . 9
3.2.3 Hyperparameters . 9
3.2.4 Dataset . 10

4 Results 11
4.1 Threshold . 11

5 Discussion 15

6 Conclusion 17

iv

List of Abbreviations

AI Artificial intelligence
CNN Convolutional neural network
GPT-3 Generative Pre-trained Transformer 3
SynFlow Synaptic Flow
SGD Stochastic gradient descent
IMP Iterative magnitude pruning
MNIST Modified National Institute of Standards and Technology database
CIFAR Canadian Institute For Advanced Research
GPU Graphical Processing Unit

1

Chapter 1

Introduction

Since the neural networks boom in 2012, artificial intelligence has become almost
synonymous with neural networks and deep learning. A mindset that went hand in
hand with that, is that bigger is better. Larger networks allegedly leverage more abil-
ity to gain knowledge of their own. Which, interestingly, also seems to be the case
in recent innovations such as the largest neural network trained yet, GPT-3 [1]. But,
the majority of people do not have devices at the ready capable of computing to the
level of complexity needed for these large networks. Just storing GPT-3 in memory
requires 350GB. To actually take these results and bring them to the masses, there
is another path that needs to be followed. Reducing complexity of neural networks
has seen an increasing amount of research as a topic within deep learning, focusing
mostly on reducing complexity of networks after they have already been trained.
The rise of the Lottery Ticket Hypothesis [11], which claims that the large network
at the start is just there to allow the smaller, specialized network to be found, is an
example of this. Now, researchers are longing to find these smaller subnetworks or
lottery tickets through the process of cutting away weights that bear no significance
to prediction – pruning.

To be able to compress and prune neural networks with virtually no accuracy de-
duction after training seemed and still seems to be the way to go. But other ideas
definitely are on the horizon, such as pruning before training to find these lottery
tickets before ever having trained the network. SynFlow [25] is one such algorithm,
managing to prune without ever having seen any data. These idealized approaches
have lead to some important realizations and breakthroughs, but never seemed to
come to the same level of accuracy as pruning after training. Frankle et al. (from
Lottery Ticket Hypothesis fame) show that pruning at initialization is not the fault-
less approach it seemed to be in their paper on initialization pruning algorithms [13].
This paper showed that indifference at initialization to supposed setbacks of some
kind, such as weight reinitialization or pruning mask shuffling (explained in section
2.2.2), tends to be a precedent to worse results later in training.

Frankle et al. then connect this to their Linear Mode Connectivity paper [12], as
they now state that once a model is stable to noise it loses its indifference to these
supposed setbacks and that this leads to better final accuracy as a result. Through
these findings, it seems obvious to want to adapt one of these initialization pruning
algorithms to prune after some training time and stability. In adapting SynFlow, this
research aims to combat the shortcomings of initialization pruning, while still keep-
ing some of the optimistic ideas intact. In this paper, we present Adapted Synaptic
Flow (AdSynFlow). AdSynFlow pre-trains until stabilization of the network, after-
wards pruning with some further insights thanks to the already trained state of the
network. This leads us to the research question, which reads

2 Chapter 1. Introduction

How can the knowledge of lottery tickets be used to adapt SynFlow to early pruning after
pre-training?

This research question, though ambitious, is limited in scope through limitations
on the model, the dataset and the pruning algorithm. Doing so will enable work to
bear fruit while not going overboard through comparison of all possible variables.

As already stated, neural networks are an integral part of artificial intelligence
and deep learning in particular. Thus, the training and pruning of these networks
must also be relevant to the topics of this bachelor. In introducing a new, or adapted,
version of an algorithm, this research stays close to artificial intelligence and comes
to some exciting conclusions along the way.

3

Chapter 2

Theoretical background

2.1 Convolutional neural networks

Convolutional neural networks are the subset that will be used in this research. They
are most notable for their use in image recognition, which is the task that most prun-
ing is tested on first. Being a type of neural network, convolutional neural networks
(CNN’s) have at least one convolutional layer. The Latin word convolutus already ex-
plains their working, as it means to fold together. A convolution is an operation that
applies a matrix with weights – a kernel – to a group of input data, combining their
values into a less dimensional output according to these weights. The idea is that
the output is smaller in dimensions, but still carries information of all earlier data
points. A convolutional layer is a layer of nodes that use this operation to reduce the
number of nodes of a previous layer, acting as regularization.

