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Abstract

This thesis is an exploration into how useful it is to use FDE to describe
group knowledge. AI agents sometimes have to deal with inconsistent infor-
mation, which results in inconsistent knowledge. Since it is difficult to use
classical logic to describe inconsistent (group) knowledge, this thesis explores
to what extent it is possible and useful to define group knowledge based on
FDE. We did this by defining group knowledge in FDE and comparing this to
the definitions in classical logic and looking the consequences. Results show
that defining group knowledge based on FDE solves a few problems, for ex-
ample, that inconsistent beliefs imply that you believe everything. On the
other hand has this way of describing group knowledge some flaws, like that
modus ponens is not valid in FDE.
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Introduction

Most of what we do has to do with the things we know or believe. Looking at
behaviour of artificial agents, it is important to be interested in the ’knowledge’
and ’belief’ of an agent. Description and representation of knowledge are subjects
that often occur in artificial intelligence. (Meyer and Hoek, 1995). Epistemic logic
is used to describe and represent knowledge and beliefs of agents. (Rendsvig and
Symons, 2021)

AI agents sometimes have to deal with inconsistent information. For example, this
can occur if people feed the agent different information. In this case, it makes less
sense to use (classical) epistemic logic to describe and represent knowledge of an
agent because in classical is no place for inconsistency. For example, If Christian
Huygens tells the agent the following statement: ’light behaves like a wave’. Let us
call this proposition p. Suppose that Isaac Newton tells the agent that light does
not behave like a wave (¬p). For the agent, it is not rational to believe both p and
¬p. In classical logic p ∧ ¬p is always false, which means that p ∧ ¬p ` q is always
true for any proposition q. So if the agent believes p and ¬p, the agent believes
everything. This seems untrue. There are logics that can deal with inconsistency,
such that p ∧ ¬p 6` q. These are called paraconsistent logics.

Some computer scientists argue that non-monotonic logic can also be applied to
handle inconsistent information. This is a logic that can ’adapt’ to new information.
This has some benefits that classical logic and many paraconsistent logics do not
have. Despite that this is an interesting logic to apply to inconsistent information,
the focus in this thesis will be on a paraconsistent logic.

A popular paraconsistent logic is First Degree Entailment logic. In 1977 Belnap and
Dunn presented FDE and argued that FDE should be used in some circumstances,
for example how a computer should think (Omori and Wansing, 2017). Fifty years
later there is still enthusiasm about FDE. Beall even argued that FDE is the one
true logic. (Beall, 2019)

FDE is a four-valued logic. In classical logic, there are two values. Namely, True
and False. In FDE there is True, False, Both, and None. Where one can interpret
True as ’(only) told True’, False as ’(only) told False’, Both as ’told both True and
False’ and None as ’neither told True nor False’.(Belnap and Dunn, 1992) If we
apply this in the above example, we get that the proposition ’light behaves like a
waves’ can receive the value Both.

To reason about inconsistent knowledge and belief, it is maybe a good idea to use
FDE logic. It is interesting to look if FDE logic can be used to reason about
knowledge of agents and how this affects group knowledge. Which brings us to
the following question: To what extent is it possible and useful to define group
knowledge based on FDE? In this thesis, I will answer this question.

By looking at the interesting properties of group knowledge based on FDE, we have
a new application for FDE and we have a way to reason about knowledge and beliefs
of agents who have to deal with inconsistent information. This makes this research
relevant for AI.
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In this thesis I will first give some background in epistemic logic and group knowl-
edge, then I will talk about FDE and how I will define FDE logic on possible worlds.
Lastly, I will apply FDE to Group Knowledge and look at the consequences.

Background Group Knowledge

In AI we are interested in formally describing knowledge of agents. Logic is used
to represent knowledge and formalize reasoning methods.(Meyer & Hoek, 1995) We
start with describing propositional logic.

