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Introduction

In this thesis, a dynamic, non-linear generalization of the Pélya urn model will be
discussed. Before we treat this model, we will first discuss the classic and non-linear
Polya urn model. Next to this, to motivate the usefulness of this subject, two
applications of this model will be discussed.

The classic Polya urn model, introduced by Eggenberger and Polya in 1923 [2], is a
model consisting of one bin with a balls of colour A and b balls of colour B. Every
time a ball with a certain colour is drawn from the bin, the ball, together with
another ball of the same colour, is replaced in the bin. There are versions of the
Pélya urn model with more than two colours, but we will only consider the
two-colour case here.

This classical situation is isomorphic to the following situation considering two bins,
where the two bins can be thought of as the two colours. Here, the balls are added
one by one, with the probability of a ball landing in a certain bin proportional to
the number of balls already in the bin. The last situation will be used to extend in
this thesis. Note that we could also say in this case that the probability of a ball
landing in a bin with m balls, is proportional to f(m) = m. The function f(m) is
the so-called feedback function of the process. In the non-linear Pélya urn model,
the only property that differs will be the type of feedback function.

In the non-linear Pélya urn model again two bins are considered. Now the
probability that a ball lands in a certain bin is proportional to some function f(m).
In this thesis the feedback function f(m) = m® is chosen, where @ > 0. The model
where o = 1 corresponds with the classic Pélya urn model. When a > 1, we are in
the so-called positive feedback scenario. In this situation, the feedback function is
convex. A bin with more balls has an higher probability to get new balls, than a bin
with less balls. When 0 < a < 1, we are in the negative feedback case, meaning that
the bin containing more balls will probably get less balls.

In this thesis a time-dependent version of the non-linear Pélya urn model will be
discussed. That is, at each time n € N not one ball, but ,, balls are added, where
o, is some function of n. Important is that the balls land independently in the bins,
meaning that a part goes in the first bin and the rest in the second bin. The
probability for a single ball landing in a certain bin is the same as in the above
non-linear model, with f(m) = m®. In this thesis all possibilities for o« > 0 will
considered. It will be shown that for o < 1, the proportion of balls in both bins
converges to an equilibrium. When « = 1, the proportion of balls in a bin converges
to a random variable. When o > 1, we will show that the proportion converges to 1
for a certain bin and to 0 for the other bin. This event will be called dominance.



In some cases, a much stronger event, monopoly, will occur with positive
probability. Then, there exists a point in time N € N such that for all timesteps

n > N, one bin will receive all the balls every time and the other bin won’t get a
ball anymore. The positive feedback case is the most interesting case, since several
theorems can be proven. That’s why this case is what is focussed on in this thesis.

There are many interesting applications of this simple model, for example in
network theory and economic competition. A good example of the first application
is the Barabasi-Albert random graph model, which is constructed dynamically. The
nodes are interpreted as balls and the different bins are the degrees in the network.
At each time a new node is arriving and connecting to an existing node with
probability proportional to f(m) = m®, where m is the number of nodes in the
particular network. In the positive feedback case we have that highly connected
nodes will get higher connected. This is called the "rich-gets richer" phenomenon.
For more information about this network, see [1].

Another interesting application is that of economic competition. Most of the time
the market dynamics of the current economy have some form of positive feedback.
This can be seen as follows. Suppose we have companies, representing the bins, and
consumers, which can be seen as the balls. Suppose there are two companies, where
one has 60 precent of the market share and the other 40 precent. Then, it will often
hold that the company with more market share will grow, and the smaller one will
shrink. That is, one company will in the end have a monopoly on the market. An
even stronger example, is when both companies have equal market share, until one
obtains a non-negligible advantage in the market share. After this happens, the
share of the company with the advantage could rapidly grow. The reason both of
this could happen is that the market dynamics are strongly driven by the desire of
the users to choose the company that has or will have the most users. This is
exactly what happens in the case of positive feedback, the stronger gets stronger and
the weaker gets weaker. This is a simplification of the real world, but it is a good
example. This, and more applications of the model, can be found in |7, chapter 7|.

The content of the coming chapters will be as follows. In Chapter 1, the necessary
theoretical framework about martingales and convergence is discussed. After that,
in Chapter 2 the notations of this thesis will be made clear , together with some
general lemmas and examples. In this chapter also the notions of different regimes
will be discussed, which will be generally used throughout this thesis. In Chapter 3,
we will show that in the supercritical regime monopoly does not occur. Then after
that, in Chapter 4 we will show that dominance does occur almost surely when

a > 1, independent of the regime. For this, we need a lemma that shows that the
proportion of balls in a bin does not get stuck at an equilibrium, but deviates
significantly infinitely often. After this, in Chapter 5, we will consider the two more
difficult cases, first the subcritical regime and after that the critical regime. In
Chapter 6 the other possibilities of the feedback function, with 0 < a < 1 and a =1
respectively, will be discussed. An overview of all the notations and theorems of this
thesis can be found in the next section.

This thesis is highly inspired by the work of Nadia Sidorova [8]. The structure of
this thesis is based upon it, as are most of the proofs. In some proofs I used a
different approach, since the original paper had some minor mistakes or since I was



convinced that it was better when it was written down differently. Furthermore, I
wanted to complete the story of Sidorova, by also considering o < 1, the negative
feedback scenario. This way, my thesis has become a complete story.

At last, I would like to thank my supervisor Wioletta Ruszel for introducing me in
the fascinating world of balls and bins models and for her guidance during this
whole process. Your ideas and thoughts about this subject pushed me to sharpen
my thinking and brought my work to an higher level.



Overview

This is an extra chapter to give a clear overview of the notations of this thesis and
to make clear which theorems are discussed in every chapter.

Notation and symbols

Throughout this thesis, the following two conventions will hold. In general we will
use that zero is a natural number. That means that N = {0, 1,2,3,.....}. When we
are dealing with a sequence (A, ),en (possibly of random variables), we will often
write (A,).

Below, a list of the notations used in this thesis is written down. Everything is
discussed in this thesis as well, this is here solely to give an overview.

Q the sample space

w an elementary event

F sigma-algebra of events
P the probability measure
(Q,F,P)  the probability space

sequence of number of balls added at time n € N
sequence of total numbers of balls
sequence of number of balls in the first bin
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sequence of number of balls in the second bin
sequence of proportion of balls in the first bin
sequence of proportion of balls in the second bin
binomial distributed variable in relation with 7,
standardized version of B,,

the event dominance

the event monopoly

the growth parameter

the supercritical regime

the subcritical regime

the critical regime

the set of equilibrium points

the set of stationary points
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Theorems

In this section an overview of the theorems, that are proven in this thesis, is given.

In chapters 3, 4 and 5 we assume that a > 1.

Chapter 3
Theorem 3.1: In the supercritical regime holds that P(M) = 0.

Chapter 4

I

Theorem 4.1: Suppose that > (‘;—:) ’ < 0. Then, almost surely, dominance
holds.

Chapter 5
Theorem 5.1: Assume that § = 0. If (p,) is bounded, then P(M) = 1. If p,, — oo,
then P(M) € {0,1}.

Theorem 5.6: In the critical regime P(M) € [0,1), depending on the summation

ZOO Tn+1
n=0 7',3‘ *

Chapter 6

Theorem 6.1: Suppose 0 < a <1 and ) >, (‘;—:

2
> < 00. Then, almost surely the
1

5 .

proportion of balls in both bins converges to (3, 3)

Theorem 6.2: Assume o = 1. Then ©,, converges to a random variable and
P(D) = 0.



1 Theoretical framework

In this chapter several definitions and theorems that will be used in this paper, are
discussed. Most of the definitions and theorems will have to do with martingales
and convergence. Readers who are already familiar with these subjects, can skip
this chapter and go to Chapter 2.

In this chapter the random variables are defined on the probability space (£2, F,P).
Here €2 is the sample space, F the sigma-algebra of events and P the probability
measure. The definitions and properties of these are not discussed here. For this,
the reader is referred to [3, chapter 1|. The followings sections are based on several
chapters of the books [3] and [9], unless stated otherwise.

1.1 Martingales

Definition 1.1 (Stochastic process). /5, pg. 189] A stochastic process X is a
collection of random variables parametrized by a set T i.e. X = (Xy)ier-

Typically, we are interested in two different cases for the set 7.

(1) T'=N. This means that 7" is discrete. The stochastic process is then called a
discrete-time stochastic process.

(2) T'=R,. In this case, the stochastic process is a continuous-time stochastic
process.

In this article will only encounter discrete-time processes, where T' = N. To be able
to define martingales, we need a couple more definitions.

Definition 1.2 (Filtration). A increasing sequence (F,,)nen of sub-c-algebras of F
1s called a filtration.

Most of the time the natural filtration is used. That is, F,, = o(Xj, ..., X,,) for some
stochastic process (X, )nen - This means that the information available at time
n € N about w €  is given by the values

Xo(w), X1(w), ..oy Xp(w).

Definition 1.3 (Adapted process). A stochastic process (X, )nen is adapted to
the filtration (F,)nen if for every n € N, X,, is F,, measurable.

If a process (X, )nen is adapted, it intuitively means that for w € Q X, (w) is known
at time n.



CHAPTER 1. THEORETICAL FRAMEWORK

Definition 1.4 (L? spaces). Let X be a random variable and p > 1. We say that
X e LPif
E[|X"] < oco.

Definition 1.5 (Integrable). Let X be a random variable . This variable X is
integrable, when X € L, so
E[|X]] < co.

Definition 1.6 (Martingale). A stochastic process (X, )nen is a martingale with
respect to the filtration (F,)nen if the following three properties hold for all n € N:

(1) (Xp)nen is an adapted process.
(2) X, is integrable.

The last property is called the martingale property.

1.2 Convergence

In this article a few different notions of convergence will be used. In this section,
these will be discussed. The first definition of this section is one that will be used
often in this paper.

Definition 1.7 (Almost surely). An event A € F is said to be true almost surely,

if
P(A) = 1.

When an event happens almost surely, the set of points where the property does not
hold may be non-empty, but it has probability 0 by definition.
Linked to this definition is the following notation of convergence.

Definition 1.8 (Almost sure convergence). A sequence of random variables
(Xn)nen converges almost surely to a random variable X, written as X, =X, if

]P’(lim Xn:X):l.

n—oo
We will often write X,, converges to X almost surely.
To be able to state two theorems that will be used in this thesis, two more

definitions are needed.

Definition 1.9 (Convergence in £P). Let p > 1. A sequence of random variables
(Xn)nen converges in LP to a random variable X if

lim E[|X, — X|!] = 0.

n—o0

We write X, XX then.

Definition 1.10 (Bounded in £P). [5, pg. 222/
Let p > 1. We say a stochastic process (X, )nen is bounded in LP if,

supE [| X,|"] < .
neN
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Theorem 1.1 (L? convergence theorem for martingales.). Let p > 1 and
(Xn)nen @ martingale bounded in LP. Then there ezists a random variable X, with
E[|Xw|] < 00 and X,, — X almost surely and in LP.

Proof. This theorem and proof can be found in [5, pg.222, 223]. ]

Theorem 1.2 (Martingale convergence theorem). Suppose (X, )nen is a
martingale, with

sup E(|X,]) < oo,

neN

then X, converges to X = lim, o X, a.s and E(|X]|) < oc.
Proof. The proof of this theorem can be found in |3, pg. 508|. ]

Before we continue with the next lemma, we need to get familiar with some specific
events. Denote (A, )nen a sequence of events, meaning the elements of this sequence
are measurable subsets of 2. Then we call A* the limsup event. This means that

A" =limsup A,, = ﬁ G A,

n—00
m=1n=m

Take w € Q. If w € A*, we say that w € A, infinitely often (shortly i.o.). It holds
that for all m > 1, there exists an n > m, such that w € A,,.

