§ Vyi}j’é FACULTY OF SCIENCE
== U — UtreCht Unlvel'SIty DEPARTMENT OF INFORMATION AND
{/{/AAL\\\\T COMPUTING SCIENCES

Master’s Thesis

Chromatic k-Nearest Neighbors Queries
using (Near-)Linear Space

Author Supervisor
Thijs van der Horst Dr. F. Staals
ICA-5873266 Second examiner

Dr. M. LofHer

June 27, 2021



Abstract

In this thesis, we study the chromatic k-nearest neighbors problem in one and two dimension(s), under
the L1, Lo and Lo metrics. In this problem, we wish to preprocess a set of n colored points, such that
given a query point ¢ and integer k, the most frequently occurring color among the k nearest neighbors
of g can be found efficiently. We give the first data structures that answer queries without computing
the k-nearest neighbors of a query point explicitly, resulting in query time complexities that are truly
sublinear. Aside from the standard chromatic k-nearest neighbors problem, we also study the semi-online
variant of the problem, in which we allow points to be added and deleted, as long as the time at which
a point is deleted is known once it is inserted. Finally, we also consider an approximate version of the
problem, in which a color needs to be reported that occurs often enough among the k-nearest neighbors
of gq. For all but the two-dimensional approximate problem under the L; and L., metrics, we give data
structures that use linear space. For this last problem, we show the existence of a linear-space data
structure, whose query time is lower than what we achieve.
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1 INTRODUCTION 1

Figure 1: An illustration of the (chromatic) k-nearest neighbors problem. The points inside the circle on the
left are the 3 nearest neighbors of g. On the right, the most frequently occurring color among the 3 nearest
neighbors of ¢ is red.

1 Introduction

An important problem in applications dealing with e.g. pattern recognition and machine learning is that of
classification. A known set of data points P is partitioned into disjoint sets, called classes. Given a new data
point ¢, not necessarily in P, we want to predict in which class ¢ belongs. Take for example the application
of spam detection in an emailing service. We would use two classes, signifying “good” and “spam” email. A
new email is then compared to a set of previously classified emails P, and is classified as either “good” or
“spam” based on this set.

There is a wide variety of classification algorithms, or classifiers, available. One such classifier is the
k-nearest neighbors classifier, which assigns a new point to the class occurring most frequently among the k
points in the data set that lie closest to this new point. This classifier is often used because of its performance
and simplicity (see for example [11}/36,40]).

The chromatic k-nearest neighbors problem, which is the topic of our thesis, is a geometric interpretation
of the classifier. The problem is based on the k-nearest neighbors problem, in which we are given a set of n
points P C R? to be preprocessed into a data structure, such that given a query point ¢, we can report the
k points from P that lie closest to g. In the chromatic variant, every point in P is given a color, and instead
of reporting the k points nearest to ¢, we have to report the color that occurs most frequently among these
k points. See Figure [1] for an illustration of the two problems. To show the connection with classification,
the k-nearest neighbors classifier can be seen as classifying a data point based on the result of a chromatic
k-nearest neighbors query.

1.1 Related work

The (non-chromatic) two-dimensional k-nearest neighbors problem has been studied extensively. In the
case where k is fixed during preprocessing, the problem can be solved by constructing an order-k Voronoi
diagram. This diagram is a generalization of the Voronoi diagram and was introduced by Shamos and
Hoey [47]. While this diagram answers queries in optimal O(logn + k) time, the complexity of the diagram
is O(k(n—k)) |15,39,42], and making it suitable for k-nearest neighbors queries requires O(k*(n — k)) space.

When the Euclidean (L) metric is used, the problem of finding the k-nearest neighbors of a query point
can be transformed to that of finding the k planes in R3 whose intersections with a vertical query line are
the lowest. This is accomplished by using a lifting map and working in dual space (see Section . In this
setting, the k-nearest neighbors problem has been solved optimally by Afshani and Chan [2], who showed
how to construct a data structure of O(n) size in O(nlogn) time, which answers queries in O(logn + k) time.
Recently, Liu [41] studied the k-nearest neighbors problem under general metrics, including the L, metrics
and additively weighted Euclidean metrics, and found a nearly optimal data structure that answers queries
in optimal O(logn + k) time, but using O(nloglogn) space.

To answer queries efficiently in higher-dimensional space, it is common to use a partition tree, recursively
partitioning the space into regions. An example of a tree storing a hierarchical subdivision is the k-d tree,
introduced by Bentley [12]. When the points are randomly distributed, the tree supports k-nearest neighbors
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queries in O(logn + k) expected time, regardless of dimension [33], making them theoretically optimal. In
practice, however, the query times of these trees can deteriorate to O(n) [51].

Another example is the balanced-box decomposition tree. Balanced-box decomposition trees have led to
many different results regarding the k-nearest neighbors problem. The tree was introduced by Arya et al. [9],
who obtained a result for an approximation variant of the k-nearest neighbors problem. In the approximate
problem that they considered, a query needs to report k points such that the i-th nearest reported point
lies at most (1 + ¢) times as far from the query point as the i-th nearest neighbor of the query point. Their
data structure achieves query times of O.(klogn), using O(n) space (the O.(-) notation hides multiplicative
factors depending only on €). The trees have also been used by Mount et al. [45] to solve the exact chromatic
problem, as well as the chromatic variant of the approximate problem studied by Arya et al. [9]. The data
structure favors query points where there is a clear winner among the colors of the k nearest neighbors. This
uses the idea that in some applications, points are likely clustered together, and that points in a cluster will
mostly be of the same color.

For the dynamic k-nearest neighbors problem, Agarwal et al. |3] gave a data structure of O(n““s)ﬂ size,
that can answer k-nearest neighbors queries under general distance functions in optimal O(logn + k) time,
and which allows for insertions and deletions in O(n%) time. This was recently improved by Kaplan et al. [37],
who found a dynamic data structure of O(nlog3 n) size that answers queries in O(log2 n + k) time, which
supports insertions and deletions in O(polylogn) time. Soon after, Liu [41] improved this data structure,
reducing its size to O(nlogn).

1.2 Studied problems and results

In this thesis, we study the chromatic k-nearest neighbors problems in one and two dimension(s), under the
Ly, Ly and L, metrics. We make no assumptions for the parameter k£ and the number of colors, other than
that they are both at most equal to the number of points. Moreover, the parameter k£ will not need to be
known until query time, making our solutions support queries with varying values for k.

For these problems, we have to preprocess a set P of n points into a data structure, such that when given
a query point ¢ and an integer k € [1,n], the most frequent color among the k-nearest neighbors of ¢ can be
found efficiently. Note the dash in “k-nearest neighbors.” We write this to signal that the k points closest to
q do not have to be unique. The k-nearest neighbors of ¢ are defined as the points of P for which at most
k — 1 points lie strictly closer to q.

We assume that the points in P lie in general position. This restriction can be worked around by
symbolically perturbing the points [29//31]. As the output size is constant, rather than O(k) like for the
regular k-nearest neighbors problem, we aim for query time complexities that depend only on n. See Table
[ for an overview of our results.

’ Dimension | Metric ‘ Preprocessing time ‘ Space ‘ Query time ‘ Section‘
d=1 L1, Ly and Lo | O(ny/n) O(n) O(v/n)
5/3 5/6
Lamd L. | 007 o) | 0Wo)
d=2 O(n®/3) O(nlogn) | O(n*?logn)
Lo O(n®/3) O(n) O(n®/?)

Table 1: Our results for the exact chromatic k-nearest neighbors problems.

Aside from the static, exact problems, we give data structures for the dynamic (in one dimension) and
semi-online (in two dimensions) versions of the problem. In the dynamic version of the problem, the set of
points in the data structure can change over time, with points being added and deleted at unknown times.
For the semi-online problem this is relaxed a bit, as the time at which a point will be deleted is given when the
point is inserted (though the time at which a point is inserted remains unknown). See the work of Dobkin
and Suri [26] for the introduction of semi-online problems, and the work of Chan [17] for more problems
which were solved in a semi-online setting. Our results for the dynamic and semi-online chromatic k-nearest
neighbors problems are given in Table [2|

I Throughout this thesis, we use é to denote an arbitrarily small, positive constant.
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Dimension | Metric ‘ Update time ‘ Space ‘ Query time ‘ Section ‘
d=1 L1, Ly and Lo | O(n?/3) O(n) O(n2/3)
6/7 6/7
L, and Lo O(n®/7) O(n) O(n logzn)
d=2 O(n3/4)* O(nlogn) | O(n**log®n) @
Lo O(n?/10)* O(n) O(n'%logn)

Table 2: Our results for the dynamic (in one dimension) and semi-online (in two dimensions) chromatic
k-nearest neighbors problems. Complexities marked with * are amortized bounds.

Finally, we consider an approximate variant of the static problems. In the approximate version that we
will consider, we are given a set P of n points, along with an approximation factor & € (0,1), which we have
to preprocess into a data structure, such that given a query point ¢ and an integer k € [1,n], a color occurring
at least (1 — ) times as often as the most frequent color among the k-nearest neighbors of ¢ can be found
efficiently. See Table [3] for our results.

’ Dimension ‘ Metric ‘ Preprocessing time ‘ Space ‘ Query time ‘ Section‘
d=1 Li,Ly and Ly | O:(nlogn) Oc(n) Oc(logn) H
110y 2 1/2+6
d—2 L; and Ly O (n'1?) O:(nlog“n) | O:(n )
L, O, (n'+9)* Oc(n) O, (n'/?19)

Table 3: Our results for the approximate chromatic k-nearest neighbors problems. The O(-) notation hides
multiplicative factors depending only on €. Complexities marked with * are expected bounds.

2 The one-dimensional problem

In this section, we will solve the one-dimensional exact problem, which is the following.

ONE-DIMENSIONAL CHROMATIC k-NEAREST NEIGHBORS

Given: A set of n colored points P C R in general position.

Problem: Preprocess P into a data structure, such that given a query point ¢ € R and integer k € [1,n],
the most frequent color among the k-nearest neighbors of ¢ can be found efficiently.

Section shows how the problem can be reduced to the range mode problem in arrays. Section then
discusses a data structure by Chan et al. [20], which solves this range mode problem. Finally, in Section
we show how Chan et al. [20] achieved a conditional lower bound for the range mode problem, and show that
this lower bound is also applicable to all our exact chromatic k-nearest neighbors problems.

Because points in R only have a single coordinate, we use points as values when we want to use the value
of their coordinate. Also, because every L, metric is equivalent in R, we will simply write d(z,y) = |z — y|
to mean the distance between two points z,y € R.

2.1 Finding the k-nearest neighbors

The main idea behind the data structure for finding the k-nearest neighbors is that while an order-k Voronoi
diagram in the plane has O(k(n — k)) regions |15,39L[42], on the real line it consists of only O(n) regions. We
can therefore build an order-k Voronoi diagram using O(n) space, which we will use for finding the k-nearest
neighbors of a query point. Furthermore, as we will see in this section, we do not need to build the diagram
explicitly, which allows us to create the diagram for all values of k simultaneously. This is necessary for our
problem, where k is not fixed.
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D1 P2, D3 P4 P5
{p17p2} : {anpd} : {p5>p4} : {p4>p5}

Figure 2: A one-dimensional order-k Voronoi diagram, for k¥ = 2. The dashed lines partition the real line into
the order-k£ Voronoi regions. The arrows above the dashed lines show that regions are bounded by bisectors
of the points.

Let p1,...,pn be the points in P, ordered by increasing value. For a given k, we define the open interval
I;, which is analogous to a region in the order-k£ Voronoi diagram, as

(—oo, 7”1'*5"’“) ifi=1

I = { (Bettpesa popk ) fe {2, 0~ k).
Pi—1+Pitk—1 fi=n—k+1
5 , 00 Te=n +

Observe that for a point ¢ € R, we either have that ¢ € I; for a unique i € {1,...,n —k+ 1}, or ¢ = %

for some ¢ € {1,...,n — k}. The points % are analogous to edges in the order-k£ Voronoi diagram,
which are the bisectors between points. See Figure for an illustration. Much like for regions and edges (and
vertices) in an order-k Voronoi diagram, points inside an interval I; have only a single k-th closest point,
while a point p = w% has two that are equidistant from p. This leads to the following theorem.

Theorem 2.1. Let g € R. The following statements hold:
(i) If g € I; for somei € {1,...,n—k+ 1}, then p;,...,pitx—1 are the k-nearest neighbors of q.
(ii) If g = % for some i € {1,...,n—k}, then p;,...,pitr are the k-nearest neighbors of q.
Proof.

(i) Assume that g € I; for some i € {1,...,n—k+1}. Let P, = {p;,...,pit+k—1}- Split the points P\ Py up
into two sets. Set P;" = {pi4k,...,pn} contains the points to the right of Py, and P, = {p1,...,pi—1}
contains the points to the left of P,. Given p € P, and p* € P,j , we have that ¢ lies closer to p than

to ptifqgc (—oo, p+p+) . Therefore, we have that d(q,p) < d(g,p") for all p € P, and p* € P if

2
p+p* . Pi + Pitk
qc (oo, 2 ) = <oo, 72 .

(p,pT)EPL X PF

Similarly, given two points p € P and p~ € P_, we have that ¢ lies closer to p than to p~ if ¢ €
(%, oo) . Therefore, we have that d(q,p) < d(q,p~) for all p € P and p~ € P, if

+p itk—1 + Di—
= n <P 217 7OO> _ <p1+k 12 Di 1’00)'

(p,p™)EPLX P

Note that I; is contained in both intervals, and therefore g lies in both intervals. It follows that Py is
the set of |Pg|-nearest neighbors of q. As |Py| = k, this proves that p;,...,p;4x—1 are the k-nearest
neighbors of q.

(i) Assume that ¢ = 22 forsomei € {1,...,n—k}. Let Py = {p;,...,pitx}. Let P = {pisrs1,--- o}
and P, = {p1,...,pi—1}. Given p € P, and p™ € P, we have that d(g,p) < d(q,p") if ¢ €
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(—oo, #} . Therefore, we have that d(q,p) < d(q,p™) for all p € P, and p* € P,j if

p+pt Pi + Ditht1
o N (et (et ]

(p,pT)EPLX P

Similarly, given p € P, and p~ € P, , we have that d(q,p) < d(q,p™) if g € [%, oo) . Therefore, we
have that d(q,p) < d(q,p™) for all p € P, and p~ € P, if

p+p- Ditk + Di
)

(p,p~ )EPLX P,

Note that ¢ lies in both intervals. It therefore follows that Py is the set of | Px|-nearest neighbors of g,
with |Py| = k + 1 > k. This means that the k-nearest neighbors of ¢ form a subset of P.

Because ¢ lies halfway between p; and p;y, it must be that d(q,p) < d(q,p;) = d(q,pivr) for all
D € {Pit1s---,Pitk—1}. The points p;i1,...,pirr—1 must therefore be part of the k-nearest neighbors.
The only two points that can fill the last spot are p; and p;, which both lie at the same distance from
q. It follows that they both must be part of the k-nearest neighbors, proving that p;,...,p;4r are the
k-nearest neighbors of g. O

Corollary 2.2. Let ¢ € R. There are two indices 1 < £ < r < n such that py,...,p, are the k-nearest
neighbors of q.

Let py, ..., p, be the k-nearest neighbors of the query point. Let A be an array, storing the color of point
p; at entry A[i]. The mode color among the k-nearest neighbors is then the mode color among the array
entries A[¢ : r]. Therefore, once the indices £ and r are found, this mode color can be determined by a range
mode query.

We can find the indices ¢ and r follows. First, check if ¢ > W. If this is the case, then q € I,, 41
and the k-nearest neighbors must be p,_x41,...,pn. This sets £ =n — k+ 1 and r = n. Otherwise, we can
find the highest value i for which ¢ < % using binary search. Afterwards, we know that p;,...,pitk—1
are part of the k-nearest neighbors of ¢, and that £ = ¢. A simple check to see if ¢ = % then tells us
whether p; i is also part of the k-nearest neighbors. If so, we have r = i +k. Otherwise, we have r = i+k—1.
The result is an O(logn) time algorithm for reducing the problem to the range mode problem in an array.

2.2 Range mode queries in arrays

In [20], Chan et al. give multiple data structures for range mode queries in arrays. Their focus lies with the
word-RAM model, but their first result is also applicable to our problem. We will discuss their data structure
in this section.

2.2.1 The data structure

Let A[l : n] be an array of size n, storing colors. For ease of notation, we assume n to be a perfect square.
The data structure is easily altered to handle other cases. For the data structure, we divide A into /n blocks,
each of size \/n. We write L; = (i — 1)y/n+ 1 to be the first index of the i-th block, and R; = iy/n to be the
last index of the i-th block, where 1 < i < /n. The data structure then consists of the following parts (see
Figure [3| for an illustration):

1. A table S, such that S[i, j] stores the mode color of A[L; : R;], along with its frequency in the range,
where 1 <4 < j < y/n. This table can be seen as storing the mode of all different sections of A that
are formed from contiguous blocks.

2. A sorted array D, for each color ¢, such that D.[i] stores the index in A where the i-th occurrence of
color ¢ is. These arrays serve as a quick lookup table to find the occurrences of a given color.
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Ly Ry Lo Ry Ls R3

Figure 3: An illustration of the different data structures used. The figure on the left shows the relation
between the different arrays. The figure on the right shows table S, computed for an array A.

3. An array BI[l : n], such that B[i] stores the index at which i occurs in array D 4p;. This array can be
seen as storing pointers between the cells of A and their corresponding cells in D 4;).

We now analyze the space and construction time complexities of the data structure. The table S has
size O(n), as there are y/n blocks, and therefore O(n) sets of contiguous blocks. We can compute all entries
S|i, 7], for a fixed 7, in a single scan of A[L; : n]. To perform such a scan for a fixed 7, set j = 4. For each color
¢, keep track of the number of times f. that color ¢ has been encountered. Also keep track of the mode color
m and its frequency f,, in the currently scanned part. When the frequency of a color ¢ is incremented to
fe ¢ fm +1,set m < c and fp, < f.. When we have reached index R; in the scan, we set S[i, j| < (m, fm)
and increment j, continuing the scan afterwards. As we need /n scans to construct S, the table can be
constructed in O(ny/n) time.

