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1 Introduction

Within the last few decades data mining has become very popular with academics
and large companies. To be able to predict events and solve problems by extracting
patterns from large datasets is becoming more realistic with the years. With infor-
mation becoming more valuable and accessible, we keep improving our algorithms
and hardware in order to maximize performance and thereby gather as many results
in as little as time possible. And theoretically we are achieving this goal. In practice,
however, we often do not know if one algorithm is better than the other. Testing
newer algorithms, especially on large datasets, is sometimes neglected, mostly be-
cause there is not enough time or resources.

In this work, we will turn to an algorithm of which performance is supposed to
exceed its predecessor’s. It concerns a data-mining method, called Frequent Item-
set Mining (FIM), used for extracting regularities from a dataset (usually containing
purchasing records or transactions from a shop). The method is used for determin-
ing which items frequently occur together in a transaction, the result from which can
be used in making marketing decisions or in choosing product placement.

The algorithm in question, Matrix Based Algorithm with Tags (MBAT), is supposed
to work faster than the original FIM method, the Apriori algorithm (see 1.1). Testing
this claim, will be the focus of this paper.
FIM is designed to work on datasets that are structured in tables (with a variable
amount of columns), as most data-mining methods are. So in order to test the claim,
we will be using a database management system (DBMS) where we will keep the
data. For communicating with this DBMS we will use SQL, since this is the pre-
vailing programming language for databases. We want our algorithms to be able to
loop through methods and save results without taking up too much space (since this
could affect our performance), therefore we will use Java to issue SQL queries and
record time and temporary results. The actual data will be random, produced by a
selfmade Java program.

Both algorithms require us to scan the dataset multiple times, this is consuming
work and it matters how we access and process that data: one approach might bene-
fit performance, whilst the other might hinder it. If we want to test which algorithm
is faster, we need to test them on different platforms. That is the reason we are using
two different DBMSs. Both have different ways of accessing and storing the data.
Will we be able to use the same SQL queries for both DBMSs and if so, will perfor-
mance of the SQL queries stay the same?

The aim is to find the combination of a DBMS and FIM algorithm that delivers the
best performance, or better said: which combination finishes within the least amount
of time.
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Will the newly proposed MBAT be faster than the Apriori algorithm, no matter what
DBMS we are using? Or does a DBMS have a significant positive or negative effect
on performance, and if so, how?
And is the test conclusive, or are there more methods needed to determine what al-
gorithm is faster?

The structure of this paper will be as follows: Firstly we will look at the two al-
gorithms: How do they work? What is our input, what is our output? The chapter
after will expand on this, by showing how we are going to represent our data. After
which we discuss our implementation of both algorithms within both DBMSs, this
leads to four combinations to consider. Lastly we will run the implementations and
state our results, from where we can finally analyse our work and conclude which
of these combinations delivers the best performance and if that result is conclusive.

The code will not be added to the report since this will make for a cluttered result. It
will of course be available in the form of loose Java files.

Algorithms

It should be mentioned that we will only implement part of the FIM method, namely
the finding of frequent itemsets. Generating association rules is not part of this re-
search.

These are the algorithms we will use for the mining of frequent itemsets:

Apriori The Apriori algorithm is the classical algorithm in finding frequent itemsets
(and generating association rules), the algorithm was introduced by Agrawal
and Srikant, 1994. The upside of this algorithm is the lack of using brute-force.
The downside is the generation of very large datasets and having to go through
the same dataset multiple times, which causes heavy I/O spending, which in
turn makes it slower.

MBAT The MBAT is the theoretically improved version of the Apriori algorithm pro-
posed by Singh and Dhir, 2013. This algorithm represents the data in a transac-
tional matrix. Supposedly this should work faster than the Apriori algorithm
because it produces smaller datasets. This, however, has not yet been empiri-
cally verified by the authors themselves or by any other. As discussed before,
this is what we will try to achieve in this paper.

Database Systems

For the DBMSs, we will use MySQL and MonetDB.

MySQL MySQL is a traditional row- and SQL-based database. It stores data per row.
When issued a query it will brute-force its way through a table and goes from
row to row to compare that row’s column-values with the query.

MonetDB MonetDB is a column- and SQL-based database. As can be guessed, it stores data
per column. This means whenever a query is parsed, the system will select the
column (or columns) upon which is queried and compare the column-values
with the values offered. As you can see, this is less intrusive since we do not
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necessarily have to access every row. Whether it is faster depends on the type
of queries.

