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Abstract 

The military intelligence domain is one of many fields investigating deep learning methods to automate various 

processes, especially for the task of recognizing specific entities in large sets of images. Current state-of-the-art 

methods cannot be easily applied in the military domain since they require large sets of labelled images, which 

are challenging to acquire for the domain-specific classes. Recently, research has investigated the possibility of 

learning visual features with natural language supervision by using image captioning as a pre-training task for 

visual backbones. This study investigates the possibility of pre-training with domain-specific image-captions to 

learn domain-specific visual features. We pre-train convolutional neural networks from scratch, using a military-

specific image-caption dataset (Janes Captions) collected for this study. The effect of different image captioning 

pre-training tasks on the learning of the visual features was also evaluated. Although these models did not 

outperform the current state-of-the-art methods, they outperformed models pre-trained on similar amounts of 

generic image-captions. Ultimately, natural language supervision for pre-training visual models is a promising 

concept that, if applied correctly, could solve the problems of current state-of-the-art methods, especially for 

application in specific domains. 
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1 Introduction 

1.1 Automation of vision tasks in the military intelligence domain 
The military intelligence domain is one of the many fields investigating deep learning methods to automate various 

(intel) processes. Analysts in the intelligence domain must combine information from many different data sources 

into a single intel product. The analysed data may consist of various modalities, varying from textual to auditive 

and visual information. An example of a task in this domain that is viable for automation through deep learning 

methods is classifying specific entities or objects in large sets of images and videos.  

With the invention of Convolutional Neural Networks (CNN), deep learning has recently achieved impressive 

results regarding computer vision tasks, such as image classification and object detection [39]. However, these 

methods cannot be easily applied across all domains. Most successful deep learning methods require the computer 

vision model to be trained on a large set of labelled images specific to the domain the model will be applied in. 

For example, if one would want a model that can classify cars into the correct brand or type, one would need to 

have a large set of images from different cars and annotate each image with the correct label. Creating large, 

annotated datasets is difficult and time-consuming, even in generic domains. These problems get even more severe 

when applying them in more specific domains, such as military intelligence. For example, a system that can detect 

certain types of tanks in images requires a large training set of correctly labelled images from tanks. On top of the 

fact that images of tanks are available only in relatively small numbers, expert knowledge is also required to 

annotate the images accurately, which increases the collection cost of these datasets. For that reason, much 

research is focused on developing methods that can achieve similar performances on vision tasks with a smaller 

amount of (labelled) images. Examples of such methods are self-supervised and multimodal pre-training. Such 

methods aim first to train a model on a large out-of-domain dataset to learn how to extract meaningful visual 

features from images (i.e., pre-training). Subsequently, the model is typically transferred to another domain or 

another downstream vision task [17,29,60], for which now less labelled data is required to further finetune the 

model on the specific downstream task. 

1.2 Pre-training for vision tasks  

1.2.1 Supervised pre-training 

One of the first pre-training approaches to be explored was supervised pre-training, also known as transfer 

learning. This method, visualized in figure 1, pre-trains a network on a large-scale labelled dataset and then 

transfers the pre-trained network to downstream vision tasks, only needing finetuning with a limited set of samples 

[12]. This approach has been successfully applied across various vision tasks in different domains. Pre-training 

on ImageNet, which contains 1.28M images labelled with 1,000 different classes, achieved state-of-the-art 

(SOTA) results on multiple different vision tasks. However, this approach has some limitations. Large sets of 

accurately annotated images need to be available. Several of such large-scale datasets do exist, such as Visual 

Genome, Open Images & ImageNet [38,41,61]. Moreover, although these datasets contain more than 10 million 

different images, the class taxonomy represents a very generic domain. These datasets would benefit from 

extending their class taxonomy with more specific classes rather than extending the dataset with more and more 
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(similar) images. A fine-grained set of classes is, however, difficult to manage. It requires expert knowledge to 

annotate the collected images correctly. Also, collecting enough images to represent each class equally proves a 

problem [57,68]. 

1.2.2 Weakly supervised pre-training 

One of the solutions investigated in the literature is to use datasets that have less accurate annotations for pre-

training. These methods implement supervised pre-training on large sets of images collected from the internet 

known to have "noisy" labels. For example, studies investigated pre-training on the JFT300M dataset, an internal 

Google dataset of 300 million images for training image classification [37,64,70]. These images are labelled using 

an algorithm that uses a complex mixture between raw web signals, connections between webpages and user 

feedback, which resulted in a set of 300m "noisy" labelled images. Researchers also investigated an even more 

extensive set of 3.5 billion images from Instagram for pre-training, using the hashtags as "noisy" labels [53,71]. 

Using large sets of "noisy" labelled images is also described as the quantity over quality approach. This approach 

reflects the recent trend in natural language processing (NLP), where sizeable uncurated corpora are collected 

from the internet to pre-train models. Although this approach requires less annotation effort, data collection can 

still be time extensive depending on the acquisition method. 

Moreover, since the labels are weaker, more images are required to reach a performance comparable to models 

trained with strong-labelled datasets, increasing the required training time. Mahajan and colleagues [53] showed 

that for the weakly-supervised approach to achieve similar performance, the dataset needed to contain ten times 

Figure 1: Supervised Pre-training: Supervised Pre-training pre-trains a visual backbone on a large scale image classification 

task, such as ImageNet. After pre-training the visual backbone is then transfered downstream for finetuning on a domain-

specific vision tasks that, due to pre-training requires less training samples. 
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the number of images compared to a standard supervised approach. Because of this inefficiency, researchers 

started investigating alternative approaches such as self-supervised pre-training, which can operate on large sets 

of unlabeled data in a supervised manner.  

1.2.3 Self-supervised pre-training 

Self-supervised pre-training is similar to supervised pre-training. It trains a network on sets of images to extract 

visual features using so-called "pretext tasks" and is then transferred to downstream vision tasks. Pretext tasks 

concern tasks where unlabelled data samples are automatically labelled using information or patterns within the 

sample itself. This approach has been shown to exceed supervised pre-training on various vision datasets [7,8]. 

The main benefit of self-supervised pre-training is that it does not require annotated images. Accordingly, this 

approach can quickly scale to larger datasets, having already been scaled up to hundreds of millions or even 

billions of images [28]. 

Early studies on self-supervised pre-training primarily focused on pretext tasks that involved a label that was 

artificially computed from the unlabeled images, like context prediction [16], rotation prediction [23] and 

colourisation [76]. These studies showed that learning a model to extract useful visual features was possible given 

large networks, enough samples, and long training times. However, these discrete pretext tasks limited the model 

in learning generalisable visual features. 

Figure 2: Self-Supervised pre-training: This method trains a network pre-trains a network on "pretext tasks", which are task 

that do not require annotated samples. The figure visualizes the simCLR self-contrastive learning framework, in which the 

model is tasked with learning to maximise the similarity between two representations of a single, but twice random augmented, 

image. The self-supervised pre-training approach allows for training on much more samples, since it doesn’t require any 

annotated dataset. Resulting in increased performance on many difficult vision tasks that require a lot of samples. 
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Therefore, more recent work focuses on contrastive pre-training, resulting in more generalisable models [55,66]. 

Contrastive pre-training involves encouraging similarity between image features obtained from the same image 

after random transformation and dissimilarity between image features obtained from different images after 

random transformation. This contrastive approach has been extended to pretext tasks like context prediction 

[30,55], mutual information maximization [2,66,72], predicting masked regions [67] and clustering [5,45,79]. 

SimCLR is one of the methods that implemented a Contrastive Learning framework, obtaining SOTA on various 

vision tasks [7]. This framework is visualised in figure 2. 

Self-supervised approaches have resulted in considerable progress in the field of computer vision. However, to 

learn useful visual representations with this approach, a much larger network and dataset are required for notable 

performance. While scaling up the datasets with more unlabeled images would result in even more increased 

performance, it would also result in the approach becoming even more computationally heavy due to the 

(necessary) increased size of the network and training time. Due to the inefficient use of the available data, 

researchers have returned to supervised pre-training on a visual-language task.  

1.3 Pre-training for vision-language tasks 

As mentioned above, military intelligence is a typical example of a domain in which not only computer vision 

tasks but also natural language processing (NLP) is relevant. With the rise of so-called "transformers" 

architectures, these two domains have come closer. Transformers architectures implemented the notion of “self-

attention”, a construct that takes global dependencies (i.e., the interaction between words in a sentence) into 

account when processing a sentence. Self-attention helped overcome a common problem in training NLP models 

related to processing long sentences, thereby heavily improving the performance of language tasks. A prime 

example is the BERT model, which implements transformers and shows SOTA performance on several natural 

language tasks [14] 

Researchers interested in multimodality reasoned that these architectures could be altered to allow interaction 

between signals from different modalities, allowing the transformer to combine two single modal representations 

into one multimodal representation.  A “standard” single modal transformer and its component are visualized in 

figure 3, and a multimodal transformer is visualized in figure 4. 

