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Abstract

Large prime numbers are very important in modern-day information security. To find such large prime
numbers, algorithms which can efficiently determine primality for large numbers are needed. Beginning
with one of the oldest and most well-known primality testing algorithms, we discuss several ways in which
more efficient algorithms can be derived. Some of the algorithms we will look at are probabilistic, in the
sense that they will determine a number as “probably prime”. However, assuming a very deep hypothesis
in mathematics, we can construct efficient deterministic variants of these probabilistic algorithms. We
conclude our theoretical discussion of primality testing algorithms with an algorithm which was discovered
at the beginning of this century in one of the biggest breakthroughs in primality testing, since it provides
an efficient deterministic method to test for primality without relying on any unproven assumptions. We
complement the theoretical discussion with a short practical analysis of the different algorithms presented,
where we will see that several of the algorithms perform much more efficient in practice than what has
been theoretically proven.
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1 INTRODUCTION 1

1 Introduction

At first glance, prime numbers seem like nothing more than an interesting mathematical construct with no
practical application; a problem which unfortunately is widespread throughout all areas of mathematics.
However, while this might have been true when the ancient mathematicians first described them, the ever-
growing need for secure data transfer and storage in our modern society has created a practical field with
an immense demand for large prime numbers. To secure data, so-called cryptograhic algorithms are used to
encrypt the data with a specific key. Only the person with access to this key can decrypt the encrypted data.
Several widely used cryptographic algorithms, such as the RSA public key cryptosystem and cryptosystems
based on the discrete log problem in finite fields, such as Diffie-Hellman and ECC, use large random prime
numbers to guarantee their safety [1].

To generate these large prime numbers, we need an efficient algorithm to test and verify which large numbers
are prime. The aim of this thesis is to introduce the reader to the topic of primality testing, by presenting
several primality testing algorithms, proving their correctness, and comparing them against each other. We
begin by giving a short recap on prime numbers and present the Trial Division algorithm, a primality testing
algorithm that has been known since the ancient mathematicians first described the primes. The remain-
der of Chapter 2 will serve to introduce the Solovay-Strassen and Miller-Rabin primality tests. These two
algorithms are probabilistic: if an integer satisfies the test, it is very likely to be prime, but there is a small
chance that a non-prime integer is incorrectly identified as prime. This compromise in accuracy is contrasted
by extreme efficiency; we will see that both probabilistic tests can test an integer with a thousand digits for
primality in mere seconds.

To contrast the probabilistic primality testing algorithms presented in Chapter 2, deterministic variants of
these algorithms are presented in Chapter 3. To prove that these deterministic variants are also somewhat
efficient, we use a consequence of the Extended Riemann Hypothesis. This is a deep hypothesis in analytic
number theory which is widely believed to be true. The final algorithm we discuss is the AKS primality
testing algorithm. What sets the AKS algorithm apart from the other primality testing algorithms discussed
in this thesis is the fact that it was the first efficient deterministic primality test which did not depend on
any unproven hypotheses, such as the Extended Riemann Hypothesis.

Finally, we present a theoretical and practical analysis of all the presented algorithms in Chapter 4 and 5
respectively. From this analysis, it will become clear that the probabilistic algorithms are by far the most
efficient primality testing algorithms. While the AKS primality testing algorithm is arguably the most im-
pressive algorithm from a theoretical standpoint, we will see that it is many times slower than the other
efficient algorithms presented and thus does not have any practical use.

Sometimes, we will somewhat irresponsibly view the elements of Zn and Z∗n as integers. This will always
mean that we make use the unique integer representative 0 ≤ a < n of the equivalence class in question.

An important final note is that most of the primality testing algorithms we present in this thesis assume that
the number being tested for primality is odd. It is however easy to test if an even number is prime, since
the only even prime number is 2. Testing if a number is even is also trivial by looking at the last bit of the
number in its binary representation, which is the representation in which the number is stored on a modern
computer. Therefore, any primality test that tests odd numbers can easily be adapted to also facilitate even
numbers.
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2 Testing for Primality

We’ve seen why primes are so important in our daily lives, but to ensure the integrity of the systems and
applications that use them, there needs to be a way to confirm that the (often very large) numbers used are
indeed prime. The most intuitive primality test is based on the original definition of primes, which has been
known for centuries.

2.1 Trial Division

In his Elements, Euclid defines prime numbers as follows:

“A prime number is that which is measured by a unit alone.”[2]

Keeping in mind that, in ancient mathematics, an integer being measured by another meant the latter exactly
divides the former, we can transform Euclid’s definition into the well-known modern definition of a prime
number.

Definition 2.1. A prime number is an integer n ≥ 2 which has no positive divisors other than 1 and n. An
integer n ≥ 2 is called composite if it is not prime; it has at least one nontrivial divisor.

This definition leads us to the first primality testing algorithm; the Trial Division algorithm.

Algorithm 2.2 (Trial Division). Let n ≥ 2 be an integer, whose primality we want to test. Then, for all
integers 1 < a ≤

√
n, test if a|n (“a divides n”). If none do, then n is prime. Otherwise, n is composite.

Proof. Firstly, suppose that n is prime. Then, by Definition 2.1, the only positive divisors of n are 1 and n,
so no integer 1 < a ≤

√
n will divide n, since n ≥ 2 and thus n >

√
n. In this case, the algorithm correctly

identifies n as prime.

Now suppose that n is composite. Then there exists at least one non-trivial positive divisor k of n. By
the definition of divisibility, this implies that n = k`, where ` is also a positive divisor of n. Now, since
1 < k < n, we also have 1 < ` < n and we claim that at least one of these is less than or equal to

√
n.

Indeed, suppose that k, ` >
√
n, then it follows that n = k` > n, a clear contradiction. The algorithm

will thus test n for divisibility against at least one of the divisors k and `, correctly concluding that n is
composite.

As an example, we will test the integer n = 9 (which we know to be composite) for primality. Since
√
n = 3,

we only test for divisibility against the integers a = 2 and a = 3. Since n is odd, a = 2 is not a divisor of n,
but a = 3 is, since n = 9 = 3 · 3. We thus see that n = 9 is indeed composite by the Trial Division primality
test.

Remark 2.3. Note that Algorithm 2.2 immediately provides a factor of n if n is found to be composite,
namely the integer a against which n fails the divisibility test. Furthermore, if we test for divisibility against
the integers 1 < a ≤

√
n in increasing order, we are guaranteed that this factor is prime, since for any

composite number a that divides n, all the prime factors of a (which are strictly smaller than a) also divide
n and thus would be tested earlier. This property to immediately yield a prime factor of a composite number
is very useful for converting the primality test into a factoring algorithm. Unfortunately, as we will see, most
faster primality testing algorithms do not provide us with such luxury[1].

While the idea of trial division might have suited our primality testing needs for centuries, the question has
always been whether it can be done faster. Several improvements have been made to the algorithm, the biggest
ones being only testing for divibility against prime integers a and testing multiple integers for primality at
once; eventually resulting in the Sieve of Eratosthenes. However, to test single integers for primality efficiently,
we need to consider alternative ways to test integers for primality, not based on divisibility, but on more
abstract properties of primes.
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2.2 Properties of Primes

The trial division primality test follows almost immediately from the definition of prime numbers as given in
Definition 2.1. However, we saw that the resulting algorithm is quite slow. One approach to creating a more
efficient (faster) primality testing algorithm is by considering different, more abstract properties of primes.
For this, let us first look at one of the most well-known properties of primes: Fermat’s Little Theorem.

Theorem 2.4 (Fermat’s Little Theorem). Let p be a prime number and a any integer. Then ap ≡ a mod p
and, if (a, p) = 1, ap−1 ≡ 1 mod p. Here (a, p) denotes the greatest common divisor of a and p.

Proof. We present a more formal version of the combinatorical proof in [3]. The case p = 2 is trivial, so
suppose that p > 2; then p is odd and thus p−1 is even. This means that ap−1 = (−a)p−1, so we can assume
that a is non-negative. Now consider colorings of Zp; functions of the form c : Zp → A, where A is a set of a
distinct “colors”. Since there are a possible colors for each of the p elements of Zp, the total number of such
colorings is ap. Now, let C ⊂ AZp be the set of colorings c for which there are i, j ∈ Zp with c(i) 6= c(j); the
colorings with at least two different colors. Since the total number of colorings is ap and there are exactly a
colorings containing only one color (one for each of the a colors), we know that the number of colorings with
at least two different colors is given by

|C| = ap − a.

We now claim that the number of elements of C is divisible by p. View the group action φ : Zp → SC of Zp
on C, given by (φ(g)(c))(k) = c(k − g); shifting a coloring g places to the right. Here, SC denotes the set of
all possible permutations of a coloring. The idea now is to show that the orbit of any c ∈ C under φ contains
p distinct elements; every shift yields a different coloring. We prove this by contradiction.

Suppose that for a certain c ∈ C there are two shifts that produce the same coloring, implying that there are
g, h ∈ Zp with g 6= h and φ(g)(c) = φ(h)(c). This implies that c(k − g) = c(k − h) for any k ∈ Zp. Writing
d = g − h 6= 0 and k′ = k − g, we see that c(k′) = c(k′ + d) for any k′ ∈ Zp. In particular, this implies that
c(id) = c(0) for all i ∈ Zp.

Now, on one hand it follows from the definition of C that there is an integer j ∈ Zp with c(j) 6= c(0).
On the other hand, since p is prime and d 6= 0, there is a d−1 ∈ Zp, implying that jd−1 ∈ Zp and thus
c(j) = c((jd−1)d) = c(0). This is a clear contradiction. Therefore, φ(g)(c) 6= φ(h)(c) for all g, h ∈ Zp with
g 6= h: every shift will produce a different coloring. Since there are |Zp| = p different shifts, it follows that
{φ(g)(c) | g ∈ Zp}, the orbit of c ∈ C under φ, will always contain exactly p distinct colorings.

Since the orbits of a group action on C partition C, and every orbit contains exactly p elements, p must
divide the total number of elements in C, which is ap − a. This means that p | ap − a and therefore ap ≡ a
mod p for any integer a. If (a, p) = 1, a−1 ∈ Zp exists, implying that

ap−1 ≡ a−1ap ≡ a−1a ≡ 1 mod p.

Now, if the above statement was to only hold for prime numbers p, Fermat’s Little Theorem would lead to
an alternative definition of primes. Unfortunately, this is not the case and there exist composite numbers n
for which there is an integer a with (a, n) = 1 and an−1 ≡ 1 mod n. Such composite numbers are called
pseudoprimes.

Definition 2.5 (Pseudoprime). A composite number n is called a pseudoprime to the base b if bn−1 ≡ 1
mod n for an integer b with (b, n) = 1 [1].

For example, the composite number n = 15 is a pseudoprime to the base a = 4, since (4, 15) = 1 and
414 = 167 ≡ 17 ≡ 1 mod 15. However, since 214 = 4 · 163 ≡ 4 · 13 ≡ 4 mod 15, we see that 15 is not a
pseudoprime to the base 2.
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By Fermat’s Little Theorem we know that, for a prime number p, the equation ap−1 ≡ 1 mod p holds for
any integer with (a, p) = 1. This might lead one to think that testing every a ∈ Zp until a counterexample
is found (as we did with n = 15) would be a good way to test for primality. However, it turns out that this
does not work since there are also composite integers that will pass this test for any integer a. Such integers
are called Carmichael numbers.

Definition 2.6. A Carmichael number is a composite number n such that for any integer b with (b, n) = 1,
the equation bn−1 ≡ 1 mod n holds; a Carmichael number is a pseudoprime to any base b [1].

Theorem 2.7. An odd composite number n is a Carmichael number if and only if n is square-free (that is,
there is no integer m > 1 such that m2|n) and p− 1|n− 1 for every prime divisor p of n.

Proof. We write Z∗k to represent the multiplicative group of all invertible elements modulo k. For any group
G, the order of an element g ∈ G is defined as the least integer i ≥ 1 for which gi = 1 in G. Additionally, a
generator of a cyclic group G is an element g ∈ G such that {gi}i∈Z = G.

Suppose that n is not square free, then we see that there is a prime number q such that q2|n. If we take b
as a specific generator of Z∗q2 (which we know to be cyclic) which we will construct below, it follows that the

order of b is |Z∗q2 | = q(q − 1). However, since q|n and n > 1, we have that q - n − 1, so q(q − 1) - n − 1 and

therefore bn−1 6≡ 1 mod q2. In particular, since q2|n, we also have that bn−1 6≡ 1 mod n, so n is indeed not a
Carmichael number. One might argue that b does not need to satisfy (b, n) = 1, but by the Chinese Remain-
der Theorem there is always an integer b′ that satisfies b′ ≡ b mod q2 and b′ ≡ 1 mod n′ (where n′ is the
product of all prime factors of n other than p), implying (b′, n) = 1. This is the specific generator b we choose.

Now suppose that p − 1 - n − 1 for some prime divisor p of n. The argument is almost exactly the same as
the one given above. This time, take b as a generator of Z∗p, which we again construct to satisfy (b, n) = 1
using the Chinese Remainder Theorem. The order of b is given by |Z∗p| = p− 1. However, since p− 1 - n− 1,
we have that bn−1 6≡ 1 mod p, implying that bn−1 6≡ 1 mod n, since p|n. This means that n is indeed not
a Carmichael number, as it is not a pseudoprime to b.

Finally, suppose that n is square-free and satisfies p− 1|n− 1 for any prime divisor p of n. Choose an integer
b with (b, n) = 1. Since n is square-free, we can write n = p1p2 · · · pk, where the pi are distinct primes and
where, by Fermat’s Little Theorem, we know that bpi−1 ≡ 1 mod pi for all 1 ≤ i ≤ k. Since pi − 1|n− 1, we
have bn−1 ≡ b`i(pi−1) ≡ 1`i ≡ 1 mod pi for any integer 1 ≤ i ≤ k. We know that n = p1p2 · · · pk, from which
the Chinese Remainder Theorem now lets us conclude that bn−1 ≡ 1 mod p1p2 · · · pk(= n). Since this holds
for any integer b with (b, n) = 1, we conclude that n is indeed a Carmichael number.

As an example, n = 561 = 3 · 11 · 17 is a Carmichael number, since it is square-free and 2|560, 10|560 and
16|560. This turns out to be the smallest Carmichael number, as shown by Carmichael himself in 1910[4].

The criteria given in Definition 2.6 and Theorem 2.7 give us ways to test if an integer is a Carmichael number,
but they give us little insight into how we might find these Carmichael numbers in general. One explicit
construction of a subset of Carmichael numbers is given by the following theorem.

Theorem 2.8. For any positive integer k, the number n = (6k+1)(12k+1)(18k+1) is a Carmichael number
if all three of its factors are prime.

