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Abstract 

The use of data augmentation techniques in NLP for the creation of more robust models has increased 

in recent years. Easy Data Augmentation (EDA) techniques by Wei & Zou (2019) proposed a simple 

method to augment small datasets for text classification that showed promising results. While most 

research in the topic of data augmentation for NLP has been focused on deep learning models and not 

traditional machine learning models, these models are still commonly used for text classification. On 

three text classification tasks, this research tests the application of EDA on the performance of three 

traditional machine learning models: logistic regression, naïve bayes and decision tree. Results show 

that EDA marginally improves performance for these classifiers on small and large datasets.  
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1. Introduction  

Natural Language Processing (NLP) is a key area of Artificial Intelligence (AI), and text classification 

is a fundamental task in NLP. Text classification in NLP consists of the task of automatically 

assigning one or more classes to a text or document. The accurate classification of texts is a challenge 

relevant to many fields. 

Training a machine learning model to perform accurately on a given task requires large sets of 

relevant data for it to learn from, especially for deep learning models such as neural networks. 

Datasets are typically divided into training and testing sets, where, as the names suggest, training sets 

are used to train a learning model and testing sets are used to test the performance of the model after 

training. Datasets of sufficiently large sizes to allow for adequate training are not always available or 

easy to collect. Both deep learning models, such as neural networks, and traditional machine learning 

models, such as logistic regression classifiers, have shown improvements in performance on text 

classification tasks, though such performance is dependent on sufficient amounts of data. 

To tackle the problem of sufficient data for text classification Wei and Zou (2019) developed easy 

data augmentation (EDA) techniques to boost performance on text classification tasks by the 

application of four simple operations such as replacement of words with their synonyms that could be 

easily applied to sentences within the text and have relatively no cost. The application of these 

operations to the training set allows for an expansion of existing data and provides a larger training set 

to learn a classifier on. On five tasks, both convolutional and recurrent neural networks showed 

improvement in accuracy while only using 50% of the available training data, showing that the use of 

EDA can show improvement for neural networks on text classification tasks.  

Deep learning models, however, have significant disadvantages. Though they tend to outstrip classic 

machine learning models on performance, they are also more expensive with respect to time and 

computation power needed to train models capable of yielding such results. They further provide less 

insight into the reasoning behind a decision made by the model than traditional machine learning 

models, information that can be crucial. Effective neural networks come at a cost, and if the 

requirements cannot be met then alternatives such as traditional machine learning models must be 

considered. EDA techniques to improve performance on text classification tasks could also be applied 

to simpler machine learning models that do not have the disadvantages of deep learning models, but 

could still benefit from data augmentation.  

Traditional machine learning models such as naïve bayes classifiers have commonly been used for 

text classification (Chen et al., 2009), as have decision tree and logistic regression classifiers 

(Pranckevičius et al, 2017). They require significantly less time to train when compared deep learning 

models and do not require better hardware for more complex operations. Considering the significant 
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improvements in performance that EDA techniques show for deep learning models on little data, a 

relevant question is whether similar improvements can be found for traditional machine learning 

models. If such improvements of relevant significance can be found, then smaller datasets could 

increasingly be used in text classification tasks without the requirement for complex deep learning 

models.  

This leads me to my research question: To what extent can easy data augmentation techniques 

improve the performance of traditional machine learning models on text classification tasks? 

In order to test this, I will train a naïve bayes, a decision trees and a logistic regression classifier on 

three different text classification datasets and compare their performance on data that was modified by 

EDA techniques against performance when the data was not modified. Subsets from each dataset of 

various sizes will be used in each case to analyse the performance of the models and the effects of 

EDA on various amounts of data. 

The structure of this thesis is as follows: Section 2, the background, will discuss both the relevant 

work related to this research and the important concepts and tools described in this thesis. Section 3 

will discuss the experimental setup, namely how all experiments are carried out. The results of these 

experiments will be presented in section 4. How these results relate to the research question will be 

reflected on in the general discussion in section 5, which will be followed by the conclusion in section 

6. 