These multimodal transformers have encouraged research concerning so-called “vision-language tasks”. 

Examples of such tasks are image-text-retrieval [19,25], visual question answering [1,26,78], visual grounding 

[18,78] or image captioning [11,54] (see figure 5). Good performance on these vision-language tasks requires the 

model to jointly reason over images (vision) and text (language).  
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With the rise of the internet, and social media platforms like Instagram, Flickr and Wikipedia, large datasets of 

image-caption pairs have become more accessible. Since the BERT models have shown how large corpus can be 

used for pre-training on transformer architecture, researchers have investigated a similar approach for pre-training 

multimodal transformers, with such sets of image-captions pairs [10,33,34,36,46,49,50,52,69]. On a high level, 

these proposed models are very similar. A pre-trained visual backbone is used to extract the visual features from 

the image. Then, a pre-trained language model was implemented to extract the textual features from the text. 

These two features are then combined in a multimodal transformer architecture that decodes the two 

representations into one multimodal representation. Inspired by BERT [14], these models are pre-trained on 

image-caption pairs in a self-supervised manner. For example, the ViLBERT model [49] implemented two self-

supervised pre-training tasks. The first task concerned masked multimodal learning, where the models were asked 

to predict the semantic of masked regions in the image or masked tokens in the caption sequence. The other task 

Figure 3: Transformer Encoder and Multi-head Attention component: The transformer architecture consists of two 

components, the transformer encoder and transformer decoder component, which are used in combination or on their own 

depending on the task. The main reason for the transformer’s success is the notion of attention, implemented in the multi-head 

attention component. By taking a combination of word and positional embeddings, attention focusses on one word and learns 

which other parts of the sentence it needs to attend to. It does this by performing matrix multiplications over the Query (Q), 

Key (K) and Value (V) vectors, and learning the optimal weights for each’s respective fully connected layer. The multi-head 

attention component, consists of multiple Attention Heads, defined by the hyperparameter H. The multi-head attention module 

can perform self-attention, in which the vectors originate from the same sequence, or normal attention, in which the vectors V 

& K originate from a different sequence than the Q vector. 
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concerned multimodal alignment prediction, where the models needed to predict if the inputted image and text 

correspond. The pre-trained model is then transferred and finetuned to specific downstream vision-language tasks. 

Most of these multimodal architectures for vision-language modelling opted to use a pre-trained visual backbone. 

The goal of most of these studies was to achieve high performance on various vision-language tasks. Using a pre-

trained visual backbone allowed the models to start learning the multimodal features without paying too much 

attention to whether or not the visual component extracts valuable features. However, when the visual backbone 

is not frozen (i.e., the parameters will be optimized/adapted during training), the parameters of the backbone will 

change due to the transformer component propagating a learning signal backwards through the backbone. This 

raises the question of whether the visual backbone still extracts valuable features relevant to vision tasks such as 

image classification after pre-training on a multimodal task or whether the visual backbone now only extracts 

features relevant in a multimodal representation. This notion sparked a new research question: Is it possible to 

learn visual features from scratch (i.e., without any pre-training) using natural language supervision and a 

multimodal transformer architecture? If so, this would offer new opportunities for training vision models. 

Figure 4: Multimodal Transformer: The multimodal transformer only slightly differs from the more "standard" transformer. 

The textual and visual features are combined using the multi-head attention component. The value (V) and key (K) vectors 

represent the visual modality, while the textual features are inputted as the Query (Q) vector. This small adaption allowed for 

an increased integration of both modalities, resulting in state-of-the-art results on various Vision-Language tasks. 
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1.4 Natural language supervision for visual representation learning 
Some studies have investigated learning visual representation using images and their corresponding captions. 

Before transformer architecture became popular, using natural language as a supervised learning signal for visual 

representation learning was already investigated. One study investigated auxiliary prediction tasks to help learn a 

correct visual representation [59]. The auxiliary problem involved predicting whether or not a particular content 

word is in the associated caption. Two other studies investigated how captions could be used extract labels. The 

first study labelled images using the associated caption's n-grams and used these labels for training a CNN [43]. 

The second study extracted topic models from Wikipedia pages and trained a CNN to predict the topic 

representations for the associated images [24].  

Recently, papers have shared a similar, straightforward approach [13,62,77]. They pre-train a multimodal 

transformer architecture on an image captioning task on a large set of image-caption pairs, like the COCO dataset. 

The visual backbone, which was pre-trained from scratch, is then transferred to downstream visual tasks to be 

evaluated against other methods of visual representation learning. This approach is visualized in figure 6. 

The notion behind learning visual representation through natural language supervision is that these captions can 

provide semantically denser learning signals compared to learning signals used in self-supervised learning 

methods and standard single-modal supervised methods. Namely, captions tend to be more descriptive than class 

labels. They typically do not only define the entities in the image but also mention the attributes of the entities 

and the relationship between them. An additional benefit is that, since the internet is full of images with additional 

information like tags and captions generated by users, it is relatively easy to harvest these datasets. Weakly 

supervised learning approaches have already tried to exploit this benefit. These approaches aim to learn visual 

representations on large sets of images with low-quality labels, such as associated tags and other meta-data. The 

most common approach in current research is learning visual representations with high-quality labels, the 

associated natural language captions. The previously mentioned studies also showed that the image-caption 

datasets need to contain far fewer images to still result in competitive visual representation. For example, one 

Figure 5: Examples of vision-Language Tasks in the Military Intelligence domain: Vision-Language tasks involve tasks 

that require joint reasoning over both the vision and language modality. Multiple VL tasks have been designed. Image 

captioning involves describing an image using natural language. Text-based image retrieval concerns retrieving an image from 

database using a natural language query. Visual question answering requires to answer a question given an image. Multi-modal 

entailment involves checking the relationship between a statement in natural language and an image. Referring Expressions 

regards detecting objects referred to natural language. 
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study showed that a ResNet-50 (a SOTA image classification network) pre-trained on an image captioning dataset 

needed only 10% of the images in ImageNet to achieve similar results as a ResNet-50 pre-trained on the entire 

ImageNet dataset [13]. 

The argument for natural language supervision for visual representation learning is threefold: (1) the captions 

provide a much more semantically dense learning signal than class labels, (2) with the internet, it is has become 

very easy to collect large image-caption datasets that require little annotation effort and (3) studies have shown 

that these pre-training methods can achieve a notable performance using fewer images. Therefore, this might be 

a promising alternative for pre-training vision models. 

Figure 6: Natural language pre-training of visual features: We investigated the possibility of using natural langauge 

supervision for domain-specific visual features. By pre-training on image captiong using a domain-specific image-caption 

dataset, we aimed to learn domain-specific visual features. We evaluated the learned features on a domain-specific image 

classification task. 
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1.4.1 Vision-language pre-training tasks 

Various studies have proposed different pre-training tasks to implement visual-representation learning through 

image-captions. One study investigated two different pre-training tasks involving image-tag prediction and image-

conditioned masked language modelling (ICMLM) [62], visualized in the middle section of figure 7. The success 

of pre-training in natural-language processing inspired this second task. It involved the prediction of masked 

tokens (i.e., word representations) in the sequence given the visual information. The authors argued that these 

tasks directed the model to learn visual representations that localize semantic concepts in the captions. Another 

study investigated caption generation as a pre-training task, which involved the model generating the natural 

language caption for a given image [13], visualized in the upper section in figure 7. They argue that this directs 

the model to distil denser semantic information from the image since it needs to predict all the tokens in the caption 

Figure 7: Image captioning pre-training tasks: This study will experiment on the use of three different vision-language 

tasks, each concerning some sort of image captioning tasks. The first task involves image captioning, in which the model needs 

to generate a caption given an image. The second task used, is that of Image-conditioned Masked Language Modelling 

(ICMLM), in which the model needs to predict a masked word, given a caption and an image. The third task concerns Token-

Classification, in which the model needs to predict which words are in the corresponding caption, given the set of words in all 

the captions. 



Domain-Specific Visual Representation Learning Using Natural Language Supervision 

10 

A.S.Y. Kern, 2022 

instead of a subset of the tokens. They also explain that masked-language modelling tasks tend to converge a lot 

slower, which results in decreased computation efficiency for these types of pre-training tasks. Researchers have 

also investigated multimodal contrastive pre-training tasks to learn visual representations [54,75]. Similar to the 

previously discussed single-domain contrastive learning, multimodal contrastive learning stimulates the model to 

have similar representations for corresponding images and captions and dissimilar representations for different 

images and captions.  

