
Faculty of Science

Dynamic Pólya urn models

Bachelor Thesis

Lisanne van Wijk

Mathematics and Applications

Supervisor:

Dr. Wioletta Ruszel

June 14, 2021



Contents

Introduction 2

Overview 5

1 Theoretical framework 7
1.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Terminology 10
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Important parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 No monopoly 19

4 Dominance 23
4.1 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Moving away from the equilibrium . . . . . . . . . . . . . . . . . . . 32

5 Subcritical and critical regime 39
5.1 Subcritical regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Critical regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Two other cases of the feedback function 48
6.1 Concave feedback function . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 No feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix 53

Bibliography 55

1



Introduction

In this thesis, a dynamic, non-linear generalization of the Pólya urn model will be
discussed. Before we treat this model, we will first discuss the classic and non-linear
Pólya urn model. Next to this, to motivate the usefulness of this subject, two
applications of this model will be discussed.

The classic Pólya urn model, introduced by Eggenberger and Pólya in 1923 [2], is a
model consisting of one bin with a balls of colour A and b balls of colour B. Every
time a ball with a certain colour is drawn from the bin, the ball, together with
another ball of the same colour, is replaced in the bin. There are versions of the
Pólya urn model with more than two colours, but we will only consider the
two-colour case here.

This classical situation is isomorphic to the following situation considering two bins,
where the two bins can be thought of as the two colours. Here, the balls are added
one by one, with the probability of a ball landing in a certain bin proportional to
the number of balls already in the bin. The last situation will be used to extend in
this thesis. Note that we could also say in this case that the probability of a ball
landing in a bin with m balls, is proportional to f(m) = m. The function f(m) is
the so-called feedback function of the process. In the non-linear Pólya urn model,
the only property that differs will be the type of feedback function.

In the non-linear Pólya urn model again two bins are considered. Now the
probability that a ball lands in a certain bin is proportional to some function f(m).
In this thesis the feedback function f(m) = mα is chosen, where α > 0. The model
where α = 1 corresponds with the classic Pólya urn model. When α > 1, we are in
the so-called positive feedback scenario. In this situation, the feedback function is
convex. A bin with more balls has an higher probability to get new balls, than a bin
with less balls. When 0 < α < 1, we are in the negative feedback case, meaning that
the bin containing more balls will probably get less balls.

In this thesis a time-dependent version of the non-linear Pólya urn model will be
discussed. That is, at each time n ∈ N not one ball, but σn balls are added, where
σn is some function of n. Important is that the balls land independently in the bins,
meaning that a part goes in the first bin and the rest in the second bin. The
probability for a single ball landing in a certain bin is the same as in the above
non-linear model, with f(m) = mα. In this thesis all possibilities for α > 0 will
considered. It will be shown that for α < 1, the proportion of balls in both bins
converges to an equilibrium. When α = 1, the proportion of balls in a bin converges
to a random variable. When α > 1, we will show that the proportion converges to 1
for a certain bin and to 0 for the other bin. This event will be called dominance.
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In some cases, a much stronger event, monopoly, will occur with positive
probability. Then, there exists a point in time N ∈ N such that for all timesteps
n ≥ N , one bin will receive all the balls every time and the other bin won’t get a
ball anymore. The positive feedback case is the most interesting case, since several
theorems can be proven. That’s why this case is what is focussed on in this thesis.

There are many interesting applications of this simple model, for example in
network theory and economic competition. A good example of the first application
is the Barábasi-Albert random graph model, which is constructed dynamically. The
nodes are interpreted as balls and the different bins are the degrees in the network.
At each time a new node is arriving and connecting to an existing node with
probability proportional to f(m) = mα, where m is the number of nodes in the
particular network. In the positive feedback case we have that highly connected
nodes will get higher connected. This is called the "rich-gets richer" phenomenon.
For more information about this network, see [1].

Another interesting application is that of economic competition. Most of the time
the market dynamics of the current economy have some form of positive feedback.
This can be seen as follows. Suppose we have companies, representing the bins, and
consumers, which can be seen as the balls. Suppose there are two companies, where
one has 60 precent of the market share and the other 40 precent. Then, it will often
hold that the company with more market share will grow, and the smaller one will
shrink. That is, one company will in the end have a monopoly on the market. An
even stronger example, is when both companies have equal market share, until one
obtains a non-negligible advantage in the market share. After this happens, the
share of the company with the advantage could rapidly grow. The reason both of
this could happen is that the market dynamics are strongly driven by the desire of
the users to choose the company that has or will have the most users. This is
exactly what happens in the case of positive feedback, the stronger gets stronger and
the weaker gets weaker. This is a simplification of the real world, but it is a good
example. This, and more applications of the model, can be found in [7, chapter 7].

The content of the coming chapters will be as follows. In Chapter 1, the necessary
theoretical framework about martingales and convergence is discussed. After that,
in Chapter 2 the notations of this thesis will be made clear , together with some
general lemmas and examples. In this chapter also the notions of different regimes
will be discussed, which will be generally used throughout this thesis. In Chapter 3,
we will show that in the supercritical regime monopoly does not occur. Then after
that, in Chapter 4 we will show that dominance does occur almost surely when
α > 1, independent of the regime. For this, we need a lemma that shows that the
proportion of balls in a bin does not get stuck at an equilibrium, but deviates
significantly infinitely often. After this, in Chapter 5, we will consider the two more
difficult cases, first the subcritical regime and after that the critical regime. In
Chapter 6 the other possibilities of the feedback function, with 0 < α < 1 and α = 1
respectively, will be discussed. An overview of all the notations and theorems of this
thesis can be found in the next section.

This thesis is highly inspired by the work of Nadia Sidorova [8]. The structure of
this thesis is based upon it, as are most of the proofs. In some proofs I used a
different approach, since the original paper had some minor mistakes or since I was
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convinced that it was better when it was written down differently. Furthermore, I
wanted to complete the story of Sidorova, by also considering α < 1, the negative
feedback scenario. This way, my thesis has become a complete story.

At last, I would like to thank my supervisor Wioletta Ruszel for introducing me in
the fascinating world of balls and bins models and for her guidance during this
whole process. Your ideas and thoughts about this subject pushed me to sharpen
my thinking and brought my work to an higher level.
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Overview

This is an extra chapter to give a clear overview of the notations of this thesis and
to make clear which theorems are discussed in every chapter.

Notation and symbols

Throughout this thesis, the following two conventions will hold. In general we will
use that zero is a natural number. That means that N = {0, 1, 2, 3, .....}. When we
are dealing with a sequence (An)n∈N (possibly of random variables), we will often
write (An).

Below, a list of the notations used in this thesis is written down. Everything is
discussed in this thesis as well, this is here solely to give an overview.

Ω the sample space
ω an elementary event
F sigma-algebra of events
P the probability measure
(Ω,F ,P) the probability space
(σn) sequence of number of balls added at time n ∈ N
(τn) sequence of total numbers of balls
(Tn) sequence of number of balls in the first bin
(T̂n) sequence of number of balls in the second bin
(Θn) sequence of proportion of balls in the first bin
(Θ̂n) sequence of proportion of balls in the second bin
Bn binomial distributed variable in relation with Tn
εn standardized version of Bn

D the event dominance
M the event monopoly
β the growth parameter
β =∞ the supercritical regime
β = 0 the subcritical regime
β ∈ (0,∞) the critical regime
E the set of equilibrium points
L the set of stationary points
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Theorems

In this section an overview of the theorems, that are proven in this thesis, is given.

In chapters 3, 4 and 5 we assume that α > 1.

Chapter 3

Theorem 3.1: In the supercritical regime holds that P(M) = 0.

Chapter 4

Theorem 4.1: Suppose that
∑∞

n=0

(
σn
τn

) 4
3
<∞. Then, almost surely, dominance

holds.

Chapter 5

Theorem 5.1: Assume that β = 0. If (ρn) is bounded, then P(M) = 1. If ρn →∞,
then P(M) ∈ {0, 1}.

Theorem 5.6: In the critical regime P(M) ∈ [0, 1), depending on the summation∑∞
n=0

τn+1

ταn
.

Chapter 6

Theorem 6.1: Suppose 0 < α < 1 and
∑∞

n=0

(
σn
τn

)2

<∞. Then, almost surely the
proportion of balls in both bins converges to (1

2
, 1

2
).

Theorem 6.2: Assume α = 1. Then Θn converges to a random variable and
P(D) = 0.
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1 | Theoretical framework

In this chapter several definitions and theorems that will be used in this paper, are
discussed. Most of the definitions and theorems will have to do with martingales
and convergence. Readers who are already familiar with these subjects, can skip
this chapter and go to Chapter 2.

In this chapter the random variables are defined on the probability space (Ω,F ,P).
Here Ω is the sample space, F the sigma-algebra of events and P the probability
measure. The definitions and properties of these are not discussed here. For this,
the reader is referred to [3, chapter 1]. The followings sections are based on several
chapters of the books [3] and [9], unless stated otherwise.

1.1 Martingales

Definition 1.1 (Stochastic process). [5, pg. 189] A stochastic process X is a
collection of random variables parametrized by a set T i.e. X = (Xt)t∈T .

Typically, we are interested in two different cases for the set T .

(1) T = N. This means that T is discrete. The stochastic process is then called a
discrete-time stochastic process.

(2) T = R+. In this case, the stochastic process is a continuous-time stochastic
process.

In this article will only encounter discrete-time processes, where T = N. To be able
to define martingales, we need a couple more definitions.

Definition 1.2 (Filtration). A increasing sequence (Fn)n∈N of sub-σ-algebras of F
is called a filtration.

Most of the time the natural filtration is used. That is, Fn = σ(X0, ..., Xn) for some
stochastic process (Xn)n∈N . This means that the information available at time
n ∈ N about ω ∈ Ω is given by the values

X0(ω), X1(ω), ..., Xn(ω).

Definition 1.3 (Adapted process). A stochastic process (Xn)n∈N is adapted to
the filtration (Fn)n∈N if for every n ∈ N, Xn is Fn measurable.

If a process (Xn)n∈N is adapted, it intuitively means that for ω ∈ Ω Xn(ω) is known
at time n.
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CHAPTER 1. THEORETICAL FRAMEWORK

Definition 1.4 (Lp spaces). Let X be a random variable and p ≥ 1. We say that
X ∈ Lp if

E [|X|p] <∞.

Definition 1.5 (Integrable). Let X be a random variable . This variable X is
integrable, when X ∈ L1, so

E[|X|] <∞.

Definition 1.6 (Martingale). A stochastic process (Xn)n∈N is a martingale with
respect to the filtration (Fn)n∈N if the following three properties hold for all n ∈ N:

(1) (Xn)n∈N is an adapted process.

(2) Xn is integrable.

(3) E [Xn+1|Fn] = Xn.

The last property is called the martingale property.

1.2 Convergence

In this article a few different notions of convergence will be used. In this section,
these will be discussed. The first definition of this section is one that will be used
often in this paper.

Definition 1.7 (Almost surely). An event A ∈ F is said to be true almost surely,
if

P(A) = 1.

When an event happens almost surely, the set of points where the property does not
hold may be non-empty, but it has probability 0 by definition.
Linked to this definition is the following notation of convergence.

Definition 1.8 (Almost sure convergence). A sequence of random variables
(Xn)n∈N converges almost surely to a random variable X, written as Xn

a.s→ X, if

P
(

lim
n→∞

Xn = X
)

= 1.

We will often write Xn converges to X almost surely.

To be able to state two theorems that will be used in this thesis, two more
definitions are needed.

Definition 1.9 (Convergence in Lp). Let p ≥ 1. A sequence of random variables
(Xn)n∈N converges in Lp to a random variable X if

lim
n→∞

E [|Xn −X|p] = 0.

We write Xn
Lp→ X then.

Definition 1.10 (Bounded in Lp). [5, pg. 222]
Let p ≥ 1. We say a stochastic process (Xn)n∈N is bounded in Lp if,

sup
n∈N

E [|Xn|p] <∞.
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CHAPTER 1. THEORETICAL FRAMEWORK

Theorem 1.1 (Lp convergence theorem for martingales.). Let p > 1 and
(Xn)n∈N a martingale bounded in Lp. Then there exists a random variable X∞ with
E [|X∞|] <∞ and Xn → X∞ almost surely and in Lp.

Proof. This theorem and proof can be found in [5, pg.222, 223].

Theorem 1.2 (Martingale convergence theorem). Suppose (Xn)n∈N is a
martingale, with

sup
n∈N

E(|Xn|) <∞,

then Xn converges to X∞ = limn→∞Xn a.s and E(|X∞|) <∞.

Proof. The proof of this theorem can be found in [3, pg. 508].

Before we continue with the next lemma, we need to get familiar with some specific
events. Denote (An)n∈N a sequence of events, meaning the elements of this sequence
are measurable subsets of Ω. Then we call A∗ the limsup event. This means that

A∗ = lim sup
n→∞

An =
∞⋂
m=1

∞⋃
n=m

An.

Take ω ∈ Ω. If ω ∈ A∗, we say that ω ∈ An infinitely often (shortly i.o.). It holds
that for all m ≥ 1, there exists an n ≥ m, such that ω ∈ An.

Let

A∗ = lim inf
n→∞

An =
∞⋃
m=1

∞⋂
n=m

An.

This is the liminf event. We say that ω ∈ A∗ if and only if ω ∈ An eventually for all
n (shortly a.a, almost always). This means that there exists an m ∈ N such that for
all n ≥ m holds that ω ∈ An. At last, the following relation will be used often(

lim sup
n→∞

An

)c
= lim inf

n→∞
Acn.

Knowing all this, an important lemma can be introduced.