FIGURE 2.1: CNN.
Convolutional nodes are displayed as pink nodes with circles inside.

These networks have proven to be especially useful in computer vision. The
pixels in images that act as input data to these CNN’s have the property of being
more related to other pixels close to them compared to pixels farther away. This
property is capitalized on by CNN’s, capturing neighborhood relations and reduc-
ing dimensions of layers as a result [18]. Nodes extract visual features such as edges
and corners from these neighborhood relations, resulting in a set of features called
a feature map. If we think of these nodes as feature detectors, their workings are
equal across an image. Keeping that thought, we can imitate the kernel mentioned
earlier, if all the nodes use the same weights it is as if it is the kernel moving across
the image. Having equal weights greatly reduces the number of parameters and the
resulting model is more general and introduces an invariance to transformations on
images [2].

4 Chapter 2. Theoretical background

2.2 Pruning

2.2.1 History of pruning

Pruning has been around for a long time ([20], [19], [6]), but hasn’t been very pop-
ular up until more recently. Since neural networks as an idea were mostly inspired
by the brain, other events the brain goes through have also been applied to neural
networks. Pruning was an obvious one, since the brain also goes through a stage of
synaptic pruning when coming of age. Around the age of 2 or 3, humans tend to
have the largest amount of synapses per neuron. From ages 5 to 10, a fast decline
sets in that becomes more stable but continues until the late 20s. During this time,
up to 50% of the synapses are pruned [7].

2.2.2 The workings of pruning

Pruning as a concept might be simple, but the heuristics driving the pruning choices
are more sophisticated. Since pruning was thought up as a way to reduce model
size and complexity while keeping accuracy, most pruning methods prune after the
full network has first trained to convergence [3]. An iterative cycle of pruning and
retraining sets in to let the subnetwork get accommodated as to not overprune. Most
methods do not prune destructively, as destroying connections or weights produces
sparse networks that the GPU’s used to train neural networks are not optimized
for. Instead, a binary pruning mask is generated that determines which weights or
neurons go to a value of zero - essentially disconnecting them from the rest of the
network.

For determining which weights are more important than others, the most com-
monly used and simple method is magnitude pruning. This method prunes based
on the values of weights, where lower is worse as lower values technically contribute
less to the forward propagation. Though simple, this method has often proven
more powerful and generalizable than more sophisticated ones. Iterative magni-
tude pruning is also the method used in the Lottery Ticket Hypothesis [11].

Pruning has been around for about as long as neural networks themselves, and es-
pecially with the rise of deep neural networks has pruning also seen a popularity
boom. One of the most insightful breakthroughs here has been the Lottery Ticket
Hypothesis and it has spawned a whole family of papers influenced by it. Next, we
will touch on the hypothesis itself and some follow-up papers that will be relevant
for this research.

2.2.3 Lottery ticket hypothesis

The lottery ticket hypothesis [11] is one of the more popular papers on pruning. Its
significant achievement is a hypothesis that might offer an explanation of the inner
workings of neural networks, which is useful because neural networks are largely
black boxes that are able to output results although we don’t really understand how
they are able to get to these results. The lottery ticket hypothesis aims to explain why
it is easier to train large networks. It mainly does this by stating a hypothesis, that
has not been disproven up until today. The hypothesis reads: A randomly-initialized,
dense neural network contains a subnetwork that is initialized such that—when trained in
isolation—it can match the test accuracy of the original network after training for at most
the same number of iterations. What it basically says, is that, once a lottery ticket has

2.2. Pruning 5

been found, the subnetwork does not need the larger network anymore. This sub-
network, when trained from scratch, can match or even improve on the accuracy of
the full network. The power of the larger network lies in offering so many weights
that a lottery ticket is almost guaranteed to be found.

Pruning had been found to be successful earlier, but Frankle et al. decided to take
a unique approach that supported their final hypothesis. What had already been
established through the modern advances in pruning, was that a prune-retrain cy-
cle after training was an effective way to reduce the parameters while retaining the
initial accuracy of the full network [14]. More significantly, Frankle et al. went on
to prune to a subnetwork after training and reset the weights to the weights before
training. When retrained from scratch, this subnetwork is still able to get the same
or even better accuracy up to a certain sparsity. When a subnetwork can be trained
to the same accuracy as a full network, the subnetwork is matching. This finding led
them to their hypothesis, that the large size of the network is mostly there to enable
the network to find a subnetwork that is able to do most of the heavy lifting.