Another task relevant to image captioning is that of caption-based image retrieval. Caption-based image retrieval 

entails finding the best image described by the given caption and a set of images. This task has been investigated 

by various studies, implementing different approaches such as global [20,22] and local [42] matching of images 

and text and, more recently, the previously mentioned vision-language models pre-trained on the large scale 

datasets [10,49]. Since the task of caption-based image retrieval requires the model to reason jointly over visual 

and textual representations, it could be that this task could also be helpful as a pre-training task for learning visual 

representations. 

Studies concerning vision-language tasks have also used pre-training on extensive collections of image-caption 

pairs to learn multimodal representations. As stated in the previous section, these studies have primarily opted for 

masked multimodal modelling and multimodal alignment prediction [10,33,34,36,46,49,50,52,69]. However, 

other studies also explored pre-training tasks such as image question answering tasks [44,65], contrastive pre-

training [51] or caption and tag prediction [69]. Some studies also proposed slight variations of masked 

multimodal modelling, such as masking with continuous rather than random words [47]. In this study, the 

researchers opted for another variation of multimodal alignment prediction by explicitly implementing hard 

negative image-caption pairs. These pre-training tasks are helpful for multimodal representation learning. It could 

be that these pre-training tasks could also help a model learn visual representations.  

Lastly, token classification is another task that researchers have investigated, visualized in the lower section in 

figure 7.  This task requires the model to predict the set of tokens present in the given image. In other words, the 

model needs to perform multi-label classification over the set of all the tokens present in the vocabulary. Since 

this task completely ignores the syntactical structure of the captions and therefore does not require a multimodal 

transformer, strictly speaking, this is a single modal task. Moreover, it is more in line with previously described 

weakly supervised tasks since the images are annotated with weakly/noisier labels.  

1.4.2 Image-caption datasets 

Language-guided supervision for visual representation learning often requires a dataset that contains image-

caption pairs. Most studies have opted for using the Common object in Context (COCO) Captions dataset [9], 

containing 330k images with five reference sentences per image. A different human annotator generated each 

sentence/caption and was asked to describe the scene in natural language extensively. This resulted in strongly 

aligned image-captions pairs, i.e. each caption gives an accurate, dense and relevant description of what is going 

on in the image. Another dataset that contains strongly aligned image-captions pairs and has also been used for 

visual representation learning is the flickr30k dataset, which contains 31k images with five reference sentences 

per image [73]. 
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The internet is full of images provided with (textual) information by human users. Moreover, due to progress in 

processing and cleaning methods, it has become possible to create larger image-caption datasets that contain 

image-caption pairs crawled from the internet [6,63]. Since these pairs have been harvested from the internet, 

these datasets mainly contain weakly aligned image-caption pairs. As these datasets are very new, not much work 

has been done on such weakly aligned image-caption data. However, very recent work on these new datasets has 

already indicated that it is also possible to learn useful visual representation using weakly aligned image-caption 

pairs [35]. Accordingly, since it is easier for many domains to collect weakly aligned image-caption pairs than to 

collect and manually annotate datasets, pre-training on weakly aligned image-caption pairs could be valuable for 

learning visual representations as a pre-training phase for developing computer vision models. These differences 

are illustrated in figure 8. 

1.5 Current work 
As shown above, previous studies into language-guided visual representation learning have implemented various 

pre-training tasks and datasets. These studies aimed to achieve an adequate performance on generic downstream 

vision tasks. These studies used generic image-caption pre-training datasets without justifying the choice for this 

dataset relatively to the targeted downstream vision task and dataset. Moreover, these studies implemented 

different pre-training tasks without elaborating on these tasks' (dis)advantages. Therefore, it is unclear which pre-

training procedure is optimal for learning visual features using natural language supervision. 

The military intelligence domain is known for the lack of large, annotated data and its highly specific class 

taxonomy, resulting in problems with the automation of vision tasks using deep neural networks. Because of the 

earlier described arguments, natural language supervision could provide a solution. In this study, we want to 

investigate the possibility to learn visual features relevant to the military intelligence domain by pre-training a 

visual model using natural language supervision and a domain-specific dataset and investigating the effect of 

different pre-training tasks. 

 

Figure 8: Image Captions: Studies into image captioning have primarily opted the use of the COCO dataset, which is a dataset 

that mostly contains samples that represent the generic domain. And because of the annotation process, this datasets only 

contains strongly-aligned image-captions, i.e. all the captions contain a fairly accurate and relevant description of the image. 

This study will opt for a more specialized dataset, containing samples that mostly represent the Military Intelligence domain. 

Since these images are sourced from the internet, the dataset contains both weakly and more strongly aligned images. 
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The main research question is as follows:  

1. Can we use vision-language pre-training to learn useful features for a domain-specific vision task? 

Which this study breaks down into the following two research questions: 

1. How does the domain of the pre-training dataset affect the learned visual features? 

2. How do different vision-language pre-training tasks affect the learned visual features? 

To investigate if the visual model can extract visual features that are useful for a vision task in the military 

intelligence domain, we will evaluate the visual model’s capability on an image classification task. The effect of 

different design choices, such as the different pre-training datasets and tasks, can then be compared based on the 

visual backbone's performance on this task. Image classification is chosen as the evaluation task for two reasons. 

Firstly, it is the most straightforward vision task from a technical perspective. It only requires the model to label 

the image and does not require more complicated operations, such as localizing and labelling multiple entities. At 

this stage, the performance on more difficult vision tasks is less relevant for evaluating the learned visual features. 

Secondly, as stated before, properly annotated datasets for the military domain are rare, and the few that exist 

regard image classification datasets. Therefore, the visual features will be evaluated on image classification, using 

the images labelled with military entities present in the ImageNet dataset. Finally, the different design choices 

will also be evaluated against the current go-to methods, such as supervised and self-supervised pre-training. 
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2 Methodology 

This study investigates different approaches to learn domain-specific visual representations by pre-training a 

visual backbone on vision-Language tasks. Two different pre-training datasets and three different vision-language 

pre-training tasks related to image captioning will be investigated. Besides evaluating against pre-training on a 

generic image-caption dataset, the performance will also be evaluated against two single-modal benchmarks, 

namely supervised and self-supervised pre-training. The following sections will first explain the designed 

experiments, followed by the details of the datasets and tasks, the model's architecture, the protocol for pre-

training and evaluation and the benchmarks. 

2.1 Experiments 
Two experiments will be performed to investigate the possibility of natural language guidance for domain-specific 

representation learning. The overall goal, design, and expectations of each experiment is discussed below. The 

overview of the two experiments is shown in table 1. 

2.1.1 Experiment 1: Pre-training datasets 

The first experiment of this study aims to investigate the effect of pre-training a visual backbone using domain-

specific weakly aligned versus generic strongly aligned image captions pairs on the performance on a domain-

specific downstream image classification task. Therefore, this experiment will only vary over datasets and focus 

on a single pre-training task: image captioning. As a generic image-captions dataset, we use a commonly used 

publicly available dataset, and as a domain-specific dataset, we use a web-scraped image-caption dataset relevant 

to the military intelligence domain. We will use both the full and a reduced version of the generic image-captions 

dataset to ensure a fair comparison. The upcoming section, ”pre-training datasets”, will describe the datasets in 

more depth. We expect an increased performance on the domain-specific image classification task when pre-

trained on domain-specific image-caption tasks since the domain of the pre-training dataset better represents the 

domain of the downstream task.  

2.1.2 Experiment 2: Pre-training tasks 

The goal of the second experiment is to investigate the effect of different pre-training tasks on the performance of 

the downstream vision task. Besides pre-training on image captioning as done in experiment 1, models will also 

be pre-trained on two different image captioning tasks: image-conditioned masked language modelling and token 

classification. All three pre-training tasks will be evaluated on the downstream image classification task. We 

expect that image-conditioned masked language modelling can increase the performance on the downstream task 

compared to the image captioning task. We also expect that token classification has an inferior performance 

Pre-training Task Pre-training Dataset Experiment 

Image Captioning COCO Captions 1 

Image Captioning COCO Captions (20%) 1 

Image Captioning Janes Captions 1 

IC-MLM Janes Captions 2 

Token-Classification Janes Captions 2 

Supervised ImageNet Benchmark 

Self-Supervised ImageNet Benchmark 

 

Table 1: Overview of Experiments & Benchmarks 
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compared to the other two pre-training tasks. We expect the model to benefit from learning to predict the 

sequential structure of the captions and not only the semantic information. 

2.2 Pre-training datasets 
Both experiments will use two different image-caption datasets: (i) the COCO captions dataset and (ii) Janes 

Captions, a Military Intelligence dataset scraped from the web for this study. Figure 8 illustrates the main 

differences between these datasets, namely the image-caption alignment and domain. The datasets are further 

explained below. 

2.2.1 COCO Captions 

As described in the introduction, the COCO captions datasets, which stands for Common Objects in Context, is a 

collection of 118K images with five annotations per image. Each caption was generated by a different individual, 

asked to describe the scene in natural language extensively. This resulted in strongly aligned image-captions pairs, 

i.e. each caption gives an accurate and relevant description of what is going on in the image. 

