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Abstract

Target word classification is an important part of speech recognition and artificial

intelligence. Due to the rise of deep learning, target word classification models have

shown impressive results. However, for some types of data, the accuracy of these

models is still lacking. For one, research has found that using state-of-the-art target

word classification software for Infant Directed Speech (IDS) - a special type of speech

used when talking to infants - results in lower classification accuracy compared to

Adult Directed Speech (ADS). In this thesis, we will answer the question: “Can deep

learning models be used for successful classification of target words in Infant Directed

Speech?” To answer this question two experiments have been conducted in which deep

learning classification models (CNNs and RNNs) were trained and evaluated on IDS

and ADS. The results of these models have been compared and analyzed. There was

found to be no significant difference in classification accuracy between the two types of

speaking. Furthermore, the CNN model classified IDS test samples with an accuracy of

85%. From this, it was concluded that deep learning models can be used for successful

target word classification of IDS.

Keywords: Infant Directed Speech, Deep Learning, Target Word Classification, Con-

volutional Neural Network, Recurrent Neural Network
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Chapter 1

Introduction

Artificial intelligence is used in a variety of fields and for many applications. One

such application is speech recognition. Speech recognition is used in many consumer

products. Such as the smart assistants from Apple and Amazon (Siri and Alexa re-

spectively). For these applications, a stream of continuous speech is converted to text

to be interpreted by the system. Another part of speech recognition is (target) word

classification. This task differs from general speech recognition (speech-to-text) in that

it classifies single-word recordings. Target word classification can be used for classify-

ing spoken commands - making a robot stop by saying ‘stop’ for example - or for the

annotation of recordings.

Techniques for speech recognition and target word classification have been researched

and developed for many years. In the nineties, we saw the use of Hidden Markov

Models (HMM) for speech recognition. HMMs were popular because of their ease of

use and strong statistical background [3]. Later on, hybrid models emerged. These

models combined the original HMMs with Neural Networks (NN). These hybrid mod-

els resulted in higher accuracy speech recognition [4]. However, the biggest leap in

accuracy and usability was seen with the use of deep learning for speech recognition.

Both Abdel-Hamid et al. [5] and Graves, Mohamed & Hinton [6] computed highly

accurate deep learning models for speech recognition using Convolutional Neural Net-

work and Recurrent Neural Network approaches respectively. These approaches will be

further explained in section 2.3. The same techniques have been used for target word

classification. Solovyev et al. [7] successfully used 1- and 2-dimensional Convolutional

Neural Networks on a simple speech commands dataset. They were able to correctly

classify around 90% of test samples.

Contrary to the overall growth of accuracy in recent years, some use-cases of speech

recognition and target word classification are still lacking. Most times this is due to
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some specific characteristic of the data. For example, there is evidence that speech

recognition systems perform worse when used for a classification task on data with

added noise1 [8]. Furthermore, research on speech recognition has demonstrated that

alterations should be made to current speech recognition models for children’s speech

[9]. Likewise, research indicated that speech recognition software under performed

when the speakers were experiencing stress [10]. Moreover, Van der Klis et al. [11] saw a

significant decrease in accuracy when using state-of-the-art speech recognition software

for Infant Directed Speech compared to Adult Directed Speech. Infant Directed Speech

is a special type of speech used when talking to infants and small children. The

difference in recall was found to be ranging from 7% to 16% in favour of the Adult

Directed Speech data, which shows a considerable usability problem for the software

when used on Infant Directed Speech. The latter anomaly will be researched closer in

this thesis.

Research on target word classification or speech recognition in general for Infant Di-

rected Speech is interesting for two main reasons. For one, it will possibly tell something

about the acoustic complexity of Infant Directed Speech. This is an interesting topic

because Infant Directed Speech presumably improves language acquisition for children

[12]. Hence, more insight into this type of speech could aid research on how humans

learn languages because the classification models can illustrate the way language ac-

quisition works. Secondly, this idea is emphasized with the use of deep learning. Deep

learning techniques are based on the way our brain works, and in turn, can learn in

a similar way humans do. Besides more insight into Infant Directed Speech and lan-

guage acquisition, this research will also add to the growing number of papers on deep

learning.

1.1 Research Question

In this thesis, we will explore the possibilities of using deep learning algorithms for

target word classification for Infant Directed Speech. The main question we will try to

answer in this study is: Can deep learning models be used for successful classification

of target words in Infant Directed Speech? To be able to answer this question, two

sub-questions will be used. Answering the first sub-question will aid the differentia-

tion between Infant Directed Speech and Adult Directed Speech, this will give more

insight into the acoustic complexity of Infant Directed Speech, and reads: Is Infant

Directed Speech harder or easier to classify than Adult Directed Speech? The second

1The meaning of the term noise in data science is used for data that is in some way flawed. For
audio data, this often means that the recordings contain actual noise, such as unintended speech,
sounds or background noises.



sub-question is Are the same patterns noticeable using different Neural Network mod-

els? This question has two purposes. It will help to emphasize possible conclusions

about Infant Directed Speech by making sure the results from one model are not just a

result from the inner workings of that specific technique. Furthermore, this will give a

better understanding of different deep learning classification techniques for audio data.

These questions will be answered by conducting a brief literature review on Infant

Directed Speech, audio data, and deep learning models for target-word classification.

Furthermore, we will conduct two experiments by modelling, training, and evaluating

supervised target word classification models. For the first experiment, we will use a

Convolutional Neural Network, for the second experiment a Recurrent Neural Network

with Long Short Term Memory will be used. These models will be trained and evalu-

ated on Infant Directed Speech and Adult Directed Speech data. In this way, we will

be able to compare and analyze results from two different deep learning approaches on

Adult Directed Speech and Infant Directed Speech.



