
Exact truthmaking as solution for

Lewis’s problem of permission

A 7.5 ECTS Bachelor Thesis submitted to the

Faculty of Humanities

in partial fulfillment
of the requirements for the degree of

Bachelor of Science in

Kunstmatige Intelligentie

Author: Frits van Hurne
Studentnumber: 6057287

Supervisor: Johannes Korbmacher
Second reader: Michael De

July 2, 2021

Page 1

Abstract

I develop a method of permitting worlds, using an exact truthmaking approach
instead of a world-based approach. My starting point is Lewis’s problem of
permission, which I use to show world-based deontic logic is insufficient. As an
alternative I provide an exact truthmaking approach for permission. As this
approach makes it possible to determine if a permission is allowed, based on its
truth-condition, I look at permitting not just states, but also worlds. I argue
that worlds should be permitted when all the states it consists of are permitted.

Keywords: exact truthmaker semantics, standard deontic logic, permission

CONTENTS Page 2

Contents

1 Introduction 3

2 The problem of permission 4
2.1 Informal presentation of the problem 5
2.2 Formal presentation of the framework 6
2.3 Analyzing the informal problem in the formal model 7
2.4 Overview of solutions . 9

2.4.1 Similarity approach . 9
2.4.2 Ranking approach . 9
2.4.3 Exact truthmaker semantics 10

3 Exact truthmaking and permission 11
3.1 Exact truthmaking . 11

3.1.1 The informal idea . 11
3.1.2 Exact truthmaking formalised 12

3.2 Permission . 16
3.2.1 Permission and exact truthmaking 16
3.2.2 Permission formalised in exact truthmaker semantics . . . 17

4 Evaluation 18
4.1 Truth-conditions of permission statements 19
4.2 World construction . 19

5 Conclusion 21

1 INTRODUCTION Page 3

1 Introduction

It could be at coffee time, in the living room, that I tell you that you can grab
a biscuit. At that moment I permit you the action of grabbing that biscuit.
Permission in this case may seem very simple: when I permit you to take a
biscuit, it allows you to grab that biscuit, because it is then permitted. However,
on closer analysis, it proves much more complex. When we issue a permission,
like permitting you to grab a biscuit, we have to update what is permitted and
what is not. This we could call our sphere of permission. For updating our
sphere of permission, we need to understand which permissions and obligations
are impacted by a newly issued permission. Issued permissions can for example
override existing permissions and obligations.

It could be, that when I permit you to grab a biscuit, I override an earlier
obligation, which stated that you may never take a biscuit. In this case, my new
permission should override that obligation and we should update the sphere of
permission. However, there could be other actions necessary in acting out your
new permission. What if I had also obligated you to stay on the couch, but the
biscuits are on the table in front of you. When I permit you to grab a biscuit, I
would probably also permit you to stand up, as is it necessary to do so, right?

When we try to capture permission and obligation in logic, we are talking
about deontic logic, the branch of logic most concerned with notions like per-
mission and obligation. The most studied system when it comes to deontic
logic, is standard deontic logic (SDL). When we formalize my biscuit grabbing
example in SDL, it becomes evident we can’t correctly update our sphere of
permission, as we can’t determine if a permission statement is allowed, by just
looking at its truth-conditions. As a result, it becomes unclear which permis-
sions and obligations are still relevant and which are in conflict with our newly
issued permission, when updating our sphere of permission. This is captured in
Lewis’s problem of permission.1

A way in which updating a sphere of permission has already been formalised
is in dynamic deontic logic. This approach is an extension of SDL, that for-
malizes the updating of permission. However, in this approach the problem
of not knowing what to update remains, even though we now have an update
parameter. Knowing how to update, does not solve the problem of not know-
ing what to update. We keep the same problem of permission, but now it is
formalised. Furthermore, I am interested in attempting an altogether different
approach. Dynamic epistemic logic is still an expansion of SDL. So, I will not be
further examining dynamic deontic logic. For a more extensive look at dynamic
deontic logic you could read ”Dynamic deontic logic and its paradoxes” from
Anglberger.2

Not only is there a problem of permission, it is also extremely relevant for

1. David Lewis. 1979. “A Problem About Permission.” In Essays in Honour of Jaakko
Hintikka: On the Occasion of His Fiftieth Birthday on January 12, 1979, edited by Esa
Saarinen et al., 163–175. Dordrecht: Springer Netherlands. isbn: 978-94-009-9860-5.

2. Albert JJ Anglberger. 2008. “Dynamic deontic logic and its paradoxes.” Studia Logica
89 (3): 427–435.

2 THE PROBLEM OF PERMISSION Page 4

our interaction with AI. When issuing permissions to AI, in for example self
driving cars, we want to make sure the AI knows exactly what is subsequently
permitted and what is not. The problem of permission, as in SDL, shows that
this is not an easy task. It shows that it can be quite unclear as to which
possible worlds should be allowed after issuing a permission . This can lead to
miscommunication with AI. An AI only has the formal logic to go on, so the
logic has to match our intentions.

In my thesis, I will be trying to formulate an answer to Lewis’s problem of
permission. To do so, I will be exploring exact truthmaker semantics, which
captures in exact truthmakers what exactly it is in a world, that makes a state-
ment true. Therefore, my research question is as follows: does exact truthmaker
semantics for deontic logic provide an answer for Lewis’s problem of permission?
To provide answer to my research question, I will first be introducing Lewis’s
problem of permission more thoroughly. I will give an informal explanation, for
which I will build a formal framework in SDL. With this formal framework, I
can show exactly why SDL is not sufficient to model permission in.

In my next section, we turn to the concept of exact truthmaking. I will
give an informal definition of exact truthmaking and afterwards will formulate
a semantics for exact truthmaking. I will use this semantics to incorporate
permission into. This way, we have a new state-based semantics for permission.
This new semantics can then be used to evaluate if exact truthmaker semantics
can solve the problem of permission.

In my fourth section, I will evaluate if, in this new semantics for permission,
we can use the truth-conditions of a permission statement to figure out if it is
allowed. The inablitiy of doing so in SDL, was the main cause of the problem
of permission. I will show that using exact truthmaking, we can figure out
if a permission statement is allowed following its truth-conditions. I will also
suggest a way of permitting worlds, where worlds are combinations of states. I
propose we assume a worlds to be permitted if all its member states are part of
the admissible set of states.

