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ABSTRACT 
 
The physical light field becomes apparent when it interacts with objects within a space. Human observers are able 

to primarily infer three light properties relevant in lighting design (1) Overall diffuse light, (2) Directed light and 

(3) Brilliance. Previous studies mainly used Lambertian light probes to gauge light in space by taking cues from 

the probes’ lighting characteristics. However, Lambertian probes fail to capture Direction and Brilliance, which 

allows for glossiness and atmosphere perception. We tested whether differences in material, shape and surface 

structure of light probes influenced the ability of observers to gather information and interpret three light 

properties in natural scenes. Three different light probes were used: A Lambertian sphere, a black shiny sphere 

and a golf ball. Participants were shown black and white images of one of the probes photographed in a scene. 

Some images had the probe originally photographed in the scene, but in other images the probe was swapped for 

that of a different scene, creating different combinations of probe and scene. Participants had to determine whether 

the probe “fitted” the scene. This project aims to consolidate light probes as a design tool and help lighting 

professionals correctly represent a space’s illumination using the light probe that best captures the light properties 

at play in a scene. Overall, black shiny probes have proven to be better at helping determine light than Lambertian 

spheres. Our hypotheses that one probe type is better than others in helping infer certain light properties in scenes 

with similar features cannot be proven, but significant results at the image level suggest a conditional relationship 

of this matter might exist. 

 
 

INTRODUCTION 
 

The elements and principles of design are the framework upon which good design is created, evaluated 

and communicated (Nielson & Taylor, 2007). Although there are inconsistencies about which concepts 

compose those elements, a survey by Boucharenc (2006) stated that point, line, space, proportion, light, 

color and rhythm are the concepts most used in design education across twenty-two different countries. 

In this paper, we are going to be looking at light in natural scenes. As Kartashova et al (2019) said: In 

order to consciously manage the looks of a scene, one should keep in mind the intricate model of all 

light interactions. Gershun first talked about light and its importance in design as a result of the growth 

in illuminating engineering. There is a physical light field that becomes apparent as it interacts with the 

objects within a space (Gershun, 1936; Schirillo, 2013): It helps accentuate surfaces, materials and 

structural features. As such, understanding how light is perceived in a space is key to the general 

construct and success of a design. 
 

Different studies tried to measure and quantify both the physical and perceptual light field and their 

effects in natural scenes. Koenderink et al (2003) measured the direction of irradiation from texture 

while Mury et at (2007, 2009) focused on extending the physical light field’s understanding of higher 

order components in the layout of natural scenes. Kartashova et al (2016, 2018) made a reconstruction 

of the spatial structure of the perceived light field and developed a toolbox to analyze the spatial 

distribution of light and its properties’ variation though different scenes. 

Koenderink et al (2007) studied the differences between the physical and visual light field and found 
that human observers have expectations about the way an object would appear in a space, thus perceived 

in the visual light field, but Kartashova et al (2016) later found that those expectations are simplified 

versions of the (physical) light field. 
 

Human observers are sensitive to the three low-order light properties -intensity, direction and 

diffuseness- (Cuttle, 2003). Because light is intangible and only visible when shown in objects’ 

surfaces, knowledge about light properties and light transmission on different surfaces was needed. 

Light probes are objects used as a tool to help infer light in a space (Koenderink et al., 2007). Most 

studies about human perception of light properties consisted of experiments run in an artificial setting 

where light probes are typically used as a tool to help gauge the light in a scene by inferring the lighting 

seen in the probe (Kartashova et al., 2016), (Kartashova et al., 2018), (Koenderink et al., 2007). 

Different shaped objects, such as penguin statues (Koenderink et al., 2007), spinners or bowling pins 

(Kartashova et al., 2018) have been used as light probes. 
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White matte spheres, also called Lambertian probes, are the type of light probe most commonly used 

for light perception studies. However, Lambertian light probes might be problematic due to their matte 

condition, as they fail to correctly capture the higher-order properties of the light, that allow for 

glossiness and atmosphere perception (Mury et al., 2007; Kartashova et al., 2019). The question 

inevitably arises as to whether a different type of probe -textured or non-matte- would be more effective 

in providing the necessary information to gauge and interpret the illumination in a space. Similar work 

was done by Xia et al. (2014), in comparing a smooth and a rough probe optically placed in a natural 

scene using a mirror, and concluded that the rough probe was better at identifying mismatches between 

direction and diffuseness between scene and probe. 
 

In this project we investigate if a variation in the shape, material and surface structure of a light probe 

affects how well humans perceive light in a natural scene -not a laboratory-. 

Three different light probes will be tested: a white matte probe (Lambertian), a black shiny probe, and 

a golf (styrofoam) ball. Our goal is to research what light properties in a scene are easier to be identified 
with a specific type of probe. 

The hypothesis for this project are the following:  

− Hypothesis 1: White matte probes (Lambertian) are best at capturing ambient light (Pharr et al., 

2016).  

− Hypothesis 2: Golf balls are best at capturing directed light (Koenderink & Pont, 2003; Xia et 

al., 2014). 

− Hypothesis 3: Black shiny probes are best at capturing brilliance (Kartashova et al., 2016; 

Kartashova et al., 2018). 
 

Knowing what light properties are at play in a particular scene conveys important implications for 

designers and lighting professionals,  as it allows them to better understand the role certain lighting 

plays in a space (Kartashova et al., 2019). Does it highlight or hide, how do reflective materials, ceiling 

lights and geometrical shapes translate in the space? And most importantly, how do observers perceive 

them? 

Our goal is to consolidate light probes as a design tool and to provide a guideline for lighting 

professionals on what type of light probe is best suited for presenting their projects based on the desired 

illumination and specific features of a space. 
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METHODS 
This research was approved by the Ethical Review Board of the Faculty of Social and Behavioural 

Sciences of Utrecht University, number 21-0614. 

 

Participants 
We gathered data from 20 participants with normal or corrected-to normal vision. Participants’ age 

ranged between 18 and 26 years old. All participants were naïve as to the goal of the experiment and 

were given little instructions1. None of the participants had an art or design background. 

Recruitment was made through SONA Systems (25) and Facebook groups of Utrecht University (6). 

All participants were students of Utrecht University and received either Financial compensation (8€ per 

hour) or participation credits (1PPU) for the experiment. 

The total number of participants recruited was 31. Of those, 4 did not complete the experiment and 7 

completed the task in under 9 minutes. That means they spent less than 3 seconds per image and thus 

results cannot be trusted to be anything but answered at chance level. Those 7 participants were also 

not included in the data. 

Because of participants cruising though the experiment at high speed, image screen time was modified 

mid-recruiting so that images stayed in the screen for 3 seconds before response buttons popped up. 8 

of the final 20 participants performed the experiment with timed screens. 
 

Stimuli 
All images were provided by Sylvia C.Pont from the Faculty of Industrial Design Engineering at 

TUDelft2. 

Three types of light probes were photographed in different scenes for the experiment: a white matte 

Lambertian sphere, a black shiny sphere, and a styrofoam “golf ball”. 
 

 
Figure 1. Example of images used in the experiment of the three probe types tested in different scenes. 

 

 
1 See Appendix 1 for Instructions of the experiment 
2 See Appendix 2 for all Stimuli arranged by scene 
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Each probe was photographed in 13 scenes, so there are 13x3= 39 original images. The other images 

were a manipulation of the original images where the probe originally photographed in a scene was 

artificially set in another scene. For example, an image with the golf ball probe of scene number 12 was 

placed in scene number 6. A total of 156 images were shown in the experiment. 39 were the original 

photographs and 117 were combinations of a probe placed in a different scene (13 scenes x 3 probes x 

3 combinations of each probe). All images were named and will be referred to by: 

ProbeType_NumberScene-NumberProbe3. 

 

Setup 
We used the Gorilla Experiment Builder (www.gorilla.sc) to create and host a one-session online 

experiment. Data was gathered between February 12th 2021 and March 7th 2021. 
 

Participants signed up to the online experiment using the Recruitment platform SONA Systems. They 

could take part in the experiment whenever they wanted as long as it was at least 24h after signup. 