Lemma 1.3 (Borel-Cantelli). Denote (An)n∈N a sequence of events. Then if∑∞
n=1 P(An) <∞, we have that

P(A∗) = 0.

Proof. Assume
∑∞

n=1 P(An) <∞. We need to proof that P(∩∞m=1 ∪∞n=m An) = 0.
Take Bm = ∪∞n=mAn. This is a decreasing sequence, since we take smaller and
smaller unions of elements. By continuity from below and sub-additivity of the
probability measure, we get the following:

0 ≤ P (A∗) = P

(
∞⋂
m=1

Bm

)
= lim

m→∞
P (Bm) = lim

m→∞
P

(
∞⋃
n=m

An

)
≤ lim

m→∞

∞∑
n=m

P (An) = 0.

In the last step we used that the tail of a convergent sum goes to 0.
We can conclude that P(A∗) = 0.
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2 | Terminology

In this chapter the notations of the rest of this thesis will be explained. This
chapter is highly inspired by the work of Sidorova [8, Section 1].

Recall we are working with the feedback function f(m) = mα. Recall that the most
interesting case is when α > 1, the case that we consider in the first chapters. We
deduce relations here that will be applied later in this thesis.

2.1 Notations

In this paper we are assuming there are two bins.We are analysing the
time-inhomogeneous scenario, where at time n there is a certain number of balls,
from now on σn, added to both bins together. We assume the balls are
independently added to both bins, meaning a part of the balls goes into the first bin
and the rest of the balls into the second bin.

Let (σn)n∈N be the sequence representing the number of balls added at time n,
assume it is positive. Denote (τn)n∈N the total number of balls at time n. We
assume that τ0 > 0, the initial number of balls is positive. The following relation
can be deduced:

τn = τ0 +
n∑
i=1

σi.

For simplicity, we denote τ0 = σ0 such that this relation becomes

τn =
n∑
i=0

σi. (2.1)

This can also be written for all n ≥ 1 as

τn = σn + τn−1.

Most of the time we will look at the number of balls in the first bin: Tn. The
number of balls in the second bin is then T̂n = τn − Tn. We assume that T0 > 0 and
T̂0 > 0, both bins already contain balls at time 0.

Since only two bins are considered, the situation we are in is symmetric. That’s why
it is sufficient to consider one bin most of the time. The proportion of balls in the
first bin is denoted by

Θn =
Tn
τn
∈ [0, 1].

10



CHAPTER 2. TERMINOLOGY

Equivalently, the proportion of balls in the second bin is equal to

Θ̂n = 1−Θn =
T̂n
τn
.

We define

Tn+1 = Tn +Bn+1 = T0 +
n+1∑
i=1

Bi (2.2)

where Bn+1 is binomial distributed random variable with size σn+1 and parameter

Pn =
Θα
n

Θa
n + (1−Θn)α

.

We often write Pn = ψ(Θn), with

ψ(x) =
xα

xα + (1− x)α
for x ∈ [0, 1].

In exactly the same way, this can be done for the second bin, where B̂n+1 is a
binomial distributed variable with size σn+1 and parameter P̂n = 1− Pn.
Note that this way, the probability that a ball lands in a certain bin depends on the
number of balls already in the bin to the power α, with α > 0. When α > 1, ψ(x) is
a convex function. This means that the probability that a ball lands in the bin with
already many balls, is relatively high. When α < 1, ψ(x) is a concave function.
Exactly the opposite of the previous case happens. The bin with already a lot of
balls is less likely to get a ball than the bin with less balls. In this case, there can be
imagined that this system converges, since fluctuations will cancel themselves out.
When α = 1, we have that Pn = Θn and the probability that a ball lands in a
certain bin is proportional to the number of balls already in that bin. All these
cases will be discussed in the next chapters.

To proof several theorems, we need to be able to upper and lower bound the
function ψ(x) for x ∈ [0, 1]. Since in this thesis we are considering the positive
feedback function most of the time, we assume from now on that α > 1. Then we
have, for x in the interval [0, 1], that xα + (1− x)α ≤ 1. That means we get

xα ≤ xα

xα + (1− x)α
.

To find a lower bound we need to do more work. For that we consider the
denominator as a function itself, f(x) = xα + (1− x)α. This function has one
extremum, x = 1

2
. Checking with the second derivative, we find that f ′′(x) > 0, thus

f(1
2
) = 2(1

2
)α is a minimum. This gives

f(x) ≥ 2

(
1

2

)α
= 2−(α−1),

and
1

f(x)
≤ 2α−1.

11



CHAPTER 2. TERMINOLOGY

Since ψ(x) = xα 1
f(x)

, we get
ψ(x) ≤ xα2α−1.

To summarize, ψ(x) can be bounded for x ∈ [0, 1], α > 1 by:

xα ≤ ψ(x) ≤ xα2α−1. (2.3)

The random variable Bn+1 only depends on Fn = σ(B1, ...., Bn) through Pn.
Intuitively, this means that Bn+1 does not dependent on the past through anything
other than Pn. Instead of this binomial distributed variable Bn+1, we will often use
the standardized version of this variable. Since Bn+1 is binomial distributed and is
dependent on the past, we get the following conditional mean and variance

EFn [Bn+1] = σn+1Pn (2.4)
Var Fn [Bn+1] = σn+1Pn(1− Pn).

This gives the following standardized version of Bn+1:

εn+1 =
Bn+1 − σn+1Pn√
σn+1Pn(1− Pn)

(2.5)

The conditional mean and second moment of this variable are as follows

EFn [εn+1] = EFn

[
Bn+1 − σn+1Pn√
σn+1Pn(1− Pn)

]
=

σn+1Pn − σn+1Pn√
σn+1Pn(1− Pn)

= 0.

EFn
[
ε2
n+1

]
= EFn

[
(
Bn+1 − σn+1Pn√
σn+1Pn(1− Pn)

)2

]
= EFn

[
B2
n+1 − 2Bn+1σn+1Pn + σn+1

2Pn
2

σn+1Pn(1− Pn)

]
=
σn+1Pn(1− Pn) + (σn+1Pn)2 − 2(σn+1Pn)2 + σn+1

2Pn
2

σn+1Pn(1− Pn)
= 1.

Here we used that for a random variable X

E[X2] = Var [X] + E2[X].

By the properties of the conditional expectation in [3, pg. 471], we get

E[εn+1] = E[EFn [εn+1]] = E[0] = 0.

E[ε2
n+1] = E[EFn [ε2

n+1]] = E[1] = 1.

Using the relations (2.2) and (2.5) , Tn+1 can be expressed differently, because it
holds that

Bn+1 = σn+1Pn + εn+1

√
σn+1Pn(1− Pn).

This gives, where Pn = ψ(Θn),

Tn+1 = Tn + σn+1ψ(Θn) + εn+1

√
σn+1Pn(1− Pn). (2.6)

The focus of this paper is on two different events, namely dominance and monopoly,
denoted by D andM respectively. Monopoly is stronger than dominance, in the
sense that dominance occurs when monopoly occurs. This means that

M⊂ D.

12



CHAPTER 2. TERMINOLOGY

The two events can be denoted as follows

D = { lim
n→∞

Θn ∈ {0, 1}}

M = {Bn = 0 eventually for all n} ∪ {Bn = σn eventually for all n}.

Intuitively, the difference between those two events is the following: When
dominance occurs, we can say that eventually the number of balls in one of the bins
is negligible. We will later see that this corresponds with two of the three
equilibrium points of this two bins model. When monopoly occurs we see that
eventually all balls are added to one of the bins, so the other bin does not get a ball
anymore. Note that the eventM can be written in terms of a liminf event. For this,
let Cn = {Bn = 0} and Gn = {Bn = σn}. Then

M = {Bn = 0 eventually for all n} ∪ {Bn = σn eventually for all n}
= {lim inf

n→∞
Cn} ∪ {lim inf

n→∞
Gn}.

2.2 Important parameters

To be able to distinguish between different cases that we will see in this thesis, we
need to work with several parameters. We start with the growth parameter β, to be
able to show whether or not monopoly occurs:

β = lim
n→∞

α−n log(τn).

It holds that this parameter shows the growth of τn, because limn→∞ α
−n = 0 for

α > 1. Since both α, τn ≥ 1, we have that β ∈ [0,∞]. By different values of β, there
can be distinguished between 3 regimes. Below the three regimes and values for β
are described.

(i) Supercritical regime: β =∞.

We will show that P(M) = 0 in this case. No other parameters are needed for this.

(ii) Subcritical regime: β = 0.

To be able to show whether monopoly occurs or not in this regime, we need to
consider (ρn)n∈N. This sequence is mainly useful in the subcritical regime, but will
be used more in this thesis. The elements of (ρn) are as follows

ρn =
σn+1

τn
.

We will see that the probability on monopoly depends on the fact whether (ρn) is
bounded or not. In fact, monopoly will happen almost surely here, unless the
sequence (σn) is irregular.

(iii) Critical regime: β ∈ (0,∞).

In this regime the probability that the event monopoly occurs will be smaller than
1, depending on some extra conditions of (τn). This will be made more clear in the
examples at the end of this chapter.

13



CHAPTER 2. TERMINOLOGY

The above suggests that the transition from no monopoly to monopoly happens
when (τn)n∈N changes from growing fast to growing slowly, since β =∞ corresponds
with (τn)n∈N growing much faster than α−n goes to 0 in the limit. To the contrary,
β = 0 implies that a−n goes faster to zero than log(τn) diverges to infinity. However,
in the critical regime, this is no longer the case.

Throughout this thesis, we assume the following

∞∑
n=0

σn
τn

=∞. (2.7)

Next to this, in some cases we will assume that

∞∑
n=0

σ2
n

τ 2
n

<∞, (2.8)

or we will suppose that

∞∑
n=0

σ
4
3
n

τ
4
3
n

<∞. (2.9)

This can be interpreted as the fact that the randomness of the balls is not too large.
The second assumption will be needed in the negative feedback scenario in Chapter
6. The third will be necessary to prove almost sure dominance in the positive
feedback case in Chapter 5. Later in this chapter there will be shown that these
assumptions will hold, when we choose (σn) such that it is not growing too fast.

The following lemma will show that ρn is bounded, if (2.8) holds.

Lemma 2.1. Suppose that the series
∑∞

n=0
σ2
n

τ2n
converges. Then

ρn =
σn+1

τn

is bounded.

Proof. Since we assumed the series converges, it follows that

lim
n→∞

σ2
n

τn2
= 0.

This implies that

lim
n→∞

σn
τn

= 0.

Precisely, this means that for all ε > 0 there exists an N ∈ N such that for all
n ≥ N , σn

τn
< ε. Choose ε = 1

2
. Now assume by contradiction that

ρn →∞.

14



CHAPTER 2. TERMINOLOGY

This means for all a ∈ R and for all K ∈ N there exists n > K such that σn+1

τn
> a.

Choose a = 1
2
. Then we get that τn

σn+1
+ 1 < 3

2
. Then it holds that

σn+1

τn+1

=
σn+1

τn + σn+1

=
1

τn
σn+1

+ 1
>

2

3
>

1

2
.

Choose K = N . Then we have, by the converge of the series, that for all n ≥ N
should hold that σn

τn
< 1

2
. But we also proved that there exists an n > N such that

σn
τn
> 1

2
. This is a contradiction. Hence we can conclude that (ρn) is bounded, thus

that ρn ≤M for M ∈ R.

From this it follows, when we know that ρn diverges to infinity,
∑

i≥0
σ2
i

τ2i
cannot be

finite. When ρn is bounded, we can say more about the parameter β.

Lemma 2.2. Suppose ρn is bounded, then it holds that

β = lim
n→∞

α−n log(τn) = 0.

Proof. Suppose (ρn) is bounded by M ∈ R. The following relation can deduced
recursively

τ2 = τ1 + σ2 = τ1

(
1 +

σ2

τ1

)
= (τ0 + σ1)(1 + ρ1) = τ0(1 + ρ0)(1 + ρ1)

τn = τ0

n−1∏
i=0

(1 + ρi).

Using this relation, we get that

α−n log(τn) = α−n(log(τ0) +
n−1∑
i=0

log(1 + ρi) ≤ α−n(log(τ0) + n log (1 +M)).

Here we used that x→ log(x) is an increasing function for x ≥ 1. Taking limits on
both sides we obtain

β = lim
n→∞

α−n log(τn) ≤ lim
n→∞

α−n(log(τ0) + n log(1 +M)) = 0.

Since β ≥ 0, we can conclude that β = 0.

To be able to prove several theorems, the following distinctions are often made:

(ρ) : the sequence (ρn) is either bounded or tends to infinity.

(σ) : the sequence (σn) is either bounded or tends to infinity.

This last condition may sound a bit strange, since there are no other options for
(σn) to be bounded or diverge when n→∞. In the proofs of the theorems that we
will encounter in the next chapter, it is mostly used as a tool to distinguish between
several cases. We will assume (σ) and (ρ) hold everywhere. Sometimes it will be
mentioned that (ρ) holds, to be more clear.

15



CHAPTER 2. TERMINOLOGY

Now the useful conditions are defined, we will show five examples where different
functions for σn and τn are used and where in the first two examples we show we
fulfil the three conditions (2.7), (2.8) and (2.9). The goal of these five examples is to
get an intuitive idea of the three different regimes.

Examples

(1) σn is constant, i.e σn = 3 for all n ∈ N.

It is trivial now that σn is bounded in this case. For simplicity, we write
σ0 = τ0 = 3, but in essence it could be any number. It does not change the outcome
of the bounds. Using relation (2.1), it holds that

τn =
n∑
i=0

σi = 3(n+ 1).

We notice that

ρn =
σn+1

τn
=

3

3(n+ 1)
=

1

(n+ 1)
< 2.