Propositional Logic

In propositional logic, there are two truth values: True and False. A proposition
p can have the value True (t) or False (f). The function v assigns a value to a
proposition, for example v(p) = t. Propositional logic has the connectives ¬, ∧ and
∨. With these connectives, we can make sentences. We denote propositions with
the small letters p, q, r and sentences with the Greek letters ϕ, ψ, ξ. So for example
ϕ = ¬p∨ q. To determine the value of a sentence we use the following truth tables:

v¬
t f
f t

v∧ t f
t t f
f f f

v∨ t f
t t t
f t f

So if v(p) = t and v(q) = f , then v(ϕ) = v(¬p ∨ q) = v∨(v¬(v(p)), v(q)) =
v∨(v¬(t), f) = v∨(f, f) = f . We can define the implication connectives → and
↔ in term of the connectives ¬,∨,∧. Where ϕ→ ψ is equal to ¬ϕ ∨ ψ and ϕ↔ ψ
is equal to (ϕ→ ψ) ∧ (ψ → ϕ), which is equal to (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ).

We say that a sentence ϕ is true under interpretation v iff the sentence has the value
True, so v(ϕ) = t. We say that a sentence ϕ is valid (|= ϕ) iff ϕ is true in every
interpretation, so for every valuation of the propositions in ϕ it holds that v(ϕ) = t.
We call this a logical truth.

An argument is valid iff it is impossible for the conclusion to be false, while the
premises are true. For example p, p → q |= q is a valid argument, because if p and
p→ q is true, then q is always true. So it can not be the case that the premises are
true and the conclusion is not. (Gensler, 2012)

Modal Logic

We extend propositional logic to modal logic, where we add two operators � and
♦. We use �ϕ to say that ϕ is necessarily true and ♦ϕ to say that ϕ is possible.
These operators are often defined on possible worlds. A possible world is a complete
description of how the world is or could have been. Now we interpret �ϕ as ϕ being
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true in every world that we think is possible and ♦ϕ as ϕ being true in one of the
worlds that we think is possible.

A Kripke model is a tuple M = 〈W,R, V 〉. Where W is the set of worlds in the
model, R is the accessibility relation and V the valuation function. The valua-
tion function depends on a proposition p and gives the set of worlds where p is
true.(Blackburn et al., 2006)

We define the concept of a proposition p being true at a world w in a model M as
follows:

M, w |= p iff w ∈ V (p)

To extend this to sentences we define a sentence to be true at a world w in the
model M as follows:

M, w |= > always,
M, w |= ⊥ never,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= �ϕ iff M, x |= ϕ for all x such that wRx
M, w |= ♦ϕ iff there exists a world x such that wRx and M,x |= ϕ

We say that a sentence ϕ is valid iff M,w |= ϕ in every world in every model.

Epistemic Logic

The language of epistemic logic is similar to the language of modal logic. Epistemic
logic has no � and ♦, but it has the knowledge operator Ka. If Kaϕ, we say that
agent a knows ϕ. A is a set of agent names and a ∈ A. We define Kaϕ to be true
at a world w as follows:

M, w |= Kaϕ iff M, x |= ϕ for all x such that wRax, where Ra is the accessibility
relation of agent a.

So the operator Ka works very similar as �. We define the operator K̂a as ¬Ka¬.
We define K̂a to be true in a world w in a model M as follows:

M, w |= K̂aϕ iff there exists a world x such that wRax and M, x |= ϕ

If K̂aϕ (¬Ka¬ϕ), the agent a does not know that ϕ is false. In other words, agents
thinks ϕ could be true.

We say that Kaϕ is valid iff M, w |= Kaϕ for all worlds in all models.

Group Knowledge

We add a group knowledge operator EB, to describe the knowledge of a group. We
say that EBϕ iff every agent b in group B knows that ϕ, in other words:

EBϕ =
∧
b∈B

Kbϕ,
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where B ⊆ A.

Similar to K̂, we define ÊB as ¬EB¬, so:

ÊBϕ = ¬EB¬ϕ = ¬
∧
b∈B

Kb¬ϕ =
∨
b∈B

K̂bϕ

In other words, this means that if ÊBϕ, then there is an agent b in group B, that
knows ϕ.

An other interesting kind of knowledge of a group is common knowledge, which is
defined as follows:

CBϕ = EBϕ ∧ EBEBϕ ∧ EBEBEBϕ ∧ · · · =
∞∧
n=0

En
Bϕ

.

So ϕ is common knowledge if ϕ is true and everybody knows ϕ is true and everybody
knows that everybody knows ϕ is true and so on to infinity. Sometimes common
knowledge is described as ’what every fool knows’.