Combinations

The aforementioned algorithms and DBMSs give us the following combinations
which we are going to implement (all make use of the object-oriënted programming
language Java and query language SQL):

• MySQL and Apriori

• MySQL and MBAT

• MonetDB and Apriori

• MonetDB and MBAT

1.1 Context Artificial Intelligence

There is no question that Artificial Intelligence (AI) and data mining go hand in
hand: AI techniques have proven to be quite fast for classifying data or using data as
a learning method. But we are basically just talking about Machine Learning (ML),
FIM and specifically just mining the frequent itemsets, the subject of this paper, is
not a ML method and also not necessarily part of the AI family (Wu, 2004; Feyyad,
1996). What, however, does coincide, is the time and space (or lack thereof) issues
that can be solved with intelligent solutions. In AI we use certain tricks to shorten the
runtime of our algorithm, the same is done in data mining. For example, pruning.
In the context of FIM, pruning is already a large contributor to shortening runtime
and continues to be researched (Verma and Kumar, 2013). But what kind of pruning
are we talking about here?
Take this next example: say we have a loop that goes on for 300 iterations but we
already have the information we need after the 40th iteration. Normally the loop
would just finish the remainder of iterations and present you with that data, which
is not very efficient. But if we put a check in every iteration, to see if we have reached
the maximum amount of possible "answers", we could break out of the loop then and
there. This would just give us 40 more steps, instead of 260*n (where n is the amount
of steps in an iteration) more steps. Keep in mind that this is only efficient if we can
find every possible "answer" before it reaches the 300th iteration, else we have just
added 300 extra steps without any reward.
Knowing how your data works and using pruning, belongs to data mining and AI
methods. Handling big datasets and going through them in a fast manner will be
heavily discussed in this paper, many of which can be implemented in AI methods
as well.
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2 Algorithms

We have discussed FIM earlier1, here we will expand on what parts of the method
we will use and what parts will not be included in the implementation and analysis.
As has been mentioned, FIM consists of two elements. The first element is the algo-
rithm we will use in our code. The second element (represented in italic) will not be
used in this paper but is an application of the FIM method:

1. Itemset mining
Where we extract all items from the transaction dataset and combine them with
each other to generate every possible itemset. We will count the occurrence
(support count σ) of all these itemsets and eliminate those where σ is not as
high as the minimal support count (min_sup) i.e. the ones that are not frequent.
This will leave us with only the frequent itemsets.

2. Association rule mining
This step uses the frequent itemsets to generate rules of the form X → Y, where X and
Y are itemsets. The rule states that the itemset X implies itemset Y. Which means that
it is likely that if X occurs, Y will also occur.
There is more to these rules than explained here, but since we will not be implementing
this part of the method, we can freely omit this from the report. More information is
offered by the authors in their original paper (Agrawal and Srikant, 1994).

2.1 Apriori

This is one of the first algorithms developed for FIM and is based on the Apriori
principle. Instead of using a brute-force method: counting all candidate itemsets by
scanning the dataset, we divide the itemsets in generations. We reduce the amount
of candidates we need to count by using this rule:
If an itemset is frequent, then all of its subsets must also be frequent.

Implementing this gives us the following process:

1 Scan the dataset and count the occurrence (σ) of every item (singular), extract
the ones where σ ≥ min_sup. This is the first generation of frequent itemsets.

2 Combine every frequent itemset with every other frequent itemset. These are
our candidate itemsets for the next generation.

3 Scan the dataset and count the occurrence of every candidate itemset, extract
the ones where σ ≥ min_sup. This is the second generation of frequent item-
sets.

4 Combine every frequent itemset with every other frequent itemset from the
last generation, adding only 1 item to each existing itemset. Keep in mind,
there are no duplicate elements in one set and order does not matter.



Chapter 2. Algorithms 5

5 For every candidate itemset check if its subsets are frequent itemsets. If not,
the candidate can not be frequent and has to be discarded. If so, the candidate
may remain a candidate.

6 Count every candidate itemset in the dataset, extract those where σ ≥ min_sup.
This is a new generation of frequent itemsets.

7 Repeat step 4 through 6 until no new candidates can be formed.

It should be noticed that step 1 to 3 are needed solely for the generation of fre-
quent itemsets with size 1 and 2. The difference between these generations and gen-
erations thereafter is determining whether subsets are frequent as well. Generation
1 does not have subsets, and the subsets of generation 2 is generation 1. We are also
skipping a step for generation 1: the collecting of candidate itemsets. This deviation
is simply because gathering every frequent itemset of size 1 is not very complicated
to do within one step. I believe it might even benefit performance.

An example (2.1) will follow on the next page.
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Example 1
Table 2.1 is an example of a Transaction dataset. Where we have maximum itemsets
of size 4 (as can be seen in Tid = 3). We will loop through the steps, with min_sup =
2.

Tid Item 1 Item 2 Item 3 Item 4

1 1 3 4
2 2 3 5
3 1 2 3 5
4 2 5

TABLE 2.1: Transaction dataset

After completing step 1 of the algorithm, we will end up with table 2.2.