Chapter 2

Theoretical Background

In this chapter, a theoretical basis will be laid for the different components used for

experimentation. In section 2.1 the characteristics of both Infant Directed Speech and

Adult Directed Speech will be discussed and a comparison between them will be made.

Section 2.2 will explain how audio data is used for deep learning. This section will

also explain the different audio features and pre-processing steps used. Lastly, section

2.3 will explain the theory behind deep learning and give insight into the different

implementations we will be using.

2.1 Infant Directed Speech

Infant Directed Speech (IDS) is the speech used when talking to infants or young

children. This speech has some defining characteristics which make it differ from Adult

Directed Speech (ADS), this is the speech used when talking to adults. One or more

of these characteristics could explain the lack of accuracy for target word classification

tasks that was found in the research of Van der Klis et al. [11].

Firstly, IDS is characterized by having a higher frequency, which directly relates to

pitch. Studies have given evidence that this characteristic can be found across differ-

ent languages [13]. Furthermore, IDS has exaggerated pitch contours, which are the

patterns of pitch change in speech [14]. This makes IDS more varied than ADS. The

latter could be problematic for target word classification when utterances of the same

word, from different speakers, vary more widely compared to ADS. On the other hand,

this could help a model trained on IDS data to generalize better on unseen test data.

The second characteristic of IDS is the slower speaking rate. Speakers tend to use

shorter phrases with longer pauses [13] [15]. This characteristic could have a positive

4



effect on speech recognition because boundaries between words are better defined.

However, this will not influence our classification task. As will be explained later in

section 3.1, our data consist of recordings of individual words, thus only the slower

speaking rate could influence the performance.

Lastly, a characteristic of IDS is the exaggeration of certain parts of a word. Ferland

et al [15] found that speakers use more exaggerated intonations. In IDS, speakers also

tend to exaggerate certain vowels [16] and phonemes. The latter is called prosodic

exaggeration [17]. However, there is no proof that speakers hyper-articulate full words

when talking to infants [18].

These characteristics are most prominent when talking to children aged 0 to 18 months.

For this reason, researchers make a distinction between Infant Directed Speech and

Child-Directed Speech. Our dataset contains recordings of target words addressed to

infants of two different ages (18 months and 24 months). The aforementioned charac-

teristics seem to have a positive effect on word recognition by infants [19] and seem to

facilitate the learning and acquisition of a language [12]. As stated in the introduction

deep learning models learn in a similar way as humans. This could entail that the pos-

itive effect on word recognition an infant encounters from IDS, also facilitates target

word classification for deep learning models.

2.2 Audio Data

For this research, we will be using classification models on audio data. This type of

data fits in with unstructured data such as images, video, and text. All of these need

some form of pre-processing when used for deep learning. The information in this

section is sourced from the book Fundamentals of Music Processing from Müller and

Meinard [20]. To clarify the different pre-processing steps and their accompanying

audio representations in this section, we will provide an example of two samples from

our dataset (see section 3.1) for each step. These examples will consist of two recordings

of the word ’appel’ (Eng: ’apple’) in IDS as well as ADS.

To get a better understanding of what these steps entail for audio data we will start

with a basic definition of what sound is. Sounds are pressure waves created by a

vibrating object. These waves make particles in the surrounding medium (air, water,

etc.) oscillate [21]. When these vibrations reach a human ear, the brain is able to hear

the sound. These ways can be represented by a waveform. Figure 2.1 shows the most

simple form of a sound waveform, the sin wave.



A few characteristics of a sound waveform will be explained. First, the amplitude.

Amplitude is given by the distance of a point on the curve to the baseline (an amplitude

of zero). A longer distance, in either direction, means a higher amplitude. The next

characteristic is the period or wavelength. The period is the time between two peaks

in amplitude. The period of sound waves is important because it correlated directly

with the frequency of sound; frequency is the inverse of the period. This means that

a shorter period (short time between two peaks in amplitude) represents a higher

frequency. Amplitude and frequency correspond to the loudness and pitch of sound

respectively.

Figure 2.1: A representation of the simplest form of a sound wave, the sin wave.

2.2.1 Sampling and Quantization

To store and use the analogue waveforms on a computer we need to apply an Analog-

Digital Conversion (ADC). This is the task of digitalizing an analogue waveform. For

this step, we use sampling and quantization. When sampling, we measure the ampli-

tude of a sound wave at a regular interval over time. The amount of samples and the

size of interval is given by the sample rate. This states how many points (samples)

are stored for one second of audio. For example, CD-ROMs use a sampling rate of

44100 (or 44.1 kHz). Intuitively, a higher sampling rate follows the analogue signal

more closely and thus will result in a higher quality sound representation. However,

this will increase the required amount of memory.

The second step, quantization, follows a similar pattern. When sampling the amplitude

we quantize the value to the closest bit we use. This is done to reduce the number of

bits that need to be stored1. The amount of bits used for quantization is given by the

bit depth. In this case, CD-ROMs use a bit depth of 16bits/channel2. Again, a higher

bit-depth results in a higher-quality representation. However, a higher bit depth uses

1Both scales (time and amplitude) from analogue waveforms are continuous. This means that the
data can theoretically be measured at infinitely small intervals which would need an infinite amount
of memory.

216-bit integers can store 216 values.



more memory. The steps of sampling and quantization result in a digital sound wave

as illustrated in figure 2.2.

Figure 2.2: The digital sound waves of two recordings of the word ’appel’. The
horizontal axis shows time in milliseconds and the vertical axis shows the amplitude.