Participants had to log in to their account in the recruitment website, and click the experiment post in 

the platform where they were provided with a direct link to the experiment. 

For participants recruited in Facebook groups, they directly contacted the main researcher and were 

given access through an email shot policy. 
 

Participants took part in the experiment using their own computer or laptop. Mobile devices and tablets 

were not allowed to avoid problems with image resolution. 

The experiment was built with a feature to automatically display full-screen and all participants needed 

to adjust their screen resolution size to that of a credit card by adjusting it to a white-block figure. This 

ensured standard ratio size (width to height) of 177/100 for all images shown across all participants. 

 

The experiment began with a practice test round consisting of 5 images. The images were selected with 

the criteria to be easily identifiable either because they were original images (3) or because they were 

clearly manipulated and considered easy to identify as not fitting (2). However, participants didn’t 

receive any feedback about their practice test answers. 

After that, the experiment began and participants were shown 156 images in randomized order. There 

were two 1 minute breaks in between the experiment. 
 

All images in the experiment appeared on the screen for 3 seconds before two buttons popped up below: 

FITS & DOES NOT FIT. This was to ensure a minimum time was spent looking at the images and not 

randomly passing through. The experiment had a time limit of 3:30h to be completed, although all 

participants spent between 11 and 90 minutes. It is worth noting the participant who spent 90 minutes 

(p.103) is an outlier and all other participants were under the 38 minute mark. 
 

Procedure 
 

Coding4 
All images were first coded on difficulty by the main researcher and their supervisor according to visual 

inspection to make predictions about image performance. 

A four-step difficulty scale was created and assigned each step numbers from 1 to 4. Number 0 

corresponds to an image being the original photograph, meaning the probe corresponds to the scene. 
 

(0) Original, (1) Easy to identify, (2) Moderate, (3) Difficult and (4) Chance level. 
 

The scale was based on the difference comparison of light properties between probe and scene. Images 

where the probe had one light property extremely different than the scene were coded as 1, and images 

with multiple subtle differences in light properties for probe and scene were sometimes coded as 4. 

 
3 Note that there is no scene or probe number 11, but there are 13 scenes and probes so the last ones are coded as 

scene and probe 14. 
4 See Appendix 3 for Coding of all images. 

http://www.gorilla.sc/
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Therefor the amount of light properties not matching between sphere and scene was not the driver for 

the difficulty scale, but rather the perceived difference strength between them. Both researchers 

separately coded all the images to ensure higher reliability. Afterwards, coding for all images were 

compared and when more than 1 point difference between criteria existed, the image was discussed 

between the two coders to reach a more harmonic conclusion. The final coding is the average of the two 

researchers code, which explains the half points attributed to some images. 
 

Furthermore, images were also briefly described in three categories according to three attributes or cues 

of light (Kartashova et al., 2019), each enhanced by one of the probes. 

Those categories are Diffuseness, Direction and Brilliance, and correspond to white probes, golf probes 

and black probes respectively. 

The category with the strongest effect, or the most noticeable cue to determine if a probe fitted the scene 

was written down first. Not noticeable differences in categories were left out of the classification. 
 
 

Grouping5 

Afterwards, all images were grouped by one of the researchers in four categories based on the location 

and lay-out of the scene.  

Groups were made as a means to classify scenes based on their spatial characteristics and dominant 

light properties. Having scenes with similar layouts allows for better extraction of result implications 

when making recommendations for the different spaces. 

 

Four Groups were made: 

(1) Outside scenes, (2) Inside scenes with big windows, (3) Inside scenes with open spaces, (4) Inside 

corridor scenes. 
 
 

Variables6 
Variables extracted from raw data are:  

 Participants (p101 to p120) coded for anonymity 

 ANSWER correct response to the image 

 Correct (0 or 1) binary variable to check if what participants answered matches 

ANSWER 

 Response answers given by participants 

 ProbeType to act as a predictive measure of what probe condition: Black=1,White=2, 

Golf=3 

 NumScene refers to the number of scene of the image (1-14 except 11) 

 NumProbe refers to the original probe that has been placed on a scene (1-14 except 11) 

 ImageName in the format of ProbeType_NumberScene.NumberProbe 

 Response time as an excluding variable to detect outliers 

 

Variables created are: 

 Coding (0-4) which corresponds to the four-step difficulty scale to predict image 

performance according to visual inspection 

 Grouping (1-4) captures what space properties are characteristic of a scene  

 
5 See Appendix 4 for scenes in Group classification. 
6 See Appendix 5 for a Variables table. 
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ANALYSIS 
Data was analyzed using IBM SPSS 23 Statistics. 
 

Participant 
Before starting the analysis, raw data was formatted and cleaned, creating a Mean Success Rate measure 

for each image based on the average number of the participants’ responses. 

Mean Success Rate (MSR) is the average of Response/Number of participants computed per each image. 

This variable ranges from 0 to 1 and will act as an output measure. 

Mean Success Rate per participant (MSRparticipant) has also been computed to determine how 

sensitive participants are in determining the correct fit of the probes in a scene. 
 

The 20 participants are represented on the X axis. The MSRparticipant scale is represented on the Y 

axis. There is a green line at the 0,5 level indicating participants answered correctly for half of the 

images. 
 

 
Figure 2. Graph of the Proportion of correct images answered by each participant. 

 
 

As it can be seen, participants differed in their sensitivity to determine light probes’ fit in different 

scenes. Participant p112 had the best performance while participants p104 and p120 had the worse with 

a MeanSuccessRate value of 0,42. This result indicates they answered correctly to 42% of all images, 

worse than if done at chance level.  

We also checked how many times participants answered FITS compared to DOES NOT FIT. Seven 

participants answered FITS less than 50% of the time, compared to the correct amount of times the 

FITS answer was correct which is 25%. The other 13 participants answered FITS with a frequency of 

between 50 and 65% of the time. 
 

Image 
First, it was important to illustrate how each image was evaluated by all participants to check how they 

performed and what images were easier or harder to judge. To do so, a frequency table with the Mean 

Success Rate per image (MSRimage)was created. 
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The table below has the MSRimage which corresponds to the average proportion (between 0 and 1) of 

participants that correctly identified an image. The closest a number is to 1 the better the image was 

judged. 

Each MSRimage number has a bar with the names of the images that performed at that level. The higher 

the bar in each MSRimage point the more images were correctly judged at that proportion. 

The number of images correctly judged for each proportion is englobed in the Frequency row below.  

 

Figure 3. Frequency table of the proportion of correctly identified images. Thee proportions are each the average 
correct response by all participants. 
 
 

In a slightly darker color are the 5 images used for the practice trial of the experiment. 

The mode of the table is between 0,65 and 0,7 with 22 images each. The median of images (80,5/160) 

is found between 0,55 and 0,6. 
 

Because every image was evaluated by all participants, Repeated-Measures ANOVA tests were 

performed for each image. As a Factor, we added the Type of Probe, coded as follows: Black=1, Golf=2, 

White=3. 

When sphericity was violated the Greenhouse-Geisser correction was applied. Post-hoc tests were 

conducted when results were significant at p=0,05 with a Bonferroni correction.  

Significant differences due to a main effect of probe were found in 13 images7. After Post hoc tests8, 

only 12 images presented at least one significant difference in the evaluation of MeanSuccessRate 

between the types of probes. 
 
Table 1. Output of Pairwise comparisons for images with significant images after a Repeated-Measures ANOVA 
for each image. In Image Sig. there is the significance level found in the images during each ANOVA test. The 
three other columns correspond to the pairwise comparisons between all probe types. 
 