More recently, it has been found that instead of reinitialization, the rewinding of
the learning rate without reinitializing the weights gives even better results [22].

2.2.4 Synaptic Flow

Building on the achievements of the lottery ticket hypothesis, several papers fol-
lowed that also tried to find these lottery tickets. The establishment of lottery tickets
was a big breakthrough, but only finding them after training and several stages of
retraining meant that the reduction of computation during inference required a huge
increase in training time. As a result, one of the more popular follow-up topics was
trying to start off with lottery tickets without ever having trained the network.

One of the three established initialization pruning algorithms is Synaptic Flow
(SynFlow) [25]. The approach by Tanaka et al. does not even look at the data of the
model, pruning the network solely on a priori knowledge. It also solves a big prob-
lem that most pruning algorithms have to deal with, layer collapse. Layer collapse
occurs when all the weights in a layer are pruned, removing the connection between
a layer and its neighbor. To explain the final SynFlow algorithm, the theorems moti-
vating the algorithm need to be explained first.

Pruning methods often prune based on a saliency score, a score resembling the im-
portance of weights according to, for example, their training loss. An important
thing to realize, is that the saliency score of a weight often increases when the num-
ber of weights in their layer is lower. Tanaka et al. then connected this saliency
score to an observation they made, which is that iterative magnitude pruning (IMP)
does not suffer from the layer collapsing problems that one-shot pruning methods
suffer from. According to Tanaka et al., this is directly related to saliency scoring
– where iterative pruning methods recalculate saliency scores before pruning again
and one-shot pruning methods do not. As saliency scores increase when the number
of weights in their layer get smaller, recalculating them as the number of weights de-
creases before pruning again directly combats the layer collapse phenomenon. This
forms the most important theorem inspiring the SynFlow algorithm, which reads
iterative, positive, conservative scoring achieves Maximal Critical Compression. Maximal
critical compression means that a pruning algorithm can achieve the maximal com-
pression of a network, leaving just layers with one weight each.

6 Chapter 2. Theoretical background

The SynFlow algorithm uses iterative score evaluation to combat layer collapse,
feeding a data-independent image into an efficient scoring procedure. Since saliency
score has a bias towards high, positive numbers, the need for positivity and layer
conservation motivate a loss function that yields positive synaptic saliency scores.
They combine these two insights into a loss function that works by feeding a simple
data-independent pseudo image through the network and summing the network
outputs (all positive) up so as to end up with a pseudo loss function output. The
output of this loss function is then backpropagated through the network and the
saliency score for each weight uses this loss function output in their calculation. This
adds a unique synaptic flow to the magnitude score of the weights, taking the inter-
actions of weights between layers into account. So the SynFlow algorithm prunes
after calculating saliency scores that discourage layer collapse and can work with-
out ever looking at the data.

2.2.5 Linear mode connectivity

Frankle et al. continued research surrounding the lottery ticket hypothesis, of which
the linear mode connectivity paper [12] is the most relevant to this research topic.
In the Lottery Ticket Hypothesis, Frankle et al. found that larger, more complex
models did not end up with subnetworks that matched full networks when reini-
tialized to the weights from initialization. What they did find however, was that the
subnetworks worked when pre-trained for several epochs and then reinitialized to
the weights from after pre-training. The linear mode connectivity is Frankle et al.’s
explanation for this phenomenon.

Linear mode connectivity as a term has two essential parts to understanding the
term itself. The paper revolves around the gradient descent optimization landscape.
In training a network, we apply an optimizer function with noise to optimize the
network. For their purposes, Frankle et al. use stochastic gradient descent (SGD)
noise. This noise alters the path through the optimization landscape, so that every
path is different and so that it is possible to escape local minima. Frankle et al. found
through experimentation that the subnetworks can be reinitialized with good results
after the network has become stable to SGD noise. Stability here means that the net-
work will find the same, linearly connected minimum in the optimization landscape
regardless of SGD noise.

To test the (in)stability of a network, Frankle et al. introduce the instability anal-
ysis. When rewinding to a point k after training, the pruning mask that was found
can be applied and the analysis can be started. The analysis is a comparison between
two subnetworks trained from this point k. In comparing these fully-trained subnet-
works through a certain function and comparing the outcome of this function to a
certain threshold, we can determine the (in)stability of the original network at point
k. Frankle et al. use linear interpolation as their function of choice, but also suggest
other possible functions such as the L2 distance. The function that is ultimately used
outputs a value that represents the similarity between the two subnetworks, where
a high similarity implies a stability of the network.