Distributed knowledge is the implicit knowledge of a group, that would be explicit if
the group would perfectly work together and share all their knowledge. Distributed
knowledge operator is denoted as DB. Suppose that B = {a, b} and Kaϕ∧Kb(ϕ→
ψ), then DBψ. (Van Ditmarsch et al., 2007)

To apply group knowledge on possible worlds, we need to define some accessibility
relations for EB, DB, and CB. We can do this in terms of the accessibility relation
of one agent, above mentioned as Ra:

Note that the accessibility relation of one agent b (Rb) is a set {(x, y)|xRby}.
Let REB

=
⋃

b∈B Rb,
Let RDB

=
⋂

b∈B Rb and
let us say that x+y iff world y is ”reachable” by x, more precise:

xR+y iff either x = y and xRy or for a n > 1 holds that there is a sequence
x1, x2, . . . xn such that x1 = x, xn = y and for all i < n holds that xiRxi+1. If
xR+x for all x, we say that R+ = R∗.

Now we can define RCB
as R∗EB

.

With these definitions of the relations, we can define the operators EB, DB and CB

on worlds:

M, w |= DBϕ iff M, x |= ϕ for all worlds x such that wRDB
x.

M, w |= EBϕ iff M, x |= ϕ for all worlds x such that wREB
x.

M, w |= CBϕ iff M, x |= ϕ for all worlds x such that wRCB
x.

We had already a formal definition of EB and CB. Note that they are equivalent to
the above definition.

5



FDE

As mentioned in the introduction, in FDE there are four values: True, False, Both
and Neither. Let us define a set V with these values: V = {t, f, b, n}. A sentence ϕ
can have one of the values in the set V . The function v assigns a value from V to
ϕ, for example v(ϕ) = t.(Priest, 2008b)

FDE has three connectives: ¬,∨ and ∧. As in classical logic ¬f = t and ¬t = f .
From this follows that ¬b = b and ¬n = n. There is a intuitive explanation for this
definition. Suppose that a sentence ϕ has the value n, then ϕ is neither told True
nor told False. In that case ¬ϕ should also have the value n. If we do not know
anything about ϕ, we also do not know anything about ¬ϕ.(Belnap & Dunn, 1992)

In a truth table this looks a follows:

¬
n n
t f
f t
b b

To explain how the connectives ∧ and ∨ work, it is necessary to order the four
values. It is easy to do this with the following lattice:

t

f

bn

(Priest, 2008b)

So True is the highest in order, then follow Both and Neither and False is the last
in order. The value of a sentence ϕ ∧ ψ is the greatest lower bound of the values of
ϕ and ψ, which is the greatest value in the lattice from where one can get to the
value of ϕ and ψ following the arrows. For example, b ∧ t = b and b ∧ n = f .

The value of a sentence ϕ ∨ ψ is the least upper bound of the values of ϕ and ψ,
which is the lowest value in the lattice from where one can get to the value of ϕ
and ψ following the arrows in the opposite direction. For example, b ∨ t = t and
b ∨ n = t. (Priest, 2008a)

In truth table this looks as follows:
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∧ t b n f
t t b n f
b b b f f
n n f n f
f f f f f

∨ t b n f
t t t t t
b t b t b
n t t n n
f t b n f

The implication connective is defined as in classical logic: ϕ→ ψ = ¬ϕ∨ψ. (Priest,
2008b)

We say that a sentence ϕ is true iff V (ϕ) = t or V (ϕ) = b. A sentence ϕ is valid iff
for every interpretation ϕ is true.

There is no sentence that is valid in FDE, for every sentence ϕ there is a valuation,
such that V (ϕ) = n.

Where in classical logic the sentence p ∨ ¬p is a logical truth, there is in FDE a
valuation, such that V (p ∨ ¬p) = n . Suppose V (p) = n, then V (¬p) = n and
V (p ∨ ¬p) = n, so p ∨ ¬p is not valid in FDE.

FDE on Possible Worlds

To define a modal logic based on FDE, the logic BK is used in this paper, because it
is very close to Kripke semantics. BK logic is the Belnapian version of the weakest
normal modal logic, named K. (Odintsov & Wansing, 2010)

A BK model is a tupleM = 〈W,R, v+, v−〉, where W is a non-empty set of possible
worlds, where R is accessibility relation on W and v+ : Prop → 2W is a function
which takes a proposition p and gives the subset of worlds in which p is true and
v− gives the subset of wolds in which p is false.