Because every index i is included in exactly one array D., all arrays D. combined take up O(n) space.
The arrays D, can all be constructed in a single scan of A, as the indices will be ordered already. They
can therefore be built in O(n) time. Finally, the array B takes up O(n) space, and can be built during the
construction of the D, arrays in O(n) time. The total space used is O(n), and the total preprocessing time
is O(ny/n).

During a query, we want to quickly check whether color A[¢] occurs more than f times in a range A[( : 7],
for some r > ¢ and f > 0. This can be done in constant time with the above data structure, as shown in the
following lemma.

Lemma 2.3. Given the above data structure, we can determine in constant time whether A[l : r] contains
at least f + 1 instances of color A[l], for any two indices £ and r and for any integer f > 0.

Proof. To check whether A[¢ : r] contains at least f + 1 instances of A[¢], we merely have to check whether
D apg[B[¢] + f] < r. This is because D 4jq stores the indices of all occurrences of element A[/] in A. Index
B[{] of D 4y therefore stores the first index k between £ and r for which A[k] = A[/]. This index will be ¢
itself. As D 4y is a sorted array, it now follows that all elements A[D 414[k]] for k between B[] and B[] + f
are equal to A[f] (assuming D 4, contains enough entries). Therefore, if index D 414[B[¢] + f] is at most r,
we have that at least f + 1 colors in A[{¢ : 7] are equal to A[f], and otherwise this is not the case. As the
check can be performed in constant time, the lemma is proven. O
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2.2.2 The query algorithm

Given a query range A[l : r], we first symbolically break up the query range into three parts. Let L be the
smallest index L; such that L > ¢, and let R be the greatest index R; such that R < r. These two indices
can be found using binary search in O(logn) time. We refer to range A[L : R] as the span of the query range.
The part left of the span, which is the range A[f : min{L — 1, r}], will be referred to as the prefiz of the range.
Similarly, the part right of the span, which is the range A[max{R + 1,¢} : r] will be referred to as the suffiz
of the range. Note that these parts may be empty. Also, note that if the span is empty, the prefix and the
suffix are not disjoint, and are both equal to the entire range. This will not break the query algorithm, and
does not affect its complexity, though one can easily prevent this from happening by setting either of the two
to empty.
The main part of the query algorithm is based on the following observation by Krizanc et al. [38].

Observation 2.4. Let A and B be multisets. If ¢ is a mode of AU B and ¢ ¢ A, then ¢ is a mode of B.

Let ¢ = S[L, R] be the mode color of the span and let f. be its frequency in the span. Observation
now tells us that any element in the span, other than ¢, which does not occur in the prefix or suffix, will not
be the mode of B[{ : r]. Therefore, we now only have to consider ¢ and the elements in the prefix and suffix.

The frequency of the mode color in A[ : r] must be at least f.. Using Lemma we can query whether
a color A[i] occurs at least f. + 1 times in A[i : r] constant time. As the prefix and suffix consist of at most
\/n elements each, performing these queries on the prefix and suffix will take O(y/n) time in total. A color in
the prefix or suffix which occurs at least f.+ 1 times in the query range will be called a candidate color. The
final part of the query algorithm consists of computing the frequencies in the query range of all candidate
colors, and picking the one with the highest frequency.

We describe the procedure for computing the frequencies of colors in the prefix. The frequencies of the
colors in the suffix can be computed analogously. Scan through the colors in the prefix from left to right. Let
i denote the index of the current item. The frequency of A[i] will already have been counted if A[i] occurs
in A[¢ : i — 1]. This can be checked by checking whether D 4;)[E[i] — 1], which is the index of the previous
occurrence of A[i], is at least ¢. If so, color Afi] occurs between indices ¢ and ¢ — 1, and thus will have been
encountered already. If Afi] has not been encountered yet, we check whether its frequency in A[¢ : 7] is at
least f. + 1 using Lemma [2:3] If it is, this color is a candidate color and we will compute its frequency in
A[l : 7]. Because D 4; stores all indices of the occurrences of A[i] in ascending order, we can compute the
frequency of A[i] through a linear scan of D 4, starting at index E[i] + f. and ending at the first index j
for which D ap;1[j] > » (if the end of D 4f;) is reached, we set j = |[D4p;| + 1). The element D 4p;[j] denotes
the first index in A where color A[i] lies outside the query range (if such an index exists). Note that we can
start the scan at index E[i] + f. rather than index E[i] because we know that the frequency of A[i] is at least
fe+1. The frequency of A[i] in the query range is now f; = j — E[i]. We then update the current mode color
c and its frequency f. with A[i] and f;, respectively, before continuing with the scan. After both the prefix
and suffix have been scanned, the current mode color ¢ and its frequency f. are the mode color of A[¢ : 7]
and its frequency, respectively.

What remains to be bounded for the query time is the time taken to perform all frequency counting.
Note that the total number of elements inspected over the scans is f. — f., where f! is the frequency stored
in S[L : R]. This is because we start each scan at an offset equal to the frequency stored in f. before the
scan, plus one. Because the mode color in A[¢ : 7] occurs at most 24/n times in the prefix and suffix, we have
that f. and f. differ by at most 2y/n. Therefore, the frequency counting, and thus a range mode query, takes

O(y/n) time.

Theorem 2.5. Let A be an array of size n. In O(ny/n) time, we can build a data structure of O(n) size,
that answers range mode queries on A in O(y/n) time.

Combining the result with that of Section 2.1 we obtain the following result for the chromatic k-nearest
neighbors problem.

Theorem 2.6. Let P be a set of n points in R. In O(ny/n) time, we can build a data structure of O(n) size,
that answers chromatic k-nearest neighbors queries on P under the L1, Lo and Lo, metrics in O(y/n) time.
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Figure 4: An illustration of the array M constructed in the reduction from boolean matrix multiplication.
The set U contains the elements 1,...,+/n.

2.3 A conditional lower bound

Aside from the O(y/n) query-time data structure discussed in Section Chan et al. [20] present strong
evidence that a query time of O(nl/ 2-9) cannot be obtained through combinatorial techniques. This is shown
through a reduction from boolean matrix multiplication, which we will discuss here. As we will note at the
end of this section, the resulting conditional lower bound also holds for our problem of chromatic k-nearest
neighbors.

In the boolean matrix multiplication problem, we are given two square matrices A and B, in which each
entry is either 0 (False) or 1 (True). For the reduction, we assume that 4/n is an integer, and that A and B
are two y/n x y/n matrices. When multiplying the two matrices, we set an entry ¢; ; of the product matrix

C=A-Bas
cij= \ (aixAby).
1<k<m

That is, multiplication of two entries is performed through the AND operator, and addition is performed
using the OR operator. The reduction works by calculating each entry of C' with a separate range mode
query, totalling n queries.

For every row i of A, we construct the set A; = {k | a;, = 1}, containing those indices k for which the
entry is equal to 1. Similarly, we construct the set B; = {k | by ; = 1} for every row j of B. An entry c¢; ;
is now equal to 1 if and only if A; N B; is non-empty. Whether this is the case can be tested through range
mode queries, as observed by Greve et al. [34]:

Observation 2.7 (Greve et al. [34]). Let Sy and Sy be sets (not multisets), and let S be the multiset union
of S; and S5. The frequency of the mode of S is one if S; N Sy = () and two otherwise.

To perform the n required range mode queries, we first build an array M, which we divide into a left
part L and right part R. Part L represents the rows of A, and consists of /n blocks with \/n entries each.
The i-th block, consisting of the entries L[(i — 1)y/n + 1 : i1/n], represents row i of A. The first entries are
filled with the elements of {1,...,y/n} \ A;, which are the indices k for which entry a;j is equal to 0. The
order does not matter here. The last entries of the block are filled with the elements of A;, again in some
arbitrary order. The right part R of M is constructed similarly. It represents the columns of B, and consists
of \/n blocks with y/n entries each. The entries of the j-th block are filled with the elements of Bj, in some
arbitrary order, followed by the elements of {1,...,v/n}\ Bj, again in some arbitrary order. See Figure {4 for
an illustration of the constructed array.

We can now determine whether A; N B; is non-empty, and therefore whether ¢; ; equals 1, by performing
a range mode query on the subarray M [start(¢) : end(j)], where

start(i) = (1 — 1)vn+1++vn—|A;| and end(j)=n+ (j —1)vn+|Bjl

To see why, note that the elements at positions start(¢) through start(i)+|A;| — 1 are precisely the elements in
A;, and the elements at positions end(j) —|B;|+1 through end(j) are precisely the elements in B;. Therefore,
position start(i) + |A;| marks the start of a block of M, and position end(j) — |B,| mark the end of one. It
follows that between start(i) and end(j) lie precisely the elements of A; and Bj, as well as y/n —i+j — 1
blocks that each contain the elements of {1,...,+/n} (see Figure . We now need another observation by
Greve et al. [34].

Observation 2.8. Let S be a multiset whose elements belong to some universe U. Adding one of each
element in U to S increases the frequency of the mode of S by one.
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Mistart(i) :end(j)]: | A, | U |--- | U | B;

—

v/n—i+j— 1 blocks

Figure 5: An illustration of the subarray Mstart(i) : end(j)] used in the reduction from boolean matrix
multiplication. The set U contains the elements 1,...,+/n.

Recall that by Observation A; N Bj is non-empty if and only if the frequency of the mode in the
multiset union of A; and B; is two. The multiset of elements that lie between start(:) and end(j) is the
multiset gotten from the union of A; and B;, and adding the elements of {1,...,y/n} a total of /n—i+j—1
times. By Observation it now follows that A; N B; is non-empty if and only if the frequency of the mode
in the subarray Mstart() : end(j)] is equal to 2+ y/n —i+j — 1.

To summarize, we can determine the value of an entry c; ; by performing a range mode query on the
array M. Therefore, we can perform boolean matrix multiplication by first constructing M, and subsequently
performing n range mode queries on M. We can construct M, as well as find the cardinalities of the sets A;
and Bj, in O(n) time. This leads to the following result.

Theorem 2.9. Assume that in P(n) time, we can build a data structure that answers range mode queries
in a given array in Q(n) time. Then we can perform boolean matriz multiplication of two v/n x \/n matrices
in O(P(n) +n+n-Q(n)) time.

While boolean matrix multiplication of two square matrices has been researched quite extensively (see
for example [10,|19}|32,/53]), the best combinatorial bounds merely shave off logarithmic factors from the
trivial time bound, which is O(n%/?) for two \/n x y/n matrices. Combined with Theorem m this shows
strong evidence that the query time of a range mode data structure for arrays must either have a worst-
case preprocessing time that is w(n?’m_‘s)7 or a worst-case query time that is w(n1/2_5), assuming only
combinatorial techniques may be used.

The lower bound is not only applicable to the range mode problem in arrays. In fact, it applies to all
chromatic k-nearest neighbors problems. We show this through a reduction from range mode in arrays to
one-dimensional chromatic k-nearest neighbors, which trivially extends to higher dimensions under all L,
metrics.

The reduction is simple. Consider an array A. We map each entry A[i] to the point p; = i in R, and
assign this point color A[i]. A query for the mode element inside subarray A[f : r| can now be found as
follows. Set k = r — ¢+ 1. This is the number of elements in the query subarray. Let g = %T be the middle
point among the points py, ..., p.. Note that the k-nearest neighbors of ¢ are precisely the points py, ..., p:.
Therefore, the mode element of A[¢ : r] is the mode color among the k-nearest neighbors of ¢. This results
in the following theorem.

Theorem 2.10. Assume that in P(n) time, we can build a data structure that answers d-dimensional chro-
matic k-nearest neighbors queries under some L, metric in Q(n) time, for some dimension d. Then we can
perform boolean matriz multiplication of two /n x v/n matrices in O(P(n) +n+n-Q(n)) time.

3 The one-dimensional dynamic problem

In this section we give a data structure for the one-dimensional dynamic problem, given as follows.

DYNAMIC ONE-DIMENSIONAL CHROMATIC k-NEAREST NEIGHBORS

Problem: Build a data structure supporting insertions and deletions of points, such that given a query
point ¢ € R and integer k € [1,n], the most frequent color among the k-nearest neighbors of
q can be found efficiently.

The data structure from Section [2.]is easily made dynamic. Recall that the data structure, when built on
a set of points P, is merely an array storing the points in P from left to right. A query looks for the left and
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right indices £ and r, such that py, ..., p, are the k-nearest neighbors of a query point. To find these indices
for a query point ¢, binary search was used over the integers 1,...,n — k to find the highest integer i such
that ¢ < %. The points p;, ..., pi+k—1 (and possibly p;ik, if a check succeeds) are then the k-nearest
neighbors of q.

Let P be the n points stored in the data structure at some point in time. Storing the points of P from left
to right, while allowing insertions and deletions, can be done using a red-black tree. This tree is a balanced
binary-search tree that allows insertions and deletions in O(logn) time [24]. The query algorithm can be
altered to use this tree, with a O(logn) factor overhead in the time complexity. This is because instead
of being able to find a point p; in O(1) time through a lookup in an array, we have to search through the
red-black tree in O(logn) time. As the query algorithm for the static structure used O(logn) time, queries
on the dynamic data structure take O(log®n) time.

Recall that by finding the indices ¢ and r such that py, ..., p, are the k-nearest neighbors of a query point,
the problem is reduced to the range mode problem in an array. We now show the dynamic data structure of
El-Zein et al. |[30] for the range mode problem in arrays, which directly results in a dynamic data structure
for our one-dimensional chromatic k-nearest neighbors problem.

3.1 The data structure

Let A[l : n] be an array of size n, storing colors, that the data structure is built on at some point in time.
For ease of notation, we assume n to be a perfect cube. The data structure is easily altered to handle other
cases. The data structure is very similar to the static data structure of Chan et al. [20] that we discussed in
Section Like for the static data structure, we divide A into blocks. This time however, we divide A into
nl/3 blocks, each of size n?/3. We write L; = (i — 1) - n?/3 + 1 to be the first index of the i-th block, and
R; = i-n?/3 to be the last index of the i-th block, where 1 < i < n'/3. Aside from dividing A into sections,
we also divide the set of points into a set with frequent colors, which are colors that occur strictly more than
n'/3 times in A, and a set with infrequent colors, which occur at most n'/? times in A.
The data structure now consists of the following parts:

e A binary search tree T, storing the indices R;. At each leaf storing index R;, we store a red-black tree
T;, built on the frequent colors. This tree contains the colors and their frequencies in the range A[0, R;],
sorted by frequency. The tree T is a replacement for the table S from Section [2:2.1] The reason that
the table S is not used anymore is because when inserting or deleting points, too many entries of S
would have to be changed.

e A dynamic sorted array D, for each color ¢, such that D.[i] stores the index in A where the i-th
occurrence of color ¢ is. These arrays are a dynamic variant of those from Section and are given
in [30].

e An array B[l : n], such that Bli] stores the index at which i occurs in array D). This array is the
same as the one from Section 2.2.1]

e Arrays F; ;[0 :n'/3], for 1 <i < j < nl/3, such that Fj ;[f] stores the number of infrequent colors with
frequency f in the range A[L; : R;].

We now analyze the space and construction time complexities of the structure. There are O(n?/3) arrays
F; ;, and each has length n'/3 4+ 1. The space used by these arrays is therefore O(n). A dynamic array built
on n indices uses O(n) space [30]. Note that each index of A is stored in exactly one dynamic array D.. The
total number of indices stored in the dynamic arrays is thus O(n), and the space used by the arrays is O(n)
as well. Array B trivially takes up O(n) space. Finally, the tree T has O(n'/?) nodes. In each node, we
store a binary search tree that is built on the frequent elements. These inner binary search trees therefore
use O(n?/3) space each. This amounts to O(n) space in total for the tree T. Adding everything up, we see
that the total space used by the data structure is O(n).

To construct the data structure, we first split the elements into frequent and infrequent elements. This
can be done by sorting A and then performing a scan over A, in which we can count the frequencies of all
elements. This takes O(nlogn) time in total. We then construct the arrays F; ; by scanning A a total of nt/3
times, once for each ¢. To perform such a scan for a fixed ¢, set j = i. For each infrequent color ¢, keep track
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of the number of times f,. that color ¢ has been encountered. When an infrequent color ¢ is encountered, we
first decrement F; ;[f.]. This is done as there is one less color with frequency f. now. We then increment its
frequency f. < f.+1, and increment F; ;[f.] to reflect this change. In total, we perform O(1) operations for
each element. When we have reached index R; in the scan, we “save” array F; ; and increment j, continuing
the scan afterwards. This takes O(n'/?) time per block, which is the time taken to copy array F; ;. In total,
we spend O(n +n'/?.n'/3) = O(n) time to construct the arrays F; ; for a fixed i, totalling O(n*/3) time for
all arrays F; ;.

The dynamic arrays D, can be built through a single scan of A, as all indices will be ordered already. At
element A[i], index i is inserted at the back of dynamic array D 4p;. By [30], this operation takes O(1) time,
totalling O(n) time. Finally, building T' can be done in one scan of A, by keeping track of the frequencies of
the frequent elements encountered during the scan. Constructing a tree T; on the current frequencies takes
O(n*/?logn) time. As there are O(n'/3) trees T; to build, the total time it takes to construct 7' is O(nlogn).
The total construction time of the entire data structure is now O(n*/?).

During a query, we want to quickly check whether color A[¢] occurs more than f times in a range A[¢ : 7],
for some r > ¢ and f > 0. This can be done in constant time with the above data structure, as shown in the
following lemma.

Lemma 3.1. Given the above data structure, we can determine in constant time whether A[l : r] contains
at least f + 1 instances of color All], for any two indices £ and r and for any integer f > 0.