Let o e
A, = hgg.}fA" = L_Jl O A,
This is the liminf event. We say that w € A, if and only if w € A,, eventually for all

n (shortly a.a, almost always). This means that there exists an m € N such that for
all n > m holds that w € A,,. At last, the following relation will be used often

(hm sup An) = liminf A7 .

n—00 n—00
Knowing all this, an important lemma can be introduced.

Lemma 1.3 (Borel-Cantelli). Denote (A,)nen a sequence of events. Then if
> P(A,) < oo, we have that

n=1
P(A*) = 0.
Proof. Assume Y >°  P(A,) < co. We need to proof that P(N%_, U, A,) = 0.
Take B, = U2, A,. This is a decreasing sequence, since we take smaller and

smaller unions of elements. By continuity from below and sub-additivity of the
probability measure, we get the following:

ogp(,q*):p(ﬂ Bm> = lim P(B,) = lim P(U An> < lim > P(A,)=0.
m=1 n=m n=m

In the last step we used that the tail of a convergent sum goes to 0.
We can conclude that P(A*) = 0. O



2 Terminology

In this chapter the notations of the rest of this thesis will be explained. This
chapter is highly inspired by the work of Sidorova |8, Section 1].

Recall we are working with the feedback function f(m) = m®. Recall that the most
interesting case is when a > 1, the case that we consider in the first chapters. We
deduce relations here that will be applied later in this thesis.

2.1 Notations

In this paper we are assuming there are two bins.We are analysing the
time-inhomogeneous scenario, where at time n there is a certain number of balls,
from now on ¢, added to both bins together. We assume the balls are
independently added to both bins, meaning a part of the balls goes into the first bin
and the rest of the balls into the second bin.

Let (0,)nen be the sequence representing the number of balls added at time n,
assume it is positive. Denote (7, ),en the total number of balls at time n. We
assume that 79 > 0, the initial number of balls is positive. The following relation
can be deduced:

n
Tp = To + g ;.
i=1

For simplicity, we denote 79 = o such that this relation becomes

Tp = zn:cri. (2.1)
i=0

This can also be written for all n > 1 as
Tn = Op + Tn—1-

Most of the time we will look at the numbgr of balls in the first bin: 7,,. The
qumber of balls in the second bin is then 7T,, = 7,, — T},. We assume that Ty > 0 and
Ty > 0, both bins already contain balls at time 0.

Since only two bins are considered, the situation we are in is symmetric. That’s why
it is sufficient to consider one bin most of the time. The proportion of balls in the

first bin is denoted by

T,
0, =—"¢€[0,1].

Tn

10



CHAPTER 2. TERMINOLOGY

Equivalently, the proportion of balls in the second bin is equal to

0,=1-06,=—.
Tn
We define
n+1
Th1 =T, +Bpp =T+ Z B; (2.2)
i=1

where B, is binomial distributed random variable with size o, 1; and parameter

o5

p, = :
Y04 (1-6,)

We often write P, = 1(0,,), with

xa

Y(x) = — for z € [0,1].

%+ (1 —x)

In exactly the same way, this can be done for the second bin, where EnH is a
binomial distributed variable with size ¢,,; and parameter f’n =1-PF,.

Note that this way, the probability that a ball lands in a certain bin depends on the
number of balls already in the bin to the power a, with & > 0. When « > 1, 9(x) is
a convex function. This means that the probability that a ball lands in the bin with
already many balls, is relatively high. When « < 1, ¢(x) is a concave function.
Exactly the opposite of the previous case happens. The bin with already a lot of
balls is less likely to get a ball than the bin with less balls. In this case, there can be
imagined that this system converges, since fluctuations will cancel themselves out.
When a = 1, we have that P, = ©,, and the probability that a ball lands in a
certain bin is proportional to the number of balls already in that bin. All these
cases will be discussed in the next chapters.

To proof several theorems, we need to be able to upper and lower bound the
function ¢ (x) for x € [0, 1]. Since in this thesis we are considering the positive
feedback function most of the time, we assume from now on that o > 1. Then we
have, for z in the interval [0, 1], that ® 4 (1 — 2)® < 1. That means we get

x.Oé

< —
T4 (1 —x)°

To find a lower bound we need to do more work. For that we consider the
denominator as a function itself, f(x) = 2* + (1 — z)®. This function has one
extremum, = = 1. Checking with the second derivative, we find that f”(z) > 0, thus
f(3) =2(3)~ is a minimum. This gives

flz) >2 (%) =2 (71,

and ]
- S 20&71 .

()
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Since ¥ (z) = xo‘ﬁ, we get
Y(z) < 220t
To summarize, ¢)(x) can be bounded for z € [0,1],a > 1 by:

r* < (z) < 27t (2.3)

The random variable B,,;1 only depends on F,, = o(Bjy, ..., B,) through P,.
Intuitively, this means that B,,;; does not dependent on the past through anything
other than P,. Instead of this binomial distributed variable B, 1, we will often use
the standardized version of this variable. Since B, is binomial distributed and is
dependent on the past, we get the following conditional mean and variance

Ez, [Bnii] = o1 Py (2.4)
Var]-"n [BTL+1] = Un+1pn(1 — Pn)
This gives the following standardized version of B, :

Bn+1 - Un+1Pn
Vo1 P(1—P,)

The conditional mean and second moment of this variable are as follows

(2.5)

Ent1 =

Bn+1 - Un+1Pn
| VOn1Pa(1— Py)

. Un+1Pn - Un+1Pn o
\/Un+lpn(1 - Pn)
Bn — Un Pn B2 _QBn n Pn n 2Pn2
Ez, [e2,,] =Ex, |(—== Intlin 2| =Ky, { - e H— o
i \/Un+1pn(1 _Pn> Un+1Pn<1 Pn)
Un+1Pn(1 - Pn) + (Un+1Pn)2 - 2<O-n+1Pn)2 + O-n+12Pn2 o

_ —1.
Un+1Pn(1 — Pn)

Here we used that for a random variable X
E[X?] = Var [X] + E*[X].
By the properties of the conditional expectation in [3, pg. 471], we get

Elent1] = E[Ez, [eni1]] = E[0]
Elen 1] = E[Ez, [en,4]] = E[1]

0.
1.

Using the relations (2.2) and (2.5) , T,,4+1 can be expressed differently, because it
holds that

Bn+1 = JTL-HPTL + 5n+1\/an+1pn(1 - Pn)

This gives, where P, = ¢(0,,),

Tn+1 = Tn + Un+1¢(@n) + 5n+1\/0n+lpn(1 - Pn)- (2~6)

The focus of this paper is on two different events, namely dominance and monopoly,
denoted by D and M respectively. Monopoly is stronger than dominance, in the
sense that dominance occurs when monopoly occurs. This means that

M CD.

12



CHAPTER 2. TERMINOLOGY

The two events can be denoted as follows
D ={lim 6, € {0,1}}
n—0o0
M = {B,, = 0 eventually for all n} U {B, = o, eventually for all n}.

Intuitively, the difference between those two events is the following: When
dominance occurs, we can say that eventually the number of balls in one of the bins
is negligible. We will later see that this corresponds with two of the three
equilibrium points of this two bins model. When monopoly occurs we see that
eventually all balls are added to one of the bins, so the other bin does not get a ball
anymore. Note that the event M can be written in terms of a liminf event. For this,
let C, = {B, =0} and G,, = {B,, = 0,}. Then

M = {B,, = 0 eventually for all n} U{B,, = o, eventually for all n}
= {liminf C,,} U {liminf G, }.
n—oo n—o0

2.2 Important parameters

To be able to distinguish between different cases that we will see in this thesis, we
need to work with several parameters. We start with the growth parameter 3, to be
able to show whether or not monopoly occurs:

f = lim a "log(m,).
n—oo
It holds that this parameter shows the growth of 7,,, because lim,,_,., ™ = 0 for
a > 1. Since both «, 7, > 1, we have that § € [0, oo]. By different values of 5, there
can be distinguished between 3 regimes. Below the three regimes and values for
are described.

(i) Supercritical regime: = oo.
We will show that P(M) = 0 in this case. No other parameters are needed for this.
(ii) Subcritical regime: = 0.

To be able to show whether monopoly occurs or not in this regime, we need to
consider (p,)nen. This sequence is mainly useful in the subcritical regime, but will
be used more in this thesis. The elements of (p,,) are as follows

- On+1

Pn = .
Tn

We will see that the probability on monopoly depends on the fact whether (p,,) is
bounded or not. In fact, monopoly will happen almost surely here, unless the
sequence (0,) is irregular.

(iii) Critical regime: 5 € (0, 00).

In this regime the probability that the event monopoly occurs will be smaller than
1, depending on some extra conditions of (7,,). This will be made more clear in the
examples at the end of this chapter.

13



CHAPTER 2. TERMINOLOGY

The above suggests that the transition from no monopoly to monopoly happens
when (7,,)nen changes from growing fast to growing slowly, since 8 = oo corresponds
with (7, )nen growing much faster than =" goes to 0 in the limit. To the contrary,
£ = 0 implies that a~™ goes faster to zero than log(7,) diverges to infinity. However,
in the critical regime, this is no longer the case.

Throughout this thesis, we assume the following

[e.9]
On

= 0, (2.7)

T
n=0 "

Next to this, in some cases we will assume that
-
TTL

or we will suppose that

—% < Q. (29)
n=0 Tn

This can be interpreted as the fact that the randomness of the balls is not too large.
The second assumption will be needed in the negative feedback scenario in Chapter
6. The third will be necessary to prove almost sure dominance in the positive
feedback case in Chapter 5. Later in this chapter there will be shown that these
assumptions will hold, when we choose (o,,) such that it is not growing too fast.

The following lemma will show that p,, is bounded, if (2.8) holds.

Lemma 2.1. Suppose that the series Y~ i—’z‘ converges. Then

n

On+1

Pn =
Tn

1s bounded.

Proof. Since we assumed the series converges, it follows that

lim —% =0
n—oo Tn

This implies that
lim 2% =0
n—0o Ty,

Precisely, this means that for all € > 0 there exists an N € N such that for all
n > N, 2= <e. Choose € = % Now assume by contradiction that

Prn — 0O.

14



CHAPTER 2. TERMINOLOGY

On+1
py > Q.

This means for all a € R and for all K € N there exists n > K such that
Choose a = % Then we get that UT—L +1< % Then it holds that

On+1 o On+1
Tn+1 Tn + On+1
1 - 2 - 1
w417 37 2
On+1

Choose K = N. Then we have, by the converge of the series, that for all n > N
should hold that =< % But we also proved that there exists an n > N such that

> % This is a contradiction. Hence we can conclude that (p,,) is bounded, thus
that p, < M for M € R. O

2
From this it follows, when we know that p,, diverges to infinity, Zz‘zo :—ZQ cannot be
finite. When p,, is bounded, we can say more about the parameter (.

Lemma 2.2. Suppose p,, is bounded, then it holds that

f = lim a "log(r,) = 0.

n—oo

Proof. Suppose (p,,) is bounded by M € R. The following relation can deduced
recursively

o
n=nto=n (14 2) =@+ o)(+ o) = mll+ w1+ )
1

n—1

Tn = To H(l + pi).

=0
Using this relation, we get that

n—1

a "log(r,) = a " (log(7o) + Z log(1+ p;) < a "(log(my) + nlog (1 + M)).