Thus ρn is also bounded for all n ∈ N. This implies by Lemma 2.2 that we are in
the subcritical regime. The summations can be expressed as follows

∞∑
n=0

σn
τn

=
∞∑
n=0

3

3(n+ 1)
=
∞∑
n=0

1

n+ 1
=∞.

∞∑
n=0

(
σn
τn

)2

=
∞∑
n=0

1

(n+ 1)2
<∞.

∞∑
n=0

(
σn
τn

) 4
3

=
∞∑
n=0

1

(n+ 1)
4
3

<∞.

(2) σn is linear, i.e. σn = n.

Clearly, σn diverges when n→∞. Since we assumed that τ0 > 0, set σ0 = 1. We
have the following expressions for τn and ρn

τn = 1 +
n∑
i=1

σi = 1 +
n(n+ 1)

2
=
n2 + n+ 2

2
.

ρn =
σn+1

τn
=

(n+ 1)
n(n+1)+2

2

≤ (n+ 1)
n(n+1)

2

=
2

n
≤ 3.

We can conclude that ρn is bounded in this case. We are again in the subcritical
regime. The assumptions for the summations are also satisfied

∞∑
n=0

σn
τn

=
∞∑
n=0

n
n(n+1)+2

2

=
∞∑
n=0

2

n+ 1 + 2
n

≥
∞∑
n=0

2

n+ 4
=∞.

∞∑
n=0

(
σn
τn

)2

=
∞∑
n=0

4

(n+ 1 + 2
n
)2
≤

∞∑
n=0

4

(n+ 1)2
<∞.

∞∑
n=0

(
σn
τn

) 4
3

=
∞∑
n=0

4
4
3

(n+ 1 + 2
n
)
4
3

≤
∞∑
n=0

16

(n+ 1)
4
3

<∞.
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CHAPTER 2. TERMINOLOGY

(3) σn = b3neαnc, b > 0.

It holds that the value of τn =
∑n

n=0 σn will be of the same order, hence we can take
τn = b3neαnc. The regime won’t be different to the regime of the actual value of τn.
We can bound this as follows

3n−1eα
n−1 ≤ b3neαnc ≤ 3neα

n

.

The value of β can be bounded by calculating it for both the lower and upper
bound, call these bounds β1 and β2 respectively. For the lower bound, we get

β1 = lim
n→∞

α−n log
(

3n−1eα
n−1
)

= lim
n→∞

α−n log
(
3n−1

)
+ lim

n→∞
α−n log

(
eα

n−1
)

= lim
n→∞

α−n(n− 1) log(3) +
1

α
=

1

α
.

For β2, exactly the same can be done:

β2 = lim
n→∞

α−n log
(
3neα

n)
= lim

n→∞
α−nn log(3) + lim

n→∞
α−n log

(
eα

n)
= 1.

We know that β1 ≤ β ≤ β2, and thus β ∈ (0,∞). This means we are in the critical
regime for this choice of (σn).We will see later that in this regime, the summation

∞∑
n=0

τn+1

ταn

plays an important role. In fact, whether it converges of diverges will affect the
probability on monopoly to occur. To calculate an infinite summation, the ceiling
function can be ignored. We get

∞∑
n=0

τn+1

ταn
=
∞∑
n=0

3n+1eα
n+1

3nαeαn+1 =
∞∑
n=0

3n+1

3nα
<∞,

since α > 1. Later we will see this implies that P(M) ∈ (0, 1).

(4) σn = b1
2

n
eα

nc.

We can again say that τn = b1
2

n
eα

nc. Note that the calculation of the value of β can
be done exactly in the same way of the last example, so that won’t be done here.
Recall that this means we are again in the critical regime. The interesting difference
is in the summation

∑∞
n=0

τn+1

ταn
. In this case, we get

∞∑
n=0

τn+1

ταn
=
∞∑
n=0

1
2

n+1
eα

n+1

1
2

nα
eαn+1

=
∞∑
n=0

1
2

n+1

1
2

nα =∞.

Later, we will see that this will imply that P(M) = 0.

The last two examples indeed show that in the critical regime, a relatively fast
growing τn can imply monopoly with positive probability, but when τn grows
relatively slowly this is not the case anymore. This is indeed exactly the opposite of
what happens in the transition from the supercritical to the subcritical regime.

17



CHAPTER 2. TERMINOLOGY

(5) σn = dexp {eαn}e.

Note, that as in the last two examples, we can say that τn is of the same order and
that τn = dexp {eαn}e. This gives the following lower bound for β:

β = lim
n→∞

α−n log(τn) = lim
n→∞

α−n log
(⌈

exp
{
eα

n}⌉) ≥ lim
n→∞

α−n log
(
exp

{
eα

n})
= lim

n→∞
α−neα

n

=∞,

by the fact that α > 1. This means we are in the supercritical regime.

We have seen enough examples to start proving several theorems. This will be done
in the next chapters.

18



3 | No monopoly

In this chapter, there will be proven that in the supercritical regime monopoly never
takes place. Note that in this chapter we cannot assume that

∑∞
n=0

σ2
n

τ2n
<∞, since

by Lemma 2.2 it would imply that β = 0. The approach of this chapter is inspired
by the proofs of [8, Section 2].
The aim of this chapter is to prove the following theorem:

Theorem 3.1 (Supercritical regime). Suppose α > 1 and β =∞. Then
P(M) = 0.

We start with a lemma. When we can prove this holds, the proof of Theorem 3.1
will follow.

Lemma 3.2. If
∞∑
n=0

σn+1

ταn
=∞,

then P(M) = 0.

Proof. Let Yn =
∑n

i=1 σiPi−1. We start proving that the following claim holds

{Y∞ =∞} ⊂
{

lim
n→∞

Tn =∞
}
. (3.1)

Note that the left event is equivalent to
{∑∞

n=1 EFn−1 [Bn] =∞
}
.

From (2.2) we can deduce that for every n ∈ N

Tn = T0 +Mn + Yn (3.2)

Mn =
n∑
i=1

(Bi − σiPi−1)

We will show that (Mn)n∈N is a martingale with respect to the natural filtration
Fn = σ(B1, B2, ..., Bn). It indeed satisfies the properties of Definition 1.6:

(1) Mn is clearly Fn-measurable, since Bn is Fn measurable by construction. Thus
(Mn) is adapted to the filtration Fn.

(2) Since Bn ≤ σn for all n ∈ N, we have that |Mn| ≤ nmax(σ1, ...σn) <∞. Hence

E[|Mn|] ≤ E[nmax(σ1, ...σn)] <∞.

Thus Mn ∈ L1.

(3) E[Mn+1|Fn] = E[Bn+1 − σn+1Pn +Mn|Fn] = σn+1Pn − σn+1Pn + E[Mn|Fn] =
E[Mn|Fn] = Mn, since the conditional expectation is linear and both σn+1Pn
and Mn are Fn measurable.
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CHAPTER 3. NO MONOPOLY

Now we know that the process (Mn) is a martingale, we can use the properties of
the quadratic variation of discrete martingales, see [9, §12.13]. For this we need to
have that Mn ∈ L2 for all n ∈ N that is, we need to have that
E[|Mn|2] = E[M2

n] <∞. Using the same bound as above, we notice that

E
[
|Mn|2

]
≤ E

[
(nmax(σ1, ...σn))2

]
<∞

We can conclude that Mn ∈ L2 for all n ∈ N. That means we can use the quadratic
variation of a discrete martingale to be able to conclude almost sure divergence of
Tn, using (3.2). We call the quadratic variation process (〈M〉n)n∈N, see [5, pg. 206].
Then we get

〈M〉n :=
n∑
i=1

E[(Mi −Mi−1)2 |Fi−1]

=
n∑
i=1

E

( i∑
k=1

Bk − σkPk−1 −
i−1∑
l=1

Bl − σlPl−1

)2

|Fi−1


=

n∑
i=1

E
[
(Bi − σiPi−1)2 |Fi−1

]
=

n∑
i=1

(
EFi−1

[B2
i ]− 2EFi−1

[BiσiPi−1] + σ2
i P

2
i−1

)
=

n∑
i=1

(σiPi−1 − σiP 2
i−1 + σ2

i P
2
i−1 − 2σ2

i P
2
i−1 + σ2

i P
2
i−1)

=
n∑
i=1

σiPi−1 − σiP 2
i−1

=
n∑
i=1

σiPi−1(1− Pi−1) ≤ Yn (3.3)

The statement (3.1) can be proven by assuming that Y∞ =∞ almost surely .Both
divergence and convergence for the process (〈M〉n) will be considered to get the
desired result.

Suppose that (〈M〉n) converges, then by [9, § 12.13] the process (Mn) converges
almost surely. According to (3.2), this gives that (Tn) is the sum of a constant, an
almost surely random variable and a diverging random variable. This means we get
the following:

P
(

lim
n→∞

Tn =∞
)

= P
(

lim
n→∞

T0 +Mn + Yn =∞
)

= P
(

lim
n→∞

Yn =∞
)

= 1. (3.4)

We can conclude that Tn →∞ almost surely as well.

Suppose that (〈M〉n) diverges. Then almost surely holds that

lim
n→∞

Mn

〈M〉n
= 0,

see [9, §12.14] Since 〈M〉n ≤ Yn, this gives that

lim
n→∞

Mn

Yn
= 0
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CHAPTER 3. NO MONOPOLY

almost surely as well. This means the following holds, almost surely, since
limn→∞ Yn =∞ almost surely and Yn > 0 for all n ∈ N,

Tn
Yn

=
T0

Yn
+
Mn

Yn
+ 1

lim
n→∞

Tn
Yn

= 0 + 0 + 1

lim
n→∞

Tn = lim
n→∞

Yn =∞.

This means Tn →∞ almost surely. This completes the proof of claim (3.2). When
it succeeds to show that Y∞ =∞ almost surely, the lemma is proven. Observe that
by (2.3) and the facts that Pn−1 = ψ(Θn−1) and Tn ≥ 1 for all n ∈ N, almost surely,

Y∞ =
∞∑
n=1

σnψ(Θn−1) ≥
∞∑
n=1

σnΘα
n−1 =

∞∑
n=1

σn
Tαn−1

ταn−1

≥
∞∑
n=1

σn
ταn−1

=∞.

This means we have that P (Y∞) = 1. From (3.1) we get that

P
(
Y∞) ≤ P( lim

n→∞
Tn =∞

)
.

This gives that P (limn→∞ Tn =∞) = 1. Recall that Tn is the number of balls in the
first bin. Since this argument holds in general (and does not focus on one specific
bin), we now also have that T̂n →∞ almost surely.
Recall that the event monopoly is defined as follows:

M = {Bn = 0 eventually for all n} ∪ {Bn = σn eventually for all n}.

Since the balls in both bins are going to infinity, we notice that

P(M) = P({Bn = 0 eventually for all n}).

When one bin does not get anything in the end, the other bin will get everything,
and the other way around. This gives the following

P(M) = P({Bn = 0 eventually for all n})
= 1− P({Bn = 0 eventually for all n}c)
= 1− P({Bn > 0} i.o )

Since Tn →∞ almost surely, it follows that P({Bn > 0} i.o ) = 1. We can conclude
that indeed P(M) = 0.

We have enough information to prove the theorem where this chapter is about,
Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, it suffices to show that β =∞ implies that∑∞
n=0

σn+1

ταn
=∞. Assume, to the contrary, that β =∞, but

∑∞
n=0

σn+1

ταn
= c, with a

constant c ∈ R. Then it follows that limn→∞
σn+1

ταn
= 0. This means that there exists

an N ∈ N such that for all n ≥ N we have that σn+1

ταn
< 1. This implies that

σn+1 < ταn .
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Using the relation that τn = τn−1 + σn, we can make the following estimation for all
n ≥ N

τn = τn−1 + σn ≤ τn−1 + ταn−1 ≤ 2ταn−1 < (2τn−2 + 2ταn−2)α

≤ 21+α(τn−2)α
2 ≤ ...... ≤ 2

∑n−N−1
i=0 αiτα

n−N

N . (3.5)

Now we need to distinguish between two different cases. Suppose that 1 < α < 2,
then we can upper bound τn as follows:

τn ≤ 2
∑n−N−1
i=0 αiτα

n−N

N ≤ (2τN)
αn−N
α−1 .

This implies, since N is a fixed number,

β = lim
n→∞

α−n log(τn) ≤ lim
n→∞

α−n log((2τN)
αn−N
α−1 )

= lim
n→∞

α−n
αn−N

α− 1
log(2τN) =

α−N

α− 1
log(2τN) <∞.

We assumed that β =∞, so this is a contradiction.

Suppose now that α ≥ 2. Then we get from (3.5) the following upper bound for τn

τn ≤ 2
∑n−N−1
i=0 αiτα

n−N

N ≤ (2τN)α
n−N

.

This means that

β = lim
n→∞

α−n log(τn) ≤ lim
n→∞

α−n log((2τN)α
n−N

)

= lim
n→∞

α−nαn−N log(2τN) = α−N log(2τN) <∞.

We assumed that β =∞, so this is a also contradiction. From the above, we can
conclude that

∑∞
n=0

σn+1

ταn
=∞ for all α > 1, and thus that P(M) = 0 by Lemma

3.2.

Notice that from this lemma it follows that P(M) = 0 when α = 1 and thus the
feedback function is f(m) = m. This means there is no feedback in this case. The
simple proof can be found in the lemma below.

Lemma 3.3. Suppose α = 1. Then P(M) = 0.

Proof. Recall that we assume everywhere that
∑∞

n=0
σn
τn

=∞. This means, since
σn+1 ≥ σn, that we get the following result

∞∑
n=1

σn+1

ταn
=
∞∑
n=1

σn+1

τn
≥

∞∑
n=1

σn
τn

=∞.