Proof. We will simply check all the criteria from Theorem 2.7. Let k be an integer such that (6k+1), (12k+1)
and (18k + 1) are all prime. This immediately implies that n is square-free, since it is a product of three
distinct primes. Furthermore, by writing out the product for n, we see that

n− 1 = 1296k3 + 396k2 + 36k.

It is now easily checked that 6k|n − 1, 12k|n − 1 and 18k|n − 1, so by Theorem 2.7 we conclude that n is
indeed a Carmichael number.
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Remark 2.9. It is not known whether the above construction yields infinitely many Carmichael numbers but
this would be implied by Dickson’s conjecture, widely believed to be true. However, the existence of infinitely
many Carmichael numbers has also unconditionally been proved; it has been shown that for sufficiently large
n, there are at least n2/7 Carmichael numbers between 1 and n [5].

The existence of Carmichael numbers, these infinite “false positives” to Fermat’s Little Theorem, poses a big
problem when trying to use Fermat’s Little Theorem to test for primality; we cannot distinguish Carmichael
numbers from actual primes without doing additional tests (like the criteria in Theorem 2.7). To successfully
overcome this problem, stronger versions of Fermat’s Little Theorem are needed.

2.3 The Solovay-Strassen Primality Test

Before we can introduce the main idea behind the first primality testing algorithm we will discuss that is
faster than the Trial Division algorithm, we first need to introduce the Jacobi symbol.

Definition 2.10 (Legendre and Jacobi symbol). For a prime number p and integer a, we define the Legendre
symbol (ap ) as 0 if p | a, as 1 if a is a quadratic residue modulo p (there is an integer b such that b2 ≡ a

mod p) and −1 otherwise. We can extend the definition of the Legendre symbol to composite numbers,
which results in the Jacobi symbol. For any positive odd integer n with prime factorization pα1

1 pα2
2 · · · p

αi
i and

integer a, the Jacobi symbol ( an ) is defined as the product of Legendre symbols [1]:(a
n

)
=

(
a

p1

)α1
(
a

p2

)α2

· · ·
(
a

pi

)αi

.

Having introduced the Jacobi symbol, we can now derive the main idea of the first efficient primality testing
we present: the following stronger version of Fermat’s Little Theorem.

Theorem 2.11. Let p be an odd prime number and let (ap ) denote the Jacobi symbol. Then for any integer
a we have

a(p−1)/2 ≡
(
a

p

)
mod p.

The proof of this theorem will mainly be based on the proof given in Chapter 5 of [1]. We first prove the
following two lemmata.

Lemma 2.12. For any prime p, an integer a which satisfies a2 ≡ 1 mod p must have a ≡ ±1 mod p. In
other words, the only square roots of 1 in Zp are ±1.

Proof. Since a2 ≡ 1 mod p, we know that p|a2 − 1 = (a − 1)(a + 1) and since p is prime, this implies that
p|a− 1 or p|a+ 1. In other words, a ≡ ±1 mod p.

Lemma 2.13. Let p be an odd prime number and g a generator of Z∗p. An integer a ∈ Z∗p is a quadratic

residue mod p, if and only if a ≡ gk mod p with k even.

Proof. If a ≡ gk mod p with k even, then clearly a ≡
(
gk/2

)2
mod p is a quadratic residue modulo p. On

the other hand, if a ≡ x2 mod p, then write x = gj and we find a ≡ g2j mod p.

Using these two lemmata, we can now prove Theorem 2.11.

Proof (Theorem 2.11). Firstly, if a ≡ 0 mod p, we have (ap ) = 0 and a(p−1)/2 ≡ 0(p−1)/2 = 0 mod p, so the

theorem holds. Now suppose that (a, p) = 1, so that (ap ) = ±1. Take g to be a generator of Z∗p and write

a ≡ gk mod p. Then, by Lemma 2.13, we know that (ap ) = 1 if k is even and (ap ) = −1 if k is odd.
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If k is even, it follows that

a(p−1)/2 ≡
(
gk
)(p−1)/2

= gk(p−1)/2 =
(
gp−1

)k/2 ≡ 1k/2 = 1 =

(
a

p

)
mod p.

On the other hand, if k is odd, we can write k = 2`+ 1, so that

a(p−1)/2 ≡
(
gk
)(p−1)/2

=
(
g2`+1

)(p−1)/2
= g`(p−1)g(p−1)/2 ≡ g(p−1)/2 6≡ 1 mod p,

since the order of g in Z∗p is p−1. However, by Fermat’s Little Theorem, we know that (a(p−1)/2)2 = ap−1 ≡ 1

mod p and, since p is prime, by Lemma 2.12 it follows that a(p−1)/2 ≡ ±1 mod p. Since a(p−1)/2 6≡ 1 mod p
it again follows that

a(p−1)/2 ≡ −1 =

(
a

p

)
mod p.

Remark 2.14. Note that this theorem is indeed a stronger version of Fermat’s Little Theorem; squaring
both sides of the equation implies Fermat’s Little Theorem, since (ap ) = ±1 for integers a satisfying (a, p) = 1.

Using Theorem 2.11, we can define an analog of the pseudoprimes from Definition 2.5; the so-called Euler
pseudoprimes.

Definition 2.15 (Euler pseudoprime). An odd composite number n is called an Euler pseudoprime to the
base b if (b, n) = 1 and b(n−1)/2 ≡

(
b
n

)
mod n for an integer b [1].

The reason that Theorem 2.11 is better suited for a use in primality testing than Fermat’s Little Theorem
is that there are no analogs to Carmichael numbers for Euler pseudoprimes, as is shown by the following
theorem.

Theorem 2.16. Let n be an odd composite number. Then for at least half of all a ∈ Z∗n we have

a(n−1)/2 6≡
(a
n

)
mod n.

In other words, n is an Euler pseudoprime to at most half of all possible bases a ∈ Z∗n.

Proof. The main idea of this proof is based on the proof given in Chapter 5 of [1]. First, we will prove that
there is at least one base b ∈ Z∗n to which n is not an Euler pseudoprime. We distinguish two cases, based
on whether n is square-free or not.

Firstly, suppose that n is not square-free. Then, by Theorem 2.7, we know that n is not a Carmichael
number. This means that there is a b ∈ Z∗n for which bn−1 6≡ 1 mod n. However, since b ∈ Z∗n, we know that(
b
n

)
= ±1, which means that

(
b
n

)2
= (±1)2 = 1 6≡ bn−1 =

(
b(n−1)/2

)2
mod n, and therefore

(
b
n

)
6≡ b(n−1)/2

mod n.

Now suppose that n is square-free and let p be a prime divisor of n. Let α ∈ Zp be a quadratic non-
residue modulo p. Since n is square-free we have (p, n/p) = 1, by the Chinese Remainder Theorem, there
exists an integer b satisfying b ≡ α mod p and b ≡ 1 mod n/p. We know that p is prime and α 6= 0, so
(b, p) = (α, p) = 1 . Furthermore, since b ≡ 1 mod n/p, we have (b, n/p) = 1. This means that (b, n) = 1.
By definition of b, we see that (

b

n

)
=

(
b

p

)(
b

n/p

)
=

(
α

p

)(
1

n/p

)
= −1.

However, we also have b(n−1)/2 ≡ 1(n−1)/2 = 1 mod n/p. Since n is odd and composite, we know that
n/p > 2, which means that ( bp ) 6≡ 1 mod n/p. Since n/p is a divisor of n, this implies that b(n−1)/2 ≡ 1 6≡

(
b
n

)
mod n.
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We will now prove that n is an Euler pseudoprime to at most half of the bases a ∈ Z∗n. Let E ⊂ Z∗n be the
set of Euler pseudoprime bases of n and define the function f : Z∗n → Z∗n as f(k) = bk, where b ∈ Z∗n satisfies
b(n−1)/2 6≡

(
b
n

)
mod n, as constructed above. Since the function g : Z∗n → Z∗n, defined as g(k) = b−1k is

both a left- and right-inverse of f , f is bijective.

For ` ∈ E, by definition we have `(n−1)/2 ≡
(
`
n

)
mod n and therefore

(f(`))
(n−1)/2

= (b`)
(n−1)/2

= b(n−1)/2`(n−1)/2 ≡ b(n−1)/2
(
`

n

)
6≡
(
b

n

)(
`

n

)
=

(
b`

n

)
=

(
f(`)

n

)
mod n.

Here we used the fact that ` ∈ E ⊂ Z∗n, implying that
(
`
n

)
= ±1 6≡ 0 mod n. By the above incongruence,

we see that n is not an Euler pseudoprime base to f(`) for any ` ∈ E, which implies that Imf (E) ⊆ Z∗n\E.
Since f is bijective, we see that

|E| = |Imf (E)| ≤ |Z∗n\E| = |Z∗n| − |E|

and thus |E| ≤ 1
2 |Z
∗
n|.

Remark 2.17. Note that Theorem 2.16 indeed implies that there are no Euler pseudoprime analogs to
Carmichael numbers. Any odd composite n is guaranteed to not be an Euler pseudoprime to at least half of
all possible bases and can therefore certainly not be an Euler pseudoprime to all possible bases.

Remark 2.18. The upper bound given in Theorem 2.16 is in fact the best possible bound if n is a so-called
special Carmichael number, that is a(n−1)/2 ≡ 1 mod n for all a ∈ Z∗n; a special Carmichael number is an
Euler pseudoprime to exactly half of all possible bases a ∈ Z∗n. An example of a special Carmichael number
is 1729; the famous taxicab number. It turns out that the number of special Carmichael numbers is infinite
[6]. Therefore, the upper bound given in Theorem 2.16 is asymptotically optimal.

The fact that there are no analogs to Carmichael numbers for Euler pseudoprimes allows us to derive a
property that only holds for prime numbers; a direct corollary of Theorem 2.11 and Theorem 2.16 is the
following result.

Theorem 2.19. An odd positive integer n > 1 satisfies

a(n−1)/2 ≡
(a
n

)
mod n

for all integers 0 < a < n if and only if n is prime.

Proof. The result follows immediately from Theorem 2.11 and Theorem 2.16. If n is prime, then we know
by Theorem 2.11 that a(n−1)/2 ≡ ( an ) mod n for all integers 0 < a < n. If n is composite, then we know by
Theorem 2.16 that there is at least one a ∈ Z∗n (which we can represent by an integer 0 < a < n) that does
not satisfy a(n−1)/2 ≡ ( an ) mod n. This completes the proof.

Remark 2.20. Using Theorem 2.19, we cannot immediately derive a faster primality testing algorithm. In
order to be sure that a number is prime, we would need to test at least half of all a ∈ Z∗n; this is because only if
at least half are tested, we know by Theorem 2.16 that a composite number cannot be an Euler pseudoprime
to all the tested bases a. Since trial division only tests for divisibility against

√
n integers, testing half of all

a ∈ Z∗n in this way would require more tests and thus be slower. For a more detailed study of the efficiency
of the presented algorithms, we refer the reader to Chapter 4.

To solve this issue, we define a probabilistic primality test, instead of the deterministic test described above.
This results in the Solovay-Strassen primality testing algorithm [1].
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Algorithm 2.21 (Solovay-Strassen). Let n ≥ 2 be an odd integer, whose primality we want to test. Choose
k random integers 0 < a < n and for every a test if

(i) ( an ) 6= 0 and

(ii) a(n−1)/2 ≡
(
a
n

)
mod n.

If this test fails for any a, n is composite and the test stops. If n passes all of the tests, n is probably prime.

Proof. Firstly, suppose that n is prime. Then by the definition of the Jacobi symbol we have ( an ) 6= 0 for
all integers 0 < a < n and, by Theorem 2.19, every integer 0 < a < n will also satisfy (ii), implying that
the algorithm correctly identifies n as prime.

Now suppose that n is composite. Take a random integer 0 < a < n which n is being tested against and
distinguish between the cases (a, n) > 1 and (a, n) = 1. In the case that (a, n) > 1, we have ( an ) = 0, so that
n will fail to satisfy test (i). In the case that (a, n) = 1, by Theorem 2.16, we know that n fails to satisfy
test (ii) with a probability of at least 1

2 . In both cases, the probability that n satisfies both (i) and (ii) for a
random 0 < a < n is at most 1

2 and so, since we choose the k integers 0 < a < n at random, the probability
that all k integers satisfy both (i) and (ii) for a composite n is at most 1

2k
. This means that a composite n

will be correctly identified as such with a probability of at least 2k−1
2k

.

Remark 2.22. As a consequence of Remark 2.18, note that we can only improve the bound of 2k−1
2k

on the
probability that a composite n is correctly identified as such, by using a better upper bound for |Z∗n| than
n. This is because there are infinitely many special Carmichael numbers which satisfy test (ii) for exactly
half of all a ∈ Z∗n. Alternatively, we can perform an additional test to determine if n is a special Carmichael
number.

2.4 The Miller-Rabin Primality Test

One of the most widely used primality tests, the Miller-Rabin primality test, is based on an even stronger
version of Fermat’s Little Theorem.

Theorem 2.23. Let p be an odd prime number and write p − 1 = 2st with t odd. Then for any integer a
with (a, p) = 1, either at ≡ 1 mod p or there exists an integer 0 ≤ r < s such that

a2
rt ≡ −1 mod p.

Proof. We present our own proof of this theorem. This result is almost a direct corollary of Fermat’s Little
Theorem and Lemma 2.12. We will proceed by contraction; assume that at 6≡ 1 mod p and that a2

rt 6≡ −1
mod p for any integer 0 ≤ r < s. Define R as the set of integers 0 ≤ r ≤ s for which a2

rt 6≡ ±1 mod p,
then 0 ∈ R so R 6= ∅ and R has a maximal element, say rmax. By Fermat’s Little Theorem, a2

st = ap−1 ≡ 1
mod p, so s 6∈ R and rmax < s. Since rmax is the greatest element of R, it follows that rmax+1 6∈ R and thus
a2

rmax+1t ≡ ±1 mod p. However, since a2
rt 6≡ −1 mod p for any integer 0 ≤ r < s and a2

st = ap−1 ≡ 1
mod p by Fermat’s Little Theorem, we conclude that a2

rmax+1t ≡ 1 mod p and thus that(
a2

rmax t
)2

= a2(2
rmax t) = a2

rmax+1t ≡ 1 mod p.

By Lemma 2.12 this implies that a2
rmax t ≡ ±1 mod p and thus rmax 6∈ R, a clear contradiction.

Remark 2.24. Again, note that this theorem is indeed a stronger version of Fermat’s Little Theorem by
squaring both sides (s− r) times to derive the congruence ap−1 = a2

st ≡ 1 mod p.

Based on Theorem 2.23, we can define another analog of the pseudoprimes from Definition 2.5 as follows.
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Definition 2.25 (Strong pseudoprime). Let n be an odd composite number, and write n − 1 = 2st with
t odd. Then for an integer b, n is called a strong pseudoprime to the base b if (b, n) = 1 and either of the
following hold [1]:

(i) bt ≡ 1 mod n or

(ii) b2
rt ≡ −1 mod n for an integer 0 ≤ r < s.