Here we used that x — log(x) is an increasing function for x > 1. Taking limits on
both sides we obtain

= lim a "log(r,) < lim a "(log(m) + nlog(l + M)) = 0.

n—oo n—oo
Since § > 0, we can conclude that 5 = 0. n

To be able to prove several theorems, the following distinctions are often made:
(p) : the sequence (p,,) is either bounded or tends to infinity.

(o) : the sequence (0,) is either bounded or tends to infinity.

This last condition may sound a bit strange, since there are no other options for
(0y,) to be bounded or diverge when n — co. In the proofs of the theorems that we
will encounter in the next chapter, it is mostly used as a tool to distinguish between
several cases. We will assume (o) and (p) hold everywhere. Sometimes it will be
mentioned that (p) holds, to be more clear.

15



CHAPTER 2. TERMINOLOGY

Now the useful conditions are defined, we will show five examples where different
functions for o,, and 7,, are used and where in the first two examples we show we
fulfil the three conditions (2.7), (2.8) and (2.9). The goal of these five examples is to
get an intuitive idea of the three different regimes.

Examples
(1) o, is constant, i.e o,, = 3 for all n € N.

It is trivial now that o, is bounded in this case. For simplicity, we write
09 = Tp = 3, but in essence it could be any number. It does not change the outcome
of the bounds. Using relation (2.1), it holds that

=0

We notice that

On+1 3 1
P Tn 3(n+1) (n+1)

Thus p, is also bounded for all n € N. This implies by Lemma 2.2 that we are in
the subcritical regime. The summations can be expressed as follows

20, — 3 =1
2:%7'”:”222)3(71%—1) Zn—i—l
[e'e] 2 o0
% (%) S
[o¢] O’n _OO
Z( ) "X 1>%<°O

(2) oy, is linear, ie. o, = n.

Clearly, o,, diverges when n — oo. Since we assumed that 75 > 0, set oy = 1. We
have the following expressions for 7,, and p,

“ 1 2 2
i=1

_ Op (n+1) <(n+1)_g<3
Pn = 7, nedD2 = et o =
2 2

We can conclude that p,, is bounded in this case. We are again in the subcritical
regime. The assumptions for the summations are also satisfied

.o > n > 2 = 2
0 o 2 0 4 e’} 4
;(_> :;(n+1+%>2§;<n+1>2<m
YA ST R -
;(Tn) _;)(n+1+%)§_;(n+1)§<oo



CHAPTER 2. TERMINOLOGY

(3) o = 37" ], b > 0.

It holds that the value of 7, = ZZ:O o, will be of the same order, hence we can take
7o = [3"e®" |. The regime won’t be different to the regime of the actual value of 7,,.
We can bound this as follows

3nlea" T < (37" | < 3me™".

The value of # can be bounded by calculating it for both the lower and upper
bound, call these bounds §; and [, respectively. For the lower bound, we get

f1 = lim a "log (3”_166‘”_1) = lim a "log (3” 1) + hm o ”log( an” 1)

n—oo n—oo
1 1
lim (n—1)log(3) + =

For (35, exactly the same can be done:

B2 = lim a " log (3”60‘")

n—oo

= lim o "nlog(3) + lim a "log (e*") = 1.

We know that 51 < 8 < 5, and thus § € (0,00). This means we are in the critical
regime for this choice of (0,,).We will see later that in this regime, the summation

[eS)
Tn+1

: : T

n=0 "

plays an important role. In fact, whether it converges of diverges will affect the
probability on monopoly to occur. To calculate an infinite summation, the ceiling
function can be ignored. We get

00 o) n+1 [ee)
Tl 3n+16a 3n+1

g = E ol — E < 00,
TN 3na6a 3no¢

n=0 n n=0 n=0

since @ > 1. Later we will see this implies that P(M) € (0, 1).

(4) on=[5"e"].

We can again say that 7, = Lln @"]. Note that the calculation of the value of 3 can
be done exactly in the same way of the last example, so that won’t be done here.
Recall that this means we are again in the critical regime. The interesting difference
is in the summation ) >, ™. In this case, we get

00 [e%S) 1n+1 an+1 oo 1n+
> et = e = 2
Fo - 1na an+1 l

Later, we will see that this will imply that P(M) = 0.

The last two examples indeed show that in the critical regime, a relatively fast
growing 7, can imply monopoly with positive probability, but when 7, grows
relatively slowly this is not the case anymore. This is indeed exactly the opposite of
what happens in the transition from the supercritical to the subcritical regime.

17
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(5) on = [exp{e®"}].

Note, that as in the last two examples, we can say that 7, is of the same order and
that 7, = [exp {€®"}]. This gives the following lower bound for 3:

= lim a "log(r,) = 71113010 a "log ((exp {eo‘ }]) > lim a "log (exp {60‘ })

n—oo n—oo

. _ n
= lim o "e* = o0,
n—oo

by the fact that o > 1. This means we are in the supercritical regime.

We have seen enough examples to start proving several theorems. This will be done
in the next chapters.

18



3 No monopoly

In this chapter, there will be proven that in the supercritical regime monopoly never
takes place. Note that in this chapter we cannot assume that >~ % < 00, since
by Lemma 2.2 it would imply that S = 0. The approach of this chapter is inspired
by the proofs of [8, Section 2.

The aim of this chapter is to prove the following theorem:

Theorem 3.1 (Supercritical regime). Suppose o > 1 and § = co. Then
P(M) = 0.

We start with a lemma. When we can prove this holds, the proof of Theorem 3.1
will follow.

Lemma 3.2. If

o0

On41
> = o0,
T

n=0 "

then P(M) = 0.
Proof. Let Y,, = 3" | 0;P,_1. We start proving that the following claim holds

{Yoo = 00} C {nh_g)lo T, = oo} : (3.1)

Note that the left event is equivalent to {}°" | Ez, ,[B,] = 00 }.
From (2.2) we can deduce that for every n € N

T,=Ty+ M, +Y, (3.2)

M, = Z(Bz - Uz'Pz‘—l)
i=1
We will show that (M,,),en is a martingale with respect to the natural filtration
Fn=0(By, B, ..., By,). It indeed satisfies the properties of Definition 1.6:

(1) M, is clearly F,-measurable, since B, is JF,, measurable by construction. Thus
(M,,) is adapted to the filtration F,.

(2) Since B,, < o, for all n € N, we have that |M,| < nmax(oy,...0,) < co. Hence
E[|M,|] < E[nmax(oy, ...0,)] < 00.
Thus M, € L.

(3) ]E[Mn+1|.Fn] = E[Bn+1 — Un+1Pn + Mn‘fn] = an+lpn — 0n+1Pn -+ ]E[Mn‘fn] =
E[M,|F,] = M,, since the conditional expectation is linear and both o, P,
and M,, are F,, measurable.

19
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Now we know that the process (M,,) is a martingale, we can use the properties of
the quadratic variation of discrete martingales, see |9, §12.13|. For this we need to
have that M, € £? for all n € N that is, we need to have that

E[|M,|*] = E[M?] < co. Using the same bound as above, we notice that

E [|M,|*] < E [(nmax(o1,...0,))*] < 00

We can conclude that M, € £2 for all n € N. That means we can use the quadratic
variation of a discrete martingale to be able to conclude almost sure divergence of
T, using (3.2). We call the quadratic variation process ((M),)nen, see [5, pg. 206].
Then we get

(M), = > E[(M; — M;_1)* | Fi_i]

i=1
n i i—1 2

:ZE (ZBk_UkPk—1—ZBZ—JlB_1> | Fi1
=1 k=1 =1

= ZE [(Bz - UiPifl>2 ’Jrifl]
i=1

n

= Z (E}—i—l [Bﬂ - QE}—z‘—l [Biaipi—l] + 0-12P12—1)
i=1

= (0iPioy — 0P2y + 07 P2, — 207 P2 + 07 P2 )

=1

n
2
= E o P4 _O'i-P'L;l
i=1

= Zaipifl(l - P4) <Y, (3.3)
i—1

The statement (3.1) can be proven by assuming that Y., = co almost surely .Both
divergence and convergence for the process ((M),) will be considered to get the
desired result.

Suppose that ((M),) converges, then by [9, § 12.13] the process (M,,) converges
almost surely. According to (3.2), this gives that (7},) is the sum of a constant, an
almost surely random variable and a diverging random variable. This means we get
the following:

P(lim Tn:oo> :IP(lim To—i—Mn—i—Yn:oo) :IP’(lim Yn:oo> 1. (34)

n—oo n—o0 n—oo

We can conclude that 7;,, — co almost surely as well.

Suppose that ((M),) diverges. Then almost surely holds that

.M,
A0, =
see [9, §12.14] Since (M),, <Y, this gives that
lim Mo _ g
nheo Y,
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almost surely as well. This means the following holds, almost surely, since
lim,, o Y,, = 0o almost surely and Y,, > 0 for all n € N,

LT M
Y, Y, Y,

. T,

T}Lrgo?n20+0+l

lim 7,, = lim Y,, = oo.
n—oo n—oo

This means 7,, — oo almost surely. This completes the proof of claim (3.2). When
it succeeds to show that Y., = oo almost surely, the lemma is proven. Observe that
by (2.3) and the facts that P,y = ¢(0,_;) and T,, > 1 for all n € N, almost surely,

9] 9] oo Ta 0o o
Yo = Zan@/)(@n_l) > Zan@g_l = Zan TZ_I > Z Tan = 0.
n=1 n=1 n=1 n—1

n—1 n=1

This means we have that P (Y,,) = 1. From (3.1) we get that

]P’(YOO) < P(lim T, = oo) .

n—oo

This gives that P (lim,,_,o, 7, = 00) = 1. Recall that T, is the number of balls in the
first bin. Since this argument holds in general (and does not focus on one specific
bin), we now also have that T, — oo almost surely.

Recall that the event monopoly is defined as follows:

M = {B,, = 0 eventually for all n} U{B,, = o,, eventually for all n}.
Since the balls in both bins are going to infinity, we notice that

P(M) = P({B,, = 0 eventually for all n}).

When one bin does not get anything in the end, the other bin will get everything,
and the other way around. This gives the following

P(M) = P({B,, = 0 eventually for all n})
=1—P({B, = 0 eventually for all n}°)
=1-P{B, >0}1io0)

Since T,, — oo almost surely, it follows that P({B,, > 0} i.0 ) = 1. We can conclude
that indeed P(M) = 0. O

We have enough information to prove the theorem where this chapter is about,
Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, it suffices to show that g = oo implies that
%7, 2 = 0o. Assume, to the contrary, that 8 = oo, but > 02 2 = ¢ with a

n=0 72 n=0 r&

constant ¢ € R. Then it follows that lim,,_, ”:Il = (. This means that there exists

an N € N such that for all n > N we have that 72l < 1. This implies that

(8%
Opt1 < T, -

21
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Using the relation that 7,, = 7,,_1 + 0,,, we can make the following estimation for all
n>N

o <2 < (2T + 275 5)°
< 2 (r, )Y <L <X ot par (3.5)

Tp = Tn—1+0n < Tyt + 7y

Now we need to distinguish between two different cases. Suppose that 1 < a < 2,
then we can upper bound 7,, as follows:

n—N— 1 n—N aniN

Ty < 22 i<o T]‘i‘, < (27y) o T .

This implies, since N is a fixed number,

an—N
f = lim a "log(,) < lim a "log((27y) =1 )
n—00 n—oo
n—N -N

—-n

= lim «
n— o0 o —

We assumed that [ = oo, so this is a contradiction.