2. Background 

2.1 Data Augmentation 

In order to train a machine learning model of any type to adequately perform a given task, datasets of 

sufficient size and quality are needed to train and test the model. The task of learning a model on a 

dataset that is relatively small thus poses a significant problem. Data augmentation offers a potential 

solution to this problem. Data augmentation expands the given dataset by creating new, slightly 

modified versions of existing data samples. This allows for small datasets to artificially grow by the 

creation of new data samples based on the original dataset. 

Automatic data augmentation techniques are commonly used to help train better models when using 

small datasets in a variety of fields. Especially within the computer vision branch of machine learning, 

state of the art models increasingly use augmentation techniques on images (Krizhevsky et al., 2017). 

The use of a single image in a dataset, for example, can be expanded by randomly rotating it, cropping 

it, flipping it on its axes, or with the application of grayscale and smoothing filters. Relatively small 

datasets can be artificially increased using such methods. It has also been effectively used in speech 

tasks by Xiaodong Cui et al. (2015) by using techniques such as vocal tract length perturbation. This 
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is a technique that supplements the dataset by artificially changing the vocal tract length of speech 

samples, thus creating slightly augmented data samples.  

The field of NLP is no longer a stranger to data augmentation, which in recent years has seen the use 

of multiple creative and complex techniques to augment data. Yu et al. (2018) employed back-

translation as a data augmentation technique. This method translates texts into another language, such 

as French, and then back into English in order to obtain paraphrases of those texts. Similarly, Fadee et 

al. (2017) uses translation and substitution as data augmentation. Here, the data to be expanded is 

presented in the form of pairs of sentences in their original (source) and translated (target) form. Data 

is augmented by replacing words in the target sentences with translations of substitutions of words in 

their source sentence. This creates new source and target sentence pairs by the use of substitution and 

translation as augmentation. Another method of data augmentation in NLP uses data noising methods 

as smoothing (Xie et al., 2017). Their goal was to tackle the problem of overfitting caused by having 

little data, and so they augmented data using various noising techniques such as unigram noising or 

blank noising.  

The main drawback that all of these techniques that explore data augmentation in NLP have in 

common is that they have a significant cost relative to any performance gain. Ideally, data 

augmentation techniques would be simple enough to not sacrifice the efficiency of a model, as is 

reflected in the conceptual simplicity of the computer vision data augmentation techniques mentioned 

previously. Various methods that apply simple data augmentation techniques directly within the text 

have been researched, such as Abulaish & Sah (2019) where positive and negative documents in a 

sentiment analysis corpus were supplemented with positive and negative phrases, respectively. 

However, the work of Wei and Zou (2019) in their paper introducing EDA pioneers a conceptually 

simple but robust method for the application of data augmentation techniques directly to text 

classification tasks, through the use of four operations that can be applied directly within a text.  

2.2 Easy Data Augmentation 

Wei and Zou (2019) developed a set of operations that served as data augmentation techniques for 

text classification that work with relatively no cost.  

Given a sentence in the training set, one of the following operations is randomly chosen and applied: 

• Synonym Replacement (SR), where a random word in the sentence is swapped with a random 

synonym, 

• Random Insertion (RI), where a random synonym of a random word in the sentence is 

inserted into the sentence, 

• Random Swap (RS), where random words within the sentence are swapped, and 

• Random Deletion (RD), where a random word within the sentence is deleted. 
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Operation Sentence 

None A sad, superior human comedy played out on the back roads of life. 

SR A lamentable, superior human comedy played out on the backward road of life 

RI A sad, superior human comedy played out on funniness the back roads of life. 

RS A sad, superior human comedy played out on roads back the of life. 

RD A sad, superior human out on the roads of life. 

 

Table 1: Sentences generated using EDA as used by Wei & Zou (2019) with a sample sentence from Socher et al. (2013). 

The number of words that can be changed within a sentence without adding too much noise is 

dependent on the length of the sentence, so longer sentences can absorb more noise and suffer more 

augmentation. The number of augmented sentences that is generated per original sentence can also 

easily be changed. 