Proof. To check whether A[{¢: r] contains at least f 4 1 instances of A[{], we merely have to check whether
D ap[B[¢] + f] < r. This is because D 4jg stores the indices of all occurrences of element A[/] in A. Index
B[{] of D4y therefore stores the first index k between £ and r for which A[k] = A[/]. This index will be ¢
itself. As D 4y is a sorted array, it now follows that all elements A[D 414[k]] for k& between B[¢] and B[] + f
are equal to A[f] (assuming D 4f, contains enough entries). Therefore, if index D 414[B[¢] + f] is at most r,
we have that at least f + 1 colors in A[{¢ : 7] are equal to A[{], and otherwise this is not the case. As the
check can be performed in constant time, the lemma is proven. O

3.2 The query algorithm

We now give the query algorithm. The algorithm works similarly to the query algorithm for the static data
structure from Section Given a query range A[l : r], we first symbolically break up the query range
into three parts. Let L be the smallest index L; such that L > ¢, and let R be the greatest index R; such
that R < r. These two indices can be found using binary search in O(logn) time. Like in Section m
refer to the range A[L : R| as the span of the query range. The part left of the span, which is the range
All : min{L — 1, r}], will be referred to as the prefiz of the range. Similarly, the part right of the span, which
is the range A[max{max{¢, R + 1} : r] will be referred to as the suffiz of the range. Note that these parts
may be empty.
The main part of the query algorithm is again based on observation [2.4] which we restate here.

Observation 3.2. Let A and B be multisets. If ¢ is a mode of AU B and ¢ ¢ A, then ¢ is a mode of B.

Rather than first finding the mode color of A[L : R] using a precomputed table, we find the mode color
of A[L : R] among the frequent colors. To do this, we first locate the leaves in T storing indices L — 1 and
R. Then we scan the trees inside these leaves, to find the frequencies of all frequent elements in A[0: L — 1]
and A[0 : R]. By subtracting the results from each other, we obtain all frequencies of the frequent elements
in A[L : R]. Locating the correct leaves in T takes O(logn) time, after which the scans over the two trees
Tr_1 and Tg take O(n?/3) time. This step therefore takes O(n?/?) time.

Let ¢ be the frequent color with the highest frequency in A[L : R], and let f. be its frequency in A[L : R].
The frequency of the mode color in A[¢ : 7] must be at least f.. Using Lemma we can query whether a
color Al[i] occurs at least f.+ 1 times in A[i : r] in constant time. As the prefix and suffix consist of at most
n?/3 elements each, performing these queries on the prefix and suffix takes O(n?/3) time in total. A color in
the prefix or suffix which occurs at least f.+ 1 times in the query range will be called a candidate color. The
next part of the query consists of computing the frequencies in the query range of all candidate colors.

We describe the procedure for computing the frequencies of colors in the prefix. The frequencies of the
colors in the suffix can be computed analogously. Scan through the colors in the prefix from left to right. Let
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i denote the index of the current item. The frequency of A[i] will already have been counted if A[i] occurs
in A[¢ : i — 1]. This can be checked by checking whether D 4p;)[B[i] — 1], which is the index of the previous
occurrence of A[i], is at least £. If so, color Ai] occurs between indices ¢ and ¢ — 1, and thus will have been
encountered already. If A[i] has not been encountered yet, we check whether its frequency in A[{ : r] is at
least f. using Lemma If it is, this color is a candidate color and we will compute its frequency in A[¢ : 7].
Because D 4; stores all indices of the occurrences of Ali] in ascending order, we can compute the frequency
of A[i] through a linear scan of D 4f;), starting at index B[i] 4 f. and ending at the first index j for which
D alj] > r (if the end of D4y is reached, we set j = [Dap| 4+ 1). The element D 4p;[j] denotes the first
index in A where color A[i] lies outside the query range (if such an index exists). Note that we can start the
scan at index B[i] + f. rather than index B[i] because we know that the frequency of A[i] is at least f. + 1.
Therefore, the frequency of A[i] in the query range is f; = j — B[i]. We then update the current mode color
¢ and its frequency f. with A[i] and f;, respectively, before continuing with the scan. After both the prefix
and suffix have been scanned, the current mode color ¢ and its frequency f. are the mode color of Al : 7]
and its frequency, respectively.

We now bound the time taken to perform the frequency counting of all candidate colors. If ¢ is an
infrequent color, we have that f. < n'/3. As for each scan, the value of f must have increased by at least one,
there are only O(n'/3) scans performed, each taking O(n'/?) time. The scans therefore take O(n?/?) time
in total when ¢ is an infrequent color. Now assume that c is a frequent color. Note that the total number of
elements inspected over the scans is f. — f., where f/ is the frequency of the mode in A[L : R] among the
frequent colors. This is because we start each scan at an offset equal to the frequency stored in f. before the
scan, plus one. As c is a frequent color, we have that f! is at least the frequency of ¢ in A[L : R]. Because
there are only O(n?/3) elements in the prefix and span, we have that f. — f/ is at most O(n?/3). The total
cost of the scans will therefore be O(n?/?) in case c is a frequent color, making the scans take O(n?/?) time
in any case.

Finally, by Observation we have that the mode color in A[{ : r] is either ¢, or it is an element in the
span which does not occur in either the prefix or the suffix. Furthermore, if it is an element of the span, it
must also be the mode of A[L : R]. The final part of the query now deals with finding the mode of A[L : R],
and comparing its frequency in A[L : R] to frequency f,. Let L; = L and R; = R. We first scan over F; ;
in O(n'/3) time to find the highest index fi,; with a non-zero entry. Frequency f; ; is the frequency of the
mode color in the range A[L : R]. If f; ; is less than f, then we have that ¢ is the mode of A[¢: r]. If f; ; is
higher than f, then we must search for a color in A[L : R] with this frequency. To do this, we first scan over
all indices Ry that lie left of r, from right to left. For every index Ry, encountered, we check how many colors
have frequency f; ; in A[L : Ry], by looking at F; i[fi ;]. If this number is lower than F; ;[f; ;|, then there is
a color in the block starting at index Ry + 1 that has frequency f; ; in the range A[L : R]. In O(n'/3) time,
we can now find a block containing a mode color for A[: r]. By scanning over this block, and using Lemma
W/ith frequency f; ;, we can find a mode color in O(n?/3) extra time. The total query time is therefore
O(n?/3).

3.3 Updating elements in the data structure

Before we show how to insert and delete elements, we first show how to update an element to a different
color. An update A[i] + c is handled by first removing the color A[i] from the data structure, and then
inserting color ¢ at index 7. Note that this procedure is slightly different than inserting and deleting colors,
as the insertion and deletion happen at the same index and right after each other.

Let ¢ be the color that is added or removed. If c¢ is infrequent before the update, we first count the
frequency of ¢ in each section of contiguous blocks A[L; : R,], for 1 < ¢ < j < n'/3. We can compute these
frequencies for a fixed L;, and for every R; > L;, through a single scan of D.. As c is an infrequent color, the
size of D, is at most n'/3, so a single scan will take O(n'/3) time. As there are n'/? indices L; for which we
perform such a scan, the total time taken for the scans is O(n?/3). Let fi,; be the frequency of c in section
A[L; : R;]. If the index at which the update happens lies between L; and R;, we decrement entry F; ;[fi ;1.
Doing this for all sections A[L; : R;] takes O(n?/3) time, making the total time taken for this step O(n?/?%).

If c is infrequent after the update, we need to adjust the arrays F; ; again, as c is now not included in
them. To do this, let f;; be the frequency of ¢ in section A[L; : R;| before the update. We then either
increment F; ;[f; ; — 1] (if ¢ was removed) or F; ;[f; j +1] (if ¢ was added). Doing this for all arrays F; ; takes
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O(n?/?) time in total, after which the arrays will be in a correct state.

The next step is to adjust the array D, (regardless of whether ¢ is infrequent or not). This is done by
adding (in case ¢ is added) or removing (in case ¢ is removed) index ¢ from the array D.. This can be done
in O(y/n) time [30]. If ¢ is added, we also need to adjust Bl[i] to store the index in D, that stores index 1.
This can be done while adding i to D,, making this step take O(y/n) time.

Finally, the tree T needs to be adjusted. If ¢ was frequent before the update, but became infrequent after
the update, we need to remove color ¢ (together with its frequencies) from all trees T; in 7. As there are
O(n'/3) trees T stored in T, and because the trees T; are red-black trees, we can remove color ¢ from all trees
in O(n'/?logn) time in total [24]. Similarly, if ¢ was infrequent but became frequent through the update, we
need to add ¢ and its frequencies to the trees T;. We can compute the frequencies of ¢ in A[0, R;] for all R;
through a single scan of D.. Because ¢ was infrequent before the update, the size of D is at most n'/3 + 1.
Computing these frequencies therefore takes O(n'/?) time. Inserting ¢ and its frequencies into the trees T;
then takes O(n'/3logn) time. If ¢ was frequent before the update and stayed frequent, we can update the
trees T; for which the updated index is in A[0 : R;] in O(n'/3logn) time in total as well. Adding everything
up, we can insert and delete a color at a given index in A in O(n?/3) time.

3.4 Handling insertions and deletions

We now show how to handle insertions and deletions while letting the size of A be variable rather than fixed.
To be able to handle insertions, we again work with n'/3 blocks, each of size n?/3, but this time, we maintain
each block as its own array. This is done because we want to make the arrays for each block have a size of
2n2/3 to have room for inserting colors into a block. We will refer to the elements of each array that have
no color in them as empty elements.

We will write A to mean the concatenation of these blocks (in order), including the empty elements. Note
that while the data structure in Section does not take into account these empty elements, we can convert
between indices that do take empty elements into account to indices that do not take them into account
in O(nl/ 3) time, by keeping track of how many empty elements each block contains and scanning over the
blocks.

Assume that before an insertion, each block has at least one empty element. When we insert a color ¢ at
a given index ¢ which does not take into account empty elements, we can determine what block c¢ is inserted
into in O(nl/ 3) time by scanning over all blocks. We can then determine the position in the block at which ¢
needs to be inserted. Every element in the block after this position is pushed back one position. This requires
updating the arrays D, which takes O(1) time per update [30], totalling O(n?/3) time. The index at which
we insert ¢ is now open, so we can use the update algorithm in Section to insert ¢ into this empty spot.
This takes O(n?/?) time. Deleting a color works similarly, and takes O(n?/3) time as well.

To make sure that every block has at least one empty element before each insertion, we can simply rebuild
the data structure once a block is full. Similarly, to make sure that the the number of empty elements in
A is not too big, to keep the space complexity O(n), we also rebuild the data structure once a block has
less than a quarter of its elements non-empty. These rebuilds happen after at least n?/3 /2 updates. As
the construction time of the data structure was O(n*/?), the amortized update time now becomes O(n?/?).
El-Zein et al. [30] show how to make this amortized time bound worst-case through a more involved insertion
and deletion algorithm.

Combined with the result at the beginning of Section 3] we obtain the following result for the chromatic
k-nearest neighbors problem.

Theorem 3.3. We can build a dynamic data structure of O(n) size, that answers chromatic k-nearest
neighbors queries on P under the Ly, Ly and Lo, metrics in O(n?/3) time, and which supports insertions
and deletions in O(n?/3) worst-case time.

4 The one-dimensional approximate problem

In this section, we discuss a data structure for solving the approximate one-dimensional problem, and show
that by turning to approximations, we can get much lower query time complexities than those stated in the
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Figure 6: A lookup table for index ¢ = 1 for array A. The approximation factor is ¢ = 1/2. Element a is
an approximate mode for A[l : 3], but in A[l : 4], element b has a frequency of 3, more than double that of
a. Element b is therefore stored next in the lookup table. This element is an approximate mode until range
A[1 : 15], where the frequency of ¢ will be more than double that of b.

(conditional) lower bound from Section Recall the following definition of the approximate one-dimensional
problem.

ONE-DIMENSIONAL APPROXIAMTE CHROMATIC k-NEAREST NEIGHBORS

Given: A set of n colored points P C R in general position, and an approximation factor ¢ € (0, 1).

Problem: Preprocess P into a data structure, such that given a query point ¢ € R and integer k € [1,n],
a color occurring at least (1 —¢) times as often as the most frequent color among the k-nearest
neighbors of ¢ can be found efficiently.

In Section we gave a data structure that can reduce the problem of (exact) chromatic k-nearest
neighbors to the range mode problem in an array in O(logn) time. This reduction is already “fast enough,”
and does not need to be approximated. We therefore focus on the approximate version of the range mode
problem in arrays. We are given an array A[l : n] and an error parameter € € (0, 1), and wish to build a data
structure on A such that given two indices 1 < ¢ < r < n, we can quickly report an element in A[¢ : 7] that
occurs at least (1 — ¢) times as often as the mode element in A[¢ : 7].

4.1 An initial data structure

We present the solution of Bose et al. |[16]. Their data structure is based on the observation that if we look
at all ranges A[i : j] for some fixed i, there are only O(log o (n — 1)) different query solutions that we need

to have ready. This is because if we have an (exact) mode m for some range starting at index ¢, then it will
be an approximate mode for all ranges A[é : j] where no element has frequency higher than 1/(1 — ¢) times
the frequency of m. In particular, an exact mode m with frequency f,, will be an approximate mode for all
ranges Afi : j] where i < j <i+ f/(1—¢). As Ai] is trivially a mode for range A[i : ] with frequency 1, this
gives that in the worst case, we need an approximate mode for the ranges A[i : j] where j = [i +1/(1 — ¢)*]
for some k. As there are O(log L (n — 7)) such ranges, we need only O(log N (n —4)) approximate modes.
The data structure is a set of n lookup tables, one for each index of A. The lookup table for index 7 stores
the O(log_1_ n) different approximate range modes for the ranges Ai : j], in the form of pointers (indices) to
the respective element in A. A single lookup table can be constructed in O(n) time with a linear scan of A.
To build a lookup table for index 4, keep track of the frequency of every element in A[i : j] while increasing
j from 7 to n. Also keep track of the frequency f,, of the exact mode, as well as the frequency f, of the
current approximate mode. Starting at A[i], increment the counter of every element encountered, updating
fm if necessary. Once f,,, > fo/(1 —¢), element A[j] will be the new approximate mode. Therefore add the
current index j to the lookup table and set f, + fi,. See Figure [6] for an illustration of a lookup table.
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Frequency: | 3|13

Pointer:

Figure 7: The data structure used during the construction of the tables.

As there are O(n) lookup tables to build, this construction takes O(n?) time. The total space is
O(nlog 1_n), and the data structure can answer queries in O(loglog_1_n) time through binary search

in the appropriate lookup table. This results in the following theorem.

Theorem 4.1. Let A be an array of size n, and let € € (0,1) be an approzimation factor. In O(n?) time,
we can build a data structure of O(n logl% n) size, that answers approximate range mode queries on A in

O(loglog 1_n) time.

4.2 Improving the data structure using persistence

Bose et al. [16] managed to get both the preprocessing time and space usage of their data structure down
using persistent data structures. We discuss their solution here.

The key idea behind the improvement is to be more precise in what colors we choose as approximate
modes. In the initial structure, we stored color A[i] in T;[1], and afterwards set T;[k] to be the first color in
some range A[i : j] to have a frequency higher than 1/(1 — ¢) times the frequency of T;[k — 1] in the range.
For the improvement, we set the following thresholds:

fhigh1 =1, fhighk = flowk_l/(l - E) +1,
flowl == ]-a flow;c == fhighk71 + 1.

We then again store the index i in T;[1], but set T;[k] to the index j where A[j] is the first color in the range
Ali - j] to hit a frequency of fyign, . Then, we fix j as the left end of the range, and set Ty [k] < j for all
i’ > i for which the frequency of A[j] in A[i’ : j] is at least fiow,. To see that this is correct, consider a query
range A[¢ : r]. To answer a query, we binary search through 7} to find the highest index j that is at most
r. Color A[j] has a frequency of at least fiow,, for some k, while any other color has a frequency of at most
Juigh, =1 = flow,_,/(1 =€) < fiow, /(1 —€). The color A[j] is therefore an approximate mode for the range
Al : ).

To store the tables, we use persistent search trees [27], storing each table in a different tree. These trees
allow for queries and updates in O(logm) time, where m is the number of entries in a tree, and the storage
space used is O(1) per update. Because fuigh, > fhign,_,/(1 — ¢), it follows that there are no more than
log 1T TOWS. The query and update times of the trees are therefore O(loglog 1 n).

Constructing the tables works as follows. We construct each row k for all tables before moving on to row
k + 1. During the construction, we keep track of the frequencies of all colors in some varying range. To do
this, we keep a set of n+1 doubly-linked lists L;, such that L stores the colors with frequency f. By keeping
pointers from a color to the node in the linked list that stores the color, we can add and remove colors from
the lists in O(1) time. In particular, we can increment or decrement the frequency of a color using this data
structure in O(1) time. See Figure [7|for an illustration of this data structure.

Let k be the row that is currently being built. Initially, we set i <— 1. We let j go from 1 to n, incrementing
the frequency of A[j] at each step. Once color A[j] has a frequency of fuign, in the range Afi : j], we store
index j at T;[k]. Then we increment i, as row k of table T; is done, and decrement the frequency of Al
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to reflect this change. While the frequency of A[j] is at least fiow, in Afi : j], we keep incrementing i.
Afterwards, we start incrementing j again, continuing the procedure until row & is constructed for all tables.

For each range Ali : j], we perform a constant number of operations when building row k for table Tj;,
aside from potentially adding an entry to the correct persistent tree. Therefore, we spend O(log logﬁ n)

time per range. Because we increment either i or j after each range that we consider, there are only O(n)
ranges considered. The total time taken to build row k for all tables is therefore O(n loglog 21 n). Because

the number of rows is at most log L, it follows that the total preprocessing time is O(nlog . n).

To bound the space used by the data structure, we need to bound the number of updates that happen
to the tables during construction. The first row of table T; is always equal to 7, so this row changes for each
table. Now, say we have just set T;[k] to index j, for some 4,7 and k > 2, and assume that the frequency
of A[j] in Afi : j] is equal to fpign,. Then for all i’ > i where the frequency of A[j] is at least fiow, in
Ali" : j], we do not have to set entry T;[k]. The number of tables that have row k equal to j is then at least
Jhigh,, — (fiowx — 1) = fhigh, — Jhigh,_, = 1/(1 —¢) lk/2] | The number of updates that have to be performed
for a single row k is then at most (1 — )l¥/2/n, bounding the total number of updates by

log 1 n
T—<

O|n+ Z (1—e)*2ln | =0 (n/e).
k=2

The space used by the tables will therefore be O(n/e).
We summarize the result in the following theorem.