We define the following relations |=+ and |=− to express that a proposition p is true
or false in a world:

M, w |=+ p⇔ w ∈ v+(p);M, w |=− p⇔ w ∈ v−(p).

To extend this to sentences we define the connectives as follows:

M, w |=+ ¬ϕ iff M, w |=− ϕ
M, w |=− ¬ϕ iff M, w |=+ ϕ

M, w |=+ ϕ ∧ ψ iff M, w |=+ ϕ and M, w |=+ ψ
M, w |=− ϕ ∧ ψ iff M, w |=− ϕ or M, w |=− ψ

M, w |=+ ϕ ∨ ψ iff M, w |=+ ϕ or M, w |=+ ψ
M, w |=− ϕ ∨ ψ iff M, w |=− ϕ and M, w |=− ψ

To make this a modal logic, we add the � and the ♦ in a very similar way these
modal symbols are defined in classical modal logic.
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M, w |=+ �ϕ iff M, x |=+ ϕ for all x such that wRx
M, w |=− �ϕ iff M, x |=− ϕ for all x such that wRx

M, w |=+ ♦ϕ iff there exist a world x such that wRx and M, x |=+ ϕ)
M, w |=− ♦ϕ iff there exist a world x such that wRx and M, x |=− ϕ)

To translate this back to the four values of FDE we define the valuation function
vw as follows:(Priest, 2008b)

vw(ϕ) = t iff M, w |=+ ϕ and it is not the case that M, w |=− ϕ
vw(ϕ) = b iff M, w |=+ ϕ and M, w |=− ϕ
vw(ϕ) = n iff not M, w |=+ ϕ and not M, w |=− ϕ
vw(ϕ) = f iff M, w |=− ϕ and it is not the case that M, w |=+ ϕ

We say that ϕ is true in M, M |= ϕ iff M, w |=+ ϕ for all w ∈ W . (Odintsov
& Wansing, 2010) This means that M |= ϕ iff (vw(ϕ) = t or vw(ϕ) = b for all
w ∈ W ).We say that ϕ is valid, if ϕ is true in each M.

In FDE an argument is valid iff there is no world w in any modelM, such that the
premises of the argument have the value true or both in world w and the conclusion
has not.

Note that p, p → q |= q (modus ponens) is not valid in FDE. Take the world
x, where x ∈ v+(p), x ∈ v−(p) and x ∈ v−(q), then v(p) = b and v(q) = f . Then
v(p→ q) = v(¬p∨q) = b. So the premises have the value both, while the conclusion
has the value false.

FDE on Group Knowledge

In Group Knowledge the knowledge operator is defined as replacement for the box,
which looks as follows:

w |= Kaϕ iff x |= ϕ for all x such that wRax.

If we define the knowledge operator in FDE as we defined the box operator in FDE
we get the following definition:

w |=+ Kaϕ iff x |=+ ϕ for all x such that wRax.
w |=− Kaϕ iff x |=− ϕ for all x such that wRax.

Like in epistemic logic we define K̂a as ¬Ka¬. So,

w |=+ K̂aϕ iff there exists a world x, such that wRax and x |=+ ϕ .
w |=− K̂aϕ iff there exists a world x, such that wRax and x |=− ϕ .

In FDE Kaϕ is true iff v(Kaϕ) = t or v(Kaϕ) = b. From this follows that Kaϕ is
not true iff v(Kaϕ) = f or v(Kaϕ) = n.
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In classical logic p ∧ ¬p |= q. Because p ∧ ¬p is a contradiction and always false,
it follows that the argument is valid. In epistemic logic Kaϕ ∧ Ka¬ϕ is also a
contradiction, so the argument Kaϕ ∧ Ka¬ϕ |= Kaψ is valid. This means that if
you know two opposite things, you know everything.

In FDE this does not hold. Suppose that v(ϕ) = b, then v(¬ϕ) = v(ϕ), so
v(Ka¬ϕ) = v(Kaϕ). So Kaϕ ∧ Ka¬ϕ is not a contradiction. The question is if
this is desirable. If there is a reason to belief Kaϕ ∧Ka¬ϕ is true, then we do not
want the argument Kaϕ ∧Ka¬ϕ |= Kaψ to be valid.