An important question concerning EDA is whether true labels are conserved. To test this, Wei and 

Zou (2019) applied t-SNE, an embedding technique commonly used for the visualization of high-

dimensional data in a scatter plot (Van Der Maaten, 2014), to results from a recurrent neural network 

(RNN) trained on augmented data and the same RNN trained on non-augmented data. The 2-D 

representations of this data showed that the representations for augmented sentences clustered closely 

to the original sentences of the same class, suggesting that EDA augmented sentences conserve the 

labels of the original sentences. Considering that the implementation of EDA is not changed from the 

original for this research, the same test is not repeated in this paper. 

Wei and Zou (2019) tested their operations on five benchmark datasets with both convolutional and 

recurrent neural networks. They analysed the results of the application of EDA when the training data 

had been resized to 500, 1000 and 5000 samples, alongside a full dataset. Results were encouraging, 

and showed that EDA application resulted in improvements in accuracy ranging from 0.8 to 3.8% 

averaged across all 5 datasets. When applied to datasets of 500 samples, the amount of improvement 

tended to be higher than on the full-sized dataset, showing that especially when applied to limited 

datasets, EDA for neural networks can show improvement in performance. 

However, regarding EDA and the related work in NLP as discussed in section 2.1, all of these 

examples of data augmentation for text classification are tested on deep learning models. Work has 

been done concerning EDA, for example Jang et al. (2020) that present work on a sequential targeting 

(ST) method to address imbalance in text data, showing that their implementation of ST with EDA 

gave high improvement scores with a convolutional neural network. Research by Marivate and Sefara 

(2020, p. 395) analysed the effect of various data augmentation techniques such as round-trip 

translation and synonym replacement on the performance of deep neural network models compared 

against a logistic regression classifier and showed promising reductions in error, though they did not 
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use EDA. To my knowledge, little other research has been done to show the effectiveness of data 

augmentation techniques in NLP for traditional machine learning models. 

2.3 Neural Networks & Traditional Machine Learning Models  

Deep learning models such as deep neural networks are a type of machine learning model with a 

complex multi-layered structure. These models do feature extraction and classification automatically 

with little required intervention. Their complex multi-layered structure requires a relatively large 

dataset, typically of millions of samples, to eliminate fluctuations and make accurate predictions. This 

complex nature is also the reason that deep learning models can require weeks for training, as well as 

powerful computers capable of running complex computations. While deep learning is still in its 

infancy in some areas when compared to non-deep learning models, it tends to outstrip non-deep 

learning models in performance, and its enormous power has led it to being used in state-of-the-art 

systems in many areas, especially when its relatively costly demands can be met.   

Non-deep learning models such as logistic regression, naïve bayes and decision tree classifiers are 

also called traditional machine learning models. Models such as these were the classic solution to 

many machine learning problems before the rise of deep learning, and many are still used today. 

When it comes to required time and computing power these models tend to be cheaper than deep 

learning models, and as such offer a simpler “off the shelf” solution to problems such as text 

classification. Another advantage offered is that their simpler and easier to understand structure 

requires much less data than deep learning models, tending towards thousands of data samples instead 

of millions. However, these models do not perform feature engineering automatically as neural 

networks do, and so arguably require the researcher to have a deeper understanding of the subject in 

question.  

The three traditional machine learning models relevant to this research are the logistic regression, 

naïve bayes and decision trees classifiers. 

2.4 Logistic Regression  

Contrary to what a name with ‘regression’ may suggest, logistic regression is used for classification. It 

uses a logistic function to produce discrete binary outputs. It makes the central assumption that 

𝑃(𝑌|𝑋) can be approximated as a sigmoid function applied to a linear combination of input features 

(Jurafsky & Martin, 2009, pp. 231–234): 

P(Y|X) =
1

1+e−f(x)     ( 1 ) 

where 𝑓(𝑥) is a function consisting of features (𝑥) and their weights (𝛽): 

f(x) = x0 + x1β1 + ⋯ + xkβk + ε    ( 2 ) 
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where 𝑥, 𝛽, 𝑓(𝑥)𝜖𝑅𝑘 and 𝜀 represents noise in the data generating process. Using the posterior 

probability function, the estimation function 𝑓(𝑥) can be rewritten as the ‘log of odds’ ratio: 

log [
𝑃( 𝑌|𝑋 )