Suppose now that o > 2. Then we get from (3.5) the following upper bound for 7,

an n—N

< 920 TK‘, < (27n)"

n—N

This means that

n—N

)

= lim a "a" N log(27y) = a N log(27y) < co.
n—oo

f = lim a "log(r,) < lim a "log((27y5)*
n—00 n—o0

We assumed that [ = oo, so this is a also contradiction. From the above, we can
conclude that )~ | 7 = oo for all > 1, and thus that P(M) = 0 by Lemma
3.2. ! 0

Notice that from this lemma it follows that P(M) = 0 when o = 1 and thus the
feedback function is f(m) = m. This means there is no feedback in this case. The
simple proof can be found in the lemma below.

Lemma 3.3. Suppose o« = 1. Then P(M) = 0.

Proof. Recall that we assume everywhere that )2 _o 2+ = oo. This means, since
Oni1 > 0p, that we get the following result

o0

On41 On+1
= >\ "2
Siom _Shomn s S,
n=1 " n=1 n=1
By Lemma 3.2 it follows that P(M) = 0. O

In the last chapter of this thesis we will show that in the no feedback case there is
no dominance as well.
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4 Dominance

In this chapter almost sure dominance in the positive feedback case will be shown.
The theorems and proofs are based on [8, sections 4 & 5]. The aim of this chapter is
to prove the following theorem:

IS

Theorem 4.1. Suppose a > 1. Furthermore, assume thaty (‘:—:) * <00, Then
P(D) = 1.

We will first need to prove an important, difficult lemma to make sure we can prove
the main theorem of this chapter. In this lemma, we show that ©,, deviates from
the equilibrium far enough infinitely often. Before we get started with this, we need
to know more about the specific equilibrium points of our model.

4.1 Equilibrium points

Equilibrium points can be thought of as points where the proportion ©,, won’t
change anymore, hence ¥(0,,11) = 6,, holds for all n large enough, see [6]. This
means the equilibrium points for both bins can be found by solving the equation

o5

ot -6 "

We immediately see that © = 0 and © = 1 are solutions to this equation. Now
assume that ©,, ¢ {0,1}. Then we find

o5
Q2+ (1-6,)°
02t =0+ (1-06,)"
0 1(1-06,) =(1-06,)"
0,=(1-6,)

:@TL

1
0 =—.
2
The third equilibrium point for the first bin is equal to © = % Since the situation

we are in is symmetric and we are working with proportions of balls in respectively
the first and second bin, we get the following three equilibrium points:

©,0) ¢ {(0, 1), (1,0), (% %)} _¢
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CHAPTER 4. DOMINANCE

The set of all equilibrium points is denoted by £. As mentioned earlier, D
corresponds with the first two equilibrium points. The third equilibrium point is
used in the next section, to show that ©,, deviates significantly infinitely often from
this point. Note we do not know anything specific about stability or convergence of
0O, yvet. We only know that if it converges, it should converge to one of these 3
points.

4.2 Deviations

The aim of this section is to prove this important lemma.

Lemma 4.2. Suppose a > 1. Let (0,)nen be a positive sequence converging to zero
and such that

o0

5, 2L < oo, (4.1)
Tn+1

n=0

Then
1 . .
P (]@n — 5\ > 0, infinitely often > =1.
Proof. Denote
1
:{\@n—§| génforallnzm}.

It holds that
Hq1 C Hoy C Hs....
and so on, meaning the events H,, are increasing. This implies

m—00

if the right hand side exists. We are going to prove that lim,, ,., P(H,,) = 0, giving
that P(H;) = 0 for all i > 1. Define the sequence of events A, = {|©,, — 1| >, }.
Then will hold that

(H?Dl ) (lglggjl > lfzn—igp

When P(H;) = 0, it implies immediately that
P(limsup,,_,,, A,) = P(|6,, — 1| > 4, infinitely often ) = 1. That is exactly what
needs to be shown.

By the mean value theorem we have

iy - =t
, R
V() =" (n.)(x — 5) +t3 (4.3)
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for n, € (3,2). Multiplying both sides of (4.3) with ‘7"“ and adding the term

oy — 1 we obtain
Tn+1 2

™ 1 op T 1 op , 1 Iy 1
T g (e = g f P () (5= 3 ) g ) = ) (2 3).

This holds since

On+1 1 o On+1 — Tn+1 o Tn

2Th i1 2 2Th41 2Tn11

We can use the expression for k, to rewrite the expression we can already deduce
for ©,, — 3. Dividing relation (2.6) by 7, and using the properties we know, we get

Q. — nf O_nw \/an n— 1 Pn71>
oo Ta Ta
1 n— n n— nPn— 1— Pn— 1
o, _L_T 1@n71+0¢(9 1)+€n\/0 1 )1
2 Tn Tn Tn 2

In the last expression exactly £,_1(0,-1)(©,-1 — 3) can be found, hence

nPn_1(1— P,_
®n - % = anl(@nfl) (@nl - 1) +éen \/O 1( 1)-

2 ™

Notice that the term ©,,_; — % is in the expression of ©,, — %, meaning the same can
be done again. This gives

1 1 On1P,_o(1 —P,_
@n - 5 - ’in—l(en—l) <f€n—2(@n_2) <®n—2 — _) +en_1 \/ 1 2( 2))

2 Tn—1

P (1—P,_
+5n\/a i 1).

Tn

= Fn—1(0n-1)(Kn—2(0n_2) (@n_z - 1) + Kn—1(On—1)en—1

2
\/UnPn—1<1 - Pn—l)

Tn

\/Un—lpn—2(1 - Pn—2>

Tn—1

+éen

Now we have seen what happens in the first two steps, this equation can be
re-iterated for all m and n > m

[n—1 T n n—1
1 1 \/O’kPk_1<1 _Pk:—l)
6” B 5 = H Kj<@]') <6m - 5) + Z [H Hj(@j) Ek o
Lj=m J k=m+1 Lj=k
—ﬁ (0 )_ S) ! 4 - ]ﬁ 1 VOkPe1(1— Py
- AN m Ty €k )
-t 2 = s Fi(65) T

(4.4)
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In the next part we are going to analyse the asymptotic behaviour of the product
1152, 55(6;).

Note the event H,, is equivalent to H,, = {—% -0, <06, < % + 0, for all n > m}.
From this we have by continuity properties of the derivative ¢'(z) and conditioned
on the event H,, that

)= (3) +0 ).

For a sequence (a;);en it holds that a; € O(6;) if there exists an M € R such that
|aj| < M; for all sufficiently large j. Note that ¢’ (1) = a. This can be plugged in
the expression for x;(0;):

. . 1 . . .
ki (0;) = —1— 4 ZitL <¢/ (—) 10 (@)) = 14 o2 L L o)),

T+l Tt 2 Ti+l Tl Ty

Using this, the following expression for H;‘:_ﬁl/{j(@j) can be obtained

k—1 k—1 I o o
1RGO ( e e e J+10<5j>>

Tj+1 Tj+1 Tj+1

_ (Tj+()é0j+1> (1_'_ Uj+10(5j))
- Tit1 Tj + Q0jyiq

Il
3
kli.
3

T
L

Let

k—1
g = | | (w) ' (4.5)

jmm N T

Furthermore, the other expression of the product can be rewritten to

Notice that

k—1 S )
I DI R
— J
mTj+an+1 € ;

if m — o0, since the latter is the tail of a convergent sum, by the assumption of this
lemma. This means that

A sequence (a,)nen = o(1) if lim,, o a, = 0. Using this, we obtain on the event H,,
for all m large enough and & > m that

T 1(6) = e Slog(u%—o@‘)) = mns(l+0(1). (46)
et I m = T; + a0 jq "
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This can be used to plug in the expression for ©,, — 3. Before that, using (4.3), w

notice, since f(z) = y/z(1 —z) < % for all z € Rso, on the event H,,, as m — oo
uniformly in w and k£ > m holds that

VP~ P) = Vi@ (L~ 0(O5)) = 5+ 0(i) = 1+0().  (47)

Now we have enough information to rewrite the expression for ©,, — % Using (4.6)
and (4.7), together with (4.4), we get the following as m — oo uniformly in w and

n>m
1 VorPe1(1 — Py
3= [T sen] (on-g+ 3 [mtiay] w2 =)
= Tun(1 4 0(1)) (@m—%+ Y %+O(1)€k\/a_k>. (4.8)

1 1 -+ O(l) TeTm,k

k=m+

Notice that

Lio(l) 1 C1+20(1)  1+0(1)
1+o(1)_§+0(1)_ 2 2

Plugging this in what we already have, we obtain the following expression

@n—%zwmm(uo(l))(@m_l HO k_zﬂ \/_>

TeTm,k

In the last part of this proof we will explore the behaviour of > _ 41 €k ‘ﬁ . For

that we use the characteristic function for the variable ¢, and will show 1t is close to
normal under certain conditions. Recall that for a binomial variable X with
parameter p, we have the following characteristic function, |5, pg. 304]|

Elexp {itX}] = (1 - p +pe")".

Using this, we obtain

. X —np it ! _itymp
exp § it———— =(1l—p+pexpl —— e Vi-r
np(1 —p) np(1 —p)

it 12
<1+ ihyp

t?’ " _ity/np
O e vVi-p,
(np(l —p)/np(1 —p)> >

In the last step we used the Taylor expansion of the exponent. Notice that

E

O (np(l_p)f/np(l_p)) can be written as O( f) if error terms are not too large. For

this, we need to make sure that the denominator cannot become really small. This
can be obtained by setting }L <p< %. Notice, using the Taylor expansion, that
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log(1 4 z) ~ x. Using this and taking the limit of n — co uniformly in § < p < 2
and t, we get

o L X —m || _ ityp P b ”6_“1@
p{t np(l—p)}] <1+ n(l—p) 2"(1—P)+O(”\/ﬁ))
NN ityp t3 _ity/mp
o o (14 I o)) - 2]
e ityp S\ itymp
B p{ ( n(1—p) 2n(1—p)+0(n\/ﬁ>> vl—p}

con{ Lm0

Since we know ¢, is exactly like the expression in the expected value, we know that
the following holds, when & — oo uniformly in w and ¢,

, —? t3
Ef,_, [eltEk:| = exp {T + 0,0 (Uk\/U_k) }

Now we need to work towards the expression from what we want to know the

distribution. First, consider the term exp {%%}. Then the conditional

expectation is equal to, when m — oo uniformly in w and ¢

E

3
Exit\/O) —t? o 3o
]E]: _ eXxpy —— = exp + UkO
o {MkLWkl,ka }] 2 (Mkfl,kﬂ'kfl,ka)Q (Nkfl,kﬂ'kfl,ka)gUk\/U_k
t? o < 13 )
=expy — & + 0,0
{ 2 (k-1 kTh—1 T )? (Hk—1 kTh—1 6T )
t2o o3
—exp{ —=g——a—— + O(1) . ~ 0.
201 kT kT (Mh—1,kTh—1,kTh)
Let

1
n 2
2 : O
ILL , = _— .

k=m+1 ™k

By applying the tower property [5, pg. 174], by noticing that F,, C F, for n > m,
we obtain the following result for each fixed t, as m — oo and n > m

it = o - o 1 u o

2 3
Hm.n k1 T,k Tk k=m-+1 :ummﬂ—m,ka lum,n k=m+1 7Tm,k7_k:

(4.9)

Er,

m

Note, by plugging in fi, ,,, notice that

Ok

n
n n —_—r
Z Uk . Z Uk Zk:m+1 7r72n,k7—13 - 1
2 2 n ok on = 1.
[Zk:erl

2 g 2 2 = n
k=m+1 lum,nﬂ-m,k;/rk k=m-+1 7"72n,n713 Trm,nTk Zk:m+1 ﬂ?rl’kT]?
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When we use this in (4.9), we obtain the following result

n

1t Z e vk ] :exp{—g%-O(l)% Z %} (4.10)

Er,
,um,n k=m+1

We will show now that

— —_ (4.11)
tends to zero as m — oo. We are going to consider two different cases for this, since
we assumed that (o) holds.