(left: ADS, right: IDS)

2.2.2 (Fast) Fourier Transforms and Short Time Fourier Transforms

The resulting sound waves are way more complex than a regular sin wave - consisting

of a clear period and amplitude - as seen in figure 2.1. Still, we are able to extract

telling information from this representation using a Fourier Transform (FT). This is a

mathematical technique that decomposes a complex periodic soundwave, as shown in

figure 2.2, into a sum of sine waves with different frequencies3. The result of an FT

on a soundwave is called the power spectrum. The resulting power spectrums for our

samples, as shown in figure 2.3, show peaks in amplitude at lower frequencies. Thus,

the lower frequencies are represented heavily in these recordings which is normal for

speech data.

Figure 2.3: Power Spectrum of two recordings of the word ’appel’. The horizontal
axis shows the frequency and the vertical axis shows the amplitude. (left: ADS, right:

IDS)

3The most basic way to explain an FT: imagine the complex sound wave as a pasta dish. The FT
can decompose this dish into individual ingredients (pasta, sauce, etc.).



The problem with power spectrums is the lack of information about time. When per-

forming a Fourier Transform we moved from a time-domain (the x-axis shows time)

to a frequency domain (the x-axis shows frequency). Thus, we lost our time infor-

mation i.e. the information about how our sound changed over time4. To overcome

this problem, we instead use a Short Time Fourier Transform (STFT). An STFT com-

putes a Fast Fourier Transform5 at multiple intervals along the x-axis. Thus, instead

of decomposing the full soundwave, multiple smaller windows of the soundwave are

transformed. The size of this window is given by the sample size and the number of

samples the window moves across the soundwave is given by the hop-length. An STFT

results in a spectrogram with 3-axis: time, frequency and amplitude. In most cases

instead of the amplitude, the third axis shows decibels. This is the standard metric

used for loudness and is computed by applying a log function over the amplitude. An

example of such spectrogram can be found in figure 2.4.

Figure 2.4: Spectrogram of two recordings of the word ’appel’. The horizontal axis
shows time, the vertical axis shows frequency and the color represents the amplitude

in decibels. (left: ADS, right: IDS)

2.2.3 Mel-Frequency Cepstrum Coefficients

A commonly used feature for speech recognition tasks is a Mel-Frequency Cepstrum

Coefficients (MFCC). MFCCs are used to better capture the pitch of a sound i.e.

it scales pitch such that it matches more closely to the way humans perceive pitch.

In lower frequencies, a small change of pitch is far more noticeable than the same

change of pitch in higher frequencies. We will be using MFCCs for the experimentation

to get a better and more accurate representation of the differences in pitch between

ADS and IDS recordings. To capture this the mel-scale is introduced (mel is short

for melodic). This scale has been derived from experiments on human subjects. A

frequency, measured in Hertz, can be converted to the mel-scale using formula 2.1.

4As stated in section 2.1 the change of pitch (over time) is one of the characteristics of IDS. Thus,
it is very important to capture this in our data representation.

5A Fast Fourier Transform (FFT) differs slightly from a regular FT to decrease processing time.



MFCCs are computed using STFTs, of which the output is scaled according to the

mel-scale. To better capture the change of the sound over time a ∆MFCC and even a

∆∆MFCC can be extracted. These ∆ features use the difference of frequency between

time t and t− 1, instead of the absolute value. In figure 2.5 a basic MFCC is shown.

Mel(f) = 2595log(1 +
f

700
) (2.1)

Figure 2.5: MFFCs of two recordings of the word ’appel’. The horizontal axis
shows time, the vertical axis shows the MFCCs coefficients and the color represent

amplitude. (left: ADS, right: IDS)

2.3 Deep Learning

As stated before we have seen a shift for speech recognition from HMMs to deep

learning approaches. With the use of deep learning, we see rapid advancements6.

Artificial Neural Networks (ANN) form the basis of deep learning. In this section,

we will explain the concept of basic ANNs (section 2.3.1) and those of more complex

ANNs which will be used for experimentation later on - Convolutional Neural Network

in section 2.3.2 and Recurrent Neural Network in section 2.3.3.

2.3.1 Artificial Neural Networks

Artificial Neural Networks are connected graphs of nodes that are loosely based on

the biological brain. The nodes activate after receiving an input of a certain strength

in the same way neurons in our brain ‘fire’. By reinforcing certain connections the

ANN can learn patterns in the data, again in the same way connections in the brain

strengthen when used often. However, most research on ANNs is focused on achieving

6These advancements have not only been for speech recognition applications. For example, in 2016
Google’s AI finally beat a top player in the game of Go [22]. Something that was deemed impossible
before.



Figure 2.6: A simple Neural Network with an input layers consisting of two nodes,
a hidden layer consisting of five nodes and a output layer consisting of two nodes.

highly accurate results rather than further mimicking the biological brain. ANNs have

multiple use-cases but are most often used for classification tasks.

ANNs consist of an input layer, an output layer, and one or more hidden layers. The

nodes in each layer are connected to the nodes in the following layer7. Furthermore,

weights are associated with each connection between nodes and a bias term for each

hidden layer is used. The amount of nodes in the input layer is based on the input

data (for a 39x44 MFCC there are 1716 input nodes). The output layer has nodes

equal to the number of classes (in our case we have 12 target words thus 12 output

nodes). The number of nodes in the hidden layers can be chosen freely and may vary

from hidden layer to hidden layer.

To use an ANN for classification we must train the network on labelled data8. First, the

weights and biases of the model are initialized with random values. Then, a training

sample is passed through the network. To learn how to classify this data best the

weights and biases are updated according to the correctness of the output – if the

classification of the network was correct the desired weights are strengthened, if the

classification was incorrect the desired weights are weakened. In this way, the network

adapts to the training samples, which results in a trained network that is capable of

classifying unseen data.