Pairwise Comparisons of significant images 
  

Mean Difference b 

Image Image Sig. Black-Golf Black-White Golf-White 

1.1 ** 0,250 -0,150 -0,400 b 

2.7 ** 0,200          0,450 b 0,250 

5.4 **        -0,300 b 0,050         0,350 b 

6.8 **         0,450 b 0,400        -0,050  

6.12 **         0,450 b         0,500 b 0,050  

7.7 *         0,400 b 0,100        -0,300  

 
7 See Appendix 6 for a table with statistical results of Image comparison by ProbeType. 
8 See Appendix 6 for Post hoc tests for each significant image. 

black_4-1 black_1-1

black_4-4 black_1-6

black_5-3 black_2-5

black_5-4 black_3-3

black_8-5 black_4-13

black_8-8 black_5-2

black_2-2 black_9-6 black_6-6

black_9-10 black_9-7 black_6-9

black_14-2 black_10-10 black_9-9

black_6-7 black_3-9 golf_2-2 black_13-13 black_12-7 black_1-3

black_8-9 black_6-6 golf_2-5 black_14-14 black_12-12 black_2-7

black_14-12 black_8-14 golf_3-10 black_14-5 golf_1-6 black_5-5
golf_3-5 black_4-10 black_8-5 golf_4-10 golf_1-8 golf_2-4 golf_3-3 black_1-8

golf_3-9 golf_7-6 black_7-6 black_13-10 golf_12-2 golf_5-2 golf_4-4 golf_8-14 black_2-4

golf_6-8 golf_7-8 black_10-4 golf_1-3 golf_13-12 golf_5-5 golf_6-6 golf_10-7 black_7-8 black_7-7

golf_8-9 golf_10-10 golf_1-1 golf_2-7 white_2-5 golf_13-10 golf_9-9 golf_12-12 black_7-14 black_10-13

golf_9-6 white_2-7 golf_6-12 black_3-10 golf_8-5 white_3-10 white_2-4 golf_12-7 golf_14-14 black_10-7 golf_4-1

golf_12-14 white_6-7 black_12-14 golf_1-8 golf_7-7 black_12-2 golf_8-8 white_4-1 white_4-10 white_1-6 white_6-6 black_13-12 golf_4-13

golf_14-12 white_6-9 black_13-5 golf_14-2 golf_9-10 white_1-3 golf_10-4 white_4-4 white_4-13 white_2-2 white_7-7 golf_3-3 golf_10-13

golf_5-3 white_7-8 white_9-7 golf_6-7 white_1-8 white_3-9 white_3-6 golf_14-5 white_5-2 white_10-7 white_7-14 white_8-8 golf_7-14 golf_13-13

black_3-5 white_5-3 white_8-9 white_12-2 golf_9-7 white_6-12 white_10-4 white_10-10 white_8-5 white_5-4 white_10-13 white_12-12 white_13-13 white_3-3 white_1-1

golf_13-5 white_13-5 white_14-2 white_9-6 white_12-14 white_12-7 white_7-6 white_9-10 white_8-14 white_13-12 white_14-12 white_9-9 white_13-10 white_14-5 white_13-13 white_5-5 white_14-14 black_6-12 golf_5-4

MSRimage 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

Frequency 1 1 2 3 9 13 5 5 10 6 13 16 22 22 13 10 8 1 1 0



 

 

9 

7.8 **         0,500 b         0,550 b 0,050  

8.9 **         0,500 b         0,500 b 0,000  

9.6 **         0,400 b         0,450 b 0,050  

9.7 * 0,300          0,350 b 0,050  

12.7 ** 0,000         0,400 b         0,400 b 

13.5 * 0,300 0,250  -0,050  

14.2 * 0,200          0,450 b 0,250  
*pvalue <0,05;   **pvalue <0,01 

b. The Mean Difference is significant at the ,05 level 

 
 

Probes 
To check the accuracy of our predictions9 regarding image performance, a linear regression model for 

each of the three probe types was conducted. 

A visual inspection of the difficulty to correctly deterimine probe fit in a scene was done for each image 

using a 0 to 4 step scale and encompassed in the Coding variable. 
 

The dependent variable for the regression MeanSuccessRate for each image, and the independent 

variable was our Coding for each probe type, that acts as a predictive measure. 

In the horizontal axis is represented the predicted difficulty of an image. The higher the number the 

more difficult it was coded. The vertical axis corresponds to the proportion of correct answers each 

image received. 
 

For all black images, data is not linear but there is a clear downward tendency. This means images 

coded as more difficult were also the more difficult for participants to correctly determine. 

For golf probes data is much more noisy but there is also a downward tendency. Our coding doesn’t 

predict outcomes very well. 

Finally, for white probes we again see that downward tendency and even thought there is still some 

variability data is less dispersed.  
 

 
 

Figure 4. Linear regression graph between our predictions of performance for each Black probe image and the 
actual performance extracted from the amount of correct answers from all participants for each image. 

 
9 See Appendix 7 for all output under Coding Regression Output by Probe. 
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Figure 5. Linear regression graph between our predictions of performance for each Golf probe image and the 
actual performance extracted from the amount of correct answers from all participants for each image. 

 

 
 

Figure 6. Linear regression graph between our predictions of performance for each White probe image and the 
actual performance extracted from the amount of correct answers from all participants for each image. 
 
 

Groups 
A two-way ANOVA test was conducted to examine the effect of different probe types and Groups on 

the average image performance score. F(6,144) = 0,778, p = 0,589. 
 

There were 2 independent variables, ProbeType and Group, and the average performance of each image 

(MSRimage) was the dependent variable. 

 ProbeType englobes three conditions: 1=Black, 2=Golf, 3=White. 

 

 Group consists of 4 conditions and refers to the main scene characteristics present in an 
image: 1=Outdoor scenes, 2=Indoor with big windows, 3=Indoor open spaces, 4=Indoor 

corridors. 
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Table 2. Table showing the significance of a Two-way ANOVA model with ProbeType and Group as independent 
variables and image performance (MeanSuccessRate image) as the dependent variable. 
 

Two-way ANOVA 

Dependent Variable: MeanSuccessRate image 

Source Type II Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 0,836a 11 0,076 2,139 0,021* 

Intercept 47,208 1 47,208 1329,195 0,000** 

ProbeType 0,316 2 0,158 4,443 0,013* 

Group 0,343 3 0,114 3,220 0,025* 

ProbeType*Group 0,166 6144 0,028 0,778 0,589 

Error 5,114 156 0,036   

Total 55,930 155    

Corrected Total 5,950     

a. R Squared= 0,140 (Adjusted R Squared =0,075) 

 

 

 

There is a statistically significant difference in MeanSuccessRate of images between ProbeTypes 

(p=0,013) and between Groups (p=0,025). However, there is not a statistically significant interaction 

(ProbeType*Group) effect in the dependent variable MSRimage. 

Because the Interaction term (ProbeType*Group) is not significant, but the individual variables are 

(p<0,05), we will directly look at the Post-hoc test results10 with Turkey Multiple Comparisons table 

for both Group and ProbeType. 

In the Multiple Comparisons for Groups, there were no statistically significant differences between any 

of the four Groups, so we have not included the table. For the ProbeType, we find significant differences 

(p=0,011) between ProbeType 1 (Black) and ProbeType 3 (White). 
 
Table 3. Table of Multiple Comparisons between each ProbeType after showing main differences in the variable 
during the Two-way ANOVA. 
 

Multiple Comparisons of ProbeType 

Probe Sig. 
Mean Difference (I-

J) 
Std. Error 

Black-Golf 0,077 0,0808 0,03696 

Black-White 0,011* 0,1077 0,03696 

Golf-White 0,747 0,0269 0,03696 

Based on observed means. 
The error term is Mean Square(Error) = 0,036. 

*. The mean difference is significant at the ,05 level. 
 

 
10 See Appendix 8 for all the Results of Multiple comparisons from the Two-Way ANOVA. 
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We plotted the Probe Type and Group to have a more visual representation of the variables’ behavior 

for each level. 
 

 
 

Figure 7. Graph representing the interaction between the three different probe types for each group of scenes. 
Note, ProbeType numbers are as follows: 1=Black, 2=Golf, 3=White. And Groups represent, respectively, 
1=Outdoor scenes, 2=Indoor with big windows, 3=Indoor open spaces, 4=Indoor corridors. 

 
 
 

RESULTS AND DISCUSSION 

 

We conducted an experiment to investigate if light probe’s physical differences had an effect on the 

cues individuals take when judging a scene because of the difference in the light properties most 

relevant appearance. This is, to our knowledge, the first experiment to test probes with different 

texture and gloss against the more mainstream Lambertian matte sphere. 

The task to answer whether a probe fits the scene’s illumination is quite standard in these type of 

studies and allows the task to be simplified. 
 