It is known that the performance of neural networks tends to increase with an increased number of training 

samples. Since the COCO captions dataset contains about five times more image-caption pairs than the Janes 

Captions, a difference in performance could also be explained by this size difference. Therefore, we will also 

implement a reduced dataset containing only 20% of images in the original COCO Captions dataset, with only 

one annotation per image. 

2.2.2 Janes Captions 

For this study, an image-caption dataset is collected from the internet. The image-caption pairs concerned images 

and captions specific to the Military Intelligence domain, achieved by scraping image-captions from the Janes 

magazines. Janes magazines provide an authoritative news source and impartial, independent insight across all 

essential defence and security subject areas. We have access to seven magazines, which mainly concern general 

defence news, navy news and missiles & rockets. Since this dataset is not explicitly annotated for model 

development purposes, i.e. the captions are not necessarily dense and descriptive, we will regard this as a dataset 

containing weakly aligned image-caption pairs. The scraping will result in about 25k image-text pairs.  

2.3 Pre-training tasks 

This study investigates the use of three different image-caption pre-training tasks: (i) Image captioning, (ii) Image-

Conditioned Masked Language Modelling (ICMLM) and (iii) Token-classification (See figure 7). These three 

tasks will be further explained below. 

2.3.1 Image Captioning 

Image captioning concerns the task of generating a natural language sequence that describes a given image, similar 

to the study of Desai and Johnson since they experimented with caption generation [13]. This pre-training task 

stimulates the model to learn specific semantics from the captions. However, it is quite computational demanding 

and emphasizes the sequential structure in natural language since the models need to predict an entire sequence 

in grammatically correct natural language. 
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2.3.2 Image-Conditioned Masked Language Modelling (ICMLM) 

ICMLM concerns the task of predicting masked tokens in a caption given the image [62]. In other words, the 

models need to predict the masked tokens in a caption given the visual information. This pre-training task allows 

us the creation of multiple training samples from one image-caption pair while still stimulating the model to learn 

specific semantics from the caption. However, it has been shown that ICMLM, similar to the single domain task 

of Masked Language Modeling, requires many training samples and a lot of training time to achieve adequate 

performance. ICMLM is more computationally heavy than the other pre-training tasks [62]. 

2.3.3 Token Classification 

Token classification concerns the tasks of predicting the set of tokens present in the given image. The model needs 

to perform multi-label classification over the set of all the tokens present in the vocabulary. This task completely 

ignores the syntactical structure of the captions and only focuses on the semantics, i.e. which words are present, 

allowing us to investigate if learning the structure present in natural language is helpful for learning visual 

representations. 

2.4 Architecture 
The main architecture used in this study resembles the architecture first proposed by Desai and Johnson [13]. 

Similarly, it will consist of two main components: a visual backbone employing a ResNet-50 model, which 

processes the image, and a textual head containing a multimodal transformer that combines the visual output of 

the visual backbone with textual features. The implemented architecture, and its different components, are further 

explained below. 

2.4.1 Visual component 

The visual component of the architecture is responsible for the computation of visual features from raw image 

pixels. We, therefore, use a convolutional network that can take in the pixel values of an image and output a grid 

of image features while keeping in mind the spatial properties of the pictures. We will opt for the commonly-used 

ResNet-50 architecture as the visual backbone to facilitate comparison with our benchmarks since they 

implemented the same ResNet-50 architecture. The ResNet (Residual Neural Network) architectures are 

convolutional neural networks that implement residual connections between each layer to allow for deeper neural 

networks without the problem of vanishing gradients (visualized in figure 9). The ResNet architecture achieved 

state-of-the-art results in many vision tasks such as image classification, object detection and face recognition[29]. 

Figure 9: Residual Network: ResNets implement residual connections that jump over some layers. Jumping over the layers, 

effectively simplifies the network in the early stages, since the skipped layers are paid less attention to at the beginning of 

training. This helps to avoid the problem of vanishing gradient and therefore allows for much deeper layers. 
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The visual component takes in a 224 x 224 image and produces, after the pooling layer, a 7 x 7 grid of 2048-

dimensional visual features corresponding to the input dimensions of the textual head. During pre-training, the 

shape of the visual features is reduced using a fully connected layer to be passed to the textual component to fuse 

with the textual features and perform caption prediction. We train one final fully connected layer to the visual 

component during the evaluation to evaluate the extracted features on image classification, further described 

below. 

2.4.2 Text tokenization 

To enable the model to handle the textual input, it needs to have a vocabulary, which is done by tokenising the 

text. Tokenization is a preprocessing step fundamental to most machine learning models that involve language. It 

involves splitting text into smaller units called tokens, which can consist of words and subwords (smaller word 

segments). After creating our set of unique tokens, we can use this vocabulary to turn any piece of text into a 

sequence of discrete elements. The model can then input the embedding for each token at every point in the 

sequence. It can also use the set of tokens to turn the output of probabilities into a sequence of tokens, generating 

a caption. 

Like other studies, we use SentenciePiece [40] to tokenize our captions, i.e. create a vocabulary of tokens from 

the words present in our captions. SentencePiece is an unsupervised text tokenizer that aims to have the most 

reflective set of tokens, given the desired token vocabulary size and a set of words, in this case, all the words 

present in our captions. Compared to other basic tokenization methods (such as splitting on whitespace), Sentence 

Piece makes fewer linguistic assumptions and exploits subword information, resulting in fewer out-of-vocab 

tokens, which is very important because of the highly domain-specific vocabulary present in our captions. Before 

tokenization, our captions are lowercased, and accents are stripped. The size of our token vocabulary is set to 10K 

and includes the SOS (Start-of-Sentence) and EOS (End-of-Sentence) tokens, as well as the UNK (Out-of-vocab) 

token. 

2.4.3 Textual component 

The textual component of the architecture is responsible for combining the visual and textual features to predict 

captions for the inputted image. These components provide the learning signal to the visual backbone. In line with 

recent advances in language and vision-language modelling, we will opt to use multimodal transformers, which 

can implement multiheaded self-attention to fuse the visual and textual features (figure 6).  

We will use two identical transformer models for image captioning to predict the captions in forward and 

backward directions, respectively, also known as bi-captioning. The task of Image-conditioned Masked Language 

Modelling will only consist of a single transformer model, predicting the masked token in a given caption and 

given image. We will implement a simple fully-connected layer for token classification, which performs 

multilabel classification on the entire set of tokens in the vocabulary.  

The transformer receives both the image features from the visual backbone and a caption, a sequence of 30 tokens 

describing the image. Before the sequence is inputted, each token is converted to a vector via learned tokens 

embeddings and positional embeddings. The first layer in the multimodal transformer performs masked 

multiheaded self-attention over each token vector. For each of the target tokens in a given sequence, the 

consecutive tokens are masked such that the computation depends solely on the preceding ones. This is introduced 
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to maintain the casual nature of the sequence. Together with the image vectors, the token vectors are combined 

using multiheaded attention. After this, a fully connected network is applied to each vector. An overview of the 

multimodal transformer component in our architecture is given in figure 10. After the multimodal transformer, a 

fully connected layer is applied to each vector to get probability over all the tokens in the vocabulary at each spot 

in the sequence. 

The pre-training tasks are visualized in figure 7, and the detailed visualization of the proposed architecture, with 

image captioning as a pre-training task, can be found in figure 10. 

2.5 Pre-training & Evaluation 

The architecture described above will be pre-trained on three different pre-training tasks. This pre-training will 

follow the same protocol for each task. After pre-training, we will evaluate the visual backbone's performance on 

an image classification task using an evaluation protocol. The protocols used for pre-training and evaluation are 

further described below.  

2.5.1 Pre-training 

The pre-training protocol follows the protocol implemented by Desai & Johnson. To save computation time, we 

only pre-train the architecture on our dataset, the Janes dataset and load in a visual backbone pre-trained on the 

COCO dataset, distributed by Desai & Johnson[13]. To compare the performances of these visual backbones, we 

will follow the same pre-training protocol to ensure that any differences in performance are not due to underlying 

differences. 

At the start of pre-training, the visual backbone is initialized randomly. During the pre-training and evaluation 

phases, we apply standard image augmentation. We first randomly crop the image to between 20% and 100% of 

its size, apply jitter to the brightness, contrast, saturation and hue, and normalize the colour using the mean 

Figure 10: Proposed Architecture: Our architecture consists of a visual backbone, a ResNet-50, and a textual head, a 

multimodal transformer that combines the visual and textual features. In this visualization, image captioning is implemented 

as pre-training task. The visual backbone extracts the visual features from an image and the textual head combines these image 

features, after linear projection, with the textual features using multimodal transformers. This figures implements two 

transformers in order to perform bi-captioning. This entire architecture is pre-trained end-to-end, after which the visual 

backbone is transferred to the image classification task for evaluation. 
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ImageNet RGB values. We finally randomly flip images horizontally, interchanging the words ‘left’ and ‘right’ 

during pre-training. 