2.3.1.1 Activation Function

The nodes in an ANN activate based on the activation function. The input of an

activation function for a node is equal to the addition of the value of the connected

input nodes times their corresponding weights plus the bias term. The output differs

7If all nodes in one layer are connected to all nodes in the following layer we call the network dense.
8Because labelled data is used ANNs are a form of supervised learning



for each activation function. One of the most basic examples of such function is the

binary function – if the input of the node is larger or equal to 0 the output of that

node is 1, the output is 0 otherwise. For most applications of deep learning, such as

target word classification, more complex activation functions are used.

The one we will be using in most of our hidden layers is the Rectified Linear Function

(ReLU), see figure 2.7. Note that this function outputs a real number for input values

larger than 0. This function has been found to enable better training for deeper

networks [23] and therefore is nowadays one of the most popular activation functions

for deep learning [24]. Furthermore, we will be using the Softmax activation function,

see figure 2.7. This function is used to normalize the output of the model into a

probability distribution for each target word, where the sample will be classified with

the target word with the highest probability value. This activation function will thus

be used in the output layer of our models.

Figure 2.7: Left: plot of the Rectified Linear activation function. Right: plot of the
Softmax activation function.

2.3.1.2 Overfitting

When training an ANN there is a risk for the network to overfit the training data [25].

This means the network is biased towards the training data and will not generalize well

on unseen test data. This will result in a big difference between the training accuracy

(the share of training samples that were classified correctly) and the test accuracy

(the share of test samples that were classified correctly). There are multiple ways to

overcome overfitting in ANNs, for this thesis we will be explaining just one: dropout.

Dropout is added to layers of a neural network to prevent overfitting and make the

model generalize better to unseen test data. For every training run, dropout deactivates

a certain percentage of the nodes and connections in a layer (often a value between 20

and 50 per cent is used). This will decrease the training accuracy short term but will

in most cases result in a higher testing accuracy which is closer to the accuracy found

when training.



2.3.2 Convolutional Neural Network

A neural network approach that has seen remarkable results in classification tasks is the

Convolutional Neural Network (CNN). CNNs have been designed for processing and

classifying grid-like data, such as images. For example, LeCun et al [26] first used CNN

models for recognition of handwritten digits and letters. Images are a well-suited data

type because they consist of a m×n grid of pixels, where each pixel can have one value

(gray scale) or multiple values (red, green, and blue) representing its colour. For target

word classification, MFCCs or spectrograms have the same properties as a gray scale

image and thus are well suited as input data. CNNs try to extract features from the

data by applying convolutions. A convolution applies a moving filter over the image.

The input of the filter are nodes, representing pixels, in a certain neighbourhood,

the nodes in this neighbourhood are weighted and added together which results in a

single node output. An example of such convolution can be found in figure 2.8. A

convolutional layer is able to detect certain key features from the data such as lines

and edges. Convolutional layers also aid in reducing the number of parameters in the

network - which reduces overfitting and cuts down on training times. This happens

because not all input nodes are connected to the output node, thus the network is not

fully connected.

Figure 2.8: Left: An example of a convolution: all inputs in a 2x2 moving filter are
weighted (the weight is equal to 0.5) and added together to form the output.

Right: Example of max-pooling with a 2x2 moving filter. Note that zero’s are added
to the edge of the input layer (image), this is called 0-padding. This is done to make
sure there is an equal number of inputs (nodes) in each filter. Because max-pooling

is used these zero’s will not have any effect on the outcome of this step. [1]

Another important part of CNN models that both reduces the number of parameters

and improves the feature detection capabilities of the model is pooling. In this step, a

function is applied to a neighbourhood of nodes. Most commonly max-pooling is used,

this will apply the max() function to the nodes. The output will thus be equal to the

node in the neighbourhood with the highest value. Contrary to the convolutional step,

there is no overlap between windows on which pooling is applied. This reduces the

dimensions of the output layer and the number of parameters in the network. Pooling

helps with detecting certain features regardless of orientation or scale. It can be said

that pooling acts as a generalizer of the data. An example of this step can be found in



figure 2.8 With the use of convolutions and pooling, we can detect objects – or in the

case of speech recognition phonemes – within a high-resolution input image. In figure

2.9 we see a fully convolutional network.

Figure 2.9: A representation of a full Convolutional Neural Network model used
on a gray scale image. The CNN has two convolutional layers both followed with a

pooling layer. Finally a fully connected output layer is used. [1]

2.3.3 Recurrent Neural Network and Long Short Term Memory

Recurrent Neural Networks are often used for their ability to correctly process sequence

data. This characteristic is achieved with the use of a recurrent architecture. This

means that the output of the previous sample is combined with the input of the current

sample. Because the output of the previous sample still exists in the network, we can

say the network has ‘memory’. However, this comes with a downside: important

information from earlier samples is less present in the network than the information of

the previous sample. Thus, fully recurrent networks have a strong short-term memory

but lack a good long-term memory.

To overcome this problem Long Short-Term Memory (LSTM) units were introduced.

These units replace the neurons found in an RNN to add long short-term memory to

the network. These units add not only the outputs of the previous layer but the output

from all previous samples. The internal state of such LSTM unit, consisting of an input

gate, output gate, and forget gate, acts as memory. These gates enable an LSTM to

store important data in the memory (‘remember’) and get rid of less important data

(‘forget’). These capabilities have been found very useful for speech recognition and

predictive speech [6]. For speech recognition, an LSTM is able to remember phonemes

that have been seen before and forget, for example, background noise. For predictive

speech, a recurrent neural network with LSTM will be able to remember important

words earlier in a sentence to make a better prediction later on. It will be interesting

to see if an RNN with LSTM layers is also capable of correctly classifying target words,

as this is not the main use-case of these models.