(ii) (oy) is bounded, i.e. for all i > 1 we have o; < o, with o € N.

We start with (i). Observe the following holds for all non-negative z; with i € N and
for all m

3

(x1+ o + ompy)2 = ml\/(xl +xo4 oo+ Ty) + :EQ\/(:El + 2o+ oo + 1)+

T/ (T1 4 To + oo+ ) > 21 /T1 + To /T + oo + T/ (T,

3 3 3
=27 +x3... .+ xh.

Applying this on 43, ,, we obtain

3 0y
Ium,n Z Z 3 3

T T
k=m-+1 kK

> min \/_Z

m+1<k<n i m ka

Giving

n
D T L
—_ = max ——.
3 3>~
[T W Tk e M ng1)<kan Ok (m)<k<n (/0

When m — oo uniformly in n, we will have, since o; — 0o, that
MAX (1 41)<k<n == W — 0. Since the terms are positive, that is the desired result.

Now the other case (ii) need to be considered. Suppose that o; < o for all ¢ € N.
The idea is to bound the expression (4.11). Both upper- and lower bounds for o;
and 7; are needed. We know that 1 < g; < ¢ for all ¢ € N. For the other bounds we
use that ¢ < 7; by definition of ;. Furthermore it holds that

7; < max op(i+1) <o(i+1) <201 for all i € N. (4.12)

Since 7y, is part of ji,,, and the summation in question we need both an upper-
and lower bound. First, we need to rewrite (4.5). This gives, using that
Tj+1 — Oj41 = Tj, the fOHOWiIlg

29



CHAPTER 4. DOMINANCE

k—1

. T + Q041
T,k = j]:'[’b Tisl
k-1 -
= exp Z log(1 + (a — 1)E)
j=m
:exp{ Z log(1+ (a—1)— )} (4.13)
j=m+1

Using a Taylor expansion for log(1 + x), there can be derived that

log(1 + ) = x4 o(1), the variable itself plus some convergent error term. This way,
we can derive the upper and lower bounds for 7, ;. Using this alternative
expression and the upper bound for ¢; and lower bound for 7;, we obtain as m — oo
uniformly in & > m

ﬂm,k:exp{Zlogl—i— a—l) }<exp{210g1—l— (o —1)— )}

j=m+1 Jj=m+1 j
= exp {((a ~ Do +o(1)) Y ]l} = exp{((a = 1)o + o(1))(log(k) — log(m) + o(1))}
j=m+1
f(a—1)a+o(1)

mla—1)o+o(1) "

In the same way the lower bound can be found. For this, use (4.12),

j=m+1

~ exp {(% vo() Y %} = exp { (224 o) tox(h) ~ togtm) + o(1)

kal)+ )

PC= R

Observe that for all v > 1 the following holds
- 1 > 1
- —v+o(1) - -
> Tem < / k dk = — oy
k=m+1 m

This holds when m — oo uniformly in n > m, where n is sufficiently large. Since
there is an error term in the equation, it holds that for n > m? the expression will
hold with equality. Using what we did above, we can upper bound /,Lf’nm to be able
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to lower bound afterwards. Notice that Tl > ﬁ This gives

m,n

3 3
n 2 n 2
3 _ E : Ik
/I’m,n - [ 7T2 7_2] Z [ Z (k(a 1)o+o(1) )2 ) ]

k=m+1 = mukk k=m+1 \ple=Do+o(D)
_ 3
(m(a71)0+o(1))3 n 2
- 80-3 Z (k a—1)o+o(1 2k2
Lk=m+1

Njw

<m3(a—1)a+o(1))

- 803 Z L2(a— 1)U+2+o(1) ]

Lk=m+1
3(a— 1)0—7(2(0[ 1o+1)+o(1) __

=m m_%+°(1).

Clearly, this gives the following result

< mate), (4.14)

Hi
Now we are able to upper bound the summation part of the term we want to
approximate. Using again the same relations as in the last part, we obtain the
following
n
DLy

3
— k k > +o(1)
ko T e m+1(ﬁ%;7r——) (20k)?

m o to(l)
n
= 3(a—1
+ +3
k=m-+1 k= o(1)
3(a—1 3 1
—om (aU ) (CVU 7)_2—&-0( 1) — O'm_2+0(1). (415)

Combining (4.14) and (4.15), the following can be derived

n

1 o 1
% S O'm2+ o(1)-2 = O‘m_§+o(1) — O,

3
Himn S50 Tk Tk

since m — oo uniformly in n > m?2.

We are almost ready to finish the proof of this important lemma. The only thing
that is left to do is concluding that indeed P(H,,) is zero for all m. For this, take a
sequence in N, (n,,)men, satisfying the necessary condition that n,, > m?. This is
needed to make sure we can use the bounds we made in the last part of this proof.

For the sequence (n,,) holds that it satisfies (4.10), on the event #,,. The
distribution of a random variable is uniquely determined by his characteristic
function, see [5, pg. 297, 304]. Since the random varlable , Where

s
t2
X =57 =Y has in the limit characteristic functlon e~ 2, we can conclude
k m+1 7rm,k7_k bl

that X = N,,, converges in distribution to a normal variable N, conditionally

on @ By (4.8), we now can conclude that on the event H,,

U+dUhm%(@m_1+liﬂﬁ

1
O, — 5 =
" 2" 2

m,n. Nmn .
2 Hmnm, ,m)
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Since the event H,, holds for all n > m, we can conclude that
1 1 1+o0(1
M C {|@nm_§| Sénm} = {(1—0—0(1)7Tm’nm(@m— 1+o(1)

2 2 /"L yItm ) m) [ m m]}

P(H,) < P((l # o) (O = 5+ P b N, ) € [ 5%1) .

Showing that the expression on the right tends to 0 in the limit will give the desired
result. Notice that on the event H,,, ©,, ~ % when m grows, and m,, ,,, < co. Since
On,, — 0, when we show that 7, . ftm n,, — 00, it will imply that the event on the
right hand side is impossible and thus

P (014 o) (00— &4 LD

m,n Nmn S (5n ;6n > 0.
2 :3 M srtm 9 m) [ m m])
Notice the following

T; + ao; Tj
Tm,m+1 = J A <« i+ =«
Tj+1 Tj+1
We can lower bound iy, ,,, bY ftm m+1, because the terms are all positive. Using
this, the fact that 0,41 > 1 and (4.13), we obtain

— k
Tmnmm Mmonm = Tm,n ﬁZﬂmn ! = L ex log(1 + Oé—lﬁ
7m/"L y'tm y'tm sftm p g .

Tm,m4+1Tm+1 ATm41 ATm41 j=m+1 Tj

By (2.7) we can conclude that

log (1 + (o — 1)0—7> = 00,

Tj

giving that 7., ., ftm.n,, — 00 when m — oo. This means we need to choose (n,,)
such that it grows sufficiently fast enough to guarantee this condition. Then we can
conclude that

lim P(H,,) =0
m—0o0
P(H,,) = 0 for all m.

As we have already motivated earlier in (4.2), this implies that
1
P <|@n — 5] > 0,, infinitely often ) = 1.

This is the desired result. O

4.3 Moving away from the equilibrium

Before we can start proving Theorem 4.1, we need to make sure we are in the
situation of the previous lemma. For this, we need to pick a sequence of deviations
(0,) and make sure it converges. Let

1
7:° log(7,)
It indeed holds that lim,, ., 0, = 0. The necessary convergence of the summation,

assumed in the previous lemma, will be shown in the following lemma.

32



CHAPTER 4. DOMINANCE

4
Lemma 4.3. If >, (‘;—:) " < o0, then

e}

- 1
Z(SnUm-l . Z Ont1 < 00

3
—o n+l 0 T,10 10g<7-n> Tn+1

Proof. To prove this lemma, we are using the Holder’s inequality of [5, pg. 152],
applicated on summations. Note, to use this inequality, we need to choose
p,q € [1,00) such that 117 + L = 1. In this case we choose p = % and ¢ = 4. This

means we get the following inequality
N
o0 3 4
Z 5[° Z -
n=0

[o.¢]
On+1 On+1
Z G =) o
4
Since we assumed that »_ 7 <"") < 00, we get that the right part of the product

On+1

Tn+1 n—0 Tn+1

will be finite as well, since all terms are positive by construction. We only need to

1 .
show that (ZZOZO |5n|4) * is finite. For that, since Ty, Ty > 0, we have that 79, 7 > 2.
Since o, > 0 for all n € N, we have that 7, > n for all n > 2. Using this, we obtain
the following result

o0 [e.e]

> > 1 2 1
7;’5”'4:,;5’%_2 §210g4(2)+2—12 — < o0

n—0 Tno log*(7,,) s 110 log*(n)

From this we can conclude that both summations that upper bound our term in
question are finite, this means that
3
% 1
< 00.

()

Hence we can conclude that indeed holds that

Z 5 0n+1

7-n+1

FNT

On+1

5

n=0

Thn+1

This is the desired result. O

This means, with this choice of the sequence (9,), we are exactly in the situation of
Lemma 4.2 of the previous section. To be able to prove dominance in the positive
feedback case, two more lemmas are needed.

Lemma 4.4. Assume that Zzozo(j—:)% < o0o. Then

3

oo
Z SSCTgZ.
hgrl Tk

Proof. Note that ¢ is just a number such that £ € N. It will be specified later what
it is, but not necessary for this proof. By again applying the inequality of Holder |5,

pg. 152|, we get the following result:
k _
2= 2 S(Z (Z—|T4|>-
k=¢+1 1k

T
k=¢+1 k=¢+1 k=£+1

]

00
Ok

2
T

Ok

)

Tk
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Because all the terms we are working with are positive, we can ignore the absolute
value. The left part of the upper bound is finite by assumption. For the other part,
we use the rules of bounding a summation by an integral, to obtain the following

1 1
> 1\ /°° 1 Y1 s
— <a —dx < —ar, *,
<;r§> <T5 4 ) 3¢

where a € R is a constant. Combining the above and denoting ¢ € R for everything
that is constant, we can conclude that

> %ot
T2 ¢
k=¢+1 'k
0
Lemma 4.5. For all z € [0, 3], it holds that x > ().
Proof. We need to verify that
> v
x4 (1 —ax)e
It is equivalent to show that z* < z(1 — z)® 4+ 2*™!. Since a > 1 and 0 < z < % it
holds that,
xa—l S (1 o l_)a—l'
Multiplying both sides with z(1 — x) > 0, we get
(1 —2) <az(l —x)~
Rearranging this expression gives the desired result:
¢ — 2t <g(1 —2)”
% < x4 z(1 - 2)”
0

Now we are ready to prove the main theorem of this chapter, Theorem 4.1. The
outline of the proof will be as follows. We will use the lemma of the previous section
to pick a time & where ©,, deviates from the equilibrium, using (6,,). We know (and
will motivate) that this time ¢ is finite almost surely. The variable ©,, will be
decomposed in a martingale part M, and a so-called bias part R,. The fluctuations
of M, will be small with high probability and we can show that (M,,) converges
almost surely, so this part won’t let ©,, go back to the equilibrium. The bias part
only will move ©,, further away from the equilibrium. Using martingale convergence
arguments from Chapter 1, there can be concluded that dominance holds almost
surely. Recall that the event dominance equals

D = {lim O, € {0,1}}.
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Proof of Theorem 4.1. Let
. 1
f—lnf{nzr:\@n—§]>5n},

where r > [e!] fixed and (d,) used as in Lemma 4.3. By Lemma 4.2 of the previous
section we have that almost surely holds that |©,, — 1| > 4, infinitely often . This
means that for all m € N there exists an k£ > m such that |0, — %| > 0. This means
that the value of ¢ is finite almost surely.