Theorem 2.26. Let n be an odd composite number. If an integer b ∈ Z∗n is a strong pseudoprime base of n,
then it is also an Euler pseudoprime base of n.

Proof. This proof is mainly based on the proof given in Chapter 5 of [1]. Write n− 1 = 2st with t odd and
suppose b ∈ Z∗n is a strong pseudoprime base of n. To prove that b is also an Euler pseudoprime base of n,
we need to show that b(n−1)/2 ≡

(
b
n

)
mod n.

First, if bt ≡ 1 mod n, then we know that ( bn )t = ( b
t

n ) = ( 1
n ) = 1. Now, if ( bn ) = 0 or ( bn ) = −1, we would

have ( bn )t = 0 or ( bn )t = −1, since t is odd. Therefore we see that ( bn ) = 1 and it follows that

b(n−1)/2 = b2
s−1t =

(
bt
)2s−1

≡ 12
s−1

= 1 =

(
b

n

)
mod n.

This proves that b is an Euler pseudoprime base of n if bt ≡ 1 mod n. Now suppose that there exists an
integer 0 ≤ r < s such that b2

rt ≡ −1 mod n. Let p be any prime factor of n and write p− 1 = 2s
′
t′ with t′

odd. We claim that s′ > r and that ( bp ) = −1 if s′ = r + 1 and ( bp ) = 1 if s′ > r + 1.

Because t′ is odd, raising both sides of the congruence b2
rt ≡ −1 mod n to the power of t′ yields

b2
rtt′ ≡ (−1)t

′
= −1 mod n.

However, since p|n, this also implies that b2
rtt′ ≡ −1 mod p. Now, if s′ ≤ r, we see that

−1 ≡ b2
rtt′ =

(
b2

s′ t′
)2r−s′ t

=
(
bp−1

)2r−s′ t ≡ 12
r−s′ t = 1 mod p,

which cannot be true since p > 2 because n is odd. This means that s′ > r. Since (b2
rt′)t = b2

rtt′ ≡ −1
mod p, it follows from Theorem 2.11 that(

b

p

)t
≡
(
b(p−1)/2

)t
= b2

s′−1tt′ =
(
b2

rtt′
)2s′−r−1

≡ (−1)2
s′−r−1

mod p.

Now if s′ = r + 1, we see that ( bp )t ≡ (−1)1 = −1 mod p and thus ( bp ) = −1 since p > 2 and t is odd. If

s′ > r+ 1, we have 2 | 2s′−r−1 and so ( bp ) ≡ 1 mod p, implying that ( bp ) = 1, again since p > 2 and t is odd.
This proves the claim stated above.

Let k denote the number of prime factors p = 2s
′
t′ + 1 (with t′ odd) of n for which s′ = r + 1, counted with

multiplicity; if n has νp(n) factors p, we count each of the νp(n) factors individually. From the above, we
know that ( bp ) = −1 for those k prime factors p of n and ( bp ) = 1 for all other prime factors p of n. Now, by

the definition of the Jacobi symbol, we have ( bn ) =
∏
p|n,p prime(

b
p )νp(n) = (−1)k. We will now calculate the

parity of k by calculating n mod 2r+2 in two different ways. Since p = 2s
′
t′+1, we see that p ≡ 1 mod 2r+2

if s′ > r + 1, while p ≡ 1 + 2r+1 mod 2r+2 if s′ = r + 1. This implies that

n =
∏

p|n,p prime

pνp(n) ≡
(
1 + 2r+1

)k ≡ 1 + k2(r+1) mod 2r+2,

where the last step follows from the Binomial Theorem. Therefore n ≡ 1 mod 2r+2 if and only if k is even
and n ≡ 1 + 2r+1 mod 2r+2 if and only if k is odd. We now distinguish two cases; r = s− 1 and r < s− 1.
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Suppose that r = s− 1, then we know that n = 2st+ 1 = 2r+1t+ 1 ≡ 1 + 2r+1 mod 2r+2 and thus k must
be odd. This implies that ( bn ) = (−1)k = −1 and, since r = s− 1, we also have

b(n−1)/2 = b2
s−1t = b2

rt ≡ −1 =

(
b

n

)
mod n.

Here b2
rt ≡ −1 mod n follows from the definition of r. Now suppose that r < s − 1, then we know that

n = 2st + 1 = 2s−r−22r+2 + 1 ≡ 1 mod 2r+2 and thus k must be even. This implies that ( bn ) = (−1)k = 1
and, since r < s− 1, we also have

b(n−1)/2 = b2
s−1t =

(
b2

rt
)2s−r−1

≡ (−1)2
s−r−1

= 1 =

(
b

n

)
mod n.

This concludes the proof of Theorem 2.26.

Because every strong pseudoprime is also an Euler pseudoprime, it follows that there are also no analogs
of Carmichael numbers when considering strong pseudoprimes. While a composite number can only be an
Euler pseudoprime to at most half of all possible bases, it turns out that there are at most a quarter of all
possible bases to which n is a strong pseudoprime.

Theorem 2.27. Let n be an odd composite number and write n− 1 = 2st with t odd. Then for at least three
quarters of all 0 < a < n neither of the following hold:

(i) at ≡ 1 mod n or

(ii) a2
rt ≡ −1 mod n for an integer 0 ≤ r < s.

In other words, n is a strong pseudoprime to at most a quarter of all possible bases 0 < a < n.

The proof of this theorem and the required lemmata will again be based on the proofs given in [1]. To prove
this theorem, we first prove two lemmata about the number of solutions to (i) and (ii) above.

Lemma 2.28. Let G be a cyclic group of order m with a generator g and let k be an integer. Then the
number of unique elements x ∈ G which satisfy xk = 1 is exactly d = (k,m).

Proof. Since g is a generator of G, we know that G = {gi}mi=1. We will now prove that x = gi satisfies xk = 1
for exactly d of the indices 0 < i ≤ m. Note that x = gi satisfies xk = 1 if and only if gik = 1, and thus if
and only if m|ik since g has order m. This holds if and only if m

d |i
k
d , where (md ,

k
d ) = 1, since d = (m, k).

This is equivalent to m
d |i, so that i is a multiple of m

d . Since 0 < i ≤ m, we know there are exactly d such i,
proving the lemma.

Lemma 2.29. Let p be an odd prime number and write p−1 = 2s
′
t′ with t′ odd. Also, let t and r be integers,

where t is odd. Then the number of unique elements x ∈ Z∗p which satisfy x2
rt ≡ −1 mod p is exactly 2r(t, t′)

if r < s′ and 0 if r ≥ s′.

Proof. Since p is prime, we know that Z∗p is a cyclic group of order p−1, so let g be a generator for Z∗p. Then

x = gi satisfies x2
rt ≡ −1 mod p if and only if g2

rit ≡ −1 mod p. Squaring both sides yields g2
r+1it ≡ 1

mod p, so p − 1|2r+1it, but p − 1 - 2rit, since g has order p − 1. On the other hand, if p − 1|2r+1it and
p− 1 - 2rit, then Fermat’s Little Theorem and Lemma 2.12 imply that g2

rit ≡ −1 mod p. This implies that
x = gi is a solution to x2

rt ≡ −1 mod p if and only if

2rit ≡ p− 1

2
= 2s

′−1t′ mod p− 1.

Because p − 1 = 2s
′
t′, it follows that x = gi is a solution to x2

rt ≡ −1 mod p if and only if 2s
′
t′ |

(2rit− 2s
′−1t′). If r ≥ s′, then clearly 2s

′ | 2r, but 2s
′ - 2s

′−1 and since t is odd, this implies that 2s
′ - 2s

′−1t,
from which we see that 2s

′
t′ - (2rit − 2s

′−1t′). Therefore there are no solutions to x2
rt ≡ −1 mod p in the

case that r ≥ s′.
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Now assume that r < s′. Then we see that 2s
′
t′ | (2rit− 2s

′−1t′) holds if and only if 2s
′−rt′ | (it− 2s

′−r−1t′),
by dividing both sides by 2r. If we now write d = (t, t′), dividing both sides by d gives

2s
′−r t

′

d

∣∣∣∣ (i td − 2s
′−r−1 t

′

d

)
.

This implies that i td is an odd multiple of 2s
′−r−1 t′

d . Here, we say that a is an odd multiple of b if a = kb

with k odd. Now, since d = (t, t′) and t is odd, we know that t
d and 2s

′−r−1 t′
d are relatively prime, from

which it follows that i must be an odd multiple of 2s
′−r−1 t′

d . Since we can write every x ∈ Z∗p as x = gi

with 0 < i ≤ p − 1 = 2s
′
t′, there are 2r+1d such i which are multiples of 2s

′−r−1 t′
d , half of which are odd

multiples, so that, if r < s′, there are exactly 2rd = 2r(t, t′) unique elements x ∈ Z∗p which satisfy x2
rt ≡ −1

mod p.

Proof (Theorem 2.27). We will once again distinguish two cases, based on whether n is square-free or not.

Firstly, suppose that n is not square-free and let p be a prime number such that p2|n. We will show that, in
this case, n is not even a pseudoprime, let alone a strong pseudoprime, to more than a quarter of all possible
bases 0 < a < n. If an integer 0 < a < n is a base to which n is a pseudoprime, by definition we must have
an−1 ≡ 1 mod n and since p2|n, it follows that we must also have

an−1 ≡ 1 mod p2.

We know that Z∗p2 is a cyclic group of order p(p−1), so that by Lemma 2.28 there are exactly (p(p−1), n−1)

elements a ∈ Z∗p2 which satisfy the congruence above. However, since p|n, we know that (p, n−1) = 1 so that

the total number of integers a ∈ Z∗p2 which satisfy the above congruence is (p(p−1), n−1) = (p−1, n−1), and

is thus at most p− 1. Since any a ∈ Zp2 with (a, p2) > 1 clearly cannot satisfy this congruence, we conclude
that at most p − 1 of all a ∈ Zp2 can satisfy an−1 ≡ 1 mod p2. Now note that, since p2|n, every element

a ∈ Zp2 has exactly n
p2 elements in Zn which reduce to a. Therefore, at most n(p−1)

p2 integers 0 ≤ a < n can

satisfy an−1 ≡ 1 mod p2, let alone satisfy an−1 ≡ 1 mod n. Now, since this congruence does not hold for

a = 0, we see that at most n(p−1)
p2 integers 0 < a < n can be a pseudoprime base for n. Since p2|n, we know

that p2 ≤ n and thus n
p2 ≤

n−1
p2−1 , which allows us to bound the number of integers 0 < a < n which are

pseudoprime bases of n by

n(p− 1)

p2
≤ (n− 1)(p− 1)

p2 − 1
=

1

p+ 1
(n− 1) ≤ 1

4
(n− 1).

Now suppose that n is square-free and write n =
∏k
i=1 pi, where pi are distinct primes for 1 ≤ i ≤ k. In the

same way that we wrote n− 1 = 2st, we also write pi − 1 = 2siti, where all ti are odd. Now, an equivalence
class a ∈ Z∗n is a base to which n is a strong pseudoprime if either (i) or (ii) holds. We will count the number
of bases for which (i) and (ii) hold separately.

First we count the number of integers 0 < a < n which satisfy (i). If at ≡ 1 mod n, we must have (a, n) = 1
and at ≡ 1 mod pi for all 1 ≤ i ≤ k. By Lemma 2.28, for any 1 ≤ i ≤ k there are (t, pi−1) = (t, ti) elements
a ∈ Z∗pi for which at ≡ 1 mod pi. Now, by the Chinese Remainder Theorem, any combination of these

choices of a ∈ Z∗pi leads to a single solution to at ≡ 1 mod n in Z∗n, so that there are a total of
∏k
i=1(t, ti)

integers 0 < a < n which satisfy (i).

Next, we will count the number of integers 0 < a < n which satisfy (ii). Let 0 ≤ r < s be fixed. Then, if
a2

rt ≡ −1 mod n, we again must have (a, n) = 1 and a2
rt ≡ −1 mod pi for all 1 ≤ i ≤ k. By Lemma 2.29,

for any 1 ≤ i ≤ k there are 2r(t, ti) elements a ∈ Z∗pi for which a2
rt ≡ −1 mod pi if r < si and 0 if r ≥ si.

Again, by the Chinese Remainder Theorem, any combination of these choices of a ∈ Z∗pi leads to a single

solution to a2
rt ≡ −1 mod n in Z∗n.



2 TESTING FOR PRIMALITY 12

Assuming, without loss of generality, that s1 is the smallest of the si, we see that there are a total of∏k
i=1(2r(t, ti)) = 2kr

∏k
i=1(t, ti) integers 0 < a < n for which a2

rt ≡ −1 mod n if r < s1 and 0 if r ≥ s1.
Summing over all 0 ≤ r < s, we see that the total number of integers 0 < a < n which satisfy (ii) is equal to

s1−1∑
r=0

(
2kr

k∏
i=1

(t, ti)

)
=

(
s1−1∑
r=0

2kr

)(
k∏
i=1

(t, ti)

)
=

2ks1 − 1

2k − 1

k∏
i=1

(t, ti),

since no integer 0 < a < n can satisfy (ii) for multiple r. We also see that no integer 0 < a < n can satisfy
both (i) and (ii), so the total number of bases 0 < a < n to which n is a strong pseudoprime is exactly

k∏
i=1

(t, ti) +
2ks1 − 1

2k − 1

k∏
i=1

(t, ti) =

(
1 +

2ks1 − 1

2k − 1

) k∏
i=1

(t, ti).

We will now bound
∏k
i=1(t, ti). We first assume that k ≥ 3, the case k = 2 will be handled separately. Since

n =
∏k
i=1 pi with k ≥ 2 because n is composite, we know that

n− 1 >
k∏
i=1

(pi − 1) =

k∏
i=1

(2siti) = 2s1+...+sk
k∏
i=1

ti ≥ 2ks1
k∏
i=1

ti,

because s1 is the smallest of all si. Since 0 < (t, ti) ≤ ti, we can bound the number of bases 0 < a < n to
which n is a strong pseudoprime by(

1 +
2ks1 − 1

2k − 1

) k∏
i=1

(t, ti) ≤
(

1 +
2ks1 − 1

2k − 1

) k∏
i=1

ti <

(
1 +

2ks1 − 1

2k − 1

)
2−ks1(n− 1).

Furthermore, s1 ≥ 1, since p1 − 1 is even, so we see that the number of bases 0 < a < n to which n is a
strong pseudoprime is bounded by(

1 +
2ks1 − 1

2k − 1

)
2−ks1(n− 1) =

(
2−ks1

2k − 2

2k − 1
+

1

2k − 1

)
(n− 1) ≤

(
2−k

2k − 2

2k − 1
+

1

2k − 1

)
(n− 1)

=

(
1− 21−k

2k − 1
+

1

2k − 1

)
(n− 1) =

(
2− 21−k

2k − 1

)
(n− 1) = 21−k(n− 1) ≤ 1

4
(n− 1).