By Lemma 3.2 it follows that P(M) = 0.

In the last chapter of this thesis we will show that in the no feedback case there is
no dominance as well.
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4 | Dominance

In this chapter almost sure dominance in the positive feedback case will be shown.
The theorems and proofs are based on [8, sections 4 & 5]. The aim of this chapter is
to prove the following theorem:

Theorem 4.1. Suppose α > 1. Furthermore, assume that
∑∞

n=0

(
σn
τn

) 4
3
<∞. Then

P(D) = 1.

We will first need to prove an important, difficult lemma to make sure we can prove
the main theorem of this chapter. In this lemma, we show that Θn deviates from
the equilibrium far enough infinitely often. Before we get started with this, we need
to know more about the specific equilibrium points of our model.

4.1 Equilibrium points

Equilibrium points can be thought of as points where the proportion Θn won’t
change anymore, hence ψ(Θn+1) = Θn holds for all n large enough, see [6]. This
means the equilibrium points for both bins can be found by solving the equation

h(Θn) = ψ(Θn)−Θn = 0

Θα
n

Θα
n + (1−Θn)α

−Θn = 0.

We immediately see that Θ = 0 and Θ = 1 are solutions to this equation. Now
assume that Θn 6∈ {0, 1}. Then we find

Θα
n

Θα
n + (1−Θn)α

= Θn

Θα−1
n = Θα

n + (1−Θn)α

Θα−1
n (1−Θn) = (1−Θn)α

Θn = (1−Θn)

Θ =
1

2
.

The third equilibrium point for the first bin is equal to Θ = 1
2
. Since the situation

we are in is symmetric and we are working with proportions of balls in respectively
the first and second bin, we get the following three equilibrium points:

(Θ, Θ̂) ∈
{

(0, 1), (1, 0),

(
1

2
,
1

2

)}
= E .
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The set of all equilibrium points is denoted by E . As mentioned earlier, D
corresponds with the first two equilibrium points. The third equilibrium point is
used in the next section, to show that Θn deviates significantly infinitely often from
this point. Note we do not know anything specific about stability or convergence of
Θn yet. We only know that if it converges, it should converge to one of these 3
points.

4.2 Deviations

The aim of this section is to prove this important lemma.

Lemma 4.2. Suppose α > 1. Let (δn)n∈N be a positive sequence converging to zero
and such that

∞∑
n=0

δn
σn+1

τn+1

<∞. (4.1)

Then

P
(
|Θn −

1

2
| > δn infinitely often

)
= 1.

Proof. Denote

Hm =

{
|Θn −

1

2
| ≤ δn for all n ≥ m

}
.

It holds that

H1 ⊂ H2 ⊂ H3....

and so on, meaning the events Hm are increasing. This implies

P(H1) ≤ lim
m→∞

P(Hm)

if the right hand side exists. We are going to prove that limm→∞ P (Hm) = 0, giving
that P (Hi) = 0 for all i ≥ 1. Define the sequence of events An = {|Θn − 1

2
| > δn}.

Then will hold that

P (Hk) = P

(
∞⋃
k=1

∞⋂
n=1

Acn

)
= P

(
lim inf
n→∞

Acn

)
= P

((
lim sup
n→∞

An

)c)
. (4.2)

When P(Hk) = 0, it implies immediately that
P(lim supn→∞An) = P(|Θn − 1

2
| > δn infinitely often ) = 1. That is exactly what

needs to be shown.

By the mean value theorem we have

ψ′(ηx) =
ψ(1

2
)− ψ(x)
1
2
− x

ψ(x) = ψ′(ηx)(x−
1

2
) +

1

2
(4.3)
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for ηx ∈ (1
2
, x). Multiplying both sides of (4.3) with σn+1

τn+1
and adding the term

τn
τn+1

x− 1
2
, we obtain

τn
τn+1

x− 1

2
+
σn+1

τn+1

ψ(x) =
τn
τn+1

x− 1

2
+
σn+1

τn+1

(
ψ′(ηx)

(
x− 1

2

)
+

1

2

)
:= κn(x)

(
x− 1

2

)
,

where

κn(x) =
τn
τn+1

+
σn+1

τn+1

ψ′(ηx).

This holds since

σn+1

2τn+1

− 1

2
=
σn+1 − τn+1

2τn+1

= − τn
2τn+1

.

We can use the expression for κn to rewrite the expression we can already deduce
for Θn − 1

2
. Dividing relation (2.6) by τn and using the properties we know, we get

Θn =
Tn−1

τn
+
σnψ(Θn−1)

τn
+ εn

√
σnPn−1(1− Pn−1)

τn

Θn −
1

2
=
τn−1

τn
Θn−1 +

σnψ(Θn−1)

τn
+ εn

√
σnPn−1(1− Pn−1)

τn
− 1

2
.

In the last expression exactly κn−1(Θn−1)(Θn−1 − 1
2
) can be found, hence

Θn −
1

2
= κn−1(Θn−1)

(
Θn−1 −

1

2

)
+ εn

√
σnPn−1(1− Pn−1)

τn
.

Notice that the term Θn−1 − 1
2
is in the expression of Θn − 1

2
, meaning the same can

be done again. This gives

Θn −
1

2
= κn−1(Θn−1)

(
κn−2(Θn−2)

(
Θn−2 −

1

2

)
+ εn−1

√
σn−1Pn−2(1− Pn−2)

τn−1

)

+ εn

√
σnPn−1(1− Pn−1)

τn
.

= κn−1(Θn−1)(κn−2(Θn−2)

(
Θn−2 −

1

2

)
+ κn−1(Θn−1)εn−1

√
σn−1Pn−2(1− Pn−2)

τn−1

+ εn

√
σnPn−1(1− Pn−1)

τn
.

Now we have seen what happens in the first two steps, this equation can be
re-iterated for all m and n > m

Θn −
1

2
=

[
n−1∏
j=m

κj(Θj)

](
Θm −

1

2

)
+

n∑
k=m+1

[
n−1∏
j=k

κj(Θj)

]
εk

√
σkPk−1(1− Pk−1)

τk

=

[
n−1∏
j=m

κj(Θj)

](
Θm −

1

2
+

n∑
k=m+1

[
k−1∏
j=m

1

κj(Θj)

]
εk

√
σkPk−1(1− Pk−1

τk

)
.

(4.4)
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In the next part we are going to analyse the asymptotic behaviour of the product
Πk−1
j=mκj(Θj).

Note the event Hm is equivalent to Hm = {−1
2
− δn ≤ Θn ≤ 1

2
+ δn for all n ≥ m}.

From this we have by continuity properties of the derivative ψ′(x) and conditioned
on the event Hm that

ψ′(ηx) = ψ′
(

1

2

)
+O (δj) .

For a sequence (aj)j∈N it holds that aj ∈ O(δj) if there exists an M ∈ R such that
|aj| ≤Mδj for all sufficiently large j. Note that ψ′

(
1
2

)
= α. This can be plugged in

the expression for κj(Θj):

κj(Θj) =
τj
τj+1

+
σj+1

τj+1

(
ψ′
(

1

2

)
+O (δj)

)
=

τj
τj+1

+ α
σj+1

τj+1

+
σj+1

τj+1

O(δj).

Using this, the following expression for Πn−1
j=mκj(Θj) can be obtained

k−1∏
j=m

κj(Θj) =
k−1∏
j=m

(
τj
τj+1

+ α
σj+1

τj+1

+
σj+1

τj+1

O(δj)

)

=
k−1∏
j=m

(
τj + ασj+1

τj+1

)(
1 +

σj+1O(δj)

τj + ασj+1

)
.

Let

πm,k =
k−1∏
j=m

(
τj + ασj+1

τj+1

)
. (4.5)

Furthermore, the other expression of the product can be rewritten to

k−1∏
j=m

(
1 +

σj+1O(δj)

τj + ασj+1

)
= exp

{
k−1∑
j=m

log

(
1 +

σj+1O(δj)

τj + ασj+1

)}
.

Notice that

k−1∑
j=m

σj+1δj
τj + ασj+1

≤
∞∑
j=m

δj
σj+1

τj+1

→ 0

if m→∞, since the latter is the tail of a convergent sum, by the assumption of this
lemma. This means that

k−1∑
j=m

σj+1δj
τj + ασj+1

= o(1).

A sequence (an)n∈N = o(1) if limn→∞ an = 0. Using this, we obtain on the event Hm

for all m large enough and k > m that

k−1∏
j=m

κj(Θj) = πm,k exp

{
k−1∑
j=m

log

(
1 +

σj+1O(δj)

τj + ασj+1

)}
= πm,k(1 + o(1)). (4.6)
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This can be used to plug in the expression for Θn − 1
2
. Before that, using (4.3), we

notice, since f(x) =
√
x(1− x) ≤ 1

2
for all x ∈ R≥0, on the event Hm, as m→∞

uniformly in ω and k > m holds that√
Pk−1(1− Pk−1) =

√
ψ(Θk−1)(1− ψ(Θk−1)) =

1

2
+O(δk−1) = 1 + o(1). (4.7)

Now we have enough information to rewrite the expression for Θn − 1
2
. Using (4.6)

and (4.7), together with (4.4), we get the following as m→∞ uniformly in ω and
n > m

Θn −
1

2
=

[
n−1∏
j=m

κj(Θj)

](
Θm −

1

2
+

n∑
k=m+1

[
Πk−1
j=m

1

κj(Θj)

]
εk

√
σkPk−1(1− Pk−1

τk

)

= πm,n(1 + o(1))

(
Θm −

1

2
+

n∑
k=m+1

1
2

+ o(1)

1 + o(1)
εk

√
σk

τkπm,k

)
. (4.8)

Notice that
1
2

+ o(1)

1 + o(1)
=

1

2
+ o(1) =

1 + 2o(1)

2
=

1 + o(1)

2
.

Plugging this in what we already have, we obtain the following expression

Θn −
1

2
= πm,n(1 + o(1))

(
Θm −

1

2
+

1 + o(1)

2

n∑
k=m+1

εk

√
σk

τkπm,k

)
.

In the last part of this proof we will explore the behaviour of
∑n

k=m+1 εk
√
σk

τkπm,k
. For

that we use the characteristic function for the variable εn and will show it is close to
normal under certain conditions. Recall that for a binomial variable X with
parameter p, we have the following characteristic function, [5, pg. 304]

E[exp {itX}] = (1− p+ peit)n.

Using this, we obtain

E

[
exp

{
it

X − np√
np(1− p)

}]
=

(
1− p+ p exp

{
it√

np(1− p)

})n

e
− it
√
np√

1−p

=

(
1 +

it
√
p√

n(1− p)
− t2

2n(1− p)
+

O

(
t3

np(1− p)
√
np(1− p)

))n

e
− it
√
np√

1−p .

In the last step we used the Taylor expansion of the exponent. Notice that

O

(
t3

np(1−p)
√
np(1−p)

)
can be written as O( t3

n
√
n
), if error terms are not too large. For

this, we need to make sure that the denominator cannot become really small. This
can be obtained by setting 1

4
< p < 3

4
. Notice, using the Taylor expansion, that
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log(1 + x) ≈ x. Using this and taking the limit of n→∞ uniformly in 1
4
< p < 3

4

and t, we get

E

[
exp

{
it

X − np√
np(1− p)

}]
=

(
1 +

it
√
p√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))n

e
− it
√
np√

1−p

= exp

{
n log

(
1 +

it
√
p√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))
−

it
√
np

√
1− p

}

= exp

{
n

(
it
√
p√

n(1− p)
− t2

2n(1− p)
+O

(
t3

n
√
n

))
−

it
√
np

√
1− p

}

= exp

{
−t

2

2
+ nO

(
t3

n
√
n

)}
.

Since we know εk is exactly like the expression in the expected value, we know that
the following holds, when k →∞ uniformly in ω and t,

EFk−1

[
eitεk

]
= exp

{
−t2

2
+ σkO

(
t3

σk
√
σk

)}
.

Now we need to work towards the expression from what we want to know the
distribution. First, consider the term exp { it

√
σk

µk−1,kπk−1,mτk
εk}. Then the conditional

expectation is equal to, when m→∞ uniformly in ω and t

EFk−1

[
exp

{
εkit
√
σk

µk−1,kπk−1,kτk

}]
= exp

{
−t2

2

σk
(µk−1,kπk−1,kτk)2

+ σkO

(
t3σ

3
2
k

(µk−1,kπk−1,kτk)3σk
√
σk

)}

= exp

{
− t2

2

σk
(µk−1,kπk−1,kτk)2

+ σkO

(
t3

(µk−1,kπk−1,kτk)3

)}

= exp

{
− t2σk

2µ2
k−1,kπ

2
k−1,kτ

2
k

+O(1)
σkt

3

(µk−1,kπk−1,kτk)3

}
.

Let

µm,n =

[
n∑

k=m+1

σk
π2
m,kτ

2
k

] 1
2

.

By applying the tower property [5, pg. 174], by noticing that Fm ⊆ Fn for n ≥ m,
we obtain the following result for each fixed t, as m→∞ and n ≥ m

EFm

[
it

µm,n

n∑
k=m+1

εk

√
σk

πm,kτk

]
= exp

{
−t

2

2

n∑
k=m+1

σk
µ2
m,nπ

2
m,kτ

2
k

+O(1)
1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

}
.

(4.9)

Note, by plugging in µm,n, notice that

n∑
k=m+1

σk
µ2
m,nπ

2
m,kτ

2
k

=
n∑

k=m+1

σk
[
∑n

k=m+1
σk

π2
m,nτ

2
k
]π2
m,nτ

2
k

=

∑n
k=m+1

σk
π2
m,kτ

2
k∑n

k=m+1
σk

π2
m,kτ

2
k

= 1.
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When we use this in (4.9), we obtain the following result

EFm

[
it

µm,n

n∑
k=m+1

εk

√
σk

πm,kτk

]
= exp

{
−t

2

2
+O(1)

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

}
. (4.10)

We will show now that

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

(4.11)

tends to zero as m→∞. We are going to consider two different cases for this, since
we assumed that (σ) holds.

