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Chapter 1

Introduction

1.1 Geothermal energy production in sedimentary basins

Geothermal power plants harness the heat from the center of the Earth. Temperature

increases with depth along the geotherm. Often, locations are chosen where there is a

steep geotherm, such as volcanic areas and rift valleys as this results in higher tempera-

tures closer to the surface. Still, in areas with an average geotherm incline, geothermal

energy can be viable in deep sedimentary systems. Deep geothermal systems are geolog-

ically similar in nature to oil and gas fields. As an oil or gas field matures, it commonly

sees an increased cut of water in produced fluids, in some cases up to 99 percent of the

total production (Singh et al. [2017]). Water produced from oil or gas fields often has

a temperature of 65-150C Liu et al. [2018]. In light the energy transition, research has

been done on the viability of utilizing mature oil and gas fields as a geothermal source

(e.g.: Barbacki [2000], Liu et al. [2018], Singh et al. [2017]). One of the major benefits

of alternative utilization of mature oil and gas fields is the reduced capital expenditure

of a geothermal project. Other than the conversion of old oil and gas sites, geothermal

energy can be harnessed in deep sedimentary systems.

1.2 Use of carbon and capture and storage

With the production of geothermal fluids, some gases are produced as well. An important

component of these gases is CO2. For clean geothermal energy production, it could be

1
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considered to reinject the CO2 into the reservoir, following a carbon and capture and

sequestration procedure (CCS). CCS has been more widely considered as a technology

that could aid reduction of atmospheric CO2. Depleted oil and gas reservoirs and deep

saline aquifers are common storage targets for CCS purposes.

1.3 The problem and previous research

The fluid production at any geothermal, oil, or gas field is highly dependent on the

porosity and permeability of the reservoir rock. Many factors can influence permeability

and porosity of a reservoir during production and/or injection and the topic has been

widely researched. In the example of CCS, research has been performed on the effects of

CO2 and brines on porosity and permeability of reservoirs by Fischer et al. [2011]. For-

mation impairment in the setting of fluid reinjection has been studied among others by

Ungemach [2003]. Ungemach mentions suspended solids such as corrosion products and

scales as well as trapped gases among factors that can restrain flow through a reservoir

close to an injection well head due to pore clogging. Dissolution of reservoir rock and

precipitation of new minerals can also impact porosity and permeability of a reservoir.

Finally, another mechanism that can impact physical properties of a reservoir rock is

microbial degradation. Microbial influence on permeability and porosity of a rock can

be subdivided into several factors. The physical presence of microbes could cause pore

clogging which restricts the flow of fluids through the reservoir. Growth and decay of

microbes can lead to sedimentation of microbes in intergranular pore space. To quan-

tify the extent to which these factors impact porosity and permeability, it is needed to

understand the transportation of microbes within porous media. Additionally, microbes

can have an impact through the excretion of metabolites. In geothermal reservoirs

as well as oil and gas reservoirs, thermophile microbes might be present. Within the

oil and gas industry, the dangers of Sulphur Reducing Prokaryotes (SRPs) and more

specifically Sulphur Reducing Bacteria (SRBs) are well known. SRBs tendency to ex-

crete H2S when in the presence of C02 can impact the quality of petroleum products

and corrode pipelines. Similarly, other metabolites excreted by a range of microbes

can corrode the reservoir rock. It should be noted that SRPs are often accompanied

by other microbes, which can produce acids that can influence chemical equilibria and

potentially accelerate corrosion. Especially secondary and tertiary chemical reactions
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that can occur due to the combined presence of metabolites within a brine are poorly

understood. Compared to studies towards oil and gas applications, research towards

geothermal energy development is young and limited. Given the increase in geothermal

exploitation globally, research on flow through sedimentary rock outside of typical oil

and gas applications has an increased mandate. For CCS applications, permeability and

porosity are important factors for storage capacity and injection rates of CO2. Research

on microbial influence on sedimentary reservoir rock in geothermal and CCS settings

could improve understanding of opportunities and challenges in developing geothermal

resources in sedimentary reservoirs as well as the development of CCS solutions.

1.4 Introduction of the collaboration

This research forms the MSc Thesis of A. van Veen BSc towards his degree in Earth,

Structure and Dynamics at Utrecht University. The research has been performed at

ITC-UTwente. Supervision at ITC-UTwente has been done by dr. R. Hack and dr.

C. Lievens whereas Utrecht University oversight has been done by dr. A. Raoof. Data

produced during the research are simultaneously aimed to reinforce the PhD of M.

Madirisha. The effects of microbial reservoir degradation in the context of geothermal

energy production, the transformation of mature oil and gas fields into geothermal energy

sources and carbon capture and sequestration are covered as a part of the Nuffic Tanzania

Dutch Energy Capacity Building (TDECB) Project 1. The research aims to quantify

microbial degradation of sandstone and to model these in a neural network to find

an physical-mechanical biological relationship between initial rock properties, in-situ

conditions, and physical properties of microbially degraded rock.

1.5 Context of research methodology

Laboratory experiments with a range of microbial products in sandstone in environments

that represent geothermal fields and carbon injection settings could yield insight into

the end member products of microbially deteriorated reservoir rock.

1Partners: The University of Twente, Hanze University of Applied Sciences in Groningen, Delft
University of Technology, Utrecht University, the University of Dar es Salaam (UDSM), the Dar es
Salaam Institute of Technology (DIT),Karume Institute of Science and Technology (KIST) in Zanzibar
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Reactive transport modelling that accurately describes the spreading of microbes through

a reservoir as well as the chemical equilibria that accompany the presence of microbes

is complex and requires the consideration of a high number of variables . Historically,

models have therefore either focused on flow in a reservoir and have considered microbes

as round particles that spread through advection, dispersion, and diffusion whereas other

models have focused on the spreading of microbes through growth, decay, and sorption

while assuming a static reservoir . The second method allows the incorporation of chem-

ical processes into the model as well as the expected effects of biofilm formation Murphy

and Ginn [2000]. Attempts to combine these processes in a single model have been done

by among others Tufenkji (2007) and Murphy and Ginn (2000) but many questions still

remain. In this research, an attempt is made to isolate the chemical effects of metabo-

lites from thermophile microbes in a static regime and relate the effects on porosity and

permeability to the initial properties of the reservoir rock and in-situ conditions. This

still leaves a significant number of parameters that influence the end member products.

The data generated by the laboratory experiment can be utilized as a training data set

for a neural network to find a best fit and could allow the model to be used as a predic-

tive tool for the evaluation of porosity and permeability in a sedimentary reservoir that

might be impacted by the presence of microbes. This approach skips the complicated

nature of the processes and explores the possibility of finding a simple way to predict

the impact of microbial reservoir degradation in terms of porosity and permeability. To

reach this goal, a neural network can be created that uses a machine learning algorithm

and a data set provided by laboratory experiments. A Neural Network increases in

accuracy with growing sample sizes. It is expected that sample size is insufficient for

high accuracy predictions. Measurements from the PhD research following this thesis

could improve performance of the network. A multi-layer perceptron assigns weights to

input parameters in iterations while minimizing a loss function. The use of a multi-layer

perceptron could yield insight into the relative impact of input parameters on the change

of porosity and permeability in a sample.



Chapter 2

Methodology

The methods of this research can be subdivided into laboratory experiments and neural

network implementation. The laboratory part consists of sample preparation, initial

porosity and permeability recording, metabolite treatment, and final porosity and per-

meability recording. Each part is developed below.

2.1 Laboratory experiment

2.1.1 Sample preparation

Bentheimer Sandstone is selected to be used in the laboratory experiments. The Ben-

theimer Sandstone is a shallow marine deposit from the Early Cretaceous. It is well

known as a petroleum reservoir rock and widely used as a building material Dubelaar

and Nijland [2015]. The Bentheimer Sandstone ranges in permeability between 1.5-3.0

Darcy and has an average porosity of 0.248. Composition is over 90 % quartz, with

minor occurrence of feldspar, clay minerals and iron oxides Peksa et al. [2015]. More

detailed descriptions of the Bentheimer Sandstone can be found in Dubelaar and Nij-

land [2015] Peksa et al. [2015]. Bentheimer Sandstone has strong lateral continuity and

homogeneity, which allows for the assumption that samples extracted from a block of

Bentheimer Sandstone should have the same mineral content, porosity, and permeabil-

ity. This makes Bentheimer Sandstone suitable for laboratory experiments Peksa et al.

[2015]. Furthermore, sedimentary rock is relevant for a research on microbial degradation

5
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since thermophile prokaryotes survive up to temperatures of 130 Celsius. Geothermal

reservoirs with such temperatures are often of sedimentary nature rather than volcanic.

Additionally, most oil and gas fields that may be converted into geothermal sites are of

sedimentary origin.

Due to the deposition process and subsequent non-random alignment of grains, a sedi-

mentary rock may show variable permeability in different directions, called anisotropy.

Samples have been drilled along three perpendicular axes to create a limited range of

permeabilities in the sample set in line with the anisotropy of the source rock. Cores have

been taken in two perpendicular directions along the bedding plane (x and y-directions)

and one perpendicular to the bedding plane (z-direction). 36 cylindric samples are taken

with a diameter of 30mm and a height of 35mm. Additionally, large samples of 40mm

diameter and 80mm height are taken for peak strength testing.

2.1.2 Initial state

The initial state of all samples is recorded with respect to dry porosity, dry permeabil-

ity, wet porosity, and wet permeability. The values measured before treatment with

metabolites will provide the base level from which changes in porosity and permeability

can be quantified.