Knowledge is often described as justified true belief. Two opposite things can both
be justified to believe. It also seems possible for a person to have opposite beliefs,
(maybe unknowingly). To say that two opposite things are both true is a little bit
more controversial, but we live in a post-modern period, where people do not think
very strictly about truth. I think most people agree if I say that two opposite things
can have a part of the truth. Even if two opposite things can not be true and false
at the same time, then is a reason to believe you can know two opposite things.
(Goldman & McGrath, 2015)

Knowledge as justified true belief is not widely accepted. A lot of philosophers
argue that knowledge does not necessarily require truth. With a different definition
of knowledge, it can be problematic to consider Kaϕ ∧Ka¬ϕ as a contradiction. A
different definition of knowledge is often the case in AI if we talk about agents. The
knowledge of an agent is often described as the information the agent is fed. This
information is not necessarily true.

If we use FDE to describe knowledge, Kaϕ ∧Ka¬ϕ is not a contradiction and we
do not have the ’problem’ that Kaϕ ∧Ka¬ϕ |= Kaψ. This can be a reason to use
FDE to describe knowledge.

The main difference between knowledge and belief is that we do not need a belief
to be true. We write Baϕ for ”agent a believes that ϕ”. In classical logic, the belief
operator in a world w is defined as:

w |= Baϕ iff w |= ϕ for all x such that wRB
a x.

This means that Baϕ ∧ Ba¬ϕ is a contradiction, so Baϕ ∧ Ba¬ϕ |= Baψ. In other
words, if you believe that ϕ is true and ¬ϕ is true, then you believe everything.
This does not seem right, since it seems normal for a person to believe two opposite
things. Maybe because the person is not aware of his inconsistent beliefs, or he
believes ϕ and ¬ϕ and realizes it, but he has a justification for both ϕ and ¬ϕ, so
he believes both.

Because Baϕ ∧ Ba¬ϕ is a contradiction in classical logic, Bb(BaϕBa¬ϕ) is also a
contradiction. So if you believe that agent a believes a contradiction, then you be-
lieve everything. So even if you are a consistent believer, but you believe somebody
else is not, you are not a consistent believer anymore and you believe everything.
This seems even more implausible.

In FDE w |=+ Baϕ iff w |=+ ϕ for all x such that wRB
a x and

w |=− Baϕ iff w |=− ϕ for all x such that wRB
a x

9



So in FDE, we do not have the problem that an inconsistent belief, causes beliefs
in everything, because Baϕ ∧Ba¬ϕ is not a contradiction.

Everybody Knows

In classical logic the group knowledge operator for ”everybody knows” is defined
as:

EBϕ =
∧
b∈B

Kbϕ

and on possible worlds EB is defined as:

M, w |= EBϕ iff M, x |= ϕ for all worlds x such that wREB
x

In FDE we define this as follows:

M, w |=+ EBϕ iff M, x |=+ ϕ for all worlds x such that wREB
x

M, w |=− EBϕ iff M, x |=− ϕ for all worlds x such that wREB
x

We will discuss some differences and consequences of these definitions.

In classical logic, there are a lot of logical truths. These logical truths are true in
every world. Suppose ϕ is a random logical truth. This means that in every world
and for every agent a ∈ A,Kaϕ is also true. From which follows that EBϕ. This
means that everybody knows all the logical truths.

Some logical truths are very long and if you see the sentence you can not tell if it
is true or not. Is it then justified to say that you know that the sentence is true?
People are not perfect reasoners so it is likely that you do not know most of the
logical truths. For agents, it is also likely to do not know all the logical truths, since
computation costs time and some logical truths are infinite. (Gómez-Torrente, 2019)
So it seems unlikely that everybody knows all the logical truths in a group.

In FDE we do not have this problem, because there are no logical truths in FDE.