Itemset σ

{1} 2
{2} 3
{3} 3
{5} 3

TABLE 2.2: Frequent itemsets: first generation

After step 2 we have the candidates for generation 2 (2.3) and after step 3 we
have extracted the frequent itemsets (2.4).

Itemset

{1,2}
{1,3}
{1,5}
{2,3}
{2,5}
{3,5}

TABLE 2.3: Candi-
date itemsets: sec-

ond generation

Itemset σ

{1,3} 2
{2,3} 2
{2,5} 3
{3,5} 2

TABLE 2.4: Fre-
quent itemsets:
second generation

After step 4 and 5 we can see there is only one candidate itemset left for genera-
tion 3 (2.5), which also happens to be the last frequent itemset.

Itemset

{2,3,5}

TABLE 2.5: Can-
didate itemsets:

third generation

Itemset σ

{2,3,5} 2

TABLE 2.6: Fre-
quent itemsets:

third generation

Normally we would continue with step 6, but according to step 4 no new candi-
dates can be formed, since we only have one frequent itemset in our last generation.
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2.2 MBAT

This algorithm, developed by Singh and Dhir, 2013, is not as old as our Apriori
algorithm. The biggest difference between Apriori and MBAT is the representation
of the transactions, which we will show by giving an example of how this algorithm
works. First we will explain the process, where I have quoted many steps from Singh
and Dhir, 2013.
As the name, Matrix Based Algorithm with Tags, suggests, we will order our data in a
matrix instead of a normal table. The algorithm goes as follows:

1 Scan the dataset to find the different items occurring in the dataset and make a
transactional matrix by writing all the transactions along the row side and all
the items occurring in the dataset along the column side. Complete the matrix
by inserting the correct values per row: if a transaction contains an item, insert
1 in the corresponding column, otherwise insert 0. Lastly add 2 columns called
Tag 1 and Tag 2. write the lowest valued item under Tag 1 and the highest
valued item under Tag 2.

2 Generate the first candidate itemsets directly from the transactional matrix:
collect every column-head. Calculate σ by counting every 1 in the correspond-
ing column.

3 For the gathering of the first generation of frequent itemsets, collect every can-
didate itemset where σ ≥ min_sup.

4 After mining, trim the matrix by applying the following reduction rules: 1)
Delete the transactions not containing a frequent itemset, for they cannot pos-
sibly contain a frequent itemset of the next generation. 2) Delete the trans-
actions which do not contain enough items to generate itemsets for the next
generation.

5 Generate the next generation candidate itemsets by scanning each row of the
matrix and combining every item (having value 1) with each other. Eliminate
those itemsets where the subsets of which are not frequent. Then calculate σ
per itemset, again by counting along the columns. Whilst calculating, check
each row beforehand to see if [Tag 1 ≤ the lowest valued item] and if [Tag 2
≥ the highest valued item] per itemset. If it is not the case, the row can be
skipped since the itemset is not present in that row.
We can now gather all itemsets where σ ≥ min_sup, this is our second genera-
tion of frequent itemsets

6 Repeat steps 4 and 5 until the transaction matrix is empty and all frequent
itemsets have been extracted.

In their paper the authors present us with quite some advantages of this algo-
rithm over the Apriori algorithm. We will cover these assumptions at the end of this
chapter and evaluate them in chapter 6. We will now look at an example, resembling
the original example from the authors’ paper, only smaller.

Example (2.2) will follow on the next page.
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Example 2
In this example we will not show the tables with frequent/candidate itemsets, but
rather the transformations the matrix will undergo.

After completing step 1 of the algorithm, we will end up with the transaction
matrix 2.7.

T id I1 I2 I3 I4 I5 I6 Tag 1 Tag 2

1 1 1 1 0 1 0 1 5
2 0 1 0 1 0 0 2 4
3 0 1 1 0 0 0 2 3
4 1 0 0 1 0 1 1 6
5 1 0 1 0 0 0 1 3
6 0 0 1 0 0 1 3 6
7 1 0 1 0 0 0 1 3
8 1 1 1 0 1 0 1 5
9 1 1 1 0 0 0 1 3
10 0 0 0 1 1 0 4 5

TABLE 2.7: Transaction matrix

With completing steps 2, 3 and 4, we updated the matrix, and it now looks like
this 2.8.

T id I1 I2 I3 I4 I5 I6 Tag 1 Tag 2

1 1 1 1 0 1 0 1 5
8 1 1 1 0 1 0 1 5
9 1 1 1 0 0 0 1 3

TABLE 2.8: Transaction matrix

We now completed step 5 and 6 and circled back to step 4, where we trimmed
some more 2.9.

T id I1 I2 I3 I4 I5 I6 Tag 1 Tag 2

1 1 1 1 0 1 0 1 5
8 1 1 1 0 1 0 1 5

TABLE 2.9: Transaction matrix

And again: only we have nothing left after step 4. So according to step 6, we are
done 2.10.