2.1.2.1 Dry Porosity

Measurements on dry porosity are done using the UltraPycnometer 1000. All samples

have been run 8 times and an average porosity is taken for each sample. The Ultrapyc-

nometer 1000 determines the true volume of a solid through by filling a compartment of

known size with Helium gas and using Archimedes’ principle of fluid displacement and

the gas expansion law.

2.1.2.2 Dry Permeability

Dry permeability is measured using a Ruska gas permeameter. Due to high permeability

of Bentheimer Sandstone, measurements were taken at pressure gradients of 0.05, 0.10
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and 0.15 for all samples. The dry permeability is calculated following Darcy’s law as

shown in equation 2.1.

K =
µQL

AP
(2.1)

in which K is the permeability, µ is the viscosity of the gas, Q is the average flow rate

of the gas, L is the height of the sample, A is the cross-sectional area of the sample and

P is the pressure gradient along the sample.

2.1.2.3 Wet Porosity

Measurements on liquid porosity are done by first measuring the dry weight of the

sample. Then follows immersion of the samples in Milli Q water 1 in a vacuum where

after weighing the samples in submersion. Archimedes law is used to calculate the pore

volume of each sample.

2.1.2.4 Wet Permeability

Wet permeability is measured with a Ruska liquid permeameter. The sample is pressed

into a tight fitting rubber casing and water is pressed through the sample at a pressure

gradient of 0.25 atmosphere. The amount of time it takes for 50 milliliters of water to

pass through the sample is recorded. Finally, the liquid permeability can be calculated

following Darcy’s law as shown in equation 2.2.

K =
µLV

APt
(2.2)

in which K is the permeability, µ is the viscosity of the liquid, V is the total volume of

the sample, L is the height of the sample, A is the cross-sectional area of the sample, P

is the pressure gradient, and t is the recorded time.

1Milli Q is de-ionised water that has passed through a resin filter
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2.1.3 Metabolite treatment

Direct treatment with metabolites as a proxy for excretions of microbes is used because

sample treatment with live thermophile microbes is beyond the scope of this research due

to temporal, budgetary, and logistical restrictions 2. Thermophile microbes that can be

present in geothermal, oil, and gas reservoirs can excrete a range of metabolites. For this

study, the following range of metabolites are used: isobutyric acid, isovaleric acid, acetic

acid, sodium sulphate, and sodium alginate. Where the sodium alginate and calcium

chloride treatment mimics the presence of biofilm. Acetic acid is commonly excreted

by sulphur reducing bacteria. Both isobutyric acid and isovaleric acid are excreted by

microbes common in geothermal systems Sand [2003]. Sodium sulphate is added to

provide sulphur for the formation of H2S as would follow in the presence of SRB’s.

In the set-up of the experiment, in-situ conditions of a geothermal reservoir are sim-

ulated, as described in chapter 1, within means of the project. The influence of the

metabolites on porosity and permeability of the samples is expected to be mainly linked

to temperature, concentration of metabolites, reservoir pressure, and initial rock prop-

erties (porosity, permeability, mineralogy).

Creating a pressurised and anaerobic environment is out of range of the possibilities of

the laboratory equipment. The workflow described below is repeated for all temperatures

and concentrations. The samples are dried in the oven to remove all water from the pores

of the sample. A brine is prepared that has a similar chemical signature to what is found

in sedimentary geothermal systems. Acetic acid, isobutyric acid, and isovaleric acid are

added to the brine in such quantities that all acids are present at equal molarity. The

pH of the solution is recorded. The samples are separately covered in sodium alginate

and treated with calcium chloride, representing the presence of a biofilm. The samples

are put into a beaker and immersed in the acidic solution and put into a shaker for 10

minutes to ensure there are no air pockets left in the samples. After shaking, the beakers

are covered with equal sized sheets of aluminium foil and covered with a watch glass.

Following this preparation, the samples are left to rest at temperature. After a week, the

pH of the solution is recorded for each beaker. Then, 60 ml of acidic solution is pushed

through a filter to remove solid material from suspension. 60 ml of Milli Q water is then

added to the sample and the sample is shaken for 10 minutes. The vibrating motion

2Only special licensed laboratories are allowed to work with live microbes



Methodology 9

should facilitate a replacement of the acid in the sample with Milli Q, as well as shake

out loose solid material that might be present in the sample. Then once again, the liquid

is pushed through a filter to remove solid material. This is repeated three times, so a

total filtrate of 240 ml is formed and any solid material that has come out of the sample

is caught in the filter. The samples are transfered to a clean beaker and left in Milli Q

water. The samples are not oven dried immediately as salt from the brine is expected to

precipitate and yield unrealistic values for porosity and permeability. Filters are oven

dried until all water is removed before solid material is weighed.

Summarized, the workflow can be described as follows:

1. Dry samples in oven (24 hours, 105 Celsius)

2. Prepare brine

3. Mix metabolites to create acidic solutions (0.2[M], 1.0[M], 2.0[M]

4. Record pH of acidic solutions

5. Treat samples with sodium alginate and calcium chloride

6. Immerse samples in acidic solution and put in waterbath shaker for 10 minutes

7. cover samples with aluminium foil and watch glass

8. Leave samples in oven for 7 days

9. Record pH of acidic solution of all samples

10. Filter acidic solution and then re-immerse in milli Q water (repeat 3 times)

11. Extract samples and leave in milli Q water

12. Dry samples in oven (24 hours, 105 Celsius)

With a limited number of samples, and varying only a single parameter at once to

investigate its influence on the process, it is opted to test a range of three temperatures

and three concentrations as shown in Table 2.1.
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Table 2.1: metabolite treatment scheme

25 C 60 C 90 C

0.2 [M] x1 x2 x3 y10 z1 z2 z3 x10 y1 y2 y3 x13

1 [M] x7 x8 x9 x14 z7 z8 z9 x12 y7 y8 y9 y11

2 [M] x4 x5 x6 z10 z4 z5 z6 x11 y4 y5 y6 z11

2.1.4 Peak strength

If a rock is damaged to an extent where the structural integrity of the rock is reduced,

fracturing or compaction of the rock may occur. Since the experiment is not conducted

under reservoir pressures, the influence of pressure is not yet represented in the exper-

iment. Therefore, peak strength of the rock is measured. Fracturing and compaction

of the rock can reduce intergranular porosity. However, it could create a secondary

porosity and permeability. Peak strength measurements can not be performed on sam-

ples that are used for permeability and porosity measurements due to size restriction

discrepancies between the methods. Therefore, peak strength measurements are done

on dry cores that are have been treated with 1.0 [M] acid solutions at all three temper-

atures. Although peak strength of porosity and permeability measured samples can not

be directly measured, the peak strength measurements of separate cores can provide an

indication of the influence of pressure as an input parameter.

2.1.5 Final state

For determination of the influence that the metabolite treatment has had on the physical

properties of the samples, a final state is recorded. Which is done by repeating the same

measurements as for the determination of the initial state.

2.1.6 Thin sections

Five thin sections are made of samples both before and after laboratory experiments.

Thin sections are examined under the microscope and changes in the mineralogy are

described. Photo’s are taken for every sample on 2.5, 5, and 10 orders of magnification.
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2.2 Artificial Neural Network

Data obtained by the laboratory experiments are used to investigate whether a relation-

ship can be found between in-situ conditions, initial physical parameters of the reservoir

rock, and physical parameters of the degraded reservoir rock after the treatment as de-

scribed in the subsection ’Metabolite Treatment’ In this thesis, the open source Scikit-

learn Python module 3 is used to investigate the relationship between initial porosity

and permeability of the samples, the concentration of acid solution the samples are im-

mersed in, and the environmental temperature. Scikit-learn provides simple tools for

data sorting and machine learning applications. Machine learning problems are often

divided into classification and regression problems. An explanation of the difference

between classification and regression problems can be found in Appendix A in the sec-

tion Neural Networks. Since the aim of this research is to predict continuous values for

changing porosity and permeability of samples, this is a regression problem.

2.2.1 Train Test Split

A neural network has to be trained with ’training data’ to learn the rights output

parameter for a certain combination of input parameters. Splitting the dataset into

two subsets, one subset can be used to train the model and acquire a best fit for the

training data (27 samples). The other subset can be used as a test dataset to validate

the performance of the model (9 samples). Machine learning algorithms perform best

with large amounts of data (more than 1000 data points). When data sets are small,

multiple instantiations of the train test split can be used to optimise training of the

model on the available data Demuth et al. [2014]. This means that the total data set is

split up in 27 training data points and 9 test data points in multiple different ways.

2.2.2 Approaches

Both a simple linear regression algorithm and a multi-layer perceptron approach are

used. The linear regression algorithm minimises an ordinary least squares function and

forms a prediction based on the linear relationship that has been found in the training

3all software used in this thesis can be found on the sci-kitlearn.org website with accompanying
explanations on how to install and use the software. This thesis has used python2.7 in a jupyter
notebook environment
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Figure 2.1: Single Hidden Layer Multilayer Perceptron with a Bias Neuron (scikit-
learn.org)

data. A Multi-Layer Perceptron (MLP) can be used, which estimates an output (f(X))

from a set of inputs, where the number of input neurons is equal to the number of

input variables. Hidden layers perform non-linear transformations of the input values,

which allows the algorithm to find non-linear relationships between input and output.

Weights between neurons are then adjusted in iterations to minimise a loss function.