Theorem 4.2. Let A be an array of size n, and let € € (0,1) be an approzimation factor. In O(nlog _1_n)

time, we can build a data structure of O(n/e) size, that answers approzimate range mode queries on A in
O(loglog 1_n) time.

Combined with the result of Section [2.1 we obtain the following result for the chromatic k-nearest
neighbors problem.

Theorem 4.3. Let P be a set of n points in R and let € € (0,1). In O(nlog 1_n) time, we can build a

data structure of O(n/e) size, that answers approximate chromatic k-nearest neighbors queries on P under
the L1, Lo and Lo, metrics in O(logn + log logl% n) time.

5 The two-dimensional problem

In this section we give data structures for the static, exact problems, which were defined as follows.

TWO-DIMENSIONAL CHROMATIC k-NEAREST NEIGHBORS

Given: A set of n colored points P C R? in general position.

Problem: Preprocess P into a data structure, such that given a query point ¢ € R and integer k € [1,n],
the most frequent color among the k-nearest neighbors of ¢ can be found efficiently.

We first give data structures that can find a range containing the k-nearest neighbors of a query point.
Section [5.1]| presents a data structure for when the Lo metric is used, and Section handles the problem
under the L and L., metrics. Then in Section we give data structures that can find the mode color
inside the reported ranges, which leads to our results for the chromatic k-nearest neighbors problem.

5.1 Finding the k-nearest neighbors under the L, metric
5.1.1 Transforming the problem

In this section, we show how to transform the set of two-dimensional points P to a set of planes in R3, such
that the k-nearest neighbors of ¢ correspond to the planes lying below a certain point.
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Figure 8: An illustration of the lifting map.

Because the unit circle under the Lo metric is the shape of a circle, there are disks, centered at ¢, that
contain precisely the k-nearest neighbors of g. Let C, be the circle bounding the smallest of these disks, with
T4 its radius.

The first transformation we will apply is a lifting map. Such a map is commonly used for other range
searching problems involving circular ranges, like the regular k-nearest neighbors problem under the Ly metric.
The particular lifting map used takes the two-dimensional points to the 3-dimensional unit paraboloid. This
lifting map ¢ : R? — R? is defined as

¢: (z,y) = (29,27 +y°).
Under this transformation, a circle with center m and radius r is taken to the plane
h(m,r) : z = 2m,x + 2myy — m2 — mz + 72,
and a point in R? is mapped below this plane if and only if it lies in the circle. See Figure for an illustration.
This property is well known, but for convenience, we prove it in the following lemma.

Lemma 5.1. Let C be a circle with center m and radius r. For all points p € R? we have that ¢(p) lies
below h(m,r) if and only if p lies in C.

Proof. Let p be a point inside C and let p’ = ¢(p). Then we have that
(pa: - ma:)Q + (py - my)2 S T27

which implies that
Pi + pz < 2mgpg + 2mypy - m?ﬁ - mz + 7’2.

By using that p' = (ps, py, 02 + pz), we get that

Pl < 2mapy + 2myp), —my — my + 1%,
which shows that p’ = ¢(p) lies below h(m,r).
By following the above reasoning backwards, it can be seen that if ¢(p) lies below h(m,r) for some point

p € R2, then p lies in C. This proves the theorem. O

In particular, we now have that the points in Cj are taken below the plane hy = h(g,ry), and points
strictly outside Cj; are mapped strictly above hy. Using the fact that C; bounds the smallest disk with center
q that contains the k-nearest neighbors of ¢, we get the following corollary.

Corollary 5.2. The plane hy = h(q,rq) is the lowest plane of the form h(g,r) such that at least k points
from ¢(P) lie below it.
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Figure 9: An illustration of duality. The points and plane on the left are dualized to the planes and point
on the right.

The problem of finding the mode color among the k-nearest neighbors of ¢ has now transformed to that
of finding the mode color among the lifted points below the (unknown) plane h,. For the rest of Section
and later in Section [5.3] we will be working on this problem. To keep notation simple, we will use P to
denote the lifted set of points.

The next (and final) transformation that we will apply is a dual transformation. This transformation
dualizes a point p € R? to the plane

*

P 2= =P — PyY + Dz,

and dualizes a plane
h:z=azr+ayy+a,

to the point h* = (az, ay,az). See Figure@for an illustration of duality. Note that this duality transformation
differs from the usual duality transformation, in which the right side of the equation for p*, and the z-
coordinate of h*, are multiplied by —1. We use this alternative definition of the duality transformation to
have the resulting problem be more in line with the concept of levels, which will be used later.

The set P is now dualized to a set of planes P*, and the plane

hq:z=2qx:c+2qyy—qg—q§+r2,

is dualized to the point h} = (2qs,2¢,, —q2 — qg + 7“2), where 7“2 is the only unknown term. This dual
transformation changes the problem of finding the mode color of the points below h, to that of finding the
mode color among the planes that lie below hy. This follows from the following lemma.

Lemma 5.3. Let h C R? be a non-vertical plane and let h* be its dual point. Let p € R be a point, with p*
its dual plane. Then p lies below h if and only if p* lies below h*. Furthermore, point p lies strictly below h
if and only if p* lies strictly below h*.

Proof. Let h: z = a,x +ayy + a, be a plane, with h* its dual point. Let p € R3 be a point, with p* its dual
plane. We have that p lies below h if and only if

P2 < Qzpr + Ay Py + a;,

which rewrites to
Gy 2 —DPzpQy — Pyly + P2

This shows that p lies below A if and only if p* lies below h*. By changing the inequalities to their strict
variants, it can also be shown that p lies strictly below h if and only if p* lies strictly below h*. O
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5.1.2 The data structure

In this section, we describe a data structure that can find the point hj in dual space, and therefore the plane
hq in primal space. We can then use the data structure to reduce the chromatic k-nearest neighbors problem
to the halfspace range mode problem, which is discussed in Section [5.3}

To describe our data structure, we use the concept of levels. The level of a point p in an arrangement
A(H) formed by a set of planes H, is the number of planes in H that lie strictly below p. An important
theorem that follows from Lemma [5.3] has to do with levels. It is stated as follows.

Theorem 5.4. Let h C R? be a non-vertical plane and let h* be its dual point. Let h™ be the open halfspace
bounded above by h. The level of h* in A(P*) is equal to |h~ N P|.

The relation between the levels of points and our search for the point %} is given in the following theorem.
Corollary [5.6] follows from this theorem.

Theorem 5.5. Let { = {(2q.,2qy,2) € R® : z € R} be a vertical line in dual space. The point hy is the
highest point on £ for which the level in A(P*) is at most k — 1.

Proof. By Corollary we have that h, is the lowest plane of the form h(g,r) that has at least k points
from P below it. This implies that the open halfspace bounded above by h, contains less than k points from
P. Theorem now implies that the level of A} in A(P*) is at most k — 1.
Now let h* = (2g5,2qy, —q2 — q§ + rg + ) for some o > 0. Then h* lies on ¢ and strictly above hy. The
dual plane of h* is
h:z=2qxx+2qyy—q§—q§+r2+a,

which lies strictly above hy. This implies that o™, the open halfspace bounded by h, contains at least k
points of P. Therefore, by Theorem the level of h* will be at least k. This proves the theorem. O

Corollary 5.6. The point hy lies on a plane in P*.

We now describe our data structure. The general idea behind the data structure is to find two points p™
and p~ on the line £ = {(2¢;,2qy,2) € R? | z € R}, with p* above h} and p~ below h}. By making sure
that the number of planes between the two points is small, we can go over all these planes naively to find hy,
while keeping the query-time complexity low.

The main component of our data structure is a (1/r)-cutting of A(P*). A cutting of R? is a partitioning
of R? into (possibly unbounded) full-dimensional simplices with disjoint interiors. A cutting is a (1/r)-cutting
of an arrangement A(H), for 1 < r < n, if the interior of every simplex intersects at most n/r planes of H.
The current results on these cuttings are summarized in the following theorem.

Theorem 5.7. Given a set of n planes H in R3, a (1/r)-cutting of A(H) exists that consists of O(r?®)
simplices, which is optimal. Such a cutting can be constructed in O(nr?) time. If r < n® for a constant
a < 1/3, the construction time can be decreased to O(nlogr + r®).

Proof. The existence of a (1/r)-cutting consisting of O(r3) simplices, which is asymptotically optimal, was
proven by Chazelle and Friedman [23]. Chazelle [21] gave an O(nr?) time algorithm for constructing such a
cutting. The faster construction algorithm for small values of r is due to Matousek [43]. O

Apart from the cutting, we also need a data structure for halfspace range counting, as well as one that
can report all points between two parallel planes. We give a more general data structure for range searching
in polyhedra of O(1) size, as we will need it later. Because the intersection of O(1) halfspaces forms such a
polyhedron, we can use the following result to obtain a data structure that performs the above two queries.

Theorem 5.8. Let P be a set of n points in R3. In O(n'*?) time, we can build a data structure of O(n) size,
that can report or count the (number of ) points of P in a given convex (possibly unbounded) query polyhedron
of O(1) size in O(n?/3 + k) time, where k is the output size.

Proof. Let @ be a convex (possibly unbounded) polyhedron of O(1) size. We first show how to partition @
into O(1) simplices, using the cone triangulation of Sleator et al. [49]. For this triangulation, first triangulate
all faces of . This can be done in O(1) time, and will result in O(1) triangles. Now pick a point ¢ € Q.
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Figure 10: An illustration of a cube partitioned into simplices. The first two images on the left show a
possible triangulation of the faces of the cube. The image on the right shows how the triangles are extended
to create a partitioning of the cube into simplices, by connecting each triangle to the bottommost vertex in
the image.

Note that we do not pick a vertex here, as there might not be any. For each triangle that is not incident
to ¢, build a simplex with the triangle as a side, and which contains ¢ as its vertex. See Figure for an
illustration. The resulting set of simplices will partition ). These simplices can be constructed in O(1) time,
and by Sleator et al. , there will be O(1) created simplices.

The theorem now follows from a result of Matousek on simplex range searching, who showed how to
build a data structure of O(n) size in O(n'*°) time, that can report or count the (number of) points in a
query simplex in O(n?/? + k) time, where k is the output size. Given a convex query polyhedron @ of O(1)
size, we first partition @ into O(1) simplices, and query the data structure of Matousek on all simplices,
combining the results. Note that points can lie in multiple simplices. To make sure that no point is reported
twice, simply mark a reported point as reported, and only report a point if it has not been reported yet. As
there are only O(1) simplices that we query with, a point will not be checked more than O(1) times, so this
check will not affect the query time complexity. O

Remark. The preprocessing time of the range-searching data structure can be lowered to O(nlogn) with
the result of Chan , though the query times will not be deterministic (they hold “with high probability”).
As having a preprocessing time of O(n'+%) will not change the preprocessing time of our final data structure,
we use the result of MatouSek to keep the query time deterministic.

The total preprocessing time of the cutting and range-searching data structure is O(n'*? + nr?), or
O(n'+® 4 1°) if r < n® for some constant o < 1/3. The space used is O(r3 + n).

The query algorithm. We now show how to query the data structure, with a query line /. Let = be a
(1/r)-cutting of A(P*), consisting of O(r3) simplices. For a simplex A € =, we write A, to mean the set of
intersection points between the boundary of A and line £. We say that the points in the set

Ef = U Af U {(2q$7QQy7 _00)7 (QQ$72QZ/’OO)}’
A€E

are candidate points. There are O(r®) candidate points, which can be found in O(r3) time. Next, we sort
these points from lowest to highest, taking O(r3logr) time. We then perform binary search on the sorted
points, looking for the highest point that lies under hj.

Let h* € Z; be one of the candidate points. Assume for a moment that the z-coordinate of h* is finite.
Then h* is dual to a non-vertical plane h. Therefore, we can use Theorem to find the level of h* using
halfspace range counting in primal space, which can be done in O(n?/?) time. If the z-coordinate of h* is
infinite, the level of h* is either 0 (when the coordinate is —oo) or n (when the coordinate is 0o). If the level
is at most k — 1, we know that hy lies above h*. If the level is higher than k —1, we know that hj lies strictly
below h*. Using this procedure in a binary-search algorithm, we obtain an algorithm consisting of O(logr)
steps, each taking O(n2/ 3) time, that returns the highest point in =, that lies under hy.
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N

Figure 11: The positions of h*, k% and hj within a simplex.

Let h* be the found candidate point, and let k% € =, be the next candidate point in the sorted order.
Assume without loss of generality that h* and h7 have finite z-coordinates. Let h_ and hy be their
corresponding planes in primal space. Observe that there is a simplex A € Z, with h* ,h% € A. Therefore,
because A is part of a (1/r)-cutting of A(P*), the number of planes passing strictly between h* and h? is at
most n/r. Because the intersection of two halfspaces forms a convex (unbounded) polyhedron of O(1) size,
the points between h_ and h; can be reported using Theorem @ As the planes between h* and h? are
dual to these points, it follows that we can report the planes between h* and h% in O(nz/3 +n/r) time.

Now, because of how we chose h*, we have that h; lies above h* and strictly below h}. By Corollary
W’ we now get that h; lies on one of the reported O(n/r) planes, or it is equal to h*. Let k; be the level
of hZ, which we can find by halfspace range counting in primal space. We can now find hj by sorting the
intersection points between ¢ and the reported planes from highest to lowest, including duplicate points, and
adding h* as well. The (k4 — k)-th intersection point will be equal to h; (see Figure . This final step
takes O((n/r)logn) time.

We summarize the result in the following theorem.

Theorem 5.9. Let P be a set of n points in R2 agndlet1 <r <n. In O(n1+5 + nr2) time, we can build
a data structure of O(n + 13) size that, given a query point g € R?, finds the smallest disk D, centered at q
which contains precisely the k-nearest neighbors of q, in

O(r®logr + n*3logr + (n/r)logn)

time. If r < n® for a constant o < 1/3, the preprocessing time lowers to O(n'+® +r°).

5.2 Finding the k-nearest neighbors under the [, and L, metrics

We first show how the problem under the L; metric can be transformed to use the L., metric. Afterwards,
we focus solely on the Lo, metric. The transformation is shown in the following lemma. See also Figure [12]
for the intuition behind the transformation.

Lemma 5.10. If we can build a data structure on P of S(n) size in P(n) time, which answers chromatic
k-nearest neighbors queries under the Lo, metric in Q(n) time, then we can build a data structure on P of
0O(S(n)) size in O(P(n)+n) time, which answers chromatic k-nearest neighbors queries under the L metric
in O(Q(n) + 1) time.

Proof. Define the map ¢ : R? = R? as
¢ : (l',y) = (x_y7$+y)

Let p,q € R?. We will first show that the distance under the L; metric between p and ¢ is the same as the
distance between ¢(p) and ¢(¢q) under the Lo, metric. By the definition of the Lo, metric, we have that

doo (6(p), ¢(q)) = max{|(px — py) = (¢z — @)|; |(Px +Py) — (@ + )|}
= max{|(ps — ¢=) — Py — @)I; |(P2 — ¢=) + (Py — @)}
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Figure 12: The unit circle under the L; (left) and Lo (right) metrics. The unit circle under the L; metric
is transformed to that under the L., metric by a clockwise rotation of 7/4 radians and scaling the result by
V/2. This transformation is the mapping ¢ : (z,y) = (z — y,x + y).

We distinguish between the following four cases:

(i) If pr — g <0 and p, — gy <0, then

doo (P(p), #(0)) = |(P2 — @) + (Py — @)
= |pe — @l + Py — @yl
- dl(paq)

(ii) If p» — g > 0 and p, — ¢y <0, then

doo (P(p), #(q)) = |(P2 — @z) — (Py — @)
= ‘pw - Qx| =+ |py - Qy|
- dl(paq)

(ii) If pp — ¢z <0 and p, — g, > 0, the proof is analogous to that of (ii).
(iv) If p, — g» > 0 and p, — g, > 0, the proof is analogous to that of (i).

It follows that we can use ¢ to transform the problem under the L; metric to that under the L., metric. We
can apply the map to any point in O(1) time, and therefore to all points in P in O(n) time. This proves the
theorem. O

The unit circle under the L., metric forms an axis-aligned square. Therefore, given a point ¢, there are
axis-aligned squares, centered at g, that contain precisely the k-nearest neighbors of g. Let S, be the smallest
of these squares.

We say that the radius of a square is half the length of one of its sides. Define S(p,r) = [p, — 7, Pz + 7] X
[py — r,py + 7] as the axis-aligned square with center p € R? and radius r > 0. The square S, is then given
as S(q,rq), for some radius r, > 0. Because of how we defined S, we can make the following observation.

Observation 5.11. There is a point p € P such that r, = doo(q, p) is the radius of Sj.

By the definition of the L, metric, we have that if r, = doo (g, p) for some p € P, then r, is either equal
to |¢z — pa| or equal to |g, — py|. It therefore follows that in order to search for r,, we merely have to search
through the x- and y-coordinates of the points in P.

Our data structure for finding S, is simple. We need two sequences of sorted values. Let 1 < --- <z,
be the sorted z-coordinates of the points in P, and similarly let y; < --- < y, be the sorted y-coordinates.
We also set g = yp = —o0 and 11 = Yn+1 = 00. Aside from these two sequences, we need a data structure
that can count the number of points inside an axis-aligned query square. Good candidates for this are the
k-d tre(ﬂ [12] and the range tree [13], both introduced by Bentley. A k-d tree uses O(n) space, can be build
in O(nlogn) time, and answers queries in O(y/n) time. A range tree uses O(nlogn) space, can be build in

2The k in k-d tree was originally used to denote the dimension of the stored points. It is therefore not related to the parameter
k in the chromatic k-nearest neighbors problem.
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O(nlogn) time, and answers queries in O(log?n) time. By modifying the range tree, its query time can be
lowered to O(logn) [52].