Linear interpolation

Linear interpolation is a technique to create new data points within a linear range of
other data points that have already been introduced. In the case of neural networks,
you create a new neural network based on the weights of other neural networks.

2.2. Pruning 7

Though this may sound like a large undertaking, what Frankle et al. end up doing
is quite simple. They introduce a formula with a factor alpha that determines how
much the new model takes away from the second of two given models. Then the
error between two models’ weights E(W1, W2) for a certain alpha is as follows.

Let Eα(W1, W2) = E(αW1 + (1α)W2) for α ∈ [0, 1]

Then they create an undisclosed number of models with different alphas and take
the max error Esup of those alpha networks and the mean error between the two
given models Emean to calculate the error barrier height, which is used as the output
number for the instability analysis.

Error barrier height = Esup(W1, W2)− Emean(W1, W2)

If this number is smaller than a certain threshold, Frankle et al. use ∼ 0.2, the model
at the point that the two given models were trained from is considered stable to SGD
noise.

8

Chapter 3

Methodology

AdSynFlow’s foundation comes in the form of the instability analysis. To be
able to determine (in)stability during training and point to that turning point where
a subnetwork matches a full network, is where we can say that AdSynFlow really
overtakes the original SynFlow. This turning point is attainable through an insta-
bility threshold. After the threshold is established, a final experiment needs to be
carried out to determine if there is a significant difference between the two Syn-
Flow’s.

In explaining the experiments that will make up AdSynFlow, we also explain the
methods that will be used to answer the research question. To reiterate, the research
question is How can the knowledge of lottery tickets be used to adapt SynFlow to early
pruning after pre-training? Through experimentation and later through the analysis
of the results, we expand on methods derived from the knowledge of lottery tick-
ets. AdSynFlow uses these methods to improve on SynFlow. First, we establish a
threshold for instability analysis. This threshold will be used to determine the turn-
ing point of stability during the training of the final AdSynFlow subnetwork. At
that point, the subnetwork should be matching the full network and can be called a
lottery ticket. To confirm this, the stable AdSynFlow network will be compared to
the full network and a SynFlow network.

3.1 Adapting SynFlow

Now that all the ideas needed for the adaptation have been introduced, we are ready
to dive into it. SynFlow was originally designed to prune before training. After con-
clusions from [13] and [12], it has become clear that this is not a viable strategy
with the currently known approaches. That is why this research aims to adapt Syn-
Flow to prune after pre-training. The adaptation will be based around the instability
analysis introduced in Linear Mode Connectivity, but will also aim to make further
changes now that SynFlow is no longer restricted to prune based on a priori knowl-
edge. Experiments have been done to figure out the best adaptation, which led to
the following changes:

1. Prune after stable to SGD noise instead of at initialization.

2. Change the input into the pruning mechanism of SynFlow from an image with
pixel values being all 1’s to either a single image from the dataset (1) or an
average image of the dataset (2).

3. SynFlow was meant to prune before ever having seen the training data. Now
that there has already been some training done, certain restrictions of the Syn-
Flow algorithm can be left out.

3.2. Training setup 9

3.1.1 Instability analysis

Pruning after stabilization to SGD noise is an important step in adapting SynFlow to
more effectively prune during training. To determine stability, the instability analy-
sis introduced in Linear Mode Connectivity is used. Frankle et al. use linear inter-
polation as their function, where the error barrier height is their metric for instability
analysis. This error barrier height then has to be compared to a certain threshold of
instability, which Frankle et al. establish as being around 0.2. Since we use a differ-
ent pruner than IMP, it means that the threshold has to be determined through the
means of our own experimentation.

The threshold was ultimately determined by training a network to iteration k,
then prune and afterwards train two subnetworks with different SGD noise from
iteration k until completion (total epochs – k iterations). These subnetworks can then
be used to perform instability analysis and to find the point k at which the error of
the subnetwork at completion dropped enough for the subnetwork to be matching.
Frankle et al. do not provide a way to exactly determine the threshold either, so it is
assumed that the threshold is picked by eye from the graphs that depict instability
at different iterations k.