This multi-layer perceptron implementation uses a square error loss function. The input

neurons that have the largest weights to the hidden layer after conversion of the model

are the most influential in the prediction result. A visual representation is given in Figure

2.1. The Multi-Layer Perceptron Regressor in Scikit-learn allows for the use of a set of

different solvers. Since the data set is small, it is opted to use the ’l-bfgs solver’. The l-

bfgs solver is a quasi-newton method algorithm and uses the first and second derivatives

of the loss function to steer its optimisation. A thorough mathematical explanation of

this solver can be found in Liu and Nocedal [1989]
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2.2.3 Fine-tuning

All neural networks need to be fine-tuned to show good results. There are several rules

of thumb that are followed in this research. Firstly, most neural networks only have a

single hidden layer. It is suggested that problems that require more than one hidden

layer, and thus need more than one non-linear transformation, are too complicated to

solve with a neural network Demuth et al. [2014]. Secondly, the number of neurons

needed in the hidden layer follows from equation 2.3.

Nh =
Ns

α ∗ (Ni +No)
(2.3)

In which Ns is the number of samples, Ni is the number of input neurons, No is the

number of output neurons, and α is an arbitrary scaling factor within the range 2-10.

The number of neurons in the hidden layer are usually trimmed down to contain the

least number of zero-weighted connections in accordance to Ockham’s razor Demuth

et al. [2014].

2.2.4 Validation

Performance of predictions can be quantified through the R2 metric. The R2 metric

measures the squared error difference between a model, and a mean model (also called

worst model) on a scale of 0.0 - 1.0 The optimal score is 1.0, where a model would reflect

reality perfectly. A network that predicts a constant mean value without consideration

of input parameters will score 0.0. Thus, the R2 metric portrays on a scale between 0

and 1 how well the model performs compared to a perfect model, and a mean model

as visualised in Figure 2.2 . A score can also be negative when a Network prediction is

worse than a constant mean value. Since there is a small sample size, it is not expected

that the neural network will perform very well. Performance of the neural net should

improve when more data points are added. To quantify the expected improvement of

this particular neural network, the neural network can be trained with a standard data

set for regression problems: The Boston housing market data set. This comparison in

performance could provide insight into an expected improvement in performance of the

neural net if more samples are added.
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Figure 2.2: Visualisation of the meaning of the R2 metric (Ragriwal, 2017)
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Results

3.1 Initial permeability and porosity

Dry porosity, wet porosity, dry permeability, and wet permeability have been recorded

for all samples before and after metabolite treatment is executed. The full set of mea-

surements can be found in Appendix B in Table B.1. Porosity and permeability measure-

ments of Bentheimer Sandstone before laboratory experiments agree well with literature

as found in Peksa et al. [2015]. The wet and dry permeability in the direction parallel to

the bedding planes is lower than perpendicular to the bedding planes. Wet permeability

is more variable in the y-direction than in the x- and z-directions as seen in Table 3.1.

Table 3.1: Initial values and standard deviations for porosity and permeability

average p dry (%) stand. dev. p dry (%) average perm dry (D) stand. dev. perm dry (D)

x 0.270615353 0.010183603 2.669314091 0.2612604

y 0.266177117 0.003183197 2.376778338 0.217456994

z 0.263494399 0.003438369 3.010324266 0.327303765

average p wet (%) stand dev p wet (%) average perm wet (D) stand. dev. perm wet (D)

x 0.24798524 0.005857355 1.301731347 0.101940781

y 0.251098795 0.004080874 1.268676122 0.209001287

z 0.25190471 0.003668893 1.683681723 0.078825586

unit density kg/m3 unit weight kN/m3

x 1.984374725 19.46671605

y 1.982247963 19.44585252

z 1.979591087 19.41978856

15
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3.2 pH changes

Acid solutions in which the samples are treated are at 0.2, 1.0, and 2.0 M and have

pH values of 2.13, 1.83, and 0.95 respectively before sample immersion. pH values

changed during the experiment. Average pH values and their changes are given for

each concentration and temperature combination in Table 3.2. Table 3.2 shows that

pH decreases in the 25 ◦C and 60 ◦C environments apart from the 25 ◦C and 1.0 [M]

environment and at 90 ◦C, pH increases for all concentrations.

Table 3.2: average pH before experiment, after experiment, and pH change for each
tested environment

25◦C 60◦C 90 ◦C

0.2 [M] 2.13; 1.89; -0.24 1.83; 1.53; -0.31 0.95; 1.10; 0.15

1.0 [M] 2.13; 2.39; 0.26 1.83; 1.67; -0.16 0.95; 1.17; 0.22

2.0 [M] 2.13; 1.87; -0.26 1.83; 1.28; -0.56 0.95; 0.97; 0.02

3.3 Sample mass

Weight of the samples changes throughout the experimental process by addition of

sodium alginate, the dissolution of existing material, and precipitation of new mate-

rial. A full overview of the sample weights in all stages of the experiment can be found

in Appendix B in Table B.3.

3.3.1 Sodium alginate

Addition of sodium alginate and calcium chloride to mimic a biofilm has added weight to

the samples. Any differences in quantities of sodium alginate applied to the samples has

been documented and is given in the overview in Appendix B in Table B.3. Differences

in alginate addition between samples do not show a relationship to permeability and

porosity changes.
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3.3.2 Filter weights

After immersion of samples in acid and being left at their respective temperatures for a

week, acid is extracted and put through a filter. The sample is re-immersed in Milli-Q,

waterbath shaken, and the fluid is filtered 3 more times. Weight added to the filter can

be assumed to be solid material lost by the sample during the procedure. Filter weights

show that samples lose between 0 and 1 gram of solid material during the experiment.

3.3.3 Final weight

At the end of the laboratory experiment, all samples except for samples y3, y4, y5, and

y6, show very small changes in weight, within measurement error (under 0.1 g). Sample

y3 has been heated at 90 ◦C at 0.2[M] , and is a sample that has lost all solution in the

process due to incomplete closing of the beaker. Sample y4, y5, y6 have been exposed to

90◦C at 2.0 [M]. The added weight in y6 is due to halite crystals forming on top of and

inside the sample. For samples y4 and y5, there were no visual differences with samples

that have not shown added weight.

3.4 Final porosity and permeability

Presented in this section are graphs that visualize the initial porosity and permeability

of the samples as well as the changes due to the laboratory experiments.

The dry porosity of the samples has decreased for all concentrations and temperatures

(between about 0-10%). The wet porosity of the samples decreased as well with similar

quantities. Permeability however, decreased more significantly (mainly between 20-40%)

at all concentrations and temperatures as presented in figures 3.3 3.6 3.12.
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Figure 3.1: Dry porosity before and after metabolite treatment

Figure 3.2: Initial dry porosity vs. final dry porosity

Figure 3.3
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Figure 3.4: Wet porosity before and after metabolite treatment

Figure 3.5: Initial wet porosity vs. final wet porosity

Figure 3.6
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Figure 3.7: Dry permeability before and after metabolite treatment

Figure 3.8: Initial dry permeability vs. final dry permeability

Figure 3.9
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Figure 3.10: Wet permeability before and after metabolite treatment

Figure 3.11: Initial wet permeability vs. final wet permeability

Figure 3.12

3.5 Peak strength

Peak strength measurements are performed on both treated and untreated Bentheimer

sandstone samples. Full data on peak strength measurements can be found in Appendix

B. Peak strengths for dry Bentheimer Sandstone samples that have been subjected to

the acid solutions have an average peak strength of 31.24 MPa, as presented in Table 3.3.

This is lower than the 38.93 MPa as found for dry Bentheimer Sandstone in literature
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Peksa et al. [2015]. However, peak strength measurements have to be done on untreated

Bentheimer Sandstone samples from the same block as treated samples were sourced

from to verify decrease in peak strength.

Table 3.3: Peak strength values for microbially degraded Bentheimer Sandstone cores

Sample Peak Strenght (MPa)

Ya 30.9390

Zb 29.0261

Zc 31.3705

Zd 29.7443

Zf 35.1389

3.6 Thin sections

Thin sections of untreated Bentheimer sandstone show matching results with Peksa

et al. [2015]. Bulk majority of minerals is silicate with occasional feldspar and kaolinite.

Cement is made up of quartz. Figure 3.13 shows a thin section of fresh Bentheimer

Sandstone. Grains are quartz and minor occurence of clay minerals (kaolinite) is seen.

Figure 3.14 presents a thin section of metabolite treated Bentheimer Sandstone. Red

rectangles indicate areas where grains appear to have solid material coming loose and

releasing into the pore space. Figure 3.15 shows a close up of loose material in pore

space.

Figure 3.13: Sample x1 10 times enhanced
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Figure 3.14: Sample Y5 10 times enhanced

Figure 3.15: Sample Z5 20 times enhanced

3.7 Flow reversal

If fines exist in the pore space of samples and clog pore throats within a single dominant

flow direction, it could be expected that the fines should be moved out of pore throats

when flow direction is reversed. As such, the permeability measurements should show

a decreasing trend over the first few measurements until fines are again stuck in pore

throats, this time in the other direction. Flow reversal has been performed in wet

permeability measurements and the results are shown in Figure 3.16. Permeability

measurements decrease and stabilize over four consecutive measurements.
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Figure 3.16: Wet permeability measurements after reversal of flow direction

3.8 Neural Network

The python scripts associated with this chapter can be found in Appendix C.

3.8.1 Multi-layer Perceptron

The Multilayer Perceptron has 1 hidden layer of 4 neurons, uses the ’tanh’ activation

function as a non-linear transformation and an ’l-bfgs’ solver to steer model optimisation.

Input parameters are initial wet porosity, initial wet permeability, temperature, and

concentration for the prediction of wet porosity and wet permeability. The number of

input parameters has been restrained to 4 as an increased number of input parameters

with the used sample size decreases accuracy of the neural network. For a sample size of

36, multi-layer perceptron results show a decent prediction ability for wet permeability

as presented in figure 3.17. The Neural Net appears to have a slight bias to overestimate

wet permeability. Extreme measured values are not predicted well. The R2 score of

the multilayer perceptron of several instantiations of the train-test-split fall in the range

0.32-0.35. R2 values for each prediction are given at the bottom of their respective

figures.