Since the situation we are in is symmetric, rewriting the expression for £, it is
enough to consider the event
1
E= @5 < § — (55 .

Given this event, we will proof that ©,, — 0 almost surely. This is consistent with
the story above, since the deviation at time £ is below % Automatically it holds,

because of the three equilibrium points, that ©,, — 1.
When we would consider the other case
5 1
8:{@€>§—{—6£}’

we would find that ©,, is going to 1 as n — oo and ©,, — 0. The proof will go in the
same manner as the proof that ©,, — 0, that we are doing now.

First, we we are constructing the decomposition of ©,, in a martingale part and a
bias part. By the properties of T,, and ©,, defined in chapter 2, we can construct the
following for each n € N:

Tn Tn Bn Tn 1
Opyy = L = 4+ "9, + ——B,. (4.16)
Tn+1 Tn+1 Tn+1 Tn+1 Tn+1
_ Tntl =~ Ontl o + B
Tn+1 " Tn+1 m
Onp Bn — Op Pn On Pn
— ®n . +1 @n + +1 +1 + +1
Tn+1 Tn+1 Tn+1
Bh,i1—o0p1 P, on
=0, + L _Trrlon Tl — 4(0,)). (4.17)

Tn+1 Tn+1

Note that ¢(0,,) = P,. Iterating further in the term ©,, for each k > ¢, and n > 1,
we get

§+n
By — 0. Py
M, — Z k— Okplk—1
k=€+1 Tk
§+n

Ri= Y 24041 — $(041)).
k—gr1 K
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The process (M,,) is a martingale with respect to the filtration

(Fern) = (0(B1),0(Bs), ..., 0(Beyy)). This can be shown in the same way we proved
that (M,,) is a martingale in Chapter 3. The only difference is that in this case we
are not summing from k£ = 1, but £k = £ + 1, and we divided by 7. This does not
matter for the proof.

It is time to show that (M,,) converges and is small with high probability, so that
(6,) is not driven back to the equilibrium by (M,,). We show that (M, ),en is
bounded in £2, using Definition 1.10. Let Fg) = Fepn.

2
B§+n - U£+nP§+n—1) ]

21 _
Ere M) = Exg (Mnl + Tern

B n - nP n— B n - nP n— 2
=Ez, M?_ | +2M, 4 SulsAUAE 1+< fhn = O¢hn’ &+ 1)]

Tetn Te+n

Beyy — 0eanPein1\>
~Er, M31+( en — Ogin Pt 1)]
T+
. £+n

The last step holds since M,,_1, B¢y, and Pey,_1 are F) measurable and
Ez [Betn — 0¢nLein-1] = 0. Doing the same as done in Chapter 3, equation (3.3),
we can conclude that

B n — O TLP n— ’ T¢+n
( &+ §4nt &+ 1> ] = EQ—JrP§+n—1(1—P£+nfl-)

Efw
T§+n 7—§+n

Since for all n € N P,(1 — P,) < 1, the following iteration holds

2 2 O¢+n
]E]:({) [Mn] = E-F(E) ]\4n71 -+ 2_P§+n—1(]. i P£+n_1>
Tern
g R 3
2 &4n % 3
< Erg (M, ]+ = <. < Z — <er t.
&4n heet1 Tk

E[|My|*] = E[Ex, [M7]] < 7,
We can conclude that M,, is bounded in £2, since

sup E[|M,,|*] < oo.
neN

Hence (M,,) converges almost surely by Theorem 1.10. This was the convergence
part of (M,).

Now, let’s show that it is small with high probability. For that, denote

§ = fsup M, < )

neN
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Using Doobs-LP-inequality of [5, pg. 218|, we obtain the following result

5& 2 552
P sup]\/[k>§ <P{( sup M; > —

1<k<n 1<k<n 4

4 6 _3 zlclog2 T
5 E[M?] < élclog2(7'§)7'€1°7‘5 = —3( 5).

<5
13 ¢

The function f(z) = 252 is decreasing for = € [[¢!°],00]. Since € > r > [¢1°] and
20

thus 7¢ > 7., we obtain

) 4clog? 4clog? (7,
P(Sup Mk>§§>§ Cogs(@g cogg(ﬂ'

1<k<n 20

20
T¢

Ty

Since the events {sup;,, My > %5} are increasing, we can take the limit inside the
probability measure, to obtain the following result about §¢:

) )
P(S) =P (lim sup M > 55) = lim ]P’( sup Mj > —§>

n—oo 1<k<n n—00 1<k<n 2

< lim 4clog:(7'r) _ 4clog32(7'r).
n—oo 7_7”270 TT,%

We now show by induction that when the event S N &€ occurs, for all n € N holds
that

Opin < = — =, (4.19)

this means, once the proportion of the first bin is below the equilibrium, it will
always stay below the equilibrium.

For n = 0, it follows directly from the event £, since O, < % — 0 < % — %5.

Suppose now it is true for all k£ with 0 < k <n — 1. Since we look at (4.19) on the
event SN E, we have ©,_; < % for all £ +1 < k < &+ n. That means, using Lemma
4.5, that for these values of k, Op_1 > ¥(0Oy_1). This implies that

E+n
Ro=Y 25041 —¥(041) 2 0.

~
k=g+1 F

Using this, and the decomposition of (4.18), we get the desired result

1 de 1 0
Otin <O+ M, < - —b¢+ === — .
g SPet <5705 =575
Observe since this holds for all n € N, that (R,,) is positive and increasing on SN E.
This does not immediately show that (R,,) is convergent, but we notice the
following. By the decomposition in (4.18), we see the convergence of (©,,) depends
on (M,) and (R,). We showed that the process (M,,) is convergent almost surely.

Notice that when (R,,) diverges, we can find ¢, c3 € R such that

(4.20)

& g s ag
Ogclz_kSRnSCQ 2k
Tk Tk
k=¢+1 k=¢+1
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Since we know that (2.7) holds, this means that then R,, — co. Because Oy € [0, 1]
for all k£ € N and (M,,) convergent almost surely, by the decomposition in (4.18),
this is impossible. Hence we can conclude that R, converges almost surely. From
this, we can immediately conclude that ©,, converges almost surely on S N €.

We are showing something stronger, namely that on SN E

lim ©,, =

n—o0

Assume, to the contrary, that this does not hold. That means, there is an w € SNE
such that
lim 6, (w) =06 > 0.

Then by (4.20), we have © < %, giving that © > 1(0) and that for values of k large
enough holds that

Zh (041 — P(O4 1) ~ ZE(O — (O),
Tk Tk

This implies, since we assumed (2.7), that

o0

o
> (Ot — ¥(Op1) = 0.
Tk
k=£+1
This means that R, — oo when n — oo, and thus that ©® = —oo, which is not

possible as already argued. This means that

P(Mn@n:mSﬂf

n—oo

—
I

The only thing left to show is that P (lim, ,,, 6, =0
have that P(S°N &) < P(5°). We know that P(S¢) <

This means that

|€) = 1. Since S°NE C 5S¢, we
de 1°g20 . for all r > [el?].

Tr

4clog? (7,
lim P(5%) < lim 2¢18 (7).

T—00 r—00 20

P@ﬂglmp——;Ll:O

From this we can see that P(S¢) = 0 must hold. This means that P(S°N &) = 0.
Hence we can conclude that

PE)=PSNE)+PSNE)=PSNE).
Since P(lim,, o ©, = 0[SNE) =1, it holds that

P (lim 6, =0€) > P (lim 0, = 0[SNE) =

n—o0

This means P(D) =1 on €.
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5 Subcritical and critical regime

In this chapter the subcritical and critical regime will be discussed. In some cases
we will refer to [8] for specific steps or proofs. The aim of this chapter is to get an
idea of the proofs of the theorems that correspond with the sections.

5.1 Subcritical regime

The theorems and proofs of this section are highly inspired by [8, section 6, 7].
Here, the proof of the following theorem will be discussed. Before we start, let

a
. On+10,_1
A = lim sup —
n—00 (O
p = ———

This limit will play an important roll in the subcritical regime.

Theorem 5.1. Suppose a > 1 and § = 0.

If (pn) is bounded, then P(M) = 1.

LifA<1
If p, — o0, then P(M) =
fe M) {O if A> 1.
By Theorem 4.1, we now that P(D) = 1. This means we already know that
Tim O, € {0,1}.

By symmetry, consider the event £ = {©,, — 0}. When we can proof that T, is
bounded on &, it will imply that

P(M) = P({B, = 0 eventually for all n}) = 1.
We start with a lemma, from which directly follows a part of the proof.

Lemma 5.2. Suppose p, — oo, B =0. Then, if A <1,

> g
n+1

E o < 00,
-

n=0 T

and if A > 1,

00
On+1

D e =
-

n=0 T
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Proof of Lemma 5.2. First note, if p, — oo, we can use the following decomposition

n . n— . 1
lim ™ = lim <T S 1) = lim ( —|—1> =1. (5.1)
n—oo g, n—oo \ Oy, n—oo \ Pp_1

This implies that lim,,_, 7, = lim,,_,, 0,,. Since we know that
lim,, oo 7, = lim,, o0 0, We get that

« o
. P . On41 Ty . Trn+1 Tp—
lim su " — limsup —+ "= — Jim sup 4L =L
(0%
n—oo Pn—1 n—00 Tn Op n—oo Op O
(63
. On+10p—1 .
= limsup —— —— = limsup \,, = . (5.2)
(e}
n—oo  On n n—00

The following expression can be checked by writing it all out. Observe that

On+1 _ On Pn ( Pn—1 )al
o Too1 P—1 \1+ pn_

Using (5.1) and (5.2), we obtain,

a—1
lim sup Pr < Pt ) =\
n—oo  Pp_1 \1+ pn_1

This holds, since

a—1
lim sup <L) =1,
n—o00 1 + Pn—1
if p, — 0o. When we apply the ratio test on the summations in question, we obtain
by (5.2) the following limit

On+41 p

. TY . n

limsup —*— = limsup —— = \.
n

n—oo (Ta_) n—o00 ,On_l

This indeed implies divergence of the series when A\ > 1 and convergence when
A< L O

We can directly prove a part of the theorem of this section.
Proposition 5.3. When p, — oo, A > 1, then P(M) = 0.
Proof. By Lemma 5.2 it holds that

o

LT
n=0 Tn
By Lemma 3.2, it immediately follows that P(M) = 0. O

Now the cases where p,, is bounded and p,, — oo, A < 1 are left. The idea is to
prove this with the help of 2 propositions. The case where p,, is bounded will be
easier, since (0,) is not growing too fast. This makes us able to make the following
approximation with the help of a Riemann-integral,

[e.o]

Oi+1 * dx 1 1
E ~ — = . 9.3
T /Tn ¢ a—17o7t (5-3)

i=n !

40



CHAPTER 5. SUBCRITICAL AND CRITICAL REGIME

Proposition 5.4. Suppose a > 1 and (p,) is bounded. Then P(M) = 1.

The idea of the proof is as follows. By contradiction, we assume that 7, — oo on £.
Then we can derive an upper- and lower bound for the expression

o0

Tin - T,
ZHT

i=n

By ignoring this term afterwards, but only looking at the specific lower- and upper
bound, we can show by Lemma 6.4 of [8], that

lim inf @711_% Tn < OO
n—oo
holds. We can show this is a contraction with 7,, — oo on the event £. We won’t
proof Lemma 6.4 of Sidorova here. In this lemma, two upper bounds for
summations are elaborated. This is mainly done with use of Theorem 1.1, by
showing the martingale in question is bounded in £2, and with use of Chebychev’s
inequality [3, pg. 121].