A related problem is that in classical logic the agent knows everything that follows
validly from his knowledge. In other words, if ϕ, ψ |= ξ in classical logic, then
Kaϕ,Kaψ |= Kaξ. So, for example Kaϕ ∧ Kaψ |= Ka(ϕ ∧ ψ), Kaϕ |= Ka(ϕ ∨ ψ)
and Kaϕ ∧Ka(ϕ→ ψ) |= Kaψ. This does not feel right, because it seems plausible
that some things follow from your knowledge, but where you did not think of and
it is also human to make mistakes with reasoning.

In FDE we have the same problem. Suppose that ϕ, ψ |= ξ in FDE, thenKaϕ,Kaψ |=
Kaξ. So, for example Kaϕ ∧ Kaψ |= Ka(ϕ ∧ ψ) and Kaϕ |= Ka(ϕ ∨ ψ). A differ-
ence with classical logic is that Kaϕ ∧ Ka(ϕ → ψ) |= Kaψ is not valid, because
ϕ ∧ (ϕ → ψ) |= ψ is not valid in FDE. There are enough arguments ϕ, ψ |= ξ that
are valid in FDE, so the problem of logical omniscience is not resolved in FDE.

Distributed Knowledge

If an agent a knows ϕ and agent b knows ϕ→ ψ, then Dabψ in classical logic.
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We define the distributed knowledge in FDE on possible worlds as follows:

M, w |=+ DBϕ iff M, x |=+ ϕ for all worlds x such that wRDB
x

M, w |=− DBϕ iff M, x |=− ϕ for all worlds x such that wRDB
x

Now we show that in FDE Kaϕ,Kbψ |= DB(ϕ ∧ ψ) just like it does in classical
logic.

Suppose Kaϕ and Kbψ and B = a, b, then w |=+ Kaϕ and w |=+ Kbψ, which
means that w |=+ ϕ for all x such that wRax and w |=+ ψ for all x such that
wRbx. From this follows that w |=+ ϕ ∧ ψ for all x such that wRax and wRbx. In
other worlds w |=+ ϕ ∧ ψ for all x such that (w, x) ∈

⋂
b∈B Rb. So w |=+ ϕ ∧ ψ

for all x such that wRDB
x, so w |=+ DB(ϕ ∧ ψ). From this we can conclude that

Kaϕ,Kbψ |= DB(ϕ ∧ ψ) in FDE.

However, there are also arguments concerning distributed knowledge that are valid
in classical logic, but not in FDE. We will discuss a few and we begin with modus
ponens.

To show that Kaϕ,Kb(ϕ→ ψ) |= DBψ is not valid, we need some counter example
were Kaϕ and Kb(ϕ → ψ) are valid and DBψ is not. Suppose that w |=+ Kaϕ,

w |=+ Kbϕ, w |=− Kbϕ and w 6|=+ K̂bψ, then Kaϕ and Kb(ϕ → ψ) are valid, but

w 6|=+ K̂bψ, so for all x such that wRDB
x holds that x 6|=+ ϕ, so DBψ is invalid. We

can conclude that Kaϕ,Kb(ϕ→ ψ) |= DBψ.

The question is if it is desirable that modus ponens is not valid in this case. If
somebody knows ϕ and another knows that ϕ implies ψ, it sounds plausible that
they know ψ together. Modus ponens is a very important argument in logic, so
if modus ponens does not work, it is at least a flaw. If we use FDE to describe
knowledge of agents with inconsistent information, it could be a good thing that
modus ponens does not work. It is tricky to make a heavy conclusions based on
inconsistent information.

A similar argument that does not work in FDE is Ka¬p,Kb(p ∨ q) |= DBq, which
is the same as modus ponens if we write p ∨ q as ¬p → q. We just showed that
modus ponens is not valid in FDE, so neither is Ka¬p,Kb(p ∨ q) |= DBq. This is
unfortunate, since in life we often search for the right answer, by eliminating the
wrong answers. However, if you work with inconsistent information a wrong answer
can also be a right answer, so then it is good that Ka¬p,Kb(p∨ q) |= DBq does not
work.