Chapter 3

Method

In this chapter, we will describe the two experiments conducted for this thesis. The

experiments will be on classifying target words from speech data. By conducting these

experiments we hope to answer the question if it is possible to successfully classify

target words in IDS. Besides, we will research if IDS is harder or easier to classify

than ADS and if the same patterns are noticeable using two different deep learning

approaches.

3.1 Data Description

For the experiments we will be using a subset1 of M. Hans dataset [2]. This dataset

was used for a study on the role of prosodic input in word learning and contains 916

audio files (.wav). These have been recorded at a 16-bit resolution and a sampling

rate of 44.1 kHz. The data is split up into two sets of equal size (458 files): one set

contains recordings of IDS and one set contains recordings of ADS.

Each audio file contains a recording of one of twelve target words in Dutch. These

recordings are around 1 second in length. The full distribution, as shown in figure

3.1, shows that there are some outliers in the data. Also, the IDS recordings tend to

be longer, which is in line with the second characteristic as discussed in section 2.1.

We want to emphasize that we use short recordings of single target words and not a

recording of continuous speech.

1The original dataset also contained recordings of Mandarin target words. Also, in the original
(Dutch) dataset there were more audio files of IDS recordings than ADS recordings which could lead
to an unfavourable advantage for the IDS results. Thus we have chosen to take a subset of the dataset
such that there are an equal amount of samples in both sets (ADS and IDS).
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Figure 3.1: Distribution of audio file length visualized in a box-plot for both
datasets. (left: ADS, right: IDS)

The recordings for the data are made in two stages; in the first stage, caretakers were

recorded when reading a book, containing the target words, to an infant at the age of

18 months and when reading the same book to an adult. The same caretakers came

back six months later to repeat this procedure. For both stages a different set of target

words was recorded, both sets and their English translation can be found in table 3.1.

Note, that the words ’appel’ and ’opa’ (Eng: ’ apple’ and ’grandpa’) appear in both

sets. Both datasets contain the same number of samples for each target word. The

complete distribution of the 12 target words can be found in figure 3.2.

Table 3.1: The different set of Dutch target words recorded for each stage of the
experiment conducted by M. Hans [2].

18 months 24 months

Dutch English Dutch English

appel apple appel apple
bever beaver bamboe bamboo
eland moose emoe emu
kasteel castle jasmijn jasmine
opa grandpa kapel chapel
pompoen pumpkin opa grandpa
walnoot walnut wezel weasel



Figure 3.2: Distribution of the twelve target words in the dataset.

3.2 Data Preprocessing

For the data pre-processing we have used the Python library Librosa2. The audio files

have been sampled with a sample rate of 22.05 kHz (= 22050 data points for 1 second

of audio). This sample rate is half of that of the recordings, this is chosen to prevent

overfitting and cut down on processing time.

Because the audio files are of differing lengths, the resulting (one-dimensional) vectors

are as well. To be able to work with data of equal size throughout the pre-processing

steps and experimentation we have chosen to consider 22050 samples. This means that

for audio files that are longer than one second, the vector has been shortened and for

files that are shorter than 1 second the vector has been extended. In the first case, we

simply cut off the vector at index 22050. For extending vectors, we applied 0-padding.

This is a technique where zeroes are added to the end of a vector to reach the desired

length.

From these sampled vectors we extracted MFCCs (13 coefficients, window size of 2048

and a hop length of 512). From the resulting MFCCs we extracted both the ∆MFCC

and the ∆∆MFCCs. For every instance, these three MFCCs have been concatenated.

This results in a complex MFCC with a shape of (44, 39). All MFCCs and their

corresponding label (i.e. target word) have been stored in a .json file for further use.

2https://librosa.org/



3.3 Evaluation Methods and Metric

The output of our models is a one-dimensional array containing 12 real numbers, one

for each target word. These values indicate for each class how likely it is that the

sample belongs to that class. The predicted class is the target word corresponding to

the highest value in this array.

The models used for experimentation will be evaluated on test accuracy and test error.

Accuracy is equal to the division of the number of correctly classified samples by the

total number of samples. For the error we use the (sparse) categorical crossentropy

error function. This function computes the cross-entropy between the predicted class

and the actual class and is standard for multi-class classification.

Furthermore, the precision, recall, and F-score are computed for each target word.

These metrics are calculated with the use of a confusion matrix, which consists of four

values: True Positives (TP), False Positives (FP), True Negatives (TN), and False

Negatives (FN). In a multi-class classification task, we calculate these values for every

target word individually. For example, for the target word ’appel’ these values are

equal to:

• TP: the number of samples classified as ’appel’ which are labelled ’appel’.

• FP: the number of samples classified as ’appel’ which are not labelled ’appel’.

• TN: the number of samples not classified as ’appel’ which are not labelled ’appel’.

• FN: the number of samples not classified as ’appel’ which are labelled ’appel’.

With these values the precision, recall and F-score can be calculated. The meaning of

and the formula for these values is as follows:

• Recall shows how complete the extraction was, TP / (TP + FN) [11]

• Precision shows the exactness of the extraction, TP / (TP + FP) [11]

• F-score is the harmonic mean between the precision and recall, 2TP / (2TP +

FP + FN [11]

3.4 Experiment 1

The first experiment consists of training and evaluating CNN models on both ADS

data and IDS data. Each dataset is split into a training, testing, and validation set



using a 70, 20, 10 split. The splitting is done stratified, this results in samples of

every target word being present in each set, and thus prevents any set from not having

samples of a certain target word. Each model will be trained over 50 epochs with a

batch size of 16.

The step of training and evaluating will be repeated 50 times, with different training,

testing, and validation sets3. The average test accuracy and test error will be computed.

Furthermore, the model that performed best (highest test accuracy and lowest test

error) will be saved and analyzed.