(i) σi →∞.

(ii) (σi) is bounded, i.e. for all i ≥ 1 we have σi ≤ σ, with σ ∈ N.

We start with (i). Observe the following holds for all non-negative xi with i ∈ N and
for all m

(x1 + x2 + ....xm)
3
2 = x1

√
(x1 + x2 + ....+ xm) + x2

√
(x1 + x2 + ....+ xm)+

xm
√

(x1 + x2 + ....+ xm) ≥ x1

√
x1 + x2

√
x2 + ....+ xm

√
(xm

= x
3
2
1 + x

3
2
2 ....+ x

3
2
m.

Applying this on µ3
m,n, we obtain

µ3
m,n ≥

n∑
k=m+1

σ
3
2
k

π3
m,kτ

3
k

≥ min
m+1≤k≤n

√
σk

n∑
k=m+1

σk
π3
m,kτ

3
k

.

Giving

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

≤ 1

min(m+1)≤k≤n
√
σk

= max
(m+1)≤k≤n

1
√
σk
.

When m→∞ uniformly in n, we will have, since σi →∞, that
max(m+1)≤k≤n

1√
σk
→ 0. Since the terms are positive, that is the desired result.

Now the other case (ii) need to be considered. Suppose that σi ≤ σ for all i ∈ N.
The idea is to bound the expression (4.11). Both upper- and lower bounds for σi
and τi are needed. We know that 1 ≤ σi ≤ σ for all i ∈ N. For the other bounds we
use that i ≤ τi by definition of τi. Furthermore it holds that

τi ≤ max
1≤k≤i

σk(i+ 1) ≤ σ(i+ 1) ≤ 2σi for all i ∈ N. (4.12)

Since πm,k is part of µm,n and the summation in question we need both an upper-
and lower bound. First, we need to rewrite (4.5). This gives, using that
τj+1 − σj+1 = τj, the following
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πm,k =
k−1∏
j=m

τj + ασj+1

τj+1

= exp

{
k−1∑
j=m

log(1 + (α− 1)
σj+1

τj+1

)

}

= exp

{
k∑

j=m+1

log(1 + (α− 1)
σj
τj

)

}
. (4.13)

Using a Taylor expansion for log(1 + x), there can be derived that
log(1 + x) = x+ o(1), the variable itself plus some convergent error term. This way,
we can derive the upper and lower bounds for πm,k. Using this alternative
expression and the upper bound for σi and lower bound for τi, we obtain as m→∞
uniformly in k > m

πm,k = exp

{
k∑

j=m+1

log(1 + (α− 1)
σj
τj

)

}
≤ exp

{
k∑

j=m+1

log(1 + (α− 1)
σ

j
)

}

= exp

{
((α− 1)σ + o(1))

k∑
j=m+1

1

j

}
= exp {((α− 1)σ + o(1))(log(k)− log(m) + o(1))}

=
k(α−1)σ+o(1)

m(α−1)σ+o(1)
.

In the same way the lower bound can be found. For this, use (4.12),

πm,k = exp

{
k∑

j=m+1

log(1 + (α− 1)
σj
τj

)

}
≥ exp

{
k∑

j=m+1

log(1 + (α− 1)
1

2σj
)

}

= exp

{
(
((α− 1)

2σ
+ o(1))

k∑
j=m+1

1

j

}
= exp

{
(
(α− 1)

2σ
+ o(1))(log(k)− log(m) + o(1))

}

=
k

(α−1)
σ

+o(1)

m
(α−1)
σ

+o(1)
.

Observe that for all γ > 1 the following holds

n∑
k=m+1

1

kγ+o(1)
≤
∫ ∞
m

k−γ+o(1)dk =
1

mγ−1+o(1)
.

This holds when m→∞ uniformly in n > m, where n is sufficiently large. Since
there is an error term in the equation, it holds that for n > m2 the expression will
hold with equality. Using what we did above, we can upper bound µ3

m,n to be able
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to lower bound 1
µ3m,n

afterwards. Notice that 1
τi
≥ 1

2σi
. This gives

µ3
m,n =

[
n∑

k=m+1

σk
π2
m,kτ

2
k

] 3
2

≥

[
n∑

k=m+1

1

( k
(α−1)σ+o(1)

m(α−1)σ+o(1) )2(2σk)2

] 3
2

=
(m(α−1)σ+o(1))3

8σ3

[
n∑

k=m+1

1

(k(α−1)σ+o(1))2k2

] 3
2

=
(m3(α−1)σ+o(1))

8σ3

[
n∑

k=m+1

1

k2(α−1)σ+2+o(1)

] 3
2

= m3(α−1)σ− 3
2

(2(α−1)σ+1)+o(1) = m−
3
2

+o(1).

Clearly, this gives the following result

1

µ3
m,n

≤ m
3
2

+o(1). (4.14)

Now we are able to upper bound the summation part of the term we want to
approximate. Using again the same relations as in the last part, we obtain the
following

n∑
k=m+1

σk
π3
m,kτ

3
k

≤
n∑

k=m+1

σ(
k
(α−1)
σ +o(1)

m
(α−1)
σ +o(1)

)3

(2σk)3

≤ σm3
(α−1)
σ

+o(1)

n∑
k=m+1

1

k
3(α−1)
σ

+o(1)+3

= σm
3(α−1)
σ
− 3(α−1)

σ
−2+o(1) = σm−2+o(1). (4.15)

Combining (4.14) and (4.15), the following can be derived

1

µ3
m,n

n∑
k=m+1

σk
π3
m,kτ

3
k

≤ σm
3
2

+o(1)−2 = σm−
1
2

+o(1) → 0,

since m→∞ uniformly in n > m2.

We are almost ready to finish the proof of this important lemma. The only thing
that is left to do is concluding that indeed P(Hm) is zero for all m. For this, take a
sequence in N, (nm)m∈N, satisfying the necessary condition that nm > m2. This is
needed to make sure we can use the bounds we made in the last part of this proof.

For the sequence (nm) holds that it satisfies (4.10), on the event Hm. The
distribution of a random variable is uniquely determined by his characteristic
function, see [5, pg. 297, 304]. Since the random variable X

µ3m,n
, where

X =
∑n

k=m+1 εk
√
σk

πm,kτk
has in the limit characteristic function e−

t2

2 , we can conclude
that X

µ3m,n
= Nm,nm converges in distribution to a normal variable N , conditionally

on Θm. By (4.8), we now can conclude that on the event Hm

Θnm −
1

2
= (1 + o(1))πm,nm

(
Θm −

1

2
+

1 + o(1)

2
µm,nmNm,nm

)
.
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Since the event Hm holds for all n ≥ m, we can conclude that

Hm ⊆
{
|Θnm −

1

2
| ≤ δnm

}
=

{
(1 + o(1)πm,nm(Θm −

1

2
+

1 + o(1)

2
µm,nmNm,nm) ∈ [−δnm , δnm ]

}
.

This gives that

P(Hm) ≤ P

(
(1 + o(1))πm,nm

(
Θm −

1

2
+

1 + o(1)

2
µm,nmNm,nm

)
∈ [−δnm , δnm ]

)
.

Showing that the expression on the right tends to 0 in the limit will give the desired
result. Notice that on the event Hm, Θm ≈ 1

2
when m grows, and πm,nm <∞. Since

δnm → 0, when we show that πm,nmµm,nm →∞, it will imply that the event on the
right hand side is impossible and thus

P
(

(1 + o(1))πm,nm

(
Θm −

1

2
+

1 + o(1)

2
µm,nmNm,nm

)
∈ [−δnm , δnm ]

)
→ 0.

Notice the following

πm,m+1 =
τj + ασj+1

τj+1

≤ α
τj+1

τj+1

= α.

We can lower bound µm,nm by µm,m+1, because the terms are all positive. Using
this, the fact that σm+1 ≥ 1 and (4.13), we obtain

πm,nmµm,nm ≥ πm,nm

√
σm+1

πm,m+1τm+1

≥ πm,nm
1

ατm+1

=
1

ατm+1

exp

{
k∑

j=m+1

log(1 + (α− 1)
σj
τj

)

}
By (2.7) we can conclude that

log

(
1 + (α− 1)

σj
τj

)
=∞,

giving that πm,nmµm,nm →∞ when m→∞. This means we need to choose (nm)
such that it grows sufficiently fast enough to guarantee this condition. Then we can
conclude that

lim
m→∞

P(Hm) = 0

P(Hm) = 0 for all m.

As we have already motivated earlier in (4.2), this implies that

P
(
|Θn −

1

2
| > δn infinitely often

)
= 1.

This is the desired result.

4.3 Moving away from the equilibrium

Before we can start proving Theorem 4.1, we need to make sure we are in the
situation of the previous lemma. For this, we need to pick a sequence of deviations
(δn) and make sure it converges. Let

δn =
1

τ
3
10
n log(τn)

.

It indeed holds that limn→∞ δn = 0. The necessary convergence of the summation,
assumed in the previous lemma, will be shown in the following lemma.
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Lemma 4.3. If
∑∞

n=0

(
σn
τn

) 4
3
<∞, then

∞∑
n=0

δn
σn+1

τn+1

=
∞∑
n=0

1

τ
3
10
n log(τn)

σn+1

τn+1

<∞.

Proof. To prove this lemma, we are using the Hölder’s inequality of [5, pg. 152],
applicated on summations. Note, to use this inequality, we need to choose
p, q ∈ [1,∞) such that 1

p
+ 1

q
= 1. In this case we choose p = 4

3
and q = 4. This

means we get the following inequality

∞∑
n=0

δn
σn+1

τn+1

=
∞∑
n=0

∣∣∣∣δnσn+1

τn+1

∣∣∣∣ ≤
(
∞∑
n=0

|δn|4
) 1

4
(
∞∑
n=0

∣∣∣∣σn+1

τn+1

∣∣∣∣ 43
) 3

4

.

Since we assumed that
∑∞

n=0

(
σn
τn

) 4
3
<∞, we get that the right part of the product

will be finite as well, since all terms are positive by construction. We only need to
show that

(∑∞
n=0 |δn|

4) 1
4 is finite. For that, since T0, T̂0 > 0, we have that τ0, τ1 ≥ 2.

Since σn > 0 for all n ∈ N, we have that τn ≥ n for all n ≥ 2. Using this, we obtain
the following result

∞∑
n=0

|δn|4 =
∞∑
n=0

δ4
n =

∞∑
n=0

1

τ
12
10
n log4(τn)

≤ 2

2 log4(2)
+
∞∑
n=2

1

n
12
10 log4(n)

<∞.

From this we can conclude that both summations that upper bound our term in
question are finite, this means that(

∞∑
n=0

|δn|4
) 1

4
(
∞∑
n=0

∣∣∣∣σn+1

τn+1

∣∣∣∣ 43
) 3

4

<∞.

Hence we can conclude that indeed holds that
∞∑
n=0

δn
σn+1

τn+1

<∞.

This is the desired result.

This means, with this choice of the sequence (δn), we are exactly in the situation of
Lemma 4.2 of the previous section. To be able to prove dominance in the positive
feedback case, two more lemmas are needed.

Lemma 4.4. Assume that
∑∞

n=0(σn
τn

)
4
3 <∞. Then

∞∑
k=ξ+1

σk
τ 2
k

≤ cτ
− 3

4
ξ .

Proof. Note that ξ is just a number such that ξ ∈ N. It will be specified later what
it is, but not necessary for this proof. By again applying the inequality of Hölder [5,
pg. 152], we get the following result:

∞∑
k=ξ+1

σk
τ 2
k

=
∞∑

k=ξ+1

∣∣∣∣σkτ 2
k

∣∣∣∣ ≤
(

∞∑
k=ξ+1

∣∣∣∣σkτk
∣∣∣∣ 43
) 3

4
(

∞∑
k=ξ+1

1

|τ 4
k |

) 1
4

.
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Because all the terms we are working with are positive, we can ignore the absolute
value. The left part of the upper bound is finite by assumption. For the other part,
we use the rules of bounding a summation by an integral, to obtain the following(

∞∑
k=ξ

1

τ 4
k

) 1
4

≤ a

(∫ ∞
τξ

1

x4
dx

) 1
4

≤ 1

3
aτ
− 3

4
ξ ,

where a ∈ R is a constant. Combining the above and denoting c ∈ R for everything
that is constant, we can conclude that

∞∑
k=ξ+1

σk
τ 2
k

≤ cτ
− 3

4
ξ .

Lemma 4.5. For all x ∈ [0, 1
2
], it holds that x ≥ ψ(x).

Proof. We need to verify that

x ≥ xα

xα + (1− x)α

It is equivalent to show that xα ≤ x(1− x)α + xα+1. Since α > 1 and 0 ≤ x ≤ 1
2
it

holds that,
xα−1 ≤ (1− x)α−1.

Multiplying both sides with x(1− x) ≥ 0, we get

xα(1− x) ≤ x(1− x)α.

Rearranging this expression gives the desired result:

xα − xα+1 ≤ x(1− x)α

xα ≤ xα+1 + x(1− x)α.