T id I1 I2 I3 I4 I5 I6 Tag 1 Tag 2

TABLE 2.10: Transaction matrix

We can already see how different this is going to work from Apriori, since that
algorithm does not update its dataset. We will continue examining this in chapter 4.



Chapter 2. Algorithms 9

2.2.1 Assumptions MBAT

According to the authors (Singh and Dhir, 2013) this algorithm exceeds the Apriori
algorithm in a number of ways, we will discuss why some of these implementations
should surpass those of Apriori:

Matrix This is a rather obvious difference between the algorithms. Instead of using a
normal table where each row/transaction consists only of the items it contains,
it now represents every possible item and its membership. The authors do not
directly address the reason for using this format, but it becomes clear when
looking at the rest of the steps from the algorithm: if we want to be able to
count the items we first have to search for them. Normally this is a very high-
cost step, where we have to go through the entire dataset for just one item.
But by using the format of this matrix, we already know where all different
items are, since they have their own column. Applying this in SQL, we would
just have to check every column and we are done. This might very well be an
improvement on normal Apriori-like algorithms implemented in SQL, where
candidate searches are huge obstacles (Shang, 2005)

Tags The algorithm uses two tags: Tag 1 and Tag 2. They keep track of the lowest
and highest item respectively in a transaction. The advantages hereof are also
not directly explained by the authors. They only state the following:

Before scanning the columns of the every row for counting, first, Tag
1 is checked to see if the smallest item serial number of the itemset is
less than the value of Tag 1 in the corresponding row. If the smallest
item serial number is less than the value of the Tag 1 then there is
no need to scan columns of that row for counting. If the smallest
item serial number is not less than the value of the Tag 1 then Tag
2 is checked to see if the largest item serial number is greater than
Tag 2. If the largest item serial number is greater than Tag 2 then
we move to the next row for counting. Hence during the counting
of support for candidate itemsets the tags help to reduce counting
effort. Singh and Dhir, 2013, p. 357

It is an example of slight pruning, but it does not look like it necessarily reduces
counting effort if we still have to check every row.

Reduction The last adjustment is not one in representation but in (extra) steps, namely the
reduction properties. These properties allow us to delete transactions which
could not possibly contain frequent itemsets and are therefore useless for analysing
any further. This already sounds like a huge advantage, since we reduce our
search space increasingly whilst we move through generations of itemsets.
And reducing search space is nearly always desired in data mining, it shortens
the search, therefore making it faster and improving performance.
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3 Dataset

We have already mentioned our data will be random, this is to ensure we can tweak
our sets when we experience trouble going through a dataset. Finding an existing
dataset that is ideally composed for all our different implementations is going to be
difficult: the dataset could be too small, so testing will not deliver interesting results
between algorithms. It can also be too big, taking too much time to finish, which is
problematic for research which needs to be completed within a certain time-frame.
In this chapter we will give a small description of how we will represent our data
and what we will use as limits.

3.1 Structure

Considering the algorithms we explained in chapter 2, we have to make our dataset
suitable for usage by both.
We have come across transactions, items, (sometimes) certain variables and indices,
this is all easy to translate into code, especially with SQL.

Item

An item can be represented in many ways: a word, sequence of numbers, or even as
its own object. Since we will be handling many items and have to be able to recog-
nize and compare items, the easiest representation is a number. With numbers we
will never have to translate them into something else to be able to compare them,
such as a word. It is easy to check if one item is smaller/bigger than the other and
they can be ordered.

Example 3 : Item 1 = 1, item 2 = 2, item 2363 = 2363. It seems rather trivial but a
lot of datasets still have other representations than this one.

Our data is going to be random. Therefore we will make sure every item is as likely
to show up in a transaction as any other. Which leads us to the last attribute, the
amount of different items we are going to use, a tweaking option we will discuss
later on.

Transaction

A transaction, also called a record, is composed of items (which are numbers). The
transaction also needs to have something unique so we can find it anywhere in our
dataset, so we will give every transaction a unique ID. A transaction can never be
empty: if it is empty, it is not a transaction worth looking at and will give a false im-
pression of our dataset. So the size is 1 or bigger, but how much bigger? That leads
us to the question, how many items can a transaction have? And it all boils down
to: how big can our biggest (frequent) itemset be, which is something we always
have to decide beforehand. Again, this is one of our tweaking options which we will
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discuss later in this chapter.