By repeating the training step 50 times4 we hope to eliminate the influence of random-

ness in our model. There are two main sources of randomness: 1. the use of dropout

layers 2. the splitting of the data into train, test, and validation sets. Furthermore, by

repeating the training and testing step multiple times, we will be able to spot patterns

that may occur in the results more easily.

3.4.1 Model Description

We will train the model on a Convolutional Neural Network architecture5 using the

Python library Keras6.

The CNN is a sequential model consisting of five layers. The first layer consists of a two-

dimensional Convolutional input layer with Max-Pooling and Batch Normalization7.

This Convolutional layer setup is repeated two more times followed by a Dense layer.

These first four layers all use the ReLU activation function. Finally, a Dense output

layer is added with a Softmax activation function. For this model, the Adam optimizer

is used with a sparse categorical cross-entropy error function. The full model summary

can be found in the appendix, figure A.1.

3.4.2 Results

Table 3.2 shows the mean test error and mean test accuracy over all 50 CNN models

for both the ADS dataset and the IDS dataset. After performing a paired t-test we

found no significant difference between the mean test error, t(98) = 1.924, p = 0.057.

The mean test error was lower (i.e. preferred) for the models trained on ADS (M =

3Because the splitting of the data is random, there is a very small change the distribution is the
same for two different runs.

4The value 50 is chosen because it provides meaningful results without making the run time of the
experiment unnecessarily long.

5The model architecture is inspired by work of Dr. Valerio Velardo.
6https://keras.io/
7Batch Normalization is used to decrease the training time of the network.

https://www.linkedin.com/in/valeriovelardo/


0.741, SD = 0.104, 95% CI = [0.712, 0.770]) compared to the models trained on IDS

data (M = 0.784, SD = 0.110, 95% CI = [0.754, 0.815]). The same paired t-test was

performed for the mean test accuracy which also found no significant difference, t(98)

= -1.375, p = 0.172. The mean test accuracy was higher (i.e. preferred) for the models

trained on ADS (M = 0.796, SD = 0.039, 95% CI = [0.785, 0.806]) compared to the

models trained on IDS data (M = 0.785, SD = 0.041, 95% CI = [0.774, 0.796]).

In table 3.3 the test error and test accuracy from the models that achieved the highest

accuracy score for each type of data is shown. Similar to the mean scores, the scores

from the model trained on ADS data are slightly better compared to the scores from

the model trained on IDS data.

Table 3.4 shows the recall, precision and F-score for each target word over 50 models

for both datasets8. The differences in precision, recall and F-score between the models

trained on ADS data and the models trained on IDS data will be analyzed in the

following section.

Table 3.2: Mean test error and test accuracy over 50 CNN models for both datasets.

Dataset Test Error Test Accuracy

ADS 0.741 0.796
IDS 0.784 0.785

Table 3.3: Test error and test accuracy of the best performing CNN model for both
datasets.

Dataset Test Error Test Accuracy

ADS 0.500 0.880
IDS 0.592 0.859

3.4.3 Analysis

The results from the first experiment show a very slight difference in error (-0.043

for the ADS model) and accuracy (+0.011 for the ADS model) between the different

datasets. These differences are found to be not significant. Thus, the CNN models were

able to classify both types of data equally well. This could mean that the characteristics

of IDS, mentioned in section 2.1, do not make this type of speech easier or harder to

classify than ADS. It is possible that the characteristic of IDS influences the deep

8These scores are calculated using the total confusion matrix for each word. The total confusion
matrix is computed by element-wise addition of all 50 confusion matrices (one for each model) for each
word.



Table 3.4: Recall, precision and F-score over 50 CNN models for each target word.
(left: ADS, right: IDS)

Word Precision Recall F-Score

appel 0.824 0.758 0.794
bamboe 0.430 0.655 0.519
bever 0.727 0.779 0.752
eland 0.844 0.772 0.806
emoe 0.808 0.736 0.770
jasmijn 0.825 0.868 0.845
kapel 0.620 0.849 0.717
kasteel 0.930 0.918 0.924
opa 0.915 0.819 0.864
pompoen 0.727 0.838 0.779
walnoot 0.867 0.820 0.843
wezel 0.660 0.829 0.735

Word Precision Recall F-Score

appel 0.812 0.824 0.818
bamboe 0.673 0.759 0.713
bever 0.690 0.714 0.702
eland 0.800 0.769 0.784
emoe 0.762 0.704 0.732
jasmijn 0.645 0.791 0.711
kapel 0.765 0.860 0.810
kasteel 0.883 0.872 0.877
opa 0.936 0.818 0.873
pompoen 0.630 0.756 0.687
walnoot 0.773 0.756 0.764
wezel 0.616 0.723 0.665

learning models, but that this influence is either negligible or the negative effect of

one characteristic is compensated with the positive effect of another characteristic.

However, the same can be true for ADS. Furthermore, the CNN models are trained

and evaluated on both datasets. This could explain the fact that we are not seeing

significant differences in accuracy between ADS and IDS, as found in the study of Van

der Klis et al [11]. The model used in this study was, unlike our models, trained on

‘regular’ speech data, which largely or even only consist of ADS.

As stated before the IDS dataset consists of two subsets. Speech directed at 18-months-

old infants and speech directed at 24-months-old infants. The latter is closer to ADS

speech than IDS directed at 18-months-old infants [11], which could have led to better

classification accuracy. However, the same pattern is noticeable for these subsets as for

the complete dataset. There is no clear pattern that target words in either subset are

classified better or worse. For example, both ‘pompoen’ (18 months) and ‘wezel’ (24

months) have low F-scores in IDS and both have an equally large difference in F-score

compared to the model trained on ADS data. Furthermore, there does not seem to be

evidence that certain word characteristics influence accuracy. For example, the word

’kasteel’ performs very well across both datasets. However, the word ’kapel’ - which

consists of similar phonemes - performs worse in the ADS model compared to the IDS

model.