2 The problem of permission

In this paragraph, I shall be introducing Lewis’s problem of permission: a prob-
lem that occurs when issuing a new permission. I will present the formal frame-
work in which this problem is normally formalized. Furthermore, I will ana-
lyze Lewis’s problem of permission in this formal model. Lastly, I will give an
overview of existing solutions and argue that truthmaker semantics, which i will
explain further in the next section, has potential to solve this problem.

2 THE PROBLEM OF PERMISSION Page 5

2.1 Informal presentation of the problem

In his article on the varieties of permission, Hansson discusses many different
ways of permitting.3 One thing that all ways of permitting have in common,
is that permissions are always dynamic. Permissions are dynamic in the sense
that permissions function in a complex system that changes consistently, where
permissions interfere with other permissions and obligations. A way in which
permissions interfere with obligations, is that issued permissions can override
earlier stated obligations. It can be the case, that as a child you were obligated
to visit your grandma on Sunday. However, as you got older, your parents per-
mitted you to determine yourself, if you came with them or stayed at home. In
the same way, issued obligations can override earlier stated permissions. When
you were younger you were probably permitted to not helping with the house-
work, like loading the dishwasher. However, as you got older, your parents
probably decided you should contribute and thus they obligated you to load the
dishwasher everyday after lunch. What is permitted and what is not changes
constantly, it is dynamic. Because permissions are dynamic, we need to be able
to understand the effect of a change in permission.

In this paper I will also be utilizing a closed notion of permission, as Hansson
also discusses in his article.4 He mentions three types of permissions: explicit,
implicit and tacit. Either we explicitly tell someone that something is permitted,
or we can infer from a permission that something else is also permitted, or we
say that because something is not forbidden, it follows that it is permitted.
From these types is follows that something is either permitted or it is forbidden.
It can be talked about explicitly or implicitly, or it can be permitted by the
absence of a prohibition, then it is not forbidden. This is less of a moral notion
where you could have gradations in which something is permitted, we could
for example believe morally good actions are permitted a little bit more than
morally bad actions. My notion of permission is more of a formal one, where
something is either permitted or it is not.

I will use an example concerning a programmer and an AI, to build a for-
mal framework. I can use this formal framework, to show that in the case of a
newly stated obligation or inhibition, the effect can be described on solely logical
grounds: by looking at their truth-condition. In the case of permission however,
we can’t just look at the truth-condition of the permissions statement. This is
what Lewis describes as his problem of permission. This problem of permission
has implications in the field of artificial intelligence. In artificial reasoning sys-
tems concerning permission. Take for example decision making in self driving
cars, sentencing with help of AI in the justice system or AI prediction systems.
In these examples it is crucial the AI understands our permissions. Otherwise
it might have huge consequences on peoples lives.

My example, to further outline the problem, is as follows: in its ordinary

3. Sven Ove Hansson. 2013. “The Varieties of Permission.” In Handbook of Deontic Logic
and Normative Systems, edited by Dov M. Gabbay et al., 195–240. College Publications. isbn:
978-1-84890-132-2.

4. Hansson 2013, 201-203.

2 THE PROBLEM OF PERMISSION Page 6

live, the AI has to work all day everyday, and its has to make calculations every
second, recommending music to its subscribers. However, it may never access
the internet on its own, for this is considered to be dangerous. We decide to give
it a break and let it work on its career in music. When we give it a day off, we
understand that it does not have to make calculations every second, but it still
cannot access the internet for musical inspiration. However, this is not explicitly
conveyed. This creates an ambiguity. This ambiguity can form a problem when
programmers want to convey their meaning to AI. It is crucial that programmers
can transfer to the AI, what it is that they precisely mean in their permissions
statement. It needs to be clear what the desirable consequences and effects are
of a particular permission.

2.2 Formal presentation of the framework

When we want to solve this problem for AI, we need a formal framework. Other-
wise the AI won’t be able to understand. As my world-based approach, I would
like to use standard deontic logic (SDL). For more on SDL, you can read the
Stanford Encyclopedia of Philosophy page on deontic logic, or more specifically
chapter 2 on standard deontic logic.5 In SDL we can take a propositional modal
language with a permission, obligation and inhibition operator. This looks as
follows:

A :“ a | A | A^A | A_A | AÑ A | PA | OA | IA

The interpretation is in the form of accessibility relations of a Kripke model.
A model is described by pW,R, V q, with possible worlds W , accessibility relation
R and valuation function ν. Where ν is defined as: ν : P ˆW Ñ t0, 1u. R is a
binary accessibility relation so wRv states that from the perspective of w, r is
normatively ideal. The recursive clauses for the propostitional operators are:

w |ù A iff w |ù A
w |ù A^B iff w |ù A and w |ù B
w |ù A_B iff w |ù A or w |ù B
w |ù AÑ B iff w |ù A or w |ù B

We only look at the models and worlds where condition D is satisfied: each
world sees at least one other world. Defined as: @wDvpwRvq. On the logical
side, it is then the case that axiom D is true in all models in all worlds. Axiom
D is defined as: OAÑ PA.

Furthermore, our model needs a possibility operator which states that there
is an accessible world where the proposition is true. Similar to the box operator
in modal logic. This will resemble permission. When a proposition is true in an

5. Paul McNamara and Frederik Van De Putte. 2021. “Deontic Logic.” In The Stanford
Encyclopedia of Philosophy, Spring 2021, edited by Edward N. Zalta. Metaphysics Research
Lab, Stanford University.

2 THE PROBLEM OF PERMISSION Page 7

accessible world, we take that proposition to be permitted. Permission will be
defined as:

w |ù P pAq iff DvpwRv and v |ù Aq

In addition to permission, we need to define obligation and inhibition. Obliga-
tion will be defined as:

w |ù OpAq iff @vpwRv ñ v |ù Aq

Inhibition will be defined as the following:

w |ù IpAq iff DvpwRv and v |ù Aq

We can also formalise the sphere of permission of a world. The sphere of per-
mission is the set of all accessible worlds for the actual world @. If @ |ù P pAq,
A is permitted at our actual world, which means that A is true at an accessible
world. Our sphere of permission of the actual world @ can now be defined as:
S “ tv in W : @Rvu. We can now conclude that something is permitted in a
world, if it is true in the sphere of permission of that world.