Now we are ready to prove the main theorem of this chapter, Theorem 4.1. The
outline of the proof will be as follows. We will use the lemma of the previous section
to pick a time ξ where Θn deviates from the equilibrium, using (δn). We know (and
will motivate) that this time ξ is finite almost surely. The variable Θn will be
decomposed in a martingale part Mn and a so-called bias part Rn. The fluctuations
of Mn will be small with high probability and we can show that (Mn) converges
almost surely, so this part won’t let Θn go back to the equilibrium. The bias part
only will move Θn further away from the equilibrium. Using martingale convergence
arguments from Chapter 1, there can be concluded that dominance holds almost
surely. Recall that the event dominance equals

D = { lim
n→∞

Θn ∈ {0, 1}}.
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Proof of Theorem 4.1. Let

ξ = inf

{
n ≥ r : |Θn −

1

2
| > δn

}
,

where r ≥ de10e fixed and (δn) used as in Lemma 4.3. By Lemma 4.2 of the previous
section we have that almost surely holds that |Θn − 1

2
| > δn infinitely often . This

means that for all m ∈ N there exists an k ≥ m such that |Θk − 1
2
| > δk. This means

that the value of ξ is finite almost surely.

Since the situation we are in is symmetric, rewriting the expression for ξ, it is
enough to consider the event

E =

{
Θξ <

1

2
− δξ

}
.

Given this event, we will proof that Θn → 0 almost surely. This is consistent with
the story above, since the deviation at time ξ is below 1

2
. Automatically it holds,

because of the three equilibrium points, that Θ̂n → 1.

When we would consider the other case

Ê =

{
Θξ >

1

2
+ δξ

}
,

we would find that Θn is going to 1 as n→∞ and Θ̂n → 0. The proof will go in the
same manner as the proof that Θn → 0, that we are doing now.

First, we we are constructing the decomposition of Θn in a martingale part and a
bias part. By the properties of Tn and Θn defined in chapter 2, we can construct the
following for each n ∈ N:

Θn+1 =
Tn+1

τn+1

=
Tn
τn+1

+
Bn+1

τn+1

=
τn
τn+1

Θn +
1

τn+1

Bn+1 (4.16)

=
τn+1 − σn+1

τn+1

Θn +
1

τn+1

Bn+1

= Θn −
σn+1

τn+1

Θn +
Bn+1 − σn+1Pn

τn+1

+
σn+1Pn
τn+1

= Θn +
Bn+1 − σn+1Pn

τn+1

− σn+1

τn+1

(Θn − ψ(Θn)). (4.17)

Note that ψ(Θn) = Pn. Iterating further in the term Θn, for each k ≥ ξ, and n ≥ 1,
we get

Θn+ξ = Θξ +Mn −Rn (4.18)

Mn =

ξ+n∑
k=ξ+1

Bk − σkPk−1

τk

Rn =

ξ+n∑
k=ξ+1

σk
τk

(Θk−1 − ψ(Θk−1)).
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The process (Mn) is a martingale with respect to the filtration
(Fξ+n) = (σ(B1), σ(B2), ..., σ(Bξ+n)). This can be shown in the same way we proved
that (Mn) is a martingale in Chapter 3. The only difference is that in this case we
are not summing from k = 1, but k = ξ + 1, and we divided by τk. This does not
matter for the proof.

It is time to show that (Mn) converges and is small with high probability, so that
(Θn) is not driven back to the equilibrium by (Mn). We show that (Mn)n∈N is
bounded in L2, using Definition 1.10. Let F(ξ) = Fξ+n.

EF(ξ)
[M2

n] = EF(ξ)

[(
Mn−1 +

Bξ+n − σξ+nPξ+n−1

τξ+n

)2
]

= EF(ξ)

[
M2

n−1 + 2Mn−1
Bξ+n − σξ+nPξ+n−1

τξ+n
+

(
Bξ+n − σξ+nPξ+n−1

τξ+n

)2
]

= EF(ξ)

[
M2

n−1 +

(
Bξ+n − σξ+nPξ+n−1

τξ+n

)2
]
.

The last step holds since Mn−1, Bξ+n and Pξ+n−1 are F(ξ) measurable and
EF(ξ)

[Bξ+n − σξ+nPξ+n−1] = 0. Doing the same as done in Chapter 3, equation (3.3),
we can conclude that

EF(ξ)

[(
Bξ+n − σξ+nPξ+n−1

τξ+n

)2
]

=
σξ+n
τ 2
ξ+n

Pξ+n−1(1− Pξ+n−1.)

Since for all n ∈ N Pn(1− Pn) ≤ 1, the following iteration holds

EF(ξ)
[M2

n] = EF(ξ)

[
M2

n−1 +
σξ+n
τ 2
ξ+n

Pξ+n−1(1− Pξ+n−1)

]

≤ EF(ξ)
[M2

n−1] +
σξ+n
τ 2
ξ+n

≤ ... ≤
ξ+n∑
k=ξ+1

σk
τ 2
k

≤ cτ
− 3

4
ξ .

In the last step we used the result of Lemma 4.4 .This means that

E[|Mn|2] = E[EF(ξ)
[M2

n]] ≤ cτ
− 3

4
ξ .

We can conclude that Mn is bounded in L2, since

sup
n∈N

E[|Mn|2] <∞.

Hence (Mn) converges almost surely by Theorem 1.10. This was the convergence
part of (Mn).

Now, let’s show that it is small with high probability. For that, denote

S = {sup
n∈N

Mn ≤
δξ
2
}
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Using Doobs-Lp-inequality of [5, pg. 218], we obtain the following result

P
(

sup
1≤k≤n

Mk >
δξ
2

)
≤ P

(
sup

1≤k≤n
M2

k >
δ2
ξ

4

)
≤ 4

δ2
ξ

E[M2
n] ≤ 4c log2(τξ)τ

6
10
ξ τ

− 3
4

ξ =
4c log2(τξ)

τ
3
20
ξ

.

The function f(x) = log2(x)

x
3
20

is decreasing for x ∈ [de10e,∞]. Since ξ ≥ r ≥ de10e and
thus τξ ≥ τr, we obtain

P
(

sup
1≤k≤n

Mk >
δξ
2

)
≤ 4c log2(τξ)

τ
3
20
ξ

≤ 4c log2(τr)

τ
3
20
r

.

Since the events {sup1≤k≤nMk >
δξ
2
} are increasing, we can take the limit inside the

probability measure, to obtain the following result about Sc:

P(Sc) = P
(

lim
n→∞

sup
1≤k≤n

Mk >
δξ
2

)
= lim

n→∞
P
(

sup
1≤k≤n

Mk >
δξ
2

)
≤ lim

n→∞

4c log2(τr)

τ
3
20
r

=
4c log2(τr)

τ
3
20
r

.

We now show by induction that when the event S ∩ E occurs, for all n ∈ N holds
that

Θξ+n <
1

2
− δξ

2
, (4.19)

this means, once the proportion of the first bin is below the equilibrium, it will
always stay below the equilibrium.

For n = 0, it follows directly from the event E , since Θξ <
1
2
− δξ < 1

2
− δξ

2
.

Suppose now it is true for all k with 0 ≤ k ≤ n− 1. Since we look at (4.19) on the
event S ∩ E , we have Θk−1 ≤ 1

2
for all ξ + 1 ≤ k ≤ ξ + n. That means, using Lemma

4.5, that for these values of k, Θk−1 ≥ ψ(Θk−1). This implies that

Rn =

ξ+n∑
k=ξ+1

σk
τk

(Θk−1 − ψ(Θk−1) ≥ 0.

Using this, and the decomposition of (4.18), we get the desired result

Θξ+n ≤ Θξ +Mn <
1

2
− δξ +

δξ
2

=
1

2
− δξ

2
. (4.20)

Observe since this holds for all n ∈ N, that (Rn) is positive and increasing on S ∩ E .
This does not immediately show that (Rn) is convergent, but we notice the
following. By the decomposition in (4.18), we see the convergence of (Θn) depends
on (Mn) and (Rn). We showed that the process (Mn) is convergent almost surely.
Notice that when (Rn) diverges, we can find c1, c2 ∈ R such that

0 ≤ c1

ξ+n∑
k=ξ+1

σk
τk
≤ Rn ≤ c2

ξ+n∑
k=ξ+1

σk
τk
.
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Since we know that (2.7) holds, this means that then Rn →∞. Because Θk ∈ [0, 1]
for all k ∈ N and (Mn) convergent almost surely, by the decomposition in (4.18),
this is impossible. Hence we can conclude that Rn converges almost surely. From
this, we can immediately conclude that Θn converges almost surely on S ∩ E .

We are showing something stronger, namely that on S ∩ E

lim
n→∞

Θn = 0.

Assume, to the contrary, that this does not hold. That means, there is an ω ∈ S ∩ E
such that

lim
n→∞

Θn(ω) = Θ > 0.

Then by (4.20), we have Θ < 1
2
, giving that Θ > ψ(Θ) and that for values of k large

enough holds that

σk
τk

(Θk−1 − ψ(Θk−1) ≈ σk
τk

(Θ− ψ(Θ).

This implies, since we assumed (2.7), that

∞∑
k=ξ+1

σk
τk

((Θk−1 − ψ(Θk−1) =∞.

This means that Rn →∞ when n→∞, and thus that Θ = −∞, which is not
possible as already argued. This means that

P
(

lim
n→∞

Θn = 0|S ∩ E
)

= 1.

The only thing left to show is that P (limn→∞Θn = 0|E) = 1. Since Sc ∩ E ⊆ Sc, we
have that P(Sc ∩ E) ≤ P(Sc). We know that P(Sc) ≤ 4c log2(τr)

τ
3
20
r

. for all r ≥ de10e.
This means that

lim
r→∞

P(Sc) ≤ lim
r→∞

4c log2(τr)

τ
3
20
r

.

P(Sc) ≤ lim
r→∞

4c log2(τr)

τ
3
20
r

= 0.

From this we can see that P(Sc) = 0 must hold. This means that P(Sc ∩ E) = 0.
Hence we can conclude that

P(E) = P(S ∩ E) + P(Sc ∩ E) = P(S ∩ E).

Since P(limn→∞Θn = 0|S ∩ E) = 1 , it holds that

P
(

lim
n→∞

Θn = 0|E
)
≥ P

(
lim
n→∞

Θn = 0|S ∩ E
)

= 1.

This means P(D) = 1 on E .
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5 | Subcritical and critical regime

In this chapter the subcritical and critical regime will be discussed. In some cases
we will refer to [8] for specific steps or proofs. The aim of this chapter is to get an
idea of the proofs of the theorems that correspond with the sections.

5.1 Subcritical regime

The theorems and proofs of this section are highly inspired by [8, section 6, 7].
Here, the proof of the following theorem will be discussed. Before we start, let

λ = lim sup
n→∞

σn+1σ
α
n−1

σα+1
n

λn =
σn+1σ

α
n−1

σα+1
n

This limit will play an important roll in the subcritical regime.

Theorem 5.1. Suppose α > 1 and β = 0.

If (ρn) is bounded, then P(M) = 1.

If ρn →∞, then P(M) =

{
1 if λ < 1

0 if λ > 1.

By Theorem 4.1, we now that P(D) = 1. This means we already know that

lim
n→∞

Θn ∈ {0, 1}.

By symmetry, consider the event E = {Θn → 0}. When we can proof that Tn is
bounded on E , it will imply that

P(M) = P({Bn = 0 eventually for all n}) = 1.

We start with a lemma, from which directly follows a part of the proof.

Lemma 5.2. Suppose ρn →∞, β = 0. Then, if λ < 1,
∞∑
n=0

σn+1

ταn
<∞,

and if λ > 1,
∞∑
n=0

σn+1

ταn
=∞.
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Proof of Lemma 5.2. First note, if ρn →∞, we can use the following decomposition

lim
n→∞

τn
σn

= lim
n→∞

(
τn−1

σn
+ 1

)
= lim

n→∞

(
1

ρn−1

+ 1

)
= 1. (5.1)

This implies that limn→∞ τn = limn→∞ σn. Since we know that
limn→∞ τn = limn→∞ σn, we get that

lim sup
n→∞

ρn
ραn−1

= lim sup
n→∞

σn+1

τn

ταn−1

σαn
= lim sup

n→∞

τn+1

σn

ταn−1

σαn

= lim sup
n→∞

σn+1

σn

σαn−1

σαn
= lim sup

n→∞
λn = λ. (5.2)

The following expression can be checked by writing it all out. Observe that

σn+1

ταn
=

σn
ταn−1

ρn
ραn−1

(
ρn−1

1 + ρn−1

)α−1

.

Using (5.1) and (5.2), we obtain,

lim sup
n→∞

ρn
ραn−1

(
ρn−1

1 + ρn−1

)α−1

= λ.

This holds, since

lim sup
n→∞

(
ρn−1

1 + ρn−1

)α−1

= 1,

if ρn →∞. When we apply the ratio test on the summations in question, we obtain
by (5.2) the following limit

lim sup
n→∞

(σn+1

ταn
)

( σn
ταn−1

)
= lim sup

n→∞

ρn
ραn−1

= λ.

This indeed implies divergence of the series when λ > 1 and convergence when
λ < 1.

We can directly prove a part of the theorem of this section.

Proposition 5.3. When ρn →∞, λ > 1, then P(M) = 0.

Proof. By Lemma 5.2 it holds that
∞∑
n=0

σn+1

ταn
=∞.

By Lemma 3.2, it immediately follows that P(M) = 0.

Now the cases where ρn is bounded and ρn →∞, λ < 1 are left. The idea is to
prove this with the help of 2 propositions. The case where ρn is bounded will be
easier, since (σn) is not growing too fast. This makes us able to make the following
approximation with the help of a Riemann-integral,

∞∑
i=n

σi+1

ταi
≈
∫ ∞
τn

dx

xα
=

1

α− 1

1

τα−1
n

. (5.3)
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Proposition 5.4. Suppose α > 1 and (ρn) is bounded. Then P(M) = 1.