Let zg,...,x¢ be the z-coordinates that are at most ¢,. The sequence r; = |q, — x;|, for i = 0,...,¢,
defines a sequence of decreasing radii. Therefore, S(g,7;) 2 S(¢,7;) for i < j. By using the fact that S, is
the smallest axis-aligned square, centered at g, that contains the k-nearest neighbors of ¢, we can now use a
combination of binary search and range counting to find the smallest radius r; for which S(g,r;) D S;. This
is done by performing range counting on the current square S, and checking whether the count is at least k or
not. If it is at least k, then we have that S; C S. Otherwise, we have that S; © S. The result is a procedure
that uses O(logn) square range-counting queries, and finds the smallest radius r; for which S(g,7;) 2 S,.

The above procedure can be slightly modified such that it can search through the xz-coordinates that are
greater than ¢, and similarly for the y-coordinates. The result is a set of four radii that are all at least r,.
Note that because the four procedures combined consider all possible distances between ¢ and a point in P
as a radius, it follows that r, must be one of the four returned radii. The smallest of the four radii must now
be the correct one. Therefore, we can use the four procedures to find the square S, in O(logn) orthogonal
range counting queries. This result implies the following theorem.

Theorem 5.12. Let P be a set of n points in R%. In O(nlogn) time, we can build a data structure of O(n)
size, that can report an axis-aligned square containing precisely the k-nearest neighbors of a query point in
O(y/nlogn) time. Alternatively, with O(nlogn) space, the query time can be lowered to O(log® n).

5.3 Range mode queries

In this section, we give data structures that can compute the mode color inside the ranges reported with
the data structures of Sections [5.1] and Section first presents the general data structure that is
used for these queries. Then in Sections and we analyze the implementation details and the
performance of this general data structure, for the problem under the Ly metric and under the Ly and Ly
metrics, respectively. Finally, in Section we give a more involved preprocessing algorithm for the data
structure, which leads to better complexities for our problems.

5.3.1 Range mode queries in arrangements of general surfaces

Chan et al. [20] describe a data structure that can perform halfspace range mode queries, which is equivalent
to the dual problem of preprocessing a set of planes, such that the mode color among the planes that lie below
a query point can be found efficiently. This data structure can immediately be used in combination with
our data structure from Section to answer chromatic k-nearest neighbors queries under the Lo metric.
However, we can generalize their data structure to work on arrangements of general xy-monotone surfaces,
and then use this generalized data structure for the problem under the L; and L, metrics as well. Because
the analysis of the data structure will differ between metrics, we give the data structure in this section, and

analyze it in Sections [5.3.2] and [5.3.3]

Remark. Aside from a data structure for halfspace range mode queries, Chan et al. [20] also give a data
structure for range mode queries in orthogonal ranges. While this data structure can be used with our data
structure from Section [5.2] its complexities are worse than what we will achieve for our problem, where the
ranges are axis-aligned squares rather than more general orthogonal ranges.

We first generalize the concept of (1/r)-cuttings to work on general surfaces. To this end, we define a
(1/r)-cutting of an arrangement A(S) of a set of n surfaces S to be a cutting of R? that has the additional
property that the interior of each simplex in the cutting is intersected by at most n/r surfaces of S. Now
let S be a given set of n zy-monotone surfaces that we have to preprocess into a data structure. The data
structure consists of a (1/r)-cutting E of A(S), paired with a point-location data structure on =. For each
simplex A € =, we store the mode color among those surfaces of S that lie strictly below A.

Alongside the cutting, we need a data structure that can report the surfaces that intersect a given simplex
(not necessarily in its interior), and which lie below a query point inside the simplex. Finally, for each color
1, we use a data structure that can count the number of surfaces with color ¢ that lie below a given query
point.
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Querying the structure with a query point ¢ works by first locating a simplex A € = that contains q.
The surfaces below ¢ all either lie strictly below A, or they intersect A. Using Observation by Krizanc
et al. |38], this leads to the following observation.

Observation 5.13. The mode color among the surfaces below ¢ is either the color stored in A, or it is one
of the colors of the surfaces below ¢ that intersect A.

The query algorithm now proceeds as follows. First, all at most n/r surfaces below ¢ that intersect A are
reported. Let Ca be the different colors of the reported surfaces. Then, for each color ¢ € Ca, the number
of surfaces below ¢ that have color ¢ is counted. By also counting the number of surfaces below ¢ that have
the color that is stored in A, the mode color can be found by picking a color whose count is the highest.

5.3.2 Range mode analysis under the L, metric

We now analyze the complexities of the data structure from Section for arrangements of planes, using
the analysis of Chan et al. [20]. Recall that this data structure can be used in combination with that of
Section to solve the chromatic k-nearest neighbors problem under the Lo metric.

Let H be a given set of n planes in R3 that lie in general position. The data structure, when built
on H, consists of a (1/r)-cutting of A(H), paired with a point-location data structure. A (1/r)-cutting of
optimal O(r3) size, together with a point-location data structure that answers queries in O(logr) time, can
be constructed in O(nr?) time using the result of Chazelle [22]. Let = be the constructed cutting. For each
simplex A € =, we can compute the mode color among those planes in H that lie strictly below A through
a linear scan of H, taking O(n) time per simplex. The total construction time for this part of the data
structure is therefore O(nr3), and the total space used is O(r?).

Remark. The algorithm of Chazelle [22] for constructing cuttings uses O(nr?) space during construction.
As an alternative, the cuttings algorithm of Matousek [43] can be used to create a (1/r)-cutting of O(r3) size
using O(nlogr) space during construction. We can then construct a point-location data structure on this
cutting as described in [50]. The resulting point-location data structure uses O(r3logr) space. One thing to
note here is that the algorithm of Matousek requires that r < nl/3=% for a constant § > 0. This will lead to
an extra factor O(n%) in the query time of the data structure for halfspace range mode queries.

The data structure that can report the planes that intersect a given simplex, and which lie below a query
point inside the simplex, uses Theorem for reporting points in polyhedra, and is given in the following
theorem.

Theorem 5.14. In O(n'*?) time, we can build a data structure of O(n) size, that can report the planes of
H that intersect a given simplex, and which lie below a given point inside the simplex, in O(n2/3 + k) time,
where k is the number of reported planes and 6 > 0 is an arbitrarily small constant.

Proof. The data structure that we build is that of Theorem This data structure can be built in O(n!*?)
time, uses O(n) space, and can report the k points in a given convex polyhedron of O(1) size in O(n?/3 + k)
time. We build this data structure on the points H* that are dual to the planes of H.

The planes intersecting A are precisely those that intersect an edge of A. Fix an edge e = (v, w) of A.
The set of planes intersecting e consists of those planes that lie above one vertex of v and w, and below the
other. Let H. be the set of planes intersecting e, with H} its dual set of points. Let v*, respectively w*, be
the dual planes of v, respectively w. By Lemma [5.3] it must be that all points in H} lie above one of v* and
w*, and below the other. Because the intersection of two halfspaces forms a convex (unbounded) polyhedron
of O(1) size, it follows from Theorem that the points above v* but below w*, as well as those below v*
but above w*, can be reported in O(n?/? + k.) time, where k. is the number of points that are reported. In
the same time, we can report the planes dual to these points, which are the planes intersecting e.

To report all planes intersecting an edge of A, we perform the above procedure for all edges of A. Because
a plane can only intersect a constant number of edges, the total number of planes reported is O(k). To prevent
a plane from being reported multiple times, simply mark a reported plane as reported, and only report a
plane when it has not been marked as reported yet. In total, these checks take O(k) extra time. It follows
that we can report all planes intersecting A in O(n?/34k) time. In O(k) extra time, we can filter the reported
planes to only include those below a given query point. O
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The number of planes intersecting a simplex in = is O(n/r). This is because we assumed the planes of H
to lie in general position, which means that the number of planes that intersect the boundary of A, but not
the interior of A, is O(1). This leads to the following corollary.

Corollary 5.15. In O(n'*?) time, we can build a data structure of O(n) size, that reports the planes of H
that intersect a simplex A € 2, and which lie below a given point in A, in O(n?/3 + n/r) time, where 6 > 0
s an arbitrarily small constant.

The final part of the data structure is the set of range-counting data structures for the different sets of
planes with equal colors. For each color ¢, let H. be the set of planes with color ¢. Counting the number
of planes below a query point that have color ¢ is equivalent to counting the number of points dual to H,
that lie in a query halfspace. We therefore build a data structure for halfspace range counting on each set of
points H} that is dual to H.. Using the result of Matousek [44], we can build all these data structures in

0 (Z |PC|1+5> — O(n1+6)

C

time in total. The data structures use a total of

0 (Z |Pc|) =0(n)

C

space, and can answer a query on color c¢ in O(|Pc|2/ 3) time. The total preprocessing time of the data
structure is therefore O(n'*° + nr?) and the total space used is O(n + r3).

The time taken to answer a query is O(logr) to perform a point-location query, resulting in a simplex
A being reported that contains the query point. Reporting the planes intersecting A can then be done in
O(nz/ 3 4+ n/r) time, by Corollary Let Ca be the set of different colors of the reported planes. The final
step was to count the frequencies of these colors among the planes below the query point, as well as counting
the frequency of the color stored in A. This step takes

O(Z |Pc|2/3+n2/3>

ceCa

time.
Because C'a will contain at most O(n/r) colors, we can assume without loss of generality that Ca =
{1,...,0(n/r)}. Holders inequality states that

m a-+b m a m b
(Zw?yf) <<Zw?“’> (zy) |
1=1 =1 1=1

for any two sequences x1,..., %y, and yi,...,Ym, and any two positive values a and b. This inequality now
implies that

a+b a b n/r
( Z |Pc|b> < ( Z 1a+b> ( Z |Pc|a+b> =0 | (n/m®- Z |Pc|a+b
ceCa ceCa ceCa c=1

for all positive values a and b. If we now set a = 1/3 and b = 2/3 , it follows that the range counting queries
take

0 ( SRR+ n2/3> =0 ((n/r)\/3 -2 4 n2/%)

ceCa
= O(n/r'/3),

time. This also bounds the total query time.
We summarize the results in the following theorem.

Theorem 5.16. Let P be a set of n points in R? and let 1 <7 < n. In O(n'T% + nr3) time, we can build a
data structure of O(n 4 13) size, that answers halfspace range mode queries in O(n/r'/3) time, where § > 0
18 an arbitrarily small constant.
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x<— 1 > doo(p, q)
= doo(pa Q)
xe— 7 < doo(pa q)

xy-plane b q

Figure 13: An illustration of the upside-down pyramid V,. The distance between p and ¢ under the Lo
metric (in R?) determines whether the point (g, qy,,r) lies strictly under, on, or strictly above V,,.

5.3.3 Range mode analysis under the I, and L., metrics

We can use the data structure from Section for the problem under the L; and L., metrics as well.
Recall from Section that we can focus solely on the L., metric.
For a two-dimensional point p, the graph of its distance function

doo (P, q) = max{|ps — ¢z, [Py — ay|}

forms an upside-down pyramid V, in R?. If we now have a two-dimensional point ¢, then we have that
doo(p, q) <7 if and only if (¢,, gy,7) lies above V,,. See Figure|13|for an illustration. Thus, by looking at the
graphs of the distance functions for each point in P, the problem is transformed to that of finding the mode
color among those graphs in R3 that lie below a given query point. Because these graphs are zy-monotone
surfaces, we can use the data structure from Section for this problem.

We write V), to denote the graph du(p, ¢) for a point p € R?, and write V = {V,, | p € P} to be the set of
graphs for all points in P. For the data structure, we need to construct a (1/r)-cutting for the arrangement
A(V) formed by V. The following theorem shows that we can use cuttings for planes to construct the desired
cuttings.

Theorem 5.17. Let 1 < r < n. In O(nr?) time, we can construct (1/r)-cutting of A(V) that consists of
O(r3) simplices. With O(r®) additional preprocessing and space, a data structure for point location in the
cutting can be build which answers queries in O(logr) time.

Proof. Let V), be a pyramid in V. This pyramid is contained in the union of the four planes

Pe =1 £ 2,
py =y Ez.

Now let H be the set of all 4n (not necessarily distinct) planes whose union contains all of V. Let = be a
(1/(4r))-cutting of A(H). If the interior of a simplex A € Z intersects a pyramid in V, it must also intersect
a plane in H. Therefore, the number of pyramids in V that intersect the interior of A is bounded by the
number of planes in H that intersect the interior of A, which is at most 4n/(4r) = n/r. The cutting = is
therefore a (1/r)-cutting for A(V).

If the planes of H are in general position, we can use a result by Chazelle [22] to finish the proof.
Unfortunately, the planes are definitely not in general position. For one, the planes constructed for a single
pyramid V,, all contain p, meaning that four planes intersect in a single point. Moreover, for any two points
p1 and po, we have that the planes constructed for V,,, and V,,, form four pairs of parallel (or even coinciding)
planes. Luckily, we can perturb the set of planes H such that they do lie in general position, while keeping
the properties of the constructed cutting intact [29,[31]. That is, the (1/(4r))-cutting constructed for the
perturbed planes will be a (1/r)-cutting for A(V). The theorem now follow from [22]. O

).

Let E be the constructed (1/r)-cutting of A(V). For each simplex A € E, we can compute the mode
color among the pyramids strictly below A in O(n) time through a linear scan over V. This results in a total
construction time for the cutting of O(nr?).

To report the pyramids that intersect a given simplex, we use a data structure for orthogonal range
reporting, built in R? on the points P. How we can report the pyramids using such a data structure is shown
in Theorem We first prove the following lemma.
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Lemma 5.18. Let p € R? be a point. A simplex A C R? lies above V), if and only if all vertices of A lie
above V,,, and any unbounded edge of A, when seen as a ray originating from some vertex of A, has direction

J; with
—d.
—d.

Proof. Let p € R? be a point and let A C R? be a simplex. Because A is a convex object, and because the
area above V,, forms a convex region, we have that A lies above V,, if and only if all vertices and edges of A
lie above V,,. By the same argument, an edge of A lies above V,, if and only if its incident vertices lie above
Vp. This proves the theorem for bounded simplices.

Assume that A is unbounded, and that all vertices of A lie above V,,. Let e be an unbounded edge of A,

!

)

!

z
z

INIA
INIA
QU

d,
dy

incident to vertex v. Let d be the direction of e, when seen as a ray originating from v. A point (x,y, z) on
e now satisfies

z:vx—k)\d;
y:Uer/\J;J
z:vz—&—)\cfz

for some A\ > 0.
A point (z,y, z) lies above V,, if and only if d (p, (z,y)) < z. It follows that e lies above V,, if and only
if
max {[ps = (va + Ao, Ipy = (v, + Ad)| | < v+,

for all A > 0, and therefore if and only if the system of equations

is satisfied for all A > 0. Using our assumption that all vertices of A, and v in particular, lie above V,, we
now have that e lies in V if and only if the system of equations

Ady +d.) >0
Ady —d=) <0
Ady +d.) >0
Mdy —d.) <0

-

is satisfied for all A > 0. This implies that e is contained in V, if and only if —J; < d_; < d, and
—d. < d, <d.. 0

Theorem 5.19. In O(nlogn) time, we can build a data structure of O(n) size, that can report the pyramids
in V that intersect a given simplex, and which lie below a given query point inside the simplex, in O(/n—+k)
time, where k is the number of reported pyramids. Alternatively, with O(nlogn) space, the query time can
be reduced to O(logn + k).

Proof. Let A C R? be a simplex and let ¢ € A be a point. Because ¢ € A, a pyramid V,, € V intersects A
and lies below ¢ if and only if it lies below ¢ and it does not contain A. The pyramid V), lies under ¢ if and
only if deo (p, (g2, qy)) < g That is, V), lies under ¢ if and only if p € [¢z — -, ¢2 +¢2] X [@y — @2, ¢y +¢:] = 5.
See also Figure Now, using Lemma [5.18] we can check in O(1) time whether A does not lie above V,,
or whether it lies above V,, if and only if the vertices of A lie above V,. Without loss of generality, assume
that A lies above V,, if and only if all its vertices lie above V,, and assume that A is a bounded simplex.
Like for the query point ¢, a vertex v of A lies above V,, if and only if p lies in some two-dimensional
axis-aligned rectangle S,. Therefore, the points p that we have to report are those in the region

R:Sq\<ﬂ Sv>,

veVa
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U3

Figure 14: The region R constructed in the proof of Theorem The gray region is R = S, \ (N, cVa Sy).

where V is the set of vertices of A. See Figure [14] for an illustration of this region. Because the intersection
of two axis-aligned rectangles is an axis-aligned rectangle, the region R is the difference of two axis-aligned
rectangles. As there are only O(1) vertices and edges in the union of the rectangles, their vertical decom-
position will consist of O(1) axis-aligned rectangles as well. By performing orthogonal range reporting on
these rectangles, making sure not to include edges of the vertical decomposition in multiple queries, we can
now report the points p € P, and therefore the pyramids V,, for which V,, intersects A and lies below ¢,
using O(1) orthogonal range reporting queries. Using a k-d tree or range tree for these queries results in the
bounds in the theorem. O

The number of pyramids intersecting a simplex A € Z is O(n/r). To see this, we only need to bound
the number of pyramids that intersect the boundary of A, but not its interior, as the number of pyramids
intersecting the interior of A is at most n/r. Note that if a pyramid V,, intersects the boundary of A but
not its interior, it must be that V, contains either a vertex of A, or the point (ps,py,0) (the apex of V)
must lie on a face of A.

Fix a vertex v of A. For any pyramid V,, containing v, we have have max{|p; — va|, |py — vy|} = v.. As
this region is formed by four line segments, and because the points of P lie in general position, it follows that
at there are at most eight points p € P for which V), contains v. Therefore, there are at most O(1) pyramids
that contain a vertex of A.

Now fix a face F' of A. If a point p € P lies on F, it must lie on the intersection between F' and the
zy-plane. This intersection is a single line segment, from which it follows that at most two points of P lie on
F'. Therefore, there are at most O(1) points of P that lie on a face of A. It follows that the total number of
pyramids that intersect A is O(n/r). This leads to the following corollary.