If we were to repeat the reasoning above for k = 2, we would find an upper bound of 1
2 (n − 1), so we need

to derive an additional factor of 1
2 . To do this, we first assume that s1 < s2. Now we can follow the same

procedure as above, but replace 2−s1−s2 ≤ 2−2s1 by 2−s1−s2 ≤ 2−2s1−1 to gain the extra factor of 1
2 . If

however s1 = s2, then we claim that either (t, t1) ≤ 1
2 t1 or (t, t2) ≤ 1

2 t2, again yielding the extra factor of
1
2 we need to complete the proof for k = 2. We prove this by contradiction; suppose that (t, t1) > 1

2 t1 and
(t, t2) > 1

2 t2. Then, since (t, t1)|t1 and (t, t2)|t2, we have (t, t1) = t1 and (t, t2) = t2, which means that t1|t
and t2|t. Since n = p1p2, we can write

2st = n− 1 = p1p2 − 1 = (2s1t1 + 1) (2s2t2 + 1)− 1 = 2s1+s2t1t2 + 2s1t1 + 2s2t2.

Since t1 and t2 divide t, we see that they must divide the right hand side of the above equation as well.
Therefore t1|2s2t2 and t2|2s1t1. However, since t1 and t2 are odd, this implies that t1|t2 and t2|t1 and since
t1, t2 > 0, we see that t1 = t2. Now note that we assumed that s1 = s2, which implies that p1 = 2s1t1 =
2s2t2 = p2; a clear contradiction with the fact that n is square-free. Following the same proof as for k ≥ 3
and including this additional factor of 1

2 , we also complete the proof for k = 2. This concludes the proof of
Theorem 2.27.
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Remark 2.30. The derivation of the upper bound of 1
4 in the proof of Theorem 2.27 seems quite crude. For

example, in most cases the bound can be lowered to at least 1
8 : if (t, ti) 6= ti for some 1 ≤ i ≤ k, if the si

are not all equal, or if n has more than three distinct prime factors, to name some examples. However, for
Carmichael numbers of the form n = p1p2p3, where pi − 1 = 2ti with ti odd, we have that k = 3 and since
pi − 1|n − 1 also that ti|n − 1 = 2st, which implies that ti|t since ti is odd. We also see that si = 1 for all
1 ≤ i ≤ 3. In this case, the upper bound of 1

4 turns out to be a very good bound. We know that infinitely
many of such Carmichael numbers n exist with an arbitrarily large smallest prime factor, implying that the
bound is even asymptotically optimal [6][7].

As in Theorem 2.19, the fact that there are no analogs to Carmichael numbers for strong pseudoprimes
allows us to derive another property that only holds for prime numbers, this time based on Theorem 2.23
and Theorem 2.27.

Theorem 2.31. An odd positive integer n > 1 satisfies either one of

(i) at ≡ 1 mod p or

(ii) a2
rt ≡ −1 mod p for some integer 0 ≤ r < s

for all integers 0 < a < n if and only if n is prime.

Proof. This follows immediately from Theorem 2.23 and Theorem 2.27. If n is prime, then we know by
Theorem 2.23 that for every integer a with (a, n) = 1, either (i) or (ii) holds. Since n is prime, we see that
(a, n) = 1 for all 0 < a < n, so for every integer 0 < a < n, either (i) or (ii) is satisfied. If n is composite, then
we know by Theorem 2.27 that there is at least one a ∈ Z∗n (which we can represent by an integer 0 < a < n)
that does not satisfy either (i) or (ii). This completes the proof.

In a similar way to how we derived the Solovay-Strassen primality test, we can derive another probabilistic
primality test from Theorem 2.27 and Theorem 2.31: the Miller-Rabin primality test [1].

Algorithm 2.32 (Miller-Rabin). Let n ≥ 2 be an odd integer, whose primality we want to test. Firstly,
we write n− 1 = 2st, where t is odd. Next, choose k random integers 0 < a < n and for every a test if:

(i) If at ≡ 1 mod n, the test passes.

(ii) Compute a2
rt mod n for every 0 ≤ r < s by repeatedly squaring at mod n. If a2

rt ≡ −1 mod n for
any 0 ≤ r < s, the test passes.

(iii) If we never obtain a2
rt ≡ −1 mod n, meaning that we find a2

rt ≡ 1 mod n but a2
r−1t 6≡ −1 mod n,

the test fails.

If the test fails for any a, then n is composite and the test stops. If n passes all of the tests, n is probably
prime.

Proof. The proof is very similar to that of the Solovay-Strassen primality test. Firstly, suppose that n is
prime. Then, by Theorem 2.23, any 0 < a < n will pass the test and thus the algorithm will correctly
identify n as prime.

Now suppose that n is composite. Then, by Theorem 2.27, we know that a randomly chosen integer
0 < a < n passes the test with probability at most 1

4 . Since we choose the k integers 0 < a < n at random,
the probability that all k integers 0 < a < n pass the test is at most 1

4k
. This means that a composite n

will be correctly identified as such with probability at least 4k−1
4k

.

Remark 2.33. As a consequence of Remark 2.30, note that we cannot improve the lower bound of 4k−1
4k

on
the probability that a composite number n is correctly identified as such, besides using a better upper bound
for |Z∗n| or doing additional checks to see if n is such a Carmichael number as described in Remark 2.30.
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Remark 2.34. Note that a composite n is incorrectly identified by the Miller-Rabin primality test as prime
with probability at most 1

4k
, whereas the Solovay-Strassen primality test incorrectly identifies n as prime

with probability at most 1
2k

, where both probabilities are very good upper bounds by Remarks 2.22 and 2.33.
One could argue that this is an improvement of Miller-Rabin over the Solovay-Strassen primality test [1].
However, the same confidence can be achieved with the Solovay-Strassen primality test by testing against 2k
integers; this constant factor has no impact on the asymptotic running time of the algorithm, as we will see
in Chapter 4.

3 Efficient Deterministic Primality Testing Algorithms

In the previous chapter we discussed several primality testing algorithms, but these were either not efficient
for large numbers (Trial Division) or non-deterministic (Solovay-Strassen and Miller-Rabin). In this chapter
we will discuss three efficient deterministic primality testing algorithms: a deterministic variant of both the
Solovay-Strassen and Miller-Rabin algorithms, under the assumption that the Extended Riemann Hypothesis
holds, and a deterministic algorithm without any assumptions, known as the AKS primality testing algorithm.
We will later explicitly define an efficient algorithm as an algorithm which is polynomial. This will be defined
in Chapter 4.

3.1 Assuming The Extended Riemann Hypothesis

Both the Solovay-Strassen and Miller-Rabin algorithms are efficient robabilistic primality testing algorithms.
However, by Theorems 2.16 and 2.26, we know that, for any odd composite number n, there must be an integer
0 < a < n which is not an Euler pseudoprime base of n and therefore also not a strong pseudoprime base
of n. We can therefore construct deterministic variants of the Solovay-Strassen and Miller-Rabin algorithms
by testing all integers 0 < a < n, instead of picking k of these integers at random. These algorithms would
however not be very efficient, since they must test half or a quarter of all possible bases, respectively. The
main idea which will allow us to construct more efficient variants of the aforementioned algorithms is to
reduce the upper bound of n for the existence of an Euler pseudoprime to a much smaller bound than 1

2n or
1
4n. We will be working towards the following theorem, which depends on the Extended Riemann Hypothesis:
an unproven hypothesis in analytic number theory which is widely believed to be true [1] [8] [9].

Theorem 3.1. For any odd composite number n, assuming the Extended Riemann Hypothesis (ERH), there
exists an integer 0 < a < 2 ln2 n which is not an Euler pseudoprime base of n.

Except for Theorem 3.3, this theorem and all results leading up to it are our own, based on a remark in
Chapter 5 of [1]. Before proving this theorem, we will first need to show an important property of the set of
Euler pseudoprime bases, which will provide us with enough knowledge about its structure to prove Theorem
3.1.

Theorem 3.2. Let n be an odd composite number and define En ⊂ Z∗n as the set of Euler pseudoprime bases
of n. Then En is a proper subgroup of Z∗n.

Proof. By Theorem 2.16 we know that En is a proper subset of Z∗n so it suffices to show that En is a subgroup
of Z∗n. Note that 1 ∈ En, since ( 1

n ) = 1 = 1(n−1)/2. Now suppose that a ∈ En; we will show that a−1 ∈ En.

Since a ∈ Z∗n, we know that ( an ) = ±1 and so (a
−1

n ) = ( an )−1. Since a is an Euler pseudoprime base of n, it
follows that (

a−1
)(n−1)/2

=
(
a(n−1)/2

)−1
≡
(a
n

)−1
=

(
a−1

n

)
mod n

and therefore a−1 ∈ En. Finally, suppose that a, b ∈ En; we will show that ab ∈ En. Since the Jacobi symbol
is multiplicative and a, b are Euler pseudoprime bases of n, it follows that

(ab)(n−1)/2 = a(n−1)/2b(n−1)/2 ≡
(a
n

)( b
n

)
=

(
ab

n

)
mod n.

This implies that ab ∈ En, concluding the proof.
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The reason that we show that En is a proper subgroup of Z∗n is that it allows us to make use of a very strong
consequence of the ERH.

Theorem 3.3 (Bach, 1990). For any integer n > 2, assuming the ERH, the group Z∗n is generated by its
elements smaller than 2 ln2 n.

Proof. This is proved by Bach in [9], who provides an upper bound for the constant in the bound of O(ln2 n),
originally given by Ankeny in [10].

Proof (Theorem 3.1). We present a proof by contradiction; assume there exists an odd composite number n
for which every integer 0 < a < 2 ln2 n is an Euler pseudoprime base to n. If we define En as in Theorem 3.2,
this implies that a ∈ En for every a ∈ Z∗n with 0 < a < 2 ln2 n. By Theorem 3.3, these elements generate Z∗n
and since Theorem 3.2 implies that En is a group, Z∗n is a subgroup of En. In particular, this implies that
Z∗n ⊆ En. However, Theorem 3.2 implies that En is a proper subgroup of Z∗n, which in turn implies that
En ⊂ Z∗n. Combining these statements, we see that En ⊂ Z∗n ⊆ En, a clear contradiction since En cannot be
a proper subset of itself.

Based on Theorem 3.1 we can now derive an efficient deterministic primality test based on the Solovay-
Strassen test, under the assumption that the ERH is true.

Algorithm 3.4. Let n ≥ 2 be an odd integer, whose primality we want to test. Then, for all integers
0 < a < min{n, 2 ln2 n}, test if

(i) ( an ) 6= 0 and

(ii) a(n−1)/2 ≡
(
a
n

)
mod n.

If this test fails for any a, then n is composite and the test stops. If n passes all of the tests, n is prime or
the ERH is false.

Proof. Since this algorithm is almost exactly the same as the Solovay-Strassen algorithm, we present an
almost identical proof. Firstly, suppose that n is prime. Then by the definition of the Jacobi symbol
we have ( an ) 6= 0 for all integers 0 < a < min{n, 2 ln2 n} ≤ n and, by Theorem 2.19, every integer

0 < a < min{n, 2 ln2 n} ≤ n will also satisfy (ii), implying that the algorithm correctly identifies n as prime.

Now suppose that n is composite. By Theorem 3.1 we know that either the ERH is false, or at least one
of the integers 0 < a < 2 ln2 n is not an Euler pseudoprime base of n. By Theorem 2.16 we also know that
at least one of the integers 0 < a < n is not an Euler pseudoprime base of n. Therefore either (ii) will fail,
or the ERH is false. We thus see that if n is composite, the proposed algorithm will correctly identify n as
such, or the ERH is false. From this we conclude that, if the algorithm identifies n as prime, either n is
prime or the ERH is false, completing the proof.

Since every strong pseudoprime base is also an Euler pseudoprime base by Theorem 2.26, we can derive the
following corollary to Theorem 3.1.

Corollary 3.5. For any odd composite number n, assuming the Extended Riemann Hypothesis (ERH), there
exists an integer 0 < a < 2 ln2 n which is not a strong pseudoprime base of n.

Proof. From Theorem 3.1 we know that there exists an integer 0 < a < 2 ln2 n which is not an Euler
pseudoprime base of n. Since every strong pseudoprime base is also an Euler pseudoprime base by Theorem
2.26, a cannot be a strong pseudoprime. This concludes the proof.

Based on Corollary 3.5, under the assumption that the ERH is true, we can also derive an efficient determin-
istic primality test based on the Miller-Rabin test: the Miller primality test.
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Algorithm 3.6 (Miller). Let n ≥ 2 be an odd integer, whose primality we want to test. Firstly, we write
n− 1 = 2st, where t is odd. Then, for all integers 0 < a < min{n, 2 ln2 n}, test if:

(i) If at ≡ 1 mod n, the test fails.

(ii) Compute a2
rt mod n for 0 ≤ r < s by repeatedly squaring at mod n. If a2

rt ≡ −1 mod n for any
0 ≤ r < s, the test passes.

(iii) If we never obtain a2
rt ≡ −1 mod n, meaning that we find a2

rt ≡ 1 mod n but a2
r−1t 6≡ −1 mod n,

the test fails.

If this test fails for any a, then n is composite and the test stops. If n passes all of the tests, n is prime or
the ERH is false.

Proof. Since this algorithm is almost exactly the same as the Miller-Rabin algorithm, we present an almost
identical proof. Firstly, suppose that n is prime. By Theorem 2.23, any 0 < a < min{n, 2 ln2 n} ≤ n will
pass the test and thus the algorithm will correctly identify n as prime. This means that any number n
identified as composite must indeed be composite.

Now suppose that n is composite. By Corollary 3.5, we know that at least one of the integers 0 < a < 2 ln2 n
is not a strong pseudoprime base of n, assuming the ERH. By Theorem 2.27 we also know that at least one
of the integers 0 < a < n is not a strong pseudoprime base of n. Therefore either the test will fail, assuming
the ERH. We therefore see that if n is composite, the Miller algorithm will correctly identify n as such, or
the ERH is false. From this we conclude that, if the algorithm identifies n as prime, either n is prime or the
ERH is false, completing the proof.

Remark 3.7. In actuality, the Miller primality test was published before the Miller-Rabin primality test.
Miller derived the test in 1976, based on the ERH [8]. This test was then altered in 1980 by Rabin to remove
the depencency on the ERH, resulting in the Miller-Rabin primality test [7].

3.2 The AKS Primality Test

While the algorithms mentioned above are efficient and deterministic, their correctness depends on the
Extended Riemann Hypothesis. However, in a major breakthrough in 2004, an unconditional efficient de-
terministic primality test was published: the AKS primality test [11][12]. The information in this chapter
will be heavily based on the original paper [11], with some ideas from other sources [13][14][15]. As with the
primality tests mentioned in the previous chapter, the AKS primality test makes use of a stronger version of
Fermat’s Little Theorem.