1−𝑃(𝑌|𝑋)
] =  𝑥0 + 𝑥1𝛽1 + ⋯ + 𝑥𝑘𝛽𝑘 +  𝜀 = 𝑓(𝑥)  ( 3 ) 

The logarithmic transformation helps the learning function by normalizing values and ensuring no 

features dominate the outcome. Given a set of features, the observation can be classified as ‘true’ 

(logistic regression is used for binary classification) if the function in (2) is greater than 0. The logistic 

regression function can thus be seen as learning a hyperplane that separates points in space that are in 

the ‘true’ class from those that are not. (Jurafsky & Martin, 2009, pp. 231–234).  

2.5 Naïve Bayes 

The naïve bayes classifier is quite intuitive. As the name suggests, is based on Bayes theorem with the 

(naïve) assumption that each value (feature) is independent from the rest: 

𝑃(𝑦 | 𝑥1, . . . , 𝑥𝑛) =  
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑃(𝑥1,...,𝑥𝑛)
   ( 4 ) 

As (𝑥|1, . . . , 𝑥𝑛) is constant given the input, the classification rule can be as follows (Scikit-learn, 

2011): 

𝑦 = argmax
𝑦

 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛
𝑖=1     ( 5 ) 

2.6 Decision Tree 

The decision tree classifier is a simple machine learning model that uses the idea of transferring data 

to a decision tree diagram and can be used for both regression and classification purposes. It consists 

of (1) decision nodes where a decision must be made concerning a feature of the data, (2) edges as 

answers from a node to build a connection to the next nodes, and (3) leaf nodes which are outcomes 

for classification. Features in the data are split and are represented in this format as the decision 

between different nodes in the tree. During classification, the class that eventually gets landed on in 

the leaf nodes is decided as the prediction. 

The advantages of decision tree classifiers is their simplicity, and how little data preparation is 

necessary. A notable disadvantage of using decision trees for classification is that they can overfit the 

data and create overly complex trees that do not generalise the data well (Scikit-learn, 2011). 

3. Method 

3.1 Experimental Setup  

In this research I explore the effects of EDA techniques as developed by Wei and Zou (2019) on the 

performance of various traditional machine learning classifiers when trained and tested on three 
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different text classification datasets. The datasets include no pre-defined splits and are separated into 

three sets using a 60/20/20 (%) train, development, and test split. While many modern datasets with 

millions of samples will split at 95% or higher for training, the datasets used in this research are 

relatively small at only about 10,000 to 30,000 samples, so the classic 60% is sufficient for training 

and leaves adequately sized sets for both development and testing. The development set is required to 

find the optimal parameter settings for EDA and to prevent optimizing on the test set. 

Following the split, a random stratified subset is selected from the training set equal to N = 500, 1000, 

5000, to compare the effects of EDA on datasets of various sizes. Both the development and testing 

sets are left at their full size. The next step is the application of EDA to the training set, the specifics 

of which are discussed in section 3.4. These provide the final instances for training. In each case, the 

classifiers are trained on both a nonmodified version of the dataset and a version that has been 

modified and expanded using EDA.  

3.2 Datasets 

For this research, three benchmark datasets were chosen. The datasets used are (1) SUBJ: The 

Subjectivity / Objectivity dataset from Pang & Lee (2004), (2) CLICKB: The Clickbait data set from 

Chakraborty et. al (2016), and (3) HATESP: The Hate-Speech / Offensive language dataset from 

Davidson et. al (2017). The first dataset was used by Wei & Zou (2019) in their paper on EDA. A 

benefit of using this dataset is that it allows for comparison of results in this paper with their results on 

one of their chosen datasets. All three datasets were chosen as they have a different subject matter 

from the rest, to allow a broad range of subject matter to be expanded by EDA. 

The SUBJ dataset contains a list of 10,000 sentences from a collection of movie reviews from IMDB. 

5000 of these are labelled as objective, 5000 as subjective. An example of an ‘objective’ sentence 

from this dataset would be “believing his parent's dead, bruce is raised by adoptive parents” while a 

‘subjective’ sentence would be “vile and tacky are the two best adjectives to describe ghost ship.” 