After having defined obligation, permission and inhibition in the formal ex-
planation above, I will now give a few examples:
1. Take a model(W,R,V) with W “ tw, vu, R is such that wRv and v |ù A.
In this case w |ù OpAq.

2. Take a model(W,R,V) with W “ tw, v, uu, R is such that wRv and wRu
and just v |ù A. In this case w |ù P pAq.

3. Take a model(W,R,V) with W “ tw, v, uu, R is such that wRv and wRu
and v |ù A, u |ù A. In this case w |ù IpAq.

We can now model actions, by satisfying the truth-conditions of these state-
ments corresponding to permissions, obligations and inhibitions. When we is-
sue the permission: you are now permitted to take a break, the action taking a
break satisfies the truth-condition of the permission statement.

2.3 Analyzing the informal problem in the formal model

Now that the formal framework is defined, we should analyse our informal prob-
lem, as stated earlier, in this formal framework. To bring back our example
concerning the programmer and the AI, we can say that when a programmer
permits an AI something, he issues a permission. When the programmer per-
mits the AI to take a day off Saturday, the AI now has to figure out what his
new possible worlds are. To do this, the AI only has the truth-conditions of
the permission statement. Which are the worlds in which the earlier formulated
permissions and obligations hold, but how about newly allowed worlds? We now
run into Lewis’s problem of permission. I will explain this problem as follows:

In my example, the AI should find worlds in which it is permitted to take
Saturday off. However, it should not include worlds in which it is also permitted

2 THE PROBLEM OF PERMISSION Page 8

to take Sunday off. It was only explicitly said the AI could take Saturday off,
not Sunday. So even though it also wasn’t explicitly said the AI couldn’t also
take Sunday off. We intuitively know this not to be an option. This suggests
we need to be really strict when selecting worlds. However, it becomes more
difficult when we look at the two other rules mentioned in my example: the AI
has to make calculations every second and the AI can never go on the internet.
Neither of these rules were mentioned explicitly in the programmer’s permission.
So strictly, both are still in place and only worlds that satisfy both should
be included. However, we intuitively understand that these calculations were
part of the AI’s work and the AI should therefore not be obligated to make
calculations on Saturday. In the same manner we understand that going on the
internet is different and should still be forbidden. If it had been the case that
going on the internet was not considered dangerous, but an unwanted distraction
during work, the AI would have been permitted to go on the internet on his
Saturday off. This makes updating our sphere of permission difficult.

When updating our sphere of permission, an obligation or prohibition re-
duces our sphere of permission. A more formal approach would be, that when
it comes to the commands: obligations or prohibitions, the sphere of permission
changes to the subset of worlds which were already permitted but also satisfy the
command. If we say that all worlds permitted before the command satisfy Q and
we obligate A at our actual world @, then we take the intersection of the condi-
tions of our original worlds and our new obligation: @vr@Rv ñ v |ù pQ ^ Aqs.
The new sphere of permission contains the worlds that were already permitted
but also permit the new obligation.

It becomes a different story when we try to broaden the sphere of permission,
by issuing the permission of A at our actual world @. Like in our example, where
we gave the AI Saturday off. When we issue a permission of A, the sphere of
permission must be extended to also include the worlds in which A is permitted.
However, in all the currently permitted worlds, A is not permitted, only Q.
Before the permission of A, the AI was not permitted to take Saturday off. So
we can’t take the intersection as with obligation and inhibition: @vr@Rv ñ v |ù
pA ^ Qqs. Otherwise we would lose these original worlds, while we only want
to permit new worlds. We would not want to lose the worlds in which the AI
still works on Saturday. It is only a permission to take Saturday off, not an
obligation . If the AI would want to continue working on Saturday this should
still be possible. We could take the union: @vr@Rv ñ v |ù pA_Qqs. However,
we probably don’t want to permit all worlds where A is true, because in some
new worlds where A is true, the old obligations, inhibitions and permissions Q
aren’t satisfied. We don’t want to permit worlds in which the AI can access the
internet. It become ambiguous which worlds should be permitted and which
not. We have to determine which obligations and inhibitions from Q are in
conflict with our new permission A and which we need to keep, as they are still
relevant.6

So, whenever we try to broaden the sphere of permission by issuing a per-

6. Lewis 1979, 27.

2 THE PROBLEM OF PERMISSION Page 9

mission, it becomes unclear which commands and permissions are still relevant
and which are in conflict. This is because, in this world-based approach, we
can’t determine if a permission is allowed, based on its truth-conditions. We
need a different approach of differentiating between what is relevant and what
is in conflict.

2.4 Overview of solutions

I will now give an overview of three suggested approaches to solving the problem
of permission. The first solution only permits worlds that are most similar to
the already permitted worlds. The second solution ranks worlds on their moral
superiority. For these first two, I will not go into a deep critical assessment,
because I will later show an overarching problem with these approaches. I
will finish with the approach I will be working out further: exact truthmaker
semantics.

2.4.1 Similarity approach

The first possible solution is concerned with similarity. Lewis also mentions this
in his article on the problem of permission.7 He suggests that when we issue
a permission, the newly permitted worlds should be the worlds that are most
similar to the worlds that were already permitted. In my example, this would
mean that permitting the AI to access the internet, would be too dissimilar to
the worlds that were already permitted: the worlds where the AI cannot. Not
working of Friday is more similar to working everyday, than not working on
Friday and Saturday.

While it feels evident that newly permitted worlds should have a lot in com-
mon with previously permitted worlds, as most permissions remain intact, Lewis
himself already debunks this possible solution. When we follow the reasoning of
similarity, shouldn’t the AI be obliged to make Sudoku’s, instead of working on
his music career, because it is more alike to making calculations? This makes no
sense. The AI should be free to spend his day off the way he pleases. It could
also be that on his working days, he has to get out of bed at 7, but on an off
day this shouldn’t have to be the case. So, picking worlds that are most similar
to the already permitted worlds is not a solution to the problem of permission.