3.2 Training setup

For the experiments and the training process, there was need for a training environ-
ment. This would be a framework that we could train our models from.

3.2.1 Previous repositories

Luckily, academics in the artificial intelligence domain realize that open-sourcing
their work will be an advantage to others that want to continue on the path of previ-
ous research. The main papers that influenced our training process both have open
source Github repositories. Jonathan Frankle has prepared an entire training frame-
work for the lottery ticket family of papers, open_lth [10]. The SynFlow researchers
have their own repository, Synaptic-Flow [24]. Since the Synaptic-Flow repository is
a bit more easily modulated, it is the repository that is used most for this research.

3.2.2 Model

The model used is ResNet20, also used in the Lottery Ticket Hypothesis. This model
is implemented on PyTorch and trained using a GPU.

Our work can be found here [4].

Network Dataset Training Epochs Batch Optimizer Accuracy

ResNet-20 CIFAR-10 160 128 SGD 70.98
ResNet-20 CIFAR-10 160 128 Momentum 85.27

3.2.3 Hyperparameters

Hyperparameters were unchanged from the original SynFlow ResNet-18 ones [25].
These parameters were the same for every model trained.

Learning rate Learning rate drops Drop factor Weight decay

0.01 60, 120 0.2 5 ×10−4

10 Chapter 3. Methodology

3.2.4 Dataset

Since we are training a neural network, we need something to train it on. Previous
research has mostly focused on images, so that is the path we will follow. To illus-
trate the adaptability and general applicability of their algorithms, previous research
also trained models for multiple datasets of different scales. MNIST [17], CIFAR-
10 [15] and ImageNet [16] are the main three datasets that an algorithm’s accuracy
would be derived from. Since this is a small thesis with a limited time period, we
will keep it at one dataset and a simple one at that. MNIST is a popular machine
learning dataset of handwritten digits, which would be ideal to use here. But it
turns out that models trained for MNIST are already stable to SGD noise at initial-
ization most of the time. Since the instability requires a more complicated dataset,
we will be using CIFAR-10. CIFAR can be considered a precedent to the more pop-
ular ImageNet, with the same objective to introduce more image classes with more
differences between them as a challenge for the models trained on them. ImageNet
is currently seen as the quintessential dataset to compare your models to, but due to
time constraints we will just focus on the smaller CIFAR-10.

11

Chapter 4

Results

4.1 Threshold

With the repository and dataset in place, we can continue setting up our train-
ing framework. As was stated before, the instability analysis was not part of the
open_lth repository. Much of the development time of this thesis was spent pro-
gramming the instability analysis and experimentally determining a threshold to
compare the outcome of this instability analysis to.

Linear mode connectivity used the iterative magnitude pruning (IMP) method to
go back and determine instability after training. So the original workflow of finding
the threshold for subnetworks would be to first train the full network, then itera-
tively rewinding and pruning to find a pruning mask that can then be applied to
the rewound network at an early iteration k from where instability analysis can be
performed. Since SynFlow does not rely on rewinding to prune, in this research the
pruning mask is found after pre-training for k iterations instead.

To find a threshold, a full network was pre-trained to iteration k, pruned and
then instability analysis was performed. For linear interpolation, we used 20 evenly-
spaced values for alpha. The first of the two lines in figure 4.1 shows instability
analysis performed on full networks, while the other is for subnetworks. Instability
analysis on full networks means that there was no pruning being done between pre-
and post-training.

FIGURE 4.1: Instability analysis.
Instability analysis on full and subnetworks of ResNet20, trained on
CIFAR-10. The analyses were performed after pre-training up to dif-
ferent iterations k. These models were all trained once based on a

single initialization.

12 Chapter 4. Results

In interpolating the two temporary models, we expect unstable models to cause
a growth in error through the different values for alpha. Frankle et al. document
this change as being very large, a difference of up to 80% in error between the worst
interpolated model and the best temporary model. Interestingly, throughout this
research the size of this difference could not be replicated once using SGD as an op-
timizer. When seeing this divide between our recreation and the instability analysis
in linear mode connectivity, and aiming to exclude all possible errors in this recre-
ation, the only conclusion that remained was to ascribe the divide to the differences
in training setup.