Optimization during pre-training implements Stochastic Gradient Descent (SGD) with a momentum of 0.9 and 

weight decay of 10-4. Pre-training is performed across 2 GPUs with normalization per GPU, with a batch size of 

256 images (128 per GPU). Pre-training runs for 200k iterations or roughly 1080 epochs. The learning rate follows 

a linear warmup protocol, increasing linearly from 0 to the desired value in the first 4000 iterations and then 

decreasing to 0 using a cosine decay schedule. We used a max learning rate of 2x10-1 for the visual backbone and 

a max learning rate for the textual component of 10-3. All models, datasets and pre-training tasks were 

implemented using PyTorch [58]. 

2.5.2 Evaluation 

The visual backbone’s capability to learn domain-specific visual representations will be evaluated using a 

commonly-used vision task, namely, image classification. We have opted for image classification because of the 

absence of military datasets for more complicated vision tasks. Besides, since little is known about visual 

backbones pre-trained using natural language, the model’s capabilities concerning more difficult vision tasks are 

less relevant at this stage. 

Since we are trying to learn visual features that could be relevant for application in the military domain, we have 

opted to evaluate on a subset of the ImageNet image classification dataset. We have handpicked 21 classes relevant 

to the military domain present in the ImageNet taxonomy and only selected the images labelled with one of these 

classes for our evaluation task. This resulted in a training dataset of 27,190 images, out of 1,28M (2,1%) images, 

and a test set of 1050 images, out of 50K (2,1%) images. The handpicked classes are Aircraft Carrier, Airship, 

Amphibian, Assault Rifle, Bulletproof Vest, Cannon, Gasmask, Half-Track, Holster, Jeep, Military Uniform, 

Missile, Parachute, Police Van, Projectile, Revolver, Rifle, Submarine, Tank, Warplane & Wreck. 

We will follow the widely used linear evaluation protocol for the evaluation, where a fully connected layer is 

trained on top of the frozen base network using the train split of the dataset. The achieved accuracy on the 

validation split is then used as a proxy for the quality of the visual representations learned by the visual backbone. 

Besides allowing for a more direct evaluation of the model's ability to extract visual representations, this protocol 

saves computation costs. We will perform the same augmentations as in the pre-training protocol described in the 

previous section during training and testing.  

The linear evaluation protocol starts by adding a fully connected layer applied to the 2048-dimensional global 

average pooled features extracted from the last layer of the visual backbone. Training is then performed using the 

train split of our ImageNet subset dataset with a batch size of 256 for 100 epochs, using just a single GPU. Like 

pre-training, we implement SGD for optimization with a momentum of 0.9 and weight decay of 0. We set the 

initial learning rate to 0.3 and decay to zero using a cosine schedule.  

2.6 Benchmarks 

Besides evaluating different pre-training tasks and datasets, we also evaluate the methods against other recent pre-

training methods that have successfully learned visual representations. 
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2.6.1 ImageNet supervised 

The first benchmark that we will use is straightforward pre-training on ImageNet. We will use a pre-trained 

ResNet-50 pre-trained on ImageNet classification[29]. Since their introduction, Resnet models pre-trained on the 

entire ImageNet dataset have been the go-to for downstream vision tasks. In this study, we have opted for a 

ResNet-50 since this is also the architecture used for our visual backbone. Therefore, any (noteworthy) differences 

in performance will be due to the differences in pre-training methods and datasets. The linear evaluation protocol 

will be applied when evaluating the representations learned by this benchmark to compare the representations of 

this benchmark against the representations learned by our models. Figure 1 visualizes the supervised-pre-training 

method. 

2.6.2 SimCLR self-supervised 

The other benchmark used in this study is that of contrastive self-supervised pre-training. Specifically, a ResNet-

50 pre-trained using the contrastive learning framework that recently has achieved adequate performances on 

downstream vision tasks, also known as SimCLR [7] (figure 2). Once again, the ResNet-50 architecture is chosen 

to ensure that any differences in performance are not due to differences in architectures. Similar to the supervised 

model, we will apply the linear evaluation protocol to compare these representations against the representations 

learned by our models. 

2.7 Qualitative analysis 

Besides using accuracy as a proxy to measure the quality of the visual features learned by the visual backbone, 

we also perform some qualitative analysis to further investigate the results and differences between our 

architecture, pre-training tasks and datasets. We will construct the confusion matrices on the downstream task, 

visualize the learned visual features using dimensionality reduction and investigate predicted captions on the pre-

training and downstream dataset images. 

2.7.1 Confusion matrices 

First, the achieved performance on the domain-specific task is further investigated by inspecting the confusion 

matrices. The confusion matrices will allow us to investigate the classification mistakes made by the different pre-

trained visual backbones. 

2.7.2 Dimensionality reduction 

Next, we will also perform dimensionality reduction on the visual features, reducing the visual features to a 2-

dimensional representation, allowing us to compare the features between different pre-trained models visually. 

Since the visual backbones output 2048-dimensional visual features, these cannot be visualized in a two or three-

dimensional graph. Therefore, we need to apply a dimensionality reduction technique, which projects the high-

dimensional (2048) features to a low (2) dimensional embedding space while keeping overall structure and 

distances between vectors similar. Using Uniform Manifold Approximation and Projection (UMAP), we will 

project the 2048-dimensional features to a 2-dimensional space.  

2.7.3 Image Captioning 

Finally, we will also address the image captioning performance of our pre-trained models by investigating 

captioned examples. Although our study is interested in learning domain-specific visual features through image 

captioning and we have not looked detailed into the image captioning task itself. We will compare some predicted 
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captions on the Janes captions dataset by a model pre-trained on the domain-specific dataset and a model pre-

trained on the generic captions dataset. We will also review some predicted captions on the downstream validation 

split images. Although these images are not annotated with captions, it is interesting to observe what captions the 

models predict and if they contain any reference to the correct label.  

2.8 Additional analysis 

Some additional analyses will be conducted to identify further the effect of different design choices on the learning 

of the visual features and the resultant performance on the downstream vision task. These investigations further 

reveal the inner dynamics of the architecture, but it also points towards interesting future works. These additional 

analyses cover the (1) model complexity, (2) pre-training parameters and (3) dataset cleaning. 

2.8.1 Textual head complexity 

The first analysis involves changing the complexity of the model, more specifically, the textual component. 

Besides the number of training samples, it is known that neural networks also increase in performance when their 

complexity, i.e. the number of changeable parameters, increase in size. Therefore, varying the complexity of the 

textual head is investigated, specifically increasing the number of attention heads and layers in the multimodal 

transformer component. Altering these two hyperparameters allows increasing or decreasing the number of the 

parameters in the textual head. We expect that increasing the complexity of the textual head could increase the 

performance of the visual backbone on the image classification task, even though the textual head is not directly 

involved with the classification task. A more complex textual head has more computation power to integrate the 

visual and textual features and create a better supervisory signal for the visual backbone.  

2.8.2 Pre-training iterations 

The second analysis concerns an investigation into the pre-training performance and relation to the performance 

on the image classification task. Our architecture is trained on image captioning tasks for 200k iterations during 

pre-training, increasing its performance throughout these iterations. This analysis investigates the relationship 

between the performance on the pre-training task and the performance on the classification task by comparing the 

performances during the pre-training phase. We expect that increased performance on image captioning precedes 

an increase in the performance on the classification task.  

2.8.3 Captions pre-processing 

Finally, the effect of pre-processing our captions on the image classification task is investigated. Since the captions 

in our dataset represent the military intelligence dataset and are collected from a highly specialized source, the 

captions are characterized by a large and specific vocabulary. For instance, certain weapons are often described 

by their exact type, instead of a simple denominator such as “weapon”. Also, since our dataset is collected from 

the internet, the captions show a weaker alignment to the images. As an example, captions often speak of locations 

in which an image is taken (such as a country’s name) which is information that is not directly derivable from the 

image itself. By cleaning the captions, we aim to decrease the number of unique words in the captions, resulting 

in a less specific vocabulary and (slightly) increasing the alignment between the images. We expect that pre-

training on the cleaned captions would increase the performance on the image classification task. The pre-

processing of the Janes captions consists of two steps (1) cleaning the captions and (2) transforming specific 

named entities to more generic named entities. These two steps decrease the number of unique words in the 

captions from 40K to 32K. 
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The cleaning involves removing the punctuation marks from the captions, lower-casing all the characters and 

removing the accents, similar to the cleaning process applied to the COCO captions. Since the captions will be 

collected from the internet, some captions also contain extra whitespace, which we remove to make them more 

similar to the COCO captions. Similarly, we strip all the text between parentheses since this is not present in the 

COCO captions. These cleaning steps are adapted from the COCO captions and the Conceptual Captions datasets 

pre-processing steps [9,63]. 