From the same data, it is attempted to predict wet porosity. Results for wet porosity

prediction are shown in Figure 3.18. he Neural Net has a consistant bias for overestima-

tion of wet porosity. R2 values for wet porosity prediction in this multi-layer perceptron

for several instantiations of the train-test-split are all in the range 0.0 - 0.1
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Predictions for dry porosity and dry permeability use initial dry porosity, initial dry

permeability, temperature, and concentration as input parameters. Prediction of dry

porosity reaches a similar result with R2 values between 0.0 and 0.1 as shown in Figure

3.20. Prediction of dry permeability similarly does not perform very well with R2 values

in the range 0.1-0.2 as presented in Figure 3.19.

Weights between neurons of the multi-layer perceptron are recorded to determine which

parameters have the largest influence on porosity and permeability changes. The full

tables of weights between neurons can be found in Appendix B in Table B.5. For both dry

and wet permeability predictions, initial porosity values have the largest influence. For

both dry and wet porosity predictions, temperature appears to be the most significant

parameter. Initial porosity and initial permeability have slightly lower weights than

temperature.

Figure 3.17: Multi-layer Perceptron predictions for wet permeability
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Figure 3.18: Multi-layer Perceptron predictions for wet porosity

Figure 3.19: Multi-layer Perceptron predictions for dry permeability
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Figure 3.20: Multi-layer Perceptron predictions for dry porosity

3.8.2 Linear Regression

Results from a least squares linear regression model for prediction of wet permeability,

wet porosity, dry permeability, and dry porosity are shown in figures 3.21, 3.22, 3.23

and 3.24 respectively. Results from linear regression in terms of R2 values are similar to

multi-layer perceptron and are shown at the bottom of their respective figures.

Figure 3.21: linear regression predictions for wet permeability
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Figure 3.22: linear regression predictions for wet porosity

Figure 3.23: linear regression predictions for dry permeability
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Figure 3.24: linear regression predictions for dry porosity

3.8.3 Validation

The same Multi-layer Perceptron and linear regression models have been applied to

the Boston Housing Market Data Set for 36, 70, 150, and 500 data points to measure

performance of the models with increasing sample sizes. The data set uses the same

number of input parameters and predict the mean value of real estate in Boston. Here,

for the sake of brevity only R2 values of the models are presented as seen in Table 3.4.

R2 values decrease with sample size for the linear regression model while R2 values for

the multi-layer perceptron improve with sample size.

Table 3.4: R2 values for predictions of the mean real estate values of the Boston
Housing Market Data Set with sample size

NO. SAMPLES R2 LINREG R2 MLP

36 samples 0.737 0.756

70 samples 0.728 0.751

150 samples 0.615 0.776

500 samples 0.480 0.792
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Discussion

4.1 Porosity and Permeability Changes

The overall trend in all metabolite concentration and temperature environments is a

slight decrease in porosity and a more substantial decrease in permeability of the sam-

ples. Moreover, wet permeability temporarily increases when flow is reversed in wet

permeability measurements. One way to explain temporary increase in permeability

after flow reversal is the presence of loose solid particles in pore space that are pushed

into narrow pore connections and blocking openings. Fines clogging pore throats is a

known cause for formation damage in the context of fluid injection where there are solid

particles in suspension in the injected fluid Engler [2010]. In-situ mobilisation of fines is

a process decribed in publications by Krueger et al. [1988] and Wojtanowicz et al. [1988].

Through the shaking procedure and flushing of the sample before metabolite treatment,

it can be assumed that possible loose solid particles are created during metabolite treat-

ment. Loose particles could either been eroded from existing grains, in which case it

would not impact the overall pore volume of the sample. Another explanation could be

that loose material has precipitated from the brine during the experiment Sand [1997].

4.2 Thin Sections

Thin sections show an increase in loose material in the pore space, but no strong dif-

ferences are identified in mineralogy. Loose material seen in thin sections are made of

30
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quartz. As such, loose material could originate from original grains as shown in Figure

3.14 No porosity and permeability analysis has been done on the thin sections due to

time constraints, but this could yield insight into the cause of permeability decrease.

Porosity and permeability analysis could image whether effective permeability is largely

reduced by clogging of large areas causing dispersed flow or if effective permeability is

reduced by narrowing of pore throats throughout the sample.

4.3 Peak Strength

Peak strength of Bentheimer Sandstone cores that have been immersed in 1.0[M] acid

solution has decreased equally at all three temperatures. Peak strength reduction could

be caused by degradation of the contact surfaces between sand grains within the sample.

As thin sections show some degradation of grain surfaces, this could have impacted the

peak strength of samples where contacts between grains are more easily broken. It

should be noted that only 6 metabolite treated cores have been measured, which is not

enough to draw definite conclusions.

4.4 Neural Network

R2 scores for the neural network fall in the range 0.0-0.35. In natural sciences, scores R2

above 0.6 are usually required to adequately support any interpretations made from the

performance of the neural network (In social sciences, neural networks with R2 scores

of 0.1 can already yield insight due to the highly variant nature of for example hu-

man behaviour). However, scores up to 0.4 do provide insight into parameter influences

Demuth et al. [2014]. It is expected that neural network performance should improve

with growing sample size, as is the result from the Boston Housing Market Data set.

Additionally, when more samples are added and more parameters are measured such as

pressure, major mineral content, O2 content, and CO2 content, more influential param-

eters could be identified and improve the performance of the network. This has not been

done in this research due to restrictions in the lab.

Permeability decrease tends to be larger for samples that have a small initial porosity.

Small initial porosity usually translates to smaller pore throats, which subsequently will
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clog more easily than large pore throats. Additionally, precipitation of solid material

will have a larger effect on permeability in small pores as flow will be restricted more

easily. Still, the trend is based on a small sample size with a weak relationship and large

variance between samples.

4.5 Methodology Improvements

The laboratory methodology used in this research is aimed to be a first protocol to be

improved upon in future research. The range in environments could be extended to

explore threshold values for different mineral precipitation and dissolution behaviour.

Improvements to the methodology could be the introduction of an autoclave which would

allow the simulation of an anaerobic in situ environment under pressure.
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Conclusions

5.1 Conclusions

Metabolite treatment of Bentheimer Sandstone samples under a range of acidic and

temperature environments has shown a significant decrease in permeability and a slight

decrease in porosity from their original state. Thin sections show no major changes

in mineral composition, but small solid particles are coming loose from grain surfaces.

Fines present in the pore space could be mobilised in situ from existing grains. Flow re-

versal in liquid permeability measuremernts shows a continuous decrease in permeability

measured in subsequent measurements, pointing towards pore throat clogging by fines.

Peak strength of Bentheimer Sandstone cores exposed to 1.0[M] metabolite solution at

25, 60, and 90◦Celsius, is measured at an average of 30 MPa. A multi-layer perceptron

achieves up to 0.34 R2 values for prediction of wet permeability of exposed samples.

Prediction of dry permeability performs with an R2 value in the range 0.1-0.2. Both dry

and wet porosity predictions only reach R2 values up to 0.1. The multi-layer perceptron

performs similarly to an ordinary least squares linear regression model but validation

with an alternative data set shows better performance for the multi-layer perceptron

with increased sample sizes. The neural network allows for early identification of impor-

tant controlling factors which allows for targeted investigation of their impact. Weights

between neurons associated with input parameters show that wet and dry permeability

are mainly influenced by the initial wet and dry porosity respectively.

33
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5.2 Recommendations

Further research could perform laboratory experiments with metabolites under pressure

and expanded range of temperatures. Additionally, anaerobic environments could be

simulated. CO2 injection could be used to accurately mimic CCS environments. More

data points could be added to improve the performance of the neural network and more

clearly identify the most influential factors that result in porosity and permeability

change of reservoir rock. The research could be widened to include other types of

sedimentary rock with different mineral assemblies and initial values for porosity and

permeability. Major mineral content could subsequently be added as an input parameter

into the neural network.
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Literature Review

A.1 Introduction

This literature review provides background information for the research on microbial

reservoir degradation in geothermal and CCS (Carbon Capture and Storage) settings in

this thesis. Previous research on microbial degradation has been focused on degrada-

tion of petroleum products and exploitation infrastructure such as pipelines. Research on

reservoir properties is focused on, for example, water-rock mass interaction, fines impair-

ment, and fluid injection incompatibilities. However, microbial degradation mechanisms

for corrosion of reservoir rock mass has not been widely researched. With regard to

research in this thesis, it is useful to briefly review existing literature on the following

topics:

1. Characteristics of geothermal and CCS environments

2. Movement of microbes within reservoirs

3. Microbial degradation of organic and inorganic substrates

4. Sandstone corrosion

5. Formation impairment

6. Methods for permeability and porosity measurements

7. Methods for confining strength measurements

35
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8. Bentheimer sandstone characteristics

9. Artificial Neural Networks for rock mechanics

A.2 Characteristics of geothermal and CCS environments

Geothermal systems are characterised in three groups in the literature. Volcanic geother-

mal systems, convective systems in tectonically active areas, and sedimentary systems

with permeable layers at great depth Saemundsson et al. [2013]Bövarsson [1964]. In sed-

imentary systems, reservoir fluids are commonly brines and temperature is dependent

on the depth of the reservoir. In low temperature systems, temperatures do not exceed

150C Saemundsson et al. [2013]. An overview of classifications of geothermal systems

is presented in table 1 Bövarsson [1964]. In most geothermal fluids , minerals, silica,

and salts are only found in the liquid and solid phase. CO2 can be dissolved in the

liquid . Oxygen is usually very low in concentration Gunnlaugsson et al. [2014]. Dis-

solved elements in geothermal waters can either originate from water-rock interactions

and include Si, Al, Na, Ca, K, Mg, Fe, Mg, and Mn. Gunnlaugsson et al. [2014].