The idea of the proof is as follows. By contradiction, we assume that Tn →∞ on E .
Then we can derive an upper- and lower bound for the expression

∞∑
i=n

Ti+1 − Ti
Tαi

.

By ignoring this term afterwards, but only looking at the specific lower- and upper
bound, we can show by Lemma 6.4 of [8], that

lim inf
n→∞

Θ
1−α

2
n
√
τn <∞

holds. We can show this is a contraction with Tn →∞ on the event E . We won’t
proof Lemma 6.4 of Sidorova here. In this lemma, two upper bounds for
summations are elaborated. This is mainly done with use of Theorem 1.1, by
showing the martingale in question is bounded in L2, and with use of Chebychev’s
inequality [3, pg. 121].

Proof of Proposition 5.4. Assume Tn →∞ on E and (ρn) is bounded by M ∈ R.
Then by (2.3) and (2.6), we can derive the following inequality:

Tn+1 ≤ Tn + 2α−1Θα
nσn+1 + εn+1

√
σn+1Pn(1− Pn)

= Tn + 2α−1T
α
n

ταn
σn+1 + εn+1

√
σn+1Pn(1− Pn). (5.4)

Giving that

Ti+1 − Ti
Tαi

≤ 2α−1

ταi
σi+1 +

εi+1

√
σn+1Pi(1− Pi)
Tαi

=
2α−1

ταi
σi+1 + ξiεi+1 (5.5)

where

ξi =

√
σn+1Pi(1− Pi)

Tαi
.

We assume (and it is proven in [8] by using a Riemann integral) that

∞∑
i=n

2α−1σi+1

ταi
<

c

τα−1
n

where c = 2α−1(1+M)α

α−1
. This gives the following upperbound for the summation, by

(5.5)

∞∑
i=n

Ti+1 − Ti
Tαi

≤ c

τα−1
n

+
∞∑
i=n

ξiεi+1.

We can also find a lower bound for the summation, doing what we also did in (5.3),
since Tn+1 − Tn ≥ 1 when n is large enough,

∞∑
i=n

Ti+1 − Ti
Tαi

≥
∫ ∞
Tn

dx

xα
=

1

α− 1

1

Tα−1
n
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Combining both bounds, we obtain the following result

1

α− 1

1

Tα−1
n

≤
∞∑
i=n

Ti+1 − Ti
Tαi

≤ c

τα−1
n

+
∞∑
i=n

ξiεi+1

1

α− 1

1

Tα−1
n

≤ c

τα−1
n

+
∞∑
i=n

ξiεi+1.

When we multiply both sides with (α− 1)τα−1
n , we get the following

1

Θα−1
n

− c(α− 1) ≤ τα−1
n (α− 1)

∞∑
i=n

ξiεi+1.

By Lemma 6.4 of Sidorova [8, pg. 16] we can upper bound this in such a way, that
we can conclude from this that

lim inf
n→∞

[
1

Θα−1
n

− c(α− 1)]Θ
α
2
n
√
τn <∞.

Since c is a constant, it follows that

lim inf
n→∞

[
1

Θα−1
n

]Θ
α
2
n
√
τn = lim inf

n→∞
Θ
−α

2
+1

n
√
τn <∞.

The only thing left to show is that this is a contradiction. Suppose α > 2. Then
Θ−

α
2

+1 →∞, but we are on the event E and this is clearly a contradiction. When
1 < α < 2, the above implies that

lim inf
n→∞

Θ
−α

2
+1

n
√
τn = lim inf

n→∞
Tnτ

α−1
2−α
n = 0,

since Θn → 0 and α−1
2−α > 0 here. But we assumed that Tn →∞, what clearly is not

possible here anymore. We can conclude that Tn is bounded on the event E , and
thus that P(M) = 1.

There is only one case left that needs to be proven. This is the most difficult case,
since the proof is really long and contains a lot of detailed steps. That’s why only
an outline of the proof will be given here, by dividing the proof in 3 steps. The
whole proof can be found in [8, pg. 19-23]. After this proposition, we have all the
tools to prove our main theorem.
Note that in the case below the approximation (5.3) is not valid anymore.

Proposition 5.5. Suppose α > 1, β = 0, ρn →∞ and λ < 1. Then P(M) = 1.

Outline of proof. As in the last proposition, we are proving that the following event
has probability zero:

N = {Θn → 0} ∩ {Tn →∞}.

This will imply that P(M) = 1. Define the following stopping time, with κ0 = 0, for
the definition see [5, pg. 192]

κ0 = 0,

κn = inf{i > κn−1 : Θα
i σi+1 ≤ δTi},
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for all n ≥ 1.

Step 1. There is started with proving that κn is finite for all n almost surely.
Suppose, to the contrary, this is not the case. That means,

n̂ = sup{i ∈ N : Θα
i σi+1 ≤ δTi}

is finite with positive probability, given that N holds. This may sound a bit strange,
but intuitively, this means the following. When the supremum of n̂ is finite, it would
imply that there is a number k such that after for all n ≥ k the inequality does not
hold anymore. That would directly imply that κn is not finite for all n ∈ N
anymore, since there is no value such that the inequality holds. By using the fact
that this all would mean that in (5.4) the second term plays the main role
eventually, an contradiction with Tn →∞ can be derived. From this can be
concluded that κn is finite almost surely.

Step 2. In this step we want to find an upper bound for εi, with i > κn. For this,
consider the event

En = {κn <∞ and εi ≤ ci(i− κn) for all i > κn} ∪ {κn =∞},

where (cn) is a real-valued sequence which diverges to infinity. We want to show that

P(En i.o ) = P(
∞⋂
m=1

∞⋃
n=m

En) = 1.

By the properties of an decreasing sequence, and the fact that En ⊆
⋃∞
n=m En, it

suffices to show that

lim
n→∞

P(En) = 1.

The proof makes use of the Chebychev’s inequality and the monotone convergence
theorem([5, pg. 93]). By upper bounding P(En) by an expected value that converges
to 1, we can conclude the desired result.

Step 3. Here, we are going to show there exists a ν, depending on ω ∈ N , such that
for all n ≥ κν holds that

εn ≤ n (5.6)

Next to that, in this step we want to upper bound the term Tα−1
n

ταn
σi+1 more strict

than before. This means there needs to be shown that for all n ≥ κν holds that

Tα−1
n

ταn
σi+1 ≤ δqn−κν . (5.7)

By induction, there can be proved that there exists an specific upper bound, from
what exactly the above follows.

Knowing all this, it can be shown that P(N ) = 0. Starting with (5.4), everything we
have done until now can be plugged in. Using (5.6), Pn(1− Pn) ≤ Pn = ψ(Θn), we
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obtain for all n ≥ κv

Tn ≤ Tn−1 + 2α−1T
α
n−1

ταn−1

σn + εn
√
σnPn−1(1− Pn−1)

≤ Tn−1

(
1 + 2α−1T

α−1
n−1

ταn−1

σn + nT
1
2
n−1

√
2α−1σn

Tα−1
n−1

ταn−1

)
.

Since we know (5.7) and Tn ≥ 1, we get the following when we repeat this procedure

Tn ≤ Tn−1

(
1 + 2α−1δqn−κν−1 + n

√
2α−1δqn−κν−1

)
.

≤ Tκν

n−κν∏
i=1

(
1 + 2α−1δqi−1 + (κν + i)

√
2α−1δqi−1

)
≤ Tκν

∞∏
i=1

(
1 + 2α−1δqi−1 + (κν + i)

√
2α−1δqi−1

)
.

We want this product to converge to get an contradiction. Indeed, when we use that

∞∏
i=1

(1 + ai) <∞⇐⇒
∞∑
i=1

ai <∞,

we can show by the comparison test that Tn <∞ for all n ≥ κν . This is clearly a
contradiction with Tn →∞, and thus P(N ) = 0.

We are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. When (ρn) is bounded, the result follows from Proposition
5.4. When ρn →∞ and λ > 1, it follows from Proposition 5.3. When ρn →∞ and
λ < 1, almost sure monopoly is given by Proposition 5.5.

5.2 Critical regime

Recall, whether the probability on monopoly is bigger than 0 depends on the
summation

∞∑
n=0

τn+1

ταn
(5.8)

in this regime. When this sum is finite, the probability is strictly between 0 and 1.
An infinite sum will give probability zero. Note that in this case monopoly never
happens almost surely. To be able to work with these summations, we consider the
term

φn = τne
−βαn

It holds that limn→∞ α
−n log(φn) = 0. This can be clearly seen

lim
n→∞

α−n log(φn) = lim
n→∞

α−n log(τne
−βαn) = lim

n→∞
α−n log(τn)− lim

n→∞
α−nβαn

= β − β = 0.
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It can be easily verified that

τn+1

ταn
=
φn+1

φαn
(5.9)

This means, when we want to consider the sum of (5.8), it is equivalent to check
whether

∞∑
n=0

φn+1

φαn
(5.10)

is either finite or infinite. These are the tools that we will use to prove the following
theorem.

Theorem 5.6. Suppose α > 1 and θ ∈ (0,∞).

If
∞∑
n=0

τn+1

ταn
=∞, then P(M) = 0.

If
∞∑
n=0

τn+1

ταn
<∞, it holds that P(M) ∈ (0, 1).

For the proof, there is assumed that (φn) is unbounded if
∑∞

n=0
φn+1

φαn
<∞. This can

be proven by contradiction and is shown in [8]. This main theorem will be proven
with the help of two propositions. For the first, only an outline will be given. The
second proof will be done here.

Proposition 5.7. Suppose α > 1 and β ∈ (0,∞). If
∞∑
n=0

φn+1

φαn
<∞

then P(M) < 1. If
∞∑
n=0

φn+1

φαn
=∞, (5.11)

then P(M) = 0.

Proof. When (5.11) holds, it can be verified that also holds that
∑∞

n=0
σn+1

ταn
=∞.

By Lemma 3.2, it holds that P(M) = 0.

The case left to show is that in general in the critical regime holds that the
probability on monopoly is smaller than 1 when (5.10) converges. This can be done
by constructing an event E such that P(E) > 0 and both Tn →∞ and T̂n →∞ on
E . Then it follows that the P(M) < 1. For this, let γ > 2

α−1
and denote

χn = max
1≤k≤n

kγφk.

Since we assumed (φn) is unbounded in this case, it can be seen that χn →∞.
Since β ∈ (0,∞), it holds that (τn) grows faster than (χn). Using this, we can
construct several bounds for m ∈ N large enough to be able to construct the event

E = {Tm ∈ [χm, τm − χm]}
⋂
{|εn+1| ≤ n for all n ≥ m} .
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It can be shown that P(E) > 0, this won’t be done here.

Left to show is that Tn, T̂n both tend to infinity on E . We can argue, that by
symmetry of the chosen bounds, also T̂m ∈ [χm, τm − χm]. This means we only need
to proof that Tn →∞ on E . Since we know that χn →∞, it is enough to proof that
Tn ≥ χn on E for all n ≥ m. This can be shown by induction, see [8, pg. 25]. After
that, everything was needed can be concluded.

We only know now that P(M) < 1, when the summation in question is finite. There
needs to be shown that P(M) > 0 in this case. This is done in the next proposition.

Proposition 5.8. Suppose α > 1 and β ∈ (0,∞). If
∞∑
n=0

φn+1

φαn
<∞, (5.12)

then P(M) > 0.

Proof. Rewriting (5.4), noticing that σn+1 ≤ τn+1, we get

Tn+1 ≤ Tn + 2α−1T
α
n

ταn
σn+1 + εn+1

√
σn+1Pn(1− Pn)

≤ Tn + 2α−1T
α
n

ταn
τn+1 + εn+1

√
σn+1Pn(1− Pn)

≤ Tn + 2α−1T
α
n φn+1

φαn
+ εn+1

√
σn+1Pn(1− Pn).

Denote

ξn = T−αn
√
σn+1Pn(1− Pn).

Then we can rewrite the above to
Tn+1 − Tn

Tαn
≤ 2α−1φn+1

φαn
+ ξnεn+1. (5.13)

With the above, we are going to construct an event E , with P(E) > 0. When we can
show that P(E) ≤ P(M), we have the desired result.
Since (5.12) holds, we can pick m ∈ N large enough such that the summation of the
first term of (5.13) can be upper bounded. We can take

2α−1

∞∑
n=m

φn+1

φαn
<

1

α− 1

1

Tα−1
0

.

Here we used the property that the tail of a convergent sum goes to 0. Then we can
consider the event

E =

{
2α−1

∞∑
n=m

φn+1

φαn
<

1

α− 1

1

Tα−1
m

}⋂{
∞∑
n=m

ξnεn+1 ≤ 0

}
.

The probability of the first event is positive, since B1 = ....Bm = 0 happens with
positive probability. Then T0 = Tm. Furthermore, we notice that

∞∑
n=m

ξnεn+1 =
∞∑
n=m

Tαn (Bn+1 − σn+1Pn).
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The conditional expectation of the above, given Fm will be 0 almost surely, since
(2.4) holds. This means that

P

(
∞∑
n=m

ξnεn+1 ≤ 0

)
> 0.

Hence we can conclude that P(E) > 0. Now we show by contradiction that E ⊂M.
Suppose there is an ω ∈ E such that Tn →∞. Using the second part of the event E
and (5.13), the following contradiction can be deduced

2α−1

∞∑
n=m

φn+1

φαn
≥

∞∑
n=m

Tn+1 − Tn
Tαn

≥
∫ ∞
Tm

dx

xα
=

1

α− 1

1

Tα−1
m

.

The latter clearly contradicts the fact that ω ∈ E . This means that
0 < P(E) ≤ P(M). This is what we needed to show.