If we take two temporary, fully-trained yet unstable subnetworks as independent,
local or global optima, the surrounding modes or areas of these two networks will
decrease in accuracy when increasing in diversity from these optima [9]. This phe-
nomenon is described well by the linear interpolation we perform. After a certain
amount of training, the interpolated models between the two subnetworks must
decrease in accuracy - given that the subnetworks are unstable. Interestingly, the di-
versity and independence between the two temporary subnetworks still allows for
a similarity in accuracy. This is because they train to independent modes or areas
in the loss landscape. Independence here stands for a disagreement and diversity in
predictions, even though the two subnetworks can have similar accuracies.

Now, the reason for initial confusion was that the subnetworks trained with
SynFlow ended up in flatter modes, where the difference when interpolating was
smaller compared to Frankle et al.’s results using IMP. Through experimentation, it
was found that this can be attributed to the optimizer used in our earlier research.
We used SGD as opposed to the momentum optimizer used in Linear mode connec-
tivity. SGD has been known and recently proven [5] to regularize not (only) to a
minimum, but a mode or area where the surrounding curvature is low. Even more
so, the SynFlow algorithm is inspired by path-SGD [21] to prune based on a more
generalized weight magnitude, that considers the network’s parameters before and
after it. Training using both SynFlow as a pruner and SGD as an optimizer leads to
a very generalized or regularized loss landscape, with networks that as a result are
more stable at all stages of training (see 4.2).

To conform to the instability analysis of Frankle et al., the optimizer was changed
to a momentum optimizer. Momentum is SGD that uses the gradients of multiple
steps, as opposed to the default single most recent step, in its consideration of the
next step. This leads to less meandering and SGD cycles, which on their part lead to
a more severe instability if the network is unstable [23]. The difference can be found
in figure 4.2. Since instability using this optimizer resembled Linear mode connec-
tivity, experiments were continued using this optimizer. The outcome of these ex-
periments can be found in 4.3, which comes short due to a time constraint. Given
more time and the shape of the graph, a stable subnetwork is expected to be found.

Since experimentation had to be stopped, a final comparison was done using the
model at the lowest available instability value found. The training traject and its
accuracy is shown in figure 4.4.

With momentum, the results seem to reflect the Linear mode connectivity paper
better. If we establish stability as being lower than 2%, the threshold does occur
much later in training using SynFlow. Such a significant divide, from reaching the
threshold at a number of iterations of around 2000 to a number of epochs consisting
of 50,000 iterations each, could very well be related to the inferior pruning mask that
SynFlow ends up using.

4.1. Threshold 13

FIGURE 4.2: Optimizers.
Instability analysis on subnetworks with the use of different optimiz-
ers. ResNet20 models trained on CIFAR-10. The analyses were per-
formed after pre-training up to different iterations k and then prun-
ing. These models were trained once based on two separate initial-
izations. Momentum was extended for more iterations, as the value

did not converge yet.

FIGURE 4.3: Momentum.
Instability analysis on subnetworks using the momentum optimizer.
As can be seen, momentum is trending downwards in the same man-
ner as expected from Linear mode connectivity. In their paper, Fran-
kle et al. settle on a threshold of 2%. Sadly a time shortage crept
in and the threshold was not reached, ending at a very late 11.3% at

epoch 30.

14 Chapter 4. Results

FIGURE 4.4: AdSynFlow comparison.
AdSynFlow accuracy tracked throughout training. This network was
pruned at epoch 30, giving the lowest instability found as seen in fig-
ure 4.3. The model accuracy was not captured during pre-training, so
that data was lost. Though SynFlow was overcome early in training,
the network stabilizes and does not match the full network yet at the

end of training.

15

Chapter 5

Discussion

Our final results leave a lot of room for discussion. Sadly, a lot of these results
have not been confirmed through multiple training runs or slight changes in pa-
rameterization or training setup. The lack of time really crept into the final results
because of multiple setbacks.

The first of these setbacks was of course the missing instability analysis imple-
mentation. Because of this, the first weeks were mostly spent trying to recreate and
reproduce the instability analysis results of Frankle et al. in [12]. After getting that
to work, most of the remaining time was spent establishing an instability thresh-
old through experimentation. Given that the average training time for a model was
around 3-4 hours, this took a tremendous amount of time. Especially when consid-
ering the next setback.