Storage reservoirs for Carbon Capture and Storage projects are usually depleted oil or

gas reservoirs or deep saline aquifers and as such are sedimentary in nature Bertier et al.

[2006]. Research has been done on exploiting co-produced geothermal resources from

petroleum reservoirs (e.g.: Barbacki [2000] Liu et al. [2018], Singh et al. [2017]).

A.3 Movement of microbes in porous media

Microbial processes in porous media have been researched in detail for drinking wa-

ter protection and contamination remediation (e.g.: Corapcioglu and Haridas [1985],

Clement et al. [1997]). Many laboratory experiments have been conducted to investi-

gate the transport of microbes through porous media. However, results of laboratory

experiments are hard to generalize due to the complex nature of natural and engineered

systems and their chemical, physical and biologically heterogeneity. Whereas the initial

penetration of a rock by microbes is mostly dependent on porosity and permeability,

transport of microbes through porous media is dependent on many factors including:

Size and shape of microbes Size and shape of rock grains Presence of minerals as e.g.
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Iron Oxide Porosity of reservoir rock Permeability of reservoir rock Adsorption rates

Detachment rates Microbial growth and inactivation Particle sedimentation distribu-

tion Tufenkji [2007]

A.4 Microbial Degradation/Corrosion of Organic and In-

organic Material

Microbial degradation of organic and inorganic substrates has been widely researched

(Sand [1997], refs??). Microbes can degrade quality of petroleum products and corrode

production pipelines. Degradation of inorganic substrates can happen through mineral

acids, organic acids and organic solvents among others. Organic solvents might cause

dissolution of natural material to a point where structural integrity of the rock is dimin-

ished Sand [1997]. Organic acids can, as well as acidic action , make metal ions complex

and make normally insoluble compounds prone to dissolution. Finally, the growth of

biofilm can promote growth and activity of SRB, which may lead to increased hydrogen

sulphide biocorrosion Sand [1997]. Examples of acids that can cause corrosion of inor-

ganic substrates are acetic acid and butyric acid. Hydrogen sulphide can also lead to

reservoir plugging due to the precipitation of metal sulphides Magot et al. [2000].

A.5 Summary Microbial Processes in Porous Media

When researching microbial degradation of reservoir rock, it is required to understand

microbial presence in reservoirs and the chemical processes that accompany such pres-

ence. Therefore, it is necessary to combine knowledge on microbial transport in porous

media and degradation of inorganic substrates. Coupled processes reactive transport

models have been attempted where physiochemical processes as advection, dispersion,

diffusion, and straining have been described in combination with biological processes

such as growth/decay, sorption and adhesion and multiple rates of reactions. Other pro-

cesses that are of influence include pore clogging by microbes, sedimentation of microbes,

and the formation of biofilm structures on individual grains of the host rock Murphy

and Ginn [2000]. Complexity of these processes makes it difficult to accurately simulate

the transport of microbes through porous media while describing the effects of microbial
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presence on permeability and porosity. Thus, microbial transport in porous media and

degradation of reservoir rock are highly complex phenomena with many interdependent

processes that are often case specific. This leads to an inhibition to generalize experi-

mental data for modelling purposes. Still, fundamental controls on microbial transport

and degradation are increasingly well known.

A.6 Bentheimer Sandstone characteristics

As the research will use Bentheimer Sandstone is to be used create afor the data set

for microbial degradation in this research, it is useful to explore previous research on

the specific formation. Significant previous research has been done on the properties of

the Bentheimer Sandstone, which has been summarized and elaborated upon by Peksa

et al., 2015 Peksa et al. [2015]. Bentheimer Sandstone used in this paper are collected

from the Romberg Quarry in Gildehaus, Germany. Below, relevant information on the

Bentheimer Sandstone is imported from Peksa et al. ,2015. The Bentheimer Sandstone

consists of 91.70 wt quartz, 4.86wt feldspar, 2.68wt clay minerals, and 0.17wt pyrite

and iron hydroxides. Kaolinite causes some pore clogging. Quartz overgrowths are the

main reducers of intergranular porosity . Porosity is determined to be in the range

0.23-0.27 vol. However, the range narrows significantly between samples taken from the

same block. It is stabled by Ultra Pycnometer, gravitational method and image analysis.

There are minor discrepancies between the findings of each method but within the range

of error. Liquid permeability has been tested in flow experiments. Permeability is in

the range 1.35 3.09 Darcy, with an average of 1.80 Darcy.

A.7 Sandstone Corrosion

CO2-water-rock interactions can play a significant role in the dissolution of rock. CO2

can be present in geothermal brines and is highly present in CCS environments. Mineral

precipitation due to CO2-water-rock interactions can decrease permeability Shiraki and

Dunn [2000]. Dissolution and precipitation of carbonates and Al-silicates have a signifi-

cant impact on reservoir properties Bertier et al. [2006]. pH of the fluid is important for

the rate of Si dissolution. Not only total solubility but also rates of Si dissolution are

important as it determines the distance away from a well at which dissolution can still
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occur Reed et al. [1980]. Silicate weathering reactions in solutions can vary by several

orders of magnitude over a 100C temperature range Lasaga [1981]. Dissolution rates

of silica show a relation to ionic strength. The weathering sequence of minerals in an

anaerobic, microbially controlled system is almost opposite to the Goldich Weathering

Sequence in which quartz takes longer to dissolve than other silicates as olivine and

plagioclase Bennett et al. [2001].

A.8 Formation Impairment

Formation impairment is the term for a reduction of permeability and effective porosity

of a reservoir during production or injection. Several factors can cause formation im-

pairment. One of which is fines impairment. Small particles may be reintroduced into

the reservoir at a reinjection well which can cause pore clogging. Small particles can

also be generated by interaction between host rock and reservoir fluid. Precipitation of

minerals from the reservoir fluid can decrease effective porosity and permeability of the

reservoir in the vicinity of a well Krueger et al. [1988]. Although introduction of small

solid particles is beyond the scope the microbial reservoir degradation research, known

mechanisms of formation damage are of interest to analysis of permeability and porosity

of a reservoir rock. the possibility should be considered that during the experiment,

small solid particles are released from the host rock in a reaction with metabolites, lead-

ing to pore clogging. Effects of solid particle pore clogging could be investigated by flow

inversion during permeability measurements Engler [2010]. Precipitation of minerals

from the brine could also occur.

A.9 Methods for Porosity and Permeability Measurements

To accurately measure the effects of metabolic treatment of sandstone samples, ini-

tial and final porosity and permeabilities need to be established. For measurements of

porosity and permeability, a range of methods exists. Measuring dry porosity using a

gas expansion Ultra Pycnometer uses Boyles gas expansion law Peksa et al. [2015]. The

method yields the effective porosity and bulk density of the sample. Wet porosity can

be measured by submerging the sample in liquid and following Archimedes law. Dry
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permeability can be measured with N2 and a gas permeameter. Absolute wet perme-

ability can be calculated using flow velocities and pressure differential measured with a

liquid permeameter using Darcys law Peksa et al. [2015]. A different method that can

yield both porosity and permeability is the CT-scan of a sample. Permeability can also

be measured under confined conditions. Permeability can respond to axial pressure and

radial pressure. Increasing confin pressure is found to be the main mechanism for water

permeability reduction (Voorn et al., 2014)

A.10 Artificial Neural Networks for rock mechanics

In the case of microbial reservoir degradation, high interdependence and complexity of

degradation mechanisms makes it difficult to accurately model the process from first

principles . Instead, it can be considered to identify significant impactors of the process

and to find complex relationships between an impactor and the final physical parameters

of the sample. Neural Networks can be used to predict the outcome to a certain problem

assuming there is a complex relationship between the outcome and the many drivers of

a process. In previous research, Neural Networks have been applied for fractured reser-

voir characterisation Ouenes [2000] and petroleum reservoir characterisation Mohaghegh

et al. [1996]. Machine-learning methods, under which neural network approaches fall,

are subdivided into classification and regression problems. Classification problems aim

to divide data into subgroups, dependent on input multiple variables of input data. For

example, a flower could be described by its colour, petal length, petal width, and num-

ber of petals. The combination of these features could identify the species a certain

flower belongs to. By teaching the neural network which combinations of parameters

belong to a certain species of flower, the neural network can start identifying species

of flowers based on a combination of input parameters. Regression problems aim to

provide a specific value for an output parameter on a continuous spectrum based on a

combination of input parameters. A neural network could give the predicted value of a

house based on, for example, its number of bedrooms, location, build year, and energy

label. The output value is not a type A versus type B answer, but rather a point on

a continuous value function. For regression problems such as the prediction of porosity

and permeability of a reservoir rock, fuzzy logic, as opposed to Boolean logic, can be

used. Fuzzy logic allows for a partial truth a value between 0 and 1 rather than a hard
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1 or a 0 as used in Boolean logic. This results in the possibility to weigh the importance

of a parameter in a process Zadeh [1976]. Lin (1994) introduces fuzzy curves to find a

relationship between every input parameter and the output parameter. An important

characteristic of fuzzy logic is that it allows the quantification of uncertainty. Still, since

the modelling is data driven, the effort should be reviewed where multiple realizations of

the geologic model are generated Ouenes [2000] General Regression Neural Networks can

be used as a first step to finding the optimal network design Mohaghegh et al. [1996].

Backpropagation is a method for solving regression problems which allows for detec-

tion of non-linear relationships. The Neural Net identifies the optimal weight matrix

for input parameters minimizing the quadratic error. A Multi-Layer Perceptron (MLP)

can be used, which estimates an output (f(X)) from a set of input (x1, x2). Hidden

layers perform non-linear transformations which allows the algorithm to find non-linear

relationships between input and output. A visual representation is given in figure 2.