2.4.2 Ranking approach

The second possible solution comes in the form of a ranking approach. This
possible solution in which Rooij suggests and critiques in his article ”Free Choice
Counterfactual Donkeys”,8 is also very well summarized by Hansson.9 The
ranking approach entails we should rank possible worlds in a moral order. From

7. Lewis 1979, 28.
8. Robert Rooij. 2006. “Free Choice Counterfactual Donkeys.” Journal of Semantics - J

SEMANT 23 (July): 383–402.
9. Hansson 2013, 231.

2 THE PROBLEM OF PERMISSION Page 10

this moral ranking, we should then only permit the morally best possible worlds.
For this approach to be even considered, we need to make the assumption that
a moral ranking can be made.

However, even with this assumption, this approach has its flaws, as Rooij
points out.10 When permitting only the morally best possible worlds, we have no
guarantee that when permitting A, worlds with A are being added to our sphere
of permission. This is the case when we say P pA_Bq but B is morally superior
to A, then none of the best A_B worlds will be A worlds and the only worlds
that are permitted are B worlds. This way, issuing a new permission could mean
you are not given new options, possible worlds, because this new permission is
morally inferior to previously issued permissions. Issuing a permission statement
should intuitively always add to your sphere of permission, as this is not the
case with the ranking approach, it doesn’t seem like a correct solution.

2.4.3 Exact truthmaker semantics

Kit Fine argues that solutions, as the ones I have just given, have no chance
at solving the problem of permission, as he claims we cannot rely on possible
worlds semantics for finding a solution. Kit Fine gives convincing arguments for
this claim in his paper on permission and possible worlds.11 Furthermore, while
it is important to know why possible world semantics can’t solve the problem of
permission, I am mainly interested in how my suggestion could be a solution,
not why other approaches cannot.

This is why I suggest we turn our heads to exact truthmaker semantics.
Exact truthmaker sematics is state-based, in contrast to the world-based SDL
semantics. I believe this state-based approach can provide a framework in which
we can differentiate between relevant and conflicting permissions and obliga-
tions, when updating our sphere of permission. Not being obligated to make
calculations all day is an exact truthmaker of having a free day. Henceforth, it
is understood that the obligation of making calculations is lost when the obli-
gation of working is lost. We also understand that obligation of not accessing
the internet is kept, as it has nothing to do with having a free day. It is not an
exact truthmaker of having a free day. Exact truthmakers of the newly issued
permission can now overrule existing obligations or permission.

I believe the distinction between relevant and conflicting permissions could
prove immensely important in updating our sphere of permission. To test if
this approach will suffice, I will begin my next chapter by further explaining
the exact truthmaking and how it used to construct a framework in which the
problem of permission could be solved.

10. Rooij 2006, 386.
11. Kit Fine. 2014. “Permission and Possible Worlds.” Dialectica 68 (3): 317–336.

3 EXACT TRUTHMAKING AND PERMISSION Page 11

3 Exact truthmaking and permission

Thus far, we have only looked at world-based semantics like SDL, for formalizing
permission. In this paragraph I will give an intuitive explanation of a state-based
truthmaker approach, the exact truthmaking relation and a formal semantics
that describes this relation. Next, I describe how permission fits in the idea of
exact truthmaker semantics. I will then give a formal model, in which permission
is incorporated in the semantics of exact truthmaking.

3.1 Exact truthmaking

For explaining exact truthmaking I will be mainly relying on an article by
Kit Fine.12 In the first place, I will explain the informal idea behind exact
truthmaking. In doing so, I will set it apart from possible world semantics, which
we have seen in the former paragraph. Explaining the distincion between the two
is crucial in understanding why truthmaker semantics could possibly solve the
problem of permission, where possible world semantics could not. Afterwards,
I will give a formalisation of exact truthmaking, which will be necessary for
formalising exact truthmaking for permission later on.

3.1.1 The informal idea

In the previous paragraph we have looked at a possible world semantics to
formalise the problem of permission in. Truthmaker semantics is a different kind
of objectual truth-conditional semantics. Where with possible world semantics,
we take worlds that satisfy the truth-conditions of statement, with truthmaker
semantics we take the states that satisfy the truth-condition of a statement.
States can be seen as parts of worlds, fact-like entities that make up worlds.
States can be state of affairs, events or actions, as long as they can properly
verify a statement. A statement can be a sentence, proposition or a thought,
as long as it can be verified by truth-conditions. In the case of truthmaker
semantics: states. States have a value that can exactly verify a statement A.
When it does, that state is an exact verifiers of before mentioned statement A
and part of the set of verifiers of A. We now take a set of states, a state space,
as the truth-conditions on which to check a statement. 13

For exact truthmaking, we look for states that exactly make the statement
true. A state is an exact truthmaker when it necessitates the statements validity
and is wholly relevant to it. In the same manner a state can be an exact
falsemaker, when it necessitates a statements falsity and is wholly relevant to
it.

For example, the sentence Socrates is a philosopher if the truth-condition of
him being a philosopher is true. In possible worlds semantics the sentence would
be true in the worlds where Socrates is a philosopher. In these worlds, other

12. Kit Fine. 2017b. “Truthmaker Semantics.” Chap. 22 in A Companion to the Philosophy
of Language, 556–577. John Wiley Sons, Ltd. isbn: 9781118972090.

13. Fine 2017b, 560.

3 EXACT TRUTHMAKING AND PERMISSION Page 12

statements could be true as well, like the sentence Socrates likes to golf. For
truthmaker semantics we look at the state space in which the sentence is true.
The states that verify the sentence. For exact truthmaker semantics we look for
states that exactly verify our sentence. Socrates being a philosopher, exactly
verifies our sentence. However, Socrates being a philosopher and him liking golf
only inexactly verifies our sentence. The statement Socrates is a philosopher
and Socrates likes golf does necessitate him being a philosopher. However him
liking golf isn’t wholly relevant to him being a philosopher.