Theorem 3.8. Let p be a prime number and a any integer. Then we have the polynomial identity

(X + a)p ≡ Xp + a mod p,

where X is a variable over Zp.

Proof. We present our own proof. Using the Binomial Theorem, we can expand (X + a)p as

(X + a)p =

p∑
i=0

(
p

i

)
aiXp−i =

p∑
i=0

p!

i!(p− i)!
aiXp−i.

Since p is prime, we have p - i!(p− i)! for 0 < i < p, since both factorials are products of integers smaller than
p. Since p | p!, it follows that p | p!

i!(p−i)! for 0 < i < p. Therefore, modulo p, the above equation reduces to

(X + a)p =

p∑
i=0

p!

i!(p− i)!
aiXp−i ≡ Xp + ap mod p.

Now the result follows immediately from Fermat’s Little Theorem.
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Remark 3.9. Note that this theorem is indeed a stronger version of Fermat’s Little Theorem; this is implied
by setting X = 0. However, what sets the above theorem apart from Fermat’s Little Theorem (and any other
stronger version mentioned thus far), is the fact that there are no a with (a, p) = 1 for which the above holds
for composite p. There is thus no need to define an analog of pseudoprimes for the above theorem. This
result is implied by the following theorem.

Theorem 3.10. Let n ≥ 2 and a be integers, with (a, n) = 1. If the polynomial identity

(X + a)n ≡ Xn + a mod n

holds with X a variable over Zn, then n is prime.

The proof of this theorem will be our own. We first show the following lemma.

Lemma 3.11. Let n be a composite number. Consider a prime q that is a factor of n and let qk be the
largest power of q that divides n. Then qk -

(
n
q

)
.

Proof. We will count factors of q of
(
n
q

)
. Note that q! has only a single factor of q, since q is prime. On the

other hand, the quotient
n!

(n− q)!
= (n− q + 1)(n− q + 2) · · · (n− 1)n

has k factors of q, since none of the integers n − q + 1, n − q + 2, . . . , n − 1 are divisible by q and n has
exactly k factors of q. Therefore, the binomial coefficient

(
n
p

)
= n!

q!(n−q)! only has k − 1 factors of q and thus

qk -
(
n
q

)
.

Using the above lemma, proving Theorem 3.10 becomes almost trivial.

Proof (Theorem 3.10). We present a proof by contradiction. Assume that n is composite. Let q be a prime
factor of n and let qk be the largest power of q that divides n. It follows from Lemma 3.11 that qk -

(
n
q

)
and

so n -
(
n
q

)
. Since (a, n) = 1, we deduce that n -

(
n
q

)
aq, which is the coefficient of Xn−q in (X + a)n. It follows

that Xn−q has a non-zero coefficient modulo n in (X + a)n. However, since (X + a)n ≡ Xn + a mod n, this
implies that n− q = 0 or n− q = n. Since q > 0, we must have n = q. Since q is prime, this implies that n
is also prime, a clear contradiction.

We could use Theorems 3.8 and 3.10 to devise a deterministic primality test. However, this test would not
be very efficient since the polynomial (X + a)n has n + 1 coefficients, which in the worst case must all be
computed, leading to a similar efficiency to that of Trial Division. To solve this problem, we decrease the
degree of polynomials we are working with by evaluating both sides modulo Xr − 1 for some small r [14][13].
The resulting equation becomes

(X + a)n ≡ Xn + a mod n,Xr − 1,

where the notation f(X) = g(X) mod n,Xr−1 represents the equation f(X) = g(X) in the ring Zn[X]/(Xr−
1) [11]. Clearly, any prime n will satisfy the congruence above for all values of a and r by Theorem 3.8.
However, it is now also possible for a composite n and some a and r to satisfy the above equation, for example,
we have

(X + 2)6 = X6 + 12X5 + 60X4 + 160X3 + 240X2 + 192X + 64 ≡ X6 + 4X3 + 4 ≡ X6 + 2 mod 6, X3 − 1

but 6 = 2 · 3 certainly is not prime. The main idea of the AKS primality test to overcome this problem is to
choose r large enough and test if (X + a)n ≡ Xn + a mod n,Xr − 1 for enough values of a to ensure that n
must be prime [13]. This is illustrated by the following theorem.

Theorem 3.12. Let n > 1 be an odd integer and r an integer such that (a, n) = 1 for all integers 1 ≤ a ≤ r
and or(n) > lg2 n. Here or(n) represents the order of n in the multiplicative group Z∗r and lg n represents the
base 2 logarithm of n. Further, suppose that for all integers 1 ≤ a ≤

√
r lg n, the polynomial identity

(X + a)n ≡ Xn + a mod n,Xr − 1

holds. Then n is either prime, or a power of a prime.
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Since it is the underlying idea of the AKS primality test, proving Theorem 3.12 will be the main goal of the
this section. However, we first need a definition and several theorems to aid us in the proof of Theorem 3.12.
From this point on, let r be as in Theorem 3.12 and choose p as a prime divisor of n with or(p) > 1. Such a
prime divisor must exist, since or(n) > 1.

Definition 3.13 (Introspective number). Let m > 0 be a positive integer. We say that m is introspective
for a polynomial f(X) ∈ Z[X] if [11]

(f(X))
m ≡ f (Xm) mod p,Xr − 1.

The following two theorems serve to explore the structure of introspective numbers. Their proofs are based
on the proofs given in [11].

Theorem 3.14. If m and m′ are introspective for a polynomial f(X), then so is mm′.

Proof. Since m′ is introspective for f(X), we know that

f
(
Xm′

)
≡ (f(X))

m′
mod p,Xr − 1.

Replacing X with Xm, we see that

f
(
Xmm′

)
≡ (f(Xm))

m′
mod p,Xmr − 1.

Since r | mr, we know that Xr − 1 | Xmr − 1 and so the above congruence implies that

f
(
Xmm′

)
≡ (f(Xm))

m′ ≡ (f(X))
mm′

mod p,Xr − 1,

where the second congruence follows from the fact that m is introspective for f(X). This concludes the proof
of Theorem 3.14.

Theorem 3.15. If m is introspective for f(X) and g(X), it is also introspective for f(X)g(X).

Proof. This follows immediately from the definition of introspectivity:

(f(X)g(X))
m

= (f(X))
m

(g(X))
m ≡ f(Xm)g(Xm) mod p,Xr − 1.

Lastly, we also require the following theorem to prove Theorem 3.12. This is our own theorem.

Theorem 3.16. Let f(X) and g(X) be polynomials. If

f(Xp) ≡ g(Xp) mod p,Xr − 1.

Then f(X) and g(X) must also satisfy

f(X) ≡ g(X) mod p,Xr − 1.

Proof. We can write f(X) ≡
∑r−1
i=0 aiX

i mod p,Xr−1 and g(X) ≡
∑r−1
i=0 biX

i mod p,Xr−1 with ai, bi ∈ Z
as their unique representatives in Zp[X] with degree less than r and 0 ≤ ai, bi < p.

We now note that Xu ≡ Xv mod p,Xr − 1 if and only if u ≡ v mod r. If u ≡ v mod r, it follows from
Xr ≡ 1 mod p,Xr − 1 that Xu ≡ Xv mod p,Xr − 1. To prove the opposite implication, write u ≡ u′

mod r and v ≡ v′ mod r with 0 ≤ u′, v′ < r. Now since Xr ≡ 1 mod p,Xr − 1, it follows that

Xu′ ≡ Xu ≡ Xv ≡ Xv′ mod p,Xr − 1.

This implies that Xr − 1 divides Xu′ − Xv′ in Zp[X], but the latter polynomial has degree less than r.

Therefore Xu′ −Xv′ = 0 in Zp[X] and thus u′ = v′. It follows that u ≡ u′ = v′ ≡ v mod r.
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For each 0 ≤ i < r, define mp(i) as the unique representation of ip (mod r) with 0 ≤ mp(i) < r. Since
(n, r) = 1, we know that (p, r) = 1, so that the map i 7→ mp(i) : {0, 1, . . . , r − 1} → {0, 1, . . . , r − 1} is a
bijection. Denote the inverse of this map by m−1p . By the fact that Xu ≡ Xv mod p,Xr − 1 if and only if

u ≡ v mod r, we see that Xip ≡ Xmp(i) mod p,Xr − 1, so that we can write f(Xp) as

f(Xp) ≡
r−1∑
i=0

ai (Xp)
i

=

r−1∑
i=0

aiX
ip ≡

r−1∑
i=0

aiX
mp(i) =

r−1∑
j=0

am−1
p (j)X

j mod p,Xr − 1.

Completely analogous, we can write g(Xp) as

g(Xp) ≡
r−1∑
j=0

bm−1
p (j)X

j mod p,Xr − 1.

The fact that f(Xp) ≡ g(Xp) mod p,Xr − 1 now implies that

r−1∑
j=0

am−1
p (j)X

j ≡
r−1∑
j=0

bm−1
p (j)X

j mod p,Xr − 1.

Since both polynomials are of degrees less than r, this implies that am−1
p
≡ bm−1

p (j) mod p for each 0 ≤ j < r.

Since m−1p is the inverse of a bijective map, it is also bijective and thus we see that ai ≡ bi mod p for each
0 ≤ i < r. It now follows that

f(X) ≡
r−1∑
i=0

aiX
i ≡

r−1∑
i=0

biX
i ≡ g(X) mod p,Xr − 1,

as desired.

With this theorem, we now have all the tools we need to prove Theorem 3.12.

Proof (Theorem 3.12). This proof is mainly based on the proof given in [11], influenced by the proofs in [14]
and [13]. We provide a proof by contradiction, so assume that n is composite and not a power of a prime
and that for all integers 1 ≤ a ≤

√
r lg n we have

(X + a)n ≡ Xn + a mod n,Xr − 1.

This implies that n is introspective for the polynomials X + a with 1 ≤ a ≤
√
r lg n, since p | n. As a

consequence of Theorem 3.8, we know that

(X + a)p ≡ Xp + a mod p,Xr − 1,

so that p is also introspective for the polynomials X + a with 1 ≤ a ≤
√
r lg n. We will now show that n

p is

introspective for these polynomials (this is an integer because p | n). Since n and p are introspective to any
of the polynomials X + a with 1 ≤ a ≤

√
r lg n, we see that

(Xp + a)
n
p ≡ ((X + a)p)

n
p = (X + a)n ≡ Xn + a = (Xp)

n
p + a mod p,Xr − 1

for any 1 ≤ a ≤
√
r lg n. From Theorem 3.16 it now follows that

(X + a)
n
p ≡ X

n
p + a mod p,Xr − 1,

so that n
p is also introspective for the polynomials X + a with 1 ≤ a ≤

√
r lg n.

Clearly, 1 is introspective for any polynomial and any number is introspective for X and 1. Together with
the fact that n

p is also introspective for the polynomials X + a with 1 ≤ a ≤
√
r lg n, Theorems 3.14 and 3.15

imply that any integer of the form (np )ipj with i, j ≥ 0 is introspective for all polynomials of the form

b
√
r lgnc∏
a=0

(X + a)ea
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with ea ≥ 0. Denote the set of all such polynomials as P and write I = {(np )ipj | i, j ≥ 0}. We will now
show that the existence of this many introspective numbers is in violation of the factor theorem, which states
that a polynomial over a field F has at most as many roots as its degree [13]. However, to apply the factor
theorem, we need to work over a field, which Zp[X]/(Xr − 1) is not since Xr − 1 is reducible in Zp[X]. To
remedy this problem, we consider the field

F := Zp[X]/(h(X)),

where h(X) is an irreducible factor of (Xr − 1). In particular, we choose h(X) to be an irreducible factor
of the rth cyclotomic polynomial Φr(X) in Zp[X]. The rth cyclotomic polynomial Φr(X) is defined as the
unique polynomial of least degree which is a factor of Xr − 1, but not of Xi − 1 in Z[X] for any inte-
ger 1 ≤ i < r. It is a known fact that any irreducible factor of Φr(X) modulo p has degree or(p) and so
h(X) has degree or(p) > 1 by choice of p. Since h(X) is irreducible in Zp[X], we know that F is indeed a field.

We now define two groups. The first group is the set of all residues of integers in I modulo r, given by

G := {i mod r | i ∈ I}.

We further define t = |G|. The second group we consider is the set of all residues of polynomials in P modulo
h(X) and p, given by

G := {f(X) mod p, h(X) | f(X) ∈ P}.
In other words, G is the reduction of all polynomials in P to the field F . Since we chose h(X) to have degree
or(p) > 1, we see that none of the polynomials X + i are 0 when reduced modulo h(X) and p. We can even
show that none of the elements of G are 0 [14]. The following two lemmata will now impose contradictory
upper and lower bounds on the size of G.

Lemma 3.17. Let G be defined as above. Then |G| ≤ n
√
t.

Proof. This proof is based on the proofs given in [11] and [14]. To bound the number of elements of |G| from
above, the idea is to construct a polynomial with coefficients in F for which all elements of G are its roots.
If we can construct such a polynomial with small enough degree, the factor theorem yields an effective bound.

To construct this polynomial, we use the Pigeonhole Principle. Consider the elements (np )ipj ∈ I with

0 ≤ i, j ≤ b
√
tc. Since n is a composite number that is not a prime power, we know that n must have a factor

coprime to p. Therefore (np )ipj 6= (np )i′pj
′

if (i, j) 6= (i′, j′). This implies that there are (b
√
tc+ 1)2 > t such

elements of I and since G is a reduction of elements of I modulo r with |G| = t, by the Pigeonhole Principle
two of these elements in I must reduce to the same element in G. In other words, we must have two distinct
tuples (i, j) and (i′, j′) with 0 ≤ i, j, i′, j′ ≤ b

√
tc and(

n

p

)i
pj ≡

(
n

p

)i′
pj
′

mod r.

For simplicity, we will write m = (np )ipj and m′ = (np )i
′
pj
′

and assume without loss of generality that m > m′.

Then m ≡ m′ mod r and so

Xm = Xm′+kr = (Xr)
k
Xm′ ≡ Xm′ mod Xr − 1.

We now define the polynomial Q ∈ F [Y ] as Q(Y ) = Y m − Y m′ . Since m > m′, the degree of Q is m, which
we can bound by

deg(Q) = m =

(
n

p

)i
pj ≤

(
n

p

)b√tc
pb
√
tc = nb

√
tc ≤ n

√
t.

We will now show that every element of G is indeed a root of Q(Y ). Take any g(X) ∈ G and let f(X) ∈ P
be a polynomial which reduces to g(X) modulo h(X) and p, which exists by the definition of G. Since every
element of I is introspective for all polynomials in P , we know that m and m′ are introspective for f(X) and
so

(f(X))m ≡ f(Xm) ≡ f(Xm′) ≡ (f(X))m
′

mod p,Xr − 1,
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where the second congruence follows from the fact that Xm ≡ Xm′ mod Xr − 1. Since h(X) is a factor
of Xr − 1, this implies that (f(X))m ≡ (f(X))m

′
mod p, h(X). Since f(X) reduces to g(X) modulo p and

h(X), this implies that (g(X))m = (g(X))m
′

and thus

Q(g(X)) = (g(X))m − (g(X))m
′

= 0 ∈ F.