A.11 Conclusions

A study of microbial degradation in sedimentary systems with a common brine compo-

sition can thus be used in applications for sedimentary geothermal systems, geothermal

resource from petroleum reservoirs, and CCS. show a lower permeability than fresh sam-

ples . Values for mineralogy, porosity, and permeability of Bentheimer Sandstone from

previous studies are valuable as they provide a strong framework for realistic measure-

ment values. Still, the research towards microbial reservoir degradation will need to

determine exact values for all samples to determine the effects of metabolic treatment

more accurately. When researching microbial degradation of sandstone, it is useful to

provide context of well-known mechanism of sandstone corrosion. When prerequisites

for sandstone corrosion are known, observed results from metabolic treatment might

be explained. Laboratory Experiment In simulating an in-situ environment of a sedi-

mentary low temperature geothermal field or a CCS reservoir, the following things are

deduced from the literature review

1. Using a sandstone such as Bentheimer Sandstone is relevant to the settings that

will be researched.

2. Temperatures in sedimentary geothermal systems usually do not exceed 150 C.
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3. Conditions can be assumed to be anaerobic.

4. Brines usually contain salts and a mixture of rock forming elements in solution.

5. Pressure depends on the depth of the reservoir but sedimentary geothermal systems

are commonly in the range of 2-5 km depth.

Pressure and temperature are important factors in the pathway of any dissolution and

precipitation processes. Microbial corrosion of inorganic substrates is mainly done

through excretion of organic solvents and organic acids. Furthermore, the formation of

biofilm is stimulating factor for degradation. Examples of acids that can cause corrosion

of inorganic substrates are acetic acid and butyric acid. Organic solvents can also act as

chelating agents. Sandstone corrosion can happen through water-rock interactions in the

presence of CO2 without any microbial activity. Addition of metabolites could have an

increased effect. Bentheimer Sandstone is a relatively pure sandstone (91.70 wt quartz).

However, presence of feldspar and iron hydroxides gives rise to the hypothesis that

these components could be involved in dissolution and precipitation processes during

metabolic treatment. Moreover, at high temperatures and in an anaerobic environment,

the solubility of Si is expected to increase. Measurements of porosity and permeability

can be done using standard methodologies. Confined strength measurements can be

done simultaneously with permeability measurements. However, since confined strength

measurements will destroy samples, this can only be done after metabolic treatment has

been done. Flow inversion during permeability measurements can yield insight into the

extent of pore clogging by small solid particles in degraded rock. Overall, several mech-

anisms are expected to impact porosity and permeability of the Bentheimer Sandstone.

Dissolution of the Sandstone can occur, potentially increasing porosity and permeability.

Precipitation of new minerals could occur, reducing porosity and permeability. Small

solid particles might cause pore clogging, reducing permeability. Structural integrity of

the Sandstone could be reduced, potentially leading to fracturing of the sample, increas-

ing porosity and permeability. Neural Networks can find relationships between input

parameters and an output parameter in highly complex systems. Back-propagation is

a commonly used method in solving regression problems with respect to reservoir pa-

rameters. Relative impact of geological input factors can be determined using fuzzy

curves.



Appendix B

Raw Data of Experiments

Table B.1: Measured parameters of the initial state of samples

Initial state
Sample height (cm) diameter (cm) Vma(kN/m3) Vb(kN/m3) p dry (%) p wet(%) perm dry(D) perm wet (D) dry weight (g) wet weight (g)
x1 3.480 2.950 17.535 23.785 0.263 0.252 2.020 1.250 47.200 29.420
x2 3.500 2.940 17.372 23.760 0.269 0.250 2.936 1.218 47.280 29.470
x3 3.450 2.950 17.345 23.580 0.264 0.246 2.568 1.271 46.700 28.930
x4 3.500 2.950 16.839 23.922 0.296 0.252 3.131 1.419 47.000 29.100
x5 3.520 2.950 17.461 24.058 0.274 0.243 2.500 1.258 47.830 29.620
x6 3.550 2.950 17.122 24.263 0.294 0.241 2.279 1.052 48.100 29.690
x7 3.520 2.930 17.687 23.733 0.255 0.229 2.486 1.721 47.900 29.600
x8 3.480 2.950 17.425 23.785 0.267 0.252 2.614 1.345 47.060 29.270
x9 3.500 2.950 17.310 23.922 0.276 0.253 3.084 1.361 47.260 29.380
x10 3.520 2.950 17.242 24.058 0.283 0.253 2.669 1.374 47.500 29.530
x11 3.330 2.950 16.683 22.760 0.267 0.254 3.139 1.304 44.980 27.990
x12 3.410 2.930 17.252 22.991 0.250 0.239 2.597 1.132 46.330 28.840
x13 3.380 2.950 16.957 23.101 0.266 0.254 2.886 1.284 45.600 28.370
x14 3.400 2.950 17.115 23.238 0.264 0.253 2.461 1.235 46.000 28.640
averages 3.467 2.946 17.239 23.640 0.271 0.248 2.669 1.302 46.910 29.132
y1 3.500 2.950 17.618 23.922 0.264 0.258 2.343 1.202 47.140 29.390
y2 3.500 2.950 17.397 23.922 0.273 0.248 2.821 1.467 47.410 29.410
y3 3.490 2.930 17.399 23.531 0.261 0.248 2.730 1.422 46.860 29.160
y4 3.450 2.950 17.188 23.580 0.271 0.254 2.545 1.493 46.590 29.010
y5 3.480 2.950 17.509 23.785 0.264 0.247 1.973 0.887 47.210 29.310
y6 3.420 2.950 17.297 23.375 0.260 0.243 2.289 1.020 46.650 28.950
y7 3.420 2.940 17.024 23.217 0.267 0.248 2.422 1.323 46.170 28.700
y8 3.410 2.950 17.121 23.306 0.265 0.252 2.562 1.640 46.160 28.720
y9 3.340 2.950 16.708 22.828 0.268 0.254 2.213 1.017 45.230 28.190
y10 3.380 2.950 16.891 23.101 0.269 0.256 2.239 1.416 45.600 28.420
y11 3.380 2.950 16.933 23.101 0.267 0.255 2.008 1.068 45.740 28.530
averages 3.434 2.947 17.189 23.424 0.266 0.251 2.377 1.269 46.433 28.890
z1 3.400 2.950 16.793 23.238 0.277 0.249 2.578 1.437 45.730 28.270
z2 3.350 2.950 16.851 22.896 0.264 0.265 2.563 1.771 45.210 28.380
z3 3.420 2.950 17.208 23.375 0.264 0.253 3.177 1.822 46.210 28.740
z4 3.350 2.950 17.121 22.896 0.252 0.251 2.631 1.688 45.380 28.220
z5 3.400 2.950 17.137 23.238 0.263 0.253 2.624 1.620 45.930 28.580
z6 3.400 2.950 17.117 23.238 0.263 0.251 2.856 1.616 46.040 28.630
z7 3.410 2.950 17.118 23.306 0.266 0.257 3.098 1.720 45.900 28.580
z8 3.410 2.950 17.225 23.306 0.261 0.250 3.540 1.851 46.210 28.740
z9 3.410 2.950 17.238 23.306 0.260 0.249 3.424 1.664 46.300 28.800
z10 3.420 2.950 17.238 23.375 0.263 0.244 3.480 1.664 46.620 28.950
z11 3.410 2.950 17.116 23.306 0.266 0.250 3.144 1.668 46.220 28.730
averages 3.398 2.950 17.106 23.226 0.263 0.252 3.010 1.684 45.977 28.601

43
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Table B.2: Measured Parameters of the final state of samples