The transforming of named entities consists of two steps. First, we use the Wikidata knowledge base to recognize 

specific named entities in the dataset and transform them to their more generic hypernym. Using this method, we 

can, for example, transform the named entity ‘HMS Prince of Wales’ to its hypernym ‘Aircraft Carrier’ and the 

named entity ‘M1969 Mountain Gun’ to its hypernym ‘Cannon’. We also use a pre-trained named entity 

recognition model to detect the named entities of the type location, date and quantity and transform these named 

entities to their types. For example, this allows us to transform the named entity ‘Pakistan’ into ‘Location’, ‘April 

12’ into ‘Date’ and ‘Fifty’ into ‘Quantity’.  
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3 Results 

In this study, two experiments were executed to better understand the learning of domain-specific visual features 

through natural language supervision. Below, the first experiment's results concerning a domain-specific dataset 

will be discussed. Following this, the second experiment, focusing on different pre-training tasks, will be 

discussed. Besides these two main experiments, qualitative analyses were conducted to further investigate the 

inner workings, which are also presented below.  Finally, some additional results will be discussed. Table 2 gives 

an overview of all the results presented below.  

3.1 Experiment 1 

The first experiment involved using a domain-specific image-caption dataset (the Janes Captions dataset) to learn 

more domain-specific visual features. This was compared against using a generic captions dataset (the COCO 

dataset) to test our hypothesis that domain-specific captions increase the specificity of the learned visual features.  

The results of the experiment are shown in figure 11. The visual features learned using pre-training on the Janes 

dataset are outperformed by the visual features learned using the COCO captions dataset. The COCO dataset was 

Figure 11: Generic Image-Captions versus 20% Generic Image-Captions versus Domain-Specific Captions: Pre-training 

on the larger generic dataset resulted in an increased performance on the domain-specific Image Classification task (71,6%). 

When we pre-train using a comparable sample-size, pre-training on the domain-specific dataset resulted in a better 

performance (58,9%) compared to pre-training on the scaled down generic dataset (55,0%). 

Pre-training Task Pre-training Dataset Accuracy (%) 

Image Captioning COCO Captions 58,9 

Image Captioning COCO Captions (20%) 71,6 

Image Captioning Janes Captions 55,0 

IC-MLM Janes Captions 55,2 

Token-Classification Janes Captions 52,6 

Supervised ImageNet 80,5 

Self-Supervised ImageNet 76,0 

 

Table 2: Overview of the results 
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also reduced by 80%. This allowed for a fairer comparison to the Janes dataset, independent of the dataset size. A 

comparison between pre-training with the 20% COCO dataset and the Janes dataset reveals that pre-training on 

domain-specific captions outperforms pre-training on generic captions with comparable dataset sizes. 

3.2 Experiment 2 
The second experiment focused on the effect of using different pre-training tasks on the learned visual features. 

This experiment compared three different tasks, namely (1) bi-directional image captioning, (2) Image-

conditioned Masked Language Modelling and (3) token classification, to test our hypothesis. We expected that 

tasks that require the model to predict the sequential structure of the caption (1&2) outperform models that only 

need to predict the semantic information (3).  

The initial results of this experiment are shown in figure 12. The visual features learned by pre-training on either 

image captioning or Image-conditioned MLM outperform the visual features learned by pre-training on token 

classification. 

3.3 Benchmarks 

Besides comparing different design choices, the best performing pre-training method (bi-directional image 

captioning) was also evaluated on two pre-training methods that have successfully learned visual features for 

downstream vision tasks. We compared our method against (1) supervised pre-training on the ImageNet (IN) 

dataset and (2) unsupervised pre-training using the SimCLR framework.  

The results of this comparison are shown in figure 13. Learning visual features through image captioning is 

outperformed by visual features learned through both supervised and unsupervised pre-training.  

Figure 12: Image captioning versus Image Conditioned Masked Language Modelling versus Token-Classification: Pre-

training on Image captioning (58,9%) and Image-Conditioned Masked Language Modelling (55,2%) leads to an increased 

performance on the domain-specific image classification task, when compared to Token-Classification (52,6%). 
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3.4 Qualitative results 
Besides using accuracy as a proxy to measure the quality of the visual features learned by the visual backbone, 

we also performed a qualitative analysis. Confusion matrices were constructed on the downstream task, the 

learned visual features were visualized using dimensionality reduction, and predicted captions were investigated 

on both the pre-training and downstream dataset images. 

3.4.1 Confusion matrices 

Figure 14 compares the performance of the Janes Captions pre-trained model against the model pre-trained on the 

reduced (20%) COCO Captions and the two benchmarks. One can note that for the natural language-guided 

models, ‘Missile’ and ‘Projectile’ classification is still very confusing. This confusion is also present, to a smaller 

extent, in both the supervised and unsupervised pre-trained models. All four models do not experience difficulties 

classifying ‘Police Wagon’, ‘Parachute’ and ‘Aircraft Carrier’. However, the benchmarks can often classify 

‘Cannon’ and ‘Gasmask’ correctly, while the natural language guided models seem to fail slightly more often. 

Part of the performance difference between pre-training on a domain-specific and generic dataset could be 

explained by the increased accuracy of the ‘Airship’ class. 

Figure 13: Domain-Specific Image captioning versus Generic Image captioning versus ImageNet Supervised versus 

Unsupervised: Image captioning on domain-specific image-captions (58,9%) and Image captioning on Generic image-

captions (71,6%) are outperformed by the two benchmarks. Unsupervised pre-training (76,0%) is outperformed by Supervised 

pre-training, which used the ImageNet dataset. 
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3.4.2 Dimensionality reduction 

The following analysis concerned visually inspecting the learned visual features. Applying dimensionality 

reduction allows us to inspect the 2048-dimensional vectors in a 2-dimensional space. 

Figure 15 visualizes the visual representations of the models pre-trained on the Janes Captions and the reduced 

(20%) COCO captions and the two benchmarks. Only the supervised benchmark shows an improved clustering 

of the different classes in the feature space, most likely because the supervised benchmark is pre-trained on the 

ImageNet dataset and therefore trained on the military classes in our domain-specific classes. It is also interesting 

to note that the unsupervised method does not have this clear divide but still shows some structure in the shape of 

Figure 14: Confusion Matrices on the downstream domain-specific Image Classification task: The confusion matrices of 

four different pre-training methods have been constructed to further investigate the difference between the methods. In the 

figure above, the x-axis represents the predicted labels, whereas the y-axis represents the true labels. The numbers in each box 

represent how many times (in percentage) a certain class was predicted for a true class. If a certain class was never predicted 

for that class, the box remains empty. As can be observed, the benchmarks, shown in the bottom row, show much less confusion 

when compared to the natural language guided methods. 
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the features, whereas the methods pre-trained on image captioning do not show any structure. This could explain 

the difference in performance between the benchmarks and natural language-guided models. 

3.4.3 Image captioning 

Although this study is interested in learning domain-specific visual features through image captioning, the image 

captioning task itself has not yet been discussed in great detail. Figure 16 shows some predicted captions of images 

from the Janes validation split by the model pre-trained on the Janes captions dataset and the model pre-trained 

on both 100% and 20% of the COCO captions. Captions predicted by the Janes model contain very specific 

vocabulary. In contrast, the COCO captions models use a more generic vocabulary. However, the captions 

generated by the Janes caption model are much more incoherent considering the syntax; i.e. the captions are not 

grammatically correct. The COCO captions seem to be able to describe on a high level what is happening in the 

four images containing either a ship or an airplane without using specific or explicit language. However, both 

COCO captions models seem to struggle with the image that contains a helicopter, whereas the Janes captions 

refer to the helicopter by its correct name (AH-1z). 

Figure 15: Dimensionality reduction on the visual features: The figure above visualizes dimensionality reduction on the 

visual features extracted for the downstream image classification task, for four different pre-training methods. The plots are 

scaled, such that the length of the x-axis is the same as the length of the y-axis.  The colors represent the 21 different classes 

in the downstream task. As can be observed, the benchmarks, shown in the bottom row, show more structure in their visual 

representations. The supervised method shows the best clustering of the different classes. 
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We also show some predicted captions from the military subset validation split. Although these images were not 

annotated with captions, it is interesting to observe what captions the models predict and if these contained any 

reference to the correct label. These can be observed in figure 17. Once again, one can observe that the Janes 

captions model uses a much more specific vocabulary compared to the COCO captions models. The Janes captions 

model also seems to understand better which entity is represented in the image, referring to “fighter aircraft” in 

the “Warplane” image and “aircraft carrier” in the “Aircraft Carrier” image. The “Assault Rifle” image and “Tank” 

image have captions that are not far off, using “Machine Gun” and “Light Assault Vehicle” instead. On the other 

hand, the COCO captions seem to struggle more with these captions, referring to the “Assault Rifle” as “a chair” 

and the “Aircraft Carrier” as a “Stop sign”.  