Since every element of G is a root of Q(Y ), we know that Q(Y ) must have at least |G| roots. On the other

hand, Q(Y ) is a degree m ≤ n
√
t non-zero polynomial and thus has at most deg(Q) ≤ n

√
t roots by the factor

theorem. It follows that |G| ≤ n
√
t.

Lemma 3.18. Let G be defined as above. Then |G| ≥
(
t+b
√
r lgnc

t−1
)
.

Proof. This proof is based on the proof given in [11]. We again use our specific choice of h(X) in this proof.
To bound the number of elements of |G| from below, we explicitly construct several elements of G and prove
all these elements are distinct.

We define P ′ := {f(X) ∈ P | deg(f) < t}, where deg(f) is the degree of f(X). First, we show that

|P ′| =
(
t+b
√
r lgnc

t−1
)
. By definition, any polynomial f(X) ∈ P ′ is of the form

f(X) =

b
√
r lgnc∏
a=0

(X + a)ea

with
∑b√r lgnc
a=0 ea < t and ea ≥ 0 for all a. Since P ⊆ Z[X], all of the polynomials (X+a) are irreducible and

distinct, implying that there is a trivial bijection between f(X) ∈ P ′ and non-negative sequences {ea}b
√
r lgnc

a=0

with
∑b√r lgnc
a=0 ea < t, given by the above formula for f(X). By a stars and bars argument, we can deduce

that the number of such sequences is exactly (
t+ b

√
r lg nc

t− 1

)
.

Since there is a bijection between such sequences and elements of P ′, we indeed see that |P ′| =
(
t+b
√
r lgnc

t−1
)
.

We will now show that every polynomial in P ′ reduces to a unique polynomial in F and thus to a unique
element of G.

Assume for contradiction that f(X), g(X) ∈ P ′ reduce to the same polynomial in F , so that

f(X) ≡ g(X) mod p, h(X).

We will now once again use the factor theorem to arrive at a contradiction. Let m ∈ I. Since m is introspective
for every polynomial in P , it certainly is for f(X) and g(X). Since h(X) is a factor of Xr − 1, we see that

f(Xm) ≡ (f(X))m ≡ (g(X))m ≡ g(Xm) mod p, h(X).

This implies that Xm is a root of the polynomial Q′(Y ) := f(Y )− g(Y ) over F for any m ∈ I. In particular,
we see that Xm is a root of Q′(Y ) in F for any m ∈ G, viewing m as an integer representative of the
equivalence class modulo r. This is well-defined, since Xr = 1 in F , so Xm+kr = Xm in F . We claim all
these roots are distinct.

Suppose for contradiction that Xm = Xm′ in F for m,m′ ∈ G with m > m′, where we represent m and m′ by
their unique representative in {0, 1, . . . , r− 1}. Then h(X) divides Xm−Xm′ = Xm′(Xm−m′ − 1) in Zp[X].

It is clear that h(X) does not divide Xm′ in Zp[X]. Since h(X) is irreducible in Zp[X], this implies that h(X)

must divide Xm−m′ − 1 in Zp[X]. Now our choice of h(X) turns out to be useful, since by definition Φr(X)

does not divide Xm−m′ − 1 in Zp[X] (0 < m −m′ < r). Since h(X) is an irreducible factor of Φr(X) re-

duced to Zp[X], with some small technicalities, we can show that h(X) cannot divide Xm−m′−1 in Zp[X] [14].
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Therefore, Q(Y ) has at least |G| = t distinct roots. Note that this is where choosing a different irreducible
factor of Xr − 1 in Zp[X], such as X − 1, fails. In that case, the polynomials Xm do not need to be distinct
in F for m ∈ G. In the case of X − 1, these polynomials are all identical.

On the other hand, since f(X) and g(X) have degree less than t and have different coefficients, Q(Y )
is not the zero-polynomial and of degree less than t. The fact that Q(Y ) has at least t roots is thus in
direct contradiction with the factor theorem. This implies that every polynomial in P ′ reduces to a unique
polynomial in F and thus to a unique element of G and so we see that

|G| ≥ |P ′| =
(
t+ b

√
r lg nc

t− 1

)
.

We will now show that the upper and lower bounds for |G| are contradictory. Note that G ⊆ Z∗r , since
(n, r) = (p, r) = 1. This implies that t = |G| < r. Furthermore, since G is generated by n and p modulo r
with or(n) > lg2 n, it follows that t = |G| > lg2 n. This implies that

√
t lg n < t. It now follows from Lemma

3.18 that

|G| ≥
(
t+ b

√
r lg nc

t− 1

)
>

(
t+ b

√
t lg nc

t− 1

)
=

(
t+ b

√
t lg nc

b
√
t lg nc+ 1

)
≥
(

2b
√
t lg nc+ 1

b
√
t lg nc+ 1

)
.

Here we use the fact that
(
a
b

)
=
(
a
a−b
)
. The inequalities can intuitively be understood by noting that

reducing the total number of choices reduces the number of possible combinations. For simplicity, we now
write ` = b

√
t lg nc. Then we see that

|G| >
(

2`+ 1

`

)
=

(2`+ 1)!

`!(`+ 1)!
=

(`+ 2) · · · (2`+ 1)

1 · · · `
= (`+ 2)

∏̀
k=2

`+ k + 1

k
≥ (`+ 2) · 2`−1.

Since n is composite, we know that n ≥ 4, so that lg n ≥ 2 and thus ` = b
√
t lg nc ≥ 2. From this, it follows

that
|G| > (`+ 2) · 2`−1 ≥ 2`+1 = 2b

√
t lgnc+1 > 2

√
t lgn = n

√
t.

However, this is clearly in contradiction with Lemma 3.17. This completes the proof of Theorem 3.12.

Having proved Theorem 3.12, we can almost introduce the AKS primality test. To complete the algorithm,
we need to prove that there is a suitably small r with or(n) > lg2 n. To show this, we first prove the following
theorem.

Theorem 3.19. Let LCM(m) = lcm{1, 2, . . . ,m} denote the least common multiple of the first m positive
integers. For m ≥ 7 we have

LCM(m) ≥ 2m.

We present our own proof of this theorem, but first we prove two additional lemmata.

Lemma 3.20. Let m > 1 be an integer and let p ≤ m be any prime number. Define fp(m) to be the exponent
of the largest power of p that is less than m. Then the number of factors of p in m! is given by

fp(m)∑
i=1

⌊
m

pi

⌋
.

Proof. Define vp(a) as the greatest power of p that divides a. Then the number of factors of p in m! is given
by

m∑
a=1

vp(a).

We will now count the number of integers 1 ≤ a ≤ m for which vp(a) = k, for each 0 ≤ k ≤ fp(m). Note that
in this way each integer 1 ≤ a ≤ m will be counted exactly once, since there cannot be an integer 1 ≤ a ≤ m
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with vp(a) ≥ fp(m)+1. Would this be the case, then it would imply that pfp(m)+1 ≤ a ≤ m, in contradiction
with the maximality of fp(m). Let 0 ≤ k ≤ fp(m) be fixed. Then vp(a) = k if pk | a, but pk+1 - a. There

are a total of
⌊
m
pk

⌋
possible 1 ≤ a ≤ m that are multiples of pk, of which

⌊
m
pk+1

⌋
are also multiples of pk+1.

Therefore, the total number of integers 1 ≤ a ≤ m with vp(a) = k is⌊
m

pk

⌋
−
⌊
m

pk+1

⌋
.

From this, we can now compute the number of factors p in m! as

m∑
a=1

vp(a) =

k=fp(m)∑
k=0

k

(⌊
m

pk

⌋
−
⌊
m

pk+1

⌋)
= 0− 0 +

⌊
m

p

⌋
−
⌊
m

p2

⌋
+ 2

⌊
m

p2

⌋
− 2

⌊
m

p3

⌋
+ . . . =

fp(m)∑
i=1

⌊
m

pi

⌋
,

where the latter follows by recognizing the telescoping sum and the fact that
⌊

m
pfp(m)+1

⌋
= 0. This proves

Lemma 3.20.

Lemma 3.21. For any integer m > 1 we have

LCM(m) ≥ m
(
m− 1

k

)
for any integer 0 ≤ k ≤ m− 1.

Proof. Since m
(
m−1
k

)
= m!

k!(m−k−1)! , this expression clearly has no prime factors greater than m. Let p ≤ m

be any prime number and let fp(m) be as in the statement of Lemma 3.20. Then, by Lemma 3.20 the number

of factors of p in m! is
∑fp(m)
i=1

⌊
m
pi

⌋
. In a similar way, we can also count the number of factors p in k! and

(m− k − 1)! to derive that the number of factors of p in m!
k!(m−k−1)! is equal to

fp(m)∑
i=1

⌊
m

pi

⌋
−
fp(k)∑
i=1

⌊
k

pi

⌋
−
fp(m−k−1)∑

i=1

⌊
m− k − 1

pi

⌋
=

fp(m)∑
i=1

⌊
m

pi

⌋
−
fp(m)∑
i=1

⌊
k

pi

⌋
−
fp(m)∑
i=1

⌊
m− k − 1

pi

⌋

=

fp(m)∑
i=1

⌊
m

pi

⌋
−
⌊
k

pi

⌋
−
⌊
m− k − 1

pi

⌋
.

Here we used the fact that
⌊
k
pi

⌋
= 0 if i > fp(k). We now claim that

⌊
m
pi

⌋
−
⌊
k
pi

⌋
−
⌊
m−k−1
pi

⌋
≤ 1 for any

1 ≤ i ≤ fp(m). Suppose for contradiction that
⌊
m
pi

⌋
−
⌊
k
pi

⌋
−
⌊
m−k−1
pi

⌋
≥ 2. Then

m

pi
≥
⌊
m

pi

⌋
≥
⌊
k

pi

⌋
+

⌊
m− k − 1

pi

⌋
+ 2 ≥

(
k + 1

pi
− 1

)
+

(
m− k
pi

− 1

)
− 2 =

m+ 1

pi
,

a clear contradiction. Here we used the fact that
⌊
a
b

⌋
≥ a+1

b − 1 for any positive integers a, b. Since⌊
m
pi

⌋
−
⌊
k
pi

⌋
−
⌊
m−k−1
pi

⌋
≤ 1 for any 1 ≤ i ≤ fp(m), it follows that the number of factors of p in m

(
m−1
k

)
=

m!
k!(m−k−1)! is bounded by

fp(m)∑
i=1

⌊
m

pi

⌋
−
fp(k)∑
i=1

⌊
k

pi

⌋
−
fp(m−k−1)∑

i=1

⌊
m− k − 1

pi

⌋
=

fp(m)∑
i=1

⌊
m

pi

⌋
−
⌊
k

pi

⌋
−
⌊
m− k − 1

pi

⌋
≤ fp(m).

Since this holds for every prime p ≤ m and m
(
m−1
k

)
does not have any prime factors larger than m, we see

that

m

(
m− 1

k

)
≤

∏
p≤m,p prime

pfp(m).
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On the other hand, for every prime p ≤ m, we have pfp(m) ≤ m by definition, so pfp(m) | LCM(m). This
implies that

LCM(m) ≥
∏

p≤m,p prime

pfp(m) ≥ m
(
m− 1

k

)
.

Using the two lemmata above, we can now prove Theorem 3.19.

Proof (Theorem 3.19). We prove that

m

(
m− 1⌊
m−1
2

⌋) ≥ 2m

for any m ≥ 7. The result then immediately follows from Lemma 3.21. We present a proof by induction.

First, we will prove the claim for odd m ≥ 7. For m = 7, we see that the claim indeed holds. Now suppose
that for some odd m = k = 2`+ 1 the claim holds. Then we see that

(k+2)

(
k + 1⌊
k+1
2

⌋) = (2`+3)

(
2`+ 2

`+ 1

)
= (2`+3)

(2`+ 1)(2`+ 2)

(`+ 1)2

(
2`

`

)
> 4(2`+1)

(
2`

`

)
= 4k

(
k − 1⌊
k−1
2

⌋) ≥ 2k+2,

and so the claim also holds for m = k + 2, completing the induction.

We will now prove the claim for even m ≥ 7. For m = 8, it can again be checked that the claim indeed holds.
Now suppose that for some even m = k = 2` the claim holds. Then we see that

(k + 2)

(
k + 1⌊
k+1
2

⌋) = (2`+ 2)

(
2`+ 1

`

)
= (2`+ 2)

2`(2`+ 1)

`2

(
2`− 1

`− 1

)
> 4 · 2`

(
2`− 1

`− 1

)
= 4k

(
k − 1⌊
k−1
2

⌋) ≥ 2k+2,

proving the claim also holds for m = k + 2, which completes the induction.

Remark 3.22. Theorem 3.19 allows us to derive our own crude lower bound of the prime counting function
π(m), which is defined as the number of primes p ≤ m. Let m ≥ 7 be an integer and consider the product∏
p≤m,p prime p

fp(m). Any 1 ≤ i ≤ m divides this product, since i ≤ m has at most fp(m) factors of a prime
p ≤ m. It follows that

LCM(m) ≤
∏

p≤m,p prime

pfp(m).

By Theorem 3.19 we know that LCM(m) ≥ 2m, since m ≥ 7, and by definition of fp(m), we also know that
pfp(m) ≤ m for every prime p ≤ m. This implies that

2m ≤ LCM(m) ≤
∏

p≤m,p prime

pfp(m) ≤
∏

p≤m,p prime

m = mπ(m) = 2lgmπ(m).

We therefore conclude that π(m) ≥ m
lgm for any m ≥ 7. This bound differs only by a constant factor

lnm
lgm = ln(2) from the asymptotically optimal bound implied by the prime number theorem [14].

The consequence of Theorem 3.19 which we are most interested in is the fact that we can prove the existence
of a suitably small r with or(n) > lg2 n. We present an altered version of the proof given in [11], which
simplifies the proof, under the condition that we also accept r with (n, r) > 1 besides r with or(n) > lg2 n.

Theorem 3.23. Let n > 1 be an odd integer. There exists an integer 1 ≤ r ≤ dlg5 ne such that either
(n, r) > 1 or or(n) > lg2 n.

Proof. Suppose for contradiction that (n, r) = 1 and or(n) ≤ lg2 n for any 1 ≤ r ≤ dlg5 ne. This implies that
r | nir − 1 for some 1 ≤ ir ≤ lg2 n for any 1 ≤ r ≤ dlg5 ne and therefore the product

blg2 nc∏
i=1

(ni − 1)
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is divisible by any integer 1 ≤ r ≤ dlg5 ne and from this it follows that it is also divisible by LCM
(
dlg5 ne

)
.