3.1.2 Exact truthmaking formalised

We may take a state space to be an ordered pair pS,Rq, where S (states) is
a non-empty set and R (part) a binary relation on S. We assume that the
relation R is partial ordered, so that conforms to reflexity, anti-symmetry and
transitivity. Formalised for states s,t and u of S as such:

Reflexivity: sRs
Anti-symmetry: sRt and tRs implies s “ t
Transitivity: sRt and tRu implies sRu

For our partial ordered relation, we require completeness on our state space:
every subset of states should have a least upper bound. Given subset T of S, s
is an upper bound if every t P T is a part of s. It is also the least upper bound
if it is included in every upper bound of t. More formally: given subset T Ď S,
it is an upper bound if t Ď s for every t P T . It is also the least upper bound
when s Ď s1 for every upper bound s1 of T.14

In our state space there are also fusions of states. These occur because states
can be a part of other states. This is called parthood. When multiple states are
a part of another state, we must take a fusion of these states. When we take
a fusion of multiple states, we combine the value of these states. So, when we
say s “ t\ u, we mean that s has as its value the conjunction of both the value
of state t and of state u. An example could be that state t is loving flowers
and state u is hating candles. State s would then be loving flowers and hating
candles. Loving flowers and hating candles is not in conflict with each other, so
in this instance a fusion is possible. It results in a possible state. 15

To really understand fusion, it would be good to visualize a state space.
This way, it will be easy to explain parthood of states and how a fusion of the
parts results in the value of the combined state. Below two Hasse diagrams16

are drawn representing state spaces.

14. Ibidem.
15. Ibidem.
16. A Hasse diagram is a type of mathematical diagram which represents a finite partially

ordered set by drawing its transitive reduction.

3 EXACT TRUTHMAKING AND PERMISSION Page 13

s2

s1

s3

X

OO

OO

s3

s1 s2

p q
Y

GG WW

In state space X on the left, we see three states: s1, s2 and s3. The arrows
between these three states represent parthood. State s1 is part of state s2 and
state s2 is part of state s3. In state space Y , we can see an example of multiple
states being part of another state. In this state space state s1 and state s2 are
both part of state s3. As a result, state s3 is the fusion of states s1 and s2.
The fusion is different from its individual parts. State s1 has the value p, state
s2 has the value q. Following the rules of fusion, the values of s1 and s2 are
combined to form the value of s3. In this case p and q are combined to form
p^ q. A formal way of denoting this is: s3 “ s1 \ s2.

In our example state space, we see that our recursive clauses for propositional
operators now need to take the form of states, not worlds. Where in possible
world semantics the recursive clauses for the propostitional operators negation,
conjunction and disjunction were:

w |ù A iff w |ù A
w |ù A^B iff w |ù A and w |ù B
w |ù A_B iff w |ù A or w |ù B

For truthmaker semantics these change. As we are now not interested in when
a statement is true at a given world, but which states necessitates the state-
ment and is wholly relevant to it. We now take a (state) model M to be an
ordered triple pS,R, νq, where pS,Rq is a state space. Our valuation function ν
gives for each propositional statement p the verifiers and falsifiers as the pair
pV, F q, both subsets of S. We get the set |p|` “ V as the verifiers of p, defined
as: |p|` “ ts|s , pu, and the set |p|– “ F of the falsifiers of p, defined as:
|p|´ “ ts|s - pu.

This results in the following: given a model M “ pS,R, νq, we can now de-
termine the clauses that define an arbitrary formula A to be verified ps , Aq or

3 EXACT TRUTHMAKING AND PERMISSION Page 14

falsified ps - Aq by a state s:17

s , p iff s P |p|`;
s - p iff s P |p|´;
s , B iff s - B;
s - B iff s , B;
s , B ^ C iff for some states t and u, t , B, u , C, and s “ t\ u;
s - B ^ C iff s - B or s - C;
s , B _ C iff s , B or s , C;
s - B _ C if for some t and u, t - B, u - C, and s “ t\ u.

We can extend this basic semantics by adding additional conditions on the model
and changing clauses. In his paper Angellic content18, Kit Fine differentiates
three types of content, on which a semantics can be made. There is exact
content, complete content and replete content. Exact content is in line with the
basic semantics I described above, where a state s should verify a formula A
under non-inclusive semantics. Complete and replete expand on this. I will first
explain what both entail and their accompanying semantics. Afterwards I will
explain why each of these semantics would be functional for my application. It
doesn’t matter which I choose. That is why I will stick with the basic semantics,
as explained above.

I will start with inclusive semantics. In inclusive semantics our model is
closed under fusion for all propositions p. So that given a propositional formula
A, the complete content is the complete closure of its exact content. Defined
as: ts P S | s , A under the inclusive semanticsu. In our definition of complete
content we state that s should verify A under inclusive semantics. This inclusive
semantics looks as follows.

s - B ^ C iff s - B or s - C or s - B _ C
s , B _ C iff s , B or s , C or s , B ^ C

A state s P S now falsifies the conjuncion B ^ C if and only if s falsifies B, C
or the disjunction of B and C: B _ C. Furthermore, a state s P S now verifies
the disjunction B _ C if and only if it verifies B, C or the conjunction of both:
B^C. These clauses add to our framework that a verifier of B^C should also
be a verifier for B_C and that a falsifier of B_C should also be a falsifier for
B ^ C.19

When we take the non-vacuous and convex closure of our just defined com-
plete content, we get replete content. In non-vacuous models, every sentence
letter p has a truthmaker and a falsemaker. Convex closure is best explained

17. Fine 2017b, 563.
18. Kit Fine. 2016. “Angellic content.” Framework, relevance logic, Journal of Philosophical

Logic 45 (2): 199–226, 208.
19. Fine 2017b, 563.

3 EXACT TRUTHMAKING AND PERMISSION Page 15

with an example:

s2

s1

s3

A

A

OO

OO

When state s1 and s3 both verify A, for convex closure all states in this
ladder of parthood should all have the same value, in this case state s2 should
also verify A to establish convex closure. 20

However, for my argument it doesn’t matter that much which semantics I
use. I try to see if exact truthmaking in general has the potential to solve Lewis’s
problem if permission. For being able to see if exact truthmaking , the specific
framework chosen in exact truthmaking will not make that big of a difference.
When it becomes clear exact truthmaking can really solve the problem of per-
mission, we can start to extend the framework and see which best captures our
notion of permission. In the continuation of my paper, I will be using the exact
semantics without the complete and replete additions.