Corollary 5.20. In O(nlogn) time, we can build a data structure of O(n) size, that reports the pyramids of
V that intersect a simplex A € =, and which lie below a given point in A, in O(y/n+n/r) time. Alternatively,
with O(nlogn) space, the query time can be reduced to O(logn + n/r).

The final part of the data structure is the set of range-counting data structures for the different sets of
pyramids with equal colors. For each color ¢, let V. C V be the set of pyramids with color ¢. Because
a point ¢ lies above a pyramid V, if and only if de(p, (¢z,qy)) < ¢z, counting the number of pyramids
below ¢ that have color ¢ is equivalent to counting the number of points of P in the range S((gs,qy),¢.) =
(9 — €2, 9z + ¢2) X [qy — ¢z, @y + g-] that have color ¢. The range-counting data structures therefore take the
form of orthogonal range-counting data structures.

Let P. C P be the set of points that have color c¢. Using either a k-d tree or range tree, the total
preprocessing time for these data structures is

0 (Z | P|log |Pc|> = O(nlogn).
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Using a k-d tree, the total space for the range-counting data structures is O(n), and for a range tree, the
total space will be O(nlogn).

The time taken to answer a range mode query is O(logn) to perform a point-location query, resulting in
a simplex A being reported that contains the query point. Reporting the pyramids intersecting A can then
be done in O(y/n + n/r) time using O(n) space, or O(logn + n/r) time using O(nlogn) space, by Corollary
Let Ca be the set of different colors of the reported pyramids. The final step is to count the frequencies
of these colors among the pyramids below the query point, as well as counting the frequency of the color
stored in A. Using a k-d tree, this step takes

o5

ceCa

time, which we can bound using Holders inequality (see Section [5.3.2) as

n/r

o[ Var-\| SRS | = 0/,
c=1

Using a range tree, the range counting queries take O((n/r)logn) time in total.
We summarize the result in the following theorem.

Theorem 5.21. Let P be a set of n points in R? and let 1 <r < n. In O(nlogn + nr?) time, we can build
a data structure of O(n +r?) size, that answers square range mode queries in O(n/~/r) time. Alternatively,
with O(nlogn + r3) space, the query time can be changed to O((n/r)logn).

5.3.4 A better preprocessing algorithm

In the analyses of Sections[5.3.2|and the dominating term for the preprocessing time is that of computing
the colors stored in the simplices. This was done by simply scanning through the set of planes or pyramids to
find the mode color among those below a given simplex, and repeating this procedure for all O(r?®) simplices.
The resulting procedure takes O(nr?) time. However, aside from this procedure, the preprocessing time is only
O(nr?). In this section, we show how to lower the time taken to compute the colors to O(n'* +n2/3 .73 £ nr?)
for the case of planes, and O(nlogn + /n -3 +nr?) (using O(n) space) or O(nlogn + r3logn + nr?) (using
O(nlogn) space) for the case of pyramids. These complexities are better than O(nr?) for certain values of
r, which include the values that we set r to later on.

Let S be a set of n surfaces in R3, that are either all planes, or all upside-down pyramids. Let = be a
(1/r)-cutting of A(S). The main idea behind the faster preprocessing algorithm is that we can look at the
cutting = as a graph G = (V, E), where V is the set of vertices of Z and F is the set of bounded edges of =.
The algorithm traverses this graph using depth-first search, and keeps track of the frequencies of all colors
among those surfaces of S that lie strictly below the current vertex. This information can then be converted
into the color that we want to store in an incident simplex, using the following observation.

Observation 5.22. Let A € = be a simplex and let v be a vertex of A. A surface lies strictly below A if
and only if it lies strictly below v, and if it does not intersect A.

For the algorithm, we use the following data structure, built on those surfaces of S that lie strictly below
the current vertex. For each color ¢, we store its frequency f. among the surfaces in the data structure.
We also keep a set of n + 1 linked lists Ly, ..., Ly, such that list L; stores those colors whose frequency is
f. As we want to quickly find the location of a color inside a linked list, we store pointers for each color,
pointing to the element in a linked list containing the color. That is, for color ¢, we store a pointer to color
cin list Ly, . See Figure[15|for an illustration of this part of the data structure. To keep track of the current
highest frequency, we also keep the highest index f* for which Ly~ is non-empty. This index will be used to
quickly find a mode color, as every color stored in Ly« will have the highest frequency. Finally, we need a
data structure that can report the surfaces that intersect a given simplex A € =, and which lie below a query
point ¢ € A. In the case where S consists of planes, this data structure is that of Corollary When S
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Figure 15: The data structure used during the alternative preprocessing algorithm. On the left is the situation
at vertex v, which has three red surfaces and one blue surface below it. In the middle is the status of the
data structure at vertex v. On the right is the status of the data structure after the algorithm moves from
vertex v to w, which has one less red surface and one more blue surface below it.

%

consists of pyramids, this data structure is that of Corollary Let P(n) be the preprocessing time of this
data structure, and let Q(n) be its query time (both depending on the kind of surfaces that are in S).

During traversal of G, we insert and delete surfaces from the data structure. This leads to us incrementing
and decrementing the frequencies of the different colors. To increment the frequency of color ¢, we first find its
current frequency, which is f.. We can then find color ¢ inside list Ly, in O(1) time, by following the pointer
that we stored. Removing the color from the linked list can be done in O(1) time, now that we have the
location of the color. Then we insert color ¢ into list L, ; and adjust the stored pointer to point to the new
location of color ¢. This can also be done in O(1) time. Finally, it might be the case that ¢ was a mode color,
which would result in the frequency f* being incremented. To account for this, we set f* « max{f*, f.+1}.
The whole incrementing procedure takes O(1) time in total. Decrementing the frequency of a color works
similarly, with the only real difference being how f* is updated. This is because f* must only be updated
when f* = f. and when Ly, is now empty. If this is the case, we simply set f* <— f. — 1. As we can check
whether a list is empty in O(1) time, decrementing a frequency takes O(1) time as well. We can therefore
insert and delete surfaces from the data structure in O(1) time.

The initial data structure can be built as follows. Initially, every color has frequency 0. We therefore set
every entry f. to 0, add every color to list Lo, and set f* < 0. Say we now start the traversal at vertex v.
Using a linear scan over S, we can find those surfaces that lie strictly below v. Insert each of these surfaces
into the data structure with the above procedure. This takes O(n) time in total. The construction time of
the data structure for reporting the surfaces intersecting a simplex A € =, and which lie below a query point
q € A, is P(n), making the total initialization time O(P(n) + n).

When traversing an edge e = (v, w), we can update the data structure by removing those surfaces that
lie strictly below v and (not necessarily strictly) above w, and by inserting those surfaces that lie above v
and strictly below w. See Figure [15|for an illustration of how the data structure changes when traversing an
edge. Note that the surfaces that have to be removed or inserted all intersect A. Therefore, we can report
a superset of these surfaces, containing O(n/r) surfaces, in @Q(n) For each of the reported surfaces, we can
check in O(1) time whether it has to be removed or inserted (or ignored), after which we can update the data
structure in O(1) time. In total, we use O(Q(n) + n/r) time to update the data structure when traversing
an edge.

For every vertex v encountered during the traversal, we check its incident simplices in = to see if they
already have a color stored or not. If a simplex A does not have a color stored yet, we compute its color
as follows. The current data structure contains all surfaces strictly below v. A surface strictly below v lies
strictly below A if and only if it does not intersect A. Therefore, we report all surfaces that do intersect
A, and which lie below v € A, and remove those reported surfaces which strictly lie below v from the data
structure. Finding and removing these surfaces takes O(Q(n) 4+ n/r) time. The result is a data structure
containing precisely the surfaces strictly below A. Therefore, the frequency f* is the frequency of the color
that we want to store in A. Any color stored in list L~ has this frequency, so we choose the head node of
the list as the color to store in A. For any vertex, we can thus compute the color to store in an incident
simplex in O(Q(n) +n/r) time in total. Afterwards, we need to undo the changes made to the data structure
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by reinserting the surfaces that we deleted. For this, we can again report the surfaces below v that intersect
A, and insert the surfaces that lie strictly below v. This step also takes O(Q(n) + n/r) time.

Combining all these components, we have a graph traversal algorithm that takes O(Q(n) + n/r) time to
traverse an edge. Traversing all edges therefore takes O(Q(n)r® + nr?) time. The total time spent in the
vertices checking incident simplices is O(r3), as each simplex can only be checked at most four times (once
per vertex). The total time spent computing the colors of incident vertices is O(Q(n)r3 4+ nr?), as it only has
to be done once per simplex. The total time spent in the vertices is therefore O(Q(n)r3 + nr?). The result
is an O(P(n) + Q(n)r3 4+ nr?) time preprocessing algorithm for the data structure from Section

In the case where S consists of planes, we have that P(n) = O(n'*%) and Q(n) = O(n?/?), by Corollary
Adapting Theorem [5.16] with this new preprocessing algorithm, we achieve the following result.

Theorem 5.23. Let P be a set of n points in R? and let 1 <r <n. In O(n'*t% + n2/3 .3 4 nr?) time, we
can build a data structure of O(n + 13) size, that answers halfspace range mode queries in O(n/r'/3) time,
whered > 0 is an arbitrarily small constant.

By setting = n'/? and combining the result with Theorem (setting r = n1/4), we get the following
result for the chromatic k-nearest neighbors problem.

Theorem 5.24. Let P be a set of n points in R%. In O(n®/?) time, we can build a data structure of O(n)
size, that answers chromatic k-nearest neighbors queries on P under the Lo metric in O(n8/9) time.

In the case where S consists of pyramids, we have that P(n) = O(nlogn) and either that Q(n) = O(v/n)
(using O(n) space) or Q(n) = O(logn) (using O(nlogn) space), by Corollary Adapting Theorem
with this new preprocessing algorithm, we achieve the following results.

Theorem 5.25. Let P be a set of n points in R? and let 1 < r < n. In O(nlogn + /n -3 + nr?) time,
we can build a data structure of O(n + 13) size, that answers square range mode queries in O(n/~/T) time.
Alternatively, in O(nlogn + r3logn + nr?) time, we can build a data structure of O(nlogn + r3) size, that
answers queries in O((n/r)logn) time.

By setting = n'/? and combining the result with Theorem we obtain the following result for the
chromatic k-nearest neighbors problem.

Theorem 5.26. Let P be a set of n points in R%. In O(n®/3) time, we can build a data structure of O(n)
size, that answers chromatic k-nearest neighbors queries on P under the Ly and Lo, metrics in O(n5/6) time.
Alternatively, with O(nlogn) space, the query time can be lowered to O(n2/3 logn) time.

6 The two-dimensional semi-online problem

In this section we alter the data structures given in Section [5| to solve the semi-online problem. Recall the
following definition for this problem.

SEMI-ONLINE TWO-DIMENSIONAL CHROMATIC k-NEAREST NEIGHBORS

Problem: Build a data structure supporting insertions and deletions of points, given that the time at
which a point is deleted is known, such that given a query point ¢ € R? and integer k € [1,n],
the most frequent color among the k-nearest neighbors of ¢ can be found efficiently.

First we make the data structures that report a range containing the k-nearest neighbors of a query point
semi-online. This is done in Section for the problem under the Lo metric, and in Sectionwhen the Ly
or Ly, metric is used. Then in Section we present a semi-online version of the data structure in Section
for range mode queries.

6.1 Dynamically finding the k-nearest neighbors under the L, metric

First we make the data structure from Section [5.1| semi-online. For this, we again work in three-dimensional
space, after applying the lifting map from Section [5.1.1} To keep notation simple, we let P denote the three-
dimensional lifted set of points. Say we have a static data structure built on P and its set of dual planes P*.
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The static data structure consisted of a (1/r)-cutting of A(P*), as well as the simplex range-searching data
structure of Matousek [44] discussed in Theorem that can report or count the (number of) points of P
inside a convex query polyhedron. Given a two-dimensional query point ¢, the data structure from Section
[b.1] returns the highest three-dimensional point in dual space, along a vertical line ¢ that depends on ¢, such
that the returned point has exactly k — 1 planes below it. The planes (not necessarily strictly) below this
point are dual to the lifted k-nearest neighbors of ¢q. See Figure|L1]in Section [5.1.2

The reason that we cannot make the data structure fully online is because of the range-searching data
structure, and in particular the reporting queries. Both reporting and counting queries are are decomposable,
meaning we can answer a query on disjoint subsets of P that together make up P, and combine the results
to find the result of querying on P. This makes the range-searching data structure suitable for applying the
technique of Bentley and Saxe [14] to make it support insertions (see Section . The problem is that if we
want to make it support deletions using the technique of Bentley and Saxe, the operation used to combine
results of a decomposable query must have an inverse. This is the case for range counting (the operation is
addition, its inverse is subtraction), but not for reporting (the operation is set-union). We therefore settle
for making the data structure semi-online.

To make the data structure semi-online, we handle the updates in sets of u consecutive updates each,
called rounds. Before each round of updates, we split the points that are in the data structure into two sets
M and D. Set D contains all points that will be deleted in the coming round, and set M contains all other
points. To know what points will be deleted in the coming round, we keep a red-black tree [24], which we
call the event queue, that stores the points in the data structure sorted by the time that they are deleted,
from lowest to highest. Aside from this event queue, we build the static data structure of Section on M.

Insertions and deletions of points are handled using D, leaving M the same during a round. At any time,
the set M U D will be the set of points currently in the data structure. When a point is inserted, the event
queue gets updated with its deletion time. After a round, we move the points that are left in D to M (these
points were inserted during the round and never deleted), and we make D again contain those points that
will be deleted in the coming round. These points are found using the event queue. The static data structure
is then rebuilt on M.

Let n be the maximum number of points in M U D during a round. The space used is O(n + ) for
the data structure on M, where 1 < r < n, and O(u) for the set D, totalling O(n + r®) space. Inserting or
deleting a point during a round can be done in O(logu) time, by keeping track of D using for example a
red-black tree [24]. Performing v updates then takes O(ulogu) time. Updating M and D between rounds
can be done in O(ulogn) time, as it takes O(logn) time to find a point in the event queue and to move it
from M to D. Rebuilding the static data structure takes O(n'*? +nr?) time, or O(n'*? +7°) time if r < n®
for some constant a < 1/3, by Theorem The total update time, when amortized over the u updates, is
therefore O((n'*+° + nr?)/u +logu) or O((n**° + %) /u + logu) if » < n® for some constant o < 1/3.

Performing a query is done as follows. Let ¢ be the vertical query line along which we want to find the
highest point H; whose level with respect to M U D is equal to k—1. We first query the static data structure
on M twice, both times using ¢, but one time with the parameter k — u and one time with the parameter k.
The result is two points h* and h% on /¢, with h* being the highest point whose level in A(M) is equal to
k —u —1, and with h% being the highest point whose level in A(M) is k — 1. Adding in the points of D, we
now have that the level of h* in A(M U D) is between k —u — 1 and k — 1, which means that H; lies above
h* . The level of % in A(M U D) will be between k — 1 and k + u — 1, which means that H; lies below A% .
See Figure [T6] for an illustration of the situation.

Because the difference in levels between A* and A% is at most (k+u —1) — (k —u — 1) = 2u, there are at
most 2u planes between h* and h%. By Corollary the point H; must lie on one of these planes. Using
Lemma |5__3| and Theorem [5.8 these planes can be reported in O(n?/® + ) time with the data structure of
Matousek [44]. We can find out the exact level k4 of h* in A(M UD) in O(n?/? +u) time, by range counting
on M and scanning over D afterwards. The plane that contains H; is then the (k* — k)-th highest plane.
We can find this plane by computing and sorting the intersection points between ¢ and the reported planes
from highest to lowest, taking O(ulogu) time.

Using the result of Theorem for the static data structure, we summarize the result for the semi-online
data structure in the following theorem.

Theorem 6.1. Let 1 < r,u < n. We can build a semi-online data structure of O(n + r3) size that, given a
query point ¢ € R?, finds the smallest disk D, centered at ¢ which contains precisely the k-nearest neighbors
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Figure 16: The situation between h% and h*. Regular lines are in the set M, while dash-dotted lines are in
D. The level of h* in A(M UD)is k.

of ¢ among the points in the data structure, in
O (7“3 logr 4 n*?logr + (n/r)log(n/r) + ulog u)

time. This data structure supports updates in O((n'*%+nr?) /u+logu) amortized time, reducing to O((n*+°+
r°)/u+ logu) when r < n® for a constant o < 1/3.

6.2 Dynamically finding the k-nearest neighbors under the [, and L, metrics

We now make the data structure of Section fully dynamic. As shown in Lemma we only have to
consider the L., metrics, as we can reduce the problem under the L metric to that under the L., metric in
O(n) time.

The static data structure worked by performing binary search on the different z- and y-coordinates of
the points in P. Given a query point ¢ and an z-coordinate p, of some point p € P, the number of points in
the square S(q,|¢: — p=|) would be counted using an orthogonal range counting data structure to see if the
desired square is bigger or smaller than this square. The same would be done for the y-coordinates.

Making the sequences of z- and y-coordinates dynamic is simple. We store the coordinates in two red-
black trees (one per set of coordinates). These trees are balanced binary-search trees that support insertions
and deletions in O(logn) time each [24].

6.2.1 Insertion-only range counting

We now show how to make the range counting data structure support insertions. The technique used for
this is due to Bentley and Saxe [14], and works for any decomposable problem. This includes the problem
of range counting, which is decomposable using addition for combining results. Say we have n points stored
currently. The insertion-only data structure then consists of £ = |logn]| 4+ 1 levels Ly, ..., Ly, with level L;
either being empty, or containing a static orthogonal range counting data structure built on precisely 2¢~!
points.

Upon inserting a point into this data structure, the first empty level is located. Let this level be Ly. The
total number of points stored in the levels before L; is

k—1
Z2z‘—1 — okl _
i=1

which means that we can move the points in the levels before L, over to L and add the newly inserted
point, while maintaining the invariant that level L; is either empty or contains 2°~! points. The levels before
Lj, now contain points that are stored in Ly, so their data structure can be made empty. See Figure [17] for
an illustration of this procedure.