Since the product is clearly positive, this implies that

blg2 nc∏
i=1

(ni − 1) ≥ LCM
(
dlg5 ne

)
≥ 2dlg

5 ne ≥ 2lg
5 n = nlg

4 n,

where the second inequality follows from Theorem 3.19, since dlg5 ne ≥ 7 because n ≥ 3. On the other hand,
since lg2 n ≥ 1, we have

blg2 nc∏
i=1

(ni − 1) <

blg2 nc∏
i=1

ni = n
∑blg2 nc

i=1 i = n
1
2 blg

2 nc(blg2 nc+1) ≤ n
1
2 lg2 n(lg2 n+1) ≤ nlg

4 n,

a clear contradiction. This completes the proof.

Combining all these ideas, we can finally describe the final algorithm presented in this thesis: the AKS
primality test [11] [15].

Algorithm 3.24 (Agrawal–Kayal–Saxena). Let n ≥ 2 be an odd integer, whose primality we want to test.
The following algorithm will determine the primality of n.

(i) If n = ab for some integers a, b with b > 1, n is composite.

(ii) Loop through all 1 ≤ r ≤ dlg5 ne. If r = n, n is prime (this small technicality can only occur for small
values of n for which dlg5 ne ≥ n). Otherwise, test if (n, r) > 1. If so, n is composite. If not, test if
or(n) > lg2 n and if this is the case, store r and continue with step (iii).

(iii) For each integer 1 ≤ a ≤ b
√
r lg nc test if

(X + a)n ≡ Xn + a mod n,Xr − 1.

If the above equation does not hold, n is composite. If the equation holds for every 1 ≤ a ≤ b
√
r lg nc,

n is prime.

Proof. Note that there will always be an 1 ≤ r ≤ dlg5 ne with either (n, r) > 1 or or(n) > lg2 n by Theorem
3.23, which means that the algorithm will always determine the primality of n in these three steps. We will
now prove that the algorithm always returns the correct result.

Suppose n is prime, then step (i) will never determine that n is composite. Since n is prime and r will never
exceed n in step (ii) (because we determine that n is prime as soon as r = n), every tested r will be coprime
to n (except if r = n, but then (ii) determines that n is prime). Therefore step (ii) will also never determine
that n is composite. Finally, as a direct corollary of Theorem 3.8, n will satify the polynomial identity

(X + a)n ≡ Xn + a mod n,Xr − 1

for any integer a. Therefore, step (iii) will correctly determine that n is prime, if this was not already
decided in step (ii).

Now suppose that n is composite. The algorithm can only wrongly determine that n is prime in steps (ii)
and (iii). However, if step (ii) determines that n is prime, then this must be since n = r and so any previous
1 ≤ r < n would have to have satisfied (n, r) = 1, which is impossible since n is composite. On the other
hand, as a direct corollary of Theorem 3.12, step (iii) will only determine that n is prime if n is prime, or a
power of a prime. Since the latter would have been determined as composite in step (iii), we see that step
(iii) cannot determine n as prime if it is composite and passed step (i). We see that composite n will also
always correctly be identified as such by the algorithm. This completes the proof that the algorithm will
always return the correct result.
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4 Complexity Analysis

In the previous chapters, we have seen several primality testing algorithms. However, apart from the original
motivation for looking into different algorithms than Trial Division, we have not really investigated the
difference in speed between the different algorithms. This is mainly because we did not have the required
tools. This chapter aims to provide the reader with such tools, serving as a basic introduction to complexity
analysis. We will quantify the speed of the presented algorithms and make a comparison between the
algorithms. However, we will see that this analysis needs to be backed by a practical analysis of the algorithms,
this will be done in the next chapter.

4.1 Basic Definitions

In order to compare the speed of two different algorithms, we will count the number of bit operations both
perform. We can rigorously define a bit operation as the number of steps of a Turing or register machine,
or the number of gates of a Boolean circuit implementing the algorithm [16]. However, these definitions are
quite technical; for this section it suffices to informally see bit operations as elementary operations on single
bits, such as adding or subtracting two bits. From bit operations, we can define a measure for the complexity
of an algorithm, by simply counting the required number of bit operations.

Definition 4.1. We call an algorithm with input n an O(f(n)) algorithm if there exists a C ≥ 0 such that
the algorithm applied to any n requires at most Cf(n) bit operations. We say that the algorithm is of (time)
complexity O(f(n)).

Remark 4.2. We will often denote the complexity of an algorithm in terms of the number of bits of the
input. We can do this since the number of bits of n is simply another function of n.

Using the above definition of time complexity, we can finally rigorously define what we mean with an efficient
algorithm: an algorithm which is polynomial.

Definition 4.3. An algorithm is called polynomial if it has polynomial complexity in the number of bits of
the input. That is, if the algorithm has time complexity O(lgk n) for some k ≥ 0.

4.2 Elementary Operations

In order to derive the time complexity of the presented algorithms, we first need to derive the number of bit
operations required for the elementary operations such as addition and multiplication.

Theorem 4.4 (Addition). The addition of two `-bit integers can be performed with an O(`) algorithm.

Proof. We consider the basic algorithm of adding two `-bit numbers by bit-wise addition from right to left,
using a carry bit. For every bit of the input integers, this algorithm performs the bit-wise addition of two
bits of the input numbers, and a single carry bit from the previous addition. Since this operation can be
performed in a constant number of bit-wise operations and the algorithm performs ` such operations in total,
the total complexity of the proposed algorithm is O(`).

Remark 4.5. To ensure correctness of the result and not lose any information, each of the ` bits in the
input must be used in a bit operation at least once by the algorithm. Therefore, the complexity of O(`) for
addition is asymptotically optimal.

Theorem 4.6 (Subtraction). The subtraction of two `-bit integers can be performed with an O(`) algorithm.

Proof. Simply calculate the inverse of one of the inputs (two’s complement in the case of a fixed number of
bits), which can be done in O(`) bit operations and add this to the other input. By the previous theorem,
this addition can also be performed in O(`) bit operations, so the total complexity is O(`).

Remark 4.7. Again, since each of the ` input bits must be used in a bit operation at least once, the
complexity of O(`) for subtraction is asymptotically optimal.



4 COMPLEXITY ANALYSIS 27

Theorem 4.8 (Multiplication). The multiplication of two `-bit integers can be performed with an O(`2)
algorithm.

Proof. We consider another well-known algorithm. To multiply two `-bit integers a and b, we traverse the
bits of a from right to left, keeping count of the index of the current bit (where the rightmost bit has index
0). If the current bit of a is a 0, we continue on to the next bit, but if the current bit of a is a 1, then
we bit-shift b to the left by the same amount of bits as the index of the current bit of a and add this to a
list. After processing all bits of a in this way, we add all the numbers in the created list together, one by
one. Since we add at most ` numbers, with at most 2` bits, the total time complexity becomes O(`2), as
desired.

Remark 4.9. The complexity of O(`2) for multiplication is not asymptotically optimal. In recent history,
many algorithms for multiplication with better complexity have been derived. In 2019, an algorithm with a
complexity of O(` ln `) was presented, which is predicted to be asymptotically optimal, although this is still
an open problem [17].

In the following, let M(`) denote the complexity of any multiplication algorithm of two `-bit integers.

Theorem 4.10 (Division). The division of two `-bit integers can be performed with an O(M(`)) algorithm.

Proof. This can be achieved through Newton iteration. See [16] for an algorithm and proof.

Theorem 4.11 (Modular exponentiation). Let x, y be two `-bit integers and let e be a k-bit integer. The
value of xe mod y can be computed with an O(kM(`)) algorithm.

Proof. This can be achieved through repeated squaring. See [16] for an algorithm and proof.

4.3 The Presented Algorithms

Using the tools of complexity analysis, we can now determine and compare the time complexity of the different
algorithms presented. First, we see that Trial Division is indeed non-polynomial.

Theorem 4.12. The Trial Division primality test can test an `-bit integer n for primality with complexity
O(2`/2M(`)).

Proof. For each integer 1 < a ≤
√
n, the Trial Division algorithm checks if a|n. This check can be computed

in O(M(`)) by Theorem 4.10, since any such a will have at most as many bits as n. Therefore, the total
running time will be no more than

O
(√
nM(`)

)
= O

(√
2lgnM(`)

)
= O

(√
2`M(`)

)
= O

(
2`/2M(`)

)
.

Remark 4.13. The Trial Division algorithm is indeed non-polynomial, since for a prime number p, Trial
Division tests

√
p integers for divisibility against p. Every test takes at least a single bit operation, so that

the total number of bit operations is at least
√
p, which is exponential in the number of bits of p.

We now proceed to show that all the other presented algorithms are polynomial. We first derive the time
complexities for the two probabilistic algorithms.

Theorem 4.14. The Solovay-Strassen primality test with k iterations can test an `-bit integer n for primality
with complexity O(`kM(`)).

Proof. For each of the k iterations, a random integer 0 < a < n is chosen. Since a < n, this integer will
have at most ` bits. The Jacobi symbol ( an ) can be calculated in O(`M(`))[1], implying that test (i) of

an iteration can be computed in O(`M(`)) bit operations. Theorem 4.11 shows us that a(n−1)/2 mod n
can also be computed with an O(`M(`)) algorithm, so that test (ii) of an iteration can be computed in
O(`M(`)) bit operations, having already calculated ( an ). We see that both tests have complexity O(`M(`)).
Therefore the total running time of a single iteration is O(`M(`)) and the complexity with k iterations
becomes O(`kM(`)).



4 COMPLEXITY ANALYSIS 28

Theorem 4.15. The Miller-Rabin primality test with k iterations can test an `-bit integer n for primality
with complexity O(`kM(`)).

Proof. Again, for each of the k iterations, a random integer 0 < a < n is chosen. Since a < n, this
integer will have at most ` bits. Since n − 1 = 2st with t, s ≥ 1, we see that t ≤ n−1

2 and s ≤ lg n.
In particular it follows that t has at most ` bits, so that at mod n can be computed with an O(`M(`))
algorithm by Theorem 4.11. This implies that test (i) of an iteration can be computed in O(`M(`)) bit
operations. The remainder of an iteration consists of squaring at mod n at most s− 1 times. Every squaring
operation has complexity O(M(`)) by Theorem 4.11, so that the remainder of an iteration has complexity
O((s − 1)M(`)) = O(lg nM(`)) = O(`M(`)). Since we compute k iterations, the total complexity becomes
O(`kM(`)).

The time complexities of the deterministic variants of the Solovay-Strassen and Miller-Rabin algorithms now
follow quite easily from the theorems above.

Corollary 4.16. The deterministic version of the Solovay-Strassen primality test, assuming the ERH, can
test an `-bit integer n for primality with complexity O(`3M(`)).

Proof. In the proof of Theorem 4.14, we saw that a single Solovay-Strassen iteration can be computed in
O(`M(`)) bit operations. Since we compute at most 2 ln2(n)− 1 = O(`2) iterations, the total complexity is
O(`3M(`)).

Corollary 4.17. The Miller primality test, assuming the ERH, can test an `-bit integer n for primality with
complexity O(`3M(`)).

Proof. In the proof of Theorem 4.15, we saw that a single Miller iteration can be computed in O(`M(`)) bit
operations. Since we compute at most 2 ln2(n)−1 = O(`2) iterations, the total complexity is O(`3M(`)).

Finally, we can derive the time complexity of the AKS primality testing algorithm to see that the AKS
algorithm is indeed polynomial, as claimed.

Theorem 4.18. The AKS primality test can test an `-bit integer n for primality with complexity O(`9/2M(`6)).

Proof. We will again derive the time complexity of each step of the algorithm. First note that if n = ab for
some b > 1, then b ≤ lg n, since a ≥ 2. We now simply test if b

√
n is an integer for every integer 1 < b ≤ lg n.

Using Newton iteration, this test can be performed in O(M(`)) for any b, so the total complexity of step (i)
is O(`M(`)).

For step (ii), in each iteration, r = n can be tested with O(`) bit operations. Furthermore, we can calculate
(n, r) in O(`M(`)) bit operations [16]. Testing if or(n) > lg2 n can be done by simply calculating nk mod r
for every 1 ≤ k ≤ lg2 n. This takes at most lg2 n multiplications modulo r, for a total of O(lg2 n lg r) =
O(lg2 n lg lg n) = O(`2 lg `) bit operations. This is the most complex step of the iteration (if we take M(`) =
O(` lg `), so the entire iteration has complexity O(`2 lg `). We do at most lg5 n = `5 iterations, so step (ii)
has time complexity O(`7 lg `).
For step (iii), we verify at most

√
r lg n polynomial equations. Calculating (X + a)n mod n,Xr − 1 can be

done in O(lg n) = O(`) polynomial multiplications by repeated squaring. Since we work modulo n and Xr−1,
the polynomials we multiply have degree less than r and coefficients with at most ` bits. Such a multiplication
has time complexity O(M(r(` + lg r))) = O(M(`6 + `5 lg `)) = O(M(`6)). Therefore, calculating (X + a)n

mod n,Xr − 1 has complexity O(`M(`6)). Verifying the polynomial equation

(X + a)n ≡ Xn + a mod n,Xr − 1

can now be done with complexity O(r`), so that the calculation of (X+a)n mod n,Xr−1 is the most complex
in every iteration. Since we do at most

√
r lg n in total, step (iii) has time complexity O(

√
r lg n`M(`6)) =

O(`9/2M(`6)). This is the most complex step of the entire algorithm, from which the result follows.
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We see that the AKS primality testing algorithm has a much worse time complexity than the deterministic
variant of the Solovay-Strassen algorithm and the Miller algorithm. If we assume the ERH to be true, these
latter two algorithms would thus be much faster deterministic primality tests. However, the probabilistic
algorithms have the least time complexity of all the presented algorithms, since we can choose k to be a
small constant. We thus expect the AKS algorithm to be the slowest of the polynomial primality testing
algorithms presented, and the Solovay-Strassen and Miller-Rabin algorithms to be the fastest.

Remark 4.19. Lenstra and Pomerance managed to improve the time complexity of the AKS algorithm to
O(`6 lgk `) for some k ≥ 1, which is still worse than the other polynomial algorithms presented, but a massive
improvement over O(`9/2M(`6)). Their idea is to replace the cyclotomic polynomial Φr(X) by a polynomial
f(X) with some specific properties [14].

5 Practical Results

While complexity analysis provides an asymptotic upper bound for the running time of an algorithm, in prac-
tice the relative performance of two algorithms might differ from what we expect from complexity analysis.
This can occur if the constants in the big-O notation differ significantly or if the algorithm almost always
performs better than its worst case performance. It is therefore essential to perform an additional analysis
to effectively compare the speed of different algorithms. In this section, we provide a practical analysis based
on Python implementations of the different algorithms presented. The code for these implementations can
be found in Appendix A.