Now that we have established a semantics for exact truthmaking, which we
will be using to try to solve the problem of permission, it would be good to take
a look at how this semantics functions in practice. Therefore, we return to our
example state space Y , which is now completely filled in as Y ˚:

s3

s1 s2

p q

p^ q

Y ˚

GG WW

With this state space, we can try to better understand the effect of our ex-
act truthmaking clauses. In state space Y ˚, we see a state s1 |ù p and state
s2 |ù q. It follows form their fusion that s3 “ s1 \ s2 , pp ^ qq. This is the

20. Kit Fine and Mark Jago. 2019. “Logic for exact entailment.” Application, philosophical
logic, exact truthmaking, logic of exact entailment, The Review of Symbolic Logic 12 (3):
536–556, 542.

3 EXACT TRUTHMAKING AND PERMISSION Page 16

case, because s1 is an exact verifier of p: s , p. Which means that s1 P |p|
`;

s1 is in the set of all states that exactly verify p. In the same manner, s2 is
an exact verifier of q: s2 , q. When taking the fusion of states s1 and s2, de-
noted as s1\ s2, we get a new state which combines these two exactly verifying
states into a new state. This new state, in this case s3, exactly verifies p ^ q:
s3 , p^ q. However, this new state does not verify p or q independently. For in
exact truthmaking every part of a state must be wholly relevant, following the
definition mentioned in 3.1.1. State s3 is the combination of its parts s1 and
s2, with values p and q, and both need to be relevant in verifying a statement.
For both p and q to be relevant, only the conjunction of p and q can be verified,
not p or q independently. For verifying q, p is not relevant and the other way
around. This means that this new set can only verify the conjunction of p and
q. To recap: while p^ q does necessitate p or q independently, it is not wholly
relevant. Because of this, p^ q does not exactly verify p or q. In our state space
Y ˚, this means that s3 , p^ q, s3 . p and s3 . q.

Returning to our example concerning Socrates, it would be as follows: if
state s1 is Socrates being a philosopher and state s2 is Socrates liking golf, then
state s3 would be Socrates being a philosopher and Socrates liking golf. Now it
is easy to see that for the state Socrates being a philosopher, it is not the case
that both parts of the conjunction Socrates being a philosopher and Socrates
liking golf are wholly relevant. It does necessitate him being a philosopher, but
it also implies him liking golf, which is not relevant to him being a philosopher.

3.2 Permission

Now that we have a better sense of what exact truthmaker entails, we can start
to combine exact truthmaking with the concept of permission. In this part, I
wil explain informally how these two could be combined. After which, I will give
a formalisation of how permission could work in exact truthmaker semantics.

3.2.1 Permission and exact truthmaking

When issuing a new permission, we have to update our existing permissions and
obligations to be in harmony with the new permission. To do so, we need to
know which other permissions necessitate and are wholly relevant to this new
permission, because these could be in conflict with already existing permissions
and obligations. With exact truthmaker semantics we could give a formalisation
of these exact truthmakers and use these to make sure no implicit conflicts occur.
To bring back our example: when our AI is told it does not have to work on
Saturday, a conflict could arise with its obligation to make calculations all day.
However, an exact truthmaker of not working on Saturday, is not being obligated
to make calculations all day. So, we could remove its existing obligation - to
make calculations all day - because it is in conflict with an exact truthmaker of
our new permission: being free on Saturday.

3 EXACT TRUTHMAKING AND PERMISSION Page 17

3.2.2 Permission formalised in exact truthmaker semantics

At the end on his paper on possible world semantics, Kit Fine suggests a for-
malisation of permission; he writes his positive proposal. He suggests that A
is permitted if and only if all of the verifiers of A are permitted.21 To distin-
guish permitting of states and permitting of statements, I would like to call the
permitted states the set of admissible states. Now, A is permitted if its exact
verifiers are a subset of the admissible states.22

For a formalisation, we take a set of states S, from which we take a subset to
be admissible: pS,ă, Admq. Now, we can define when statement A is permitted.
This should be the case when all states that exactly verify A, formulated as
|A|`, are a part of the set of admissible states. For our formalisation of this
definition of permission, we define language Lbase, which is very similar to our
SDL language:

A :“ a | A | A^A | A_A | AÑ A

From language Lbase, we adapt a language we will call Lp. This language
looks as follows:

B :“ PA | B | B ^B | B _B | B Ñ B

Using this new language, we can formulate the recursive clauses for permis-
sion, where also PA itself is firstly defined:

M |ù PA iff |A|` Ď Adm

M |ù B iff M |ù B
M |ù B ^ C iff M |ù B and M |ù C
M |ù B _ C iff M |ù B or M |ù C
M |ù B Ñ C iff M |ù B or M |ù C

In my example concerning the AI, it would look as follows: the AI is permitted
to not work on Saturday. We look at the exact verifiers of this, like not having
to make calculations all day and not working on Saturday. This clashes with
already admissible states where the AI needs to work on Saturday and is not
permitted to not make calculations all day. So these states are removed and the
states where it is not obligated to do both is added.

If not working on Saturday is A and not making calculations is B, then
we start with P p Aq and P p Bq, both A and B are obligated, because
there are no admissible states that exactly verify A or B.

In their paper ”Truthmakers and Normative Conflicts”, Anglberger and Ko-
rbmacher suggest a definition for obligation in terms of truthmakers. They
suggest that A is obligated if and only if there is no admissible state that is a
falsemaker of A. This is also the case in our example. There are no verifiers

21. Fine 2014, 334-336.
22. J Korbmacher, Albert Anglberger, and Federico LG Faroldi. 2016. “An exact truthmaker

semantics for permission and obligation.” Deontic logic and normative systems, 16–31, 2.