Let S(n) be the space used by the orthogonal range counting data structure. Because S(n) must be Q(n),
we have that S(n1)+ S(n2) = O(S(n1 +n2)). Because each point is stored in exactly one level, it now follows
that the total space used is O(S(n)). Performing a query is done by performing range counting in all O(logn)
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Figure 17: An illustration of how the insertion-only data structure handles insertions. White rectangles mark
empty levels, gray rectangles mark full levels. On the left is the situation before inserting the new point, on
the right is the situation after inserting the point.

levels and combining the results. In this way, queries can be performed in O(Q(n)logn) time, where Q(n)
is the query time of the range counting data structures. It remains to bound the update time of the data
structure. For this, note that after removing a point from a level, it will never return to that level. A point
will therefore only be in O(logn) different range counting data structures. Let P(n) be the preprocessing
time of the range counting data structures. Building level L; takes P(2~!) time, which we can amortize over
the 2°~! updates that have been performed to insert the points. The amortized update time is therefore

O(logn) i1
P(2*
ol ¥ % — O (P(n)logn/n).
=1

We summarize this in the following theorem.

Theorem 6.2. Given a data structure of S(n) size that can be build in P(n) time, which answers orthogonal
range counting queries in Q(n) time, we can build a data structure of O(S(n)) size that answers orthogonal
range counting queries in O(Q(n)logn) time, and which supports insertions in O(P(n)logn/n) amortized
time.

6.2.2 Fully dynamic range counting

We now extend the insertion-only data structure to also support deletions. We again make use of the
technique of Bentley and Saxe [14], which works for any decomposable problem in which the operation used
to combine results has an inverse. This is the case for range counting, as we combine results using addition,
which has subtraction as its inverse.

To handle deletions, we keep two insertion-only data structures described above. The first is our main
data structure M, and the second is a ghost data structure G. When a point is deleted, rather than deleting
it from M, we insert it into G. Because these deleted points are still in M, we call them ghosts. The points
in M that are not ghosts will be called alive.

Queries are handled by querying M and G separately, and subtracting the result of G from that of M.
This does introduce the problem where too many points have been deleted, making M and G contain a lot
more points than just the alive points. For this reason, we periodically rebuild M on only those points that
are not deleted, and reset G to be empty. In particular, we rebuild after G contains more than half of the
points from M. Rebuilding the data structure takes

O(logn)

o Y pre)|=0(PMn)

i=1

time, given that P(n) = Q(n). Because we delete at least /2 points before we have to rebuild the data
structure again, and because deleting a point (inserting it into G) takes O(P(n)logn/n) amortized time, the
amortized deletion time of the data structure is O(P(n)logn/n).
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Insertions are handled by inserting the points into M, taking O(P(n)logn/n) time. A query is performed
by querying both M and G, and subtracting the result of G from that of M. This is because M returns the
total number of points, alive or ghost, inside the data structure, while G returns the number of ghosts alone.
Queries are therefore handled in O(Q(n)logn) time, as before in the insertion-only case.

Using a k-d tree or range tree as the static orthogonal range counting data structure, we obtain the
following result.

Theorem 6.3. We can build a data structure of O(n) size that answers orthogonal range counting queries
in O(y/nlogn) time, and which supports insertions and deletions in O(log® n) amortized time. Alternatively,
using O(nlogn) space, the query time can be lowered to O(log2 n).

6.3 Semi-online range mode queries

We now make the data structure from Section [5.3| semi-online. Recall that for a set of n surfaces S, this
data structure consists of a (1/r)-cutting of A(S), together with a point-location data structure built on
the cutting. A simplex in the cutting stores the most frequently occurring color among the surfaces strictly
below the simplex. Aside from the cutting, the data structure consists of a data structure for counting the
number of surfaces below a point, built on each set of surfaces S. with the same color. The final part of the
data structure is a data structure that can report the surfaces intersecting a given simplex. A query works
by finding the simplex in the cutting that contains the query point, reporting the surfaces intersecting that
simplex, and performing range counting on the different colors among the reported surfaces, as well as on
the color stored in the simplex. The color with the highest count occurs the most frequently below the query
point.

We choose to make this data structure semi-online, rather than fully dynamic, because of the colors stored
in the simplices of the cutting. When a surface is deleted, it can invalidate the colors of every simplex in the
cutting, as any other color can now become the mode color strictly below a simplex. This can be countered
by storing the u most frequently occurring colors, but this increases the space used by the data structure
with a factor O(u), and will increase the query times, as there will be more colors to count the surfaces for.
This tactic has not led to any meaningful complexities, and a different approach will be needed to obtain a
fully dynamic data structure. As we have not been able to find one, we settle for finding a semi-online data
structure.

To make the data structure for range mode queries semi-online, we apply the same tactic as in Section
For this, we again handle the updates in rounds of u updates each. Before a round, we split up the set of
surfaces into two sets M and D, such that D contains all surfaces that will be deleted in the coming round.
However, as we will see later, it is important that for every color ¢, all surfaces with color ¢ are in the same
set. Thus, if a surface of color ¢ is going to be deleted in the coming round, we add all (potentially O(n))
surfaces of color ¢ to D. To be able to quickly find all surfaces of a given color, we keep a red-black tree for
each color, storing the surfaces of that color that are in the data structure. Using these trees, we can find all
surfaces that need to be put in D in O(n) time.

Let n be the maximum number of surfaces in the data structure during a round. We build the static data
structure of Section on M, and build a dynamic data structure for counting the number of surfaces below
a point on each of the colors in D. Because range counting is decomposable using addition for combining
results, and because addition has an inverse, we can use the techniques of Bentley and Saxe [14] to obtain a
dynamic data structure for counting surfaces below a point.

Insertions and deletions are now handled directly on D, by inserting or deleting a surface from the correct
data structure, which depends on the color of the surface. A query is handled as follows. Let ¢ be the query
point. Because no color has a surface in both M and D, we can decompose the query over M and D. Once
we have found the mode color among the surfaces in M and among those in D, we can count their frequencies
below ¢ to find the one that occurs the most frequently, which will be the mode of M U D under g. Note
that we can only do this because we made sure not to have surfaces of the same color in both sets.

Analysis under the L, metric. The static data structure for M can be built in O(n'*% +n?/3 .13 4-nr?)
time and uses O(n+73) space, by Theorem By making the data structure of Matousek [44] fully dynamic
using the techniques of Bentley and Saxe [14], we obtain a fully dynamic data structure for halfspace range
counting, and through duality, for counting the number of planes below a query point. On n planes, this
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data structure uses O(n) space, answers queries in O(n?/3logn) time, and supports updates in O(n’ logn)
amortized time. Amortizing the time taken to build the data structure for M over the u updates in a round,
we now obtain a total amortized update time of

O((n*0 +n2/3 13 4 nr?) Ju).

To find the mode color below ¢ in M, we perform a query on the static data structure, taking O(n/rl/B)
time by Theorem [5.23] To find the mode color below ¢ in D, we perform a range counting query for every
color in D. Let D, be the set of planes in D with color ¢. The counting queries take

0 (Z D [*? longc> =0 (Z ARG 10gn>

time in total, which we can bound using Holders inequality (see Section[5.3.2). Because the number of colors
in D is at most u, Holders inequality lets us bound the total time for the range-counting queries as

w b
O|u®- [Z|Dc|a+b] logn

c=1

for all positive values a and b. By setting a = 1/3 and b = 2/3, it follows that the total time taken for the
queries is O(u'/? - n?/3logn). The total query time of the semi-online data structure for halfspace range
mode is therefore O(n/r'/? 4 u'/3 - n?/3logn).

We summarize the result in the following theorem.

Theorem 6.4. Let 1 <r,u <n. We can build a semi-online data structure of O(n + r3) size that answers
halfspace range mode queries in O(n/r'/3 +u'/3.n2/3logn) time, and which supports updates in O((n*+o +
n?/3 .3 4 nr?) /u) amortized time.

3/10

7/10 1/4

By setting r = n and u = n’/1Y we can combine the result with that of Theorem [6.1] (setting r = n
and u = n3/*) to achieve the following result.

Theorem 6.5. We can build a semi-online data structure of O(n) size that answers chromatic k-nearest
neighbors queries under the Lo metric in O(n/19logn) time, and which supports updates in O(n®/°) amor-
tized time.

Analysis under the [; and L., metrics. We first analyze the data structure when only linear space is
available. The static data structure for M can be built in O(nlogn + v/n - r® + nr?) time and uses O(n +r?)
space, by Theorem By making a k-d tree fully dynamic using the techniques of Bentley and Saxe [14],
we obtain a fully dynamic data structure for orthogonal range counting, which can be used to count the
number of upside-down pyramids (graphs of distance functions under the L., metric) below a query point.
On n pyramids, this data structure uses O(n) space, answers queries in O(y/nlogn) time, and supports
updates in O(log®n) amortized time. Amortizing the time taken to build the data structure for M over the
u updates in a round, we now obtain a total amortized update time of

O((nlogn 4 v/n - r® 4+ nr?) /u).

To find the mode color below ¢ in M, we perform a query on the static data structure, taking O(n/\/7)
time by Theorem [5.25] To find the mode color below ¢ in D, we perform a range counting query for every
color in D. Let D, be the set of pyramids in D with color ¢. The counting queries take

0 (Z \/@bgmc) =0 (Z \/|DT|10gn>

time in total, which we can bound using Holders inequality (see Section[5.3.2). Because the number of colors
in D is at most u, Holders inequality lets us bound the total time for the range-counting queries as

b
u
O u*- [Z|Dc|a+b] logn
c=1
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for all positive values a and b. By setting a = 1/2 and b = 1/2, it follows that the total time taken for the
queries is O(y/u - nlogn). The total query time of the semi-online data structure for square range mode is

therefore O(n//r + v/u-nlogn).

We summarize the result in the following theorem.

Theorem 6.6. Let 1 < r,u < n. We can build a semi-online data structure of O(n + r3) size that answers
square range mode queries in O(n//T + /u-nlogn) time, and which supports updates in O((nlogn + /n -
r3 + nr?)/u) amortized time.

By setting r = n?/7 and u = n%/7

following result.

, we can combine the result with that of Theorem [6.3| to achieve the

Theorem 6.7. We can build a semi-online data structure of O(n) size that answers chromatic k-nearest
neighbors queries under the L1 and Lo, metrics in O(n("/7 logn) time, and which supports updates in O(n6/7)
amortized time.

When O(nlogn) space is available, we can use the result of Theorem [5.25] to create a static data structure
on M that uses O(nlogn+r?3) space, which can be built in O(nlogn++/n-r®+mnr?) time, and which answers
queries in O((n/r)logn) time. Instead of using a dynamic k-d tree to count the pyramids below a point, we
can make a range tree dynamic, again using the techniques of Bentley and Saxe [14]. On n pyramids, the
resulting data structure uses O(nlogn) space, answers queries in O(log2 n) time, and supports updates in
O(log® n) amortized time. Amortizing the time taken to build the data structure for M over the u updates
in a round, we now obtain a total amortized update time of

O((nlogn + v/n -7 +nr?) /u).

To find the mode color below ¢ in M, we perform a query on the static data structure, taking O((n/r)logn)
time by Theorem [5.25] To find the mode color below ¢ in D, we perform a range counting query for every
color in D. As there are at most u different colors in D, these range counting queries take O(u log? n)
time in total. The total query time of the semi-online data structure for square range mode is therefore
O((n/r)logn + ulog?n).

We summarize the result in the following theorem.

Theorem 6.8. Let 1 < r,u < n. We can build a semi-online data structure of O(nlogn+r3) size that answers
square range mode queries in O((n/r)logn + ulog®n) time, and which supports updates in O((nlogn + /n -
r® +nr?)/u) amortized time.

By setting r = n!'/* and u = n®*, we can combine the result with that of Theorem to achieve the
following result.

Theorem 6.9. We can build a semi-online data structure of O(n) size that answers chromatic k-nearest
neighbors queries under the Ly and Lo metrics in O(n®/*log® n) time, and which supports updates in O(n®/%)
amortized time.

7 The two-dimensional approximate problem

In this section we give data structures for the approximate problems, which were defined as follows.

TWO-DIMENSIONAL APPROXIMATE CHROMATIC k-NEAREST NEIGHBORS

Given: A set of n colored points P C R? in general position, and an approximation factor € € (0,1).

Problem: Preprocess P into a data structure, such that given a query point ¢ € R? and integer k € [1,n],
a color occurring at least (1—e¢) times as often as the most frequent color among the k-nearest
neighbors of ¢ can be found efficiently.

To solve the approximate problems, we will not rely on the tactic of making separate approximate versions
for finding the k-nearest neighbors and performing range mode queries. The reason is this. Let m be the
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_ (1 + a)k-level

Figure 18: An illustration of (approximate) levels in arrangements. On the left is an arrangement of lines,
where each region is marked with the level of the points inside. On the right is an a-approximate k-level.

mode color among the k-nearest neighbors of a point, and let f,, be its frequency. Say we have now found a
range containing only (1 — €)k of the k-nearest neighbors of a point. Then it can happen that the frequency
of m inside this range is only f,, — ek. If we then look for an approximate mode in this range, we could end
up reporting a color with a frequency of (1 —¢) - (fm —€k) < (1 —€) fin. The reported color would then not
be a valid approximate mode for the k-nearest neighbors. Luckily though, by solving the approximate range
mode problem, where we wish to report a color that occurs often enough inside a given range, we can solve
the chromatic k-nearest neighbors problem as well.

7.1 Approximate mode queries

Recall from Section that when the Ly metric is used, we can transform P to a set of planes in R? such
that chromatic k-nearest neighbors queries can be answered by finding the mode color among the k-lowest
planes in R3 along a vertical query line. Here we define the k-lowest surfaces along a vertical line ¢ as the set
of surfaces for which at most k& — 1 surfaces intersect ¢ strictly below them. Also, recall from Section [5.3.3
that under the L; and L., metrics, the problem is equivalent to that of finding the mode color among the
k-lowest upside-down pyramids in V = {V,, | p € P} along a vertical query line in R?, where an upside-down
pyramid V,, was defined as the graph of the distance function de(p, g) for a point p.

Let S be a set of n planes (in the case of the Ly metric) or upside-pyramids (in the case of the L; and
Lo, metrics). We first focus on the problem where, given a query point ¢, we wish to report a color that
occurs at least (1 — ¢) times as often as the mode color among those surfaces below g. After we have a data
structure for this problem, we show how to extend it to handle approximate chromatic k-nearest neighbors
queries.

Our solution is based on the data structures for halfspace range counting by Afshani and Chan [1] and
Har-Peled et al. [35]. The data structure consists of multiple approzimate levels for the arrangement A(S).
The k-level of A(S), for 1 < k < n, is the set of points that lie on a surface in S and which have exactly k
surfaces passing strictly below them. We define an a-approzimate k-level of A(S) as a set of simplices, such
that:

1. Each simplex lies between the k-level and (1 + a)k-level of A(S).
2. Every vertical line intersects at least one simplex in the approximate level.

See Figure [18|for an illustration of (approximate) levels in an arrangement of lines. The concepts are similar
for general surfaces. The reason for approximating the k-level is that the k-level in an arrangement of planes,
for example, is O(nk3/2) [48], which is too high when we want to achieve (near-)linear space. Approximate
levels have much lower complexities.

The work of Kaplan et al. [37] shows how to compute such an approximate level, as Kaplan et al. construct
an approximate level while constructing a vertical shallow cutting of the (< k)-level of A(S). The (< k)-level
of A(S) is the set of points that have at most k surfaces of S passing strictly below them. A vertical shallow
cutting of the (< k)-level is a collection of vertical semi-unbounded prisms (the set of points below some
triangle), whose union contains the (< k)-level, and in which the prisms intersect at most O(k) surfaces of
S. See Figure [19| for an illustration of approximate levels and vertical shallow cuttings.
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(14 a)k-level

~ 1 _ _ k-level

Figure 19: On the left is a vertical semi-unbounded prism. On the right is a vertical shallow cutting for the
(< k)-level, built with vertical semi-unbounded prisms, in which the top triangles form an a-approximate
k-level.

Kaplan et al. [37] specifically construct a terrain between the k-level and (1 + «)k-level of an arrangement
of certain types of surfaces, with the additional property that the prisms induced by the triangles in the
terrain form a shallow cutting for the (< k)-level. As such a terrain is an a-approximate k-level, we can use
the work of Kaplan et al. to construct the approximate levels. The result is the following theorem. Note
that the result uses the function Ag(n), which is the maximum length of a Davenport-Schinzel sequence of
order s on n symbols, where s depends on the type of surfaces that the cutting is created on. In the case of
S, consisting of planes or upside-down pyramids, we have s = 4 [37]. As shown by Agarwal and Sharir [7],
M(n) = O(n - 2%, where a(n) is the inverse-Ackermann function.

Theorem 7.1. Let 1 < m < n and let S,, C S be a subset consisting of m surfaces of S. Let 1 < k < m

and let o€ ((), 1/2 . ln
1() 1()

expected time, we can build an a-approzimate k-level of A(S,,) with
0 mlog?m
abk

Proof. We summarize Theorem 8.1 of Kaplan et al. [37], which deals with constructing the approximate
terrain. Note that while Kaplan et al. construct the terrain for « = 1/2, we generalize the proof to work for
a € (0,1/2].

Let S C S,, be a random sample of size min{
uniformly at random from the range

deterministic complexity.

cm
a?k

((+5)2 (3

where A = 5 logm. Kaplan et al. prove that the t-level of A(Sy) is a terrain lying between the k-level and
(1 + a)k-level of A(S,,) with high probability (with probability at least 1 — -1, where b > 1 depends on c).

mb
The expected complexity of this level is
o™ log®m
o’k ’
and it can be constructed in

0 (menri () om) =0 (P o (7))

logm, m}7 where ¢ > 0 is a suitable constant. Pick ¢
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expected time. By constructing a constant number of these levels in expectation, the complexity of the
resulting level can be made deterministic.