A few other customs:

• A transaction can never contain duplicate items

• A transaction’s size is determined by the amount of items in that transaction.
That amount will be random per transaction (but within the limits)

3.2 Limits

If we want our datasets to be suitable, we will need to experiment with some pa-
rameters, and so we did. After coding the first prototype of the Apriori algorithm
in MySQL (and Java), we did some test runs. Our initial idea was to use a dataset
of 1000000 transactions, 4000 different items and a maximum transaction length of
100. This turned out to be insanely expensive and also quite impossible with the
current hardware. When the program could not use any more of memory, it started
writing to disk, this turned out to be lethal for the computer. After numerous tests
and software re-installations we accepted that we have to dial way back to a more
appropriate number for at-home data mining. Eventually the limits where set on the
following:

• Amount of transactions: 50000

• Amount of different items: 20

• Maximum transaction length: 8

• min_sup: 3

These limits were used throughout testing.

It needs to be said, that this was a very practical test and not based on anything scientific.
But for the sake of progress in our research, we had to make the decision in losing some of our
integrity or losing a lot of time with the chance of having to fall back on option 1. We chose
accordingly.

3.3 Stochastics

We enforced the randomness of our data by using the Random class of Java. This is
shown in our createdata class. What is random in our data generation:

• The amount of items in a transaction. It is not possible for that amount to be 0
because then the transaction would not exist.

• The items themselves. The item 0 does not exist.

For further comments and code, see createdata.java
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4 Implementation

Our first idea was to work exactly like the steps described in chapter 2, this turned
out to be far from ideal in practice. So we made some alterations for most algorithms,
which we will illustrate in the same manner as we did with the original algorithms,
only we now have an extra step: creating the data.
We will, however, not count this step as part of the overall progress which we are
measuring for performance.
Before we continue on with the implementations of the combinations, we digress to
justify the order and structure of our tables.

All major changes are displayed in italic

Many programming decisions we made, were the result of empirical evidence that
some statements did work and some just did not. Although we will not discuss all
these here, we made some remarks about other possible implementations in chapter
7.

Table structure

For both MySQL and MonetDB we noticed that randomly structuring our tables was a
deficit for the rest of our program. Hence we added an index on the table(s) which
greatly reduced runtime. This makes sense: with both DBMSs and algorithms we
have to go through the dataset multiple times, searching for items. But with indexed
tables it makes the search go faster, since the DBMSs now have a look-up system. To
further explain this:
A clean database in a DBMS does not have an order in its tables, it is random. But
with adding an index on a column (or an entire table) a DBMS creates a new data
structure where it saves the location of each field (id or item in our case). It is basi-
cally just a normal book index. The only downside is that it needs space on our hard
disk. The space it needs, however, is negligible in comparison with the size of our
original dataset and hard disks.
The order of our tables does not have anything to do with the indexes we put on
our tables. We thought that it would look more understandable if our tables were of
ascending order.

4.1 Apriori and MySQL

Creating data

Creating the dataset in the form of a regular table was our first idea 2.1. This did
not work out that well. MySQL handles a lot of rows very well, but a lot of columns
less so. Just generating the data and saving it in MySQL could take an hour. When
thinking about all the joins we are supposed to do, there was a realisation that it
would not be feasible with a relatively normal computer, it would only go out of
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bounds memory- and space-wise. So we decided to turn the dataset into a table
with just two columns, see table 4.1

Tid Items

1 1
1 3
1 4
2 2
2 3
2 5
3 1
3 2
3 3
3 5
4 2
4 5

TABLE 4.1: Transaction dataset

A transaction is now spread out over multiple rows: every item within a trans-
action gets its own row. The only downside is not being able to add an unique index
on the IDs. We solved this by adding an index over the combination of the two rows,
which is unique.

Program

1 Scan the dataset, and retrieve every itemset of size 1 with σ ≥ min_sup.

2 Combined every frequent itemset with every other, by the means of a join.

3 Gathered σ for every candidate itemset by pulling a join over a join.

4 By performing an inner join, all frequent itemsets of last generation (n) are se-
lected, where the first n items stay the same and the last item has to be smaller
than the other side of the join. This will give us all possible candidate itemsets
with the given frequent itemsets.

5 The internal workings of this part of the algorithm stays the same, only the structure
changes. It is very hard to achieve this step in MySQL, so we pulled all candidate
itemsets to Java and started generating all of its subsets of size -1 and simultaneously
checked if they are frequent itemsets. We also added one check to prevent unnecessary
work: if last generation contains all possible frequent itemsets of that size, we do not
have to check subsets, since that automatically means all subsets are frequent. After
which we send the updated candidate table back to MySQL

6 Counted the candidate itemsets, retrieved every itemset where σ ≥ min_sup.

7 Repeat steps 4 to 6 in a for-loop. The for-loop stops when no new candidates
can be formed or if the itemsets of maximum size have just been counted.