Moreover, the result in precision, recall, and F-score show target words with a more

than average amount of samples in the dataset (‘opa’ and ‘appel’) to perform very

well. Yet, this does not necessarily mean that words with a less than average amount

of samples under perform. Namely, the rarer words ‘wezel’ and ‘bamboe’ do show

below average results but the words ‘jasmijn’ and ‘kasteel’ show a high F-score. The



ADS models resulted in a very low precision (0.430) for the word ‘bamboe’. This means

many test samples were miss classified as this word.

3.5 Experiment 2

The second experiment will repeat the steps of the first experiment. However, instead

of training a CNN model, we will be training an RNN-LSTM model. The data, set

up, amount of epochs, and batch size are kept the same. The reason for conducting

this second experiment is to see if the results show similar patterns as were found in

experiment 1, which will in turn answer our second sub-question.

3.5.1 Model Description

We will train the model on a Recurrent Neural Network architecture9 using the Python

library Keras.

The RNN is a sequential model consisting of five layers. The first layer is an LSTM in-

put layer. This is followed by two LSTM layers with dropout. Then a Dense layer with

dropout is added. These first four layers all use the ReLU activation function. Finally,

a Dense output layer is added with a Softmax activation function. For this model, the

Adam optimizer is used with a sparse categorical cross-entropy error function. The

full model summary can be found in the appendix, figure A.2.

3.5.2 Results

Table 3.5 shows the mean test error and mean test accuracy over all 50 RNN-LSTM

models for both the ADS dataset and the IDS dataset. After performing a paired

t-test we found no significant difference between the mean test error, t(98) = 0.637, p

= 0.525. The mean test error was lower (i.e. preferred) for the models trained on ADS

(M = 1.308, SD = 0.128, 95% CI = [1.270, 1.340]) compared to the models trained on

IDS data (M = 1.324, SD = 0.123, 95% CI = [1.290, 1.360]). The same paired t-test

was performed for the mean test accuracy which also showed no significant difference,

t(98) = -0.678, p = 0.499. The mean test accuracy was higher (i.e. preferred) for the

models trained on ADS (M = 0.612, SD = 0.055, 95% CI = [0.597, 0.627]) compared

to the models trained on IDS data (M = 0.605, SD = 0.048, 95% CI = [0.592, 0.618]).

9The model architecture is inspired by work of Dr. Valerio Velardo.

https://www.linkedin.com/in/valeriovelardo/


In table 3.6 the test error and test accuracy from the models that performed best on

the test dataset for each type of data is shown. In this case, the test error of the model

trained on ADS data is slightly better compared to the test error of the model trained

on IDS data but the test accuracy of this model is worse (lower) than the test accuracy

of the model trained on IDS data.

Table 3.7 shows the recall, precision and F-score for each target word over 50 models

for both datasets. The differences in precision, recall and F-score between the models

trained on ADS data and the models trained on IDS data will be analyzed in the

following section.

Table 3.5: Mean test error and test accuracy over 50 RNN-LSTM models for both
datasets.

Dataset Test Error Test Accuracy

ADS 1.308 0.612
IDS 1.324 0.605

Table 3.6: Test error and test accuracy of the best performing RNN-LSTM model
for both datasets.

Dataset Test Error Test Accuracy

ADS 1.032 0.717
IDS 1.081 0.739

Table 3.7: Recall, precision and F-score over 50 RNN models for each word. (left:
ADS, right: IDS)

Word Precision Recall F-Score

appel 0.783 0.597 0.677
bamboe 0.147 0.518 0.229
bever 0.377 0.543 0.445
eland 0.769 0.510 0.613
emoe 0.628 0.548 0.585
jasmijn 0.480 0.632 0.546
kapel 0.160 0.471 0.239
kasteel 0.833 0.731 0.779
opa 0.866 0.675 0.759
pompoen 0.533 0.705 0.607
walnoot 0.490 0.610 0.543
wezel 0.172 0.623 0.270

Word Precision Recall F-Score

appel 0.797 0.621 0.698
bamboe 0.210 0.525 0.300
bever 0.537 0.540 0.538
eland 0.684 0.494 0.574
emoe 0.658 0.527 0.585
jasmijn 0.225 0.529 0.316
kapel 0.196 0.500 0.281
kasteel 0.773 0.609 0.681
opa 0.900 0.745 0.815
pompoen 0.400 0.545 0.461
walnoot 0.433 0.549 0.484
wezel 0.188 0.603 0.287



3.5.3 Analysis

First of all, it should be noted that the scores from the second experiment, using an

RNN-LSTM architecture, are significantly worse. However, this should not be deemed

problematic, because we are interested in the difference between the dataset and not

in the difference between the two neural network architectures.

The results from the second experiment show similar small margins between the two

datasets for error (-0.016 for the ADS model) and accuracy (+0.007 for the ADS

model). The same is true when looking at the differences between IDS directed at

18-month-old infants and 24-month-old infants. There is no clear pattern that either

performs better than the other. The results emphasize that the words of which more

samples are present in the dataset (’opa’ and ’appel’) perform better compared to

words that are rarer in the dataset.

The precision of the words ’bamboe’, ’kapel’, and ’wezel’ are extremely low but have

an average recall score. This shows that other words were often wrongly classified as

one of these three. This, however, has happened in both datasets equally often and

thus does not give much insight into the difference between Infant Directed Speech and

Adult Directed Speech. These words all have a less than average amount of samples

in the dataset, which emphasizes the positive influence of more data.