Proof of Proposition 5.4. Assume T, — oo on &€ and (p,,) is bounded by M € R.
Then by (2.3) and (2.6), we can derive the following inequality:

Tn+1 <T,+ 2a71620n+1 + €n+1\/0n+1Pn(1 — Pn)

Ta
= Tn + 2a_17_—20'n+1 + Ent1 \/O-n—l-an(]- - Pn) (54)
Giving that
T —T,_ 27 cpn/ounP(l-P) _ 2!
+ o S - Oi+1 + +1\/ +1a ( ) = o Oi+1 +€i€i+1 (55)
T T T T

% % % %

where

_ \/Un+1Pi<1 - Pz)
T '

7

&i

We assume (and it is proven in [8| by using a Riemann integral) that

o0 : c
S
i=n Ti 7_7?7
where ¢ = Wlalftw This gives the following upperbound for the summation, by
(5.5)
= Tiyn —T; c =
PEESIE S S

We can also find a lower bound for the summation, doing what we also did in (5.3),
since 1,1 — T, > 1 when n is large enough,

o0

Tipn —T; > dx 1 1
St [T
™ ¢ a—1To"t

i=n Tn

41



CHAPTER 5. SUBCRITICAL AND CRITICAL REGIME

Combining both bounds, we obtain the following result

11 T — 1T, c -
< ’ < e + Zéi&'ﬂ

_ a—1 — +«a
a—1T¢° 7O

1 1 c >
St Zfz‘ﬁiﬂ-
=n

When we multiply both sides with (o — 1)727!, we get the following

—cla—1) < a-1) Zfﬁiﬂ-

i=n

@a—l

n

By Lemma 6.4 of Sidorova |8, pg. 16] we can upper bound this in such a way, that
we can conclude from this that

lim inf| —cla— 1)]@§ Tp < 00.

n—00 @%*1

Since ¢ is a constant, it follows that

. 1
hﬂg@lf[@gfl

a - 5|
103 /7, = liminf O, 2 Tn < 00.
n—oo

The only thing left to show is that this is a contradiction. Suppose a > 2. Then
O~ 2% — o0, but we are on the event £ and this is clearly a contradiction. When
1 < a < 2, the above implies that

_a a—1
liminf ©,, 2 +1, /T = lim inf Tn'rn?*“ — [)7
n—oo n—o00
since ©,, — 0 and S‘T_; > () here. But we assumed that T,, — oo, what clearly is not

possible here anymore. We can conclude that T, is bounded on the event £, and
thus that P(M) = 1. O

There is only one case left that needs to be proven. This is the most difficult case,
since the proof is really long and contains a lot of detailed steps. That’s why only
an outline of the proof will be given here, by dividing the proof in 3 steps. The
whole proof can be found in [8, pg. 19-23]. After this proposition, we have all the
tools to prove our main theorem.

Note that in the case below the approximation (5.3) is not valid anymore.

Proposition 5.5. Suppose a > 1, 8 =0, p, — 00 and A < 1. Then P(M) = 1.

Outline of proof. As in the last proposition, we are proving that the following event
has probability zero:

N ={6, =0} N {T, — oo}.

This will imply that P(M) = 1. Define the following stopping time, with ko = 0, for
the definition see |5, pg. 192]

Ro = 07
Kn = 1nf{i > K, 1 : OF0;11 < 0T},
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CHAPTER 5. SUBCRITICAL AND CRITICAL REGIME

for all n > 1.

Step 1. There is started with proving that x,, is finite for all n almost surely.
Suppose, to the contrary, this is not the case. That means,

n=sup{i € N: %0, < T;}

is finite with positive probability, given that N holds. This may sound a bit strange,
but intuitively, this means the following. When the supremum of 7 is finite, it would
imply that there is a number k such that after for all n > k the inequality does not
hold anymore. That would directly imply that x,, is not finite for all n € N
anymore, since there is no value such that the inequality holds. By using the fact
that this all would mean that in (5.4) the second term plays the main role
eventually, an contradiction with 7}, — oo can be derived. From this can be
concluded that k, is finite almost surely.

Step 2. In this step we want to find an upper bound for ¢;, with ¢ > k,,. For this,
consider the event

En = {kp < oo and g; < ¢i(i — k) for all i > K, } U {k, = oo},

where (¢,) is a real-valued sequence which diverges to infinity. We want to show that

P(&, i.0) ﬂUE

m=1n=m

By the properties of an decreasing sequence, and the fact that &, C |~ &,, it
suffices to show that

lim P(&,) = 1.

n—oo
The proof makes use of the Chebychev’s inequality and the monotone convergence
theorem([5, pg. 93]). By upper bounding P(E,) by an expected value that converges
to 1, we can conclude the desired result.

Step 3. Here, we are going to show there exists a v, depending on w € N, such that
for all n > &, holds that

En < (5.6)

than before. Thls means there needs to be shown that for all n > K, holds that

a—1
IO S 0¢" (5.7)

n

By induction, there can be proved that there exists an specific upper bound, from
what exactly the above follows.

Knowing all this, it can be shown that P(N') = 0. Starting with (5.4), everything we
have done until now can be plugged in. Using (5.6), P,(1 — P,) < P, = 9(0,,), we
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CHAPTER 5. SUBCRITICAL AND CRITICAL REGIME

obtain for all n > &,

T
Tn S Tn—l + 204—1 n_lan + En\/o—npn—l(l - Pn—l)
T.

«a
n—1

a—1 a—1

< Ty (1420t ln T3 |20 10, 00
>~ 4in-—1 o Onp +n n—1 On a .

Tn—1 Tn—1

Since we know (5.7) and T,, > 1, we get the following when we repeat this procedure

<7, [] (1 420715 o (ks + i)\/2a*1(5qi*1>
=1

< T T (127706 + (s, + i) /20 10g77 )
i=1

We want this product to converge to get an contradiction. Indeed, when we use that

o0

H(1+ai)<oo<:>§:ai<oo,

i=1 =1

we can show by the comparison test that T, < oo for all n > k,. This is clearly a
contradiction with 7,, — oo, and thus P(N) = 0. O

We are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. When (p,,) is bounded, the result follows from Proposition
5.4. When p, — oo and A > 1, it follows from Proposition 5.3. When p,, — oo and
A < 1, almost sure monopoly is given by Proposition 5.5. [

5.2 Critical regime

Recall, whether the probability on monopoly is bigger than 0 depends on the
summation

oo

> (5.8)

n=0 "

in this regime. When this sum is finite, the probability is strictly between 0 and 1.
An infinite sum will give probability zero. Note that in this case monopoly never
happens almost surely. To be able to work with these summations, we consider the
term

¢n = 7-ne_ﬁan

It holds that lim,,_,., a " log(¢,) = 0. This can be clearly seen

lim o "log(¢,) = lim a "log(r,e ") = lim a "log(r,) — lim a "fa™
n—oo n—oo n—oo n—oo
—B-f=0.
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It can be easily verified that

Tn-i-l . ¢n+1 (5 9)

o %
This means, when we want to consider the sum of (5.8), it is equivalent to check
whether

Z Put1 (5.10)

is either finite or infinite. These are the tools that we will use to prove the following
theorem.

Theorem 5.6. Suppose a > 1 and 0 € (0,00).

ry T:j = 00, then P(M) = 0.

n=0 "

ry T:j_j < 00, it holds that P(M) € (0, 1).

n=0 "

For the proof, there is assumed that (¢,,) is unbounded if )7 ¢Z§1 < 0o. This can
be proven by contradiction and is shown in [8]. This main theorem will be proven
with the help of two propositions. For the first, only an outline will be given. The

second proof will be done here.

Proposition 5.7. Suppose a > 1 and 3 € (0,00). If

Z ¢n+l

then P(M) < 1. If

Z Pt _ (5.11)

then P(M) = 0.

Proof. When (5.11) holds, it can be verified that also holds that >~ ”:gl = 0.
By Lemma 3.2, it holds that P(M) = 0.

The case left to show is that in general in the critical regime holds that the
probability on monopoly is smaller than 1 when (5.10) converges. This can be done
by constructing an event £ such that P(£) > 0 and both T,, — oo and T, — oo on
&. Then it follows that the P(M) < 1. For this, let v > —2- and denote

= max k”
Xn 1<k<n Oh-

Since we assumed (¢,) is unbounded in this case, it can be seen that y,, — oc.
Since /5 € (0,00), it holds that (7,) grows faster than (x,). Using this, we can
construct several bounds for m € N large enough to be able to construct the event

E={Tn € [Xm,Tm — Xm}}ﬂ{|€n+1| <nfor alln >m}.
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CHAPTER 5. SUBCRITICAL AND CRITICAL REGIME

It can be shown that P(£) > 0, this won’t be done here.

Left to show is that T}, 7}, both tend to infinity on £. We can argue, that by
symmetry of the chosen bounds, also T, € [Xm» Tm — Xm). This means we only need
to proof that T,, — oo on £. Since we know that y,, — 0o, it is enough to proof that
T, > xn on & for all n > m. This can be shown by induction, see [8, pg. 25]|. After
that, everything was needed can be concluded. O]

We only know now that P(M) < 1, when the summation in question is finite. There
needs to be shown that P(M) > 0 in this case. This is done in the next proposition.

Proposition 5.8. Suppose a > 1 and € (0,00). If

Z Pt (5.12)

then P(M) > 0.

Proof. Rewriting (5.4), noticing that o,,1 < 7,11, we get

T
Tn+1 <T,+ 20{_17-_20-”"'1 + ent1 \/O’n_HPn(l — Pn)

n

T
S Tn + 2a71T_ZTn+1 + En+1 \/Un+1pn(1 - Pn)

n

T qbn-&-l
o

< T, +2°71 + €1V g1 Pa(1 = P,).

Denote

bn =T 01 Po(1 = P,).

Then we can rewrite the above to

T’Vl - T o— ¢’Vl
HT—;} < 201 q: + EnEnti. (5.13)

With the above, we are going to construct an event £, with P(£) > 0. When we can
show that P(€) < P(M), we have the desired result.

Since (5.12) holds, we can pick m € N large enough such that the summation of the
first term of (5.13) can be upper bounded. We can take

¢n+1 1 1
201 .
Z a—1 Toa’1

Here we used the property that the tail of a convergent sum goes to 0. Then we can
consider the event

{204 1Z¢n+1 ailTa 1}H{Z§n€n+l<o}

The probability of the first event is positive, since By = ....B,, = 0 happens with
positive probability. Then Ty = T,,,. Furthermore, we notice that

Z £n€n+1 Z T n+1 - 0n+1pn)'
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The conditional expectation of the above, given F,, will be 0 almost surely, since
(2.4) holds. This means that

P (Z EnEns1 < 0) > 0.

Hence we can conclude that P(£) > 0. Now we show by contradiction that & C M.
Suppose there is an w € £ such that 7T,, — oco. Using the second part of the event &
and (5.13), the following contradiction can be deduced

1 Dns N Toyr — T, /OO dx 1 1
204 1 R > L N > R .
P D N e T

Tm

The latter clearly contradicts the fact that w € £. This means that
0 < P(€) <P(M). This is what we needed to show. O

Proof of Theorem 5.6 . The proof follows exactly by first using that (5.9) holds.
After that we can use both Proposition 5.7 and Proposition 5.8 to get the desired
results. O]
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6 Two other cases of the feedback
function

As mentioned earlier, the main focus of this thesis is the two bins model with
convex feedback function f(m) = m®, with a > 1. This is the most interesting case,
since there are several different end-states possible, as we have seen in the past
chapters. To make the story about this time-dependent balls and bins model
complete, the two other cases 0 < a < 1 and o = 1 will be discussed in this chapter.