The CLICKB dataset contains a list a total of 32,000 news headlines that are listed as either clickbait 

or not clickbait. The authors automatically collected articles from Wikinews as non-clickbait 

headlines due to the style guides and rigorous checks employed by Wikinews for their articles, while 

clickbait articles were selected from less trustworthy headlines. This was done manually by volunteers 

to avoid false negatives. The dataset is split equally between the two, each class containing 16,000 

samples. Each of these titles is considered a ‘sentence’ for the purposes of EDA. An example of a 

clickbait sentence is “Natalie Dormer And Sam Claflin Play A Game To See How They'd Actually 

Last In ‘The Hunger Games’” while a non-clickbait sentence would be “Coldplay's new album hits 

stores worldwide this week”.  
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The HATESP dataset is a collection of 24,783 tweets that are labelled as containing either hate-

speech, offensive language, or neither. This data was chosen as a random subset of tweets containing 

words identified as hate speech on Hatebase.org collected automatically from twitter. These were 

later manually split into the three categories. The data split is not equal, with 1431 counts of hate-

speech, 19190 counts of offensive language and the remaining 4162 samples counting under neither. 

An example of a sentence with hate speech is “#WestVirginia is full of white trash.”, while a sentence 

with offensive language is “"All these b****** want a baby, I don't want no children."” (censorship 

by me), and an example of neither is “The #Yankees don't need Tanaka or Beltran or all these 'big 

name' players!!! #believe”. For the purpose of EDA, each tweet is considered a ‘sentence’. 

3.3 Pre-processing 

The datasets require some pre-processing before the models can be trained. The first step is to load 

them into ‘Pandas’ data frames (McKinney, 2010) for manipulation, upon which all stop words are 

removed from the data. The list of stop words used is the same as those listed in the original EDA 

code from the open GitHub repo of Wei and Zou (2019). Any words in the dataset appearing in this 

list are removed before proceeding to the splitting, EDA application, and training steps.  

Using the pre-processing tools from SciKit learn (Scikit-learn, 2011), the sentences in the training, 

development and test sets are vectorized using the Tf-Idf vectorizer and count vectorizer included in 

the SciKit Learn package, in order to have a training set with features that could be used by the 

models (Scikit-learn, 2011). 

3.4 Easy Data Augmentation 

The EDA operations applied are the same as those as implemented by Wei & Zou (2019) and as 

described in section 2.2. Each of these four operations can be edited as a parameter with a value 

between 0 and 1, describing the percentage of words that will be changed in the sentence according to 

that rule. If, for example, I wanted to replace 3% of words with their synonyms I would set the SR 

value to 0.3. The number of operations applied within a sentence is dependent on the length of the 

sentence, as longer sentences can absorb more ‘noise’ than shorter sentences without losing their class 

label. Besides these four operations, the fifth parameter that could be edited is the number of 

augmented sentences generated per original sentence. 

The recommended EDA parameter settings from Wei and Zou (2019) are as follows: 

𝑁𝑡𝑟𝑎𝑖𝑛 𝛼 𝑛𝑎𝑢𝑔 

500 0.05 16 

2000 0.05 8 

5000 0.1 4 

More 0.1 4 
Table 2: Wei & Zou (2019) EDA recommended usage parameters. 𝑁𝑡𝑟𝑎𝑖𝑛 stands for the number of training samples, 𝛼 

stands for the parameter settings and 𝑛𝑎𝑢𝑔 stands for the number of augmented sentences to create for each sentence. 
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Finding the ideal balance of settings for each dataset is a delicate and quite sensitive task, and the 

development set is vital to fine tune these parameter balances as much as possible before finally 

testing on the test set. The default parameter settings in the code from the GitHub repository of Wei 

and Zou (2019) differ slightly from the recommended parameters as shown in Table 2. In the default 

Python code parameters, each of the four operations parameter is set to 0.1 and the number of 

augmented sentences per original was set to 9. This means that 10% of each sentence are subject to 

change by each operation, and that the size of a training set would increase by 10 after application of 

EDA. To find the ideal base parameters, initial parameter settings are set to the code default, and are 

tested against the recommended settings as listed in table 2. There seems to be no significant 

difference in performance between these two settings.  