Participants were not able to judge correctly in all cases, and some participants performance was worse 

than that others. Judging by the results of the amount of times participants answered FITS, it cannot be 
ruled out this performance is the best anyone can do, since for 7 out of the 20 participants the response 

to FITS was answered less than half the time and for all participants it was lower than 2/3 of total 

answers (66%). This result suggest a clear awareness of the task at hand. 
 

However, we could hypothesize individual’s performance was not the best it can be due to certain 

elements that can be improved by implementing them in the experimental design phase: 

- Paying attention to certain information but not to other 

- Confusion in stimuli due to extreme similarity and randomized order of  appearance 

- Low target prevalence 
 

It can be argued that by giving more detailed instructions and providing feedback during the practice 

trial, the first cause could be improved. As for the confusion in stimuli, the fact images were not shown 

following an order either by scene or probe type likely confused the participants during the task. 
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As an anecdote, after finishing the experiment participant p106 mentioned several images were 

repeated, proving they were not aware of -at least- minor differences between probes. This participant 

answered 53% of images correctly. 

For the low target prevalence, participants were unaware of the proportion of FITS/DOES NOT FIT 

images show (39/117). As a result, and similar to signal detection theory in vigilance tasks (Wolfe et 

al., 2007), they tended to equalize the numbers for misses and false alarms to 50/50, resulting in an 

increase to their response to FITS. 
 

Regressions of each ProbeType show that data is very noisy and doesn’t follow a clear straight line but 

there is an overall downward tendency between the MeanSuccessRate of images and our Coding 

predictions which suggests there is a mild causal relationship, and it is backed up by statistical data in 

the Regressions done for our Coding and each Probe Type ANOVA (see Appendix 7). As shown in 

Figures 5,6,7, the images given a higher score in Coding based on visual inspection were also the images 

participants found harder to determine the fit in, regardless of the probe used. 
Given the previously mentioned obstacles participants might have experienced, these results are 

encouraging in supporting our predictions determining the difficulty of an image based on mismatches 

and noticeably different light properties between probe and scene and support both Koenderink et al 

(2007) and Kartashova et al (2016) statement that human observers have a strong idea of how objects 

might appear in a space, but that expectation is a simplified representation of the (physical) light field.  
 

In Figure 3, the frequency table with all images ordered by MeanSuccessRate performance shows no 

image was correctly judged by all participants. It is also interesting that the worst performing image is 

13.5 for the Golf probe and White probe version. However, even though image 13.5 showed differences 

between probe types, after post hoc tests those differences proved not to be significant. 

At the individual image level, main differences are found in the assessment of Black probes which 

performed consistently better compared to White probes and Golf probes in 10 out of 12 images with 

significant differences. This finding is consistent with the results from our Two-way ANOVA, where 

we found Black probes were 17% better at helping infer light in a scene than White probes in overall 

images (p=0,011). This result indicates Black shiny probes stand out from the other probes and should 

be incorporated as a tool for designers when showing their projects. 

The outliers between the significant images were image 1.1, where White probes were better than Golf 

probes, and image 5.4 where Golf balls performed significantly better than both Black and White 

probes. These two images correspond to Group 1 and Group 2, respectively. 

All outdoor scenes were grouped in Group 1. The dominant light property in those spaces is diffuseness, 

best captured by White probes according to our hypothesis. Similarly, Group 2 englobes indoor scenes 

with big windows in which light comes from multiple different directions. Our hypothesis was Golf 

probes would be best for capturing this light property, as Xia et al (2014) proved. 

Although no significant differences were found in the interaction between ProbeType and Group, results 

of this kind suggest Black probes might not be the best probe for all types of scenes and light properties 

most dominant in a scene could indeed have an influence to the type of probe best suited to infer a 

space’s light properties. 
 

It is interesting that 7 of the significant images belong to scenes englobed in Group 3 under indoor open 
scenes (scenes 6,7,8,9) characterized by strong brilliance, with mild diffuse light and strong directed 

light from focus lighting. In these images Black probes being significantly better performing than at 

least one other probe type. For image 9.7, Black probe performs significantly better than White only, 

for all others Black probes outperformed Golf probes and for images 6.12, 7.8, 8.9 and 9.6 Black probes 

proved better than both Golf and White probes. 

For significant images 14.2 and 12.7, both belonging to Group 4 characterized by indoor corridors, 

Black probes performed significantly better than White probes, but no other differences were found. 

These results are interesting because both these images were coded as easier to identify in the Black 

version, and harder for White probes. When the Black probe version of both images is shown, the 

mismatch between probe and scene is extremely clear due to Brilliance. For image 14.2, when the Black 

probe is presented an outside scene can be identified in the probe with only one main illumination 

coming directly from behind. For image 12.7, the Black probe shows multiple bright spots coming from 
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all across the ceiling that are not found in the scene. These findings are consistent with our third 

hypothesis, that Black probes are best at capturing Brilliance. 

It is worth noting that even though we did not find significant differences in the interaction term between 

ProbeType*Group in the Two-way ANOVA, differences can be appreciated from the Figure 7 graph of 

ProbeType Accuracy by Group in which each ProbeType was represented for each group. 

Both Group 1 and Group 3 stand out, with Black probes (Type 1 in Blue) clearly performing better than 

their counterparts. Our results about the different Groups encompassing scenes with similar 

characteristics are in line with the findings of Kartashova et al. (2016) that state the perception of the 

luminous environment is dependent on the geometric characteristics of a scene, as well as the materials 

and amount of objects placed in it. 
 

The original question of whether a certain probe type was better for judging a scene’s illumination based 

on its most relevant light properties cannot be proven but our results are encouraging and, at the image 

level, support out hypotheses. Further research needs to be done in this area to test for variations in 
scene-specific illumination perception with different light probes. This subject conveys great 

implications for design and lighting professionals’ presentation of their projects and would consolidate 

the use of different scene-specific light probes for visualization of a space. 

It is our belief that by improving the information and feedback given to participants at the begging of 

the experiment, performance will prove less noisy and research could better control for chance-level 

responses. 
 
 

CONCLUSIONS 

 

In conclusion, our results show Black probes are generally better at helping determine light than the 

more conventional and widespread Lambertian White matte spheres. 

Unfortunately our hypotheses that one probe type is better than others in helping infer certain light 

properties in scenes with similar features cannot be proven, but significant results at the image level 

suggest a conditional relationship of this matter might exist. 
 

We hope our work can be used as a starting point as further research is needed in this area to determine 

if there are indeed significant differences in the performance of different probes for specific scenes, as 

well as determining what type of probe should be used by designers and lighting professionals when 

presenting a space with a particularly dominant light property.  
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APPENDIX 1 

 

Instructions 

 
On each screen you will be shown an image with a sphere. After 3 seconds two buttons 

will appear in the screen. 
 

Use the buttons to indicate if the sphere's illumination fits the scene. 
 

You will have two 1minute breaks along the experiment. The maximum allowed time to 

take the experiment is 3:30h. 
 

But, let's do a practice run first! 

 

 

 

Information letter 

Aim of the study 

The aim of this study is to get insight into humans’ inference of light in images using spherical 

objects called light probes. By collecting data on this subject, we aim to answer questions about 

how surface structure, material and shape of light probes affect (correct) light assessments of an 

object in space. 

This is a student research. 

  

Data collection and storage 
Personal data will not be collected. Participants will be asked to provide an email address to send 

them a link to the study. Data will remain confidential and will be anonymized before being 

stored using YoDa Storage. Only the researchers will have access to the full dataset and only 

anonymized data will be used in scientific publication. 

Your data will be stored for at least 10 years. Anonymized versions of the data could be published 

in scientific literature. In addition, any data collected may be used for follow-up research or 

research with another purpose. 

  

Content of the study 
This task will take no longer than 60 minutes. 
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In this study you will be asked to stare at a series of images with a sphere photographed in them 

and decide if the lighting of the sphere fits the image by selecting a button. 

For taking part in our study you will receive 1 PPU (participation credits, 0.25 every 15 minutes) 

or financial compensation of 8€ per hour (2€ for 15 minutes). 