3.5 Additional analysis 
After the initial results, additional analyses were conducted to identify further the effect of different design choices 

on the learning of the visual features and the resulting performance on the downstream vision task. The results of 

these additional analyses are further discussed below. 

3.5.1 Textual head complexity 

The first additional analysis involved changing the complexity of the textual component of the model. This was 

investigated by altering the number of attentions heads and layers in the multimodal transformer. As shown in 

figure 18, decreasing the number of attention heads resulted in lower performance on the downstream task while 

Figure 16. Predicted Captions on the Janes Captions validation split: The models pre-trained on image captioning were 

used to generate natural language captions on five images of the Janes Captions dataset. This allows observation of the model’s 

entire architecture capacity to caption an image correctly. Although not the main target of the study, it is interesting to observe 

that the Janes Captions model uses a much more specific vocabulary, when compared to the COCO Captions models.  
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increasing the number of attention heads or the number of layers slightly increased the performance. These results 

could indicate that difference in performance between pre-training tasks, as shown in experiment 2, could also be 

due to a difference in textual component since image captioning uses a more complex textual head than ICMLM. 

3.5.2 Pre-training iterations 

The second analysis investigated the relationship between the performance on the downstream task and the pre-

training task and the effect of the pre-training iterations. We observed that the model quickly overfitted on the 

image captioning task during pre-training. However, after pre-training (and overfitting), the visual backbone could 

still perform well on the downstream task. Accordingly, we investigated how the performance of the backbone on 

the downstream task changed as the performance on the pre-training task changed during pre-training. 

Figure 19 shows how the downstream performance of the visual backbone changes during pre-training. At around 

~30k iterations, the model starts to overfit as the training loss decreases to zero while the validation loss increases. 

The overfitting on the image captioning task does not seem to harm the downstream performance of the visual 

backbone. 

Figure 17: Predicted Captions on the Military Image Classification tasks validation split: The models pre-trained on 

image captioning were also used to generate natural language captions on five images of downstream military image 

classification task. Although these images do not have any annotation in the form of a natural language caption, they do contain 

a class annotation. Performing caption generation on these images allows us to compare the model’s capabilities, to observe 

if they can recognize the object in the image correctly and if they mention the object’s class. It is interesting to note that the 

Janes Captions models can  mention at least two classes correctly.  
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3.5.3 Captions cleaning  

The final additional analysis regards pre-processing the captions to reduce the number of unique words in the 

captions from 40K to 32K. In figure 20, one can observe the effect of this cleaning process on ten captions. The 

effect of pre-training on these processed captions on the performance on the image classification task was 

Figure 18. Decreased Attention Heads (H) versus Increased Attention Heads  versus Increased Layers (L): Pre-training 

using a more complex textual head, implemented by increasing the amount of Attention Heads (H=1024 & H=2048) and 

Layers (L=2), increases the performance on the domain-specific Image Classification task, compared to pre-training on a less 

complex textual head (H=512). 

Figure 19: Image captioning loss during pre-training versus Image Classification accuracy during evaluation: During 

the pre-training phase, the model starts to overfit on the pre-training task (Image captioning), as observed through the loss 

function, after ~30K iterations. Around the same number of iterations, the performance of the visual backbone on the 

downstream image classification task stops increasing, plateauing around ~59% accuracy on the validation split. Although the 

architecture overfits on the pre-training task, this overfitting does not seem to hurt the visual backbone’s performance on the 

downstream task. 
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investigated. The results of this experiment are shown in Figure 21. The figure shows that the pre-processing of 

the captions negatively impacted the performance of the visual backbone on the downstream task. 

 

  

Figure 21: Janes Captions versus Cleaned Captions versus Increased Token Vocabulary: Pre-training using image 

captioning on the “standard” Janes Captions (58,9%) dataset outperforms pre-training using a cleaned version of the Janes 

captions (56,8%) and pre-training using an increased token vocabulary size (57,1%). 

Figure 20: Captions processing: To reduce the amount of unique words in the captions, we performed some pre-processing 

of the captions. We have visualized the effect of this cleaning on 5 captions. As can be seen, some captions have become more 

generic and got a better alignment with the image. Especially transforming named entities to their hypernym has a very notable 

effect on the captions. 
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4 Discussion 

Like various other domains, the military intelligence domain is investigating the use of deep learning methods to 

automate specific processes. One suitable task for automation through deep learning is the recognition of very 

specific entities in large sets of images. Using carefully collected and manually annotated datasets, deep learning 

methods have found ways to learn visual representations of images that can be used to achieve high performances 

on various vision tasks, such as image classification and object detection. However, collecting large scale 

annotated datasets is far from trivial. In fact, it is labour-intensive and often requires expert knowledge. As a 

result, these datasets often concern very generic topics. This causes limitations when applying models trained on 

these generic datasets to vision tasks in more specific domains since the learned features are less generalizable to 

the highly specific class taxonomy present in, for example, the military intelligence domain. Recent developments 

in vision-language modelling have led to using natural language supervision to pre-train vision models, which 

requires less careful annotation efforts. In line with these advancements, this project aimed to investigate the use 

of natural language supervision for domain-specific visual representation learning. Specifically, we investigated 

using a domain-specific image-caption dataset to learn domain-specific visual features, using three different 

vision-language pre-training tasks. Besides evaluating on a domain-specific image classification task, we 

compared our methods against two benchmarks. 

4.1 Vision-language pre-training datasets and tasks 

The first experiment hypothesized that image captioning pre-training using a domain-specific dataset would lead 

to domain-specific visual representations, leading to better performances on the domain-specific image 

classification task. However, we found that pre-training using the Janes Captions dataset did not directly lead to 

better performances when compared to the full COCO Captions dataset.  

However, the Janes Captions dataset differs from the COCO captions not only in domain coverage but also in 

size. Accordingly, we performed an additional analysis in which the model was pre-trained using only 20% of the 

COCO captions dataset, resulting in two similarly-sized image-caption datasets. This analysis showed that pre-

training on the Janes captions outperformed pre-training on the reduced COCO captions dataset, indicating that 

domain-specific datasets can increase the learned visual features, given that the generic dataset is of equal size. 

Showing the added benefit of using in-domain captions indicates that it could be a good starting point for pre-

training compared to a generic dataset. Additionality, this result emphasizes one of the main problems with current 

academic research that often opts for generic image-captions datasets and tasks [13,62,75], not allowing for a 

comparison of domain-specific datasets and tasks. As an example for another domain, in the study by Zhang and 

colleagues, a multimodal contrastive training for medical domain visual representations was used, indicating that 

a medical-domain dataset improved the results compared to pre-training using generic datasets [77]. Future 

research could investigate whether the observed difference in performance could increase even further when a 

strongly-aligned domain-specific dataset is used.   

In the second experiment, it was shown that pre-training tasks which require the model to predict the complete 

caption, including its sequential structure, outperform pre-training tasks, which only required the prediction of the 

semantics of the captions. The effect of these different pre-training tasks was evaluated on an image classification 

task. Since image classification only requires the visual backbone to label the image and does not require more 
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complex operations, it could be that for other downstream vision tasks, the visual backbone could benefit from 

other pre-training tasks. Recent studies have already investigated how different image captioning pre-training 

tasks affected the performance on object-detection compared to image classification [13,62,74], showing that 

generic image classification and object-detection benefit from pre-training tasks differently. Future research 

should try to extend the scope of evaluation to other visual tasks, such as military object detection. 

Additional analysis also showed that by increasing the complexity of the textual head, the performance on the 

image classification task increased. A difference between the pre-training tasks concerns the complexity of the 

textual head. The architecture pre-trained on image captioning, which achieved the highest performance on the 

image classification task, has both a forward as well as a backward transformer component in the textual heads, 

while the architecture pre-trained on ICMLM, which came in second, only consisted of one transformer 

component in its textual head. The Token-Classification task achieved the lowest performance with only a fully 

connected layer as its textual head. Research into natural language processing indicated that more complex 

language models with larger transformers learn better textual features [3,14,48]. Studies investigating natural 

language supervision for visual representation learning also indicated a performance difference when comparing 

pre-training tasks [13,62]. However, these studies claimed that the difference in performance was due to the model 

needing to learn the sequential structure of the captions, while the performance differences (largely) followed the 

complexity of the textual head. In combination with the results of our study, these findings indicate that the more 

complex supervisory signal originating from a more complex textual head can be beneficial for the visual 

backbone’s training, no matter the implemented pre-training task. We hypothesize that with a complex textual 

head, the visual backbone can restrict itself to representing more generalizable features, which the complex textual 

head can properly reason over. 