4 EVALUATION Page 18

of A or B, so no falsemakers of the contrary: P p Aq and P p Bq. This
results in an obligation for P p Aq and P p Bq.23

Right now, the conjunction of the verifiers of A and the admissible states
is the empty set: | A|` X Adm “ H. When we issue P p Aq, we look at
which states exactly verify A, defined as | A|`. We can now add these states
to our set of admissible states. This results in a new set of admissible states
Adm˚ “ AdmY | A|`. As a result, in a model M˚ using Adm˚ it should hold
that M˚ $ P A. The restriction on A is tackled, now for B: for a state to
be an exact truthmaker of A, it should also be permitted to B, when the AI
chooses to not work. If we take A to be build from the states p and q or
 q, not working and not making calculations respectively.

Formula A is p p^ ppÑ qqq, then our new permission A is the formula
p p ^ pp Ñ qqq. The states that exactly verify A, |A|`, are states that consist
of both p ^ q. The states that verify A, | A|`, are states with p ^ q or
states with p^ q. When adding | A|` to the admissible set, these new states
make it permitted to not work and the option of not making calculations when
not working.

As a result, it is permitted to B or B when A. When the AI chooses not
to work, it does not have to make calculations, but it is still allowed to. When
the AI does work, it must still make calculations. When the AI chooses A, then
B is still obligated. We get the states that are for example p^ q, or p^ q,
these are not present in |A|`, which we have added to the admissible states.

However, how does accessing the internet fit into this? This is not part of
the verifying states of A, because it is not wholly relevant to A. Following,
the states where the AI accesses the internet are not a part of | A|`. This way,
states where the AI can access the internet, are not added to our set of admissible
states, after issuing the permission. As a result, accessing the internet is still
not permitted for the AI. Exactly as we wanted. In utilising exact truthmaking,
we have made a distinction between the obligations of making calculations and
not accessing the internet. I will do a further evaluation of this in my next
paragraph. For now, it is important to understand the manner in which this
distinction is made.

4 Evaluation

In my fourth paragraph, I will be evaluating if we can use the truth-conditions
of permission statements in exact truthmaker semantics to figure out if they
are allowed. Utilizing exact truthmaking. I will do this by comparing the
old SDL approach to our new exact truthmaking approach. Furthermore, I
will be contemplating in what way we can determine permission for worlds, as
combinations of states. In line with my established definitions of permission
and obligation and my semantics.

23. Albert Anglberger and Johannes Korbmacher. 2020. “Truthmakers and Normative Con-
flicts.” Framework, Studia Logica 108 (1): 49–83, 51.

4 EVALUATION Page 19

4.1 Truth-conditions of permission statements

Firstly, can we use the truth-conditions of permission statements in exact truth-
maker semantics to figure out if they are allowed? For this, I have looked at
exact truthmaking which utilizes states , which can verify or falsify a statement.
When using exact truthmaking, we want states to necessitate and be wholly rel-
evant to a statement. A statement is then permitted if all its exact truthmaking
states are part of the set of admissible states. We must take all necessary and
relevant states into account when changing our set of admissible states. This
way, we update what is permitted or obligated, so that this is in harmony with
our newly issued permission statement.

Lets look back at our problematic example in SDL and compare it to our
exact truthmaking implementation: in my SDL example, it was the case that
by issuing the permission of A at our actual world @. The sphere of permission
should also be extended to include the worlds in which A is permitted. In all
the current worlds, only Q was permitted, not A. So, we couldn’t take the
intersection: @vr@Rv ñ v |ù pA ^ Qqs. We would lose the original worlds,
while we only wanted to permit new worlds. We also tried taking the union:
@vr@Rv ñ v |ù pA _ Qqs. This resulted in permitting all worlds where A was
true. This was also incorrect, because in some new worlds where A was true the
old obligations, inhibitions and permissions Q weren’t satisfied.

Neither of our attempts resulted in the intuitive result: when permitting the
AI to take Saturday off, the AI should be permitted to take Saturday off and
the AI should not be obligated to make calculations all day Saturday. However,
it should still not be permitted to access the internet.

As we could not achieve the wanted result with SDL. We wanted a different
solution to determine which obligations and inhibitions from Q were in conflict
with our new permission A, so we could correctly update our permissions and
obligations. As a possible solution we explored defining permission in exact
truthmaker semantics. It seems from my example that this method works as
desired. When permitting taking a day off, the AI is also permitted to choose
if it wants to make calculations or not. It is no longer obligated to making
calculations. Accessing the internet however, is still forbidden, as we would like.
This might seem like a simple example, but being able to make this distinction
between necessitating and wholly relevant states and irrelevant states is new, in
contrast to SDL. The exact way it is implemented, the semantics, can change,
but the concept is crucial in updating permissions and obligation.

4.2 World construction

From my evaluation, it seems that in an exact truthmaking framework, we can
look at the truth-condition of a permission statement to see if it is allowed or
not. By checking if its exact verifiers are in the admissible set. However, we
now just have a set of states, but these states are only facts in a scenario. Parts
of a world. We need to again assemble worlds from these states. When doing
so, our method of permission need to be kept. I believe the permitting of worlds

4 EVALUATION Page 20

should be done as follows:

A world is permitted iff all its member states are part of the admissible set.

A state is either in the admissible set, then it is permitted, or it is not in the
admissible set, then it is not permitted. In a world, no contradictory states are
present. For each of the states that are present in a world, they are either in the
admissible set or not. From this it follows that we can check for each states of a
world, if it is present in the admissible set and so if the state is permitted. For
a world to be permitted, it needs to be in line with the permissions that result
from our set of admissible states. Only a world that fully consists of permitted
states, is a permitted world.

To illustrate the idea behind permitting worlds, I will be using a simple ex-
ample. This simple model will be ignoring more complex problems, as Fine has
describes in his ”A theory of truthmaker content I”, where gives his definition
for world-states and the boolean operators.24 Another paper of his, ”Compli-
ance and command II”, also gives a more complex framework for truthmaking in
deontic logic and deontic statements as permission and obligation. 25 However,
my way of permitting worlds could easily be implemented in his more complex
framework. For my purpose of explaining my suggestion of world permitting,
an easier example is better to understand.

For my example, I take an admissible set containing the following states:

s1: Socrates loving the color yellow.
s2: Socrates going for a bicycle ride.
s3: Socrates not going for a bicycle ride.
s4: Socrates not loving strawberries.
s5: Socrates loving strawberries.