5.1 Performance on Prime Numbers

Doing meaningful analysis on the presented primality testing algorithms is hard, since the total computing
time always depends on the number of iterations before termination, which varies greatly between different
integers. One way to overcome this problem is to only consider the computing time of the algorithms on
prime numbers. This is because in all the presented algorithms, a prime number is guaranteed to always
require the maximum amount of iterations required. We can thus interpret the required computing time of
a primality testing algorithm on a prime number as a worst-case performance, which provides a meaningful
way to compare different primality testing algorithms.

The result of this comparison on primes of different orders of magnitude is shown in Table 1. The computing
time was measured in seconds and averaged over 10 tests. To prevent the slower algorithms from never ter-
minating, an algorithm taking more than 60 seconds was terminated externally; these external terminations
are denoted by N/A. The algorithms have been abbreviated, but are listed in the same order as they were
introduced in the previous chapters. For the probabilistic tests, we opt for k = 80 for Solovay-Strassen and
k = 40 for Miller-Rabin, so that both have a probability of at least 1− 1

280 of determining a composite input
as such.

n TD SS80 MR40 SSERH M AKS
105 + 3 0.0000 0.0003 0.0001 0.0008 0.0004 N/A

1010 + 19 0.0084 0.0009 0.0003 0.0086 0.0067 N/A
1015 + 37 2.7371 0.0015 0.0004 0.0303 0.0231 N/A
1020 + 39 N/A 0.0036 0.0008 0.0767 0.0695 N/A
1050 + 151 N/A 0.0111 0.0033 1.7961 1.8323 N/A
10100 + 267 N/A 0.0358 0.0111 27.0716 26.7191 N/A
10200 + 357 N/A 0.1424 0.0557 N/A N/A N/A
10500 + 961 N/A 1.2643 0.5892 N/A N/A N/A
101000 + 453 N/A 8.6627 4.0552 N/A N/A N/A

Table 1: Computing time of different primality testing algorithms on primes.
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Most of the results in Table 1 were already expected in the previous chapter. The first thing we see is that
the two probabilistic algorithms greatly outperform the deterministic primality testing algorithms for large
values of n. This can be attributed to the fact that these algorithms perform a fixed number of iterations,
while the number of iterations for the deterministic algorithms depends on the size of n. Furthermore, the
deterministic variants of Solovay-Strassen and the Miller primality test perform almost the same, implying
that the Miller and Solovay-Strassen iterations take about the same amount of time, since both perform
the same number of iterations (2 ln2 n). This is further strengthened by the fact that the Solovay-Strassen
algorithm consistently takes around twice as long as the Miller-Rabin algorithm, which can be explained by
the fact that the former requires twice as many iterations to achieve the same level of confidence. Since
every strong pseudoprime base is also an Euler pseudoprime base of n by Theorem 2.26, this implies that
it is always favourable to use the Miller-Rabin algorithm over the Solovay-Strassen algorithm (at least when
using the versions of the algorithms described in Appendix A).

It should be noted that our implementation of none of the algorithms is the asymptotically fastest possible
one, but our implementation of the AKS algorithm is exceptionally sub-optimal. The step where we calculate
(X + a)n mod n,Xr − 1, which we saw to be the most time consuming step in the previous chapter, can be
sped up significantly, by using the method of Single- or Multipoint Evaluation instead of multiplying every
pair of coefficients [14][16]. However, the fact remains that the AKS algorithm has far worse asymptotical
behaviour than the other non-trivial algorithms presented. To give at least an idea of how our implementation
of the AKS algorithm performs, Table 2 lists the computing time used by the AKS algorithm on several smaller
primes. Again, the average of 10 tests was taken.

n AKS
100 + 3 0.0000
101 + 1 0.0000
102 + 1 1.0887
103 + 9 14.0129
104 + 7 92.1654
105 + 3 440.7000

Table 2: Computing time of the AKS primality testing algorithms on primes.

All of the other primality testing algorithms (including Trial Division) can test the primes in Table 2 in less
than a millisecond. It should be clear that while the AKS primality testing algorithm was a major theoretical
breakthrough, it has no place in practical applications.

5.2 Performing Fewer Iterations

The computing time required by all the algorithms in the worst case is mainly dictated by the amount of
iterations performed. Therefore, if we can decrease the number of required iterations of a certain algorithm,
it will become more efficient.

By Theorem 3.1 and Corollary 3.5, we know there must be a strong (and Euler) pseudoprime non-base to a
composite number n that is less than 2 ln2 n. However, Figures 1 and 2 suggest we can do better than this
upper bound. These graphs respectively show the minimal Euler pseudoprime non-base and minimal strong
pseudoprime non-base to a composite number n.

In Figure 1, we see a maximum of a = 37, attained at n = 14469841, which is still much lower than the
upper bound of 2 ln2 n = 543.68 . . .. We do however see a quadratic trend, which would imply that there is
no better upper bound than C ln2 n. Based on the limited data in Figure 1, we propose C = 0.137, which
yields an upper bound for all composite n ≤ 108.
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Figure 1: Minimal Euler pseudoprime non-bases. Figure 2: Minimal strong pseudoprime non-bases.

In Figure 2, we see a maximum of a = 7, attained at n = 25326001. Again, this is much lower than the
upper bound of 2 ln2 n = 581.22 . . .. Here, we do not see a clear trend, but under the assumption that there
is a quadratic trend and there is no better upper bound than C ln2 n, we propose C = 0.026, which yields an
upper bound for all composite n ≤ 108. However, it could well be that a bound of C ln2−ε n is possible.

It is also remarkable that both the minimal Euler pseudoprime non-bases and the minimal strong pseudo-
prime non-bases seem to always be prime numbers. The fact that the minimal Euler pseudoprime non-base is
prime follows immediately from Theorem 3.2, which in particular states that the set of all Euler pseudoprime
non-bases to n is a group. Therefore, if a composite number k = ab is an Euler pseudoprime non-base to n,
at least one of a and b must also be an Euler pseudoprime non-base to n and so, a composite number can
never be a minimal Euler pseudoprime non-base. The fact that the minimal strong pseudoprime non-bases
also seem to always be prime numbers is more difficult to prove and we leave this as a point of future research.

Unfortunately, due to the speed of the implementation, no meaningful graphs as in Figures 1 and 2 could
be produced for the AKS primality test in a reasonable timespan. However, we can do an analysis on the
required iterations in the probabilistic Solovay-Strassen and Miller-Rabin primality tests.

In the previous section, we used 80 and 40 iterations respectively for the Solovay-Strassen and Miller-Rabin
algorithm. However, it turns out that in most cases a single iteration will suffice. This is shown in Figures 3
and 4. These stacked graphs indicate the percentage of tests which determined a composite number as such
in a given number of tries. The graphs were created by taking 100 logarithmically spaced points xi and for
each of these points xk, counting the number of iterations required when testing 10000 surrounding points.
These surrounding points were chosen from the interval [xk, xk+1].
Clearly, for large n, performing a single iteration is almost always sufficient. Do note that we take the 10000
surrounding points at random, so that an n which on average needs more tests is almost invisible in the graph.
However, the graphs do show us that for a random large n, there is a big chance that a single iteration will
suffice. This is partly clear from Remark 2.30; for a lot of composite numbers n, the fraction of possible
bases that is a strong pseudoprime base to n is much less than 1

4 . One other thing that is very interesting
to note is that the graphs in Figures 3 and 4 are almost identical, while the theoretical confidence of the
Solovay-Strassen primality test is much lower than that of the Miller-Rabin primality test. This might also
be an interesting topic for future research.

In any case, Miller-Rabin seems to be the preferred algorithm to use in practice, since it requires only a
fixed number of iterations, but still always has the same confidence, regardless of the size of n. It is not
surprising that this is indeed the case: the Miller-Rabin algorithm is one of the most widely used primality
testing algorithms in practice [18]. Furthermore, we saw that Miller-Rabin should always be used over
Solovay-Strassen when using implementations similar to those in Appendix A.
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Figure 3: Solovay-Strassen. Figure 4: Miller-Rabin.

6 Final Remarks

We have seen several primality testing algorithms, but there are many other algorithms which were not
discussed in this thesis. These algorithms include very efficient algorithms which only work on integers of
certain special types, such as the Lucas-Lehmer primality test. This primality test only works on numbers
of the form 2` − 1, but is deterministic and has a time complexity of O(`M(`)). This is much faster than
all of the other deterministic algorithms presented in this thesis and in most cases even outperforms the
probabilistic Miller-Rabin primality test. Other general primality testing algorithms include the widely used
probabilistic Baillie-PSW algorithm and the deterministic elliptic curve primality test [15][14].

We saw that, in practice, the Miller-Rabin primality test has the best performance out of all the presented
algorithms, both in theory and in practice. The fact that a constant number of iterations can guarantee a level
of certainty, regardless of the size of the input, allows the probabilistic Solovay-Strassen and Miller-Rabin
primality tests to achieve a much better asymptotic time complexity than their deterministic counterparts
based on the ERH. It should therefore not be surprising that the Miller-Rabin primality tests is one of the
most used primality testing algorithms in practice. While the AKS primality test is a very interesting theo-
retical algorithm, it performs much worse than the other polynomial algorithms and has no use in practical
applications.

Based on the practical results in Chapter 5, we hypothesized on improving the upper bounds for a minimal
Euler or strong pseudoprime base. It is not unlikely that there exist numbers greater than those computed
which have a minimal Euler or strong pseudoprime base above the speculated upper bound. We do how-
ever think that the actual bounds will not be much greater than those presented. We also discovered the
interesting result that in practice, we expect the probabilistic Solovay-Strassen and Miller-Rabin primality
tests to almost always require only a single test to show compositeness. We also pointed out several ideas for
potential future research, based on the practical results gathered.

Concluding, the main idea the reader should retain from this thesis is that almost any criterion which holds
mainly for prime numbers can be turned into a primality test. The speed of the resulting test mostly depends
on the speed with which this criterion can be computed, but a slow test can sometimes be made significantly
faster by considering a weaker version of the criterion and turning the test into a probabilistic primality test.
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A Algorithm Implementations in Python 3

A.1 Trial Division

def T r i a l D i v i s i o n (n ) :
for a in range (2 , math . f l o o r (math . s q r t (n ) ) + 1 ) :

i f n % a == 0 :
return False

return True

A.2 Solovay-Strassen

def So lovayStras sen (n , k ) :
while ( k > 0 ) :

a = random . randrange (1 , n )
i f not S o l o v a y S t r a s s e n I t e r a t i o n ( a , n ) :

return False
k −= 1

return True

def SolovayStrassenERH (n ) :
for a in range (1 , math . f l o o r (2∗math . l og (n ) ∗ ∗ 2 ) ) :

i f not S o l o v a y S t r a s s e n I t e r a t i o n ( a , n ) :
return False

return True

def S o l o v a y S t r a s s e n I t e r a t i o n ( a , n ) :
j = Jacobi ( a , n )
i f ( j == 0 ) :

return False
p = pow( a , (n−1)//2 , n)
i f ( ( p − j ) % n != 0 ) :

return False
return True

# From h t t p :// r o s e t t a c o d e . org / w i k i / Jacob i symbo l#Python
def Jacobi ( a , n ) :

a %= n
r e s u l t = 1
while a != 0 :

while a % 2 == 0 :
a //= 2
n mod 8 = n % 8
i f n mod 8 in (3 , 5 ) :

r e s u l t = −r e s u l t
a , n = n , a
i f a % 4 == 3 and n % 4 == 3 :

r e s u l t = −r e s u l t
a %= n

i f n == 1 :
return r e s u l t

else :
return 0
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A.3 Miller and Miller-Rabin

def Mil lerRabin (n , k ) :
( s , t ) = DivideEvens (n−1)
while ( k > 0 ) :

a = random . randrange (1 , n )
i f not M i l l e r I t e r a t i o n ( a , n , s , t ) :

return False
k = k − 1

return True

def M i l l e r (n ) :
( s , t ) = DivideEvens (n−1)
for a in range (1 , math . f l o o r (2∗math . l og (n ) ∗ ∗ 2 ) ) :

i f not M i l l e r I t e r a t i o n ( a , n , s , t ) :
return False

return True

def M i l l e r I t e r a t i o n ( a , n , s , t ) :
p = pow( a , t , n )
i f (p == 1 ) :

return True
for i in range ( s ) :

i f ( ( p + 1) % n == 0 ) :
return True

p = (p ∗ p) % n
return False

def DivideEvens (n ) :
s = 0
t = n
while ( t % 2 == 0 ) :

t //= 2
s += 1

return ( s , t )

A.4 Agrawal-Kayal-Saxena (AKS)

def AKS(n ) :
i f PerfectPower (n ) :

return False
for r in range (2 , math . f l o o r (math . log2 (n )∗∗5) + 1 ) :

i f r == n :
return True

i f math . gcd ( r , n ) > 1 :
return False

i f HasBigOrder (n , r ) :
break

for a in range (1 , math . f l o o r (math . s q r t ( r ) ∗ math . log2 (n ) ) + 1 ) :
i f not AKSPolynomial ( a , n , r ) :

return False
return True
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def PerfectPower (n ) :
for k in range (2 , math . f l o o r (math . log2 (n ) ) + 1 ) :

i f IsKthPower (n , k ) :
return True

return False

def IsKthPower (n , k ) :
r = n ∗∗ (1 / k )
return n == int (math . f l o o r ( r ) ) ∗∗ k or n == int (math . c e i l ( r ) ) ∗∗ k

def HasBigOrder (n , r ) :
e = n % r
for k in range (math . f l o o r (math . log2 (n )∗∗2) + 1 ) :

i f e == 1 :
return False

e = ( e ∗ n) % r
return True

def AKSPolynomial ( a , n , r ) :
P = [ 0 ] ∗ ( r −2) + [ 1 , a ]
LHS = PolynomialModPow (P, n , r , n )
l = len (LHS)
i f LHS[ l − 1 ] != a % n :

return False
for d in range (1 , l ) :

i f d == n % r :
i f LHS[ l − d − 1 ] != 1 :

return False
else :

i f LHS[ l − d − 1 ] != 0 :
return False

return True

def PolynomialModPow (P, n , m, e ) :
k = e
B = P
Q = [ 0 ] ∗ (m−1) + [ 1 ]
while k > 0 :

i f k % 2 == 1 :
Q = PolynomialModMultiply (Q, B, n , m)

B = PolynomialModMultiply (B, B, n , m)
k //= 2

return Q

def PolynomialModMultiply (P, Q, n , m) :
d1 = len (P)
d2 = len (Q)
r e s = [ 0 ] ∗ m;
for i in range ( d1 ) :

for j in range ( d2 ) :
r e s [ ( i + j − d1 − d2 + 1) % m] += P[ i ] ∗ Q[ j ] ;
r e s [ ( i + j − d1 − d2 + 1) % m] %= n

return r e s ;
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