Taking part in our student research is voluntary and may be terminated at any moment. 

Termination will not have any consequences and may be done without providing a reason for 

doing so. Data that is collected up to the point of termination may be used for research. 

 

Contact information 

If you have questions or remarks regarding this student research, please contact Sònia Fanlo 

Garcia, at s.fanlogarcia@students.uu.nl. 

If you would rather address your remarks to a person independent of this research, please contact 

Susan Te Pas, at s.tepas@uu.nl. 

Formal complaints can be directed to klachtenfunctionaris-fetcsocwet@uu.nl. 

 

This information letter was last reviewed on December 14th 2020. 

  

mailto:s.fanlogarcia@students.uu.nl
mailto:s.tepas@uu.nl
mailto:klachtenfunctionaris-fetcsocwet@uu.nl
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APPENDIX 2 
 

Stimuli 

 
Scene 1 
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Scene 2 
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Scene 3 
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Scene 4 
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Scene 5 
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Scene 6 
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Scene 7 
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Scene 8 
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Scene 9 
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Scene 10 

 

 

  



 

 

28 

Scene 12 
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Scene 13 
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Scene 14 
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APPENDIX 3 

 
Coding 

 

Black probes 

 

 

Probetype Scene Probe Difficulty difference between coders Difficulty average
black 1 1 0
black 1 3 0 1

black 1 6 1 1,5

black 1 8 0 1

black 2 2 0
black 2 4 1 1,5

black 2 5 1 1,5
black 2 7 0 1

black 3 3 0
black 3 5 0 4

black 3 9 0 2

black 3 10 0 1

black 4 1 0 1
black 4 4 0

black 4 10 1 2,5

black 4 13 1 1,5

black 5 2 0 1

black 5 3 0 2
black 5 4 0 1

black 5 5 0

black 6 6 0

black 6 7 1 3,5

black 6 9 0 1

black 6 12 0 1
black 7 6 1 3,5

black 7 7 0

black 7 8 1 2,5

black 7 14 0 1

black 8 5 1 1,5

black 8 8 0
black 8 9 1 2,5

black 8 14 0 1

black 9 6 0 1

black 9 7 0 1

black 9 9 0
black 9 10 1 1,5
black 10 4 0 4

black 10 7 0 1

black 10 10 0
black 10 13 0 1

black 12 2 0 1

black 12 7 0 1
black 12 12 0

black 12 14 0 4
black 13 5 0 4

black 13 10 0 1

black 13 12 0 2
black 13 13 0
black 14 2 0 1

black 14 5 0 1

black 14 12 0 4

black 14 14 0
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Golf probes 

 

 
  

Probetype Scene Probe Difficulty difference between coders Difficulty average
golf 1 1 0
golf 1 3 0 3

golf 1 6 1 3,5

golf 1 8 0 4

golf 2 2 0
golf 2 4 0 4

golf 2 5 0 1
golf 2 7 0 1

golf 3 3 0
golf 3 5 1 3,5

golf 3 9 2 2

golf 3 10 0 1

golf 4 1 1 1,5
golf 4 4 0

golf 4 10 1 2,5

golf 4 13 0 1

golf 5 2 0 1

golf 5 3 1 3,5
golf 5 4 0 1

golf 5 5 0

golf 6 6 0

golf 6 7 0 4

golf 6 8 1 3,5

golf 6 12 0 2
golf 7 6 0 4

golf 7 7 0

golf 7 8 1 3,5

golf 7 14 0 1

golf 8 5 0 2

golf 8 8 0
golf 8 9 0 4

golf 8 14 0 1

golf 9 6 0 3

golf 9 7 1 3,5

golf 9 9 0
golf 9 10 0 1
golf 10 4 1 3,5

golf 10 7 0 3

golf 10 10 0
golf 10 13 0 1

golf 12 2 0 2

golf 12 7 1 1,5
golf 12 12 0

golf 12 14 1 3
golf 13 5 0 4

golf 13 10 0 1
golf 13 12 0 2
golf 13 13 0
golf 14 2 0 2
golf 14 5 0 1
golf 14 12 0 3
golf 14 14 0
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White probes 

 

 

 

  

Probetype Scene Probe Difficulty difference between coders Difficulty average
white 1 1 0
white 1 3 0 4

white 1 6 0 2

white 1 8 1 2,5

white 2 2 0
white 2 4 2 2

white 2 5 0 1
white 2 7 1 2,5

white 3 3 0
white 3 6 0 4

white 3 9 1 3,5

white 3 10 1 1,5

white 4 1 1 2,5
white 4 4 0

white 4 10 1 2,5

white 4 13 0 1

white 5 2 0 1

white 5 3 0 4
white 5 4 0 2

white 5 5 0

white 6 6 0

white 6 7 0 2

white 6 9 0 4

white 6 12 0 2
white 7 6 1 2,5

white 7 7 0

white 7 8 1 3,5

white 7 14 0 1

white 8 5 1 1,5

white 8 8 0
white 8 9 0 4

white 8 14 0 1

white 9 6 1 2,5

white 9 7 0 2

white 9 9 0
white 9 10 0 1
white 10 4 0 4

white 10 7 1 2,5

white 10 10 0
white 10 13 0 1

white 12 2 1 1,5

white 12 7 0 2
white 12 12 0

white 12 14 1 1,5
white 13 5 2 3

white 13 10 0 1

white 13 12 0 2
white 13 13 0
white 14 2 2 2

white 14 5 0 1

white 14 12 1 2,5

white 14 14 0
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APPENDIX 4 

 
Grouping 

 

 
Group 1 Group 2 Group 3 Group 4 

Outside scenes Inside scenes with 
big window 

Inside scene in open 
space 

Inside scene in 
corridors 

Scene 1 Scene 3 Scene 6 Scene 12 
Scene 2 Scene 4 Scene 7 Scene 13 

 Scene 5 Scene 8 Scene 14 
 Scene 10 Scene 9  
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APPENDIX 5 

 
Table: Variables 

 

Variable Output Explanation 

Participant p101 to p120 20 participants, coded for anonymity 

ProbeType Black=1, Golf=2, White=3 Which probe was used 

NumScene 1-14 except 11 Refers to the number scene of the image 

NumProbe 1-14 except 11 
Refers to the number of scene where the 

probe was originally photographed 

ImageName ProbeType_NumScene_NumProbe 
Identify the image 

ANSWER FITS, DOES NOT FIT Correct response 

Correct 0 or 1 Binary variable to check if what 
participants answered matches ANSWER 

Coding 0-4 in 0.5 increments Four-step difficulty scale how hard it is to 
adequately judge the image 

Grouping 1-4 Captures what space properties are 
characteristic of a scene 

MSRimage 0-1 in 0.05 increments 
Average proportion of correct responses 
each image had (SUM of Correct/Total 

participants) 

MSRparticipant 0-1 
Sensitivity of participants. Average 
number of correct responses/total 

responses 
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APPENDIX 6 

 
Image comparison by ProbeType 

 

  

Image Mauchly sig Sphericity Greenhouse-Geisser F Within Subjects pvalue df Significance
1.1 0,618 yes 5,444 0,008 2 Sig