For further comments and code, see: fimSQL.java



Chapter 4. Implementation 14

4.2 Apriori and MonetDB

The implementation of the Apriori algorithm we defined for MySQL, worked surpris-
ingly well with MonetDB. The initial expectation was having to reform a lot of our
SQL queries in order to get it working. This was not the case at all.
We were allowed to use every query using the same syntax, the only thing that
changed was exporting and importing tables. But that was just a matter of using
different statements, which is negligible in the context of performance.

With that explained, we will refer to the last section, Apriori and MySQL, for the
steps of this program.

For further comments and code, see: fimMonet.java
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4.3 MBAT and MySQL

Creating data

We discussed a different representation of our data in the first implementation, the
same will apply for the datamatrix in MBAT. A transaction matrix consists of many
columns, which makes it nigh impossible implementing it in MySQL (as has been ex-
plained). We came up with a different design, which resembles a normal dataset
but still functions as a matrix. We have also added two extra values per transac-
tion, transaction size and amount FI: transaction size is the amount of items in the
transaction, amount FI notes if the transaction contained a frequent itemset from the
last generation. We will keep these values in the matrix. The tags, however, will be
exported to a new table, which makes them better accessible and reduces the size of
the matrix.

The matrix will look like this 4.2, with the tags table linked to it 4.3:

T id itemname itemvalue

1 1 1
1 2 1
1 3 1
1 4 0
1 5 1
1 6 0
1 transaction size 4
1 amount FI 0
2 1 0
2 2 1
2 3 0
2 4 1
2 5 0
2 6 0
2 transaction size 2
2 amount FI 0

TABLE 4.2: Trans-
action matrix

T id Tag 1 Tag 2

1 1 5
2 2 4

TABLE 4.3: Tags
table
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Program

1 The first step was transforming the actual dataset to a transaction matrix. We chose
to not do the transformation but to start off with a matrix. Since it is an annoyingly
difficult type of query to compose and execute within a short amount of time, we felt
it would not benefit our research. Especially since we do not consider the creating of
data to be a part of the overall process.

2-3 Calculated frequent itemsets of size 1 by summing up the values in column itemvalue
and comparing those to min_sup. It was not needed to separately gather candidate
itemsets and then start counting

4 After each generation, we first delete all transactions that did not contain a
frequent itemset. For this we can check the amfim value per transaction. We
then delete all transactions that do not have enough items to contain frequent
itemsets for the next generation. For this we can check the amit value per
transaction.

5 This is rather big part which we do in little steps: first we extract every item with value
1 and generate subsets per transaction. We then save these and start listing every Tid
per itemset. This will give us its σ and we can later use that list for step 4, again the
downside: we have to do this per itemset.

6 We repeat the steps until the matrix is empty or if we reached the biggest pos-
sible frequent itemsets.

For further comments and code, see: mbatSQL.java

4.4 MBAT and MonetDB

With this combination we had to make a little bit of an effort. The SQL statements
in the last-named program were partly not usable in MonetDB, we managed to re-
form some of those statements without adding too much work. But there were some
parts that had to be done with transporting tables from file to MonetDB and vice versa.
Namely because deleting rows from a column-based DBMS is a very slow query. So
the program steps are still the same as MBAT and MySQL only differently imported
and exported.

For further comments and code, see: mbatMonet.java



17

5 Results

The structure of our results will be as follows:
For every combination we will list the time it took to complete steps of the algorithm.
We note the amount of frequent itemsets per generation once, since these will be the
same for every combination. The candidate itemsets will be noted separately as they
can differ per combination.

5.1 Frequent itemsets

Generation Amount frequent itemsets

1 20
2 190
3 1140
4 4845
5 15504
6 36086
7 2845
8 3

TABLE 5.1: Frequent itemsets per generation
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5.2 Apriori and MySQL

Step Time(s)

Generation 1 frequent itemsets 10
Generation 2 candidate itemsets 0,1
Generation 2 frequent itemsets 4
Generation 3 candidate itemsets 0,2
Generation 3 frequent itemsets 107
Generation 4 candidate itemsets 0,4
Generation 4 frequent itemsets 442
Generation 5 candidate itemsets 2
Generation 5 frequent itemsets 1400
Generation 6 candidate itemsets 24
Generation 6 frequent itemsets 3666
Generation 7 candidate itemsets 160
Generation 7 frequent itemsets 4850
Generation 8 candidate itemsets 0,2
Generation 8 frequent itemsets 0,1
Total 10666

TABLE 5.2: Performance per step

Generation Amount candidate itemsets

1 20
2 190
3 1140
4 4845
5 15504
6 38760
7 49580
8 3

TABLE 5.3: Candidate itemsets per generation



Chapter 5. Results 19

5.3 Apriori and MonetDB

Step Time(s)