6.1 Concave feedback function

In this section the feedback function f(m) = m® with a < 1 will be considered. In
this case there won’t occur dominance or monopoly, because the proportion of balls
in both bins will in the end converge almost surely to the equilibrium point

(0,0) = (3,3), which will be shown and elaborated in this section.

This section is based on specific pages of [6]. This paper discusses general concave
and convex functions and was an inspiration for the discussion of our specific

concave feedback function.

In this chapter we will prove the following theorem.

2

Theorem 6.1 (Concave). Suppose 0 < o < 1 and ) " 78 < co. Then, almost
surely, !

lim (©,,6,) = (5.3)

1m n, In) = \555)

1.e. the proportion of balls of both bins converges to an equilibrium.

Because in this thesis two bins are considered, the situation is symmetric. This
means we can both look specific at one bin and extend the situation afterwards to
two bins, or we can directly look at the two bins simultaneously. The first is done in
the previous chapters, but in this section we will do the second.

To be able to proof the almost sure convergence of (6,,,0,) we need to make use of
the stochastic approximation technique. Intuitively, the following happens. We are
dealing with a two dimensional discrete process, from what we want investigate
whether it converges and to which values. By rewriting our process in a recursive
way, the same way it is done in (4.17) for one dimension, we can show that this
recursive relation behaves like an ordinary differential equation. This is the main
idea of the stochastic approximation technique. By making our time steps really
small, we can approximate our process by a continuous process. Instead of
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CHAPTER 6. TWO OTHER CASES OF THE FEEDBACK FUNCTION

h(©,) = h(©(n)), we then can write h(O(t)) for all t € R,. The differential equation
will have certain stationary points, £. It holds now that

ECL.

This means the set of stationary points of the corresponding differential equation
will contain the original equilibrium points of our process, but potentially contains
more points. There can be shown that under certain conditions, ©,, will converge to
a stationary point of the differential equation. That is the main goal of this section.

Let’s make this more precise. An intuitive idea of the proof will be given here. For
more details, the reader is referred to Appendix A of [6].

Proof. As we have seen in (4.17), we can write ©,,,; recursively into 0, a
martingale part and an error term:

(O11,6011) = (0,.6,) — (" (O, —¥(0,)), 16, - w<én>)

Tn+1 Tn+1
Bpi1 — 0ns1 Py Buyi — 0nii(1 — P,
Trn+1 Tn+1

since B,:H is a random variable with size 0,1 and parameter 15” =1-P,. We can
rewrite this to a vector notation, where (0,,,1,0,1) = 0,41 and
h(0,) = (0, —¥(0,),0, —¥(0,)). Furthermore, we can write M, for the last

expression of (6.1). This gives

Mn+1 - (Bn—i-l - Un+1Pn; Bn—H - Un+1(1 - Pn)) .

By exactly the same way as in Chapter 4, we can prove this is a martingale
increment. This gives the following equation:

M,
Opn = 0, — 1 (h(@@ + "“) : (6.2)

Tn+1 On+1

To be able to obtain information about the convergence, we consider the differential
equation of the continuous function F(x) = h(z(t)), with z € R?, defined as follows:

z1 ()
i {”wa)a 0

(1)
e~ La(t)-

Notice that z; still represents the proportion of balls in the i-th bin with ¢ € {1, 2},
meaning that the relation z5(t) = 1 — x;(¢) holds. The stationary points of a
differential equation can be found by setting

OF OF
6:101 _81'2 N

This means we will find the following stationary points, using the same calculation
as in the beginning of Chapter 4. Knowing this, we get

L {(0, 1),(1,0), G %) } |
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In this case holds thus that £ = £. It holds that we can use the Hessian matrix of
the corresponding differential equation to find out whether these points are stable or
not. Such a differential equation has a stable point when the eigenvalues have all
negative real parts, when the equilibrium point is plugged in the Hessian matrix [4,
pg. 103|. We will prove that 6,, will converge to a specific stable point by using an
important theorem from [6].

Before we do this, we note the following. When z;(0) = 0 for some i € {1, 2}, then
we see that

OF  OF
81'1_8332_ '

meaning when the system starts in either (0,1) or (1,0) we will have that x;(t) =0
for all £. Since in this thesis we assume that 0 < Ty < 79, we can indeed conclude
that 0 < 21(0),25(0) < 1. Note this holds since a < 1 here, in the other chapters
were a > 1, this is obviously not happening. Since a@ < 1 and we have

0 < 21(0),22(0) < 1, we can also see that this means these points will never be
reached when the initial values are between 0 and 1.

The only point that needs to be checked is (%, %) This calculation is straightforward
and can be found in the Appendix of this thesis.

Now we are able to use Theorem A.2 of [6]. We indeed are able to write our model
as in (6.2) and we made the general assumptions (2.7) and (2.8) here. The other
necessary assumptions can be easily checked. From this there can be concluded by
the second statement of Theorem A.2, because (%, %) is the only stable stationary
point, that it holds that 6, converges to this point, giving that

almost surely. This is the desired result. O

From the above theorem, we can directly conclude that

6.2 No feedback

This section is devoted to the no feedback case, meaning that the feedback function
f(m) is equal to f(m) = m. The structure and proofs of this section are based on
[8, Section 3.

Note first, that in this case

@a
P = n
e+ (1-0,)

= 0,.

This means the probability of a ball landing in a certain bin only depends on the
number of balls already in that bin. The feedback function is a lineair function here.
This will be useful when we prove that there ©,, converges to a random variable ©
in this case. The aim of this chapter is to get an idea of the proof of the following
theorem,
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Theorem 6.2. Suppose o« = 1. Then ©,, converges almost surely to a random
variable ©, and P(D) = 0.

The first part of this theorem is not hard to prove and will be shown in detail. For
the second part, to proof there is almost surely no dominance, an idea of the proof
will be given. For the exact details the reader is referred to [8, section 3].

Proof. First we prove the almost sure convergence of ©,,. Notice we can rewrite ©,,
as in (4.16). We show, with the help of this relation, that (©,) is a bounded
martingale. For that, notice that (©,,) is clearly adapted to the filtration

Fn =0(By, B, .., B,). Since it holds that ©,, < 1, we have that (6,,) is integrable.
Note, since ©,, is a proportion, it holds that

sup E[O,] < cc.
neN

The only thing left to show is that (©,,) satisfies the martingale property, which is
done below:

n n@n+ n Pn
_ T @n+E|: Bn+1|]:n:|:7_ Ont1
Tn+1 Tn+1 Tn+1
n T On
~0, (T 7 “) —-0,
Tn+1

Thus, (6,,) is a bounded martingale with respect to F,,. By Theorem 1.2 holds that
©,, converges almost surely to a random variable ©.

To prove no dominance occurs, it holds by symmetry of the two considered bins,
that it is enough to show that

P(lim @n:o)zp(@:())zo.

n—o0

For this, we are going to use the Laplace transfrom of ©,, and O, defined as follows

fa(X) = E[e™"]
FA) = E[e™°],

where A € R. Because 0,, is a discrete random variable, it holds that © is discrete
as well. This means that

f\) = Zn: e PO =k) > PO =0), (6.3)

implying that it is enough to show that there exists a sequence ()\,,) such that

lim f(\,)=0.

mM— 00

To reach this goal, choose \,, = ¢7,, > 0 with ¢ € (0, 1), such that e <1 -z + %
for all = € [0, ¢|]. This is useful when the induction is applied. There can be proven
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by induction over k, using several upper and lower bounds, that for all m, n > m
and 1 < k <n —m holds that

Fan) < i <)\m -2y %) . (6.4)

i=n—k+1 °

where there is is used that

n—k+1 ‘

A =22 Y Zs (10 >0 (6.5)

i=m+1 *
The proofs of these two statements can be found in [8, section 3|. Knowing this, we
are almost ready to make the conclusion. Notice that the function f,, for fixed m is
monotonically declining, since for x < y with z,y € R we have that e™ > e™¥ and
thus that

(@) = Ele™%] > E[e™%"] = ful(y).

Notice, because o;, 7; > 0, that

n
O’.

2 7

A > A =A% S 2
i=m-+1 ¢

Substituting £ = n — m in (6.4) and using both the monotonicity of f,, and (6.5),
the following can be obtained for all m and n > m

FaQun) < fon (Am -2y f_—) < fu QL =€) =E [e 07992 ] - (6.6)

m+41 '
—F [e—TmC(l—C)em] —E [e—c(l—c)Tm} )

Because we know that ©, — © almost surely, when n — oo, we can apply the
dominated convergence theorem [3, pg. 57| to check the behaviour of f,, for A > 0.
Since

e <1 =E[l] < o0,
it holds by the dominated convergence theorem that
fa(X) = E[e™%] = E[e™°] = f(N).
as n — oo. This means, when we take the limit n — oo in (6.6), we get that
F(A) < Efe 097,

because the righthand side does not depend on n. By Lemma 3.3, it holds that
P(lim,, o0 T)n = 00) = 1 in the no-feedback case. By again applying the dominated
convergence theorem with the same upper bound, taking the limit m — oo, we
obtain

lim f(An) < lim E [em797n] = E[ lim e ('"97] =,
m—00 m—0o0

m—r0o0
where it is used that ¢ € (0, 1). Since (6.3) holds, we can conclude that
P(© = 0) =0,
and thus that P(D) = 0. O

This implies directly that P(M) = 0. Note that ©,, converges in this case to a
random variable © with values strictly between 0 and 1, instead of a deterministic
value as we have seen in the previous section.
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Appendix

In this chapter the stability of the point (2, 2) in the case a < 1 will be shown with
use of the Hessian matrix. Recall we are working with the following differential
equation:

a—F = —IQ(t)a - xQ(t)

OF _ z1 (1)
. {_ ()
Oxo :El(t)a+$2(t)a

The Hessian matrix is defined as

9*F 9*F
o Oz2 Ox1x2
H = 92 9°F | -

822371 al‘%

The corresponding derivatives are as follows:

O*F oz N2 + 28) — axi!
2 = « —1
o’ (x§ + 29)?
P*F  axs N2+ 28) — azy* !
2 = «@ - ]'
0r3 (2§ + x5)?
OPF  —axgxy!
Or1ze (2§ + 25)?
O*F  —axfay !

Oroxry (x$ + x5)?

When we plug in (21, z5) = (%, %) in these equations, we obtain the following

2 2 10— 1 la 1o l 1
a_€|(l;):8F|;;):a2 (21 21L2 2 1
8951 272 81;2 272 (5 +1

200—2 200—1
o3 — oy 1
- 12a—2 —1= 501 — 1.
2
-1 2a—1
aQF 82F —Oé% % —Oé% a 1
1 1\ — 11, = — — o
8132371 (3:3) axle (23) (% + %Q)Q 1205—2
2

Plugging this in the matrix H and subtracting A\, we obtain the following matrix

—1-=A —1a
H -\, = ( 1, 1a—21 - A) .

2 2
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The eigenvalues of H can be found be determining the determinant of this matrix.
Solving the equation below, we get the following two eigenvalues

1 S|
(501—1—)\) +1042:O.

1 .
)\1:—1—‘——@—1(1/.

2 2
1 1
)\2:—1+§CY+§O{.

The real parts of both eigenvalues are equal to —1 + %m which are clearly negative
when o < 1. Hence we can conclude that (%, %) is a stable stationary point of our
system of differential equations.
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