Optimal parameter values are found by testing various settings over the development set at each 

subset training size and comparing values from training on sets not modified with EDA against sets 

that are modified with various parameter values. Relying on the accuracy and F1-score as evaluation 

metrics then allows for the fine-tuning of these parameter values. 

Accomplishing the task of finding the right EDA parameters requires the testing of certain 

expectations. For example, my expectation of the hate-speech and offensive language (and neutral) 

dataset would be that the line between the three classes is quite thin with regards to the specific words 

used, and so the replacement of words with their synonyms with EDA could be more likely to 

introduce noise by not preserving their class label.  

Testing this hypothesis, however, shows that a higher synonym replacement tends to yield better 

results in each case. On reflection, a synonym replacement function that results in incorrectly labelled 

sentences would not be achieving its purpose, so this result shows two things: firstly, that the function 

performs its task reliably, and secondly, that synonym replacement is an effective function in text data 

augmentation.  

In most cases, results gained using the standard settings provide a reliable indication of the expected 

optimal score. Within the application of this research, there is very little extra improvement to be 

gained with the fine tuning of EDA parameters. On average, slightly raising the parameters from their 

default showed little difference. Extreme values such as setting RD to 0 and setting number of 

augmented sentences to values greater than 9 occasionally show significant increases in performance, 

however these tend to be balanced with equally significant decreases, due to the random nature of the 

application of EDA when taken to the extremes.  

One change that can be relied on however, is setting the SR parameter to high values, occasionally as 

high as 0.9. Though benefits from this are small and only increase up to about 0.5% on the 

performance of the standard parameters, these improvements are consistent. 
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3.5 Machine learning models 

The three machine learning classifiers used in this research are LREG: logistic regression, NBAYES: 

multinomial naïve bayes, and DTREES: decision tree classifier models from the SciKit Learn 

package (Scikit-learn, 2011).  

The logistic regression classifier is based on the logistic function modified for classification, and is 

implemented with l2 regularization to reduce overfitting, implemented with the standard settings. 

The naïve bayes classifier is based on the application of Bayes’ theorem with the assumption of 

independence between features. The reason for the choice of the multinomial model is that it is ideally 

suited for the classification of discrete features, such as word counts for text classification. 

The third and final model is the decision tree classifier model, another commonly used machine 

learning model in text classification. 

3.6 Evaluation metrics 

Following the training of the classifiers, the next step is test them. Results of the classifiers over the 

datasets are compared on basis of their accuracy, precision, recall and F1 score.  

Accuracy is simply the measure of all correctly identified cases. While it can be a good indicator of 

performance, if a dataset is unequal with respect to class distribution it does not provide a good 

representation of the effectiveness of the model.  

The inclusion of F1 score allows for a more reliable result. The F1 score is the weighted average of 

precision and recall. Precision is the measure of correctly identified positive cases from all the 

predicted positive cases while recall is the measure of correctly identified positive cases from all 

actual positive cases. For this reason, the results of the models are presented according to their 

performance along the F1 score metric.  

4. Results 

In this section, I test EDA on three NLP tasks with a logistic regression, naïve bayes and decision tree 

model. Results in each case are the average of five individual measurements, due to the random nature 

of EDA. 

4.1 Performance per classifier 

All three models are run with and without EDA across all three datasets with various training set 

sizes. Average F1 score is shown in Table 3, with the improvements (%) printed in bold in each case. 