1.3 0,006 no 0,699 1,669 0,210 1,398 Not sig

1.6 0,00 no 0,632 0,000 1,000 1,263 Not sig

1.8 0,906 yes 3,199 0,052 2 Not sig

2.2 0,817 yes 0,297 0,740 2 Not sig

2.4 0,523 yes 0,571 0,559 2 Not sig

2.5 0,007 no 0,7 0,487 0,554 1,401 Not sig

2.7 0,537 yes 5,824 0,006 2 Sig

3.3 0,055 yes 0,388 0,632 2 Not sig

3.6 0,701 yes 2,869 0,070 2 Not sig

3.9 0,673 yes 1,956 0,155 2 Not sig

3.10 0,482 yes 0,322 0,727 2 Not sig

4.1 0,059 yes 2,229 0,122 2 Not sig

4.4 0,93 yes 0,222 0,800 2 Not sig

4.10 0,009 no 0,711 1,193 0,304 1,422 Not sig

4.13 0,855 yes 1,088 0,347 2 Not sig

5.2 0,046 no 0,776 0,363 0,645 1,551 Not sig

5.3 0,059 yes 2,229 0,112 2 Not sig

5.4 0,354 yes 5,204 0,010 2 Sig

5.5 0,523 yes 0,571 0,570 2 Not sig

6.6 0,826 yes 0,079 0,924 2 Not sig

6.7 0,353 yes 0,087 0,917 2 Not sig

6.8 0,139 yes 5,195 0,010 2 Sig

6.12 0,32 yes 7,550 0,002 2 Sig

7.6 0,791 yes 0,769 0,471 2 Not sig

7.7 0,691 yes 4,750 0,014 2 Sig

7.8 1,000 yes 14,154 0,000 2 Sig

7.14 0,003 no 0,681 0,487 0,549 1,363 Not sig

8.5 0,763 yes 0,297 0,745 2 Not sig

8.8 0,643 yes 1,781 0,182 2 Not sig

8.9 0,948 yes 7,308 0,002 2 Sig

8.14 0,117 yes 2,771 0,075 2 Not sig

9.6 0,317 yes 6,110 0,005 2 Sig

9.7 0,225 yes 4,147 0,023 2 Sig

9.9 0,482 yes 0,322 0,727 2 Not sig

9.10 0,46 yes 0,925 0,405 2 Not sig

10.4 0,763 yes 0,297 0,745 2 Not sig

10.7 0,541 yes 0,689 0,508 2 Not sig

10.10 0,047 no 0,777 2,320 0,126 1,553 Not sig

10.13 0,476 yes 2,452 0,100 2 Not sig

12.2 0,508 yes 1,602 0,215 2 Not sig

12.7 0,378 yes 7,795 0,001 2 Sig

12.12 0,389 yes 0,068 0,934 2 Not sig

12.14 0,482 yes 0,322 0,727 2 Not sig

13.5 0,192 yes 3.953 0,028 2 Sig

13.10 0,007 no 0,700 0,487 0,554 1,401 Not sig

13.12 0,172 yes 2,509 0,095 2 Not sig

13.13 0,029 no 0,755 0,919 0,385 1,510 Not sig

14.2 0,483 yes 4,849 0,013 2 Sig

14.5 0,542 yes 0,689 0,508 2 Not sig

14.12 0,102 yes 2,365 0,108 2 Not sig

14.14 0,074 yes 1,096 0,344 2 Not sig
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Pairwise Comparisons for images with significant main effect ANOVA 

 
Image 1.1 

 

Descriptive Statistics 

 Mean Std. Deviation N 

MSR1 ,70 ,470 20 

MSR2 ,45 ,510 20 

MSR3 ,85 ,366 20 

 

Pairwise Comparisons 

Measure:   MSRimage1.1   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,250 ,123 ,169 -,073 ,573 

3 -,150 ,109 ,559 -,437 ,137 

2 1 -,250 ,123 ,169 -,573 ,073 

3 -,400* ,134 ,023 -,751 -,049 

3 1 ,150 ,109 ,559 -,137 ,437 

2 ,400* ,134 ,023 ,049 ,751 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 

Image 2.7 

 

Estimates 

Measure:   image2.7   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,750 ,099 ,542 ,958 

2 ,550 ,114 ,311 ,789 

3 ,300 ,105 ,080 ,520 
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Pairwise Comparisons 

Measure:   image2.7   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,200 ,138 ,488 -,161 ,561 

3 ,450* ,114 ,003 ,150 ,750 

2 1 -,200 ,138 ,488 -,561 ,161 

3 ,250 ,143 ,288 -,125 ,625 

3 1 -,450* ,114 ,003 -,750 -,150 

2 -,250 ,143 ,288 -,625 ,125 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

Image 5.4 

Estimates 

Measure:   image5.4   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,650 ,109 ,421 ,879 

2 ,950 ,050 ,845 1,055 

3 ,600 ,112 ,365 ,835 

 

Pairwise Comparisons 

Measure:   image5.4   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 -,300* ,105 ,030 -,576 -,024 

3 ,050 ,135 1,000 -,305 ,405 

2 1 ,300* ,105 ,030 ,024 ,576 

3 ,350* ,109 ,014 ,063 ,637 

3 1 -,050 ,135 1,000 -,405 ,305 

2 -,350* ,109 ,014 -,637 -,063 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Image 6.8 

 

Estimates 

Measure:   image6.8   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,700 ,105 ,480 ,920 

2 ,250 ,099 ,042 ,458 

3 ,300 ,105 ,080 ,520 

 

Pairwise Comparisons 

Measure:   image6.8   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,450* ,170 ,047 ,004 ,896 

3 ,400 ,169 ,085 -,043 ,843 

2 1 -,450* ,170 ,047 -,896 -,004 

3 -,050 ,114 1,000 -,350 ,250 

3 1 -,400 ,169 ,085 -,843 ,043 

2 ,050 ,114 1,000 -,250 ,350 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 

Image 6.12 

 

Estimates 

Measure:   image6.12   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,900 ,069 ,756 1,044 

2 ,450 ,114 ,211 ,689 

3 ,400 ,112 ,165 ,635 
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Pairwise Comparisons 

Measure:   image6.12   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,450* ,153 ,026 ,047 ,853 

3 ,500* ,115 ,001 ,199 ,801 

2 1 -,450* ,153 ,026 -,853 -,047 

3 ,050 ,153 1,000 -,353 ,453 

3 1 -,500* ,115 ,001 -,801 -,199 

2 -,050 ,153 1,000 -,453 ,353 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 
 
Image 7.7 

 

Descriptive Statistics 

 Mean Std. Deviation N 

@1 ,85 ,366 20 

@2 ,45 ,510 20 

@3 ,75 ,444 20 

 

Pairwise Comparisons 

Measure:   image7.7   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,400* ,134 ,023 ,049 ,751 

3 ,100 ,124 1,000 -,224 ,424 

2 1 -,400* ,134 ,023 -,751 -,049 

3 -,300 ,147 ,166 -,686 ,086 

3 1 -,100 ,124 1,000 -,424 ,224 

2 ,300 ,147 ,166 -,086 ,686 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Image 7.8 

 

Estimates 

Measure:   MSRimage7.8   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,800 ,092 ,608 ,992 

2 ,300 ,105 ,080 ,520 

3 ,250 ,099 ,042 ,458 

 

Pairwise Comparisons 

Measure:   MSRimage7.8   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,500* ,115 ,001 ,199 ,801 

3 ,550* ,114 ,000 ,250 ,850 

2 1 -,500* ,115 ,001 -,801 -,199 

3 ,050 ,114 1,000 -,250 ,350 

3 1 -,550* ,114 ,000 -,850 -,250 

2 -,050 ,114 1,000 -,350 ,250 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 
Image 8.9 

 

Estimates 

Measure:   image8.9   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,750 ,099 ,542 ,958 

2 ,250 ,099 ,042 ,458 

3 ,250 ,099 ,042 ,458 
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Pairwise Comparisons 

Measure:   image8.9   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,500* ,154 ,013 ,096 ,904 

3 ,500* ,154 ,013 ,096 ,904 

2 1 -,500* ,154 ,013 -,904 -,096 

3 ,000 ,145 1,000 -,381 ,381 

3 1 -,500* ,154 ,013 -,904 -,096 

2 ,000 ,145 1,000 -,381 ,381 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 

Image 9.6 

 

Estimates 

Measure:   image9.6   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,650 ,109 ,421 ,879 

2 ,250 ,099 ,042 ,458 

3 ,200 ,092 ,008 ,392 

 

Pairwise Comparisons 

Measure:   image9.6   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,400* ,152 ,050 ,001 ,799 

3 ,450* ,153 ,026 ,047 ,853 

2 1 -,400* ,152 ,050 -,799 -,001 

3 ,050 ,114 1,000 -,250 ,350 

3 1 -,450* ,153 ,026 -,853 -,047 

2 -,050 ,114 1,000 -,350 ,250 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Image 9.7 

 

Estimates 

Measure:   image9.7   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,650 ,109 ,421 ,879 

2 ,350 ,109 ,121 ,579 

3 ,300 ,105 ,080 ,520 

 