Another argument that does not work in FDE is Ka(ϕ→ ψ), Kb(ψ → ξ) |= DB(ϕ→
ξ). Suppose that vw(Kaϕ) = t, vw(Kaψ) = b, vw(Kbψ) = b and vw(Kbξ) = f , then
vw(Ka(ϕ → ψ)) = b and vw(Kb(ψ → ξ)) = b, so Ka(ϕ → ψ), Kb(ψ → ξ) is
valid. However, for all x such that wRDB

x holds that vx(ϕ) = t and vx(ξ) = f , so
vx(ϕ → ξ) = f , so DB(ϕ → ξ) is not valid. This feels again a little bit strange.
(Priest, 2008a)

Common Knowledge

We define common knowledge in FDE:
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M, w |=+ CBϕ iff M, x |=+ ϕ for all worlds x such that wRCB
x.

M, w |=+ CBϕ iff M, x |=+ ϕ for all worlds x such that wRCB
x.

Analogous to the case of ”everybody knows”, in classical logic all the logical truths
are common knowledge (|= ϕ =⇒ CBϕ). We already discussed why it is strange
to say that everybody knows all the logical truths. Saying that all logical truths are
common knowledge is even a stronger claim and even less desirable. It requires more
knowledge about knowledge of others, that we often do not have in real life.

Common knowledge is often introduced with the puzzle of the muddy children. The
puzzle shows that common knowledge makes a difference in comparison with general
knowledge. Some inferences are done, that could not have taken place in general
knowledge. We will discuss the puzzle.

Suppose there are three children (Ann, Bill, and Cath), and suppose that Ann and
Bill are muddy. Their father says: ”At least one of you is muddy” (ma∨mb∨mc). It
is common knowledge that the children are perfect reasoners, that what the father
says is true and that they can not see their own face, but they can see each other’s
faces. Then the father asks: ”Please step forward if you are muddy” A child can
know if it is muddy when it sees two faces that are not muddy. For Ann, Bill and
Cath this is not the case, so nobody steps forward. So then it is common knowledge
that nobody knows if their muddy or not. Now Ann knows that Bill is not the only
one that is muddy, otherwise, Bill would have stepped forward. So Ann knows that
she is muddy and Bill knows he is muddy too, because of similar reasons. When
the father asks again: ”Please step forward if you are muddy”. Ann and Bill step
forward and Cath knows that Ann and Bill could only know this if she is self not
muddy. So now Cath knows she is not muddy.

Not all these inferences can be done in FDE. For example, Ann knows that CB(ma∨
mb ∨mc) and Kb¬ma, Kb¬mc |= Kbmb and concludes that Bill would have stepped
forward if Kb¬ma. In FDE Kb(ma ∨ mb ∨ mc), Kb¬ma, Kb¬mc |= Kbmb is not
valid, because it is possible that Kbma ∧Kb¬ma, so modus ponens does not work
(Kb¬ma, Kb(¬ma → (mb ∨mc)) 6|= Kb(mb ∨mc)).

So using FDE instead of classical logic can have some impact on the applications of
common knowledge. Since modus ponens is so commonly used, a lot will change if
it is not valid anymore.

Conclusion, Discussion

From this research, we can conclude that is possible and partly effective to define
group knowledge based on FDE. It is effective, because in FDE Kaϕ∧Ka¬ϕ |= Kaψ
and Baϕ∧Ba¬ϕ |= Baψ are not valid, so inconsistent knowledge or belief, does not
imply that you know or belief everything. In the case that there is inconsistent
information or that something can be true and false at the same time, FDE is a
great logic to avoid problems like believing everything as a cause of inconsistent
belief.

FDE also solves a part of the logical omniscience problem, namely the part where
every agent knows all the logical truths, this is because in FDE there are no logical
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truths. The other part of the logical omniscience problem is that agents know
everything that follows from their knowledge. FDE does not solve this part of the
problem, so FDE is here on the same level as classical logic.

A disadvantage of FDE in comparison with classical logic is that modus ponens does
not work in FDE. Modus ponens is used very commonly, so not been able to use
modus ponens affects what we can describe with distributed knowledge, common
knowledge, and just knowledge in general.

That modus ponens does not work in FDE can also be an advantage in (group)
knowledge, since we do not expect from people or agents that they know the all
implications of their knowledge. So in real life, a not working modus ponens seems
appropriate sometimes.

Other things that could be researched are other ways of handling inconsistent infor-
mation and inconsistent (group) knowledge, for example, other many-valued logics
or non-monotonic logic. In addition, FDE could be applied more broadly, for ex-
ample on different aspects of group knowledge, like public announcements.
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