Proof of Theorem 5.6 . The proof follows exactly by first using that (5.9) holds.
After that we can use both Proposition 5.7 and Proposition 5.8 to get the desired
results.
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6 | Two other cases of the feedback
function

As mentioned earlier, the main focus of this thesis is the two bins model with
convex feedback function f(m) = mα, with α > 1. This is the most interesting case,
since there are several different end-states possible, as we have seen in the past
chapters. To make the story about this time-dependent balls and bins model
complete, the two other cases 0 < α < 1 and α = 1 will be discussed in this chapter.

6.1 Concave feedback function

In this section the feedback function f(m) = mα with α < 1 will be considered. In
this case there won’t occur dominance or monopoly, because the proportion of balls
in both bins will in the end converge almost surely to the equilibrium point
(Θ, Θ̂) = (1

2
, 1

2
), which will be shown and elaborated in this section.

This section is based on specific pages of [6]. This paper discusses general concave
and convex functions and was an inspiration for the discussion of our specific
concave feedback function.

In this chapter we will prove the following theorem.

Theorem 6.1 (Concave). Suppose 0 < α < 1 and
∑∞

n=0
σ2
n

τ2n
<∞. Then, almost

surely,

lim
n→∞

(Θn, Θ̂n) = (
1

2
,
1

2
),

i.e. the proportion of balls of both bins converges to an equilibrium.

Because in this thesis two bins are considered, the situation is symmetric. This
means we can both look specific at one bin and extend the situation afterwards to
two bins, or we can directly look at the two bins simultaneously. The first is done in
the previous chapters, but in this section we will do the second.

To be able to proof the almost sure convergence of (Θn, Θ̂n) we need to make use of
the stochastic approximation technique. Intuitively, the following happens. We are
dealing with a two dimensional discrete process, from what we want investigate
whether it converges and to which values. By rewriting our process in a recursive
way, the same way it is done in (4.17) for one dimension, we can show that this
recursive relation behaves like an ordinary differential equation. This is the main
idea of the stochastic approximation technique. By making our time steps really
small, we can approximate our process by a continuous process. Instead of
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h(Θn) = h(Θ(n)), we then can write h(Θ(t)) for all t ∈ R+. The differential equation
will have certain stationary points, L. It holds now that

E ⊆ L.

This means the set of stationary points of the corresponding differential equation
will contain the original equilibrium points of our process, but potentially contains
more points. There can be shown that under certain conditions, Θn will converge to
a stationary point of the differential equation. That is the main goal of this section.

Let’s make this more precise. An intuitive idea of the proof will be given here. For
more details, the reader is referred to Appendix A of [6].

Proof. As we have seen in (4.17), we can write Θn+1 recursively into Θn, a
martingale part and an error term:

(Θn+1, Θ̂n+1) = (Θn, Θ̂n)−
(
σn+1

τn+1

(Θn − ψ(Θn)),
σn+1

τn+1

(Θ̂n − ψ(Θ̂n)

)
+

(
Bn+1 − σn+1Pn

τn+1

,
B̂n+1 − σn+1(1− Pn)

τn+1

)
, (6.1)

since ˆBn+1 is a random variable with size σn+1 and parameter P̂n = 1− Pn. We can
rewrite this to a vector notation, where (Θn+1, Θ̂n+1) = θn+1 and
h(θn) = (Θn − ψ(Θn), Θ̂n − ψ(Θ̂n)). Furthermore, we can write Mn+1 for the last
expression of (6.1). This gives

Mn+1 =
(
Bn+1 − σn+1Pn, B̂n+1 − σn+1(1− Pn)

)
.

By exactly the same way as in Chapter 4, we can prove this is a martingale
increment. This gives the following equation:

θn+1 = θn −
σn+1

τn+1

(
h(θn) +

Mn+1

σn+1

)
. (6.2)

To be able to obtain information about the convergence, we consider the differential
equation of the continuous function F (x) = h(x(t)), with x ∈ R2, defined as follows:

ẋ =

{
x1(t)α

x1(t)α+x2(t)α
− x1(t)

x2(t)α

x2(t)α+x1(t)α
− x2(t).

Notice that xi still represents the proportion of balls in the i-th bin with i ∈ {1, 2},
meaning that the relation x2(t) = 1− x1(t) holds. The stationary points of a
differential equation can be found by setting

∂F

∂x1

=
∂F

∂x2

= 0.

This means we will find the following stationary points, using the same calculation
as in the beginning of Chapter 4. Knowing this, we get

L =

{
(0, 1), (1, 0),

(
1

2
,
1

2

)}
.
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In this case holds thus that E = L. It holds that we can use the Hessian matrix of
the corresponding differential equation to find out whether these points are stable or
not. Such a differential equation has a stable point when the eigenvalues have all
negative real parts, when the equilibrium point is plugged in the Hessian matrix [4,
pg. 103]. We will prove that θn will converge to a specific stable point by using an
important theorem from [6].

Before we do this, we note the following. When xi(0) = 0 for some i ∈ {1, 2}, then
we see that

∂F

∂x1

=
∂F

∂x2

= 0,

meaning when the system starts in either (0, 1) or (1, 0) we will have that xi(t) = 0
for all t. Since in this thesis we assume that 0 < T0 < τ0, we can indeed conclude
that 0 < x1(0), x2(0) < 1. Note this holds since α < 1 here, in the other chapters
were α > 1, this is obviously not happening. Since α < 1 and we have
0 < x1(0), x2(0) < 1, we can also see that this means these points will never be
reached when the initial values are between 0 and 1.

The only point that needs to be checked is (1
2
, 1

2
). This calculation is straightforward

and can be found in the Appendix of this thesis.
Now we are able to use Theorem A.2 of [6]. We indeed are able to write our model
as in (6.2) and we made the general assumptions (2.7) and (2.8) here. The other
necessary assumptions can be easily checked. From this there can be concluded by
the second statement of Theorem A.2, because (1

2
, 1

2
) is the only stable stationary

point, that it holds that θn converges to this point, giving that

θn →
(

1

2
,
1

2

)
almost surely. This is the desired result.

From the above theorem, we can directly conclude that

P(M) = P(D) = 0.

6.2 No feedback

This section is devoted to the no feedback case, meaning that the feedback function
f(m) is equal to f(m) = m. The structure and proofs of this section are based on
[8, Section 3].
Note first, that in this case

Pn =
Θα
n

Θα
n + (1−Θn)α

= Θn.

This means the probability of a ball landing in a certain bin only depends on the
number of balls already in that bin. The feedback function is a lineair function here.
This will be useful when we prove that there Θn converges to a random variable Θ
in this case. The aim of this chapter is to get an idea of the proof of the following
theorem,
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Theorem 6.2. Suppose α = 1. Then Θn converges almost surely to a random
variable Θ, and P(D) = 0.

The first part of this theorem is not hard to prove and will be shown in detail. For
the second part, to proof there is almost surely no dominance, an idea of the proof
will be given. For the exact details the reader is referred to [8, section 3].

Proof. First we prove the almost sure convergence of Θn. Notice we can rewrite Θn

as in (4.16). We show, with the help of this relation, that (Θn) is a bounded
martingale. For that, notice that (Θn) is clearly adapted to the filtration
Fn = σ(B1, B2, .., Bn). Since it holds that Θn ≤ 1, we have that (Θn) is integrable.
Note, since Θn is a proportion, it holds that

sup
n∈N

E[Θn] <∞.

The only thing left to show is that (Θn) satisfies the martingale property, which is
done below:

E[Θn+1|Fn] = E
[
τn
τn+1

Θn +
1

τn+1

Bn+1|Fn
]

=
τn
τn+1

Θn + E
[

1

τn+1

Bn+1|Fn
]

=
τnΘn + σn+1Pn

τn+1

= Θn

(
τn + σn+1

τn+1

)
= Θn.

Thus, (Θn) is a bounded martingale with respect to Fn. By Theorem 1.2 holds that
Θn converges almost surely to a random variable Θ.

To prove no dominance occurs, it holds by symmetry of the two considered bins,
that it is enough to show that

P
(

lim
n→∞

Θn = 0
)

= P (Θ = 0) = 0.

For this, we are going to use the Laplace transfrom of Θn and Θ, defined as follows

fn(λ) := E[e−λΘn ]

f(λ) := E[e−λΘ],

where λ ∈ R. Because Θn is a discrete random variable, it holds that Θ is discrete
as well. This means that

f(λ) =
n∑
k=0

e−λkP(Θ = k) ≥ P(Θ = 0), (6.3)

implying that it is enough to show that there exists a sequence (λm) such that

lim
m→∞

f(λm) = 0.

To reach this goal, choose λm = cτm ≥ 0 with c ∈ (0, 1), such that e−x ≤ 1− x+ x2

2

for all x ∈ [0, c]. This is useful when the induction is applied. There can be proven
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by induction over k, using several upper and lower bounds, that for all m, n > m
and 1 ≤ k ≤ n−m holds that

fn(λm) ≤ fn−k

(
λm − λ2

m

n∑
i=n−k+1

σi
τ 2
i

)
. (6.4)

where there is is used that

λm − λ2
m

n−k+1∑
i=m+1

σi
τ 2
i

≥ λm(1− c) ≥ 0. (6.5)

The proofs of these two statements can be found in [8, section 3]. Knowing this, we
are almost ready to make the conclusion. Notice that the function fm for fixed m is
monotonically declining, since for x < y with x, y ∈ R we have that e−x > e−y and
thus that

fm(x) = E[e−xΘn ] ≥ E[e−yΘn ] = fm(y).

Notice, because σi, τi > 0, that

λm > λm − λ2
m

n∑
i=m+1

σi
τ 2
i

.

Substituting k = n−m in (6.4) and using both the monotonicity of fm and (6.5),
the following can be obtained for all m and n > m

fn(λm) ≤ fm

(
λm − λ2

m

n∑
m+1

σi
τ 2
i

)
≤ fm (λm(1− c)) = E

[
e−λm(1−c)Θm

]
(6.6)

= E
[
e−τmc(1−c)Θm

]
= E

[
e−c(1−c)Tm

]
.

Because we know that Θn → Θ almost surely, when n→∞, we can apply the
dominated convergence theorem [3, pg. 57] to check the behaviour of fn, for λ > 0.
Since

e−λΘn ≤ 1 = E[1] <∞,
it holds by the dominated convergence theorem that

fn(λ) = E[e−λΘn ]→ E[e−λΘ] = f(λ).

as n→∞. This means, when we take the limit n→∞ in (6.6), we get that

f(λm) ≤ E[e−c(1−c)Tm ],

because the righthand side does not depend on n. By Lemma 3.3, it holds that
P(limm→∞ Tm =∞) = 1 in the no-feedback case. By again applying the dominated
convergence theorem with the same upper bound, taking the limit m→∞, we
obtain

lim
m→∞

f(λm) ≤ lim
m→∞

E
[
e−c(1−c)Tm

]
= E[ lim

m→∞
e−c(1−c)Tm ] = 0,

where it is used that c ∈ (0, 1). Since (6.3) holds, we can conclude that

P(Θ = 0) = 0,

and thus that P(D) = 0.

This implies directly that P(M) = 0. Note that Θn converges in this case to a
random variable Θ with values strictly between 0 and 1, instead of a deterministic
value as we have seen in the previous section.
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Appendix

In this chapter the stability of the point (1
2
, 1

2
) in the case α < 1 will be shown with

use of the Hessian matrix. Recall we are working with the following differential
equation:

ẋ =

{
∂F
∂x1

= x1(t)α

x1(t)α+x2(t)α
− x1(t)

∂F
∂x2

= x2(t)α

x1(t)α+x2(t)α
− x2(t).

The Hessian matrix is defined as

H =

(
∂2F
∂x21

∂2F
∂x1x2

∂2F
∂x2x1

∂2F
∂x21

)
.

The corresponding derivatives are as follows:

∂2F

∂x2
1

=
αxα−1

1 (xα1 + xα2 )− αx2α−1
1

(xα1 + xα2 )2
− 1

∂2F

∂x2
2

=
αxα−1

2 (xα1 + xα2 )− αx2α−1
2

(xα1 + xα2 )2
− 1

∂2F

∂x1x2

=
−αxα2xα−1

1

(xα1 + xα2 )2

∂2F

∂x2x1

=
−αxα1xα−1

2

(xα1 + xα2 )2

When we plug in (x1, x2) = (1
2
, 1

2
) in these equations, we obtain the following

∂2F

∂x2
1

|( 1
2
, 1
2

) =
∂2F

∂x2
2

|( 1
2
, 1
2

) =
α 1

2

α−1
(1

2

α
+ 1

2

α
)− α 1

2

2α−1

(1
2

α
+ 1

2

α
)2

− 1

=
α 1

2

2α−2 − α 1
2

2α−1

1
2

2α−2 − 1 =
1

2
α− 1.

∂2F

∂x2x1

|( 1
2
, 1
2

) =
∂2F

∂x1x2

|( 1
2
, 1
2

) =
−α 1

2

α 1
2

α−1

(1
2

α
+ 1

2

α
)2

=
−α 1

2

2α−1

1
2

2α−2 = −1

2
α.

Plugging this in the matrix H and subtracting λI2, we obtain the following matrix

H − λI2 =

(
1
2
α− 1− λ −1

2
α

1
2
α 1

2
α− 1− λ

)
.
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The eigenvalues of H can be found be determining the determinant of this matrix.
Solving the equation below, we get the following two eigenvalues(

1

2
α− 1− λ

)2

+
1

4
α2 = 0.

λ1 = −1 +
1

2
α− i

2
α.

λ2 = −1 +
1

2
α +

i

2
α.

The real parts of both eigenvalues are equal to −1 + 1
2
α, which are clearly negative

when α < 1. Hence we can conclude that (1
2
, 1

2
) is a stable stationary point of our

system of differential equations.
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