Pairwise Comparisons 

Measure:   image9.7   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,300 ,128 ,089 -,035 ,635 

3 ,350* ,109 ,014 ,063 ,637 

2 1 -,300 ,128 ,089 -,635 ,035 

3 ,050 ,153 1,000 -,353 ,453 

3 1 -,350* ,109 ,014 -,637 -,063 

2 -,050 ,153 1,000 -,453 ,353 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 

Image 12.7 

 

Estimates 

Measure:   image12.7   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,700 ,105 ,480 ,920 

2 ,700 ,105 ,480 ,920 

3 ,300 ,105 ,080 ,520 
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Pairwise Comparisons 

Measure:   image12.7   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,000 ,103 1,000 -,269 ,269 

3 ,400* ,134 ,023 ,049 ,751 

2 1 ,000 ,103 1,000 -,269 ,269 

3 ,400* ,112 ,006 ,105 ,695 

3 1 -,400* ,134 ,023 -,751 -,049 

2 -,400* ,112 ,006 -,695 -,105 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

 

 

Image 13.5 

 

Estimates 

Measure:   image13.5   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,350 ,109 ,121 ,579 

2 ,050 ,050 -,055 ,155 

3 ,100 ,069 -,044 ,244 

 

Pairwise Comparisons 

Measure:   image13.5   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

1 2 ,300 ,128 ,089 -,035 ,635 

3 ,250 ,123 ,169 -,073 ,573 

2 1 -,300 ,128 ,089 -,635 ,035 

3 -,050 ,088 1,000 -,281 ,181 

3 1 -,250 ,123 ,169 -,573 ,073 

2 ,050 ,088 1,000 -,181 ,281 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 
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Image 14.2 

 

Estimates 

Measure:   MSRimage14.2   

ProbeType Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 ,600 ,112 ,365 ,835 

2 ,400 ,112 ,165 ,635 

3 ,150 ,082 -,021 ,321 

 

 

Pairwise Comparisons 

Measure:   MSRimage14.2   

(I) ProbeType (J) ProbeType 

Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

1 2 ,200 ,156 ,642 -,208 ,608 

3 ,450* ,153 ,026 ,047 ,853 

2 1 -,200 ,156 ,642 -,608 ,208 

3 ,250 ,123 ,169 -,073 ,573 

3 1 -,450* ,153 ,026 -,853 -,047 

2 -,250 ,123 ,169 -,573 ,073 

Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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APPENDIX 7 
 

Coding Regression Output by Probe 
 

 

1. BLACK images 

Curve Fit 

Model Description 

Model Name MOD_3 

Dependent Variable 1 MSRblack 

Equation 1 Linear 

Independent Variable CodingBlack 

Constant Included 

Variable Whose Values Label Observations 

in Plots 
Unspecified 

 

Case Processing Summary 

 N 

Total Cases 52 

Excluded Casesa 0 

Forecasted Cases 0 

Newly Created 

Cases 
0 

a. Cases with a missing value 

in any variable are excluded 

from the analysis. 

 

Variable Processing Summary 

 

Variables 

Dependent Independent 

MSRblack CodingBlack 

Number of Positive Values 52 39 

Number of Zeros 0 13 

Number of Negative Values 0 0 

Number of Missing 

Values 

User-Missing 0 0 

System-Missing 0 0 

 

MSRblack 

Linear 
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Model Summary 

R R Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

.690 .476 .465 .117 

The independent variable is CodingBlack. 

 

ANOVA 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Regression .624 1 .624 45.357 .000 

Residual .688 50 .014   

Total 1.312 51    

The independent variable is CodingBlack. 

 

Coefficients 

 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. B Std. Error Beta 

CodingBlack -.091 .013 -.690 -6.735 .000 

(Constant) .750 .024  30.920 .000 
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2. GOLF images 

Curve Fit 

Model Description 

Model Name MOD_4 

Dependent Variable 1 MSRgolf 

Equation 1 Linear 

Independent Variable CodingGolf 

Constant Included 

Variable Whose Values Label Observations 

in Plots 
Unspecified 

 

Case Processing Summary 

 N 

Total Cases 52 

Excluded Casesa 0 

Forecasted Cases 0 

Newly Created 

Cases 
0 

a. Cases with a missing value 

in any variable are excluded 

from the analysis. 

 

Variable Processing Summary 

 

Variables 

Dependent 

Independen

t 

MSRgolf CodingGolf 

Number of Positive Values 52 39 

Number of Zeros 0 13 

Number of Negative Values 0 0 

Number of Missing 

Values 

User-Missing 0 0 

System-Missing 0 0 

 

MSRgolf 

Linear 

Model Summary 

R R Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

.546 .298 .284 .180 

The independent variable is CodingGolf. 
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ANOVA 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Regression .685 1 .685 21.231 .000 

Residual 1.614 50 .032   

Total 2.300 51    

The independent variable is CodingGolf. 

 

Coefficients 

 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. B Std. Error Beta 

CodingGolf -.080 .017 -.546 -4.608 .000 

(Constant) .691 .040  17.362 .000 
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3. WHITE images 

Curve Fit 

Model Description 

Model Name MOD_5 

Dependent Variable 1 MSRwhite 

Equation 1 Linear 

Independent Variable CodingWhite 

Constant Included 

Variable Whose Values Label Observations 

in Plots 
Unspecified 

 

Case Processing Summary 

 N 

Total Cases 52 

Excluded Casesa 0 

Forecasted Cases 0 

Newly Created 

Cases 
0 

a. Cases with a missing value 

in any variable are excluded 

from the analysis. 

 

Variable Processing Summary 

 

Variables 

Dependent Independent 

MSRwhite CodingWhite 

Number of Positive Values 52 39 

Number of Zeros 0 13 

Number of Negative Values 0 0 

Number of Missing 

Values 

User-Missing 0 0 

System-Missing 0 0 

 

MSRwhite 

Linear 

 

Model Summary 

R R Square 

Adjusted R 

Square 

Std. Error of 

the 

Estimate 

.661 .437 .426 .151 

The independent variable is CodingWhite. 
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ANOVA 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Regression .879 1 .879 38.773 .000 

Residual 1.133 50 .023   

Total 2.012 51    

The independent variable is CodingWhite. 

 

Coefficients 

 

Unstandardized 

Coefficients 

Standardize

d 

Coefficients 

t Sig. B Std. Error Beta 

CodingWhite -.100 .016 -.661 -6.227 .000 

(Constant) .688 .034  20.237 .000 
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APPENDIX 8 
 

Two-way ANOVA Output with Groups and ProbeType 
 

GET DATA 
  /TYPE=XLSX 
  /FILE='\\Client\H$\Desktop\MSRprobetype.xlsx' 
  /SHEET=name 'Two-way ANOVA data setup' 
  /CELLRANGE=FULL 
  /READNAMES=ON 
  /LEADINGSPACES IGNORE=YES 
  /DATATYPEMIN PERCENTAGE=95.0 
  /HIDDEN IGNORE=YES. 
EXECUTE. 
DATASET NAME DataSet1 WINDOW=FRONT. 
UNIANOVA MSRimage BY ProbeType Group 
  /METHOD=SSTYPE(3) 
  /INTERCEPT=INCLUDE 
  /POSTHOC=ProbeType Group(TUKEY BONFERRONI) 
  /PLOT=PROFILE(Group*ProbeType) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO 
  /EMMEANS=TABLES(ProbeType) COMPARE ADJ(BONFERRONI) 
  /EMMEANS=TABLES(Group) COMPARE ADJ(BONFERRONI) 
  /EMMEANS=TABLES(ProbeType*Group) 
  /PRINT ETASQ DESCRIPTIVE 
  /CRITERIA=ALPHA(.05) 
  /DESIGN=ProbeType Group ProbeType*Group. 
Univariate Analysis of Variance 

Between-Subjects Factors 
N 

ProbeType 1 52 
2 52 
3 52 

Group 1 24 
2 48 
3 48 
4 36 

 