Generation 1 frequent itemsets 1
Generation 2 candidate itemsets 0,1
Generation 2 frequent itemsets 0,1
Generation 3 candidate itemsets 0,1
Generation 3 frequent itemsets 2
Generation 4 candidate itemsets 0,1
Generation 4 frequent itemsets 5
Generation 5 candidate itemsets 1
Generation 5 frequent itemsets 16
Generation 6 candidate itemsets 1
Generation 6 frequent itemsets 46
Generation 7 candidate itemsets 28
Generation 7 frequent itemsets 57
Generation 8 candidate itemsets 1
Generation 8 frequent itemsets 0,1
Total 158,5

TABLE 5.4: Performance per step

Generation Amount candidate itemsets

1 20
2 190
3 1140
4 4845
5 15504
6 38760
7 49580
8 3

TABLE 5.5: Candidate itemsets per generation



Chapter 5. Results 20

5.4 MBAT and MySQL

Step Time(s)

Generation 1 frequent itemsets 2
Generation 2 candidate itemsets 12
Generation 2 frequent itemsets 44
Generation 3 candidate itemsets 76
Generation 3 frequent itemsets 255
Generation 4 candidate itemsets 92
Generation 4 frequent itemsets 404
Generation 5 candidate itemsets 315
Generation 5 frequent itemsets 2856
Generation 6 candidate itemsets 1347
Generation 6 frequent itemsets 5973
Generation 7 candidate itemsets 710
Generation 7 frequent itemsets 9092
Generation 8 candidate itemsets 85
Generation 8 frequent itemsets 871
Total 22134

TABLE 5.6: Performance per step

Generation Amount candidate itemsets

1 20
2 190
3 1140
4 4845
5 15504
6 38633
7 40334
8 6136

TABLE 5.7: Candidate itemsets per generation
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5.5 MBAT and MonetDB

Step Time(s)

Generation 1 frequent itemsets 4
Generation 2 candidate itemsets 8
Generation 2 frequent itemsets 12
Generation 3 candidate itemsets 108
Generation 3 frequent itemsets 170
Generation 4 candidate itemsets 399
Generation 4 frequent itemsets 823
Generation 5 candidate itemsets 578
Generation 5 frequent itemsets 3428
Generation 6 candidate itemsets 1364
Generation 6 frequent itemsets 9054
Generation 7 candidate itemsets 427
Generation 7 frequent itemsets 11355
Generation 8 candidate itemsets 20
Generation 8 frequent itemsets 0,3
Total 27750,3

TABLE 5.8: Performance per step

Generation Amount candidate itemsets

1 20
2 190
3 1140
4 4845
5 15504
6 38633
7 40334
8 6136

TABLE 5.9: Candidate itemsets per generation
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6 Analysis

First and foremost, we will look at our results: why the time/performance differ-
ences with two different DBMSs and why with the two different algorithms? After
which we will talk about the advantages named by Singh and Dhir, 2013 and analyse
if these advantages were correctly assumed.

6.1 Comparison

The first thing to notice is that the MBAT did not perform all that well in the MonetDB
environment, which goes against our expectations. Since MonetDB is a column-based
DBMS and MBAT a matrix, it should be able to perform in under an hour, instead it
took almost 8 hours. How can that be? After considering the programming choices
and analysing the runtime, it started to make sense: MonetDB does not deal well with
deleting transactions from a table, which, according to the algorithm, is supposed
to happen twice per generation. This makes for some serious time-consuming steps.
The goal of these steps does not outweigh the means when it comes to MonetDB. Now
consider the algorithm in MySQL, there is not much of improvement there. Which is
weird, since MySQL does handle deletions well. Upon looking at the sequence of the
algorithm again and the history of the console, it became clear that the deletions are
not the problem here. They are most likely aiding the program, but then why is it
still slower than Apriori? What easily gets forgotten, is the amount of times Java
has to go through the loop and send statements through to MySQL. Instead of the
Apriori program, where all frequent itemsets are calculated within one statement,
this program has to go through an entire dataset per candidate itemset. This in turn,
is caused by the inadequacy of MySQL for handling multiple (and with multiple, we
mean more than 20) columns, if that would be able, the loop could easily be trans-
formed into one or maybe two statements.

Another result which stood out, was the Apriori program in MonetDB. It did not
even take 3 minutes for it to finish. Proof that MonetDB has benefits? Certainly. The
beautiful thing about this combination is the almost perfect use of columns. We do
not touch the original dataset, we make no updates and do not delete anything. This
is already a huge advantage in MonetDB. But apart from that, the same SQL statements
used in MySQL perform a lot faster in this DBMS. And this is all thanks to the joins
we are performing. Joining is focussed on the columns and with indices even faster.