Chapter 4

Discussion

In this chapter, we will discuss the research conducted for this thesis. Additionally,

we will evaluate our limitations for this research and propose possible alterations for

further studies on this topic.

4.1 Implications

This research has shown that deep learning classification models are certainly capable

of accurately classifying audio data. This is in line with earlier work and emphasizes

that deep learning is the gold standard for complex classification tasks. The results

showed little to no difference in classification accuracy between the datasets. Because

of this, we can assume that there are no acoustic differences between ADS and IDS that

are significant enough to make one harder to classify than the other. This however does

not necessarily mean that there are no acoustic differences or differences in complexity

between the two types of speaking at all. Further studies need to be conducted on this

subject to draw decisive conclusions on the acoustic complexity of IDS compared to

ADS.

The results did show interesting implications for deep learning classification. Firstly,

the results showed classes with a more than average amount of samples to be clas-

sified better. However, this was not a rule set in stone as some classes that are less

represented in the data still performed very well. From this, we can assume that deep

learning can be used in situations where the amount of available training data is lack-

ing. Nevertheless, using more data, if possible, is still the better option. Secondly, we

have shown CNN models to outperform RNN models for this classifications task, which

is to be expected because of the use of image-like MFFCs. These results emphasize

that the choice of model for the task, data, and data representation at hand is crucial.
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4.2 Limitations

For this thesis, the reader should consider some limitations. For one, the models

have been trained on a relatively small dataset. This, although less problematic than

expected, should still be considered. The amount of data can be seen as inadequate

for making conclusions about certain subsets, such as the 18 and 24 months old infants

split. Furthermore, the amount of data has shown to be insufficient for near-perfect

classification (accuracy scores of 98%+).

Secondly, the data contained some noise. In the case of audio data, noise can consist

of static background noises or unintentional sounds or speech. In our case, most noise

comes from the infants that took part in the experiment. This means that the IDS data

presumably contains more noise than the ADS dataset, this could have had a negative

effect on the classification of the IDS set. Because of this, differences in classification

accuracy could have arisen from this noise instead of the acoustic differences between

the two types of speaking.

As explained in section 3.1, the audio files used were of differing lengths. This was

solved by only considering a maximum of one second of audio, which leads to the loss

of information for longer samples. Because the average length of samples in the IDS

dataset was found to be longer than the average length of samples in the ADS set, this

could have had a more negative effect on the classification of IDS samples compared

to ADS samples.

Lastly, the evaluation of the models is primarily based on what went right. This means

there has not been a thorough investigation into a wrong classification. These wrong

classifications could have told us more about which words were often confused by the

model and if this trend was more or less visible for either dataset. However, with the

use of a cross-entropy error function and by computing the precision and recall for each

word we were able to get some information about the wrongness of a classification.

4.3 Further Studies

Due to the aforementioned limitations, there are multiple ways in which the current

study can be improved upon. These could be alterations upon the conducted research

or research on new topics arisen from this research.

For one, this research could be conducted with more data. This would back up the re-

sults in a more solid matter. Also, this would lead to the possibility to investigate more



specific characteristics of the data. This could entail the aforementioned difference be-

tween IDS directed at 18-month-old infants and IDS directed at 24-month-old infants.

Furthermore, with a larger dataset, the data could contain a distinction between words

that are easy to classify - words consisting of completely different phonemes - and words

that are hard to classify - words consisting of similar phonemes. The results of such

studies could aid the research on IDS and deep learning classification even further.

Another way this research could be improved upon is by comparing the classification

results of different audio representations. In this study, MFCCs were used because of

their advantage to better capture the pitch of a sound. However, using spectrograms

or even raw audio waveforms as input for the models could give a better understanding

of the way deep learning models work and might enlighten the places where ADS and

IDS differ even better.

Lastly, research into unsupervised target word classification could be interesting. Un-

supervised models train on unlabeled data by clustering (i.e. grouping) similar input

samples together. In the case of target word classification, each cluster would represent

a target word. This way of learning will possibly be an even better parallel to the way

infants learn a language. Furthermore, because unsupervised classification models do

not need labelled data they could be efficiently used for annotation purposes.



Chapter 5

Conclusion

In this chapter, we will answer the main research question. This will be done by first

answering the two sub-questions.

The first sub-question asked if Infant Directed Speech is harder or easier to classify

than Adult Directed Speech. Both experiments showed a non-significant difference in

classification accuracy and error between the two sets. From this, we can conclude that

neither type of speech is harder to classify than the other. However, these results do

not provide significant evidence about the difference in acoustic complexity between

the Infant Directed Speech and Adult Directed Speech.

The second sub-question “Are the same patterns noticeable using different Neural Net-

work models?” was answered by conducting two experiments, each with a different

Neural Network approach. The results showed near-identical patterns between the two

experiments. This accentuates the assumption that neither type of speech is harder

to classify. But, these experiments did show Convolutional Neural Networks to out-

perform the Recurrent Neural Network. From this, we can conclude that for audio

classification tasks using MFCCs Convolutional Neural Networks are best used.

With the use of the answers found for the sub-questions, we can answer the main

research question of this thesis: “Can deep learning models be used for successful clas-

sification of target words in Infant Directed Speech?” This thesis showed that Infant

Directed Speech can be classified with an average accuracy score of 79% and highs of

85% using a Convolution Neural Network model. These scores, although reasonably

high, show there to be room for improvement. However, the fact that both types of

speech are classified equally well in combination with the relatively small dataset and

the results of earlier research on word classification gives enough reason to assume that

Infant Directed Speech can be classified successfully.
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Appendix A

Appendix

Figure A.1: Full model summary for the Convolutional Neural Network.

Figure A.2: Full model summary for the Recurrent Neural Network with Long Short
Term Memory.
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