Final state
Sample height(cm) diameter(cm) Vma(kN/m3) Vb(kN/m3) p dry (%) p wet(%) perm dry(D) perm wet (D) dry weight (g) wet weight (g)
x1 3.480 2.950 17.548 23.785 0.262 0.248 1.901 0.661 47.190 29.300
x2 3.500 2.940 17.597 23.760 0.259 0.248 2.647 1.014 47.280 29.410
x3 3.450 2.950 17.418 23.580 0.261 0.253 2.262 0.626 46.670 29.050
x4 3.500 2.950 17.534 23.922 0.267 0.260 2.606 0.889 46.930 29.220
x5 3.520 2.950 17.898 24.058 0.256 0.248 2.043 0.835 47.790 29.710
x6 3.550 2.950 17.961 24.263 0.260 0.251 2.037 0.720 48.050 29.880
x7 3.520 2.930 17.903 23.733 0.246 0.238 3.509 0.724 47.870 29.780
x8 3.480 2.950 17.564 23.785 0.262 0.251 2.448 0.688 47.080 29.270
x9 3.500 2.950 17.649 23.922 0.262 0.255 3.179 0.696 47.240 29.420
x10 3.520 2.950 17.791 24.058 0.261 0.255 2.717 0.843 47.500 29.570
x11 3.330 2.950 16.825 22.760 0.261 0.253 2.797 0.922 44.970 27.970
x12 3.410 2.930 17.342 22.991 0.246 0.238 2.479 0.770 46.330 28.820
x13 3.380 2.950 17.051 23.101 0.262 0.255 2.862 0.925 45.600 28.390
x14 3.400 2.950 17.236 23.238 0.258 0.253 2.160 0.614 45.990 28.630
averages 3.467 2.946 17.523 23.640 0.259 0.250 2.546 0.780 46.892 29.173
y1 3.500 2.950 17.684 23.922 0.261 0.249 2.701 0.710 47.180 29.210
y2 3.500 2.950 17.787 23.922 0.256 0.245 2.749 1.095 47.450 29.390
y3 3.490 2.930 17.847 23.531 0.242 0.222 2.682 1.022 47.510 29.210
y4 3.450 2.950 17.633 23.580 0.252 0.237 3.228 1.191 46.930 28.930
y5 3.480 2.950 17.841 23.785 0.250 0.235 2.805 0.646 47.470 29.270
y6 3.420 2.950 18.609 23.375 0.204 0.137 3.504 0.774 49.110 28.940
y7 3.420 2.940 17.303 23.217 0.255 0.245 3.528 1.424 46.170 28.630
y8 3.410 2.950 17.254 23.306 0.260 0.250 3.214 1.041 46.110 28.630
y9 3.340 2.950 16.910 22.828 0.259 0.249 2.692 0.864 45.210 28.070
y10 3.380 2.950 17.041 23.101 0.262 0.255 3.463 0.600 45.610 28.410
y11 3.380 2.950 17.140 23.101 0.258 0.249 2.355 0.758 45.740 28.400
averages 3.434 2.947 17.550 23.424 0.251 0.234 2.993 0.920 3.993 28.826
z1 3.400 2.950 17.145 23.238 0.262 0.256 2.113 0.238 45.730 28.430
z2 3.350 2.950 16.961 22.896 0.259 0.251 2.540 0.916 45.210 28.060
z3 3.420 2.950 17.339 23.375 0.258 0.250 3.527 1.177 46.210 28.670
z4 3.350 2.950 16.986 22.896 0.258 0.275 2.379 1.205 45.280 28.670
z5 3.400 2.950 17.259 23.238 0.257 0.250 2.601 1.011 45.950 28.520
z6 3.400 2.950 17.292 23.238 0.256 0.248 3.088 1.108 46.050 28.570
z7 3.410 2.950 17.238 23.306 0.260 0.247 3.493 1.416 45.880 28.340
z8 3.410 2.950 17.338 23.306 0.256 0.244 3.214 1.202 46.180 28.570
z9 3.410 2.950 17.372 23.306 0.255 0.247 3.051 1.264 46.270 28.720
z10 3.420 2.950 17.470 23.375 0.253 0.241 2.966 1.125 46.550 28.810
z11 3.410 2.950 17.686 23.306 0.241 0.217 1.258 1.121 46.920 28.660
averages 2.748 2.748 2.748 2.748 2.748 2.748 2.748 1.071 46.021 28.547
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Table B.3: Weight evolution of samples (g)

(g) Start Alginate Filters Final differential
dry weight wet weight without with mass removed dry weight wet weight

x1 47.2 29.42 46.67 49.03 0.0002 47.19 29.3 -0.01 -0.12
x2 47.28 29.47 46.82 49.37 0.0073 47.28 29.41 0 -0.06
x3 46.7 28.93 46.1 47.81 0.3362 46.67 29.05 -0.03 0.12
x4 47 29.1 46.9185 49.4306 0.357 46.93 29.22 -0.07 0.12
x5 47.83 29.62 47.7768 50.6567 0.6053 47.79 29.71 -0.04 0.09
x6 48.1 29.69 48.0466 50.528 0.4305 48.05 29.88 -0.05 0.19
x7 47.9 29.6 46.73 49.24 0.0859 47.87 29.78 -0.03 0.18
x8 47.06 29.27 46.68 48.74 0.1828 47.08 29.27 0.02 0
x9 47.26 29.38 46.81 49.44 0.0767 47.24 29.42 -0.02 0.04
x10 47.5 29.53 47.4567 49.9449 0.7872 47.5 29.57 0 0.04
x11 44.98 27.99 44.934 47.0914 0.567 44.97 27.97 -0.01 -0.02
x12 46.33 28.84 46.2894 48.4589 0.6862 46.33 28.82 0 -0.02
x13 45.6 28.37 45.11 46.94 0.1791 45.6 28.39 0 0.02
x14 46 28.64 45.47 48.16 0.4892 45.99 28.63 -0.01 -0.01

y1 47.14 29.39 46.66 49.14 0.2224 47.18 29.21 0.04 -0.18
y2 47.41 29.41 47.1 49.69 0.151 47.45 29.39 0.04 -0.02
y3 46.86 29.16 46.48 48.57 0.2957 47.51 29.21 0.65 0.05
y4 46.59 29.01 46.6129 49.0874 0.5176 46.93 28.93 0.34 -0.08
y5 47.21 29.31 47.1629 49.2602 0.942 47.47 29.27 0.26 -0.04
y6 46.65 28.95 46.1367 48.9132 49.11 28.94 2.46 -0.01
y7 46.17 28.7 45.78 47.97 0.2535 46.17 28.63 0 -0.07
y8 46.16 28.72 45.84 47.41 0.3196 46.11 28.63 -0.05 -0.09
y9 45.23 28.19 44.82 46.67 0.2371 45.21 28.07 -0.02 -0.12
y10 45.6 28.42 45.33 47.31 0.1628 45.61 28.41 0.01 -0.01
y11 45.74 28.53 45.29 47.81 0.1518 45.74 28.4 0 -0.13

z1 45.73 28.27 45.7066 47.2341 0.3334 45.73 28.43 0 0.16
z2 45.21 28.38 45.1712 47.4079 45.21 28.06 0 -0.32
z3 46.21 28.74 46.1884 48.5346 0.5534 46.21 28.67 0 -0.07
z4 45.38 28.22 45.2858 47.7656 0.4274 45.28 28.67 -0.1 0.45
z5 45.93 28.58 45.9343 48.4045 0.7519 45.95 28.52 0.02 -0.06
z6 46.04 28.63 46.0441 48.4035 0.4021 46.05 28.57 0.01 -0.06
z7 45.9 28.58 45.8548 48.0296 0.3956 45.88 28.34 -0.02 -0.24
z8 46.21 28.74 46.1601 48.4463 0.5866 46.18 28.57 -0.03 -0.17
z9 46.3 28.8 46.2475 48.356 0.5579 46.27 28.72 -0.03 -0.08
z10 46.62 28.95 46.9185 49.6322 0.4118 46.55 28.81 -0.07 -0.14
z11 46.22 28.73 46.1367 48.6407 46.92 28.66 0.7 -0.07
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Table B.4: average values and standard deviation for porosity and permeability values

Initial average p dry (%) stand. dev. p dry (%) average perm dry (D) stand. dev. perm dry (D)
x 0.270615353 0.010183603 2.669314091 0.2612604
y 0.266177117 0.003183197 2.376778338 0.217456994
z 0.263494399 0.003438369 3.010324266 0.327303765

average p wet (%) stand dev p wet (%) average perm wet (D) stand. dev. perm wet (D)
x 0.24798524 0.005857355 1.301731347 0.101940781
y 0.251098795 0.004080874 1.268676122 0.209001287
z 0.25190471 0.003668893 1.683681723 0.078825586

unit density kg/m3 unit weight kN/m3
x 1.984374725 19.46671605
y 1.982247963 19.44585252
z 1.979591087 19.41978856

Final
average p dry (%) stand. dev. p dry (%) average perm dry (D) stand. dev. perm dry (D)

x 0.258738941 0.004174299 2.546288285 0.35628064
y 0.250798197 0.010373032 2.992642863 0.358677912
z 0.255985326 0.003580094 2.748259992 0.51829559

average p wet (%) stand dev p wet (%) average perm wet (D) stand. dev. perm wet (D)
x 0.25042694 0.004533227 0.780484373 0.106488494
y 0.233925806 0.019718238 0.920377794 0.212773192
z 0.247709838 0.007662294 1.071025137 0.190626145

unit density kg/m3 unit weight kN/m3
x 1.983619337 19.45930569
y 1.996724009 19.58786252
z 1.981469888 19.4382196
Difference

average p dry (%) stand. dev. p dry (%) average perm dry (D) stand. dev. perm dry (D)
x -0.011876411 -0.006009304 -0.123025806 0.09502024
y -0.01537892 0.007189834 0.615864525 0.141220918
z -0.007509073 0.000141725 -0.262064274 0.190991825

average p wet (%) stand dev p wet (%) average perm wet (D) stand. dev. perm wet (D)
x 0.002441701 -0.001324128 -0.521246974 0.004547713
y -0.017172989 0.015637365 -0.348298329 0.003771905
z -0.004194872 0.003993401 -0.612656586 0.111800559

unit density kg/m3 unit weight kN/m3
x -0.000755388 -0.007410359
y 0.014476045 0.142010004
z 0.001878801 0.01843104
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Table B.5: MLP Weights

Prediction Dry Permeability Weights MLP
1 2 3 4

Inipor (d) -1.5758771 13.68531313 -4.71129414 4.14363709
1 2 3 4

iniperm (d) -1.62262191 -1.35179303 -0.32608128 -1.55631972 -1.60158325 -18.08780466 -0.99738524 4.50131366

T -4.15699804 -1.14195383 -7.63814217 0.09611561

Conc 0.77951309 -0.08936737 0.38342128 -0.80779303

Prediction Dry Porosity Weights MLP
1 2 3 4

Inipor (d) 0.05139716 -0.25497881 0.39516834 0.01679287
1 2 3 4

iniperm (d) 0.48530877 -0.63671444 -0.69144894 -0.699608 -0.21308388 -0.426071 -0.39454231 0.26602754

T -0.46020654 0.79784594 -0.21827237 0.19891156

Conc -0.1800343 0.08291532 0.42577219 0.8106171

Prediction Wet Permeability Weights MLP
1 2 3 4

Inipor (w) 3.58639228 -0.32868718 -14.1325258 -0.02617946
1 2 3 4

Iniperm (w) 0.65680696 0.03664678 2.24171172 -0.93937185 -4.06228931 1.35519793 7.41816797 -2.33055909