Training using the SGD optimizer did not give the expected results. Starting off
close to stability, training only increased instability. This was the entire opposite of
both the Linear mode connectivity paper and intuition. The later in training a model
is, the lower chances should be to end up in a different valley. Although switching to
momentum did follow a more similar path to Linear mode connectivity, it was more
stretched out. This stretching is likely due to SynFlow itself, especially the fact that
it prunes during training. A better pruning mask makes a subnetwork more likely
to find a valley fast, while SynFlow might be more dependent on a well-trained full
network. To be sure of this, future work will be needed to confirm it.

As for further suggestions for future work or just general remarks about the work
surrounding this thesis, there is lots of angles to look from. One such point is that
a subnetwork that is trained for long enough might always find the local or global
minimum that all subnetworks trained from an iteration k are bound to reach. After
a certain number of epochs trained, it might be the case that the instability analysis
is less of a test of stability and more one of accuracy compared to another network
in the same valley. Our hyperparameters resembled the original SynFlow hyperpa-
rameters, which were not fumbled with. The assumption that our instability analysis
is a test of stability, is thus dependent on the hyperparameters used in the original
SynFlow research and an upper limit to the amount of iterations of pre-training.

Now that we are on the point of hyperparameters, it might be worth it to state
again that the original SynFlow hyperparameters were not changed. One might
wonder if the hyperparameters carry over well to AdSynFlow, if the general assump-
tion of the two networks is not the same. If these adaptations would include changes
to the training process now that this process is no longer restricted to pruning before
training, maybe the hyperparameters should have been subject to adaptations too.

If the instability analysis is apparently so dependent on a certain type of optimizer,
one might wonder if the analysis is a good analysis of stability at all. Subtle changes

16 Chapter 5. Discussion

to the training setup leading to such large differences in ’stability’ might be an indi-
cation this is not the case. Should an instability analysis be stable itself?

Finally, the loss landscape seems to be a big black hole for a lot of research, not
being focused on while not being completely understood at the moment. The Deep
Ensembles paper [9] also went into this, but it might also be interesting to look into
it from more of a pruning perspective.

17

Chapter 6

Conclusion

The results presented here seemingly confirm the Linear mode connectivity’s state-
ment that subnetworks can only match their full networks if they are stable to SGD
noise. A confirmation of this statement may encourage other research to shift their
focus from initialization pruning to pre-training pruning, as the difference in train-
ing time is negligible seeing the increase in accuracy.

Our final results might sadly not be all-embracing. Though there was improve-
ment on SynFlow, stability was not reached at the threshold Frankle et al. estab-
lished. Since the optimizer problem was only found later during the thesis, there
was no time to concretely establish the problems and differences between instability
analyses and training setups in this research and the research by Frankle et al. This
means that all in all AdSynFlow, though an improvement through pre-training, is
not a final and satisfying adaptation of SynFlow.

Lottery tickets and their almost guaranteed existence at early points in training
enable us to prune more effectively during pre-training. Especially when stable to
SGD noise are we able to leverage on the knowledge of their existence. Adapting
SynFlow to only prune after stability, allows us to consistently get accuracies that
are at least matching that of the full network. So to answer the research question, the
knowledge of lottery tickets enables us to prune more effectively once we can say
for certain that these tickets are existing within the network.

To establish a certainty that AdSynFlow improves on SynFlow, the research needs
to be extended to different datasets, models and optimizers. A minimum would be
to expand to MNIST using LeNet and to ImageNet using ResNet-50. The ideas pre-
sented here could also be used to adapt other successful initialization pruning al-
gorithms such as SNIP and GraSP. Besides that, designing a dedicated pre-training
pruning algorithm is maybe a better option. Frankle et al. already stated in their pa-
per on initialization algorithms [13] that early pruning methods might not even work
with signals such as magnitude, pointing to work that works with ever-changing
pruning masks that in this way exploit signals from a later training stage [8].

Touching one last time on the relevance of this work to artificial intelligence, this
research seems to be in line with other research on the topics presented. Taking from
and building on this research surrounding neural networks and other topics such as
pruning, this research contributes to these topics in a tangible way. To conclude, this
research is in that way connected to artificial intelligence.

18

Bibliography

[1] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.
14165.

[2] Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag
New York, 2006, pp. 267–269.

[3] Davis Blalock et al. What is the State of Neural Network Pruning? 2020. arXiv:
2003.03033.

[4] Cas Bolwerk. Adapted-Synaptic-Flow. https://github.com/casbolwerk/Synaptic-
Flow. 2021.

[5] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs vari-
ational inference, converges to limit cycles for deep networks. 2018. arXiv: 1710.
11029.