For ease of legibility, improvements are shown as percentages out of 100. 
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 Training Set Size 

Model 500 1000 5000 Full set 

Logistic Regression 0.844 0.8673 0.899 0.9155 

+ EDA 0.8483 (+ 0.43) 0.8825 (+ 1.52) 0.9117 (+ 1.27) 0.9225 (+ 0.7) 

Naïve Bayes 0.8274 0.8479 0.8772 0.8849 

+ EDA 0.8435 (+ 1.61) 0.864 (+ 1.61) 0.8963 (+ 1.91) 0.902 (+ 1.71) 

Decision Trees 0.8138 0.8243 0.8586 0.8646 

+ EDA 0.8415 (+ 2.77) 0.8364 (+ 1.21) 0.8626 (+ 0.4) 0.8677 (+ 0.31) 
Table 3: Average F1 score across three text classification tasks for models with and without EDA on different training sizes 

As can be seen in table 3, EDA shows some improvement, ranging from 0.31% to 2.77% increase in 

F1 score over results without EDA. While each case shows some sign of improvement with the use of 

EDA, the patterns of improvement shown are different for each classifier. 

The logistic regression classifier shows more improvement on larger datasets than on smaller datasets. 

On a training set with 500 instances, the improvement in performance gained on EDA was only 

0.43%. On training sets of size N = 1000 and 5000 however, the improvement shown was 

approximately three times that. The pattern does not continue at the full-size training set, however an 

increase of 0.7% is still shown at full size. This pattern suggests that the logistic regression classifier 

may plateau at certain larger datasets, with less room for improvement through EDA. 

The improvement shown for the decision tree classifier shows the opposite pattern for improvement 

than logistic regression. Improvement was higher for smaller training sets showing the highest 

recorded improvement with EDA increasing performance by 2.77% at a subset of size 500. The 

amount of improvement decreases as the size of the training set grows, showing that EDA had more 

effect on smaller datasets. 

The naïve bayes classifier showed another pattern of improvement entirely different from the other 

two classifiers, with a consistent relatively high rate of improvement across each different size of 

training set, with the lowest result showing at 1.61% improvement, which slightly increased at larger 

sized datasets.   

4.2 Performance per dataset 

Noteworthy results are also obtained from looking at the F1 score when averaged over all three 

classifiers for each dataset, as shown in table 4: 

 Training Set Size 

Model 500 1000 5000 Full set 

SUBJ 0.7836 0.81 0.8487 0.8513 

+ EDA 0.7928 (+ 0.92) 0.816 (+ 0.6) 0.8534 (+ 0.47) 0.8568 (+ 0.55) 

CLICKB 0.9177 0.9275 0.9512 0.964 

+ EDA 0.9224 (+ 0.47) 0.938 (+ 1.05) 0.9575 (+ 0.63) 0.9665 (+ 0.25) 

HATESP 0.7839 0.8021 0.8348 0.8497 

+ EDA 0.8003 (+ 1.64) 0.8288 (+ 2.67) 0.8597 (+ 2.49) 0.8689 (+ 1.92) 
Table 4: Average F1 score across three classifiers for models with and without EDA on different training sizes. 
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As can be seen from table 4, when averaged over three classifiers, EDA shows improvement for text 

classification for all three datasets in each case. 

The dataset that showed the most improvement was the HATESP dataset, consistently scoring 

relatively high, its lowest performance increase still higher than the highest improvement of either of 

the other two datasets. 

The F1 scores shown for the CLICKB dataset with and without EDA are already quite high. Perhaps 

this explains why the increase in performance seems to show increase for higher datasets, then 

plateaus at a certain point where there may be less room or improvement. 

The scores for the SUBJ dataset show more performance increase through EDA at smaller datasets, 

which decreases as size of the training datasets grow. This suggests that for this dataset, more 

improvement is possible with less data, and that providing more data for EDA does not necessarily 

result in a better EDA performance. This dataset is of particular interest as it was also used by Wei & 

Zou (2019) for their paper on EDA. For this reason, detailed results showing the performance of each 

classifier on SUBJ are shown in graphs in figure 1: 

   (a)   (b)   (c)  

Fig. 1. F1- score of Logistic Regression, Naïve Bayes, and Decision Trees classifier on the SUBJ dataset over various 

training sizes. 

As apparent in Figure 1 (a) and (b) both logistic regression and naïve bayes perform almost identically 

on the SUBJ dataset, and EDA performs very similarly in both cases, showing barely any difference, 

neither a significant increase nor decrease. As apparent from image (c), on this dataset the decision 

tree classifier performs significantly worse than both other classifiers, yet EDA consistently shows a 

substantial increase, with more improvement shown over smaller datasets. This suggests that for 

decision trees, there is more room for improvement through EDA. However, as both logistic 

regression and naïve bayes score higher without EDA than decision tree does with it, the choice for 

either of these above decision tree still seems preferable if such a choice is possible. 