Descriptive Statistics 

Dependent Variable:   MSRimage   

ProbeType Group Mean Std. Deviation N 
1 1 ,7250 ,06547 8 

2 ,6156 ,16805 16 
3 ,6406 ,17342 16 
4 ,5667 ,16002 12 
Total ,6288 ,16038 52 

2 1 ,6000 ,08452 8 
2 ,6156 ,23785 16 
3 ,4656 ,18949 16 
4 ,5333 ,24433 12 
Total ,5481 ,21235 52 

3 1 ,5875 ,17879 8 
2 ,5812 ,14361 16 
3 ,4563 ,19822 16 
4 ,4833 ,25436 12 
Total ,5212 ,19861 52 

Total 1 ,6375 ,13126 24 
2 ,6042 ,18417 48 
3 ,5208 ,20234 48 
4 ,5278 ,21988 36 
Total ,5660 ,19593 156 
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Tests of Between-Subjects Effects 

Dependent Variable:   MSRimage   

Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared 
Corrected Model ,836a 11 ,076 2,139 ,021 ,140 
Intercept 47,208 1 47,208 1329,195 ,000 ,902 
ProbeType ,316 2 ,158 4,443 ,013 ,058 
Group ,343 3 ,114 3,220 ,025 ,063 
ProbeType * Group ,166 6 ,028 ,778 ,589 ,031 
Error 5,114 144 ,036    

Total 55,930 156     

Corrected Total 5,950 155     

a. R Squared = ,140 (Adjusted R Squared = ,075) 

 
Estimated Marginal Means 

 
1. ProbeType 

 
Estimates 

Dependent Variable:   MSRimage   

ProbeType Mean Std. Error 

95% Confidence Interval 

 

Lower Bound Upper Bound 
1 ,637 ,027 ,583 ,691 
2 ,554 ,027 ,500 ,607 
3 ,527 ,027 ,473 ,581 

 

Pairwise Comparisons 

Dependent Variable:   MSRimage   

(I) ProbeType (J) ProbeType Mean Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for Differenceb 

Lower Bound Upper Bound 
1 2 ,083 ,038 ,096 -,010 ,177 

3 ,110* ,038 ,015 ,017 ,203 
2 1 -,083 ,038 ,096 -,177 ,010 

3 ,027 ,038 1,000 -,067 ,120 
3 1 -,110* ,038 ,015 -,203 -,017 

2 -,027 ,038 1,000 -,120 ,067 
Based on estimated marginal means 

*. The mean difference is significant at the ,05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
 

Univariate Tests 

Dependent Variable:   MSRimage   

 Sum of Squares df Mean Square F Sig. Partial Eta Squared 
Contrast ,316 2 ,158 4,443 ,013 ,058 
Error 5,114 144 ,036    

The F tests the effect of ProbeType. This test is based on the linearly independent pairwise comparisons among the estimated marginal 
means. 
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2. Group 
 
Estimates 

Dependent Variable:   MSRimage   

Group Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 
1 ,638 ,038 ,561 ,714 
2 ,604 ,027 ,550 ,658 
3 ,521 ,027 ,467 ,575 
4 ,528 ,031 ,466 ,590 

 

Pairwise Comparisons 

Dependent Variable:   MSRimage   

(I) Group (J) Group Mean Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for Differencea 

Lower Bound Upper Bound 
1 2 ,033 ,047 1,000 -,093 ,159 

3 ,117 ,047 ,087 -,009 ,243 
4 ,110 ,050 ,172 -,023 ,243 

2 1 -,033 ,047 1,000 -,159 ,093 
3 ,083 ,038 ,192 -,020 ,186 
4 ,076 ,042 ,408 -,035 ,188 

3 1 -,117 ,047 ,087 -,243 ,009 
2 -,083 ,038 ,192 -,186 ,020 
4 -,007 ,042 1,000 -,118 ,104 

4 1 -,110 ,050 ,172 -,243 ,023 
2 -,076 ,042 ,408 -,188 ,035 
3 ,007 ,042 1,000 -,104 ,118 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Univariate Tests 

Dependent Variable:   MSRimage   

 Sum of Squares df Mean Square F Sig. Partial Eta Squared 
Contrast ,343 3 ,114 3,220 ,025 ,063 
Error 5,114 144 ,036    

The F tests the effect of Group. This test is based on the linearly independent pairwise comparisons among the estimated marg inal means. 
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Post Hoc Tests 
 
Group 

Multiple Comparisons 

Dependent Variable:   MSRimage   

 

(I) Group (J) Group Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 
Tukey HSD 1 2 ,0333 ,04711 ,894 -,0891 ,1558 

3 ,1167 ,04711 ,068 -,0058 ,2391 
4 ,1097 ,04966 ,126 -,0194 ,2388 

2 1 -,0333 ,04711 ,894 -,1558 ,0891 
3 ,0833 ,03847 ,138 -,0167 ,1833 
4 ,0764 ,04155 ,260 -,0316 ,1844 

3 1 -,1167 ,04711 ,068 -,2391 ,0058 
2 -,0833 ,03847 ,138 -,1833 ,0167 
4 -,0069 ,04155 ,998 -,1149 ,1011 

4 1 -,1097 ,04966 ,126 -,2388 ,0194 
2 -,0764 ,04155 ,260 -,1844 ,0316 
3 ,0069 ,04155 ,998 -,1011 ,1149 

Bonferroni 1 2 ,0333 ,04711 1,000 -,0927 ,1594 
3 ,1167 ,04711 ,087 -,0094 ,2427 
4 ,1097 ,04966 ,172 -,0231 ,2426 

2 1 -,0333 ,04711 1,000 -,1594 ,0927 
3 ,0833 ,03847 ,192 -,0196 ,1862 
4 ,0764 ,04155 ,408 -,0348 ,1875 

3 1 -,1167 ,04711 ,087 -,2427 ,0094 
2 -,0833 ,03847 ,192 -,1862 ,0196 
4 -,0069 ,04155 1,000 -,1181 ,1042 

4 1 -,1097 ,04966 ,172 -,2426 ,0231 
2 -,0764 ,04155 ,408 -,1875 ,0348 
3 ,0069 ,04155 1,000 -,1042 ,1181 

. 

 

Homogeneous Subsets 
MSRimage 
 

Group N 
Subset 

1 2 
Tukey HSDa,b,c 3 48 ,5208  

4 36 ,5278 ,5278 
2 48 ,6042 ,6042 
1 24  ,6375 

Sig.  ,243 ,069 
Means for groups in homogeneous subsets are displayed. 
 Based on observed means. 

 The error term is Mean Square(Error) = ,036. 

a. Uses Harmonic Mean Sample Size = 36,000. 

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed. 

c. Alpha = ,05. 
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ProbeType 
 
Multiple Comparisons 

Dependent Variable:   MSRimage   

 

(I) ProbeType (J) ProbeType Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 
Tukey HSD 1 2 ,0808 ,03696 ,077 -,0068 ,1683 

3 ,1077* ,03696 ,011 ,0202 ,1952 
2 1 -,0808 ,03696 ,077 -,1683 ,0068 

3 ,0269 ,03696 ,747 -,0606 ,1145 
3 1 -,1077* ,03696 ,011 -,1952 -,0202 

2 -,0269 ,03696 ,747 -,1145 ,0606 
Bonferroni 1 2 ,0808 ,03696 ,091 -,0088 ,1703 

3 ,1077* ,03696 ,012 ,0182 ,1972 
2 1 -,0808 ,03696 ,091 -,1703 ,0088 

3 ,0269 ,03696 1,000 -,0626 ,1164 
3 1 -,1077* ,03696 ,012 -,1972 -,0182 

2 -,0269 ,03696 1,000 -,1164 ,0626 
Based on observed means. 

 The error term is Mean Square(Error) = ,036. 

*. The mean difference is significant at the ,05 level. 

 
Homogeneous Subsets 

 
MSRimage 
 

ProbeType N 
Subset 

1 2 
Tukey HSDa,b 3 52 ,5212  

2 52 ,5481 ,5481 
1 52  ,6288 

Sig.  ,747 ,077 
Means for groups in homogeneous subsets are displayed. 
 Based on observed means. 

 The error term is Mean Square(Error) = ,036. 

a. Uses Harmonic Mean Sample Size = 52,000. 
b. Alpha = ,05. 

 

 

 

 