The combination of Apriori and MonetDB seems to triumph amongst the others.
Thanks to the few, but large SQL statements composed of joins and no updates or
deletions, it was able to manage executing and finishing within a meagre 3 minutes.
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6.2 MBAT discussion

“In this algorithm the database is scanned only once and that is only generate the
transactional matrix” Singh and Dhir, 2013, p. 358.
Yes, in theory. But scanning a database (or, as we call it, dataset) means some-
thing completely different in practice. According to step 3 and 5 of their algo-
rithm we need to collect the candidate itemsets and count occurrence somehow,
it is never specified how we should do that. That how, unfortunately, is by
scanning the database. Which makes this advantage void.

“This method greatly reduces the problem of generation of a large number of candidate
itemsets because this method considers only those items in the row of the matrix which
are having the value of 1.” Singh and Dhir, 2013, p. 358
This is sort of true. Yes, we only take those items which have the value of 1.
But the amount of candidate itemsets (as we can see in our results) stays pretty
much the same in earlier generations. This is because of the size of our dataset.
With 50000 transactions, we are probably going to find every candidate itemset
of size 2 (since there are only 190 possible sets). You start seeing the difference
in generation 6 to 8.

“The tag columns are very helpful in reducing the effort in counting support for item-
sets.” Singh and Dhir, 2013, p. 358
Completely valid. Especially in a language such as SQL it is a very low-cost
query to execute and saves a lot of rows to parse. Which in MonetDB makes a
difference.

“The combination of above properties and the transaction reduction property provides
another advantage of less computational time.” Singh and Dhir, 2013, p. 358
That can be made true. In MonetDB it is actually an obstacle, because of all the
deletions. But in MySQL it did assist a good performance, since it is row-based
and handles deletions better. It alleviates the pain from scanning the dataset
multiple times.

“Method is much easier to implement than apriori and other popular algorithms for
association rule mining.” Singh and Dhir, 2013, p. 358
This depends a lot on how big your input (datasets) is going to be and how fast
you want the program to run. If it is small, as in the examples, then yes, it is
definitely easier to implement. Because then it would be possible to represent
the matrix as an actual matrix i.e. with multiple columns. It would be easier
to come up with SQL queries since you can work per column instead of a row.
But if your input is big and the amount of different items high, it is going to
be a struggle getting your transaction matrix to be flexible, especially when
deleting rows.
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7 Conclusion

This will be a short summary of what we have already discussed in chapter 6 and
what can still be done in future research.

We saw that the MBAT did not perform as we expected with either DBMS: with
MonetDB because of the deletions in the matrix and with MySQL because of the iter-
ation through all itemsets. It should be said that these implementations were our
choice and that a different way of translating the algorithm could mean that MBAT
is the better choice and has the best performance. But here we showed, with the
current implementation, it is not necessarily the best choice.

Because MBAT did not live up to its expectations, FIM was automatically the fastest
algorithm in this research. In combination with MonetDB it took little time to fin-
ish. This does not make it a better algorithm, it makes it the better combination in
this implementation. We can not express this enough, but there are plenty of different
designs possible to get these algorithms to work. Which also means that they could
have different performances.

The differences between MonetDB and MySQL were very clear (especially combined
with the Apriori algorithm). We noticed that MonetDB does not handle deletions
well, which is unprofitable for the MBAT. On the other hand, MonetDB seems to be
advantageous in almost every other aspect, because of its column-based structure.
Again, this only matters if the algorithm is designed in a way that a column versus
row approach makes a difference. Which is the case in this paper.

7.1 Future Research

Even after applying multiple methods and testing them across various datasets, we
know many more possible solutions exist to enhance performance for the combina-
tions we considered in this paper. There simply was not any time left to test them
all. We will discuss a few options we either considered and have not tried or we had
not considered at all but which might still be fruitful.

• Sparse-Matrix techniques could be used in combination with MBAT. We have
not tried to implement this and also have not thought of how to do this. Per-
haps in combination with the manual composed by Saad, 1990, a method could
be extracted.

• What we have not tried in this examination, is building the matrix from MBAT
with all of its columns in MonetDB and abstain from deleting or changing the
matrix (by either making new tables or just keeping the original matrix as it is
without deletions). Since it was able to handle the Apriori dataset, it would not
be weird to expect it could handle a matrix of roughly the same size as well.
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• What would definitely be worth examining, is using a computer that can han-
dle the workload. For example a supercomputer. We had to change our orig-
inal dataset to one that could fit in memory and would not take weeks to go
through. With a computer that has ample sources, we would not need to,
which in turn might have a positive effect on performance.

• Use Python instead of Java: although it has not been verified, sets (the data
structure) in Python appear to be easier in use and take less space as a data
structure than in Java. This might make up for a lot of time, especially in the
Apriori algorithm.

• Implement everything in SQLwithout using object-oriënted programming. This
would be a very complex structure, but has already been done (Thomas and
Sarawagi, 1998). The work would be too extensive for this paper, but we think
it might be well worth examining in combination with a stronger computer.
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