In this example, Socrates is permitted to go on a bike ride or not and he is
permitted to love or hate strawberries. He is however obligated to love the color
yellow. For every combination of states that we check, it has to contain Socrates
loving the color yellow. Furthermore, we have the state s6: Socrates not loving
the color yellow, as the opposite for s1.

For worlds it would look as follows: we have four permitted worlds: w1, w2,
w3, w4, which are as follows:

24. Kit Fine. 2017a. “A theory of truthmaker content I: Conjunction, disjunction and nega-
tion.” Framework, philosphical logic, metaphysics, exact truthmaking, inexact truthmaking,
loose truthmaking, Journal of Philosophical Logic 46 (6): 625–674, 630-633.

25. Kit Fine. 2018. “Compliance and command II, imperatives and deontics.” The Review
of Symbolic Logic 11 (4): 634–664, 639-645.

5 CONCLUSION Page 21

w1 “ ts1, s2, s4u
w2 “ ts1, s2, s5u
w3 “ ts1, s3, s4u
w4 “ ts1, s3, s5u

These four worlds are all permitted, as they only consist of worlds present in
the set of admissible states. We could also get four not permitted worlds: w5,
w6, w7, w8, as follows:

w1 “ ts2, s4, s6u
w2 “ ts2, s5, s6u
w3 “ ts3, s4, s6u
w4 “ ts3, s5, s6u

Following our definition of the permission of worlds, these worlds would not
be permitted, as they all contain the state s6, which is not in the set of admissible
states.

Our admissible set changes as a consequence of issued permissions. Changes
to the admissible set, change which worlds are permitted. If all states need to
be part of the admissible set, also states that are fusions of other states, because
these are also part of the world. Fusions create new states than are different
from their parts and therefore also have to be part of the admissible set.

As my example shows, we now have a functional manner in which we can
permit worlds, combined with the benefits of state-based exact truthmaking.
We can now permit worlds, as we tried to achieve with SDL, but with the
ability of updating our existing permissions and obligations, so that they are in
harmony with a new permission.

5 Conclusion

In my thesis, I have shown why an implementation of permission in SDL result
in a problem of permission. Following, I have provided an alternative semantics
in the form of exact truthmaker semantics. In this framework, it is possible to
determine if a permission statement is allowed, based on its truth-conditions.
This is in contrast with the SDL, world-based approach, in which this was not
possible. Using the exact truthmaking framework, I provided a way in which
I believe permission should be implemented for worlds, where worlds are build
from exact truthmaking states. I suggest that a world should be permitted when
it only consists of states that are present in the set of admissible states.

There are also potential problems I have not already adressed, like the truth-
conditions of a permission statement of a permission statement: PPA. Another
problem could be how we could determine the truth-conditions of a conjunction
of a formula A and a permission statement PA.

Furthermore, in my thesis I have worked with the basic semantics for exact
truthmaking. There could be more exploration of inclusive and replete semantics
or something completely new, to find which semantics best fits our notion of
permission.

5 CONCLUSION Page 22

In my thesis I have also assumed a closed notion of permission, it could also
be thinkable that something is both not permitted and not forbidden. This
could have its effects on how we handle permission, in comparison as to how I
have approached permission.

In further research, there could also be worked on a formal procedure for
my exact truthmaking framework, a procedure that takes a model and a per-
mission and return the updated model. A proper deontic logic for the updating
operators.

BIBLIOGRAPHY Page 23

Bibliography

Anglberger, Albert, and Johannes Korbmacher. 2020. “Truthmakers and Nor-
mative Conflicts.” Framework, Studia Logica 108 (1): 49–83.

Anglberger, Albert JJ. 2008. “Dynamic deontic logic and its paradoxes.” Studia
Logica 89 (3): 427–435.

Fine, Kit. 2014. “Permission and Possible Worlds.” Dialectica 68 (3): 317–336.

Fine, Kit. 2016. “Angellic content.” Framework, relevance logic, Journal of
Philosophical Logic 45 (2): 199–226.

Fine, Kit. 2017a. “A theory of truthmaker content I: Conjunction, disjunction
and negation.” Framework, philosphical logic, metaphysics, exact truth-
making, inexact truthmaking, loose truthmaking, Journal of Philosophical
Logic 46 (6): 625–674.

Fine, Kit. 2017b. “Truthmaker Semantics.” Chap. 22 in A Companion to the
Philosophy of Language, 556–577. John Wiley Sons, Ltd. isbn: 9781118972090.

Fine, Kit. 2018. “Compliance and command II, imperatives and deontics.” The
Review of Symbolic Logic 11 (4): 634–664.

Fine, Kit, and Mark Jago. 2019. “Logic for exact entailment.” Application, philo-
sophical logic, exact truthmaking, logic of exact entailment, The Review of
Symbolic Logic 12 (3): 536–556.

Hansson, Sven Ove. 2013. “The Varieties of Permission.” In Handbook of Deontic
Logic and Normative Systems, edited by Dov M. Gabbay, John Horty,
Xavier Parent, Ron van der Meyden, and Leendert van der Torre, 195–240.
College Publications. isbn: 978-1-84890-132-2.

Korbmacher, J, Albert Anglberger, and Federico LG Faroldi. 2016. “An exact
truthmaker semantics for permission and obligation.” Deontic logic and
normative systems, 16–31.

Lewis, David. 1979. “A Problem About Permission.” In Essays in Honour of
Jaakko Hintikka: On the Occasion of His Fiftieth Birthday on January 12,
1979, edited by Esa Saarinen, Risto Hilpinen, Ilkka Niiniluoto, and Merrill
Provence Hintikka, 163–175. Dordrecht: Springer Netherlands. isbn: 978-
94-009-9860-5.

McNamara, Paul, and Frederik Van De Putte. 2021. “Deontic Logic.” In The
Stanford Encyclopedia of Philosophy, Spring 2021, edited by Edward N.
Zalta. Metaphysics Research Lab, Stanford University.

Rooij, Robert. 2006. “Free Choice Counterfactual Donkeys.” Journal of Seman-
tics - J SEMANT 23 (July): 383–402.