Comparing this to the results achieved by Wei & Zou (2019) using both convolutional and recurrent 

neural networks showed that their best (accuracy) score on this dataset was approximately 0.9 at the 

full-size dataset, and at smaller datasets scored in the low to mid-0.8 range, almost equivalent to the 

F1-score seen here with logistic Regression and naïve Bayes. Similarly, their EDA showed only 
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marginal improvement on this dataset (especially at full size), so these results are as expected. 

Considering that the results for the accuracy score are almost identical to F1-score for these cases as 

analysed in this research, these results are not presented separately.  

5. General Discussion 

This paper aimed to explore the effects of EDA techniques as developed by Wei and Zou (2019) on 

traditional machine learning classifiers for text classification tasks. This was done by applying EDA 

to training sets of various sizes from three different text classification tasks and training three models, 

namely logistic regression, naïve bayes, and decision tree classifiers, on both the augmented and non-

augmented data. 

EDA shows varying results when applied to different datasets and used with various classifiers. 

Averaged over these, marginal improvement is seen through the application of EDA. While the 

increase in performance seen is not dramatic, each model responds quite differently and some models, 

such as the naïve bayes classifier, seem to be more susceptible to these techniques than others. As 

discussed in section 2.3, traditional machine learning models tend to require relatively small amounts 

of data in order to show adequate performance. It is possible that the margin for improvement for 

these classifiers through data augmentation techniques is small, and that whatever improvement is 

possible is achieved.  

The improvement seen through the application of EDA on datasets for the traditional machine 

learning models used in this research does not seem to be generally substantial, though the results of 

each classifier must also be considered separately from the others. While each classifier shows 

improvement across the board, the patterns of improvement are different for each of the three 

classifiers. Any research that intends to use EDA as way of enhancing performance of traditional 

machine learning models over small datasets should take these patterns into account. For example, 

when using EDA, the size of the dataset seems to be relevant for the choice of classifier. Considering 

the results of each classifier when averaged over all three datasets, when using little data (i.e., datasets 

with less than 1000 samples), the use of a decision tree classifier over data augmented with EDA 

seems to be more effective than the use of a logistic regression classifier. When using larger datasets 

however, the decision tree classifier loses its relative effectivity, and the naïve bayes model should be 

considered.  

Notably, much recent research in NLP has been in the application of data augmentation techniques 

with the specific purposes of improving the performance of deep learning models. There is little 

research to be found that explores the effectiveness of such techniques for non-deep learning models 

that are still commonly used. This research seeks to ask that very question, though is not without its 

limitations. The results shown were marginal at best and showed different patterns of improvement 
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over the three classifiers explored. More time is needed to explore these patterns of improvement for 

each of these classifiers, specifically how they perform on other benchmark datasets when modified 

by EDA. Are these patterns of improvement seen for these other datasets? Further research could also 

analyse the effects of EDA techniques on the many commonly used traditional machine learning 

models not explored in this research, such as support vector machines. Deeper analysis can also be 

done to find the link (if any) between specific EDA operations and text classification tasks. To what 

extent does the application of specific operations provide data samples that can be effectively used to 

train a model for each specific task such as sentiment analysis, and to what extent do these new data 

samples hinder progress by introducing noise? In depth answers to questions such as these could be 

relevant to finding the ideal combination of EDA parameter settings for use with traditional machine 

classifiers, but also by extension to deep learning models training over the same datasets. 

6. Conclusion 

In this thesis, I have shown that the application of the EDA techniques developed by Wei and Zou 

(2019) show marginal improvement for traditional machine learning models for text classification in 

NLP. Though increases in performance are not substantial, it is a cost-effective method to provide 

consistent improvements across datasets of various sizes. Continued work on this topic could explore 

the patterns of improvement shown as well as the effects of EDA on other traditional machine 

learning models. 
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