[6] Yves Chauvin. “A Back-Propagation Algorithm with Optimal Use of Hidden
Units”. In: Advances in Neural Information Processing Systems. Vol. 1. 1989. URL:
https://proceedings.neurips.cc/paper/1988/file/9fc3d7152ba9336a670e36d0ed79bc43-

Paper.pdf.

[7] Gal Chechik, Isaac Meilijson, and Eytan Ruppin. “Synaptic pruning in devel-
opment: a computational account”. In: Neural computation 10.7 (1998), pp. 1759–
1777.

[8] Utku Evci et al. Rigging the Lottery: Making All Tickets Winners. 2020. arXiv:
1911.11134.

[9] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss
Landscape Perspective. 2020. arXiv: 1912.02757.

[10] Jonathan Frankle. open_lth. https://github.com/facebookresearch/open_
lth. 2020.

[11] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. 2019. arXiv: 1803.03635.

[12] Jonathan Frankle et al. Linear Mode Connectivity and the Lottery Ticket Hypothesis.
2020. arXiv: 1912.05671.

[13] Jonathan Frankle et al. Pruning Neural Networks at Initialization: Why are We
Missing the Mark? 2021. arXiv: 2009.08576.

[14] Song Han et al. “Learning both Weights and Connections for Efficient Neural
Network”. In: Advances in Neural Information Processing Systems. Vol. 28. 2015.
URL: https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-
Paper.pdf.

[15] Alex Krizhevsky and Geoffrey E. Hinton. “Learning Multiple Layers of Fea-
tures from Tiny Images”. In: Tech Report, University of Toronto (2009).

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems 25 (2012), pp. 1097–1105.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2003.03033
https://github.com/casbolwerk/Synaptic-Flow
https://github.com/casbolwerk/Synaptic-Flow
https://arxiv.org/abs/1710.11029
https://arxiv.org/abs/1710.11029
https://proceedings.neurips.cc/paper/1988/file/9fc3d7152ba9336a670e36d0ed79bc43-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/9fc3d7152ba9336a670e36d0ed79bc43-Paper.pdf
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/1912.02757
https://github.com/facebookresearch/open_lth
https://github.com/facebookresearch/open_lth
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/2009.08576
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf

Bibliography 19

[17] Yann LeCun. “The MNIST database of handwritten digits”. In: http: // yann.
lecun. com/ exdb/ mnist/ (1998).

[18] Yann LeCun and Yoshua Bengio. “Convolutional Networks for Images, Speech,
and Time-Series”. In: Michael A. Arbib The Handbook of Brain Theory and Neural
Networks (1995), pp. 255–258.

[19] Yann LeCun, John Denker, and Sara Solla. “Optimal Brain Damage”. In: Ad-
vances in Neural Information Processing Systems. Vol. 2. 1990. URL: https://
proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-

Paper.pdf.

[20] Michael C Mozer and Paul Smolensky. “Skeletonization: A Technique for Trim-
ming the Fat from a Network via Relevance Assessment”. In: Advances in Neu-
ral Information Processing Systems. Vol. 1. 1989. URL: https://proceedings.
neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.

pdf.

[21] Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-SGD: Path-
Normalized Optimization in Deep Neural Networks. 2015. arXiv: 1506.02617.

[22] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing Rewinding and
Fine-tuning in Neural Network Pruning. 2020. arXiv: 2003.02389.

[23] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017.
arXiv: 1609.04747.

[24] Hidenori Tanaka and Daniel Kunin. Synaptic-Flow. https:// github.com/
ganguli-lab/Synaptic-Flow. 2020.

[25] Hidenori Tanaka et al. Pruning neural networks without any data by iteratively
conserving synaptic flow. 2020. arXiv: 2006.05467.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://arxiv.org/abs/1506.02617
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/1609.04747
https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/ganguli-lab/Synaptic-Flow
https://arxiv.org/abs/2006.05467

	Abstract
	Introduction
	Theoretical background
	Convolutional neural networks
	Pruning
	History of pruning
	The workings of pruning
	Lottery ticket hypothesis
	Synaptic Flow
	Linear mode connectivity
	Linear interpolation

	Methodology
	Adapting SynFlow
	Instability analysis

	Training setup
	Previous repositories
	Model
	Hyperparameters
	Dataset

	Results
	Threshold

	Discussion
	Conclusion