T -0.88869231 -0.83491747 1.36123224 -3.73781035

Conc 0.31363677 -0.32566307 0.53532192 -0.01499716

Prediction Wet Porosity Weights MLP
1 2 3 4

Inipor (w) 0.84952272 0.5106257 0.43230656 -0.42276459
1 2 3 4

iniperm (w) 0.30247271 0.48150729 0.50199555 0.50406373 -0.66296871 0.35873405 0.24723053 0.5107586

T 0.71935455 0.73278545 0.25534497 -0.27215202

Conc 0.14463894 0.25916864 0.17762301 0.01911778
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Neural Network Scripts

#!/ usr/bin/env python

# coding: utf -8

# In [1]:

##### import needed modules ########

import numpy as np

import pandas as pd

import seaborn as sns

import sklearn as skl

import matplotlib.pyplot as plt

get_ipython (). run_line_magic(’matplotlib ’, ’inline ’)

##### read data #######

data1 = pd.read_excel("C:/Users/Arjen/Documents/Msc Thesis/ML excel files/boston36smpls.xlsx")

data2 = pd.read_excel("C:/Users/Arjen/Documents/Msc Thesis/ML excel files/boston70smpls.xlsx")

data3 = pd.read_excel("C:/Users/Arjen/Documents/Msc Thesis/ML excel files/boston150smpls.xlsx")

data4 = pd.read_excel("C:/Users/Arjen/Documents/Msc Thesis/ML excel files/boston500smpls.xlsx")

# In [2]:

####### select input and target data for all data sets ######

X1 = data1 [[’INDUS’, ’NOX’, ’RM’, ’TAX’]]

y1 = data1 [[’MV’]]

X2 = data2 [[’INDUS’, ’NOX’, ’RM’, ’TAX’]]

y2 = data2 [[’MV’]]
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X3 = data3 [[’INDUS’, ’NOX’, ’RM’, ’TAX’]]

y3 = data3 [[’MV’]]

X4 = data4 [[’INDUS’, ’NOX’, ’RM’, ’TAX’]]

y4 = data4 [[’MV’]]

# ############### normalise data #########################

from sklearn import preprocessing

X1 = preprocessing.normalize(X1)

X2 = preprocessing.normalize(X2)

X3 = preprocessing.normalize(X3)

X4 = preprocessing.normalize(X4)

# ############## train test split ########################

from sklearn.cross_validation import train_test_split

X_train , X_test , y_train , y_test = train_test_split(X1 , y1)

X2_train , X2_test , y2_train , y2_test = train_test_split(X2, y2)

X3_train , X3_test , y3_train , y3_test = train_test_split(X3, y3)

X4_train , X4_test , y4_train , y4_test = train_test_split(X4, y4)

# ######### import models ###########

from sklearn.linear_model import LinearRegression

from sklearn.neural_network import MLPRegressor

######## instantiate models ############

linreg = LinearRegression ()

mlpreg = MLPRegressor(activation=’tanh’, hidden_layer_sizes =4, learning_rate=’adaptive ’, solver=’lbfgs’)

######### fit the model to the training data ############

##### Uncomment this section to use a least squares linear regression model #####

#linreg.fit(X_train , y_train)

#linreg.fit(X2_train , y2_train)

#linreg.fit(X3_train , y3_train)

#linreg.fit(X4_train , y4_train)

# ###############################################################################

### Uncomment this section to use a multi -layer perceptron ###



Appendix C 50

#mlpreg.fit(X_train , y_train)

#mlpreg.fit(X2_train , y2_train)

#mlpreg.fit(X3_train , y3_train)

#mlpreg.fit(X4_train , y4_train)

# #############################################################

# In [3]:

######## predict values ############

#y_pred = linreg.predict(X_test)

#y2_pred = linreg.predict(X2_test)

#y3_pred = linreg.predict(X3_test)

#y_pred = mlpreg.predict(X_test)

#y2_pred = mlpreg.predict(X2_test)

#y3_pred = mlpreg.predict(X3_test)

#y4_pred = mlpreg.predict(X4_test)

#print np.shape(y4_pred)

#print y_pred

#print y_pred2

#print y_test

# In [4]:

### create x-arrays for plotting ####

x = np.array(range (1 ,10))

x2 = np.array(range (1 ,19))

x3 = np.array(range (1 ,39))

x4 = np.array(range (1 ,126))

# In [5]:

#### Plot 36 sample predictions #####

plt.plot(x, y_pred , ’go’)

plt.plot(x, y_test , ’yo’)

plt.xlabel(’sample ’)

plt.ylabel(’mean value ($ 10.000) ’)
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# In [6]:

###### plot 70 sample predictions ########

plt.plot(x2 , y2_pred , ’go’)

plt.plot(x2 , y2_test , ’yo’)

# In [7]:

###### plot 150 sample predictions ########

plt.plot(x3 , y3_pred , ’go’)

plt.plot(x3 , y3_test , ’yo’)

# In [8]:

###### plot 500 sample predictions ########

plt.plot(x4 , y4_pred , ’go’)

plt.plot(x4 , y4_test , ’yo’)

# In [9]:

###### validate performance ######

### Uncomment this section to validate the linear model ###

#print linreg.score(X1 , y1)

#print linreg.score(X2 , y2)

#print linreg.score(X3 , y3)

#print linreg.score(X3 , y3)

### Uncomment this section to validat the multi -layer perceptron ###

print mlpreg.score(X1, y1)
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print mlpreg.score(X2, y2)

print mlpreg.score(X3, y3)

print mlpreg.score(X4, y4)

#!/ usr/bin/env python

# coding: utf -8

# In [3]:

##### import needed modules ########

import numpy as np

import pandas as pd

import seaborn as sns

import sklearn as skl

import matplotlib.pyplot as plt

get_ipython (). run_line_magic(’matplotlib ’, ’inline ’)

##### read data #######

data = pd.read_excel("C:/ Users/Arjen/Documents/Msc Thesis/ML excel files/ML_DATA.xlsx")

# In [4]:

####### select input and target data for the data set ######

X1 = data[[’IniPor(w)’, ’IniPerm(w)’, ’Temp’, ’Conc’]]

y1 = data[[’FinPor(w)’]]

y2= data[[’FinPerm(w)’]]

# ############### normalise data #########################

from sklearn import preprocessing

X1 = preprocessing.normalize(X1)

#from sklearn. model_selection import KFold

#kf = KFold(n_splits =3)

#for train_index , test_index in kf.split(X1):

#print (" TRAIN :", train_index , "TEST:", test_index )

#X_train , X_test = X1[ train_index ], X1[ test_index ]

#y_train , y_test = y1[ train_index ], y1[ test_index ]
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# In [5]:

# ############## train test split ########################

from sklearn.cross_validation import train_test_split

X_train , X_test , y_train , y_test = train_test_split(X1 , y1 , random_state =2)

X_train2 , X_test2 , y_train2 , y_test2 = train_test_split(X1, y2, random_state =3)

# ######### import models ###########

from sklearn.linear_model import LinearRegression

from sklearn.neural_network import MLPRegressor

######## instantiate models ############

linreg = LinearRegression ()

mlpreg = MLPRegressor(activation=’tanh’,hidden_layer_sizes =4, learning_rate=’adaptive ’, learning_rate_init =0.01, max_iter =300, solver=’lbfgs’)

######### fit the model to the training data ############

##### Uncomment this section to use a least squares linear regression model #####

#linreg.fit(X_train , y_train)

#linreg.fit(X_train2 , y_train2)

# ###############################################################################

### Uncomment this section to use a multi -layer perceptron ###

#mlpreg.fit(X_train , y_train)

mlpreg.fit(X_train2 , y_train2)

# #############################################################

# In [6]:

######## predict values ############

### linear regression ###

#y_pred = linreg.predict(X_test)

#y_pred2 = linreg.predict(X_test2)

### Multi -layer perceptron
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#y_pred = mlpreg.predict(X_test) #Porosity

y_pred2 = mlpreg.predict(X_test2) # Permeability

# In [7]:

### Get parameters ###

params =mlpreg.get_params ()

print params

### create x-array for plotting ####

x = np.array(range (1 ,10))

# In[ ]:

plt.plot(x, y_pred , ’ro’, label= ’predicted ’)

plt.plot(x, y_test , ’bo’, label= ’real’)

plt.title(’MLPREG: Wet porosity prediction and real value compared ’)

plt.xlabel(’Sample ’)

plt.ylabel(’Porosity (%)’)

plt.legend ()

# In [8]:

x = np.array(range (1 ,10))

plt.plot(x,y_pred2 , ’ro’, label=’predicted ’)

plt.plot(x,y_test2 , ’bo’, label=’real’)

plt.title(’MLPREG: Wet Permeability prediction and real value compared ’)

plt.xlabel(’Sample ’)

plt.ylabel(’Permeability (D)’)

plt.legend ()

# In [10]:

### Uncomment this section to validate the least squares linear regression model ###

#print linreg.score(X1 ,y1)

#print linreg.score(X1 ,y2)
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### Uncomment this section to validate the Multi -layer Perceptron ###

#print mlpreg.score(X1 ,y1)

#print mlpreg.score(X1 ,y2)

# In[ ]:

y_pred = np.reshape (9,1)

y_pred2 = np.reshape (9,1)

linreg_error = np.subtract(y_pred , y_test)

linreg_error2 = np.subtract(y_pred2 , y_test2)

linreg_rsme = np.sqrt((np.sum(linreg_error **2)/ len(y_pred )))

linreg_rsme2 = np.sqrt((np.sum(linreg_error2 **2)/ len(y_pred2 )))

print linreg_rsme , linreg_rsme2
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