The relationship between Image captioning performance and image classification performance was also 

investigated. During the pre-training, It was observed that our architecture quickly overfitted on the training split 

of the Janes captions dataset. However, the performance of the visual backbone on the image classification was 

not affected by this overfitting. This indicates that the textual head is overfitting, while the visual backbone is 

slightly improving and not affected in learning generalizable domain-specific visual representations. A 

multimodal multitask model implemented by Hu & Singh [32] showed that it could achieve high performance on 

both single modal and multimodal model tasks at the same time by implementing a training scheme that 

simultaneously learns seven different tasks. They also showed that the multimodal tasks of VQA and visual 

entailment benefit from being jointly trained on uni-modal tasks such as object detection and sentiment analysis. 

Future research into visual representation learning through natural language supervision should investigate using 

a more complex training scheme instead of focusing on one multimodal task during pre-training and one vision 

task during evaluation. 

Finally, we compared these achieved performances against two benchmarks, which implemented state-of-the-art 

pre-training methods: supervised and unsupervised pre-training. These pre-training methods outperformed pre-

training on image captioning, using either the domain-specific or generic image caption datasets. These 

benchmarks performed their task only on the visual modality, not using any information from the textual modality. 

This allows these models to pre-train using very large datasets. The supervised and unsupervised methods were 

pre-trained on 1.24M images, whereas our dataset contained only 25K images, almost 50 times smaller. This 
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difference could explain the performance gap between these datasets. Using a generic image-caption dataset, 

researchers compared supervised image classification and image captioning pre-training using a similar number 

of samples [13]. They found that a similar number of samples during pre-training led to higher performance when 

pre-trained using image captioning than pre-training using image classification. Increasing the number of captions 

per image increased the performance even further. We hypothesize that extending the Janes caption dataset with 

more images and captions is crucial for future studies to learn better domain-specific visual representations.  

4.2 Visual modality in multimodal transformers 

The architecture implemented in this study implemented a multimodal transformer to create a supervisory learning 

signal for a visual backbone to learn visual representation through natural language. Although we showed that 

domain-specific representations could be learned using natural language supervision, much is still unknown about 

the interaction of modalities in multimodal transformers. Recent research has already hinted at problems that can 

arise in multimodal transformers. These studies have indicated problems that concern (1) the bias in vision-

language datasets, (2) the modality interaction in the multimodal transformer, and (3) the use of multimodal losses. 

4.2.1 Bias in datasets 

Firstly, studies investigating image captioning and VQA found that complex multimodal models could be 

outperformed by more straightforward methods that take advantage of the implicit structure and bias present in 

our language, and therefore also in vision-language datasets, such as the COCO captions dataset.  

A study into image captioning was able to outperform, at the time, complex methods that generated novel captions 

by taking advantage of the typical structure and vocabulary in image-caption datasets [15]. Instead of generating 

a unique caption, their method identified the K most similar images, given a queried image, and copied a caption 

from one of these images. They showed that this approach benefits from the bias towards generic vocabulary and 

structure present in the caption datasets. The researchers indicated that these approaches would become less 

beneficial when applied to datasets with more diversity or capture more rare occurrences.  

Another study that highlighted similar problems with the vision-language dataset investigated a popular VQA 

dataset [27]. They highlighted that the dataset contains various biases, such as specific answers being present a 

lot more than others (‘tennis’ is the correct answer on 41% of the questions starting with ‘What sport is’), and that 

people will often mention an object that Is present in the image (‘yes’ is the correct answer to 87% of the questions 

starting with ‘Do you see a .. ’). The researchers implemented a new, more balanced version of the VQA dataset. 

They showed that existing state-of-the-art VQA models performed poorly on their more balanced dataset, 

indicating that these models exploited the bias present in the language modality to achieve higher accuracy. 

A final study showed that pre-trained vision-language models are prone to abuse the bias towards quantities in the 

available datasets [56]. They investigated this by asking the model to judge whether a question or statement about 

the number of visible entities in the image is correct, which is challenging for VL models. They found that the 

models performed sub-optimal on the counting task, again exploiting the bias concerning quantities present in the 

VL datasets. 

These studies have highlighted that the language modality in vision-language datasets can provide a strong signal 

which can be used to get a good, albeit superficial, performance. In turn, this can result in models ignoring visual 
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information and researchers “claiming” multimodal capability of models that is not present. Since our study 

implemented image captioning using a new dataset, our architecture could have taken advantage of the bias present 

in our dataset to perform well at image captioning, limiting the pre-training of the visual backbone. Since we only 

acquired our captions from one source, the captions could show a bias towards a specific vocabulary, referring to 

specific entities with the same vocabulary and structure since all the captions were created for use in a magazine. 

Future work could investigate the amount of bias present in the Janes captions dataset and, if necessary, implement 

adaptions to diversify the dataset further. 

4.2.2 Modality interaction in multimodal transformers 

More recently, multimodal transformers have been used in almost all pre-trained vision-language models, 

achieving state-of-the-art performance on multiple vision-language tasks. Suggesting that these multimodal 

transformers can obtain accurate multimodal representations that encode a substantial amount of both the visual 

and textual knowledge from each modality. Because of this success, various studies investigated pre-trained 

vision-language models that implemented multimodal transformers, revealing various problems with the 

multimodal representations. 

One study designed a set of tasks to reveal the workings of the inner mechanisms of two popular vision-language 

models, LXMERT and UNITER [4]. These so-called probing tasks were designed to provide insights into various 

aspects of multimodality, such as modality importance and cross-modal interaction. They showed that the textual 

modality plays a more critical role than the visual modality in making the final predictions. Moreover, by 

investigating the cross-modal and single-modal representations through different single-modal and multimodal 

probing tasks, they also showed that the pre-trained vision-language models are much better at encoding linguistic 

than visual information.  

Another study proposed a different method to investigate how pre-trained vision-language models use cross-

modal information for their final prediction [21]. They showed that although the models have learned to fuse 

information of both modalities, the cross-modal interaction is not symmetrical. This means that the visual 

representations are much more influenced by text representations than vice versa.  

These studies reveal that, contrary to popular belief, multimodal transformers experience problems integrating the 

textual and visual modality. The multimodal representations show an asymmetric preference on both modalities, 

leaning towards the textual modality, which affects both the final decision and the influence both modalities have 

on each other throughout the transformer. Since our study also implemented the multimodal transformer, our 

results could be affected by this. These findings could explain why overfitting on the image captioning task did 

not affect the performance on the image classification task. The multimodal transformer does not require specific 

features from the visual modality, resulting in a less specific learning signal propagated back through the visual 

backbone and a visual backbone that focuses on learning more generic and generalizable features. 

4.2.3 Optimizing on multimodal losses 

A final problem discussed in research concerns the specific loss functions used for pre-training vision-language 

models and multimodal transformers architectures. A study that investigated the use of different loss functions, 

one for the textual and visual modality separately or a combined loss, found that the absence of a visual loss does 
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not harm the performance on vision-language tasks, indicating that these models are not taping into the useful 

signal in the visual modality [31].  

Our study implemented a textual loss during the evaluation phase, which only computed the loss as a function of 

the correctness of the predicted captions. It could be that the visual backbone could have benefitted from a visual 

loss during pre-training, such as Masked Region Modelling loss. The visual backbone was purely trained using a 

learning signal based on the textual modality, which might have limited the learning of visual features by the 

backbone. Future research could focus on implementing multimodal losses and image losses during pre-training. 

The studies discussed above show that a lot remains unsure about the role of the visual modality in multimodal 

transformers. Future work should consider the bias present in vision-language datasets, the modality interaction 

in the transformer component, and the use of other losses during pre-training. Especially the interaction between 

these three issues should be taken into account. The tendency of a vision-language model to exploit the bias in 

language could perhaps be overcome by using a strict multimodal loss. Alternatively, using only a textual loss, 

such as the case in our study, would benefit by improved integration of the different modalities in the multimodal 

transformer. 

4.3 Conclusion 

This study showed the feasibility of learning domain-specific visual features through natural language learning. 

We improved the performance on a domain-specific image classification task by pre-training on image captioning 

with a domain-specific image-caption dataset, compared to a similar-sized generic image-caption dataset. We 

could not outperform current state-of-the-art methods using large labelled datasets or image captioning methods 

with an increased amount of generic captions. The results of our study, combined with other studies into natural 

language supervision and multimodal transformers, have hinted at potential solutions that could increase the 

learning of domain-specific visual features, such as increased and improved domain-specific image-caption 

datasets and improvements in multimodal transformers. Ultimately, natural language supervision for pre-training 

visual models is a promising concept that, if applied correctly, could solve the problems of current state-of-the-

art methods, especially for application in specific domains. 
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