Let T be the t-level of A(Sk). To check whether Ty is really a terrain between the k-level and (1 + «)k-
level, we try to create a vertical shallow cutting from it, in which each prism intersects at most (1 + o)k
surfaces of Sy,. To do this, we create the vertical decomposition Ay of Tj. This takes O((m/k)log®m)
deterministic time. We now have that each prism in A intersects at most (1 + «)k surfaces of S,, with high
probability, and if this is the case, then T} is a terrain between the k-level and (1 + «)k-level of A(S,,).

Checking whether this is the case takes
(m log® m)
0 5
Q
time in expectation.

By performing the above procedure a constant number of times in expectation, a terrain T can be found
that lies between the k-level and (1 4 a)k-level of A(S,,). As such a terrain is an a-approximate k-level of
A(Sy,), the theorem is proven. O

As an a-approximate k-level is also an («a + f)-approximate k-level for all 5 > 0, we can construct
1/2-approximate k-levels instead of a-approximate k-levels when « > 1/2. This results in the following
corollary.

Corollary 7.2. Let 1 <m < n and let S,, C S be a subset consisting of m surfaces of S. Let 1 < k <m
and let a« > 0. Let § = min{a, 1/2}. In
mlog®m logm
o (™" (15))
expected time, we can build an a-approzimate k-level of A(S,,) with

0 mlog®m
Bk

We are now ready to give the data structure. Set « =1 —+/1 — e and § = min {% 1 } Let S. be the

—a’ 2

deterministic complexity.

11—«

set of surfaces in S with color ¢. For each set S., we build ( — )-approximate (ﬁ) levels L. ; of A(S.),

3
fori=0,...,log_1_ |Sc|. Note that for any ¢ and i, the simplices in L. ; lie between the levels (ﬁ) and

i+1
(ﬁ) of A(S.). The main idea behind the data structure now comes from the following theorem.

Theorem 7.3. Let ¢ € R3 be a point. Let f,, be the exact frequency of the mode color among the surfaces
below q and let i be the biggest integer for which there is a color ¢ such that q lies above L. ;. Then any color

¢ for which q lies above the approximate level L. ; occurs at least (1 —¢) fr, times among the surfaces below q.

i
Proof. Let c be a color for which ¢ lies above the approximate level L. ;, and therefore above the (ﬁ) -

i/2
1
T +1.

Because 7 is the biggest integer for which ¢ lies above L. ;, we have that ¢ lies strictly below L. ;y1, and

level of A(S.). Then the number of surfaces below ¢ that have color ¢ is at least (ﬁ)z +1= (

i+2
therefore strictly below the (ﬁ) -level of A(S.). The number of surfaces below ¢ that have color ¢ is

i+2 i/2+1
therefore strictly lower than (ﬁ) +1= (i) +1. Let f. be the number of surfaces below ¢ that

1—¢
have color ¢. Then we now have that

1 i/2 1 i/2+1
+1< f. < +1,
1—c¢ 1—¢
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from which it follows that /2
1 K2
1—-¢)f. - 1< f..
(I—-e)fe < (1 — 8) +1<f

The above inequality holds in particular for the mode color.
Let f,, be the frequency of the mode color below g. Then for any color ¢ for which ¢ lies above L. ;, with
fe its frequency, we have that
i/2
1
l—e)fm<|— 1< f,
(I-e)f (1_€> +1<f

which proves the theorem. O

Given an integer 4, we can check whether there is a color ¢ for which ¢ lies above L. ; by looking at the
lower envelope of |J,. L¢,;. The lower envelope LE(¢) of the approximate levels L.; has the property that a
point lies above LE(7) if and only if there is a color ¢ for which the point lies above L. ;. Unfortunately, while
for a given 7 the total complexity of the approximate levels L. ; is

Z () - 5 (s

the total complexity of LE(¢) will be more than quadratic in n [28[|46]. We therefore turn to the problem of
ray shooting among triangles.

Checking whether ¢ lies above LE(i) can be done by shooting a vertical ray upwards from the point
(gz, gy, —00), into the set of triangles formed by the faces of simplices in the levels L.;. The intersection
between the ray and the first triangle hit by it will lie in LE(¢), and therefore, we have that ¢ lies above
LE(4) if and only if the reported triangle lies below ¢q. Because LE(i + 1) lies completely above LE(4), we can
combine binary search with this ray-shooting procedure to find the highest integer ¢ such that g lies above
LE(4). By coloring each triangular face of a simplex in a level L. ; with color ¢, the reported triangle in the
highest lower envelope below ¢ will be an approximate mode, using Theorem (7.3

The problem of finding the first triangle hit by a given ray is the problem of ray shooting among triangles.
See Figure 20| for an illustration of ray shooting. Data structures for this problem on n triangles exist that
use O(n'*+?) space, can be build in O(n'*?) time, and that answer queries in O(n3/4*?9) time [6]. By using
the fact that we only ever shoot vertical rays upwards, we can use a data structure for shooting rays in a
fixed direction. Such a data structure exists that has the same space and preprocessing time complexities
as the more general structure, but its query time is reduced to O(n?/3+9) [25]. If we also use the fact that
we only shoot rays from points whose z-coordinate is —oo, we can reduce the query time even further, to
O(n'/?+9), while also reducing the space to O(n). This is shown in the following lemma.

|S.|log? |S.| _0 nlog®n _0 nlog®n
—_— 7)j = 5 ,

Lemma 7.4. Let S be a set of n (possibly intersecting) triangles in R3. In O(n'*%) time, we can build a
data structure of O(n) size, that can report the first triangle hit by a vertical ray shot upwards from a point
(¢ gy, —00) in O(n'/?*9) time, where § > 0 is an arbitrarily small constant.

Proof. We modify the data structure of de Berg [25] for ray shooting from a fixed point to work for our
problem. Let p be a vertical ray shot upwards from a point (g, gy, —00), and let ¢ = (gs,¢qy). Consider a
triangle ¢t € S, and let ¢ be the projection of ¢ onto the xy-plane. Then ¢ is hit by p if and only if ¢ € .
Without loss of generality, assume that ¢ and ¢ are bounded. Let £1(t), ¢2(t) and ¢5(%) be the three lines
through the edges of ¢, in no particular order, and let ¢;(f)" be the halfplane bounded by ¢;(f) that contains
t. Then g € t if and only if q € £;(#)T for all i. This property will be used to find all triangles hit by p.

The data structure is a three-layered partition tree. We refer to |25] for a description of these multi-layer
partition trees. At layer i, where i = 1,2, 3, the lines ¢;({)" are stored, for all projected triangles . The
leaves in the third layer correspond to the triangles of S. A node in the third layer corresponds to the set of
triangles stored in the leaves below it. This set is called the canonical subset of the node. Using the partition
tree, we can find the unique set of O(n'/2*9) disjoint canonical subsets that contain precisely the projected
triangles # that contain ¢, and therefore the triangles ¢ € S intersected by p.

Let S(p) be the set of triangles intersected by p, and let Hg(,) be the set of planes containing the triangles
in S(p). Note that we now have that a triangle ¢t € S(p) is the first triangle hit by p if and only if the plane
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(QJH Ay, 700)

Figure 20: Shooting a vertical ray upwards from (g, gy, —00), into a set of simplices.

containing ¢ is the first plane in Hg(, hit by p. Because p is a vertical ray shot upwards from (g, gy, —00),
the first plane in Hg(,) to be hit by p can be found by planar point location in the xy-projection of the
lower envelope of Hg,. These point-location data structures can be build during preprocessing, in each
node of the third layer of the partition tree. Note that while the lower envelope of a set of triangles can have
quadratic complexity [28][46], the lower envelope of a set of planes only has linear complexity. This is why
we first reduce the problem to ray shooting among planes.

For the proofs of the complexities of the partition tree, see . The space used by the partition tree,
including the point-location data structures at the third layer, is O(n). Finding the canonical subsets that
make up S(p) can be done in O(n'/?%9) time, resulting in O(n'/?>*9) canonical subsets. Performing point
location in each canonical subset takes O(log n) time, after which combining the results to find the first triangle
hit takes O(n'/2%9) time. The query time is therefore O(n'/?*%logn) = O(n'/?*?). The preprocessing time
of the data structure, including the point-location data structures, is O(n'*?). This follows from , as de
Berg creates a similar data structure to ours, substituting every point-location data structure with the data
structure of Agarwal and Matousek [5| for ray shooting in a convex polytope. On a canonical subset of size
m, this data structure can be constructed in O(m!'*?) time. As a point-location data structure on the same
set takes only O(mlogm) time to construct, the construction time of our entire data structure will not be
higher than that of the data structure of de Berg. This proves the lemma. O

We now analyze the complexities of the entire approximation data structure. The total complexity of the
approximate levels L. ;, and therefore the space used by the ray shooting data structures, is

log_1 |Se| log 1 n

0 Z 1i |Sc|1og21|SCi| _0 nl(;g;n. f 11 i :O<n(icfg;;5n>'
c i=1 55’(%) i=1 <m>

The time taken to build the approximate levels is

IOg 1 |Sc

\
o S/ log®[S,| log [ S| |Se|log? |Se| logn
o Z Z 32 M ;32 =0 ZT')“l 32 log 1_n
c =1

nlog®n logn
o8 (5

in expectation. It follows from Lemma [7.4] and the total complexity of the approximate levels that the time
taken to build the ray shooting data structures is (deterministic) O((nlog?n/(c - 45))'19). The query time
for a ray shooting query is O((nlog®n/B%)'/219), as for a single i, the approximate levels L.; had a total
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complexity of O(nlog2 n/B%). By performing binary search over the integers 1 < i < log o, querying the
ray-shooting data structure at each step, we can now find a color that occurs at least (1 —¢) times as frequent
as the mode color below a query point in

nlog®n 1/2+0
@) ( 55 ) log logﬁ n
deterministic time.

Note that /2 < o =1 —+/1—¢ < ¢ and that § = min{&,%} > min{«, 1/2}, so a = ©(e) and
B = Q(min{e, 1/2}) = Q(e). This will let us rewrite the bounds in terms of e. We summarize the above

results in the following theorem.

Theorem 7.5. Lete € (0,1). In

] 3 ] ] 2 1446
0 <n ogi n Y ( Oan)loganr <n o% n)
€ € T— €

expected time, we can build a data structure of O (%%2”) deterministic size, that given a query point reports

a color occurring at least (1 — €) times as often as the mode color among the surfaces of S below the query

point in
nlog®n 12+
O ( < ) loglog 1+ n
£ 1—¢

deterministic time, where § > 0 is an arbitrarily small constant.

We can extend the above data structure to support approximate chromatic k-nearest neighbors queries
in the same asymptotic bounds. Recall that this problem is equivalent to finding a color that occurs at least
(1 — €) times as often among the k-lowest planes along a query line as the most often occurring color. For
this equivalent problem, we build, besides the data structure described above, a data structure for counting
the number of surfaces of S below a given query point. Under the Ly metric, we will use the data structure
of Matousek [44]. Under the L, and Lo, metrics, we will use a k-d tree. These data structures are chosen as
their complexities will not dominate in the final data structure.

Let ¢ be a vertical query line, going through the point (¢5,¢,,0). The procedure still consists of a binary
search over the integers 1 < i < n. At every step, we perform ray shooting with a vertical ray shooting
upwards from the point (¢,,¢,, —00), into the set of triangles formed by the faces of simplices in the levels
L. ;. The intersection between the ray and the reported triangle will lie in LE(z).

Say we have now reported a triangle A, whose intersection with line ¢ is A,. Its level can be computed
by counting the number of surfaces strictly below it. Using this combination of ray shooting and counting
surfaces, we can find the highest 7 such that the level of the reported triangle Ay is at most k—1. The highest
point on ¢ that has a level of at most k — 1 lies above the reported triangle. Therefore, by Theorem the
color of Ay will be an approximate mode for the k-lowest surfaces along /.

This results in the following theorem.

Theorem 7.6. Let P be a set of n points in R? and let e € (0,1). In

0 (”1"53” Y (log?n> log_1 n+ <n10%2n)1+5>
13 13 1—e 13

nlog?n
=6

expected time, we can build o data structure of O ) deterministic size, that answers approximate

chromatic k-nearest neighbors queries on P under the Ly, Ly and Lo, metrics in

nlog®n 1/2+8
O (( = ) loglog n)
£ 1—¢

deterministic time, where § > 0 is an arbitrarily small constant.
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7.2 Reducing the space and query time complexities

Agarwal et al. [3] prove the existence of a (1/r)-cutting of S that covers only the (< k)-level of A(S), rather
than all of R3, that has a size of O(¢g*>*? - r), where 1 < k,r < n and ¢ = k(r/n) + 1. Setting r = 2n/(ak)
proves the existence of a set of simplices = that cover the (< (1 4+ «/2)k)-level of A(S), which consists of
(0] (ﬁ + ﬁ) simplices, such that each simplex intersects at most ak/2 surfaces of A(S). Note that a

subset of this cutting will form an a-approximate k-level of A(S). This shows the existence of an (l‘ja)—

approximate k-level of size O (%57 + =) = O<(n/k). Using these approximate levels in our data structure
results in the following theorem.

Theorem 7.7. Let P be a set of n points in R? and let ¢ € (0,1). There exists a data structure of O(n)
size, that answers approximate chromatic k-nearest neighbors queries under the L1, Lo and Lo, metrics in
O (n/2%9) time, where § > 0 is an arbitrarily small constant.

When the Ly metric is used, we can use the algorithm of Har-Peled et al. |[35] for constructing approximate
levels of O.(n/k) size. For a given arrangement of n planes in R3, their algorithm constructs a terrain that
lies between the k-level and (14 «)k-level of the arrangement, for any 1 < k < n and a > 0. We can therefore

directly use their algorithm for constructing the terrains L; ;. The construction of an ( - )—approximate

11—«
k-level for A(S) takes
nlog®n _ nlog®n
O(n+ o ) =0 (n-i— %

time in expectation, and results in a terrain with a deterministic complexity of O (ﬁ) =0 (L)
To construct all approximate levels used in our data structure, we now spend

log 1 |Sc| log 1. n

0] Z S| + 15: M -0 n+nlc§3n i 1 : O<n1z%3n>
T e = (@

time in expectation (note that we do not have to sum over the linear term in the construction of the levels
when the color is the same, as it is noted by Har-Peled et al. [35] that this term comes from sampling the
given set of points, which can be done for multiple levels simultaneously if the points stay the same). The
total deterministic complexity of the approximate levels combined is

log_1 |Sc] log_ 1 n
1—¢

0 Z Z 1Sl —o| . . L = O(n/eh)

7 3 7
i 3. (-1 € ; 1
i=1 € (1—5) i=1 (1—8)

Because the complexities of the approximate levels are lower, the preprocessing, space and query time com-
plexities of the ray shooting data structure are lowered as well.
We summarize the new complexities of the complete data structure in the following theorem.

Theorem 7.8. Let P C R3 be a set of n points and let ¢ € (0,1). In

o (M L (1))

expected time, we can build a data structure of O(n/e*) size, that answers approzvimate chromatic k-nearest
neighbors queries on P under the Lo metric in

O ((:3) Ve log logﬁ n>

deterministic time, where § > 0 is an arbitrarily small constant.
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8 Conclusions & Future work

In this thesis, we gave solutions for a variety of problems based on the chromatic k-nearest neighbors problem.
Mount et al. [45] first introduced this problem, and presented data structures whose query times depend
linearly on k. To quote Mount et al.: “it is not clear how to determine the most common color among the
k nearest neighbors without explicitly computing the k nearest neighbors.”ﬂ We have found a solution to
this problem, by working with a range that is guaranteed to contain only the k-nearest neighbors, and then
computing the mode color inside this range. This has lead to a set of data structures whose query-time
complexities do not depend on k, allowing for truly sublinear query times. We presented solutions for the
regular problem, semi-online problem, and an approximate variant of the problem, under the Lq, Lo and Ly
metrics.

While our achieved query times are sublinear, one can argue that they are on the high end. For the
regular chromatic k-nearest neighbors problem, the achieved complexities come from those of the respective
data structure for range mode queries, with the query times for finding a correct range being significantly
lower. Like Chan et al. [20], we wonder if better results for range mode queries can be achieved, which likely
requires entirely different approaches to the problem.

Turning to approximations unsurprisingly yielded better complexities, especially when the Lo metric is
used. Our formulation of the approximate problem comes from a version of approximate range counting.
Perhaps different formulations, like that of Arya and Mount [§] for approximate range searching, or that of
Arya et al. [9] for the approximate k-nearest neighbors problem, would lead to better results.

Our choices of metrics were the L1, Ly and L., metrics. These metrics were chosen because their unit
circles have shapes that allowed us to create the data structures for finding a range containing the k-nearest
neighbors and finding the mode color in this range. We believe that our data structures can be used for
different metrics as well, as the main parts of the data structures have already been generalized to other
metrics. In particular, (1/7)-cuttings have been generalized by Agarwal et al. |3] (through without efficient
construction algorithms) and approximate levels by Kaplan et al. [37]. The data structures for range searching
in certain types of ranges (orthogonal and halfspace ranges) can be replaced by data structures for semi-
algebraic range searching (see for example [4,/6]). Whether our solutions can be generalized completely to
other metrics, and what the complexities will be, remains open.

For this thesis, we only looked at the one- and two-dimensional problems. However, the data structures
for the two-dimensional exact problems can all be generalized to higher dimensions, using higher dimensional
versions of the results used for them. We wonder whether our solutions for the approximate problems can be
generalized to higher dimensions, or whether different approaches are required. This is due to our approach
requiring higher dimensional approximate levels (or higher dimensional shallow cuttings), the existence of
which we are unaware of.

Finally, rather than looking at the dynamic problems, we studied the semi-online versions of the problems.
This is mainly due to the range mode data structures, which we were not able to make fully dynamic. Finding
fully dynamic data structures remains to be done, and we think it will require a different approach to either
range mode queries, or the chromatic k-nearest neighbors problems in their entirety.

3Note that we talked about the k-nearest neighbors rather than the k nearest neighbors.
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